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Abstract 

This thesis presents a modification of the gravitational interior point method for 

quadratic programming [7]. Murty presented the algorithm as a generalization of his 

gravitational method for linear programming [8]. Murty claims that this method is 

matrix inverse free unlike other interior point methods, however convergence of his 

algorithm is not guaranteed. This thesis introduces modifications in the centering 

step of the algorithm and, using a MatlabR2009a implementation, demonstrates the 

centering step. 
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CHAPTER 1 

Introduction 

1.1. Overview and Outline of Thesis 

In this thesis we introduce a new inverse free interior point algorithm for solving 

the convex quadratic programming problem (QP) 

minimize Q(x) = cTx + \xTHx 
(1.1) 

subject to ajx < bi for i = 1 , . . . , m, 

where x = (xi,X2, ...,xn)
T is the column vector of variables, H is a symmetric n 

by n positive definite matrix, c, Oi , . . . , am are vectors of order n, and bi,..., bm are 

scalars. The vector a^ is the gradient of the ith constraint function ajx. Without loss 

of generality, we assume that for all i the aj have been normalized so that ||aj|| = 1, 

where ||-|| is the Euclidean norm. We use I = {1, 2 , . . . , m) to index the constraint 

set for (1.1). 

The feasible region for the QP is denoted by TZ and is the set of all points x in E n 

that satisfy the constraints ajx < bi for all i EX. For simplicity we assume that 1Z 

is bounded. 

The point x is feasible for (1.1) if x G 7£ and infeasible otherwise. We say con­

straint i is active, inactive or violated if ajx = bi, ajx < bi or ajx > bi, respectively. 

For any i G K , we define the set 

J(x) = {i : ajx = h,i 6 l } ; 

l 



that indexes the set of all constraints active at x. We assume that the feasible region 

IZ has a non-empty interior 7Zo = {x EW1 \ ajx < bi, \fi e l } . That is, we assume 

that there is a x E 71 with J{x) = 0. 

Each iteration of our algorithm contains two steps. The first is a centering step 

and it is followed by a descent step. In the centering step, we determine a feasible 

solution that has the largest minimum distance to all the constraint boundaries and 

that has an objective value less than or equal to that of the current interior feasible 

solution. Let B(x,r) = {y G M"|(2/ — x)T(x — y) < r2} be the ball with center x 

and radius r; and suppose that x is the current interior feasible solution. In the 

centering step we are looking for a point x that will maximize r with B(x,r) € TZ 

and Q(x) < Q(x). Let f be the radius of the ball corresponding to the centre x. 

In the descent step we look for the minimum of the quadratic function subject to 

the ball constraint. That is, we solve min {Q(x) \x G B(x,f)}. 

The concept for this kind of algorithm was first introduced by Murty in 2006 [8] for 

linear programming and then he extended it for convex quadratic programming [7]. 

The algorithm presented in this thesis overcomes some of the difficulties in Murty's 

algorithm, yet it maintains the positive aspects, such as the avoidance of matrix 

inverse operations, the major cost factor for standard interior point methods. 

In chapter 2, we present Murty's algorithm for linear programming. Chapter 3 is 

devoted to Murty's QP algorithm and it is here that we demonstrate its weaknesses 

and suggest improvements. In chapter 4 we introduce our procedure for the centering 

step and present our experimental results. First, we present background information 

on quadratic programming. 

2 



1.2. The Quadratic Programming Problem (QP) 

In this section we present material related to the QP (1.1). The gradient of Q(x) 

at the point x is the vector of order n given by 

8Q(x) 
dx\ 

VQ{x) = 

8Q(x) 
8X2 

Ex. 

8Q{x) 
8xn 

The Hessian matrix of Q(x) is the n x n matrix whose (i,j)th entry is 

d2Q(x) 

It follows that the Hessian matrix of Q(x) is H. In this thesis, we assume that H is 

positive definite. 

DEFINITION 1.2.1 (Positive Definite and Positive Semi-Definite). Let H e Rnxn 

be symmetric. H is said to be positive definite if xTHx > 0 for all x € R" \ {0}. 

Similarly, H is said to be positive semi-definite if xTH.x > 0 for all x 6 l " . 

DEFINITION 1.2.2 (Convex, Strictly Convex and Concave Functions : ) . 

i) The function f is convex if and only if for any two points x, y in the domain 

offandXe [0,1] 

f(Xx + (l-X)y)<Xf(x) + (l-\)f(y). 

Some books refer to the inequalities as Jensen's inequalities 

3 



ii) The function f is strictly convex if and only if for any two distinct points x, 

y in the domain of f and A € [0,1] 

f(Xx + (l-\)y)<Xf(x) + (l-X)f(y). 

iii) The function f is concave if and only if for any two points x, y in the domain 

offandXe [0,1] 

f{Xx + (l-X)y)>Xf(x) + (l-X)f(y). 

LEMMA 1.2.3. If the function f(x) is convex and differentiable, then f(x) > 

f(x0) + Vf(x0)(x-x0) 

P R O O F . Since f(x) is convex for any two points x ̂  y and A 6 (0,1) 

f(Xx +(l-X)y)- f(y) < Xf(x) - Xf(y). 

Divide both sides by A to get 

f(Xx + (l-X)y)-f(y) 

X < / (*) - f(y) 

Now let A —>• 0 then the definition left hand side is the gradient of f(x) in the direction 

(x — y) at the point y and we have 

Vf(y)T(x-y) + f(y)<f(x). (1.2) 

4 
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The next theorem provide conditions that help us determine whether or not a 

quadratic function is convex. 

THEOREM 1.2.4. The Taylor's series for a quadratic function Q(x) about x0 is 

Q(x) =Q (x0) + VQ(x0)T {x -x0) + -(x- x0)
T H (x - x0). (1.3) 

Furthermore, Q(x) is differentiable and 

VQ{x) = VQ(x0) + E(x-x0). (1.4) 

THEOREM 1.2.5. The function Q(x) = cTx + ^xTH.x is strictly convex if and only 

if H is positive definite. 

P R O O F . (—>) Let Q(x) be a strictly convex function, then the inequality Q(Xx + 

(1 - X)y) < \Q(x) + (1 - X)Q(y) holds for all x ^ y and A with 0 < A < 1. Let s ^ 0 

be a vector of order n and x be arbitrary, and A be such that 0 < A < 1. Replacing 

y with x + s in the above inequality gives 

Q(x + As) < \Q(x + s) + (1 - X)Q(x). 

Now, expanding both Q(x + s) and Q(x + As) using Taylor's series we have 

Q(x) + AVQ(x)Ts + J A V H S < XQ(x) + XVQ(x)Ts + ^sTEs + (1 - X)Q(x). 

Simplifying, we have 

( l - A ) A s T H s > 0 
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but (1 — A)A is always bigger than 0 so that 

sJEs> 0. 

Since s was arbitrary, H is positive definite. 

(<—) Suppose H is positive definite. Let z ^ y be any two points and A that 

0 < A < 1. For simplicity, define u> = Xz + (1 — X)y. Now consider Taylor's series 

(1.2.4). Since H is positive definite, (z — u)TE.(z — ui) is always positive, therefore the 

following inequality holds 

Q(Z)>Q(UJ) + VQ{U)T{Z-UJ). (1.5) 

This inequality also holds when z is replaced by y, so we have 

Q(y) > Q(u) + VQ(u)T(y - u). (1.6) 

Multiplying (1.5) by A, (1.6) by (1 — A) and adding together, gives 

XQ(z) + (1 - X)Q{y) > (A + 1 - X)Q{UJ) + WQ(u)T(Xz + (1 - X)y - u). 

After simplifying, we have 

XQ{z) + (1 - X)Q{y) > Q(Xz + (1 - X)y), 

as required. • 



1.3. Optimality Conditions 

We consider the model problem (1.1). A more compact form is 

minimize {Q(x) \ Ax < b} , (1-7) 

where AT = [ai,..., am] and b = [b\,..., bm] . Then the feasible region, i.e. 7Z, for 

(1.7) is 

U= {x | Ax < b} . 

The point x* is an optimal solution (simply optimal) if x* G 7Z and Q(x*) < Q(x) for 

all x e 71. The objective function for (1.7) is unbounded from below if there exists a 

point XQ and direction s0
 s u c n that XQ — 8SQ G 7Z for all S > 0 and Q(x0 — 5s0) -> — oo 

when <5 —> oo. 

DEFINITION 1.3.1 (Descent Direction). The direction s is said to be a descent 

direction for Q(x) at the point x if Q(x — as) < Q(x) for all a where 0 < a < e for 

some e > 0. 

LEMMA 1.3.2. The direction —s is a descent direction for Q(x) at the point x if 

VQ(x)Ts > 0. 

DEFINITION 1.3.3 (Optimal Step Size). The value of a that minimizes Q(x — as), 

a € R, is called the optimal step size and it is given by 

« = ^ f ^ , s^Es^O. (1-8) 

J /sTHs — 0, then Q(x) is unbounded from below. 
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DEFINITION 1.3.4 (Extreme Point). For a given convex set S, x is said to be an 

extreme point of S if it is not possible to represent x as linear combination of any 

other two distinct points of S. 

DEFINITION 1.3.5 (Maximum feasible step size). Let x e Tl and s e Rn, the 

maximum value of a > 0 with x — as £ H is called the maximum feasible step size, 

and it denoted by a. 

LEMMA 1.3.6. If ajs > 0 for all i = 1 , . . . , m, the maximum feasible step size is 

taken as +oo, otherwise 

. (ajx-bi , T / n l 
a = mm < = % = 1 , . . . , m, and a{ s < 0 > . 

I ais J 

Most linear programming algorithms, except interior point methods, are based on 

the fact that the feasible region possesses a finite number of extreme points and at 

least one of these extreme points is an optimal solution. In quadratic programming, 

the analog to an extreme point is a quasistationary point. 

DEFINITION 1.3.7 (Quasistationary point). The point xo £ 71 is a quasistationary 

point for (1.7) if XQ is an optimal solution for 

minimize {Q(x) \ ajx = bi,i E j7"(^o)} • (1-9) 

It is obvious that every extreme point of TZ is a quasistationary point for (1.7) 

and that any optimal solution for (1.7) is a quasistationary point since it is a strictly 

convex QP. In general, (1.7) possesses many quasistationary points. For example if 

8 



there is a solution xX € TZ to 

minimize {cTx + xTHx\aJx = bi, i € X0} , (1-10) 

for some subset Zo of X = { l , . . . , m } , then XQ is a quasistationary point. It is 

theoretically possible to find all quasistationary point and solve (1.7), but there are 2m 

such subsets, so a rather large amount of computation is required. Many algorithms 

iteratively determine a sequence of quasistationary point x\,..., Xj-i,Xj with 

Q(XJ) < Q{XJ-I) < ... < Q(xi), 

and locate an optimal solution for (1.7). The fact that a finite number of quasista­

tionary exists, implies that in a finite number of iterations, an optimal solution will 

be found. As we know, Beale was the first one that used this argument to show finite 

termination. Best in [4] shows under some assumption there are many QP methods 

that produce the same sequence of quasistationary points. 

A quadratic programming problem (1.1) is bounded from below if there is a num­

ber 7, such that for all x € TZ ,Q(x) > 7. In the other words there is not a direction 

s with Q(x — as) —> —00 when a —> 00. 

LEMMA 1.3.8. Suppose that Q(x) is convex and it is bounded from below on 1Z. 

Let XQ be an arbitrary point in 1Z. Then there is a quasistationary point x with 

Q(x) < Q(x0). 

THEOREM 1.3.9 (Existence of an optimal solution for quadratic programming 

problem). If Q(x) be bounded from below on 1Z, then there exist an optimal solution 

9 



x for 

minimize { Q(x) | Ax < b} 

and x is a quasistationary point. 

P R O O F . There are finitely many quasistationary points. Each is associated with 

a subset of { 1 , . . . ,rn}. Suppose that Let y is a quasistationary point. Associated 

with this y is the quasistationary set 

S(y) := {x | ajx = bufor alii G J{y),Q(x) = Q{y)}. 

Since there are finitely many quasistationary points, there are a finite number, say p, 

of quasistationary sets. Let Xi be a quasistationary point from ith quasistationary the 

set. We choose x so that 

Q(x) = min {Q(xi) | i = 1 , . . . ,p}. 

Suppose x G 71. From Lemma (1.3.8) we know that there exists a quasistationary 

point x with Q(x) < Q(x). But x G S(xi) for some % where 1 < i < p. So Q(xi) = 

Q(x).But 

Q(x) < Q(Xi) = Q(x) < Q(x). 

So Q(x) < Q{x) for all x G 7Z and x is an optimal solution. • 

THEOREM 1.3.10 (Optimality condition for quadratic programming problem). 

The pointxo is an optimal solution for (1.1) if and only if there exist scalar u\,..., um 

which together with XQ satisfy 

(1) ajx0 < hi for alii = 1 , . . . ,m 

10 



(2) -VQ(x0) = uiai + . . . + umam, Ui>0,i = l,...,rn, 

(3) Ui(ajx0 - bi) = 0, i = 1 , . . . , m. 

P R O O F . See [6] page 68-69. • 

These are the KKT conditions for quadratic programming. 

1.4. Concluding Remarks 

We established basic theorems of quadratic programming. Now we can discuss 

algorithms. The next chapter is an overview of spherical method that Murty proposed 

for linear programming. It introduces the concepts behind this new method. 

11 



CHAPTER 2 

Spherical Method for LP 

2.1. Introduction 

About 20 years ago, Chang and Murty in [12] developed new methods for Linear 

Programming(LP), but in [13] Morin, Parbhu and Zhang showed that this algorithm 

has worst case exponential growth as dose the simplex method. Murty, in [8], devel­

oped the new Spherical method, which it based on a "gravitational model". This new 

method can be classified as an Interior Point Method (IPM). In the next section we 

explain the concept behind this method and we try to clarify steps of this method to 

gain insight about the challenges this method faces when it is adopted for QP. 

2.2. Spherical Method concept 

Consider the LP in the following form 

maximize cTx 
(2.1) 

subject to ajx < bi fori e { 1 , . . . , m). 

Suppose that we are given an x0 £ Ho, s o that there exists a ball with x0 as center 

and radius r0 that is completely contained in 7Z. The gravitational method, traces 

the path of the center as the ball drops under the gravitational force pulling it in the 

direction —cT. After some initial descent, the ball will be blocked by a facet of 72.. 

After that the ball starts to move along the facets of 7Z. So the center of ball will 

stay close ,within 7*0, the boundary and it is expected the gravitational method will 
12 



behave like boundary or active set methods. One way to improve the efficiency of 

gravitational methods is to keep the center of ball far away from boundary of feasible 

region. Therefore, we must try to maximize the radius of the ball. A benefit of this 

strategy is that you can move inside the ball without any concern about violating 

constraints or of getting stuck in corners. This improvement leads to the spherical 

method, 

Before we start a description of the algorithm we need some preliminary defini­

tions. Suppose point x e TZQ, since ||aj|| = 1, bi — ajx is Euclidian distance of the 

point x to the boundary of constraint i. Now, let 8(x) = min {bi — ajx | % G J } , then 

the biggest ball with x as center that can be inscribed inside the feasible region has 

radius S(x). This ball is denoted by B(x, S(x)) and is defined as 

B(x, 6(x)) := {y\(y- x)T(y - x) < S(x)2}. 

Some of the constraint boundaries of the feasible region are tangent to B(x). The set 

of such constraints is 

T{x):={i\5(x) = bi-ajx, fori el}. 

To determine the biggest ball that can be inscribed within the feasible region we 

should maximize 5(x), or, in other words, maximize {min{6; — ajx | V i e 1} }. This 

is a min-max problems and we can rewrite it as 

maximize 8 
(2.2) 

subject to 8 + ajx < bi for % € X, 

13 



where (x, 5) is the vector of variables. But we want the objective function value not 

increase. Suppose y is provided as the initial point for iteration j of the algorithm, 

then all points to be considered for center of the ball must satisfy cTx < cTy. So, 

in each iteration we want to the determine biggest ball that can be inscribed inside 

the feasible and that has a center with an improved objective function value. We can 

achieve this by solving 

maximize 8 

subject to 5 + ajx < ^ for i el, (2-3) 

cTx < cTy. 

The only difference between (2.2) and (2.3) is the constraint cTx < cTy. In figure 

(2.1) we can see the biggest ball that can be inscribed in feasible region of the problem 

(2.3). 

Each iteration of the spherical method then consists of two main steps, the cen­

tering step and the descent step. We begin with an interior point. The centering 

step is to solve (2.3). The descent step moves from the center to a point with smaller 

objective value. 

2.2.1. The Centering Step. It is a good question to ask how we should deter­

mine the solution of (2.3). Since (2.3) is an LP, we could use methods like simplex 

method or interior point methods. This is quite counter productive since (2.3) must 

be solved several times in order to determine the optimal solution of (2.1). The spher­

ical method will be practical only if there is a computationally inexpensive procedure 

14 



that can carry out the centering step, i.e. solve (2.3). Murty approach is to solve 

maximize 5 

subject to 5 + ajx < bi for i £ 1, (2-4) 

cTx = cTy. 

The difference is that cTx < cTy is replaced with cTx = cTy. Murty in [8] proposed a 

procedure to get an approximation of the optimal solution of (2.4) and he claimed that 

it was able to determine a good enough approximation of centering step. However, 

his proof of convergence depended on of finding the exact solution. Now we describe 

FIGURE 2.1. The centering step for LP. 

15 



Murty's procedure. Suppose an interior initial point XQ is provided, the direction s is 

what Murty calls a profitable direction at x if there exists a > 0 with 5(x — as) > S(x). 

If x is an interior point, then T{x) is non-empty and |T(x)| > 1. In figure (2.2) we 

can see the optimal solution to (2.4). 

FIGURE 2.2. The modified centering step for LP. 

THEOREM 2.2.1. The direction s is a profitable direction at the point x if and only 

ifmm{ajs | i E T(x)} > 0. 

P R O O F . (—>•) Let s be a profitable direction. Then for sufficiently small a, x — as 

is feasible and 8(x — as) > S(x). To increase S(x) we should move away from the 

boundaries of the constraints in T(x). Thus, we want ajs > 0 for i G T(x). Hence, 

min{a7s | i e T(x)} > 0. 

16 



(<—) Suppose min{ajs \ % G T(x)} > 0. So ajs > 0 for i G T(x), since for 

sufficiently small enough a > 0, bi — ajx + aajs G TZQ Vi £ I \ T(X) and increase 

5(x), since 5{x) + min{ajs \ i G T(x)}. Hence s is a profitable direction. • 

Murty only considered the normal vectors of the constraints as candidates to 

be profitable directions. Since each direction must lie on the plane cTx = cTx0, 

normal vectors were projected onto the current objective plane. Murty considered 

the directions s, = â  — cTcai = (I — cTc)ai i € I. We denote the set of these 

directions by D. Let Xj be the current point and suppose that s is a profitable 

direction. We look for the step size a that will maximize 

S(a)j = {bi — ajxj + aajs \ i G X}. (2.5) 

This is a min-max problem and we can rewrite it as the following 2-variable LP 

Maximize 6 

Subject to S + aajs < bi — ajxj, i G X (2-6) 

5>0, 

where(S, a) are the variables. Murty used the primal simplex to solve (2.6). In chapter 

4 we explain how to solve it using bisection. Here is a short description of Murty's 

centering procedure 

2.2.2. Descent Direction. Once the centering step is done, the spherical method 

will complete several descent steps from the new center and will take the best point. 

All of descent steps are computationally inexpensive. Let Xj be the approximation of 

optimal solution of the centering step in iteration j . For each descent directions we 
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Algorithm 1 Murty's procedure for approximation of centering step 
Let XQ be an initial feasible interior point. 
Set j := 0 and Xj = x0. 
Dj = {±Sj = ± (I — cTc)a,i | i G T(XJ)} 

while exist a profitable direction in Di do 
s G Dj and is a profitable direction 
a = arg max {bi — ajxj + aajs | V % G 1} 

3=3 + 1 
update Dj and T(XJ) 

end while 

calculate the maximum feasible step size as follow 

bt-ajxj-eo , , , ^ T , T 
A = <̂  -± ^ 5i | for i G 1 and a' s < 0 ^ . 

« j S 

Since we want the point Xj — As, to be an interior point, we use e0 > 0 in calculating 

the maximum feasible step size. We list various descent directions can be used in 

descent step 

1 : s\ = — c. Prom Xj we take Si = — c 

2 : s2 = Xj — x~k, 1 < k < j: — 1. From Xj we S2 = Xj — x"fc for 1 < k < j — 1, 

where a^ denotes the ball center at iteration fcth . 

3 : s3 = (I — a,ia[)c, i G T(x~j). From Xj direction S3 = (/ — aiaj)c for z G T{XJ) 

is a descent direction and they are called gradient projection on touching 

constraint or shortly GPTC. For more detail refer to [8]. 

(J - a,iaj)c 4:s4= £ 

For more directions refer to [8, 9]. After all these directions are tried, the best result 

is output as the descent direction. In the next section we will discuss the convergence 

proof. 
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2.3. Convergence Proof 

In this section we provide the convergence proof for the spherical method under 

the assumption that the centering step is carried to optimality. The First theorem is 

about (2.3) and shows that always has feasible solution. 

THEOREM 2.3.1. Consider following parametric formulation of (2.3) with the pa­

rameter t replacing cTx0. 

5(t) = max 8 

subject to 8 + ajx < bi fori el, (2-7) 

cTx < t. 

The function 8{t) is a concave. 

P R O O F . Suppose that {x\,8\) and {x2,82) are optimal solutions of (2.3). Thus, 

8i = S(ti) and 62 = 8(t2) when t = t\ and t = t2, respectively. Consider i = 

Xti + (1 - X)t2, 0 < A < 1. We will first show that (x, 6), where x = Xxi + (1 - X)x2 

and 8 = X81 + (1 — X)82, is feasible to (2.7) when t = i. We have, from feasibility of 

(XJ, 8j), for t = tj, that 

8 + ajx = XSi + (1 - X)82 + Xajxx + (1 - X)ajx2 

= X{8X + ajxi) + (1 - A)(<$2 + ajx2) 

< Xk + (1 - X)k 

= h, 

and 

cTx = XcTx1 + (1 - X)cTx2 < Xh + (1 - X)t2 = t. 
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Since (x, 5) is feasible, then 

S(t) >S = \5l + (l- X)S2 = AeJfo) + (1 - X)S(t2), 

which establishes the concavity S(t). D 

Since 8(t) is concave the existence of a maximum for t E [tmin, tmax] is guaranteed. 

Therefore there exists biggest ball inside the feasible region. 

Let lZ(t) denote the feasible region for (2.7), then for t\ < ^ w e have %{t\) C 

7£(£2)- Since 5{t) is monotonically decreasing as t decreases, moving in a descent 

direction leads to reductions in the objective value and the radius of biggest ball 

inside the feasible region. 

THEOREM 2.3.2. Starting from an interior point in the feasible region for (2.1), 

if the centering step is carried to optimality, the spherical method converges to an 

optimal solution of (2.1). 

P R O O F . For detail of proof refer to [8, 12]. • 

2.4. Conclusion 

The spherical method looks like a promising method in theory, but convergence is 

highly dependent on the centering step. The procedure that Murty proposed does not 

give any information about the accuracy of the approximation. In the next chapter 

we show that the strategy he proposed for QP has difficulties and may lead to points 

that are not optimal. 
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CHAPTER 3 

Spherical Method for QP 

3.1. Introduction 

In this chapter we explain how to adapt the spherical method to QP. As mentioned 

in the previous chapter, in the spherical method the most important step in each 

iteration is the centering step. The centering step is computationally more expensive 

than the descent step, so it is important to carry out the centering step quickly, yet 

with good accuracy. Murty [7] proposed a procedure to get an approximation for the 

centering step, but there is a fundamental difficulty in his procedure that makes it 

inefficient. In the next section we try to explain the spherical method for QP, after 

that in section three we try show its difficulty and suggest a change in the procedure 

that makes it more efficient. 

3.2. QP spherical method 

We consider the QP (1.1) with H positive definite so that the QP is strictly convex. 

The unconstrained minimizer of Q(x) is y* = —H_1c. If y* G 7Z, then the problem 

is done. We assume that y* £ 7Z, since if it is feasible then solution of (1.1) is 

y* and can be determined by Cholesky decomposition for solving a positive definite 

linear system of equations or by any other algorithm that can solve unconstrained 

minimization problems. 

In the previous chapter we described the spherical method for LP. The spherical 

method for QP consists of the same steps, a centering step and a descent step. But 
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the centering step is different and the descent directions are changed. The aim of the 

centering step is to determine point within the feasible region that has most possible 

distance from boundaries of feasible region and at same time has the objective value 

less than initial point. Let y be the current feasible interior point for 71. The problem 

of finding the largest ball inscribed within V, with objective value less than y, is the 

min-max problem as follow 

max { min{6j — ajx \ Q(x) < Q(y) and V % e X} } 

which can be rewritten as the following non-linear problem 

Maximize 8 

subject to S + ajx < 6, i & I (3-1) 

Q(x) < Q(y). 

If (x, 5) is an optimal solution of (3.1), then the biggest ball inscribed within V, is 

B(x) and its radius is equal to 5. The optimal solution x may not unique, but 5 

is unique. As you can see, the centering step requires the solution of a non-linear 

optimization problem. Since we must solve this type of model several times, like for 

the LP, it is not rational to solve it exactly with contemporary methods for non­

linear optimization problem. To make this method efficient, a procedure should be 

developed to get an approximation to the optimal solution of (3.1) without matrix 

inversion. 
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FIGURE 3.1. The QP centering step. 

Suppose an approximation (x, 5) for centering step is available. Then in the 

descent step we solve the problem 

Minimize cTx + \xTYix 
(3.2) 

subject to (x — x)T (x — x) < 52. 

This is a well known trust-region subproblem and efficient polynomial algorithms 

exist for its solution, see [1, 5]. Let x be the optimal solution of (3.2). Then there 

are two possible cases 

(i) If x is boundary point of 1Z, then x is an optimal solution of (1.1) 
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(ii) x E TZo then si = (x — x) is a descent direction for Q(x). 

In case (i), the optimal solution is found and we terminate, otherwise we do a line 

search to minimize Q(x) on line segment {x = x — Asi | x € T^o}, we take A = 

min {Xi, A2} where Ai is the optimal stepsize and A2 is maximum feasible step size. 

If x — Xsi is a boundary point of 1Z, let index set J = {i e 11 hi = aj(x — Xsi) }. If 

there exists a solution for the following system of equations (i.e. KKT condition for 

(1-1)) 

—c — (x — As;i)TH = Yl UJiaj 
j€j(x-\Sl) ( 3 3 ) 

ojj>0 Vj e J(x- Asi), 

where Uj are corresponding Lagrange multipliers, then x — Xs^ is optimal solution 

of (1.1) and terminate, otherwise move to xnew = x — (A — e0)si , where e0 is same 

as chapter 2, and set it as output of descent step. Repeat centering step with xnew 

as initial point. The algorithm runs until the stopping conditions are satisfied. The 

stopping conditions can be the same as other interior point methods. 

3.2.1. Murty's Centering Step. As mention before in chapter 2 and above, 

to make the spherical methods efficient in theory and practice, we need a procedure 

to carry out the centering step without using matrix inverses or current non-linear 

optimization algorithms. Murty [7] proposed a procedure by using the concept he 

used for LP (i.e. see [8, 9]). Now we describe this procedure in detail. 

Suppose XQ G 72-0- Let 8(x) and the index set T(x) be the same as in chapter 

2. The special structure of (3.1) leads to a strategy of moving perpendicular to the 

facetal hyperplanes of 7£, so Murty just considers the normals of the constraints as 

directions to move. Define D = {±aj | i € X}. For convenience, we refer Murty's 
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considered. Murty defines s to be a profitable direction at the point Xj if it satisfies 

conditions 

ci): VQ{x3)
Ts > 0, 

c2): 5{XJ — as) > 5(XJ) for some a > 0. 

The first condition can be easily checked for each candidate direction, and by using 

Theorem (2.2.1), the second condition also can be checked. Procedure M starts with 

an interior point, uses conditions c\ and c2 to check whether or not a profitable 

direction from D exists. If it determines no profitable direction, it terminates the 

procedure and uses the current point as the new center. Otherwise, s G D is a 

profitable direction for current point Xj. We need a step size to move from point Xj 

in the direction Sj to next point. The step size is defined to be a = min {0:1,0:2} 

where 

ai = a r g m m {Q(xj ~ asj) I a > 0} 

«2 = arg max {S(XJ — asj) | a > 0}. 

Finding Oi is the minimization quadratic function in single variable and it is easily 

calculated (i.e. ax = -fj. s°). To calculate o2 is a bit more complicated as we need 
S- ti-Sj 

to solve LP 

maximize S 

subject to 5 + aajSj < bi — ajxj fori € X (3-4) 

5, a > 0, 

where (S, a) are variables. This LP is the same as (2.6) in chapter 2. Once ai and o:2 

are determined, set a = min {oi,o2} and move to the next point Xj+i = Xj — asj, 

and repeat. In the next section we make suggestion to get a better approximation of 

solution (3.1). The following theorem provides an existence proof for (3.1). 
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and repeat. In the next section we make suggestion to get a better approximation of 

solution (3.1). The following theorem provides an existence proof for (3.1). 

THEOREM 3.2.1. Consider following parametric formulation of (3.1) with param­

eter t replacing Q(x). 

S(t) = max 5 

subject to 6 + ajx < bi for i 6 X, (3-5) 

Q(x) < t. 

Then S(t) is a concave function oft. 

P R O O F . The proof is same as (2.3.1). cTx replaced by Q(x), since Q(x) is convex. 

See [14, 7] for complete proof. • 

It can be concluded from (3.2.1) that there exists a biggest ball inside feasible 

region for every t in the interval for what that problem has feasible solution. Also, 

let R(t) denote feasible region of (3.5), it is obvious that for ti < t2, R(h) C i?(^). 

Hence, 6(t) decrease monotonically as t decreases. 

3.2.2. General Iteration. Here is a short description of spherical method. 

Algorithm 2 Spherical Method for QP 

Let XQ be an initial feasible point. 
Set j = 0 and Xj = x0. 
Centering step 

Get an approximation solution for (3.1), beginning with Xj as initial point. Let 
Xj and 8(x) be the approximations. Update T(xf) and move to the descent step. 
Descent step 

Apply the described strategy with ball B(XJ,5(XJ)). If termination doesn't occur 
in this step, let Xj denote the interior feasible point for 7Z0. Move to the next step. 
Next iteration 

Check the stopping conditions. If they are satisfied set the optimal 
solution. Otherwise set Xj^-\ — Xj and j — j + 1. Go to centering step 
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3.3. Improvement in Procedure M 

Convergence of spherical methods is proved under the assumption that in the 

centering step the optimal solution is obtained. In [14] it was shown that when the 

centering step is not carried out with good accuracy convergence does not hold and 

is not guaranteed. Consider the following numerical example 

max 8 

subject to S — x < 0 

S-y < 0 

S + y < 1 (3-6) 

S + 0.573x - 0.819?/ < 0.245 

(x - 2)2 + (y - 2)2 < 4 

5>0. 

We start from point X\ = (1,0.5). The direction S\ = (0,1)T is a profitable direction as 

it satisfies conditions C\ and c2. We move in the direction S\ to the point x^ = (1, 0.73) 

with 6 = 0.27. The optimal solution to (3.6) is x* = (0.576,0.576) with 5* = 0.403. 

There does not exist a direction that satisfies condition c\ and in that direction we 

move from point x2 to x*. As you can see in figure (3.2) direction s± moves point x\ 

to a lower level set, so condition c\ will not be satisfied by any other direction and 

it is not possible to move to optimal solution of (3.6). Any procedure is used in the 

centering step, must determine as much as possible a good approximation for centering 

step. In this section, we provide some suggestion that improve Murty's procedure. In 

procedure M, the direction s should satisfy VQ(x)Ts > 0 to be a profitable direction, 

which mean — s must be a descent direction for Q(x). But in (3.1) points must satisfy 
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FIGURE 3.2. Murty's procedure failure. 

Q(x) < Q{XQ) where 2:0 is initial point. So the optimal solution of (3.1) can have 

the same objective function value as xo, but condition VQ(x)Ts > 0 says that for 

the sequence Xj for j = 1,2... , Q(x\) > Qfa) > ••• > Q(xr) > ... which is 

unnecessary. So condition c\ is too strict and we need an alternative way to prevent 

violating Q(x) < Q(x0). Since Q(x) is a strictly convex function Q(x) < Q(XQ) is a 

convex bounded region. Let x be an interior point of this region. For every direction 

such s from x there exist two values of a with Q(x — as) = Q(xo), and more precisely 

these two values, amin and amax, are 

_ sTVQ(i)+v /(sTVQ(x))2-2(8THs)(AQ(x)) 
s Hs (3.7) 

_ sTVQ(x)-v / (sTVQ(x))2-2(sTHs)(AQ(x)) 
amin — sTHs 

Now suppose direction s satisfy condition c2, then we need to determine step size 

that maximize 5(x). Murty used (3.4) to calculate step size. Murty suppose that 

step size is bigger that zero, but the only reason for that is to satisfy condition C2(i.e. 
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Q(x)s > 0). we need solve 

max {mm{bi — aj(x — as) \ i £ X, amin < a < amax and x £ 71}}, 

which has same answer as following 2-variable problem 

maximize 5 

subject to 5 + aajs < bi — aTXj fori £ X 
(3.8) 

&min _ & — ^max 

5>0. 

By restricting a between amin and amax we are sure that the constraint Q(x) < Q{XQ) 

is satisfied. So direction s is a profitable direction at point x if mm{ajs | i £ T(x)} > 

0. After that if a profitable direction found, calculate upper and lower bound of step 

size and solve corresponding (3.8) problem for finding step size. 

3.4. Conclusion 

Procedure M can determine an estimate for the centering step, but it is not 

accurate enough, and also it will not provide how accurate is approximation. Murty's 

procedure is good to find a warm-start initial point or as pre-procedure. It also can 

provide a lower bound for 5. The main difficulty of procedure M is in the calculation 

of stepsize for the profitable directions. To make spherical method a practical and 

reliable algorithm, a computationally inexpensive procedure is needed to carry out 

the centering step. 
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CHAPTER 4 

A probabilistic procedure for approximation the center 

4.1. Introduction 

In the previous chapter we discussed Murty's method for QP. We supposed that 

the feasible region is bounded , and by theorem (3.2.1,2.3.1) we showed that the 

biggest ball inside the feasible region always exists. We are interested in the procedure 

that without using matrix inversion get an accurate approximation of (3.1). As shown 

in [14] and assumption of convergence proof, the centering step plays an important 

part in convergence, so it is necessary to propose a procedure which be able to carry 

out the centering step accurately and get a good approximation of solution (3.1). We 

will use a probabilistic method to develop such a procedure. In the next section we 

provided some interesting theorem and result about S(x). In the third section, we 

explain the idea behind the probabilistic method, after that in section 4 we proposed 

our procedure and at the last chapter we provide the numerical results from the 

implementation of our procedure. 

4.2. Notes on properties of S(x) 

The function S(x) satisfies following properties 

i) 8(y) = 0 if y is on the boundary of TZ; 

ii) S(y) > 0 if y e ft0; 

hi) W C Tl then 6(y)n> < Siy)^. 
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Q(x) < Q(xJ 

FIGURE 4 .1. Center are not unique. 

So S(x) is a position function. Therefore, instead of the classic analytic center, one 

can use a point that has the maximum value of S(x) and determine the biggest ball 

can inscribed inside 1Z. From our assumption, we know that optimal solution of (1.1) 

is not an interior point of 1Z and it must be quasistationary point, so when we are 

at optimal point, the function S(x) become zero. The most important problem with 

concept of biggest ball inside the feasible region is this ball can be non-unique, so 

there will be different centers, and it is not possible to define path of center like 

analytical center path. Therefore properties of it still are unknown. In figure (4.1) 

you can see that all of line segment are the optimal solutions. But it is possible, by 

putting some restriction, to define path of center. The following theorems help us to 

define this path. 
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THEOREM 4.2.1. Let S be the set of all feasible and optimal solutions to (2.2). Let 

(x*,S*) be such that Q(x*) = min {Q(x) | (x,S) G S}. If Xj G H0 and Q(XJ) < Q(x*) 

and if(x,8) is a solution to (3.1), then Q(x) = Q(XJ). Furthermore, (x,8) is unique. 

P R O O F . Suppose that Q(x) < Q(xo). Then (x,S) satisfies optimally condition 

J2 Ui = 1 Wi > 0 
ie.T{x) 

J2 oJiai = 0 i e T(x), I4-1) 
i€T(x) 

coi = 0 iel\T(x). 

which is same as (2.2), therefore (x,5) is a solution for (2.2). Since Q(x) < Q(x*), 

then x 7̂  x*, which is contradiction. So, Q(x) = Q(x0). Suppose (x, 6) is not unique, 

so there exists another solution (x, 5) where x ^ x. Since (3.1) is convex then 

y = Ax + (1 - X)x, forX G [0,1], 

(y,S) is a solution for (3.1). From above we know at optimal solution Q(y) = Q(x0), 

but set of point on quadratic curve are not a convex set. Therefore x = x and optimal 

solution is unique. • 

DEFINITION 4.2.2. Center of Polyhedron If(x*,8*) is the unique optimal solution 

to (2.2), we call x* the center of polyhedron. 

Now if the initial point of procedure is equal center of polyhedron, we can define 

path of center, since (x, S) are unique in each centering step by theorem (4.2.1). LP is 

a special case of QP, so if in centering step we use (2.3) instead (2.4), (4.2.1) holds for 

LP except that the optimal solution (x, 5) maybe is not unique, since the set of point 
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on straight line is convex, so we can not define path of center. Also if the optimal 

solution of (2.2) is not unique we can define center of polyhedron corresponding to a 

function like f(x) where f(x) is convex and scalar function. 

4.3. Improving Hit-and-Run 

Random Search algorithms offer powerful methods for optimization. Random 

search methods walk around in feasible region and try to improve a solution. Ex­

amples of random search are Hit-and-Run, Hide-and-Seek, Pure Random Search. By 

modification of these methods, new genres are derived. The differences between var­

ious random search methods are in how they sample the feasible region. These kinds 

of methods widely used in global optimization where the chance of being trapped in 

local optimum is high. To prevent from trapping in local maximal it is quiet common 

to use a parameter ,called "Temperature". Usually in the beginning of a procedure, 

the temperature is high and random search is almost unbiased. As the temperature 

goes down, each iteration of simulated annealing more likely goes toward an optimal 

solution. In other words, if next random generated point has worse objective value, 

still there is a positive probability to move that point. 

Now suppose we want to determine 

minimize f(x) 

x 6 S, 

where S is a convex, compact, full dimensional subset of Rn, x a vector of order n and 

f(x) is real value convex function on S. Since S is convex, every local optimum is a 

global optimum. So we shouldn't be worried about local optimal. A class of Random 
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Search algorithms for solving this problem is sequential random search method. The 

concept of sequential random search methods is to generate next random point by 

taking a random direction and move by a step size from previous point. The general 

iteration in each step of algorithms, for i = 1, 2 , . . . , is 

J Xi + atDi if f{Xi + alDi)<f{Xi), 

Xi otherwise, 

where Xi is current point, Dj is random direction obtained, not necessarily, by sam­

pling from a uniform distribution on the unit sphere and a* is the step size. The 

method of choosing the step size is different in each algorithm. 

Improving Hit-and-Run (IHR) proposed by Zabinsky [16], is a sequential ran­

dom search method that take advantage efficiency of HR(Hit-and-Run) [2, 3] and 

PAS(Pure Adaptive Search) [10, 15] simultaneously. The difficulty of implementation 

PAS is efficiently generating a uniform sample of feasible region. A good alternative 

way to generates this sample is using HR algorithm in each iteration. The structure 

of IHR is to generate a candidate point along a random direction with a random step 

in that direction. If next point has better objective value accept it otherwise stay in 

current point. A brief description of Improving Hit-and-Run is in algorithm 3 below. 

It has been shown [16] for class of elliptical programs, IHR has search effort that 

is polynomially bounded. Solis and Wets in [11] provide sufficient conditions for 

convergence of random search methods to solution which are satisfied by IHR. In 

next section we are going to use IHR to solve (3.1) and (2.3). 
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Algorithm 3 Improving Hit-and-Run 

Step 0. Let XQ e S,Y0 = / (X 0) , and Set i := 0. 
Step 1. Pick random direction A from uniform distribution on a unit sphere. 
Step 2. Generate a step size a* uniformly form L,, the set of feasible step sizes, 

from current iteration point Xi in the Direction A , where 

U = {A e K: Xi + AA G S}. 

if Li = 0, then go step 1. 
Step 3. Update the new point as follow 

/ ^ + Q<A «/ / ( ^ + «iA) < /(Xi) , 
Xj otherwise, 

set y i + 1 = / (X i + i ) 
step 4. Check the stopping criterion, if stratifies,stop.Otherwise i = i + 1 and 

go to step 1. 

4.4. determining <5(x) maximizer 

In this section, we present the modification of IHR to solve (3.1). Also at the end 

of this section, we discuss how to modify this algorithm to solve (2.3). In each step 

of procedure Murty proposed it should be check that for direction s at current point 

x, As < 0 or As > 0 where AT = [a^, dj2,..., <ijk] for jk G T(x). Determining a 

solution to satisfy this condition is equivalent to checking Gordan's Theorem, which 

seems not efficient in every iteration. Instead solving As < 0, we pick a random 

direction from uniform distribution on a unit sphere and we check whether or not it 

is a profitable direction. If it is, we determine the optimum step size for it, otherwise 

we pick another random direction and repeat it in same way. Let initial point xo be 

provided. We are looking for a point that maximize S(x) and also has the objective 

value less or at least equal to xo- Corresponding to each interior point x we have 

index set T(x), so we can define matrix AT(X) a s follow 

AT = [ah,ah)..., ajk] forjk G T(x). 
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From theorem (2.2.1) we know that if AT(X)S > 0 at point x, then s is a profitable 

direction. If s, we mean s or — s, satisfies condition, then we choose s otherwise 

pick another random direction and check the condition and repeat until we find a 

profitable direction. Since we pick the direction randomly uniform, if Ay > 0 has a 

feasible solution, the probability of determining a feasible solution is greater than zero 

and we will find a profitable direction. So we say direction s is profitable at point if 

3 d € {s, —s} that satisfies Ar(x)d > 0. Now, suppose s is a profitable direction. Since 

1Z is bounded, for direction s, there exist two numbers that x0 — as is on boundary 

and are 

ai = min{ '~y' X I for i = 1 , . . . , m and asT > 0} 

a2 = max{ ' j * x \ for i = 1 , . . . , m and asT < 0}. 
(4.2) 

It is obvious that a?i > 0, a^ < 0 and for all number a2 < a < ai, x0 — as is feasible. 

This line segment lying completely inside the feasible region. Also we need to satisfy 

constraint Q(x) < Q(xo). Since we are inside the contour level Q(x0) and Q(x) is 

strictly convex for each x inside the contour level and direction s there exist two value 

that Q{XQ) = Q(x — as). These two values are 

_ VQ(z)Ts+y/VQ(x)Ts-4sTHsA 

; H s (4.3) 
VQ(x)T S-T/VQ{X)T s-4sTHsA 

a* ~ T^HS ' 

where A = Q(x) — Q{XQ). The step sizes a% and a^ should have different sign and 

also az > «4, therefore a3 > 0 and a± < 0 but both can not be zero at a same time. 

Now we choice step size as follow 

Oimax = min{ai, a3} amin = 0 if s is profitable 
(4.4) 

cumin = max{a2,aA} amax = 0 if - s is profitable. 
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then the line segment x0 — as for amin < a < amax is feasible and satisfy constraint 

Q(x) < Q(x0) at same time. Now suppose the feasible region reduce to this line 

segment and we want to 

maximize 5{x) 

subject to x0 - as for amin < a < amax. 

5(x) for the line segment is 

min {b — aj(x0 — as) |for i = 1 , . . . , m and amin < a < amax}. 

Let /3 and // are vectors of order m, also (3i = b — ajxo, //, = ajs. So we can rewrite 

S(x) for line segment as a function of a as follow 

5(a) = min{/5j + a^i \ for i = 1 , . . . , m} (4-5) 

therefore for determining the maximizer of 5(x) on a line segment, we can solve the 

following problem 

maximize 5(a) 
(4.6) 

subject to amin < a < amax 

where amin and amax are same as we mention above. 5(a) is a concave function and 

to determine solution of (4.6) we can use any kind repetitive methods. It is good to 

mention that /3 and /J, are calculated and used in determining the maximum feasible 

step size, so we do not need to carry out another multiplication. We are able to 

determine the maximizer of (4.6) easily( for example it can be done with bisection). 
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The general iteration in each step of procedure starts with point like Xj from 

previous iteration, generate a random direction Si form uniform distribution on a 

unit sphere, calculate step sizes amax and amin. Determine the optimum value of a 

in (4.6) and set Xi+\ = Xi — as*. If the stop criterion satisfy stop, Otherwise repeat 

these procedure. A brief version of procedure come as follow 

Algorithm 4 
Let XQ be an initial feasible point. 
Set j = 0 and Xj = X0,T(XJ) = T(x0),Flag=FALSE. 
while stopping criterion satisfy do 

Pick random direction Sj from uniform distribution on a unit sphere . 
Check weather or not Sj is profitable. If yes,Flag=TRUE. 
if Flag=TRUE then 

if AT(XJ)SJ > 0 then 
calculate step sizes for Sj as follow 

a\ = min < ^-^—- I for i = 1 , . . . , m and ajsj < 0 > 
I ai Sj J 

8lVQ{Xj)+y/{sl VQ(x,-))2-2(«! Hs3)(A<9(^)) 
Q3 = s^s3 

Oimax = rnin{ai,a3} and amin = 0 
else 

calculate step size for — Sj as follow 

« 2 = max < ^T-—- I for i = 1 , . . . , m and ajs > 0 > 
I ais3_ __!_ % J 

_ sJVQ(Xj)-^/{s] VQ(aJ-))2-2(83! HSj)(AQ&~j) 

a m j „ = max{a2,a4} and amax = 0 
end if 
Set 
a = arg max{X + aS\ amin <a< amax] . 

Update T(XJ+I). 

end if 
3 = 3 + 1-

end while 

The stopping criterion can be certain number of iteration like mn or the variation 

on last hundred iteration be less some arbitrary e0- Another good stopping criterion 

is xt^t-xf* \ • This procedure exactly same as IHR expect the step size generation. 
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It is possible to choose step size randomly in each iteration, but the calculation on 

optimum step size is easy and using optimum value of step size increase speed of 

convergence. 

To apply this procedure to determine solution of (2.3) just need to manipulate 

o.max and OLmin- The only different between (3.1) and (2.3) is in the last constraint 

(i.e. Q(x) < Q{x) and cTx < cTx0), So we just need to change the definition of a^ 

and Q;4 and at iteration zth there can be define as follow 

«3 = cTx°rfXz a4 = - oo if cTSi < 0, 

< ^ = C T *O T -CTX Z a 3 = + O Q if CTS. > Q ) (4 .7 ) 

« 3 = + OO « 4 = — OO if CTSi = 0 
k. 

At each iteration of this procedure, we calculate maximum feasible step size. We 

can use this information to find which constraint are necessary. For direction s, 

we know the index of first constraint of direction s reaches, then that constraint is 

necessary. Although you may not find all unnecessary and necessary condition, but 

this information help to mange number of iteration or relax your problem to a problem 

with necessary constraint. 

4.5. Experimental Result 

we implement our algorithm on Matlab 7.8 R2009a and tested it with randomly 

generated examples using a Toshiba Satellite with Pentium processor (2.1GHz, 4 GB 

RAM). Each matrix Hi = Hi Hi where Hi is non-zero matrix from order n sampled 

from normal distribution using Matlab routine "randn". So H will be Positive defi­

nite. Vector Ci is from order n sampled in same way. To generated Feasible region, we 
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pick a random point x, and generated a random matrix A as coefficient matrix with 

n columns and m rows. Suppose b = Ax + e where e is vector of order m and all of its 

entries are 1, then Ax < b is a non-empty feasible region. The First 5 examples solved 

are described in table 1. The columns give the example number, the dimension n of 

the space, the number of constraints m, the minimum number of necessary constraint 

N, the value of 5\ approximation that is found by our procedure, the value of 52 is 

exact solution and last one is \S2 — <5i| 

TABLE 1. Description of the First set of examples : Normal problems 

Ex. 1 
Ex. 2 
Ex. 3 
Ex. 4 
Ex. 5 

variables 
n 
2 
5 
10 
20 
50 

constraints 
m 
7 
15 
30 
60 
300 

Necessary Cons. 
TV 
4 
13 
30 
54 
288 

Approx. 
Si 

0.934666 
1.658348 
1.218375 
0.767861 
1.487063 

Exact sol. 
S2 

0.93502 
1.68496 
1.254201 
0.804017 
1.515898 

1 ^ 2 - ^ 1 
0.0003 
0.02 
0.03 
0.03 
0.02 

Redundancy sometimes cause the algorithm does not convergence to the optimal 

solution. We test our procedure with a set of highly redundant problems. The Second 

set contains of five highly redundant problems. The Second set examples solved are 

described in table 2. The column R denote minimum number of redundant constraint. 

As you can see our procedure can handel highly redundant problems. 

TABLE 2. Description of the Second set of examples : Highly redundant problems 

Ex. 6 
Ex. 7 
Ex. 8 
Ex. 9 
Ex. 10 

variables 
n 
2 
5 
10 
20 
50 

constraints 
m 
26 
45 
90 
180 
900 

Redundant Con. 
R 
20 
30 
60 
120 
600 

Approx. 
Si 

3.359262 
0.802441 
0.952450 
1.700652 
1.447781 

Exact sol. 

s2 
3.366827 
0.804669 
0.959655 
1.733748 
1.485494 

|<52-<5i| 
0.007 
0.002 
0.007 
0.03 
0.03 
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CHAPTER 5 

Conclusion and Future work 

In this thesis we have analyzed Murtys proposed procedure for approximation the 

centering step in QP. His procedure is not able to provide a good approximation in the 

centering step, since it has difficulties in calculation of stepsize for profitable direction. 

We suggested a modification in calculation of stepsize that can improve Murty's 

procedure. Also we have introduced a new procedure for the centering step. This 

new procedure guarantied the accuracy of the approximation. However the procedure 

we proposed still must be improved. Also we discovered some of the properties of the 

new centering strategy that Murty introduced. Murty said that sometimes it is not 

possible to define the path of centers, but we determined assumptions that the path of 

center exists and we proved the uniqueness of center. So we are able to define the path 

of center. Further work should be aimed to developed a faster procedure for carrying 

out the centering step. From theorem (4.2.1) we know that the optimal solution 

always is on the quadratic surface, so new procedure should suggest a approach that 

be able to search the surface quadratic to solve (3.1). Another further work that can 

be done in this area is to prove that if S —> 0, then x —> x* where x* is optimal 

solution of (1.1). 

41 



Bibliography 

[1] ANDREW R. CONN, NICHOLAS I. M. GOULD, P . L. T. Trust-Region Methods. MPS-SIAM 

Series on Optimization, 2000. 

[2] CLAUDE J. P . BELISLE, H. EDWIN ROMEIJN, R. L. S. Hit-and-run algorithms for generating 

multivariate distributions. Mathematics of Operations Research 18, 2 (May 1993), 255-266. 

[3] H. C. P . BERBEE, C. G. E. BOENDER, A. H. G. R. R. C. L. S. R. L. S. J. T. Hit-and-run 

algorithms for the identification of nonredundant linear inequalities. Mathematical Programming 

3, 2 (June 1987), 184-207. 

[4] J. B E S T , M. Equivalence of some quadratic programming algorithms. Mathematical Program­

ming 30 (1984), 71-87. 

[5] J. MORE, J., AND SORENSEN, D. C. Computing a trust region step. SI AM Journal on Scientific 

and Statistical Computing 3 (1983), 553-572. 

[6] MICHAEL J. BEST, K. R. Quadratic Programming : Active set Analysis and Computer pro­

grams. 

[7] MURTY, K. G. A new practically efficient interior point method for quadratic programming. 

Mathematical Programming and Game Theory for Decision Making 1 (2006), 21-33. 

[8] MURTY, K. G. A new practically efficient interior pointmethod for lp. Algorithmic Operations 

Research 1 (2006), 3-19. 

[9] MURTY, K. G. New sphere methods for linear programs. Tutorial In Operation Research (2009), 

62-81. 

[10] N. PATEL, R.L. SMITH, Z. B. Z. Pure adaptive search in monte carlo optimization. Mathe­

matical Programming 43 (1988), 317-328. 

[11] SOLIS, F . J., AND W E T S , R. J .-B. Minimization by random search techniques. Mathematics 

of Operations Research 6, 1 (February 1981), 10-30. 

42 



[12] S.Y. CHENG, K. M. The steepest descent gravitational method for linear programming. Dis­

crete Applied Mathematics 25, 3 (November 1989), 211-239. 

[13] T. L. MORIN, N. PRABHU, Z. Z. Complexity of the gravitational method for linear program­

ming. Journal of Optimization Theory and Applications 108, 3 (March 2001), 633-658. 

[14] VASILYEVA, V. An analysis of Murtys proposed interior point method for quadratic program­

ming. Master's thesis, University of Windsor, 2008. 

[15] ZELDA B. ZABINSKY, R. L. S. Pure adpative search in global optimization. Mathematical 

Programming 53, 1-3 (January 1992), 323-338. 

[16] ZELDA ZABINSKY, ROBERT SMITH, F . M. E. R. D. K. Improving hit-and-run for global 

optimization. Journal of Global Optimization 3, 2 (June 1993), 171-192. 

43 



Vita Auctoris 

Mr. Pooyan Shirvani Ghomi was born in 1985 in the city of Tehran, Iran. He 

graduated from the K.N.Toosi University of Technology where he obtained a B.Sc. in 

Applied Mathematics in 2008. He expects to graduate from the University of Windsor 

with a Master of Science degree in Mathematics in Summer 2010. 

44 


	On Murty's gravitational interior point method for quadratic programming
	Recommended Citation

	ProQuest Dissertations

