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Abstract 

Software metrics are vital for the management of software development, especially 
when a new technology is being adopted and its best practice has yet to be established. 
XML Schema is a relatively new technology that has been widely adopted in software 
development. Despite its widespread usage in almost all different kinds of programming 
platforms, its usage patterns are not yet fully investigated. From two large sets of real XML 
Schemas, this thesis studies the distribution of some of the schema metrics and the struc­
ture of some large schemas. Elements in a schema are connected by their usage links. The 
interconnected elements can be viewed as a network of elements or a graph. This thesis 
also studies the structural properties of the network of the schema elements, including the 
scale free property, the connection of the graph, and its small world effect. 
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Chapter 1 

Introduction 

Software metrics are vital for the management of software development, especially when a 

new technology is being adopted and its best practice has yet to be established. Chidamber 

and Kemerer, pioneers of the metrics of Objected-Oriented programming, said, "The need 

for (software) metrics is particularly acute when an organization is adopting a new technol­

ogy for which established practices have yet to be developed" [8]. 

XML Schema is a relatively new technology that has been widely adopted in software 

development. Despite its widespread usage in almost all kinds of programming platforms, 

its usage patterns are not fully investigated yet. 

The first question this study addresses is what a schema looks like in general. This can 

be divided into several sub questions, such as what is the size of schema in terms of its file 

size and how many elements it defines. Among the elements, how many simple types and 

complex types are defined? Since this study looked at a very large number of schemas, it 

focuses on the distributions of such statistics in order to show the state of the art as for what 

schemas really look like. It is observed that similar to other software components, the size 

of schema in various forms such as file size or elements follows power-law or log normal 

1 



CHAPTER 1. INTRODUCTION 2 

distribution, i.e. a large percentage of the schemas are very small. Although it is commonly 

accepted that class sizes of Object-Oriented(OO) programs follow power-law or log normal 

distribution, possibly due to 0 0 design principles, it is yet unknown as for the underlying 

mechanism for generating the large number of small schemas. 

The second question this thesis intends to answer is what is the structure of a schema, 

especially the structure of a large schema. Elements in a schema are connected by their 

usage links. The interconnected elements can be viewed as a network of elements, or a 

graph. For this graph we would like to know: 

In- and Out-degrees In general there are two kinds of networks. One is the random 

network where nodes are connected randomly. The other is the scale free network whose 

degrees follow a power-law distribution. We observe that without exception none of the 

schema forms random networks. Instead, their degrees follow power-law distribution. More 

specifically, two kinds of degrees are distinguished: in-degree and out-degree. In-degree 

corresponds to the number of times an element is used by other components, while out-

degree corresponds to the number of subcomponents contained in the current element. It is 

observed that both in- and out-degrees distributions follow power-law, albeit their exponents 

are different. Most in-degrees have exponent around 1.5, while out-degrees have exponent 

around 1. This kind of asymmetry between in- and out-degrees are also observed in 0 0 

programs. However, in 0 0 programs the exponents of out-degrees are in general larger 

than that of in-degrees. 

Network connection We would like to know how densely the graph is connected. We 

observe that most of the graphs are sparse, in that the number of edges grows almost linearly 

with the number of nodes. 

Small world effect In many natural and artificial networks, the average path length is 
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small. In other words, the path length grows logarithmically with the number of nodes. 

This is the so-called small world phenomenon. We observe that all the schemas exhibit 

such a phenomenon. For a schema with two thousands nodes, typically the path length is 4. 

The implication of the in-degree distribution is that most of the elements have one or 

two degrees, while there are some elements having very large degrees. This reveals that 

elements are not adequately reused. In real practice, most elements are used only once 

while there are some "hub" elements that are used many times. For example, in our CIM 

schema, the number of reference time for most often used element is 200. 

The implication of the out-degree distribution is that most of the elements contain only 

one sub-component. One example of such component relationship in CIM schema is: 

<xs:elementname="xCIMJPreconfiguredTransportAction" 

type="CIM_PreconfiguredTransportAction"/> 

In addition to the general understanding of existing XML Schemas, our study finds 

applications in areas including: 

• XML test data generation; 

• Estimating the number of elements from the file size; 

• Estimating the relation between number of elements and its referred numbers; 

In this thesis, Chapter 2 gives an overview of the current work on schema metrics done 

by other authors. Also the related work in power law and lognormal distribution is dis­

cussed. Chapter 3 presents the power law distribution and the lognormal distributions of 

these schema metrics and a comparison between two of them are discussed. Chapter 4 

describes the metrics for in-degree and out-degree for an individual Schema and structure 

metrics for two subdatasets. Also the small world effect is discussed. Chapter 5 provides 

the conclusions and proposes some suggestions for future work. 



Chapter 2 

Review of Literature 

2.1 XML Schema Metrics 

XML Schemas are widely used in software and web applications, which need to be properly 

designed so that they can be easily maintained. For this purpose, schema metrics need to 

be developed to enable quantification of schema size, complexity, quality and the other 

properties. In software engineering, XML Schema documents have a great impact on the 

overall quality of the software. Their metrics for predicting the quality and complexity of 

the software development process are important components [22]. Various metrics have 

been proposed in papers [5] [9] [18] [22] [23] [27] [37]. Table 2.1 is a summary of the 

studies on XML Schema metrics. 

XML Schema metrics can be classified into two categories, i.e., size and structure of 

the schemas. Size metrics include line of code, number of elements, number of certain 

kinds of elements as well as the file size in KB. Structure metrics include number of nodes, 

number of edges, average path length, diameter, in-degree and out-degree. In this thesis, 

we describe these metrics in Chapter 3 and Chapter 4. 

4 
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CHAPTER 2. REVIEW OF LITERATURE 6 

In [19] Lammel et al.'s work is the most comprehensive study on the metrics of XML 

schemas. It tries to answer the following three questions for schemas used in real appli­

cations: a) how large and complex real-world XML schema are; b) what schema feature 

are used in practice; c) which of the known styles of schema organization are used in prac­

tice. The definition of depth is based on content model. A code-oriented depth basically 

measures the nesting of constructs for content model. Different datatype and element decla­

rations contribute to corresponding value for total depth value. The instance-oriented depth 

is defined as the longest path from the root to a leaf in an XML tree which represents the 

schema. Also it draws the histogram of depths to show that depth may follow power law 

although they did not mention that. The result is not very conclusive due to small data set 

(63 schema projects). 

They draw the co-relation between various size metrics, showing the loc grows linearly 

with file size and node number. Also the MCC has a linear relation with the node number. 

The in/out degree distribution is not analyzed in this paper. 

In [23], Mignet et al. studied the XML web and analyzed the depth and element/attribute 

fan-out to describe the structural property for XML files. Modeling XML file as tree repre­

sentation, the depth of a certain node is defined as the longest distance from the root node 

to this node in XML documents. The element/attribute out is denned as the number of chil­

dren per element/attribute. From the study, it shows that both depth and element/attribute 

out degree follow power law distribution(in degree is not analyzed). And 99% of the doc­

uments have fewer than 8 in their depth value. Besides, in XML Web, the out-degree of 

an XML document is defined as the number of attributes nodes labeled href, xmlhref, or 

xlink:href in that document which is represented as XML Web graph and it follows power 

law distribution with exponent 1.8. The experiments in this paper is based on total 200,000 
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XML documents on the web. 

In [22], McDowell et al. discussed eleven metrics to measure the quality and complex­

ity of XML Schema. The metrics discussed in this paper includes number of ComplexType 

declarations, SimpleType declarations, Annotations, Derived ComplexType, average num­

ber of Attributes per ComplexType declaration, number of Global Type declarations, num­

ber of Global Type references, number of Unbounded Elements, average Bounded Element 

Multiplicity Size, average number of Restrictions per SimpleType declaration and element 

fanning. For element fanning, it includes the in- and out- degree (The degree distribution 

with its regularity is not analyzed in this paper). Based on these eleven metrics, a quality in­

dex and complexity index were developed to evaluate the quality and complexity of schema 

file. The experiment in this paper is only based on one schema file. The formula for index 

is defined as: 

Complexity Index=(number of unbounded elements)*5+(element fanning)*3+(number 

of ComplexType declarations)+(number of simpleType declarations)+(number of attributes 

per ComplexType declarations) 

In [37], Visser proposed another suite of eleven structure metrics for the XML Schemas 

based on the directed graph representation of schema structure. The metrics include tree 

impurity, in/out degree, instability based on fan, afferent coupling, internal edges, coher­

ence, normalized count of modules and count of nodes per module. The data in this paper 

is collected by a tool developed by the author himself and up to nearly two megabytes in 

ascii file size with nine schemas. The regularity of metrics is not analyzed in this paper. 

In [18], Klettke et al proposed a set of five metrics to measure the quality, i.e., reusabil­

ity and maintainability of XML schemas. The metrics including size, in/out degree, depth, 

complexity, and the rationale for using these metrics are described. Rather than doing a 
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statistical study of the metrics on a large set of schemas, this paper focuses on the defini­

tion of five metrics and their relations to usability and maintainability. The experiments in 

this paper are on several small DTDs. The depth and in/out degree is defined on the tree 

representation of Schema. The in/out degree in this paper is called fan-in/fan-out. 

Complexity is an important metric defined in XML Schema to measure the complexity 

of the program. MCC is first proposed. It is a measure of control flow that links the number 

of logical branches or decisions in a module to the difficulty of programming[21]. It is 

also applied in XML Schema. In [19], MCC is redefined, and some important 'decision' 

nodes are considered, including the node of element references and the multiplicity of root 

element declarations. Summing up all decisions for each schema results in the MCC value. 

Other than MCC, [32] mainly focused on different ways of determining the complex­

ity of XML documents. These are based on different syntactic and structural aspects to 

decrease the complexity of XML documents and improve their reusability and maintain­

ability. The metric value was evaluated on the basis of the internal complexities of major 

building components. Meanwhile, a Weight Allocation Algorithm is proposed, which as­

signs weights to the elements of XML trees according to their place from the root node 

(element) to evaluate their complexity. This algorithm provides means of gauging the qual­

ity and comprehensibility of XML documents. The limitation of this method is that the 

weight values are assigned randomly without validation. Consequently, the complexity 

value for schema can only reflect the structure rather than the content. 

Conversely, in [5], the author suggests that the complexity of a given schema docu­

ment closely depends on the internal complexities of its building components. This means 

that each component contributes its complexity values, on the basis of its design architec­

tures, to the schema document's overall complexity. Also, a Weight Allocation Algorithm 
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is proposed and a weight value for each component that reflects the complexity of each 

component complexity degree. 

2.2 Power Law Distribution 

In this section, we introduce the power law distributions observed in complex networks. In 

computer science, it is mainly observed in internet-related webs and software programming. 

2.2.1 Power Law in Complex Networks 

Many real systems have been described as complex networks, where nodes represent spe­

cific parts of the system and connections represent relationships among them. Examples 

of such networks come from different areas. For example, networks like the Internet [15], 

the World Wide Web [7], and the North American Power Grid [3] have all been analyzed 

as complex networks. Many other examples are seen in the social sciences, such as net­

works of friendships between individuals, have also been modeled and analyzed as com­

plex networks [29]. Similarly, biological systems such as neural and metabolic networks 

and protein interaction webs have been modeled as complex networks [17]. 

Complex systems can be represented as graphs. With graphs, statistical properties in 

systems can be displayed visually. More precisely, almost all of complex systems can be 

found to show a high degree of self-organization into a scale-free state [4]. In practice, 

these systems are modeled as graphs where the vertices represent the entities of the system, 

and the edges represent the relationship between them. The distribution of edges connected 

to vertices follows a power law. This can be seen in the internet topology [15] and the 

webpage links in World Wide Web [1]. Power law is not a characteristic that requires a 
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graph in order to be identified. It is also found in the distribution of features related to a 

single properties. For example, as stated in the previous chapter, the distribution of words in 

a corpus of documents and the population size of US cities [16] all follow a power law. The 

following is a summary of studies in complex networks with the k value and the general 

length. 

Table 2.2: Summary of Power Law Distribution in Complex Networks 

paper Networks length 

Watts and Strogatz, 1998 
Newman, 2001 
Newman, 2001 

Broder et al., 2000 
Render, 1998 

Faloutsos, 1999 
Amaral et al., 2000 

Jeong et al., 2001 

Movie Actors 
Phys. Coauthorship 
Biol. Coauthorship 

WWW Altavista 
Paper Citations 

Internet 

Power Grid 
Protein Interaction 

2.3 
-

N/A 
2.1/2.7 

3.0/ 
2.5 

-

2.4 

3.48 
6.19 
4.92 

16.18 
-

3.31 

18.99 
6.8 

2.2.2 Power Law in Software 

In the area of information and computer science, power law distributions have been ob­

served in many areas including software metrics, network and social networks, web mining, 

IR etc. 

In [31], Potanin et al. studied the object graphs of Java ArgoUML, Java Forte, Java 

Jinsight, Java Satin GCC and SmallTalk programs. The node of the object graph represents 

an object instance in the program and link is the relationship between the object instances. 

The result showed that these systems are scale-free networks and the power law distribution 

is observed for the incoming and outgoing links on the object graph. The average k value 
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of fitted line for incoming and outgoing links are close to 2.5 and 3 respectively. 

In [35], Valverde et al. studied the emergence of scaling in software architecture graphs 

constructed from the component in JDK1.2 where a class corresponds to a node and rela­

tionships exists between classes corresponds to edge. The power law is found for the degree 

distribution of the two largest components with the gradient between 2.5 — 2.65. Also the 

small world phenomenon was found with the average distance of 6.39 and 6.91 between 

any two nodes on the graph. 

In [28], Myers studied some open source system of VTK visualization library, Digital 

Material (DM), AbiWord word processing program, Linux operating system, MySQL re­

lational database, and XMMS multimedia system with their class collaboration network. 

Class collaboration is defined to include the interaction of classes both through inheritance 

and aggregation. On the graph, the node represents the class and the edge represent the rela­

tionship between two classes. All collaboration networks studied exhibit scale-free (power 

law) and/or heavy-tailed degree distributions. The k value for in/out degree distribution of 

all systems is between 1.9 — 3.1. For most of systems, this value is around 2.5. 

In [39], Wheeldon et al. studied the power law distribution of class properties and re­

lationships in JDK, Tomcat and Ant systems. The relationships mainly are focused on the 

number of methods, number of constructs, and number of fields as well as the coupling 

and inheritance relationship between them. The k value of power law distribution for those 

properties are between 0.906 — 3.663 and the average is close to 1.1. The corresponding R-

Square value is between 0.787 — 0.959 and the average is 0.95. An extension of this paper 

is [6], where some structural metrics of different Java programs display power law distri­

butions. The metrics studied in this paper includes number of methods, fields, constructors, 

subclasses, implemented interfaces, interface implementations, etc. The power law k value 
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for these metrics are around 0.91 — 3.29 and the average value is around 1.8. 

Similar work was done in [20], for which the relationship at class and function level 

in different systems show power-law distribution. All of these works model the system as 

a graph and analyze the feature of edge distributions in the graph. The in-degree and out-

degree of the graph are considered and the k value is between 1.22 — 3.5 and the average is 

close to 2. The corresponding R-Square value is above 0.95. 

A different approach was taken in [41]. The total number of the distribution of lexical 

tokens in 24 real world systems written by Java, C++ and C language exhibits Zipf's law 

and the growth of the distinct tokens follows Heap's law. Table 2.3 summarizes power-law 

distributions in software systems. 

Table 2.3: Summary of Power Law Distribution in Software 

Paper I Dataset | Graph Model | Study Focus I k | R2 

Valverde et al. 2002 
Wheeldon et al. 2003 

Myers 2003 
Potanin et al. 2005 
Baxter et. al. 2007 

Louridas et al. 2008 
Theoharis et al. 2008 

Zhang 2009 

JDK 1.2 
JDK/TOMCAT/Ant 

Open source sys. 
Java system 
java/apache 
Java System 

Semantic Web 
Java, C/C++ 

Archi. graph 
Class Diagram 
Class diagram 
Object graph 

Class diagram 
Module Graph 
Class Diagram 

N/A 

In/Out dehree 
OO coupling type 

In/Out degree 
In/Out degree 

OO metrics 
In/Out degree 

properties 
Lexical tokens 

2.5-2.65 
0.9-3.66 

1.9-3.1 
2-3 

0.91-3.29 
1.22-3.50 
0.5-1.23 

1.16-1.30 

N/A 
0.79-0.96 

N/A 
N/A 
N/A 

0.58-0.99 
N/A 

0.92-0.98 

Finding the statistical properties in software is a popular topic among computer scien­

tists. In recent years, interest in applying complex network theories and models in order 

to represent large software systems has emerged. Indeed, many software systems have 

reached such huge dimensions that it seems reasonable to treat them as complex networks 

[34]. Software is built up of many interacting subsystems and components at different lev­

els of granularity (functions, classes, interfaces, libraries, source files, packages, etc.), and 

the various kinds of interactions among those components can be used to define graphs to 
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form a description of a system. Moreover, some entities can be studied to look for a certain 

behavior with its edge distribution. 

2.2.3 Small World Networks 

The small world effect has a great impact and implication on real networks. Especially it 

plays a fundamental role on the dynamics of network, because it affects the spread speed 

of network itself. For example, in [38], the small world model explains why the diameter 

of real graphs can remain very small when the number of vertices increases. In addition to 

"six degrees of separation", various numbers have emerged associated with many networks. 

In [4], it is estimated that any two webpages are at most 19 clicks away from one another. 

In [7], the average path length is about 16 for crawlers travel on a webgraph of 200 million 

nodes and 1.5 billion links. 

In [38], a new small world network model is introduced and it is characterized by a small 

minimum length path but displaying a large clustering coefficient. This model first starts 

on lattices of any dimension or topology. If we take a one-dimensional lattice of L vertices 

on a ring, and join each vertex to its k neighbors with total Lk edges, the small world model 

is then created by taking a small fraction of the edges in this graph and "rewiring" them. 

The rewiring procedure involves going through each edge in turn and, with probability p, 

moving one end of that edge to a new location chosen uniformly at random from the ring, 

except that no double edges or self-edges are ever created. 

The small world model proposed by [38] is able to get both clustering and small world 

effect. But still some problems exists. The most distinct feature between real networks and 

the early graph model proposed by [14] is about the shape of the degree distribution. While 

theoretical model suggests the Poisson distribution is observed, many real networks in fact 
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display heavy tail power law distribution. 

2.3 Lognormal Distribution 

Lognormal distributions are mostly analyzed in file size, either in web files or common files 

in any server. In [13] [12], the authors analyze the root cause of file size in lognormal distri­

bution. In practice, the common methods of producing files include copying, translating or 

editing an existing file. In this way, the size of new file is proportional to old files at a frac­

tion rate. At log-log scale, this multiplicative process is the reason for displaying lognormal 

distribution. In [33], the power law is unable to best fit the head of distributions for mobile 

calling data flow, but lognormal fits it well. In [42], the class size in large Java programs 

is better fitted with lognormal distribution. In [3], the skew of the head of the distribu­

tion graph for US western city power transmission lines and airport connections throughout 

the world indicates that they could be suitably fitted with power law distribution, however, 

lognormal distribution fits it very well. 

In [42] [43], the author conducted an empirical study of class sizes for large Java Sys­

tems. The LOC is considered as the program size and it exhibits the Lognormal distribution 

for different Java systems. For all systems, the average 57.04% of the classes are smaller 

than 65 LOC and 75.09% of the classes are smaller than 129 LOC. This phenomenon is 

called the small class phenomenon. The possible causes and implications of the small class 

phenomenon lie in the adoption of 0 0 decomposition and reuse techniques. A natural 

consequence of good 0 0 development is that there are a large number of small classes. 

The lognormal distribution is a parabola in log-log scales. Sometimes it may seem 

like a power law if appropriately fitted. The difference between them lies in the fact that 

power law is a scale-free network while lognormal distribution is single-scale because of 
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the distortion of the head in the distribution line [3]. 

2.3.1 Why Power Law and Lognormal Distribution? 

Power law and lognormal distribution are two common models to fit the empirical data. 

The two are intrinsically connected. Very similar basic generative models can lead to either 

power law or lognormal distributions depending on trivial variations. In [25], the author 

explains some basic generative models that can lead to both power law and lognormal dis­

tribution, then further points out that small variations can change the result from one to 

the other. These models include: power law via preferential attachment; power laws via 

optimization; multiplicative processes; monkeys typing randomly; and double Pareto dis­

tribution [26] combining both power law and lognormal distribution. In [30], the authors 

provide a full explanation for the mechanisms of power law distributions. These mech­

anisms are: combination of exponentials; inverse of quantities; random walks; the Yule 

process; phase transition and critical phenomena and self-organized criticality. 

From the above we can see that there is no absolute difference between generating 

power law and lognormal distribution. The internal property of empirical data itself decides 

which model is best suited. In this thesis, both power law and lognormal distribution are 

applied in analyzing the metrics for total property of datasets and individual schema files. 

We will determine which distribution can better fit the metrics resuling in this thesis. 



Chapter 3 

Size Metrics 

In this chapter, we first give an overview of the data collected for our study. We then analyze 

the power law distribution of size metrics of those data. 

3.1 Data Collection 

For our experiments, there are two sets of XML Schemas. The first dataset contains 10,879 

XSD files which were collected in 2007 and 9606 of which are valid files. Here the word 

'valid' means that the file can be parsed by a DOM XML parser. The total size of the 

dataset is 610MB. The average size for each XSD file is 58.6KB. The second dataset was 

collected in 2009 and contains 18,046 XSD files with 14,454 valid files. The total size 

of the second data collection is 1.31GB. The average file size is 68.6KB. The details of 

the data are tabulated in Table3.1. During the data collection, we encountered the same 

problem as documented by other researchers, i.e., there are a significant number of errors 

in the collected data. These errors in Schema files include: bad encoding, missing end tags, 

missing elements, unescaped special characters, incorrect use of namespaces, incomplete 

16 



CHAPTER 3. SIZE METRICS 17 

file structure, etc. The DOM XML parser detects file errors and these files are discarded 

when we implement analysis. 

Table 3.1: Summary of Dataset 

Name 

Dataset 1 

Dataset2 

total # of files 

10879 

18,046 

# of valid files 

9606 

14,454 

Size 

610M 

I.31G 

Avg. file size 

58.6KB 

68.6KB 

3.2 Power Law Distribution of Schema Metrics 

A power law states that small values are extremely common, whereas large values are ex­

tremely rare. The definition of power law is expressed in following form: 

p(x)~x-
k (3.1) 

where p(x) is the probability that x occurs. 

Power law distribution is usually plotted with double logarithmic axes because we cannot 

identify well the characteristics of the distribution with linear axes. Alternatively, the equa­

tion (3.1) can be transformed into the equation (3.2) and we can see that the plotted values 

form a straight line whose gradient is —k. 

logp{x) °c -klog(x) (3.2) 

The illustration of power law distribution is seen in Figure 3.1. Due to the heavy-tailed 

nature of file size, as shown in Figure 3.1 A, we perform a logarithmic transformation of 

both axes to view data more clearly, as shown in Figure 3.1 in B, the file size distribution 
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on such log-log plots in which the graph approximately exhibits a straight line. But the tail 

does not fit a straight line very well. In order to smooth such noise tail, we use the method 

to increase bin size exponentially, see panel C. 

2500 
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500* 
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2.5 

>> 2 

u- 1.5 

1h 

0.5 \ 
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File size(KB) 

o 
o 

>- 1 

File size(KB) File size(KB) 

Figure 3.1: The distribution of XSD file size 

Let random variable X be the frequency of a metric value we are interested in. Given a 

metric value x, the fraction of the schemas that has value x is denoted as p(x), and is defined 

as 

p(x) = Pr(X = x) 
number of schemas having value x 

(3.3) 
total number of schemas 

The metric value x can be the file size, the number of elements in a schema etc. 

What we are interested in is what are the best functions to describe p(x) for various met­

rics. It was observed that many metrics in software systems follow power-law distribution. 
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We will study: 

• What metrics follow power-law distribution? 

• If they follow power-law distribution, how well do they fit the power-law, and 

what are the exponent? 

• What are the alternative distributions that may fit the distributions better? 

Cumulative Distribution 

In addition to the method of increasing data bin size exponentially, another method to re­

duce the noise at the tail of data plotted in log-log scale is to draw the cumulative distribu­

tion P(x), which is defined as 
oo 

P(x)=Jjp(x) (3.4) 
j=x 

Note that P(l) = 1 and 
oo 

P ( X ) o c ^ o c x - f H ) ( 3 . 5 ) 

While some studies [10] [30] use cumulative distribution, our study will use the method 

of increasing bin-size exponentially to remove noise data. 

In this thesis, we examine the different metrics in size, including: 

• PFileSizeix): File Size in KB 

• PLOC (x): Line of Code 

• PEiementNumber (x): Element Number 

• PComplexType (x): ComplexType Declaration Number 

• PSimpleType{x): SimpleType Declaration Number 

• Pannotation {x) '• Annotation Number 
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To evaluate the goodness of fitting effect, we use the statistic of R-Square to measure 

how successful the fit is in explaining the variation of the data. R-Square can take on any 

value between 0 and 1, with a value closer to 1 indicating that the fitting is better. In our 

analysis, we get this value for each diagram fitting from matlab curve fitting directly. 

The log-log diagram of data for each metric was plotted as shown in Figure 3.2 and 

Figure 3.3. The power law fitting is in Figure 3.4 and Figure 3.5(red-line). Table 3.2 is the 

summary of k-value and R-Square value for power law fitting. 

These metrics are obtained from schema itself without graph modeling. None of these 

metrics reveal any schema-specific properties, however they provide general measures for 

understanding the overall size of datasets. 

[2] [4] summarize that power law is caused by two reasons in real systems networks. 

One is the growth in which new nodes appear at random times. The other one lies in prefer­

ential attachment in which a new node connects to an existing node with probability propor­

tional to the number of connections already at that node. In other words, well-connected 

nodes tend to attract more connections than poorly-connected nodes. Any network with 

these two conditions will tend to exhibit a scale-free state and has a power-law distribution. 

The fact that so many different kinds of networks are scale-free can be explained by growth 

and preferential attachment. 
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Figure 3.2: 
Histograms in log-log scale for datasetl 
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3.2.1 Experiment Analysis 

In this section, we give some analysis for each size metric. 

Lines of Code 

The first property we studied was the distribution of the size of schemas, computed as Lines 

of Code (LOC). The LOC here does not include blank lines, but includes comment line in 

the XSD file. For datasetl. The maximum LOC of a schema in this dataset is 337,527 and 

the average number of LOC for a schema is 1,407. For dataset2, The maximum LOC is a 

schema with 382,327 lines and the average number is 1,643. For its power law distribution, 

the k and i?2 is 1.19 and 0.80 for datasetl, and 1.17, 0.83 for dataset2. 

LOC is often used as a size metric to evaluate XML Schema. In software system, LOC 

is also used to measure the program size. In [42], class size is measured in the form of LOC 

for some Java systems and their size distribution exhibits lognormal distribution. 

Number of Elements 

The second property we studied is the number of elements in each XML Schema. In a 

XML DOM tree, each node represents an element in schema and we count the total number 

of nodes on DOM tree as the number of element in schema. This number directly indi­

cates the size of each schema. It includes all kinds of elements, including complexType 

elements, simpleType elements, documentation, etc. in schema. In datasetl, the schema 

with the maximum number of elements has 192,880, while the minimum number is 1. For 

dataset2, the maximum and minimum are 218,472 and 1, respectively. The average number 

of elements for each dataset is 683 and 959. For the power law distribution of this metric, 

the k andT?2 is 1.37, 0.91 for datasetl, and 1.37, 0.88 for dataset2. From the diagram of 
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power law distribution for this metric, we can see that some small value number at the head 

of the curve is not close the fitted straight line and this affects the R2 value. 

File Size in KB 

The third property we studied is file size in KB. In both datasets, the majority schemas size 

is less than 1MB. There are only less than 200 schemas with their size greater than 1MB. 

The largest size of a schema is 12.1MB in datasetl and 13.8MB in dataset2. The average 

size is 5S.6KB and 68.6KB for two datasets. We can see from the diagram of its power law 

distribution, the k and J?2 is 1.60, 0.97 for datasetl, and 1.46, 0.96 for dataset2. 

Number of ComplexType Declarations 

The fourth property we studied is the the number of ComplexTtype declarations (includ­

ing the number of derived ComplexTypes from other ComplexTypes by either expanding or 

restricting the definitions of their parent types). XML Schema allows the definition of Com­

plexTypes. ComplexTypes allow elements in their contents and can have attributes. They 

are used to define elements with child elements in their content models. As a result, the 

presence of more ComplexTypes usually indicates more complex XML schema structures. 

From the result of experiments, we find that nearly 56.8% of files in datasetl and 69% of 

files in dataset2 have no ComplexType declarations. The maximum number of Complex-

Type declaration in a schema is 1014 and 2222 for datasetl and dataset2, respectively. This 

number is far less than the element number. This indicates that a large XSD file does not 

necessarily have very complex structures. For its power law distribution, the k and R2 is 

1.63, 0.96 for datasetl and 1.84, 0.96 for dataset2. 
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Number of SimpleType Declarations 

The fifth property we studied is the number of SimpleType declarations. The SimpleType 

declaration defines a simple type and specifies the constraints and information about the 

values of attributes or text-only elements. In datasetl, the majority of XSD files, i.e. nearly 

80% of files, have no SimpleType declarations. In dataset2, this fraction is 84%. For 

its power law distribution, the k and R2 is 1.85 and 0.90 for datasetl, and 1.94, 0.95 for 

dataset2. 

Number of Annotations 

The annotation element in XML Schema allows documentation for the benefit of both hu­

man readers and applications. The element may contain document elements for human 

readers. Having more annotation elements present in the XML Schema document usually 

implies that the XML Schema is better documented. Therefore, the overall quality of the 

XML Schema is better. Compared to SimpleType and ComplexType declaration number, 

the annotation element number is much more than two of them. For annotation element, the 

maximum number of a schema is 28051 in datasetl and 29891 in dataset2. For its power 

law distribution, the k and R2 is 1.60 and 0.97 for datasetl, and 1.57, 0.96 for dataste2. 

3.3 Lognormal Distribution 

In this section, we introduce the lognormal distribution and analyze this distribution for size 

metrics. 
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3.3.1 The Definition of Lognormal Distribution 

When the logarithm of a variable x follows a normal distribution, the distribution of x is 

called a lognormal distribution, and the probability density function of the lognormal dis­

tribution is given by 

Ax) = —^expC^l'^), x > 0; a > 0 (3.6) 

where fi and o2are the mean and variance of the associated normal distribution, and exp(x) 

is the exponential function of x, ex. fi is also called the scale parameter and o the shape 

parameter. The corresponding complementary cumulative distribution function for a log-

normal distribution is in the form of 

Pr[X >x}= f" —^expC^^V"^ )dz, x > 0; o > 0 (3.7) 
Jz=x GZV27T. 2CZ 

A lognormal distribution has finite mean and variance. Compared to normal distribution, 

the lognormal distribution is skewed, with mean eM{2° , median eM, and mode e^° . 

Despite its finite moments, the lognonnal distribution is somewhat similar in shape to 

power law. For example, if x has a lognormal distribution, then in a log-log plot of the cu­

mulative density function or complementary cumulative distribution function, its behavior 

will appear to be nearly a straight line for a large portion of the distribution. Taking the 

natural logarithm on both sides of the equation 3.6, we get: 

ln/(x) = -ln(x) - ln(o) - l/21n(27t) - {ln(x) - M)2/2a2 (3.8) 
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which has the same form as the quadratic equation: 

y = ln/(x) = Po + Pi ln(x) + P2(ln(x))2 (3.9) 

where pi = /x/a2 — 1 and P2 = — 1/(2G2) . For the above equation, the first term is a 

constant, the second represents a straight line, and the last term shows a parabolic line. 

Thus, a lognormal distribution can be seen as a quadratic function curve on a log-log plot. 

If 0 is large enough, the effect of the last term is weakened, and the distribution approaches a 

power law. If the logarithm values of empirical data result in a quadratic function curve, we 

can reason that the data is lognormally distributed [43]. Lognormal distribution is widely 

used in file size distribution analysis. 

Power law distribution has the property of being scale-free [35] [30] [15]. It is better 

that the data distribution in the above equation is referred to as a Gaussian distribution or 

quadratic distribution. The difference between the two is that the Gaussian distribution is 

not scale-free, but rather is single-scale compared to power law distribution [3]. In power 

law distribution, the fitted straight line decays at a fixed proportion from the head to the tail. 

However, in lognormal distributions, while there is a distortion at the head, its tail decays 

in the same way as a power law in a straight line. 

The lognormal distribution can be parameterized by // and a2, which we can estimate 

from the expectation E(X) and variance V(X) of an actual distribution. From the properties, 

E(X) and V(X) of the lognormal distribution are given as follows: 

E(X) = exV(ju+~), (3.10) 
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V(X) = exp(2yu + 2a2)-exp(2// + a2). (3.11) 

Then // and o2 are evaluated as follows: 

a2 = l n ( - ^ + l), (3.12) 

/ / = l n ( £ ( * ) ) - y . (3.13) 

The lognormal distribution is a parabola in log-log scales, but may seem like a power law, 

if appropriately fitted. The most recognized reason for producing a lognormal distribution 

is the multiplicative process. The study undertaken in [13] indicates that the most common 

methods of producing files include copying, translating or editing. These methods are all 

based on a existing file which is used to produce a new file. In this way, the size of the 

new file is equal to the size of existing files plus or minus a random fraction. The size of 

the new file can be expressed by the existing file size multiplied by a certain value. The 

mathematical explanation is provided below. 

In [25], the multiplicative processes are explained. For example, in biology, the mul­

tiplicative process is used to describe the growth of an organism. Suppose the size of an 

organism starts withXo. At each step p, the size of organism may increase or decrease at a 

random fraction ofFp, so that 

Xp = FpXp^. (3.14) 

The idea behind this is that the random growth of an organism is expected as a percentage 

of its current weight, and is not related to its current actual size. If the Fq, 1 < = q < = p all 
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exhibit lognormal distributions, then each Fp, inductively, exihibits lognormal distribution, 

since the product of lognormal distributions is, again, lognormal [26]. 

3.3.2 Distribution Graph 

In our study, we analyze the size metrics and plot the data with the fitting of lognormal 

distribution. Figure 3.4 and Figure 3.5 are diagrams of size metrics with fitting of lognormal 

distribution (blue line). The result shows that lognormal fitting appears better than power 

law fitting. To plot the diagram of each metric, the bin size of data increases in 2", n — 

0,1,2, Table 3.3 is the summary of R2 of sizes metrics with lognormal fitting along 

with a comparison of that value with power law fitting. 

Similar to the study in [13], we analyze that some files in our dataset are related to each 

other. Some files are produced based on the other files through re-editing or through the 

addition of new contents. This can explain the lognormal distribution of file size that has 

been illustrated in other papers. Other metrics, such as the number of elements, LOC, and 

element number, are related to the file size. The larger the file size in KB, the bigger the 

metrics value. 
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Figure 3.4: 
Histograms in log-log scale with Power Law/Lognormal fitting for datasetl. For all 

diagrams, the bin size of data increases in 2", n=0,l,2..„ 



CHAPTER 3. SIZE METRICS 31 

Dataset2 Dalaset2 

Figure 3.5: 
Histograms in log-log scale with Power Law/Lognormal fitting for dataset2. For all 

diagrams, the bin size of data increases in 2", n=0,l ,2.... 
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Table 3.3: Summary of size metrics R2 value for two datasets 

Datasetl Dataset2 
Name 

File Size 

LOC 

Element Number 

ComplexType Element 

SimpleType Element 

Annotation Element 

R2 Lognormal 

0.98 

0.95 

0.98 

0.97 

0.91 

0.98 

R2 Power law 

0.97 

0.80 

0.81 

0.96 

0.90 

0.98 

R2 Lognormal 

0.99 

0.98 

0.99 

0.97 

0.96 

0.97 

R2 Power law 

0.96 

0.83 

0.88 

0.96 

0.95 

0.96 



Chapter 4 

Structure Metrics 

4.1 Graph Model of XML Schema 

In this section, we introduce the graph model of XML Schema and some definitions for 

small world phenomenon. 

4.1.1 Modeling XML Schema as Directed Acyclic Graph 

XML Schema is modeled as Directed Acyclic Graph [11], where each element and com-

plexType of the schema is translated into a node, There is an edge from node A to node B 

if either one of the following is true: 

• B is a component in the content model of A. e.g., 

<element name="order"> 

<complexType> 

<element name="address"> 

Element address is nested in element of order, then on the DAG graph from node of order, 

34 
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there is an edge to node address. 

• B is the type of A. e.g., 

<element name="book" type="CourseReserveType"> 

there is an edge linking "book" to "CourseReserveType" because "CourseReserveType" is 

a type of "book" element. 

• B is the reference of A. e.g., 

<element name="ID" type="IDType"> 

<sequence> 

<element ref="CopyIndicator" minOccurs="0"> 

The element "Copylndicator" has already been defined in schema, and then there is an edge 

connects it to the node "ID". 

• B is thedataType of A. e.g., 

<xsd:ComplexTypename="PurchaseOrderType"datatype="MailingAddressType"> 

The datatype "MailingAddressType" is denned at the top level of the schema, then there is 

a link between the node of "PurchaseOrderType" to the node of "MailingAddressType". 

• B is an extension of A. e.g., 

<element name="RoomType" minOccurs="0"> 

<complexContent> 

<extensionbase="BuildingDesign"> 

From the node of "RoomType" to the node of "BuildingDesign", there is a link. 

Intuitively, each node represents an entity, and the edge indicates that there is a relation­

ship between the two entities. In XML_00 binding such as JAXB, those nodes are mapped 

to classes and edges to the relations between classes. Hence, our graph corresponds roughly 

to a class diagram in UML. 
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With that motivation, in our analysis we do not translate annotations and attributes into 

nodes, because in a class diagram they are normally mapped into fields of a class. To focus 

more on user-defined software artifacts, we also ignore primitive XSD data types such as 

String and int, and simpleTypes such as Strin32 that are directly derived from primitive data 

types. 

There are several difficulties while processing the data. 

• Import: To simplify the problem, we ignore the import statements. In our anal­

ysis, when an element declaration refers to a different schema, we treat this element as a 

new node on graph. 

• Recursive: Since the schema is modeled as DAG, there is no cycle on the graph. 

When the program adds the edges between nodes, it can detect whether a cycle will be 

formed with the addition of this edge. If it forms a cycle, the edge will not be added. 

• Name similarity: In schema, sometimes it happens that the value of name at­

tribute and value of type attribute is same. For example, <element name="table" type="orm:table">. 

Here, the namespace orm is defined in this schema and we treat the table and orm:table as 

one node. To avoid cycles on the graph, we add a prefix "pre_"on the value of table and 

treat it as a different node. 

To calculate the in/out degree for each node on the graph, we make the following defi­

nitions: 

In-degree: the in-degree of a node v is the number of incoming edges that v has. 

Out-degree: the out-degree of a node v is the number of out-going edges v has. 

Figure 4.1 is an schema example and the corresponding DAG. 

For this DAG, the in-degree, out-degree for each node is following (the node order is: 
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<?xml version="1.0"?> 
<xsd:schema 
targetNamespace= 
"http://cs.uwindsor.ca/schemaExample" 

xmlns:xsd= 
"http://www.w3.org/2001/XMLSchema"> 

<xsd:annotation> 
<xsd:documentation> 

This is an example XML Schema for a library. 
</xsd:documentation> 

</xsd:annotation> 
<xsd:simpleType name="string32"> 

<xsdrestriction base="xsd:token"> 
<xsd:maxLength value="32"/> 

</xsd:restriction> 
</xsd:simpleType> 
<xsd:complexType name="TextBookType"> 

<xsd:sequence> 
<xsd:element name="BookTitle" type="string32"/> 
<xsd:element name="author" type="xsd:string" 

maxOccurs="unbounded"/> 

</xsd:sequence> 
<xsd:attribute name="isbn" type="xsd:string"/> 

</xsd:complexType> 
<xsd:complexType name="libraryBookType"> 

<xsd:complexContent> 
<xsd:extension base="TextbookType"> 
<xsd:attribute name="CallNumber" 

type="xsd:string"/> 
</xsd:extension> 
</xsd:complexContent> 

</xsd:complexType> 
<xsd:element name="library"> 
<xsd:complexType> 
<xsd:sequence> 

<xsd:element name="book" 
type ="libraryBookType" 

maxOccurs="unbounded"/> 
</xsd:sequence> 

</xsd:complexType> 
</xsd:element> 

</xsd:schema> 

Figure 4.1: XML Schema example (top) and its graph 

http://cs.uwindsor.ca/schemaExample
http://www.w3.org/2001/XMLSchema


CHAPTER 4. STRUCTURE METRICS 38 

schema; library; book; libraryBookType; TextBookType; BookTitle; author): 

In-degree: 0 112 2 11 

Out-degree: 3 1 1 1 2 0 0 

4.1.2 Schema Length 

For the purpose of analyzing small world phenomenon, following the method in [36], from 

the above modeled DAG, we remove the direction of DAG, then the graph becomes undi­

rected and each node pair becomes reachable. There is one shortest path between each node 

pair. The total number of shortest path on a connected graph with the node number of n is: 

n{n-\)/2. 

From the undirected graph, we give following definitions: 

Distance: A Graph G(V,E) is a pair of sets V and E, where V is a set of vertices, and E is a 

set of edges connecting the vertices. The geodesic, or the shortest path between two nodes 

i and j is denoted as dij. 

The distance, or the average path length of G, is the average of all the shortest paths 

between any two pairs of nodes. 

n\n— \) 

dmean can be found using Floyd-Warshall algorithm in time complexity of (9(|F|3) [40]. 

The diameter of G is the maximum of all the shortest paths between any two pairs of 

nodes, i.e., 
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dmax — Maxfrjdij (4.2) 

When the graph G is not connected, there are pairs of nodes whose shortest path is infinite. 

Therefore both dmean and dmax are infinite. In that case, we can only calculate the distance 

for connected graphs. 

A network shows a small world effect if the average path length increases logarithmi­

cally or slower with graph size for a fixed average degree, i.e., 

dmean = « + bhg{n) (4.3) 

We discuss the small world phenomenon in later section. 

To find the shortest path length for each node pair on the graph, we implement Floyd-

Warshall algorithm to obtain the result. Floyd-Warshall algorithm is used to obtain all 

possible shortest paths through the graph between each pair of nodes. The following is an 

explanation of this algorithm and an example to calculate the average shortest path. 

Floyd-Warshall algorithm 

To implement Flod-Warshall algorithm. Initially, a graph G with node n and edge set E can 

be represented by an n x n matrix with its edge cost, 

if i = j 

if i ^ j and (i,j) eE 

ifi^ j and {i,j)£E 

dij = < 

0 

1 
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After the execution of the algorithm, the output is a matrix D — [dy] where dy is the 

shortest path from node v,- to v;-. 

On graph G, the nodes V2, V3,..., v/ 1 are called the intermediate nodes of the path p=< 

Vi ,V 2 , . . .V / > . 

(k) Let d)j be the length of the shortest path from node v,- to vj such that any intermediate 

nodes on the path are chosen from the set{ vi, V2,...v^}. 

Let D^ be the n x n matrix [a-j']. At each iteration step k, the aim is to compute D^ 

fromD^-1) for* = 0,l,...,n. 

For a shortest path from / to j such that any intermediate nodes on the path are chosen 

from the set { v\, V2,...v/J, there are two possibilities: 

1. Vyt is not a node on the path, 

the shortest such path has length d\jl. 

2. Vfc is a node on the path. 

The shortest path has length d^1 + d^J1. 

Combining the two cases we get 

4 = min{^ 1 ,4- 1
+ ^}. 

The matrix is calculated in following pseudo code: 

Start with all single edge path 

For i = 1 to n do 

For j = 1 to ndo 

d(i,j) = edgeCost(iJ) 
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d(i,j) is "best" distance so far from node i to node j . 

For k = 1 to n do (k is the 'intermediate' node) 

For i = 1 to n do 

For j = 1 to n do 

if(d(i,k) + d(kj)<d(ij)) 

d(i,j) = d(i,k) + d(k,j) 

Example 

We use Figure 4.1 as an example. First, we start with the adjacency matrix of the undirected 

graph that there is an edge between two nodes. If there is an edge between two nodes, it is 

indicated with 1, otherwise, it is °°. The node itself is indicated with 0. 

Initially, the adjacency matrix of the example graph is following (the node order is same 

with above): 

1 

0 

1 

oo 

C O 

oo 

oo 

oo 

1 

0 

1 

oo 

oo 

oo 

1 

oo 

1 

0 

1 

oo 

oo 

1 

oo 

oo 

1 

0 

1 

1 

oo 

oo 

oo 

oo 

1 

0 

oo 

oo 

oo 

oo 

oo 

1 

oo 

0 

' 

) 

Then start from first node of the node set, (on this graph, it is the node schema), each 

/ 
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node is added as an intermediate node between any two nodes in hope to find a shorter path. 

On this matrix, after the first node of schema is added, the matrix becomes the following: 

f° 
1 

oo 

1 

1 

oo 

I oo 

1 

0 

1 

2 

2 

oo 

oo 

oo 

1 

0 

1 

oo 

oo 

oo 

1 

2 

1 

0 

1 

oo 

oo 

1 

2 

oo 

1 

0 

1 

1 

oo 

oo 

oo 

oo 

1 

0 

oo 

oo 

oo 

oo 

oo 

1 

oo 

0 

After the node schema is added as an intermediate node between any other node pairs, 

only two temporary shortest paths are found between node library and libraryBookType 

through node schema. The path length is 2. No other paths are founded. 

Then the second node library is added as an intermediate node based on last step, it 

connects the path from node schema to node book. The length is 2. In addition, it connects 

the path from book to libraryBookType through node library and node schema. The length 

is 3. But the original path from book to libraryBookType has the length value of 1, it's 

shorter than the new path length, then the length of 1 is used as the shortest path between 

book and libraryBookType. At same time, it connects the path from book to TextBookType 

with the length of 3. The matrix becomes the following: 
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0 

1 

2 

1 

1 

CO 

oo 

1 

0 

1 

oo 

2 

oo 

oo 

2 

1 

0 

1 

3 

oo 

oo 

1 

2 

1 

0 

1 

oo 

oo 

1 

2 

3 

1 

0 

1 

1 

OO 

oo 

oo 

oo 

1 

0 

oo 

oo } 

oo 

oo 

oo 

1 

oo 

°y 
Similarly and repeatedly, adding the third node book, the fourth node HbraryBookType, 

and the fifth node TextBookType is added as intermediate node, the matrix becomes: 

f° 
1 

2 

1 

1 

2 

V2 

1 

0 

I 

2 

2 

3 

3 

2 

1 

0 

1 

2 

3 

3 

1 

2 

1 

0 

1 

2 

2 

1 

2 

2 

1 

0 

1 

1 

2 

3 

3 

2 

1 

0 

2 

Still, the last two nodes BookTitle and author is added, but there is no change with the 

result. The final matrix for the length of shortest is the same as the above. There are total 

21 pairs of nodes on the graph and the average path length is 1.81. 
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4.2 In/Out Degree and Structure of Eight Schemas 

In this section, we discuss and analyze the in/out degree distributions for individual XML 

Schema. 

4.2.1 Data Collection 

We choose the schemas size larger than 2MB in both datasets. For such kind of schemas, 

there are a total of 112 in datasetl and 128 in dataset2. Also we choose 3 schemas which 

has large average path value but their sizes are less than 2MB. We are interested to find the 

difference of their structures with other large size schemas. Out of these large schemas we 

randomly choose 8 schemas from two datasets for detailed analysis. These 8 schemas are 

introduced in following (we have two PDBML schemas). 

1) Schema UN/ECEFACT: UN/ECEFACT is a schema of specification and codelist 

about business information in UN Economic Commission For Europe. 

2) Schema PDBML: PDBML is the abbreviation of Protein Data Bank Markup Lan­

guage. It provides a representation of PDB data in XML format. 

3) Schema NIEM: NIEM stands for the National Information Exchange Model. It pro­

vides the foundation and building blocks for national-level interoperable information shar­

ing and data exchange. 

4) Schema SIF: SIF Association is a membership organization where various software 

vendors or education departments have come together to create a set of rules and definitions 

which enable software programs from different companies to share information. This set 

of platform-independent, vendor-neutral rules and definitions is called the SIF Implemen­

tation Specification. The Schema of SIF message lists the names and data type for this 

specification. 
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5) Schema e-Bay: eBay schema is a specification about an API for online shopping. 

6) Schema CIM: CIM is the abbreviate of Common Information Model. It is a standard 

that defined how managed elements in an IT environment are represented as a common set 

of objects and relationships between them. CIM Schema lists all management elements and 

its format. 

7) Schema JUSTICE: The JUSTICE Schema specifies all codes from the National 

Crime and Information Center in Japan. 

4.2.2 In/Out Degree and Structure of Eight Schemas 

We analyze the above 8 schemas with their DAG graph to get in-degree and out-degree 

number. We plot the diagrams of in-degree and out-degree distribution with the power-law 

fitting in Figure 4.2 and Figure 4.3. The diagrams are plotted in log-log scale with the 

bin size increasing logarithmically. Table 4.1 is a statistic summary of in/out degrees with 

power law fitting. 

In our experiment, we observe that the k value of power law fitting for data in both 

datasets is around 0.8 — 2.0. This value is consistent with the k value of power-law distri­

butions in other areas, like internet topology, Java class relationship, etc. 

On graph representation of schema, the nodes with high in-degrees means that an el­

ement or ComplexType declaration has broad references. The high out-degrees happen at 

the node representing elements, like root elements, complexType element which has a great 

number of child elements. The higher the out-degree, the wider the structural graph. For 

both in and out degree, it couldn't be increased without limitation as it causes the increment 

of complexity and increases the cost of whole schema [36]. 

Figure 4.4 and Figure 4.5 are visual structure graphs for schema SIF Information and 
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CIM which has the average path value with 4.0 and 3.3 but the diameter value is 10 and 6, 

respectively. From the schema itself, we observe that the schema CIM has many elements 

and complexType declarations with primitive datatype which is not considered in our pro­

gram. In addition, the majority element and complexType declarations are directly under 

the root node "schema". This causes the graph structure grows "wider" but not "deeper". 

For schema SIF Information, there are less primitive datatype uses for element and com­

plexType declaration but more referred to other places which are already declared. This 

causes the length to grow and increases the average path length of the schema. We append 

the structure graphs for other six schemas in appendix. 

Table 4.1: Summary of in/out degrees of eight schemas with Power Law fitting 

Schema Name | Nodes | Ave. path len. | Diameter | Edges | Ave. degree | k (in/out) | R2 (in/out) | std. dev.(in/out) 

e-Bay 
PDBML1 
PDBML2 

Purchase Order 
NIEM 

UN/CEFACT 
SIF Information 

CIM 

3326 
3048 
3122 

651 
2277 
1877 
684 

1000 

3.34 
4.89 
4.93 
2.24 
2.08 

3.2 
4.0 
3.3 

6 
6 
6 
4 
4 
6 

10 
6 

5880 
4377 
4591 
2722 
6081 
4838 
1220 
3479 

1.78 
1.44 
1.47 
4.18 
2.67 
2.58 
1.79 
3.5 

1.61/1.03 
1.92/0.98 
1.67/0.94 
0.88/0.84 

1.0/0.65 
1.34/1.19 
1.83/1.06 
1.05/1.0 

0.88/0.89 
0.97/0.87 
0.95/0.86 

0.85/0.9 
0.72/0.51 
0.93/0.67 
0.93/0.96 
0.87/0.89 

4.6/22.4 
1.9/9.7 
2.2/9.5 

1.1/22.3 
22.5/49.4 
8.4/17.4 

2.2/7.6 
12.1/14.0 
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Figure 4.2: Histograms of in-degree for eight schemas listed in Table 4.1. Plots are 
log-log scale. Bin size for in-degree increases in 2", n=0,l,2,.... 
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Log{Out-Degree) (k=1.03 R-Square=Q.89) Log (Out-Degree) (k=0.94 R -Square=0.66) 
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Figure 4.3: Histograms of out-degree for eight schemas listed in Table 4.1. Plots are in 
log-log scale. Bin size for out-degree increases in 2", n=0,l,2,.... 

48 
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Figure 4.4: Structure of Schema CIM. two diagrams are the same but have different layout. 
Top: plotted by GraphViz DOT. Bottom: Plotted by GraphViz NEATO 
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* --*&• 

Figure 4.5: Structure of Schema SIF Information, two diagrams are the same but have 
different layout. Top: plotted by GraphViz DOT. Bottom: Plotted by Graph Viz NEATO 
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4.3 Structure Metrics of Datasets 

In this section, we analyze the structure metrics for two subdatasets and discuss small world 

phenomenon. 

4.3.1 Data Collection 

Structure metrics include the number of nodes, edges and average path length or diameter of 

the schemas. These metrics are based on schemas' graph model. On graph representation of 

a schema, the total number ofin-degree and out-degree is the same as its edges, we analyze 

the in-degree as its edge distribution. Due to the restriction of the program, we only analyze 

the schemas with the size less than 1MB for their graph model in two datasets. We rename 

the two datasets as sub-datasetl and sub-dataset2. In sub-datasetl, there are 5586 such 

schemas. In sub-dataset2, there are 11151 such schemas. Figure 4.6 is the histogram of the 

number of nodes, the number of edges, average path length and diameter distribution with 

the power law fitting for the two subdatasets. Table 4.2 is the statistical summary for these 

metrics. 
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Figure 4.6: Histograms of number of nodes, edges, diameter and average path length for 
two sub-datasets. Plots are in log-log scale. Bin size for number of nodes increases with 
100; edges: 1000; diameter and average path length: 1 
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4.3.2 Number of Nodes and Edges 

For those small size schemas in sub-datasetl, the maximum number of nodes for a schema 

is 1685, and the average is 48. For sub-dataset2, the two values are 1961 and 82. The 

minimum number of node for a schema in both subdataset is 2. From our modeling, we 

decide to only extract the node with elements and complexType which have name and type 

declarations. This is why the node number is much less than the metrics of number of 

elements which is obtained from schema itself. On a graph, the total in-degrees is the same 

with the total out-degrees and this number is the total edge number. For sub-datasetl, the 

maximum edge number of a schema is 22166. The average is 191 and the minimum is 1. 

For sub-dataset2, these values are 12266, 280 and 1 respectively. 

For the two subdatasets, a linear growth relation can be found between the number of 

edges and number of nodes(see Figure 4.7). The relation is in the form of edge ~ nodeh22 

for sub-datasetl and edge ~ node111 for sub-dataset2. 
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Figure 4.7: Histograms of number of edges and number of nodes 
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4.3.3 Small World 

The small world phenomenon was first proposed by [24] where a series of experiments were 

conducted and the goal of each experiment was to find short chains of acquaintances linking 

pairs of people in the United States who didn't know each other. There were 60 letters were 

sent to a destination with the restraint that a letter was passed from person to person by hand 

and one individual had to pass the letter only to personal acquaintances who they thought 

might be able to reach the destination - whether directly or via a "friend of friend". The 

experiment showed that the average number of intermediate steps in a successful chain lies 

between five and six. This result was also known as the six degree of separation.. Usually, 

small world refers that the size of diameter of the network is not a large value. 

Diameter and Average Path Length 

Diameter is the maximum among all shortest paths on a graph. For sub-datasetl, the max­

imum diameter of a schema is 15 and the mean value is 3.84. The minimum is 1. The 

maximum average path length of a schema is 7.17 and the mean value is 2.26. For sub-

dataset2, the maximum and mean value are 15, 4.67 for diameter and 7.3 and 2.61 for 

average path length. The minimum of both values for two subdatasets is 1. 

To analyze the small world phenomenon, we use matlab to do linear regression analysis 

and obtain the equation for the relation between number of nodes and average path length 

for two subdatasets. See equation 4.4 and equation 4.5. The diagram for this relationship 

is in Figure 4.8. 

dmean = 1.0018 + 0.9821/og(w) for sub - datasetl (4.4) 
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and 

1.0861 + 0.9798/og(«) for sub - datasetl (4.5) 

From the above equation, we can see that the average path length is not a large value 

even if it is a big schema and has lots of nodes on its graph model. If a schema has 1000 

nodes on its graph, from the above equation, it can be seen that the average path length is 

around 4. In our experiment result, the average path length for the majority of small size 

schemas (less than 1MB) is around this value. 
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Figure 4.8: The relationship between average path length and number of nodes. In figure, 
d is the average path length and <m> is the average degree of a schema 

For many systems whose structure can be represented in graph form, it is helpful to keep 

the average path length at a low value [36]. Low average path length has been observed in 

many real systems, including the Internet or social networks, though sometimes they have 

a large number of nodes. In [2], the authors claim that two randomly chosen documents on 

the Internet are, on average, 19 clicks away from each other. 



Chapter 5 

Conclusions 

In this thesis, we analyzed size metrics and structure metrics for two different XML schema 

datasets. For each metric, we analyzed its power law distribution and lognormal distribu­

tion. From the experiment, we found that the lognormal distribution appears to be a better 

fit for the size metrics than power law distribution. Also we analyzed the in-degree and 

out-degree statistical distributions for individual schema from its graph model. We found 

that power law distributions is a better fit for both metrics, indicating that the schema cre­

ating activity can be simply modeled as a random addition of new elements. However, this 

addition exhibits strong dependence on what has been already created. There is a high rate 

of re-definition or references among the element and complexType declarations. 

We also analyzed the small world effect of schemas for which the sizes are less than 

1MB in two datasets. The relationship between number of nodes and average path length 

is expressed with an equation. From the diagrams we can see a trend: with the increment 

of the schema size, the average path length increases accordingly. But this increment has a 

certain limit. For the two datasets, the maximum average path length is 15. For the majority 

of schemas, this value is around 4. 

57 
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Future Work 

There are two directions that the research presented in this thesis could be taken further. 

First, it could be useful to repeat the analysis on other software systems to see whether the 

above conclusions are consistent. For most of the in/out-degrees in different systems, the 

power law distribution has been confirmed. We hope to give a further detailed comparison 

of metrics distribution between XML schema and other software systems. 

Second, it is necessary to expand the datasets and analyze more kinds of schema files. 

Researchers interested in the topic could crawl more schemas from internet and broaden 

the metrics analysis. Then following the theory of small world, it could be interesting to 

verify the exact relationship between the node number and the value of average path length 

existing in XML schema. 
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Appendix A 

Structure Graphs of Schemas 

In this part, we list the structure graph of schemas studied in Chapter 4. 
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Figure A. 1: Structure Graph of Schema eBay. The graph is plotted by GraphViz NEATO 
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Figure A.2: Structure Graph of Schema PDBML2. The graph is plotted by GraphViz 
NEATO 
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Figure A.3: Structure Graph of Schema PDBML1. The graph is plotted by GraphViz 
NEATO 
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Figure A.4: Structure Graph of Schema Purchase Order. The graph is plotted by Graph Viz 
NEATO 
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Figure A. 5: Structure Graph of Schema NIEM. The graph is plotted by Graph Viz NEATO 
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Figure A.6: Structure Graph of Schema UN/CEFACT. The graph is plotted by Graph Viz 
NEATO 
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