
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Towards Comparative Web Content Mining using Object Oriented Towards Comparative Web Content Mining using Object Oriented

Model Model

Titas Mutsuddy
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Mutsuddy, Titas, "Towards Comparative Web Content Mining using Object Oriented Model" (2010).
Electronic Theses and Dissertations. 8012.
https://scholar.uwindsor.ca/etd/8012

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8012?utm_source=scholar.uwindsor.ca%2Fetd%2F8012&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Towards Comparative Web Content Mining using Object
Oriented Model

By

Titas Mutsuddy

A Thesis
Submitted to the Faculty of Graduate Studies through the School of

Computer Science in Partial Fulfillment of the Requirements for the Degree
of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2010

© 2010 Titas Mutsuddy

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-80235-9
Our file Notre reference
ISBN: 978-0-494-80235-9

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iii

Abstract

Web content data are heterogeneous in nature; usually composed of different
types of contents and data structure. Thus, extraction and mining of web content data is a
challenging branch of data mining. Traditional web content extraction and mining
techniques are classified into three categories: programming language based wrappers,
wrapper (data extraction program) induction techniques, and automatic wrapper
generation techniques. First category constructs data extraction system by providing
some specialized pattern specification languages, second category is a supervised
learning, which learns data extraction rules and third category is automatic extraction
process. All these data extraction techniques rely on web document presentation
structures, which need complicated matching and tree alignment algorithms, routine
maintenance, hard to unify for vast variety of websites and fail to catch heterogeneous
data together. To catch more diversity of web documents, a feasible implementation of
an automatic data extraction technique based on object oriented data model technique,
OOWeb, had been proposed in Annoni and Ezeife (2009).

This thesis implements, materializes and extends the structured automatic data
extraction technique. We developed a system (called WebOMiner) for extraction and
mining of structured web contents based on object-oriented data model. Thesis extends
the extraction algorithms proposed by Annoni and Ezeife (2009) and develops an
automata based automatic wrapper generation algorithm for extraction and mining of
structured web content data. Our algorithm identifies data blocks from flat array data
structure and generates Non-Deterministic Finite Automata (NFA) pattern for different
types of content data for extraction. Objective of this thesis is to extract and mine
heterogeneous web content and relieve the hard effort of matching, tree alignment and
routine maintenance. Experimental results show that our system is highly effective and it
performs the mining task with 100% precision and 96.22% recall value.

Keywords: Web content mining, Object-oriented mining, Automatic web data extraction,
Wrapper induction, Web information integration.

IV

Acknowledgement

I would like to give my sincere appreciation to all of the people who have helped

me throughout my education. I express my heartfelt gratitude to my wife and daughters

for their support throughout my graduate studies.

I am very grateful to my supervisor, Dr. Christie Ezeife for her continuous

support throughout my graduate study. She always guided me and encouraged me

throughout the process of this research work, taking time to read all my thesis updates.

I would also like to thank my external reader, Dr. Gokul Bhandary, my internal

reader, Dr. Asish Mukhopadhyay, and my thesis committee chair, Dr. Xiaobu Yuan for

making time to be in my thesis committee, reading the thesis and providing valuable

input. I appreciate all your valuable suggestions and the time, which have helped improve

the quality of this thesis.

At last, I would express my appreciations to all my friends and colleagues, for

their help and support. Especially, I would like to thank Chris Drouillard and Mohammad

Harunorrashid for their help in implementation. Thank you all!

v

Table of Contents

Author's Declaration of Originality iii
Abstract iv
Acknowledgement v
Table of Figures viii
Table of Tables ix
1. Introduction 1

1.1 Web mining. 2
1.1.1 Web Usage mining 3
1.1.2 Web Structure mining 4

1.1.3 Web Content mining 5
1.2 Phases of Web Content Mining. 6

1.2.1 Web Page cleaning 7
1.2.2 Web data extraction 8
1.2.3 Web data classification and categorization 12
1.2.4 Web data Warehousing 15
1.2.5 Mining Web Content 17

1.3 Object-Oriented Web Data Extraction 20
1.4 Thesis contribution 23
1.5 Outline of the Thesis proposal 25

2. Previous/Related work 26
2.1 Wrapper Programming Language 26

2.1.1 DEByE: Data Extraction By Example 27
2.1.2 WICCAP : From semi-structured to structured data 27

2.2 Wrapper Induction 29
(A) String Edit Distance 30
(B) Center Star Method 31
(C) Simple Tree Matching 32
(D) DOM Tree building 34

2.2.1 STALKER: Hierarchical approach to Wrapper Induction 35
2.2.2 IEPAD: Information Extraction Based on Pattern Discovery 37
2.2.3 Instance based Wrapper Learning 39

2.3 Automatic Wrapper Generation 41
2.3.1 RoadRunner: Towards Automatic Data Extraction from Large Websites 42
2.3.2 DEPTA: Data Extraction based on Partial Tree Alignment 43
2.3.3 OWMiner: Modeling Web documents as Objects for Automatic Web

Content Extraction 44
3. Object-Oriented Web Content Mining 50

3.1 Problem Addressed 50
3.2 Web Content Objects 52

3.2.1 Text contents 53
3.2.2 Image contents 53
3.2.3 Form contents 54
3.2.4 Plug-in contents 54

3.3 Challenges and Thesis approach to solution 55
3.4 Problem Domain 59

3.4.1 Data Region and Data Block Identification 60
3.4.2 Data Model 63
3.4.3 Tuple formation from Data block 66

VI

3.5 Proposed WebOMiner Architecture and algorithms 73
3.5.1 Crawler Module 74
3.5.2 HTML Cleaner Module 79
3.5.3 Content Extractor Module 80
3.5.4 Web Miner Module 86

3.6 Warehouse and Mining for Integration 94
4. Evaluation of WebOMiner System 96

4.1 Strength of WebOMiner 96
4.2 Empirical Evaluation 102
4.3 Experimental Results 102

5. Conclusions and Future work 103
5.1 Future work 104

References 105
Appendix A... System Manual 109
Vita Auctoris 131

vii

Table of Figures

Figure-01 Web structure graph 4
Figure-02 Blocks of atypical web page 7
Figure-03 Semi Structured web content data 9
Figure-04 Simple Tree matching for Wrapper Generation 12
Figure-05 Common B2C web site structure 13
Figure-06 Dataregions and data blocks 14
Figure-07 Query interface from same domain of airline ticket reservation 16
Figure-08 DOM tag tree ofCompUSA.com web document for figure 06. 22
Figure-09 Logical view of WDEL language 27
Figure-10 Edit distance matrix and back trace path 31
Figure-11 Example of center star method 32
Figure-12 Tree Matching and aligning in (X), Aligned data nodes under NI in (Y) 33
Figure-13 Boundary co-ordinates and resulting tree 35
Figure-14 (a) Training data blocks, (b) Logical presentation 36
Figure-15 Similarity measure for identifying "price" 40
Figure-16 Iterative Tree alignment with two iterations 43
Figure-17 Object Exchange GraphModel 45
Figure-18 Hierarchy of Web Object Model 47
Figure-19 OWebMiner algorithm 48
Figure-20 Example of simple static web textual data 53
Figure-21 Formatting tags within textual fragment 57
Figure-22 Difference in schema for similar information 58
Figure-23 Schema matching at object creation 58
Figure-24 Intersection ofblock level and non-block level tag 61
Figure-25 Graphical Tree representation of data block and data region... 63
Figure-26 Data block representation 64
Figure-27 Data Tuple of Product Data block 66
Figure-28 Content objects of a product list data block 67
Figure-29 Example of simple content hierarchy in a data block 67
Figure-30 NFA notation for Product tuple 69
Figure-31 NFA presentation of List tuple 70
Figure-32 NFA presentation ofForm tuple 71
Figure-33 NFA presentation of Text tuple 72
Figure-34 NFA presentation of Singleton tuple 72
Figure-35 WebOMiner Architecture for Object-Oriented web content mining 73
Figure-36 WebOMiner main algorithm 74
Figure-37 Class diagram for Crawler module 75
Figure-38 Algorithm SiteMapGenerator and MySpider 76
Figure-39 Algorithm Crowler.traverse() 76
Figure-40 PageInfo.extract() and WebPageXractor.parse() algorithm... 77
Figure-41 SimpleHTMLParser algorithm 78
Figure-42 Algorithm DOMTree.CreateTree() 79
Figure-43 OWebMiner algorithm 81
Figure-44 Modified ContentWebObjectScan algorithm 82
Figure-45 Modified ProcessContentSibling algorithm 84
Figure-46 Algorithm to insert separator object in ContentObjectArray.. 85
Figure-47 Snapshot of ContentObjectArray 85
Figure-48 Algorithm to Mine Content Object 86
Figure-49 Algorithm to Identify Object Tuple 87
Figure-50 Identification of data block 88
Figure-51 Enum set Pattern Table 88
Figure-52 Data block identification/Tuple formation 89
Figure-53 Algorithm GenerateSeedNFA to generate candidate NFA.... 90
Figure-54 Algorithm for squeezing object tuples 92
Figure-55 Algorithm CreateDBTable.insertData 93
Figure-56 Example of Squeezing tuple 93

viii

http://ofCompUSA.com

Table of Tables

Table-01 Web Log Information 3
Table-02 Tuple types in monitor web page 94
Table- 03 Experimental Results 102

ix

1. Introduction

World Wide Web (WWW) is growing exponentially over the years. So, web

documents became a largest repository of information (Kosala & Blockeel, 2000).Web

content usually means to those information that a user see in a web document. It also

includes some hidden information that helps user interaction with web contents. Web

contents are heterogeneous in nature and may be in different forms like text, image,

hyperlink, metadata, audio, video and others with their combinations. A complete

classification of all these different types of web contents does not exist.

When any mechanism is used to extract relevant and important information from

web document or to discover knowledge or pattern from web document, it is then called

web content mining. Traditional mechanisms are: providing a language to extract certain

pattern from web page, discovering frequent pattern, clustering for document

classification, machine learning for wrapper (e.g., data extraction program) induction,

and automatic wrapper generation. All these traditional mechanisms are unable to catch

heterogeneous web contents together as they strictly rely on web document presentation

structure. Annoni and Ezeife (2009) present a model for representing web contents as

objects. They encapsulated web contents in object-oriented class hierarchy which enable

to catch heterogeneous contents together in unified way without strictly relying on

presentation structure.

This thesis studies the idea of modeling web contents in objects and develops a

mining process for object-oriented data model for web content integration or comparative

mining. The rest of this chapter is organized as section 1.1 introduces web mining and its

categories; section 1.2 introduces the phases of web content mining and section 1.3

1

introduces the idea of object-oriented web content extraction, section 1.4 Thesis

contributions and section 1.5 outline of the Thesis Proposal.

1.1. Web Mining

Organizations that have large amount of data need to make decisions that impact

their future activities. Data mining is a process of extracting relevant and important

knowledge from that large data to facilitate decision making. According to Etzioni

(1996) web mining is a data mining technique to automatically discover and extract

information from web documents and services. Web mining became important for

knowledge discovery in business development, merchandise, personalization, and

integration of web information. Borges et al. (1999) categorized web mining into three

areas; web structure mining, web usage mining and web content mining. Kosala et al.

(2000) defined web structures as inter-document structure of web pages which is

represented by hyperlinks within the web itself. These hyperlinks are used in web pages

for navigating to other web pages for interested information. From data view of web

content mining, Kosala et al. (2000) defines web structure within the web documents

(intra-document structure), the way how web content data are represented. Web usages

are the history of user's visit to web pages generally stored in chronological order in web

log file. Web contents are all the hard data such as text, images, audio, multimedia

information in the web pages. Web contents are primary information of a web page.

There are some other information or block in the web pages such as advertisement,

attached pages, copyright notices. These are also web contents and usually are not

considered as part of the primary page information. This unwanted information in a web

2

page is called the noise information, and usually need to be cleaned before mining the

web content (Gupta et al., 2005; Li and Ezeife, 2006).

1.1.1. Web Usage Mining

Web usage information or the history of user's visit to different web pages are

generally stored in chronological order in web log file, server log, error log and cookie

log (Buchner and Mulvenna, 1998). General format of a web log string is as follows:

137 207 76 120-[30/Aug/2001 12 03 24-0500] "http //www crtcinfo com/bangladesh/content/current/team

/25 htm HTTP/1 0" 200 2781"

This web log string has certain set of information about user access to web as follows:

Field

Host/ip

User

Date

Request

URL

Status

Bytes

Description

Remote client IP address

Remote log user name

Date, time and time zone of request

User Request Identifier (URI) with

the Uniform Resource

Locator(URL) string

Status code returned to client

Bytes transferred

Example

137.207.76.120

' - ' for anonymous user or 'xyz' for particular user.

30/Aug/2001:12:03:24-0500

URI: http, ftp, mailto etc

URL: http •//www.cricinfo com/bangladesh/content

/current/team/25 html HTTP/1 0"

200 [series of success]

2781 bytes

Table-01: Web log information

Web usage mining finds the relationships or patterns of the user's visit to different web

pages from the access log files. The frequency of certain web page visit and the common

traversal paths by the users are important information for discovering the browsing

behavior of the web page users. If a web user visits most of the times to a certain type of

page of web site, for example: "http://. /...../products/games/hardware.html", which

is a path for game hardware, this means that particular customer is interested to buy game

3

http://www.cricinfo
http://

hardware products. Web usage mining helps to get this information and is used by

marketing companies to sell their products to the targeted customers.

1.1.2. Web Structure Mining

A web structure defines the structure of a web site (Kosala et al., 2000). Web sites

usually consist of a set of web pages. Each page of a web site represents a set of

information. Hyperlinks (or links) are used in web pages to navigate from one web page

to other web pages of the site for navigating information. Web structure mining is the

process of discovering structure information from the web. This type of mining can be

performed either at the (intra-page) document level or at the (inter-page) hyperlink level

(Kosala et al., 2000). In case of intra-page web structure, Hyper-Text Mark-up Language

(HTML) presentation tags represent the page structure and are commonly used for web

content mining. By web structure mining, it usually means the inter-page structure

mining of web site where structure of a web site is represented as a typical web graph as

Figure-01: Web structure graph

shown in figure OLA web graph consists of web pages as nodes, and hyperlinks as edges

connecting between two related pages. Revealing web documents structure are effective

for navigation purposes. For example, from the links, important web pages can be

discovered for a particular keyword, which is a key technique for search engines. Other

4

important applications of web structure mining are: discovering the topology of

hyperlinks and then categorizing the web pages, generating similarities and relationships

between different web sites, page ranking, and link-based similarity search.

1.1.3. Web Content Mining

Web contents are the core data or information of a web page. These data can be in

the form of text, image, audio, video, multimedia, hyperlinks or in combination of these

formats in a web page. Web content data can also be un-structured (e.g., bulk text), semi-

structured (e.g., HTML page content), structured (e.g., XML, table, database generated

and multimedia data).

Un-structured web content data are represented by a full bag of words or texts or

phrase-based feature representations. These features can be Boolean or frequency based

and can be reduced using different feature selection techniques. Common text mining

techniques like machine learning, statistical and Natural Language Processing (NLP) can

be used for mining the unstructured web content data (Kosala et al., 2000).

Multimedia web data are the multimedia data embedded or triggered by web page

through a mouse or keyboard event or automatically generated event while browsing

through the web page. Multimedia data mining is comparatively a young sector of

research area developing in recent years with increasing demand of surfing for music,

music video, movie; online music group, large varieties of online communities for

sharing personal information, hobbies and interests especially in teenage and young age

groups. Common statistical machine learning theory or fuzzy logic theories are used for

mining the multimedia web data (Petrushin et. al., 2007).

5

Semi-structured and structured data are most common types of data format for

web documents. Typical HTML web page contents are semi-structured web data, which

corresponds to a collection of facts and consists of text, image, hyperlink, structured

records such as list, table, and database generated content. These types of featured data

are rich and common representation of the web document structure.

Web Content mining is the process of extracting targeted facts from web

documents. Web content corresponds to the collection of facts a web page is usually

designed to convey to the users. Web content mining aims for a target fact to be extracted

from web document or to discover patterns from web document. Common applications of

web content mining identify the topic represented by a web document, categorize web

document, find similar web pages across different servers, enhance standard query

relevance with user or role, recommendation of top relevant documents in a collection,

filter documents based on targeted facts.

1.2. Phases of Web Content Mining

Web content mining need several steps of pre-processing before mining it

efficiently. First it needs to identify targeted facts in web documents and need to exclude

noise contents (Li and Ezeife, 2006). Next step is the extraction of targeted facts from

web documents. After extraction, it then needs to classify extracted contents according to

their category. This data are then ready for mining to discover knowledge or underlying

patterns.

6

1.2.1. Web page cleaning

A typical web page consists of a set of semantic blocks. Each block contains data

contents. There is no unified way to represent data contents and blocks. In general, most

web pages have three major blocks; header block, body block and footer block as shown

l^ffiOSS NZV/Z. TlxXS , l f e i $

sutos Entertainment (Sews Lifestyle Money Music Green Shoppitse

>/j?/.

Tedi/fraye! Vid

Header Block

•**J*~
Advertisement Block!

" * - -- *' m -""re! rivkirt
J » t i , ' * •"'•«« " •>'M>s"x'y IU hii(l.'-t

' t , l w i w i i > « i , « * "Mk" : J - . i 8i«'i->: =

• - • 3 f l i t

E9 ft

Navigation Block

i i E W i i a
Hnlti«.l. i _+1 I+ire bo.h O

hs.*,^ i . ' 4 5 *, ,si*i i - s t i ^ *rs?

W a

I ^ la mi

I News (IK. '••-".-.!.- liv i i -i M o n e y

• r-f,'j IN- alv.-l- S

, Explore MSN
J N v i f sired Ott«r-4

i^M'.'-.-.,V" *"" '" l :-rr
- M ' l] , ' , , l l I I I A «

i A' indcw LI'.C I'lx- Ic

4, / " - , ; '

I i- rsd It ft i MS^

Navigation Blocks

Footer Block

Figure-02: Blocks of a typical web page

in figure 02 (Annoni and Ezeife, 2009). The body block contains the major web

document information. Other blocks like advertisement blocks, navigation block may be

contained in all these three major blocks. A header block consists of page heading,

company logo, advertisement and search option. Body block may consist of a set of

7

content blocks, navigation blocks, advertisement blocks. This is the core part of the web

document including a set of noise blocks. Footer block consists of copyright notice,

advertisement and navigation bar. These heterogeneous web pages need pre-processing

like cleaning the noise contents for effective page classification/categorization and data

warehousing (Chaudhuri et al, 2003; Gupta et al., 2005). It is easy for a person to

understand the structure of a webpage by browsing them but difficult job for a machine to

do automatically. There is no easy way to differentiate the noise blocks from content

blocks (Li and Ezeife, 2005). For example, an advertisement in a page may become

important if user is interested in it and it can contain important citation links that are

valuable for PageRank (Page et al., 1998). But at the same time, an advertisement block

may be considered as noise if user is not interested in it. So, it may deteriorate the page

classification and mining quality. Many researchers just only extract data from the web

pages (Chaudhuri et al., 2003) but other researchers emphasize on removing the noise

contents from the web documents for improving quality of web content mining (Yi et al.,

2003; Li and Ezeife, 2006).

1.2.2. Web data extraction

A typical web page contains a set of data objects or records such as a list of

products, services and image or text explaining details of their products. These data may

be hard coded or generated from databases and encoded by hypertext tags of the web

page in leveled or hierarchical structure. There is no unified data model for web pages.

So, extraction of web content data is highly dependent on the presentation structure of the

web page. Wrapper (e.g., data extraction program) induction (Muslea et al., 1999) and

Automatic Wrapper Generation (Liu et al., 2004) are two popular web data extraction

8

techniques widely used today. Former technique is a supervised learning process and the

latter is unsupervised learning process. In supervised learning, it needs a set of sample

web pages or training pages for user defined marks / labels to learn extraction rules from

these training pages first. Then, the same rule is applied to other pages of the WWW for

information discovery. Figure 03(a) shows simple personal information which can be

represented in hierarchical structure as shown in figure 03(b) and in leveled structure

Name: Dr. C. I. Ezeife
Position: Professor
Dept: Computer Science

Ph: (519)253-3000
Email:cezeife@uwindsor.ca

Publications:
2009

Names, xxxxxxxxx
2008

Names, yyyyyyyyy

(a) (b)

• 4 -
Name

Person

Position Dept Phone Email Pub: year

Ss=
names

^-

xxxxx, year names yyyyy

(c)

Figure- 03: Semi Structured web content data

as shown in figure 03(c). To extract the targeted information or items from nodes the

wrapper needs a rule that will extract information from the parent node. In this process,

user first marks some targeted items from a set of similar training web pages (called

positive pages), then an algorithm or the rule is developed for these training pages to

Person

Name Position Department List (Publications)

Phone E-mail Year List

Persons Title

9

mailto:cezeife@uwindsor.ca

extract the information from the nodes and if the defined rule works as expected, then this

rule is used for other web pages in the WWW for information extraction. For example:

Problem: We are interested to extract the area code of phone numbers for all branches of

PizzaPizza store of Canada.

Training Examples: Let's take four distinctive web pages as training pages from

PizzaPizza store branch websites from different corner of the county. The address data

block of these training pages are El, E2, E3 and E4 as shown below:-

El: 2203 Wyandotte St W,<i> Windsor </i> ON , Phone l- 519 -948-5133

E2: 158 Dundas Street, <i> London </i> ON , Phone (519) 667-1111

E3: 7348 Kingsway <i> Burnaby </i> BC , Phone l- 604 -519-1111

E4: 5184 Avenue du Pare, <i> Montreal </i> QC , Phone: (514) 737-1111

Extraction rules: To extract area codes of phone numbers from above mentioned training

pages, user needs to develop an algorithm based on some extraction rules. One possible

set of extraction rules are shown below:

Start Rule: End Rule:

Rl:SkipTo(() SkipTo ())

R2: SkipTo (-) SkipTo()

Here, Rl and R2 are rules, each of which have a Start rule and an End rule. The wrapper

needs to identify the list of store location page from PizzaPizza web site for each

province. It then needs to identify data blocks. The wrapper then can start iteration with

its Rl Start rule, if it succeeds then it ends with Rl End rule or it iterates to R2. Here,

when wrapper program identified the data block of El training example, it will start with

Rl Start rule which fails and then it will try with R2 Start rule (e.g., hits -) which

succeeds. It will then start extracting all characters until it hits the R2 End rule (e.g., hits

10

). Similarly, E3 will be extracted by R2 and E2 and E4 will be extracted by Rl. The

algorithm ends when all the positive examples are covered.

Problem with this kind of supervised learning is the need for heavy manual

labeling of training pages. This is labor intensive, time consuming and needs regular

wrapper maintenance effort. So, automatic wrapper generation for data extraction is

becoming more popular over the years. In this technique, a single page (positive page) or

a set of pages are given with multiple data records and then it generates the extraction

patterns from the WWW. Common technique is to identify the data regions and data

records through string matching or document tree matching (Muslea et al., 1999; Zhao et

al., 2005; Liu, 2007). The string matching technique (discussed in section 2.2.A) needs to

identify the edit distance for matching and the document tree matching technique

(discussed in section 2.2.C) is needed for matching web presentation tree and its

alignment. For example, automatic wrapper generation from a set of positive pages by

tree matching based of "Road Runner" algorithm (Crescenzi et al., 2001) is shown in

figure 04. Here, authors use multiple sample pages: each contains one or more data

records. At the beginning, a sample page is taken as the wrapper. This wrapper is then

refined by solving the mismatches between the tokens of wrapper and each sample page.

Using this set of sample pages, a wrapper as regular expression is generated. Figure 04

shows string mismatch and tag mismatch and the generated wrapper after solving

mismatch between two sample pages.

11

- Wt.tppt r [initially Ptiyr i !•: S<in:it!r iPi,i,t

01; <HTM>
02: Bcote o f *
05>;
0 4 : John Sx i t h .
OS:
06:

HII^M^MMIUBMILJ^E^^^AI^

1

07; «.LI>
08-10: <I>TitXe:</I>
I t : DB Pr3ner.ri

12:
13: <AI>
14-16: <l>Ti t le :</ I>
17: Coop. Sys tmmm

18: </U>

i,-;»W friateitii (gPCMTA >

02-
u3:
r>4:
Mb:
yS:
07;
&8:
09- t l
12:
13:

Books o f -

Paul Jones

<I«S s r c - . . . / >

<I>Tit l«:</I>
XML at Work

s£ra?w mt.*i> <u> [• i ̂ PCDATA >

T
19; <f\JL> t®$ mwmrMe-k ?+)
2 0 : </HIBL>

^ ! t s * s , i i ?fti# «*t*tHt <mrt

• Wmppf r ttfft i siJnnij il)'*T)i<il'h* .*>.'

-IT: <l>Tltl©:«-/I>
: HTML Scr ip t s

</U>
20 :

- 2 3 : <T>Titl«:«/I>
Javascr ip t

</UTffl.>
<HTML>Beoks of :#PCDin
(<iHQ src».../>)?

(<U><I>Titla;</I>#FCBATA«/U>)
</ULx/HTHL>

Figure-04: Tree matching for Wrapper Generation (Liu, ACL Tutorial 2007).

Recently, Annoni and Ezeife (2009) modeled web documents as object oriented web data

model for automatic web content extraction. Section 1.3 discusses in details of this new

approach.

1.2.3. Web Page classification and categorization

Web page classification or categorization is the process of automatically assigning

web pages into a set of predefined categories. In general, certain types of web data are

usually found in certain pages of a web site. For example, an online product sales website

or Business to Customers (B2C) website contains a set of web pages and navigation

sequence (Ai et al., 2006) as shown in figure 05. This means, for example, that visiting a

12

Product
Navigation
webpage

sr

<"-s
\S

Product
List
webpage

E?

1 \

1 ""̂

Sales
record
webpage

Product
details
webpage

1/

\7

• • %

\S

Shopping
cart
webpage

Seller's
information
webpage

Figure-05: Common B2C web site structure (Ai et al., 2006)

B2C retail store website like "Future Shop" (www.futureshop.ca), one first finds an index

page or product navigation page. Clicking on a link on this page brings up product-list

page, list of all products or certain category of products including product image, product

name, product Id, short description and price of each product are listed in product-list

page. Clicking to a specific product in the list will bring up product-details page, which

gives detailed information of that product and so on until we hit the "Shopping Cart"

page. User navigation is generally restricted beyond this page after putting personal and

payment information for buying products. Figure 06 shows the monitor page of

CompUSA.com, which is an example of product-list page. We will use this page of

figure 06 and example 1.1 (page 19) as running example in subsequent sections of this

thesis. We have selected product-list page because in the entire structure of a retail store

website (shown in figure 05), product list page is the most data-rich page for comparative

mining.

13

http://www.futureshop.ca
http://CompUSA.com

Navigation block Data Region-2 Data Region-1 Data Records Advertisement

Figure-06: Data regions and data blocks

It gives brief information about different products such as product image, brand, model

or product number, short description, price and navigation to more information such as

details specification and user feedback. A set of all these information for a specific

product is called "data record". Similar category data records are in general organized in

"data region" of a product-list page. Figure 06 shows data region-1 consists of six similar

category data records. Other interesting information in a product-list page is set of

navigation blocks and advertisements. A navigation block consists of a set of pair of a

hyperlink or URL and a text Users read the text and if interested, click on that hyperlink

to bring up that page Advertisements are generally pair of hyperlink and image. This

14

image is about the product or company and the related hyperlink brings user to the

related page. Advertisements in general bring the user to a new website.

1.2.4. Web Data Warehousing

Data warehouse refers to a database that is maintained separately from the

operational database. It allows heterogeneous database integration with a variety of

application systems. Web content data are scattered in different web sources and need to

integrate in a warehouse environment for analysis and discovery process. In relational

database management system (RDBMS), data warehousing is comparatively easy

because data are historical and nonvolatile. But web content data are updated frequently,

it is volatile and not historical (Bhowmick et al., 1999; Dung et al., 2007). The

maintenance of a data warehouse based on the web content data is not easy in

comparison with company based conventional data warehouse. One potential problem is

the "multiform" of web data, which needs to convert into unified format to store in

physical database. For example, an image data needs to be extracted and stored in

different physical location with unique id and its reference needs to be stored in the

database. A mapping is required between the database and the physical location to get the

image. Some researchers adopted the web data extraction system in virtual approach

without creating physical data base and warehouse (Bornhovd, and Buchmann, 1999;

Chawathe et al., 1994; Liu, 2007). In this system, the related data are integrated from the

WWW in real time on the fly as query response. This technique is called Web Query

Interface Integration.

15

| | V f l w f » »r*f* •*>**<* r***® Y&<a W»s>t ^ * r » v # ^

s J U 1-,-,i.~ „-|

[i.;«w; i™<;?<, --3 ff"„'7-.,;

r
Return date Time

41 -i<

DB DB

n Preferred cabin __^ risssris-'svRiira

|Economy/Coach "~~J •*•»•»* sf-mhti: [i j 1

DB

X
DB

Figure- 07: Query interface from same domain of airline ticket reservation.

Web query interface integration provides a global query interface to the user so that user

does not need to manually query individual web source for required information. For

example, in case of airline ticket reservation of figure 07, two query attributes of

interfaces do not have matching attributes but their domain is same. To create a global

query interface for these interfaces, an efficient mapping is required for each attribute. In

this case, web content data from different web sources are not replicated and guaranteed

the consistency but there is no tight control over the quality of data that are usually

obtained from the data warehouse and sophisticated query optimization is not possible.

Other researchers adopt the data warehouse based approach (Zhu, 1999; Darmont

et al, 2002; Zhu et al., 2001; Dung et al., 2007). Most of the researchers in this area rely

on the already established Online Analytical Processing (OLAP). OLAP is a category of

applications and technologies that allow the collection, storage, manipulation and

reproduction of multidimensional data with the goal of analysis. The classical data

16

warehouse approach is not very adequate to deal with multiform data (e.g., texts, images,

sounds, videos etc). OLAP is also recognized as inefficient and ill-adapted (Darmond et

al., 2002). Zhu, et al. (2001) modeled a semi-automated approach to use the relational

model based star schema for transformation task for storing web data into existing data

warehouse. Darmont, et al. (2002) modeled a logical XML schema with DTD to

transform the multiform web data into XML document and then mapped to relational

database which contents were then remodeled in multidimensional way to store in star

schema based warehouse.

1.2.5. Mining Web Content

Web content mining is the overall process of discovering potentially useful and

previously unknown information or knowledge from the web content. It has four major

tasks; Resource finding, Information selection/pre-processing, Generalization and

Analysis. Web content mining research can be broadly classified into two streams. First

stream is the Information Retrieval (IR) and the second stream is the Information

Extraction (IE) from web page. There is a common misunderstanding about Information

Retrieval and Information Extraction (Kosala et al., 2000).

Information Retrieval (IR) process tries to retrieve all the relevant documents and

at the same time retrieve as few of the non relevant documents. Modern search engines,

web document classification are examples of IR process. For example, "google" is an

example of IR process. For any "text" keyword, its engine traverses in WWW, classifies

relevant web pages of given keyword and indexes them and returns result as per their

rank. Information extraction (IE) is the process of extracting the relevant or targeted

information from the given documents. Information extraction from general WWW

17

without any targeted fact is meaningless. This process focuses on specific web sites or

contents for extraction and often used in Web Content Data Integration (Liu, 2007) by

building a virtual database or finding the schema of web documents or building web

knowledge base (Kosala et al., 2000). IE process is also used as a part of web content

mining for building the web data warehouse. Annoni and Ezeife (2009) proposed

representing web documents as Document Object Model (DOM) Tree based object-

oriented model for web content extraction. Section 1.3 discussed about this model. Our

research area is in IE process and given below a motivational example for your work.

Motivational Example:

Develop a shopping planner that is able to answer the following type queries:

1. Given a product type, output all related products on sale around Windsor area
right now and advice the user about buying the product based on buyer feedback.

2. Given a flight trip plan from Windsor to Delhi, India with 2 night halt in London
and want to touch Frankfort airport on the way to Delhi, output all flight in
ascending price and advice the user about the best time and airline to plan the
trip.

3. List all journal and conference publications on "Sequential Pattern Mining" in
2010 by title, authors, journal/conference, place, page and date.

4. List all 17" LCD Samsung monitor selling around Windsor with price range less
then $200 and show the user graphical variation about its price in last 1 year and
where and when is the best time to buy.

5. List all songs by albums of singer Lionel Richie with option to play any music
with user event and show user feedback or ranking of the music.

To solve these problem queries using free web data we need to extract relevant

information from web and store into any central repository, we then need to either create

a data warehouse or analyze query for mining from the repository to result the user. One

thing we need to make clear at this point to distinguish our problem with similar

approach offer by "Web Query Interface" and "Web Service". "Web Query Interface" is

discussed in section 1.2.4 and it is clear that it can not answer our query. The "Web

18

Service" is a new approach used in "Semantic Web" which generally deals with Business

to Business (B2B) data integration. Web Service is a proprietary service and needs to buy

the service from the service provider. Semantic web uses XML based Web Service

Description Language (WSDL) for enterprise data integration. It does not deal with free

HTML web information. Different provider companies' offer their service or data to use

by other business or parties through semantic web and can use their service in buyer

Company's business webpage. For example, "google tool bar" is a common web service

offered by "Google" to use by other business / corporate company web sites for search

option. Similarly, "Chapters", "Burns & Nobles", "Amazon" and "e-bay" web service

can be used to integrate book domain information integration.

Both "Web Query Interface Integration" and "Web Service" gives instantaneous

information and do not hold any historical information. Our system deals with free

HTML web information and need historical events to answer these queries. In this thesis,

we are working for data extraction problem from the web toward answering the

motivational example queries above using object-oriented web data model and we state

our thesis problem as following example 1.1:

Example 1.1: Given a product list web page of a retail store shown in figure 06, extract
all types of information like:

(i) Those related to data records such as product image, product brand,
product id, short description, product price.

(ii) Navigation information such as link URL, link id or name,
(iii) Advertisements such as product advertised, image, URL links to related

website.
The extracted information will be stored in the database for comparative mining and
querying.

19

1.3. Object Oriented Web Content Extraction

Annoni and Ezeife (2009) propose an object-oriented web data model for

extraction and mining of full diversified web data including contents and page

presentation structure. They modeled web data as web content objects and web

presentation objects to address a unified way of mining unstructured, loosely or strictly

structured data. They divided the web documents into three zones; header, body and foot

zone, based on value in content mining and their physical location in web browser. They

assumed that a web document should compose of at least one zone object (i.e. body zone)

and up to three zones (i.e., header zone, body zone and the foot zone). In web browser, a

header zone located at top of the web page, foot zone at bottom of the page and the body

zone is the main body of the web page between header and foot zone. The header zone

usually consists of page identification information, company logo image, company name,

advertisements. This zone is useful for extracting information about the page content,

metadata but does not have any importance for data contents and its mining. The body

zone is the basket that contains the page contents and most important for content mining.

At the same time, it is also crucial to clean effectively for extracting real valued contents.

The footer zone usually contains the copyright information, advertisement, and links that

have no value in terms of content mining. A web page usually contains a set of hypertext

presentation tags including the customs tags defined by page designer. Annoni and Ezeife

(2009) propose not to evaluate all the tags of a web document. They tried to ignore less

valuable presentation tags of the web page because this is time consuming and is not

always meaningful. The question is how these zones and their boundaries are to be

identified. A well formed HTML page tag format is

20

<html><head></head><body></body></html>. This hierarchical format indicates that all

the tags of a page should be within the root tag <html> and then it has two child tags

<head> and <body>. All the information within the <head> tag is the header information

and the content data are within the <body> tag. But the real time web page presentation

format is not so simple. Lots of different pre-formatting information, styling information,

embedded client side and server side scripting programs in different languages, flash

programs, meta data are the puzzling problem for efficient page content data extraction. It

is easy to identify that the meta-data, scripting functions have become part of the header

zone information but there is not necessarily a clear boundary between the header zone

and the body zone.

Annoni and Ezeife (2009) suggest two tag series (a set of at least five or more <a>

or <area> sibling tags) to distinguish the boundary between these zones. An <a> or

<area> tag in an HTML file represents navigation URL. They observed that, a set of first

five or more sibling <a> tags indicate the starting of body zone and called it series-1. The

last set of five or more sibling <a> tags indicate the end of body zone of a typical web

page and they called it series-2. They used two hypotheses for searching these series as

follows:

1. If the search process of series-1 goes over half of the DOM tree size, the web

document does not have header zone and series-1 is empty. The body zone's

first tag is the first region node child of the closest region node in the sub-tree

of "body" root.

2. If the search process of series-2, from half size of the DOM tree to its end

returns null, the web document does not have foot zone and body zone's last

21

tag is the last region node child of the closest region node in the sub tree of

'body" root.

1
2

3

i
i

6

3

J
11

13

15

V

IS
28
21
23
25
2?
28

31

33

34

35

38

3 '

33

£8

63

i

W

101

102

103

"111

«
111

•12

113
Test

<rft>

•tvd>

-Kit?

%at>

«tafe>

<l i,-*c8frDpJBie*>

<s t -h t tp teTStofcoT.corrsLss i j = _b)an< >

<3 ">•=" appiutas campaignsfCS'npaigrtLsnplJte asp

<s • *•= https< w < conpusa concgBsWaTrack as

<a "{•= https' i « ¥ conpusa comsKure «dwlogin as

<i f~ *s« ts ' sMp,«hasp ilF^elp*>

'<Si>

-i>

0"*—Mj» '¥'••('. corrsusscor?1 >

<a * e~ tetates conpusaSforss «te asp >

Header Zone

Region tag

Series 1

Cawpatgn!E>?3r>

p* J ^ t a M / O n t e '

TC=1 rt—My Accour* >

<ars=littp ,rairpi)S'tsho|loialci:iiceT-asa!(fefeiilas'3'.acti(Ki=8ritrj >

<3 i- apaicatiaiSfipfcardigirad asp*•

<s' s-'iSKtes sistilist w jdslst asp^

Q ^ seciffi'i&logiiias!""

<dr>

<tt= *«328">

<Mi)C0D-€EEEEE^=15(r>

•48+>

<5 ?

<d-
<.'aHf>

<'d>

<a j J1 =*ccccoo

• a ^ - . r f E E E E E « ta = 4 "

<tr <l, - ,op *•

d>

<afc»>

&c SiiM 'iiSDl $FL M M * few

Region tag

Body Zone

119
128

121

12?

123
129

130

131

13'
138

139

M5

1 *

14?
153
154
155
156

W
131
152

193

134
20?

209

211

213

215

21?
219
225
226

22?

233

236

W

243

244

«L
TH!

>•<<%

<Ude>

'if

<t>

4a*>

<M>
-d>

» <tefe>
<,'&

< ••

< a t ^

<V

<dtgc - * t k i ± t - * = ' 5 C >

<i>

ffl^ ^ ^ s ^ ^ 9 i a s & a s ^ s i GBSSSSS tssEss t « ^ ^ ^ ^ ^ a sggsgi!

<1 f|-f«)tjt[ip> Region tag

<4>
ŝ 1 N= a^teaticis tarca jissac D3iantM[rte as^CanpsfilD^t^

<ah£ «Dplijatii}isiaB'p8tgns..aira3rteT!*r3teasp''CaFp3giilD=73S >

o 1 Pt= sectors atoutos pan/ asp >

<3hf=*a:pkatcis.s,iffllieiailnanageras3 - series 2

* <a rr*#" iss index 355 c 3o*.=""N\Lnk >

<ah f='issindexss3 >

<SMf >

<o „= f(»Mitp2 >

-31 3'yr-let, Se= D3dding4px Opx 2sx 4p< float left -Aidth 210sx >

d r * = float aft >

4i t -=*float ight J idtb T5px ̂ Foot Zone

• s i *

<i <•! j= posfton assolute !i,"22flpx paddigterrayilpx ante Opx !|ipta

•ii>

Figure 08: DOM tag tree ofCompUSA.com web document for figure 06.

In case of our running example, figure 06 at page 14 shows the page what a user

sees in a web browser. The internal page tag structure of figure 06 is given in figure 08

above (generated by XML viewer interface, a product ofAltova.com). This hierarchical

tag structure represents a tree for the entire webpage and illustrates how the contents of

22

http://ofCompUSA.com
http://ofAltova.com

the webpage are shown to the user. Web contents that are seen in figure 06 are embedded

between these tags in this tag tree. Figure 08 shows line number of each tag and the

symbol " © " represents embedded hidden tag in between the given tag at that line. The

symbol " 0 " represents open embedded tag. We kept some child tag structure hidden to

keep the figure 08 readable to reader and to identify easily the sibling tag structure. Any

gap in line number indicates embedded child tags. For example, in figure 08 line numbers

jumped from 58 to 69, that means there are 10 lines of hidden embedded tags at line 58

<div> tag and indicated by the symbol "©". Here, line 7 starts with a region tag that

consists of two data navigation block "<div>" starts at line 8 and 20. Line 9 to 17

indicates the first five sibling <a> tags as per Annoni and Ezeife's (2009) definition and

identifies as series-1. So, line 7 region tag clearly distinguishes between header and body

zone. Similarly, line 207 to 217 indicates the last six sibling <a> tag series which is

identified as series-2. So, the region tag at line 193 clearly distinguishes between the

body zone and foot zone.

1.4. Thesis Contributions

This thesis includes lots of pre-processing work to prepare data for mining that

are not addressed by Annoni and Ezeife (2009). We developed the architecture (we call it

WebOMiner) for extraction and mining of web contents using object-oriented model. Our

architecture has 4-modules: crawler module, cleaner module, extractor module and miner

module. We developed algorithms for crawler module, modified freeware software

"tagsoup" (http://home.ccil.hangorg/~cowan/XML/tagsoup) for cleaner module, modified

and enhanced algorithms for extractor module initially developed by Annoni and Ezeife

23

http://home.ccil.hangorg/~cowan/XML/tagsoup

(2009) and developed algorithm for miner module. We introduced an approach of

generating and using automata for mining web content objects. The following are main

contributions of the thesis in extractor and miner module of WebOMiner system:

1. We define data block and data region to ensure consistency between related data

that is not addressed by Annoni and Ezeife's (2009). We therefore modified their

ProcessContentSibling() algorithm to identify data block and data region.

2. In web page, information about content usually reside as tag attribute. We address

to relate HTML tag attribute information with related contents to ensure

identification of content, to assign object and other information together.

3. We define object class hierarchies according to our problem domain and defined

schema matching to unify similar contents from different web sites.

4. We identify noisy contents in data block and prevent them entering into database

table.

5. We implement and materialize object-oriented data model for web content and

extract heterogeneous related web contents together.

6. We define a mining algorithm that identifies data block, generates a Non-

Deterministic Finite Automata (NFA) based wrapper for extraction of related

contents. Then classifies all data blocks of a web page according to their type and

checks minimum support to ensure data consistency before entering them into

database.

This thesis proposes a two level mining process. The first level mining (as discussed

above) extracts and classifies content data from noisy flat object array defined by Annoni

and Ezeife (2009), which is ready to enter into database table. This thesis then

24

recommends data warehouse and second level mining for deep knowledge discovery.

Second level mining is similar to traditional data mining process, so excluded from the

scope of this thesis work. We also study the advantages/benefits of this new approach

over the existing approaches and conducted performance analysis. The second level

mining is beyond the scope of this thesis work.

1.5. Outline of the Thesis Proposal

The remainder of the thesis is organized as follows: Chapter 2 reviews related

work to this thesis. Chapter 3 details discussion of the problem addressed along with the

new algorithms proposed. Chapter 4 gives performance analysis and experimental results.

Chapter 5 draws the conclusion of this research and discusses future work.

25

2. Previous/Related Work

Our research area of web content mining is in Information Extraction (IE), which

is focused on structured data extraction techniques and classified into three categories:

wrapper programming language, supervised learning like wrapper induction, and

automatic wrapper generation. Related works in this chapter are organized as wrapper

programming language in section 2.1, wrapper induction in section 2.2, and automatic

wrapper generation in section 2.3.

2.1 Wrapper Programming Language

Wrapper programming language provides some specialized pattern specification

languages to help user construct extraction programs. Most of them provide visual

interface to hide their complexities under simple graphical wizards and interactive

processes. There is a wide body of research on Wrapper Programming Language based

extraction and some examples are Lixto (Baumgartner et al., 2001), DEByE (Laender et

al., 2002), Wargo(Rapaso et al., 2002), WebOQL (Arocena et al., 1998) and

WICCAP(Zhao and Ng, 2004). All these extraction systems use Graphical User Interface

(GUI) to interact with user input and hide internal complexity from the user. Lixto system

internally uses logic-based declarative language "Elog" for extraction of content element

from targeted web page given by user in GUI. Resultant outputs are given in XML

format. Wargo system internally relies on two wrapper programming languages:

Navigation SEQuence Language (NSEQL) for specifying navigation sequence and Data

EXTraction Language (DEXTL) for specifying extraction pattern. We discussed the

DEByE, and WICCAP System below in section 2.1.1, and 2.1.2.

26

2.1.1 DEByE: Data Extraction By Example

DEByE is an interactive tool that receives as input a set of example objects taken

from a sample Web page and generates extraction patterns that allow extracting new

objects from other similar pages (e.g., pages from the same Web Site). DEByE features a

GUI that allows the user to assemble nested tables (with possible variation in structure)

using pieces of data taken from the sample page. The tables assembled are examples of

objects to be identified on the target pages. From these examples, DEByE generates

object extraction patterns (OEP) that indicates the structure and the textual surrounding of

the objects to be extracted. These OEP are then fed to a bottom-up extraction algorithm

that takes a target page as input, identifies atomic values in this page, and assembles

complex objects using the structure of the OEP as a guide.

2.1.2 WICCAP : From semi-structured to structured data

Web Data Extraction System (WICCAP) uses Web Data Extraction Language

(WDEL), which is one kind of scripting language to provide features transforming web

data. Basic unit of this language is symbol, which represents the nodes of trees. A symbol

can have a set of sub-symbols. A Term is used to represent a tree. A Term in tree

language can be mapped into tree graph. For example a Book Domain tree language is

Business_Book(Bookl (Price, Author'(Most Popular_Item)))

\ . Busmen BCH^S

" - ' " * - JBook^

/
/ \

,A.
\ X .

v/ f \Pn~e /• "N \nttioy " \ Pn<.<> ?"~ Wmhm''*~~'~-- Prltu

~\ M"Sl E p̂UkM Itom / -^ Must PojHl] il EkMft

Figure-09: Logical view of WDEL language

27

file:///Pn~e
file:///nttioy

given above can be represented logically as tree graph shown in figure 09. Note that,

Business Book(Bookl), BusinessJ3ook(Book2) and Business_Book(Book3) are three

different Terms, because they represent three distinctive tree under Bookl, Book.2 and

Book3 in tree graph. The authors defines the tree grammar as 4-tuple, G = {S, N, F, R}.

Where, S = Set of root symbols, N = Set of Non-terminal symbols, F = Set of symbols

and R = Set of generation rules. Where, SeN and Ne F, R is in the form A -»/?, here A is

a non-terminal node and R is a term over F. For a given Term in figure x:

Business_Book(Bookl($ 17.49,Greg)), the replacement of book title Bookl by #book,

price $17.49 by #price, and author name Grag by #name will enable to symbolize the

Term as : Business_Book(#book(#price,#name)). Therefore, the grammar for extraction

of Term can be represented as follows:

F = {Business Book, nil, #book, #price, #name, WICCAP, Book, Price, Author}
S = {WICCAP} // WICCAP = root symbol of the grammar
N = {WICCAP, Book, Price, Author}
R = WICCAP —* ml //Generation rule starts with root symbol

WICCAP — Business_Book(Book)
Book —> #book (Price, Author)
Price —* #price
Author —> #name

The absolute paths for physical structure of web contents in WWW are in general

complicated. So authors use mapping of physical structure with their logical view in tree

graphs as shown below:

[', Bu.MiU'is Book . , I
\ J ~ Bix>k -v,

<A HRi:r='TRr> \m\ B^k l tapping Bo'.-ki

rai Fail Path %hs Cts]iap-»e

28

Therefore rules need to redefine as (A) below and this mapping raises the need for

another grammar to describe the physical paths shown in (B) below.

WICCAP -> ml
WICCAP -» Business Book (PhyStr 1, Book)
Book^> #book (PhyStr2, Price, Author)
Price —> v (PhyStr3, #pnce)
Author —>v (PhyStr4, #name)

(A)

PhyStr
Link —
URI->

—•> mapping(Link, PhyStr)
• text (URI),
#pcdata
| loc (Pattern), Pattern —>
| pathexp (Path), Path —>
\fromcode (Form), Form

(B)

#pcdata
#pcdata
—* #pcdata

These grammars describe the schema of original web documents to be extracted, schema

of extracted data and relationship between them. WDEL script is an instance of Terms

that can be generated corresponding to WDEL grammar. WICCAP generates the output

in portable XML data format that can easily be stored in relational database or can be

viewed as required.

Main problem for wrapper language based extraction system is their reliability on

diversified wrapper languages. None of these languages are standard, used by vast users

and therefore fail to become popular in vast user community.

2.2 Wrapper Induction

Wrapper induction is either supervised or semi-supervised learning process for

extraction and mining of web contents. It needs a set of sample web pages (called training

pages) for user to define marks / labels to learn extraction rules from these training pages

first. Then the same rule is applied to other pages of the WWW for information

discovery. We now like to discuss about three popular algorithms that most of the

Information Extraction (IE) systems use. These are String Edit Distance, Center Star

Method, and Simple Tree matching algorithm.

29

file:///fromcode

(A) String Edit Distance:

String edit distance is a popular and widely used string matching/ comparison

technique to find the same type encoded instances. The edit distance of two strings, si

and S2 is defined as the minimum number of point mutation required to change sj into s2.

The point mutation may be to change a character, insert a character and delete a

character. If c- and C2 are two last characters of sj and S2 respectively, then edit distance

between si and S2 can be denoted as d (si, S2)= d (sj.+ci, S2-+C2). Up (cj, C2) denotes the

penalty for changing, inserting or deleting a character, then

JO, if c, = c2

[1, otherwise

For example, let si = X G YX YX YX and s2 = X YX YX Y TX are two strings. The edit

distance is computed as follows:

ED (Sl, s2) = d(Sl'S2)

(\si\ + \si\)/2

The edit distance matrix is given in figure 10. The final edit distance value is 2, which is

the value in the bottom right corner cell. Figure 10 also shows the trace back path. Notice

that a diagonal line means match or change, a vertical line means insertion, and a

horizontal line means deletion. Thus, the final alignment of our two strings is:

s,: X G Y X Y X Y X
s2: X - Y X Y X Y T X

The time complexity of the algorithm is O (\si\\s2\) to fill the matrix.

30

s, X G Y X Y X Y X

o*
i
2
Q «_*>

4

8
7
8

1
""cu
1

3
4
5
5
7

2 3
- 1 * 2

1
2
3
4
5
8
7

4
3

U ,2
2
2

3
4
trt

o

5
4
^
o

1 2
2
o

3
4
5

' *
2
2
3
4

6
5
4
3
2

2
3
3

7
6
5
4
3
2

•t

8
7
8

4

3
2

2 l 2
'2

Figure-10: Edit distance matrix and back trace path (Liu, 2007).

(B) Center Star Method:

It is a classical technique for multiple string alignment. Chang et al., (2001)

introduced it for data extraction based on alignments of HTML strings. In this method a

set of strings are assumed as aligned as 'S ' . A string sc is selected as center string that

minimizes:

y dist(sc, Si) Equation (3)

Here, d (sc, s,) is the distance between two string sc and s,. The algorithm then iteratively

computes the alignment of the rest of the strings with sc. Figure 11 illustrates an example

of string alignment using center star method and latter we will illustrate how it is using

for web content extraction.

Let us have three strings, S = {ABC, XBC, XAB}. According to Center Star

method, first string selects as center string. So, ABC is selected as the center string sc and

initializes multiple sequence alignment M by string ABC. Now we need to align other

strings iteratively with respect to ABC.

31

Iteration 1:

Iteration 2:

Align c* (=sc) with s = XBC:
c*' : A

s' : X
Update M : A B C - »

Align c* with s = XAB:
c*' :

s ' : X
Update M : A B C - » -

X B C
X

B

B

A
I
1

A
A
X
A

C

1

c A B C
X B C

B C
I
1

B -
B C
B C
B ~

Figure-11: Example of Center Star Method

In figure 11, next string "XBC" is taken from the set S and aligned in iteration 1 by

matching character B and C. The algorithm then updates a multiple sequence alignment

M by including XBC aligning B and C with center star. Next, empty space is created to

each string in M to accommodate for next alignment. In iteration 2, it aligned XAB

matching A and B with center star and update M accordingly. There is a question of

aligning ABC and XBC in iteration 1 since we don't know which of the following

alignments is better:

(1) A -
X

B
B

C
C

(2) -
X

A
"

B
B

C
C

The authors did not resolve the problem in the paper. If there are k strings in S and all

strings have length n, then time complexity of pair-wise alignment is 0(kn2) and overall

time complexity is 0(Vn2). So, this algorithm runs slowly for pages containing many

data records and /or data records containing many tags.

(C) Simple Tree Matching:

Tree matching technique is similar to the string matching technique. It is

introduced by Yang et al (1991). Zhai et al. (2005) used this Simple Tree Matching

32

(STM) algorithm to extract web data in flat and nested records. This algorithm associate

minimum set of operations needed to transform one tree to another. In this classic

formulation, the set of operations used to transform one tree into another includes, node

removal, node insertion and node replacement. Algorithm takes two inputs: root of the

tree and a threshold value, and outputs extracted data in relational table.

For a given tree root, if tree depth > 3, the algorithm recursively traverses down

the tree and performs matching operation between two child sub-trees of a node. It then

aligns and links matched data items. For figure 12 below algorithm compares root of two

(X) (Y)

Figure-12: Tree Matching and aligning in (X), Aligned data nodes under NI in (Y)

sub-trees A and B of input tree first (for example, sub-tree under node N4 and N5 of

figure 12(X)). If roots contain identical symbols, then the algorithm recursively finds the

maximum matching between first-level sub-trees of A and B and saves it in a W matrix.

Maximum matching between A and B is denoted by W (A, B) and defined as below:

,0 ifR.*R.
mi Al. ,.Al\>Bx,....B,iS)~l otherwise

'H<0 i)1 = 0 0 represents au empty siib-ti.ee list
mis \A = w(0, s t = 0 s matches any non-empty sub-tree list
wiV*- AS {B, B„}) = maxit?>((Ai A> {> \B< £„.-»-*-FUB S-)

mUi A$ 0i B,.))
mUAi A„.i) iBi BJ})

33

http://siib-ti.ee

W(A,B) is a matrix populated based on weight parameter. If root of A and B do not

contain identical symbol, the weight is zero. Otherwise, its value will be based on the

number of pair node matching of their sub-tree. The definition of m(. , ..) is similar to

string edit distance but authors compute the maximum matching rather than distance.

To find the maximum matching between sub-trees N2 and N3 of figure 15(X),

their root compared first. Since N2 and N3 contain identical symbols, M2>3[3, 2] +1 (as

per RA = RB condition in above W(A,B) equation, here 2, 3 denote Node N2 and N3) is

returned as maximum matching value between trees N2 and N3. M2> 3 matrix is computed

based on W2,3 matrix. Every entry in W2,3[i, j] is the maximum matching between ith and

j t h first level sub-trees of A and B. At level N4-N5, t2-t4 and t3-t5 are matched, so they

are aligned and linked. At matched level N2-N3, it will only align N4 sub-tree and N6

sub-tree as shown in figure 12(Y), N5 will be omitted since it has same structure as N4.

In this case, t2-t8 and t3-t9 are linked. Tl and t7 also linked as they matched. N4 is

marked with '*' in figure-12(Y) as it is turned into prototype data record of match

algorithm.

(D) DOM Tree building:

Building DOM tree from input pages is a necessary step for many data extraction

algorithms. There are two existing approaches for building DOM Tree; Using Tags Alone

and Using Tags along with Visual Cues. First approach only uses the tag pairs (e.g., start

tag < > and end tag </ >) for building the DOM Tree but HTML mark-up language also

allows non-pair tags (e.g.,
) as well as freedom from the necessity to close some

inline tags (e.g., , <hr>, <p>, etc). HTML is a flexible mark-up language and page

34

designer's error in using tag is mostly accepted. So, DOM Tree building by using the Tag

Alone requires HTML code cleaning before building the tree.

Second approach is using the Tags and Visual Cues, which use the visual

information (i.e., the physical location of the information on the computer screen by using

web browser) along with the rendering tags. This approach is more robust because of its

error tolerance. In this approach, four boundaries of the targeted rectangle of web page

are located first by calling any rendering engine of a browser. It then follows the

sequence of open tags and checks for containment to build tree. Containment check

means checking if one rectangle is contained in another. In figure 13, there are three

1 •=•'table >
2 <tr>
3 <td> daial <td>
4 <7td>data2 </td>
5 4r.>
6 <td> data3 «-. td>
7 <td> data4
8 </tr>
9 </table>

Figure-13: Boundary co-ordinates and resulting tree (Liu, 2007).

errors in HTML tag structure at lines 3,4 and 7 but this HTML segment can be rendered

correctly in a browser. Boundary condition is shown in the figure which can be used to

build the tree shown in the right side of figure 13.

2.2.1 STALKER: Hierarchical Approach to Wrapper Induction

Muslea et al., (1999) introduces this supervised learning approach, where a set of

extraction rules is learned from a collection of manually labeled pages or data records.

The rules are then employed to extract target data items from other similar formatted

left

100
100
100
200
100
100
200

right

300
300
200
300
300
200
300

top

200
200
200
200
300
300
300

bottom

400
300
300
300
400
400
400

table

35

pages. Data are embedded into the webpage in presentation tag tree. To extract data from

any node of interest, the wrapper uses the presentation tree of the webpage and defines a

set of extraction rules including Start Rule and the End Rule. The Start Rule indicates the

starting point of the data extraction and the End Rule is the rule where to finish the

extraction. Muslea et al., (1999) developed "Stalker", which is the main algorithm for

wrapper induction. An example of this algorithm is given below:

Consider a data block representing the address and phone number of chain

restaurants. The presentation tree and a training example data are shown in figure 14

1: <p> Restaurant Name: Good Noodles

2: 205 Willow, <\>Glen, Phone l-<i>775</i>-366-1987
3: 25 Oak, <\>Forest, Phone (800) 234-7903
4. 324 Halsted St.<i>C/z/cago</i>,Phone l-<i>S00</i>996-5O23
5: 700 Lake St., OOak Park<l\>, Phone: (708) 798-0008 </p>

(a) Training Data

Tuple

String: Name

String:
Street

: Restaurant

Set: Addresses

String: Integer:
City Area-code

(b)

String:
Phone

Figure-14: (a) Training data blocks, (b) Logical presentation.

Figure 14(a) is an example training page of Good Noodles restaurant having four

distinctive branch addresses. This page shows its name in line 1 and then followed by

four data blocks shown in line 2,3,4,5 showing addresses of its branches. We want to

36

extract area code of phone numbers from all branch addresses of this restaurant. The

wrapper needs to go through the following steps for extraction:

2. Identify entire list of addresses. We can use the start rule SkipTo (

), and the

end rule SkipTo(</p>) (note: A different rule is required to reach the data block).

3. Iterate through the list (lines 2-5 in figure 14(a)) to break it into four individual

records. To identify the beginning of each address, wrapper can start from first token

of parent and repeatedly applies the start rule SkipTo () to the content of the list.

Successive address starts from where the previous one ends. Similarly, we can use the

end rule SkipTo () to identify the end of each address.

4. Once each address record is identified, we need to use disjunctions. Possible

disjunction Start Rule and End Rule can be as follows:

Start Rule End Rule

Rl : SkipTo(() SkipTo())

R2: SkipTo(-<i>) SkipTo(</i>)

Once wrapper is generated, it is applied to other web pages that contain similar data and

are formatted in the same way as the training examples. So, if the web site presentation

changes, it needs to repair the wrapper. The verification of wrapper's validity in advance

of any change is a big problem until we identity the garbage data. Secondly, it is not easy

to be able to repair the wrapper automatically with the identification of change in

webpage.

2.2.2 IEPAD: Information Extraction Based on Pattern Discovery

IEPAD (Chang et al., 2001) is one of the first IE systems that generalize

extraction patterns from unlabeled Web pages. This method exploits the fact that if a

37

Web page contains multiple (homogeneous) data records to be extracted, they are often

rendered regularly using the same template for good visualization. Thus, repetitive

patterns can be discovered if the page is well encoded. Therefore, learning wrappers can

be solved by discovering repetitive patterns. IEPAD uses a data structure called PAT

trees, which is a binary suffix tree, to discover repetitive patterns in a Web page. Since

such a data structure only records the exact match for suffixes, IEPAD further applies the

center star algorithm (discussed in section 2.2(B)) to align multiple strings which start

from each occurrence of a repeat and end before the start of next occurrence. Finally, a

signature representation is used to denote the template to comprehend all data records.

For example, in the following web page shown below contains repeating pattern and so

can be used as input to IEPAD.

<html><title>xyz</title>
<body> Book name Data Mining

<t»Reviews

Reviewer name Jeff
Rating 2
Text Some text-1

Reviewer name Jane
Rating 6
Text Some text-2

</body>
</html>

By encoding each tag as an individual token (e.g., "T") and any text between two

adjacent tags as a special token "T," IEPAD discovers the following pattern with two

"TTTT TT "

occurrences. The user then has to specify, for example, the second, fourth, and sixth "T"

tokens, as the relevant data (denoting reviewer name, rating, and comment, respectively).

38

2.2.3 instance based Wrapper Learning

Zhai and Liu (2007) introduced this instance-based wrapper learning, which is

another approach for wrapper building without learning extraction rules. It extracts target

items in a new instance/page by comparing the prefix and suffix token strings with those

of the corresponding items in the labeled example. If some item in an unlabeled example

cannot be identified, it is sent for labeling. The need for labeling is to identify and

handling for any missing item in the page. Let us take an example for extracting "name",

"image" and "price" of a product from a web page. The template (7}) for this extraction

can be represented as below:

Tj= {patname,patmage,patpnce)

Eachpat, in 7} consists of a 'prefix'' string and a 'suffix' string of item '/', for example, if

product image is embedded in the following presentation tag source:

... <table><tr><td> </td><td></td> ...

then we can use the following pattern to identify token:

patimg = (/mg,/?re/?x:D<table><tr><td>D, ra//7x:D</td><td></td>D).

For each unlabeled example 'd', it tries to identify every target item in 'd' by matching

the 'prefix' and 'suffix' tokens. It saves the candidate sequence of tokens which are

partially matched and if a sequence of 'prefix' and 'suffix' tokens match uniquely, the

targeted item is extracted. All those partially matched sequences are then discarded. If

any token does not match it calls a function for labeling the token. The label page

function tries to identify if the targeted token is missing or not. If it found it as missing,

the entire token identifies as partially matched sequence. The key to instance-based

learning is the similarity or distance measure. It measures whether an item in the new

39

page is similar to, or is of the same type as a targeted item in a labeled page. Figure 15

below shows how we can identify target item "price" from an HTML source:

prefix: <table> <tr> <td>

<td:- (3)

<i>
-
<C'\IT)

<1>£4)

*-"b> price
* t » (i O)

*-.b>p8)
'•-'\>>i25)

(pl\ • (68)
H T M L

source of the 1 3

.. ,<td> <font-> <4d> <fout> <i>
g 9 10 15 16 1? IS

,.. <tr> <td> *:4> $25.00
22 23 24 25

...
 <i>
65 66 6? 6S

Figure-15: Similarity measure for identifying "price"

In figure 15, five tokens "<table><tr><td><i> " are saved as prefix string of item

"price" from a labeled example. For a given HTML source shown in figure 15, we found

four <Z>>'s, three <i> together, and only one <td><i> together, which match

some prefix tokens of "price" that can be defined as "sufficient match" for identifying

"price" item.

Wrapper induction techniques become more popular then wrapper language based

approaches because of its freedom to use popular programming languages. But still it

suffers for the requirement of heavy manual labeling of training pages. This is labor

intensive, time consuming and needs regular wrapper maintenance effort. So, automatic

wrapper generation for data extraction is becoming more popular over the years.

40

2.3 Automatic Wrapper Generation

Researchers studied the problems and limitations of wrapper induction and

concluded that automatic or unsupervised extraction is possible, because data records in a

web page are usually encoded using a very small number of fixed templates or patterns.

Their study focused on two types of extraction process: Extraction based on single page

and Extraction based of multiple pages.

For automatic extraction based on single list page, the entire web page code as a

single string 'S', which contains k non-overlapping substring sj, S2, S3 su with each s,

encoding an instance of certain set type and contain a collection of non-overlapping sub-

substring of tuple type. For example, figure 06 (page 14) shows two data regions: Data

Region 1 and Data Region 2. We can represent them by two substrings si and S2 of that

web page string '5". Substring s/ contains a set of non-overlapping data records, si = encj

{ii, i2, i3, U) and S2 = enc2 {ii, i2, i3--}. Here, si contains four encoding of data records,

enci (ij),j e{l, 2, 3, 4} of tuple typeo-j. Similarly, substring S2 contains data encoded

records enc2 (ij),j e {1, 2, 3...} of tuple typecr2. An algorithm needs to work on the string

'5" to find each substring and construct the tuple type by generating a pattern from each

substring representing the mark-up encoding function encj.

For extraction based on multiple pages (Grumbach and Mecca, 1999), input

consists of a collection of 'k' encoding, enc (ij), enc (12),...., enc(ik) of instances of type

a, where a collection of 'k' HTML strings encodes 'k' instances of same type. An

algorithm works on the encoded instances and constructs a pattern.

41

2.3.1 RoadRunner: Towards Automatic Data Extraction from Large Web Sites

RoadRunner considers the site generation process as encoding of the original

database content into strings of HTML code. As a consequence, data extraction is

considered as a decoding process. Therefore, generating a wrapper for a set of HTML

pages corresponds to inferring a grammar for the HTML code. The system uses the

ACME matching technique to compare HTML pages of the same class and generate a

wrapper based on their similarities and differences (figure 4, page 12). It starts by

comparing two pages, using the ACME technique to align the matched tokens and

collapse for mismatched tokens. There are two kinds of mismatches: string mismatches

that are used to discover attributes (#PCDATA) and tag mismatches that are used to

discover alignments, RoadRunner adopt UFRE (union-free regular expression) to reduce

the complexity. The alignment result of the first two pages is then compared to the third

page in the page class. In addition to the module for template deduction, RoadRunner

also includes two modules, Classifier and Labeler to facilitate wrapper construction. The

first module, Classifier, analyzes pages and collects them into clusters with a

homogeneous structure, i.e., pages with the same template are clustered together. The

second module, Labeler, discovers attribute names for each page class, iterators (+) and

optional (?). Figure 4 (page 12) shows both an example of matching for the first two

pages of the running example and its generated wrapper. Since there can be several

alignments, RoadRunner adopts UFRE (union-free regular expression) to reduce the

complexity. The alignment result of the first two pages is then compared to the third page

in the page class. In addition to the module for template deduction, RoadRunner also

includes two modules, Classifier and Labeler to facilitate wrapper construction. The first

42

module, Classifier, analyzes pages and collects them into clusters with a homogeneous

structure, i.e., pages with the same template are clustered together. The second module,

Labeler, discovers attribute names for each page class.

2.3.2 DEPTA: Data Extraction based on Partial Tree Alignment

Zhai and Liu (2006) introduced this enhancement of Simple Tree Matching

algorithm (discussed in section 2.2.C) for web content data extraction. In their algorithm

of partial tree alignment, authors align multiple DOM trees by progressively growing a

seed tree (Ts). The seed tree is initially picked to be the tree with the maximum number of

data fields. The reason for choosing this seed tree is to have a good alignment with data

fields in other data records. Then, for each T,(i*s), the algorithm tries to find for each

node in T, a matching node in Ts. When a match is found for node T,fjJ, a link is created

from T,[j] to Ts[kJ to indicate its match in the seed tree. If no match can be found for

node T,fjJ, then the algorithm attempts to expand the seed tree by inserting T,[j] into Ts.

The expanded seed tree Ts is then used in subsequent matching. Figure 16 shows aligning

multiple trees:

Initial S e t *

Figure-16: Iterative Tree alignment with two iterations

43

The partial tree alignment algorithm input a set of trees, S= {T}, T2 and T3). Initially it

sorts S by descending order according to not aligned data items, then sets Ti as Ts and

remove T/ from S. It then aligns each of the rest trees against Ts until end of trees in S.

For next unaligned tree, the algorithm matches tree and finds all the matched pairs by

tracing the matrix results. In Figure 16, Ts and T2 produce one match, node b, whereas

nodes n, c, k, and g have no matching nodes in 7̂ . it then attempts to insert them into Ts.

In Figure 16, none of the nodes n, c, k, and g in T2 can be inserted into 7̂ because no

unique location can be found. So it inserts T2 into R, which is a list of trees that may need

to be further processed. Since T3 is the last tree in S, when matching T3 with Ts, all

unmatched nodes c, h, and k can be inserted into Ts. Thus, T3 will not be inserted into R

and set "flag :=true" to indicate that some new alignments/matches are found or some

unmatched nodes are inserted into 7̂ . It then check for stopping conditions: "S = 0, and

flag = true", which means that we have processed all the trees in S, and some new

alignments are found or insertions are done. Then, trees in R should be processed again.

In Figure 16, T2 is the only tree in R, which will be matched to the new Ts in the next

round.

2.3.3 Modeling Web Documents as Objects for Automatic Web Content

Extraction.

This is the theme paper of this thesis. Annoni and Ezeife (2009) proposed this

idea of encapsulating heterogeneous web contents into object class hierarchy to extract

and mine web contents in a unified way. All papers discussed so far in this related work

of web content extraction rely on the web content presentation tree structure and extract

only a limited targeted facts from the web page. The overall extraction and discovery of

44

all contents of a web page is not aimed. The main purpose of this paper is to propose a

new data model for semi-structured web contents so that user can extract all kinds of

heterogeneous web data together without loosing their relationships.

Abiteboul S. (1999) dreams for such a data model in Object Exchange Model

(OEM). OEM is a directed graph containing object as vertices with unique object id (oid)

and labels on the edge. Abiteboul S. (1999) tries to identify possible functionality

requirements of this new data model and outlines web content data model as shown in

figure 17. He defines two basic web content types: atomic type (e.g., integer, real, string,

Figure-17: Object Exchange Model Graph (Abiteboul, S. 1999)

gif, html, audio, Java, etc) and complex type (e.g., structure, table data, etc) and shows

that OEM database can be viewed as a relational data with binary relation

VAL(oid,atomic_value) to specify values of atomic objects and MEMBER(oid,label,oid)

to specify values of complex objects. A suitable query language can be implemented to

extract information from this OEM database model.

45

Annoni and Ezeife (2009) proposed object-oriented paradigm to model web data

to capture both content and presentation objects of a web document. Toward mining web

contents using object-oriented model, their paper have two major contributions for web

content extraction: (A) They define and give framework of object-oriented data model

and (B) They give the idea of how to extract web objects from the web page. They give a

high level algorithm called OWebMiner() for web object extraction (figure 19, page 48)

and an algorithm called ProcessPresentationSibling() for presentation (e.g., web page tag

structure) object extraction process. Their anticipated use of presentation objects is to

associate with content objects for mining process. Annoni and Ezeife's (2009) proposed

framework for object-oriented data model is based on the following concepts:

1) They agree with Yu. et al. (2003) and Song et al. (2004) that related documents share

same space and web page presentation tag structure. The web document segmentation

work uses DOM tree, data location features and data presentation features to

distinguish data blocks.

2) Unlike Yu. et al. (2003) and Song et al. (2004), Annoni and Ezeife (2009) proposed

not to evaluate all HTML tags because all HTML tags are not always meaningful.

They observed that main HTML tags (e.g., non-empty tags such as <table>, <link>,

<form> tags) have impact in content and presentation and pre-formatting and in-line

tags such as <pre>,
 should be avoided.

Annoni and Ezeife (2009) thus rely on DOM tree of web document and use "vision based

context structure" for data x-coordinate and y-coordinate location of webpage features,

web document zone, data's width, height and center location, and data presentation

features such as style, type, fonts and spaces to identify data blocks. They also propose

46

not to evaluate the pre-formatting and in-line tags but they did not included any guideline

or idea about how to filter these unwanted tags from the DOM tree in automatic content

extraction.

Annoni and Ezeife (2009) define the web document zone to represent the entire web

document as an object named WebZone object as shown in figure 18. A WebZone object

is represented by WebElement and WebRender objects. So, from content view, a

WebZone is a composition of WebElement objects which are divided into three zones:

HeaderZone, BodyZone and FootZone as discussed in section 1.3.

Webpage

title: string
address: string
page Width: int
pageHeight: int
namespace: string

Is Composed of

WebZone

webZoneCenterX int
webZoneCenterY int
webZoneWidth int
webZoneHeight int
webZoneBGcolor str
webZoneFirstTag str
webZoneLastTag str

r\

Is Represented by

WebElement
webElementCenterX int
webEIementCenterY mt
WebElement Width int
webElementHeight int

WebRender
webRenderCenterX int
webRenderCenterY int
webRenderWidth int
webRenderHeight int

HeaderZone BodyZone FootZone

Figure-18: Hierarchy of web object model

They classify WebElement into six web content types by relying on four basic content

types initially proposed by Levering and Cutler (2006): Text, Image, Form and Plug-in

content. In addition to these four types they define two new types: Separator element and

Structure element (discussed in section 3.2). Annoni and Ezeife's (2009) main algorithm

OWebMinerQ is given in figure 19:

47

Algorithm OWebMiner()

Input: a set of HTML files (WDHTMLFile) of web documents.
Output: a set of patterns of objects.

Begin
For each WDHTMLFile

(A) Extract web presentation objects and content objects
sequentially with respect to their hierarchical dependencies.

(B) Store the object hierarchies into a database table
endFor
(C) Mine patterns lying within objects

end

Figure 19: OWebMiner() algorithm (Annoni and Ezeife, 2009)

In this algorithm, they basically say that the algorithm will take a set of webpages

(WDHTMLFile) and for each WDHTMLFile, line (A) of the algorithm will extract all

the content and presentation objects into two separate object arrays according to their

DOM hierarchical dependencies. Line (B) will store web objects into database. Line (C)

will mine the extracted contents from the database.

They also developed sub-algorithm (A) of their main algorithms OWebMiner()

called PresWebObjectScan() and ContWebObjectScan(). ContWebObjectScan() uses

array data structure ContentObjectArrayf] to store content objects. Process began with

root of DOM Tree "<html>". When it hits series-1 (discussed in section 1.3), it calls

algorithm PrecessContentSibling() (modified version is given in figure 46) to start

extraction of content objects and continue until it hits series-2 (discussed in section 1.3).

ProcessContentSiblingO algorithm inputs DOM Tree, a pointer called "TTag" which

indicate current tag to process in DOM Tree, ContentObjectArrayf] and a variable

"indTag" which is a global index for labeling content objects per zone. The algorithm

recursively traverses DOM tree block-level tags by depth-first search until it hits non-

block level tag and reset "TTag" pointer to represent current processing tag. If depth-first

48

search hits a non-block level tag, it processes all it's siblings into an array called

"tagArray". For all non-block level tags in "tagArray", the algorithm then associates a

content object to tag value. Otherwise it recursively calls itself to advance "TTag"

pointer. The algorithm finally returns the ContentObjectArray[] with full content objects

from body zone of web page. Annoni and Ezeife (2009) stops at this point in their paper

and left the remaining mining from the content object array as future work.

49

3. OO Web Content Mining

As discussed in section 2.3.3, Annoni and Ezeife (2009) proposes object-oriented

data model for extraction and mining of heterogeneous web contents. They gave the

framework for web content elements, web presentation elements, and an algorithm (called

OWebMiner) for extraction of web objects. The entire architecture of the system,

definition of data base schema and mining technique were pending to develop. We

studied their work and propose two-level mining process for knowledge discovery. This

thesis develops the architecture (we call it WebOMiner) for web content mining using

object-oriented model. It develops, extends and modifies necessary algorithms for

WebOMiner system. It also defines the data base schema and gives guideline for

automatic database schema generation. This thesis addresses the following problems in

Annoni and Ezeife's (2009) work toward development of WebOMiner system.

3.1 Problem Addressed

1. ProcessPresentationSibling and ProcessContentSibling algorithms proposed by

Annoni and Ezeife (2009) called from their OWebMiner algorithm splits

presentation and content objects from DOM tree and store into separate flat array

data structures in sequential order as per their hierarchical dependency. So, all

content objects are added into the array sequentially until the end of body zone.

Within DOM tree all related data are structured as data block but in their flat array

data structure, content data are loosing their relationships. Their algorithm does

not address the requirement for identification of data block and data region. It is

important to extract related data together or create clear separation between data

blocks and data regions. We address this in our thesis in section 3.4.1.

50

2. They proposed "vision based context structure" to locate data using x-coordinate

and y-coordinate location features as discussed in section 2.3.3. This feature is

useful when using browser rendering engine, but for automatic extraction process

without use of web browser, co-ordinate location of any feature is not possible.

3. Annoni and Ezeife (2009) defines separator element as follows:

"Spaces between contents which emphasize them and make them

instinctively meaningful for human beings such as line, blank and empty

space. They could be enclosed within HTML tags <hr>,
. "

This definition is ambiguous and specific purpose is not clear. They did not

discuss about how this separator element will be used and their algorithm did not

address the use of separator element in content or presentation object extraction.

We define the use of separator element for identification of data block and data

region in our problem context as discussed in section 3.4.3.

4. They did not define the object classes, size of object classes, object class

hierarchy, object class dependencies, and functionalities of object classes. They

only classify the web content elements but did not associate object types with

contents, nor discuss how to control the creation of expensive objects.

5. Annoni and Ezeife (2009) did not address the issue of associating leaf level tags

with specific contents. A leaf level tag contains important information about the

associated content. It is important to associate leaf level tags before assigning an

object to a content type. For example in a data block there are three image tags as

shown below:

<imgid= "line" src= "http:// " alt = "line"/> (1)
 (2)
 (3)

51

http://
http://
http://

Here HTML tag at line (1) and (2) have three tag attributes: "id", "src" and "alt".

line (3) have two attributes: "src" and "alt". Tag attributes are variable inside a tag

and each attribute should have a value. First image tag of line (1) is a line

separator as identified from the value of attribute "id" and "alt", second image tag

of line (2) is for "monitor" as identified from "id" and "alt" attribute and the third

image tag is for "Add to Cart" hyperlink identified from "alt" attribute. If we

don't care about tag attribute of a source image, we will not be able to identify the

image we want. We resolved this problem by analyzing tag attribute in our thesis.

6. Annoni and Ezeife (2009) did not address the issue of preventing noisy data entry

into database table. Their algorithm does not refine contents before entering into

database table. We address this issue by cleaning noises from data tuple.

Our approach to address these problems is discussed in next consecutive sub-sections of

this chapter as: web content objects in section 3.2, challenges for extraction and mining

in section 3.3, thesis problem domain and approach to solution in section 3.4, Mining

technique in section 3.4.3, our proposed architecture of the system and algorithms in

section 3.5 and warehouse and mining for integration in section 3.6.

3.2 Web Content Objects

The State of the Art for the web data model proposed by Annoni and Ezeife

(2009) is the wrapping of web data in objects to use object-oriented approach which they

claim enables to mine in a unified way. It raises the problem of classifying web contents

in object type. A complete list of web content types do not exist yet and over the

evaluation and advancement of technology, user demand, business and marketing

demand, new type of contents are adding over time. So, they rely on the following four

52

basic content types proposed by Levering and Cutler (2006). We also use these content

types in our thesis:

3.2.1 Text content: These are the textual web content data found in the leaf level of

the DOM tree. These could be raw text with or without alignment or the List text in

ordered or unordered form. A simple format of web content data are given in figure 20:

<html>
<head>

<title>CS 60-140</title>
</head>
<body>

<div align= "center">
<h2>Intro. Algorithms</h2>
by C. I. Ezeife

<div>
<p> This is the text book for

"Introduction to algorithm" course of
computer science department, University of
Windsor, Canada<p>

<p align = "left">
copyright@cs.uwindsor.ca

</p>
</body>

</html>

Figure-20: Example of simple static web textual data

3.2.2 Image content: Image or pictures embedded into the web documents are image

contents. There are two types of image content in web documents, image and map. Image

is a simple picture referring to a physical image document in any physical location. For

example, or , <img src =

"bird.jpg" alt="bird" />, are simple

links to different formatted image files at different physical locations that are embedded

into the web document. When an image is associated with a mapping defined by HTML

tag, it is called the image map. For example, in case of client side mapping:

<body>
Basic requirements of this course are to

fulfill the following tasks:
 Four assignments.

 Two mid term exam.
 One Final exam.

Students are required to attend the following lab
sessions for this course.

 Problem-01 of page 34
 Problem-10 of page 99 </\i>
 Problem-06 of page 120

Some tips for the students:-

<dl><dt>Want good grade?</dt>
<dd>Go to every class.</dd>
<dt> Want job soon ?</dt>
<dd>Do all assignments and labs</dd>

</dl>
</body>

53

mailto:copyright@cs.uwindsor.ca
http://netletter.com/photo/bird.gif'

<map name = "brainmap">
<area shape="rect" cords="15, 15, 220, 100" href="fantacy.htm" />

</map>

Similarly, for server side mapping <ismap> attribute is also used.

3.2.3 Form content: Web page forms are normally used to gather information from

web page users such as user feedback about any topic related to web content, orders

through internet, other information from the reader of the web page. These form contents

are enclosed within the keyword tag <form> and different input formats are used to

gather the information. For example, by the HTML tag <textarea>, users are allowed to

type any command or textual information, within the tag <select>, users are allowed to

select any pre-defined option from a set of options by <option> tag. By check box (i.e.,

<input type= "checkbox" >), a user can select one or more pre-defined options.

Similar approach is used for long time in case of Dynamic web pages by

interactive pages. Programmers are using popular programs like Java applets, JavaScript,

CGI programming, php programs, ActiveX control for dynamic interaction with the web

page readers to gather information from the user or help user to get required information.

3.2.4 Plug-in content: Plug-in contents are dynamically generated contents in the

web pages from either server side database or automated calculation by the functions or

programs. Two types of computer programs are used for Plug-in contents; client-side and

server-side programs. In case of client-side programs, the controlling computer functions

or programs along with database accessibility are embedded into the webpage, so it is

more vulnerable in terms of database security. Server-side programs which are embedded

into the webpage are usually interacted with another controller program at server and

54

generate the dynamic contents supplied by the server. Within HTML embedded CGI,

php, visual basic program codes are example of plug-in contents. For example:

CGI Code: < — ^command exec = "scriptName " — >
Visual Basic Code: <% program %>
Php code: < ? php program ? >

Annoni and Ezeife (2009) uses these four basic web content types as discussed

above; moreover they propose two additional content types "Separator" and "Structure"

in their literature. They define the "Separator" element as spaces between contents such

as line <ln>, blank <&nb> and empty spaces <tb>. They could also be enclosed within

HTML tags horizontal rule line <hr />, a line break
 etc. The "Structure" element,

they mean the database generated structured data of different content types. There is no

specific tag associated to structure content. It can be generated within any HTML tag.

3.3 Challenges and Thesis Approach to Solution

We face a set of challenges toward implementation and development of object-

oriented web content extraction and mining algorithms as discussed below:

01. Requirement of a crawler algorithm that can automatically identify the positive web

pages (e.g., web pages within our problem domain) from the WWW and the

functionality for extraction of HTML document, its contents including image-files,

video-files into local directory. We developed mini-crawler and extractor algorithm

that crawls into given input URL or a set of input URLs that sequentially extract

HTML documents including image-files into user defined local directory. Our

crawler algorithm does not have the functionality for automatically identification of

positive web pages (e.g., product list pages as per section 1.2.3 in our problem

domain) for data extraction from WWW.

55

02. Majority of HTML documents in WWW are not well-formed as per W3C standard. A

well-formed document structure is the pre-condition for building DOM tree. Current

commercial vendor specific HTML code cleaning software's (like Java HTML tidy or

"tidy" by fourceforge.net) are not robust enough to handle most of the current

commercial web pages. We use free open source software "tagsoup"

("http://home.ccil.org/~cowan/XML/tagsoup/", licensed under Apache License,

version 2.0) for embedding missing closing tags. We modified its functionality to

make ill-formatted web pages well-formed and to exclude inline tags.

03. Inline and decorative tags are another problem for extraction of content data and for

DOM creation. Decorative inline tags split contents in DOM tree. For example the

following "<a>" tag encloses a single line of text.

<a> This is a test example for DOM tree.

But in HTML document, this text may be represented in different ways for attraction

to viewer like the following:

<a><i> This is a test example</i> for DOM tree.

Hare "<i>" tag is used in part of the text to view in italic font and tag is used to

bold only the "DOM" word. The DOM representation is shown in figure 21 below.

Here original text content is split into four parts in two different levels in DOM sub­

tree. When we traverse through DOM for object creation, it creates four different text

objects without structural relation. To overcome from this problem, we need to filter

unnecessary decorative/formatting tags and inline tags. The use of Java DOM filter

56

http://fourceforge.net
http://home.ccil.org/~cowan/XML/tagsoup/

<a>This is a test example for DOM tree

(A)Original textual content

Element:
<a>

Text:
"This is a test example for DOM tree."

(B)Original DOM sub-tree

<a><i>This is a test examp!e</i>forDOM<Jb> tree

(C) Formatting tags in textual content

Element:
<a>

1 1 1 1 1
Element: Text: Element: Text:

<i> "for" "tree"

Text: Text:
"This is a test example " "DOM"

(D) Sub-tree after using decorative tag

Figure-21: Formatting tags within textual fragment

class filters-out the selected element from the DOM tree including its contents that is

unwanted. So, we modified "tagsoup" module to filter out decorative tags from HTML

tag structure.

04. Java DOM package itself can not handle real time long tag attribute values. For

example in the following "<a>" tag is from "compUSA.com" website.

"<ahref="http://compusa.shoplocal.com/compusa/default.aspx?action=entry&

pretailerid=-98291&siteid=147&adref=[any&storeID=2595483">"

Here "href attribute contains a long string value. Within this "href attribute value

there are five "=" signs and Java DOM parser looks for value enclosed by " " for each

equal signs while creating DOM tree. Further improvement of our filter is required in

the future to handle these types of long attribute values. We therefore used simplified

version of mirrored or simulated commercial web pages by reducing length of tag

attribute value to test and evaluate our system.

57

http://compUSA.com
http://compusa.shoplocal.com/compusa/default.aspx?action=entry&

05. Schema matching in web data context is a challenge for information integration. For

example, two schemas for customer C- and C2 in figure 22 are for the same

information from two different web pages.

Ct

Customer
CustID
Company
Contact
Phone

Cust
Id
CompName
First Name
Last Name

Figure-22: Difference in schema for similar information

To match these two schemas a representative schema mapping is required. Schema

matching mostly relies on semi-automatic matching in specific domain. Researchers

addressed this problem with domain specific approach. In our problem context,

schema matching is handled during object creation.

Customer

+ ID = '....^_-_—

<spandass_-E "CustID"

<liname = "id"

>85075

> 92476

Figure-23: Schema matching at object creation

In this thesis, we use linguistic approach (e.g., equality in names or synonyms) for

mapping synonym with 1: m match cardinality for string matching. For example,

"Customer" object attribute "id" in figure 23 is mapped to "CustID" and "id" in two

different types HTML tag attribute during object assignment and then store respective

value in object. This ensures the consistency in database entry.

58

3.4 Problem domain

For the specific domain of B2C websites, we have selected to mine a most

common data-rich web page, which is the product list page (discussed in section 1.2.3).

From the common B2C webpage structure shown in figures 05 and 06 (page 13 and 14),

product list webpage is commonly a data rich page. We observed that, a product list page

usually contains brief list of all or specific types of products. There is a set of product list

pages in a B2C website. We define a product list page as follows:

Definition 1: If 'w' is a B2C website and 'p' is a webpage in 'w' such that w = y pj,

then a page pj&w where j>l, is a product list page iff 'pj' contains a set of tuples r of

type a, where a>l, having distinct instance type.

In case of our running example shown in figure 06, it consists of a set of content

data blocks that are arranged in different data regions (discussed in section 3.4.1). One

region usually contains similar categories of data. Advertisement region contains

hyperlinks with a set of services. Main product data region contains a set of data blocks.

Each data blocks are hyperlinked (by "MORE INFO") with separate product details page

and contains some key information like image of the product, product name, product

number, brand or manufacturer, product price and a hyperlink for shopping the product.

This information is defined as instances or objects of distinctive type. This page also

contains other blocks like list of other products and services (e.g., navigation block),

advertisements (e.g., noise block). Our target is to pick up this key information

systematically from each data block and store in a data base for mining.

59

Figure-06: Data regions and data blocks.

There is no easy way to pick up this information. This set of key information is similar

for almost every product list pages but their schemas may be different.

3.4.1 Data Region and Data Block Identification

Annoni and Ezeife (2009) defines HTML tags into two categories; "block-level"

tags and "non-block" level tags. They define a block level tag as HTML tags that are

either the child of sub-tree "body" or another block-level tag and should be the parent of

other tags. For example: <table>, <head>, <body>, <p>, , <form>. A non-block level

tag is an inline tag or text level tag which is the child of a block level tag and mainly lies

in DOM tree leaf. A complete set of block-level and non-block level HTML tags does not

exist. In dynamic web pages, designers are allowed to define their own tags using the tag

60

library. Moreover, block-level and non-block level tags are not disjoint. Same tag can be

used as block-level or non-block level tag.

In case of our running example, the DOM tag tree (figure 08 at page 22), data blocks are

represented in nested table at lines 105, 113, 121, 131, 139 and 147. Each of this block-

level '<table>' tag contains a set of block-level '<tr>' and '<td>' tag. In some cases,

block-level and non-block level tags may not necessarily be disjoint as shown in figure

24, where <td> tag is used both as block-level and non-block level tag.

<table> <!- - Subcategories listing begins - ->
<tr><td>Item Number </td>

<td>
<span class = "prodtitle" ..

</td>
<td> </td>

?5

</tr>

</table>

//Non-block level <td> tag
//Block-level <td> tag

.> LCD Monitor

Figure -24 Intersection of block level and non-block level tag

A data region and data block is enclosed by one to many block level tags. There is

no easy way to identify this region and data blocks. In this thesis, we define the following

three important observations to identify data regions and data blocks based on DOM tree.

Observation 1: If Y represents the DOM tree of product list page Pj£w, and

5R1,9l2,9
il3,...,$Rn represents data regions in Y, then)RI is a sub-tree

of T and V9L, e Y are disjoint.

Observation 2: A data region^, consists of a set of data records x. All data records T in a

data region 91, typically represent similar list of objects and VT- e??,

are contiguous in 51,.

61

http://

Observation 3: All data records T of any data region 91, are formed by some sub-tree of

same parent node and are disjoint.

Observation 1 states that, in our problem domain, if " Y " represents a DOM tree of an

entire web page tags including contents, then it contains a set of data regions. They are

disjoint and are sub-trees of Y. Our running example (figure 08 at page 22) shows data

region nodes at line 7, 35 and 193. Observation 2 states that, a data region in DOM Tree

consists of a set of data records (defined as tuple in this thesis) and all data records in a

region, in general, represent similar set of data and are contiguous in a data region. In

case of our running example, data region of line 7 have two similar navigation data

blocks at line 8 and 20, region of line 35 have a set of eight similar data blocks at lines

58, 69, 105, 113, 121, 131, 139 and 147. All these data blocks are contiguous in sub-tree

of data regions. Observation 3 states that all data records in a data region formed by

same parent node data records are disjoint in DOM tree. To explain this, we graphically

represented (partially) our running example DOM tree in figure 25 below. Here, "Y"

represents the root of the DOM tree. This page has three disjoint data regions 91,,

sJl2and3l3; all are sub-tree of "Y". Data region 9l2has eight contiguous data records

Ti, T2,..., i6 Data records T-, T2 are similar and T3,... ,tg are similar.

62

Figure-25: Graphical tree representation of data block and data region.

Figure 25 shows the disjoint characteristics of data regions and data blocks. We observed

that a data region or data block can be within any block level mark-up tag but usually lies

within tags like <div>, <table>, <tr>, . This set is not complete and intersecting

with non-block level tags. Observation of positive page tag structure is helpful to identify

the region and data block. We denoted the region and data block by the set notation ' { ' ,

' } ' . In our case, we used <div> and <table> tag as region and data block.

3.4.2 Data Model

Structured data of web page are generally encoded with HTML mark-up and in

nested relation. Data records or blocks are related information about any fact. For

example, figure 06 (page 14) shows six data records about computer monitors in a single

data region. Each record consists of a set of information like image of monitor, brand

name, model number, short description, retail price, etc. All these information are related

63

to a single entity and so six data records in figure 06 represents six distinctive entities.

Grumbach et al., (1999) defined data block in nested relation as follows:

• There is a set of basic types, B = {B\, B%, ..., Bk}. Each B, is an atomic type, and

its domain, denoted by dom(B,), is a set of constants;

• If T\, 72, ..., T„ are basic or set types, then [T\, T2, ..., T„] is a tuple type with the

domain dom([Tu T2, ..., T„]) = {[v-, v2, ..., v„] | v, e dom(T,)};

• If T is a tuple type, then {7} is a set type with the domain dom({T}) being the

power set of dom(T).

We will use similar notations for our data model. We used set notation ' { ' , ' } ' for

representing the data records or blocks. In the context of web content, B, is usually a text

string, image-file, price as string (of type long) representing distinctive related instance.

For example, a product data record can be represented as in figure 26:

• title (of type string)
• image (of type image-file)
• diffSize, consisting of a set of instances

0 product number (of type
0 brand (of type string)
0 price (of type long)

integer)

Figure-26: Data block representation (Grumbach et al., 1999)

The set format of mark-up encoded product data can be denoted as:

{<title>, <image>, {<number>, <brand>, <price>}}

Here, the tag '<title>' is not representing the mark-up tag itself but the content encoded

by the mark-up tag with value of attribute name or class or id = "title". This data format

is not unique and can be different in mark-up encoding and in nested formation for

different data regions and web page structures. A nested data block or record usually

64

contains some additional contents like decorative image, "Add-to-Cart" image or button

including link, "More Info" image, link to product details page. These additional content

information in general, can be treated as noise content in data block and need to be

cleaned up. For example, the same product data can be in the following format in the web

page:

{{<image> U {<title>, {L <number>, <brand>, <price>)}}

Presentation/noise block Image block Cascading block

We define a data block as data tuple when a data block's nested relation are collapsed to

flat relation and clean-up any unwanted instances like separator object for nesting inside

a data block. For example, when we will collapse the instances of the above data block

and clean-up the internal nested noise block, image block and any cascading block, the

resultant data tuple will be as follows:

(<image>, <title>, <number>, <brand>, <price> >

We used the notation ' (' and ') ' to denote a data tuple x We define the data tuple as

Definition 2: A tuple x is a domain type dom(x) which consists of a set of distinct related

instances of atomic or basic type, B = {Bj, B2, B3, B^j in flat mark-up encoding

relation.

A mark-up encoding is a pair of mark-up tags open-tag '<> ' and close-tag '</> '

respectively. Mark-up encoded data instances reside in the leaf level of tree type

encoding and each instance or attribute of a tuple can be encoded differently to

distinguish them or unrelated catalyst instance (e.g., decorative) may be used to

highlight the importance. A tuple x denoted by notation ' ('& ' >' can be written as,

r = (B\, BI, B-i,...£k). In the context of web content, B, is usually a text string, image-file,

65

price representing distinctive instance. The product data tuple of figure 26 can be

modeled as shown in 27:

Product (title:
image:
product number:
brand:
price:

string;
image-file
integer;
string;
long; >

Figure-27: Data tuple of product data block

3.4.3 Tuple formation from Data Block

As stated by Annoni and Ezeife (2009), we observed that a product list webpage

contains six basic types of content data blocks. These are Product data block, List or

Navigation data block, Form data block, Text data block, Decorative/Singleton data block

and the Noise / Advertisement data block. We need to identify data tuple from these

content data blocks.

A Product data block is an important data block in product list page. Related

information of a typical product data block are: an image of the product, the name or title

of the product, product number, brand, and price. Additional information like rebate in

tagged price, brief description of the product, etc may exist and not necessarily all page

contains all the information. These information or elements are found as either ordered or

un-ordered list and in flat or nested HTML tag encoded relation. The set format of

product data block in nested relation is denoted as below:

{<image>, {<title>, <number>,..., <brand>, <price>}}

Some pages may contain less information like: {<image>, <title>, <brand>, <price>}

According to Annoni and Ezeife (2009), these information need to be identified

and assign respective object to them (i.e. image object for image element, text object for

66

text element, etc). Their anticipated use of separator element / object is not clear and their

ProcessContentSiblingO algorithm did not define or give guideline for the use of

separator objects. We redefine the use of separator object to identify data regions and

data blocks. Therefore, in object view, proposed product tuple (e.g., a flat product data

block after cleaning) will look like the following figure 28:

(<) (<image> Y <title> Y <num> Y <brand>)(<price> I))

/ / \ / ^ / \
Separator Object Image Object Text Objects Price Object Separator Object

Figure- 28: Content objects of a product data block.

The identification of a data tuple is not easy task. Objects of a data block may exist in

different level in a DOM tree. For example in case of our running example the data

blocks are as follows:

<table><tr> <tr> //Datablock

<tr> // Data block
<td><ahref = " " ></td>
<td>

<table><tr><td> </td>
<td><Ja>

 Title content

 Specification

 Price

</td></tr>
</table></td>

</tr>
<tr><td> </td></tr> //Data block

</table>

Figure-29: Example of simple content hierarchy in a data block.

To resolve the problem of identifying data blocks, we used Separator element/object and

classified Separator element in two categories: open-separator, denoted by set notation

67

symbol ' { ' and close-separator denoted by ' } ' symbol. An open-separator element

represents some predefined block-level open-tag (like <table>, <tr>, <div>) which are

candidate tag for root of data block and data region. Similarly, their end-tag (e.g.,

</table>, </tr>, </div>) is represented by close-separator element. For example, if we

represent <table> tag as open-separator and denote it by the set notation ' { ' , and </table>

tag a close-separator and denote by a set notation ' } ' , then the product data block of

figure 29 can be represented as: {<image> {<title>, <specification>, <price>}}

For tuple formation of this data block, it needs to flatten/collapse and keep all

object instances at the same level. So interior set notation should be deleted and the outer

set notation is replaced by the tuple notation ' (' and ') ' . It also needs to clean up the

noise block, null block, cascading set notations within the data blocks to build it as tuple.

Some websites use price contents as image to highlight the importance. For example,

future shop's price tag is like below:

it may contain other images like, an image for "add to cart" option, "more info" image,

other presentation images, block separator images. So it is a challenge to pick up the

product image from these different images in a data block. One approach is to match the

"alt" attribute of image tag to identify the product image.

For tuple identification, we use a Non-deterministic Finite Automata (NFA) based

approach of pattern matching. Details of this NFA formation is discussed in section 3.5.4.

An NFA is a finite state machine where number of state is finite and for each pair of state

and input symbol there may be several possible next states by consuming input symbol or

68

http://
http://

without consuming any input symbol by epsilon transition (e) For example, a NFA for

any string beginning with 'O's followed by T s will be as follows:

Any string like "0001111" or "0111" will be accepted by this finite state machine but any

string like "01011" will be rejected by it. A finite state machine as defined above is a

classical mathematical abstraction used to design digital logic or computer program and

can solve a large number of problems An epsilon transition (e) in an NFA allows a

transition from one state to another without consuming any input symbols. This epsilon

transition is important to allow transition from one state to several states to consume

distinctive symbols. In our case the NFA representation of a product tuple can be

represented as figure 30:

Figure-30: NFA notation for product tuple

This product tuple NFA can be mapped to the following 10 schemas:

Product (title string, image image-file, prodNum string, brand string, price long),

Product (title string, image image-file, prodNum string, price long),

Product (title string, image image-file, brand string, prodNum string, price long),

Product (title string, image image-file, brand string, price long),

69

Product (title:string, image:image-file, price.Tong);

Product (image:image-file, title:string, prodNum:string, brand:string, price.Tong);

Product (image.image-file, title:string, prodNum:string, price.Tong);

Product (image.image-file, title:string, brand.string, prodNum:string, price.Tong);

Product (image: image-file, title.string, brand.string, price.long);

Product (image:image-file, title:string, price.Tong);

The List tuple contains a set of hyperlinks and their related title. List tuple usually

redirects the web page users to different resources of the web site. The common format of

the List tuple is as follows:

(<link>, <title>, <link>, <title>, <link>, <title>, <link>, <title> >

For example, in figure 08 at page 22, line 8 to 19 will generate a List tuple where line 8

and 19 will create open brace " (" and close brace ") " . Line 9 to 13 contains a series of

<a> tag with its text contents. Here <a> tag is of type <link> and related contents are of

type <title>. So, the resultant tuple looks like the format shown above. This tuple consists

of a set of <link> and <title> tags in ordered format. We observed that this pair of tags

usually contains at least three to unknown finite length. We redefine this tuple as:

Y"_ (< link >,< title >)j. This expression is useful for NFA generation, because a web

site contains set of List tuples with various lengths. The NFA representation of this

expression is shown in figure 31:

Figure-31: NFA presentation of List tuple

This List tuple can be mapped to the schema: List (link: string, title: string);

70

The Form tuple may be of different kinds. This usually takes the user input as

text, or selection of a specific option and is normally user event driven. All content

information of a form tuple is contained under the block level tag <form>. The block

level <form> tag has important information about the action of the user event. We

therefore need to extract attribute information from the <form> tag and defined the Form

tuple start with <form> tag followed by a set of leaf level texts under non-block level tag

<option>, <select>, <input> and / or <textarea> with unknown length. This tuple looks

like the following: (<form>, <text>, <text>, <text>)

Here, <form> tag is added as key identifier as a part of content object. There are two

reasons for using this identifier: it will distinguish the Form content from Text content,

and <form> tag contains two important attribute information about its texts; "name" and

"action". The "name" attribute gives the information about its embedded texts and the

"action" attribute gives us the URL of the webpage where the action will be triggered.

We redefined this tuple as <form>~Y"_(<text>)j. The NFA representation of this

expression is shown in figure 32:

<text> / " \

Figure-32: NFA presentation of Form tuple

This Form tuple will map to following two schemas:

Form (form: boolean, name: string, action: string);
FormContent(name: string, text: string);

The Text Tuple may contain raw text in the web page or a bag of text describing

something. The tuple may contain a set of Text objects as follows:

-e>^0

71

(<text>, <text>, <text>, <text>, <text> >

We redefined this Text Tuple as Y"_ (< text >)j. The segmentation of this text instances

needs further research in case of problem domain that contains bulk text or text corpus.

The NFA representation of this expression shown in figure 33 can be mapped to the

schema: Text (text: string);

<text>~

/fT\ <text> ir\r\

Figure-33: NFA presentation of Text tuple

The Noise / Link Tuples are a set of hyperlink with image. The tuple can be

represented by (<link>, <image>, <link>, <image>) . We redefined tuple

as: Y ^ (< link >,< image >)j. NFA representation of Noise/Link tuple shown in figure 34

can be mapped to the schema: Noise (link: string, image: image-file);

Figure-34: NFA presentation of Singleton tuple

A Singleton Tuple can be anything for presentation purpose. Sometimes some

stand alone attractive images with or without links are used in web pages for better

representation or make the presentation attractive. This tuple can be represented by

(<image>> or (<link>, <image>) So, a Singleton tuple may have intersection with

Noise/Link tuple.

72

3.5 Proposed "WebOMiner" Architecture and Algorithms

We developed the architecture for extraction and mining of web contents using

object-oriented model. We call it "WebOMiner" which is shown in figure 35 below:

Legend:

= Program/Process

• = Process flow

7 = Data

= Data flow

Local HTML 1 I WellFormed / / C l e a n e d 7 / DOM Tree of / / BodyZone /
/ / HTML page <"H HTML page h HTML page / j * - / of Web Doc /

Crawler &
Extractor
Program

tagSoup
Tag

Filter

tagSoup (www ceil org)

Java
DOM
Parser

Web Zone
Identifier

Content
Extractor

(A) Crawler Module (B) Cleaner Module (C) Extractor Module

Database
Schema

Second
Level
Mining

Data Base

Classified
Tuples

: •+

Tuples in
Content­

ObjectArray

Content
Object Array

Web Content
Object Classes

Data
Storage

Manager

Tuple
Classifier

NFA
Generator

Object
Cleaner

(D) Miner Module

Figure 35: WebOMiner Architecture for Object-Oriented web content mining.

This architecture (figure 35) has four modules: (1) Crawler module (2) HTML cleaner

module (3) Content extractor module and (4) Web miner module. These modules are

called sequentially by our main algorithm WebOMiner (shown in figure 36).

73

Algorithm Main
Input: Set of HTML files (WDHTMLFile) of web documents.
Output: Set of patterns of objects.
Variable: ContentObjectArray[].

Begin
For each WDHTMLFile

A. Call SiteMapGenerator() to crawl and extract webpage into local directory from
WWW. /* figure 38 */

B. Call tagSoup.html() to clean-up HTML code. /* called by running test, bat file */
C. Call OWebMiner.BuildDOMTreeO to create DOM tree of refined HTML file and

extract web content objects sequentially from DOM Tree. Store objects in
ContentObjectArrayf]. /*figure 43 */

D. Call MineContentObject.IdentifyTuple() to identify data records and classify
records according to their pattern. /* figure 49 */

E. Call CreateDBTableO to store data records into a database table
endFor /* figure 55 */

F. Mine for knowledge discovery within extracted contents. /* pending to develop */
End

Figure-36: WebOMiner main algorithm

We now will explain below the modules of our system and will discuss how our

WebOMiner algorithm works.

3.5.1 Crawler Module:

We developed a mini-crawler algorithm that crawls through the WWW to find

targeted web page, streams entire web document including tags, texts and image contents

and it then creates a mirror of original web document in the local computer. Our crawler

module dumps the comments from the HTML document. That means it have the

functionality to exclude all comments from the web documents. The class diagram of

crawler module is given in figure 37 below.

74

Crowler
{abstract}

- baseUrl- URL
- visited: HashSet
- delay: int
- base: String

+ traverse ()
- getWebPage (URL, URL)
+ getContent (URL): byte
+ getBaseUrl(): URL
? handleLmk (Pagelnfo)

SiteMapGenerator

+ main()
+ generate()

<\~

GetGraphics

? handleLink(Pagelnfo)
- save!mage(URL, File)

\ J / 1

MySpider

? handleLink()
- openFile()

-->

Pagelnfo

- ur l : URL
- perentUrl: URL
- link: URL[]
- DomTree: ArrayList

+ extract(Reader):

V

webPageExtractor

+ processContentO
+ processTagO
+ processEndTagO
+ getTagO
+ getTreeO

Node

+ tag : String
+ level: int

+ getTagO
+ getLevel()

1

1. . *

DomTree

+ tag : String
+ level: int
+ list: ArrayList

+ CreateTree(mt, String)
+ handleNewTagO
+ handleEndTagO
+ handleContentO
+GetTree()

0-

SimpleHTMLParser
{abstract}

+ parse (Reader)
- handleTag (int, Buf Reader)
- handleContent (Buf Reader)
- handleComment(Buf Reader)
- read (Buf Reader, char, int)

Figure-37: Class diagram of Crawler module

The WebOMiner algorithm line-A starts with calling generate () method of class

"SiteMapGenerator" (figure 38). This class contains a private class called MySpider that

inherits abstract class Crowler. This algorithm takes a URL string as input and outputs

HTML file in local machine. The algorithm sets the input URL string as BaseURL and its

"generate()" method calls MySpider's super class method "traverse()" by passing

BaseURL. The result outputs an ArrayList of Nodes having tags and contents of HTML

file. Node information is then written into the output HTML file.

75

Algorithm SiteMapGenerator.generate()
Input: URL String
Output: null
Begin

1. Set baseURL variable = URL String.
2. Pagelngo = Call private class MySpider.traverse() by passing baseURL

//calls super class Crowler.traverse() method
3. Call MySpider.handleLinkO by passing Pagelnfo object

End

Algorithm MySpider.handleLinkO
Input: Pagelnfo Object
Output: HTML file in local computer
Begin

1. Arraylist = Call Pagelnfo.getTreeO //Calls superclass getTree()
2. do

- Extract Node information
- Populate buffer string with level

Until end of Arraylist
3. Create or Open output file using openfile() method
4. Write buffer string into output file

End

Figure-38: Algorithm SiteMapGenerator.generate() and MySpider.handleLinkO

"traverse()" method is the main method of the abstract class Crowler that creates Http

connection for network data transfer and calls "extractQ" method of Pagelnfo class.

Algorithm Crowler.traverse()
Input: baseURL
Output: Pagelnfo object

Begin
1. Set delay time and sleep time for network data transfer.
2. Create HttpURL Connection using baseURL.
3. Varify connection validity by responseCode, contentType and contentLength.
4. Pagelnfo = Call PageInfo.extract() method passing InputStreamReader object.
5. Close InputStreamReader object.
6. Close HttpURL Connection.

End

Figure-39: Crowler.traverse() Algorithm

"extract()" is the main method of Pagelnfo class that inputs InputStreamReader object

and returns Pagelnfo object to the caller class. This method verifies the network

connection, contentLength and calls inherited "parse()" method of WebPageXtractor

76

class by passing the Reader class object. It then calls inherited "getTreeO" method of

WebPageXtractor class which returns an Arraylist created by "parse()" method.

Algorithm PageInfo.extract()
Input: InputStreamReader
Output: Pagelnfo object

Begin
1. Check validity of HttpURL connection, content length, socket timeout.
2. Call WebPageXtractor.parseO method by passing Reader object

//Calls super class SimpleHTMLParser.parse() method
3. ArrayList = Call WebPageXtractor.getTreef) method that calls superclass

DOMTree.GetTreeO method.
End

Algorithm WebPageXtractor.getTree()
Input: Reader object
Output: ArrayList

Begin
1. ArrayList = call DOMTree.GetTreeO
2. Tokenize content and add to ArrayList
3. Tokenize Tag and add to ArrayList
4. Tokenize EndTag and add to ArrayList
5. Extract <a> tag attribute "href
6. Extract <image> tag attribute "src"

end

Figure-40: Pagelnfo.extract() and WebPageXractor.parse() algorithm

WebPageXtractor (figure 40) also has some additional methods processTagO,

processEndTagO, processContentO, extractHref(), extractSrc() to process the HTML tag,

end tag, content, and to extract "<a>" tag attribute "href and "<image>" tag attribute

"src".

SimpleHTMLParser (figure 41) is an abstract class that has "parse()" method

which manages the incoming data stream from network and parses by looking ahead of

incoming data to determine the type of data stream and handles the data as per their type

using the methods handleTag(), handleContentO, handleComment(). Whenever it

identifies any comments in the incoming data stream it dumps them. This class uses

77

Algorithm SimpleHTMLParser.parse()
Input:
Output

Begin
1.
2.
3.
4.

End

Reader
null

object

Set 10 characters to read in buffer[] and set sleep time.
Set read-ahead marker to bufferf] index to 3 advance character.
Read input stream until get a tag
if input

Else

stream is tag
if input stream start with '</', it is endTag

i. Append to buffer string until symbol '>'
ii. Set type = SimpleHTMLToken.ENDTAG
iii. Call DOMTree.createTree(type, bufferstring).

Else
i. Append to buffer string until symbol '>'

ii. Set type = SimpleHTMLToken.TAG
iii. Call DOMTree.createTree(type, bufferstring).

if first 3-character are ' < ! - '
i. reset read-ahead pointer to original position

ii. dump the comments.
Else

i. Append to buffer string
ii. Set type = SimpleHTMLToken.CONTENT

iii. Call DOMTree.createTree(type, bufferstring).

Figure-41: SimpleHTMLParser.parse() algorithm

enumeration "SimpleHTMLToken" to mark the incoming data type. It inherits the

"CreateTreeO" method of DOMTree class (figure 42) to encapsulates the data into node

object by maintaining tag hierarchy and then adds those objects into ArrayList which it

returns to the caller method to write the HTML file into local directory.

78

Enumeration SimpleHTMLToken
Begin

Static final TAG = 0;
Static final ENDTAG = 1 ;
Static final CONTENT = 2;
Static final UNDEFINED = -1 ;

End

Algorithm DOMTree.CreateTree()
Input: type, string
Output: null

Begin
1. Check type of input string

Algorithm DOMTree.GetTreeO
Input: null
Output: ArrayList
begin

-Return populated ArrayList
end

2. if type = TAG
2.1 Set input at same level and put into Node.
2.2 Add Node to ArrayList.

Else
2.3 Set input into next level and put into Node.
2.4 Add Node to ArrayList.

3. if type = ENDTAG
3.1 Set input in previous level and put into Node
3.2 Add Node to ArrayList

4. if type= CONTENT
4.1 Set input in same level and put into Node
4.2 Add Node to ArrayList.

End

Figure-42: Algorithm DOMTree.CreateTree()

3.5.2 HTML Cleaner Module:

WebOMiner algorithm line-B calls tagSoup.html() method to start cleaning of a given

webpage. "tagsoup" module is an open source software under the Apache license and

available from "http://home.ccil.hangorg/~cowan/XML/tagsoup". We used it with some

modifications to clean-up the HTML code and make DOM tree well-formed. Our

changes in tagSoap are noted below:

(1) File:- "/src/definitons/html.tssl"

• Removed all <attribute name='{{attributeName}}' default= '{{defaultValue}} '/>
they were inserting default attributes that weren't present in the webpage.

• Line 2166 Added <contains group= 'MJNLINE'/>
• Line 2167 Added <contains group= 'M_BLOCK'/>

79

http://home.ccil.hangorg/~cowan/XML/tagsoup

• Allow the <a> tag to contain other tags that it normally wouldn't, and act more
like it does in browsers

(2) File:- "/src/java/org/ccil/cowan/tagsoup/CommandLine.java"

• Line 87:
new dst = src.substring(0, j) + ".html";
olddst = src. substring (0,j) + ".xhtml";
changed the the name of the generated output file

(3) File:- "src/java/org/ccil/cowan/tagsoup/XMLWriter.java"

• Function "startElement" line 573 in
add condition for elements to be removed

- if it is to be removed, don't write element to file
- if it isn't

add condition for self closing element
if it is self closing write "/> " instead of "> "

• Function "endElement" line 629
add condition for elements to be removed

- if it is to be removed, don't write closing element to file
• Line 1177

new -> char ch[] = atts.getValue(i).replaceAll("\"\"$",""j.toCharArrayQ;
old -> char ch[] = atts.getValue(i) JoCharArrayQ;

remove "" (2 double quotes) from end of attribute value
• function "writeEsc" line 1221

remove switch case that was replacing characters with escaped codes
add check to make sure characters were valid ascii

add check to find " (double quote) in attribute value
replace it with ' (single quote)

These changes in tagsoap module reflect our need for inserting missing tags at

appropriate location, handles and removes inline tags
, <hr/>, inserts missing "/" at

the end of un-closed <image> tag, clean up unnecessary decorative tags. The result is a

refined HTML page in local directory.

3.5.3 Content Extractor Module:

Content Extractor Module creates the DOM Tree from HTML page and extracts

the contents from the DOM tree, assigns respective objects as per pre-defined object class

80

to the contents and sets information into objects and finally puts objects into ArrayList. It

also identifies the data regions and data block and used separator object to segment the

respective data of a data blocks from other data blocks. We use Java DOM package to

create and parse DOM Tree of the webpage.

Our WebOMiner() algorithm line-C calls OWebMiner.BuildDOMTree() method

which is given below in figure 43:

Algorithm OWebMiner.BuildDOMTree()

Input:
Output:

Begin

End

Refined HTML file of web documents.
Populated ContentObjectArrayQ.

1. Use Java DOM Package to create DOM Tree.
2. Call ContentObjectArrayQ to identify series •1 and series-2

Figure 43: OWebMiner.BuildDOMTree algorithm

We modified Annoni and Ezeife's (2009) ContentWebObjectScan() algorithm as per our

requirement to catch body zone content objects according to their definition (discussed in

section 1.3). The modified version of ContentWebObjectScan() algorithm is given in

figure 44 below.

81

Algorithm ContentWebObjectScan (DOMTree, ContentObjectArrayf])

Input: DOM Tree of the web document, ContentObjectArray!].
Variable: Pointer seriesl, series2, TTag;

Int tagCount, numTag, count, indTag;
ArrayList SiblingArrayjj;

Output: Populated ContentObjectArrayf]

Begin,
1. ContentObjectArrayQ = null;
2. set TTag = "<body>" tag of DOM Tree
3. numTag = DOMTree.getLength(); // getLength() returns total node of DOM Tree
4. while(tagCount < int(0.5*numTag))

4.1 ifi; TTag is not block-level tag AND TTag starts with "<a" AND seriesl = null)
4.1.1 repeat

Store TTag into SiblingArray
Store TTag Siblings into SiblingArray

until end of Sibling
4.1.2 for each TTagSibling in SiblingArray

if (TTag starts with "<a")
- count++;

endfor
4.1.3 if (count > 5)

- seriesl = TTag.parent;
- break;

endif
4.2 else

TTag = TTag.next as per DOMTree depth first search
tagCount++;

endwhile
5. while (tagCount < numTag)

5.1 iflTtag is not a block-level tag AND (tagAttribute="CopyRight" OR "PrivacyPolicy"))
series2 = TTag.Parent;
break;

endwhile
6. Call ProcessContentSibling (seriesl, DOMTree, ContentObjectArray, series2, indTag);

End

Figure-44: Modified ContentWebObjectScan algorithm

This modified version of ContentWebObjectScan() algorithm (figure 44) identifies the

starting and finishing point of BodyZone as per definition of Annoni and Ezeife (2009)

and sets series-1 and series-2 pointer in the DOM tree. For our running example DOM

tree, the ContentWebObjectScan() algorithm sets the TTag initially to the "<body>" tag

at line 6 of the DOM tree. We intentionally set it from "<body>" tag to avoid all

embedded program code and style sheet information of the web page within "<head>"

82

tag. Process begins with initializing an array called ContentObjectArrayQ, when it

reaches at line 9 "<a>" tag, it identifies series-1 by scanning siblings of "<a>" tag. The

algorithm also identifies series-2 by keyword "<a>" tag attribute "PrivacyPolicy" or

"CopyRight", it complies with the definition of "Foot zone" by Annoni and Ezeife

(2009).

Line 6 of ContentWebObjectScan() algorithm (figure 44) calls

ProcessContentSiblingO, which is also a modified version of ProcessContentSiblingO

algorithm initially defined by Annoni and Ezeife (2009). Our modification of this

algorithm is to reflect the identification of data regions and data blocks by using separator

element. Modified version of this algorithm is given in figure 45.

In case of our running example DOM tree (shown in figure 08, page 22), this

algorithm starts storing content objects into the ContentObjectArray[] until it hits the Foot

zone by identifying series 2. Here, series-1 is set to TTag (current pointer at DOM tree) at

line 7, which is a "<div>" tag (region node). The algorithm hits at line 2.2 of figure 45

and calls CheckTagObject() of figure 46., this algorithm creates an OpenSeparator object

and stores it into the ContentObjectArray!]. TTag is then set to the next child tag "<div>"

at line 8 (data block node) and similarly stores another OpenSeparator object into

ContentObjectArray[]. The TTag is again set to its child node "<a>" at line 9 and the

algorithm recursively calls itself. Since it is a non-block level tag, the algorithm hits at

line 1 of figure 45 and stores respective "<link>" followed by "<image>" objects for all

five siblings (line 9 to line 17) into ContentObjectArray[] as per line 1.2.2 of the

algorithm. Line 19 ends a data block and the algorithm stores a closing separator object

83

Algorithm ProcessContentSibling (TTag, DOMTree, ContentObjectArray, series2, indTag)

Input: TTag is the HTML tag value which its sibling will be processed
Output: ContentObjectArray populated by content objects form DOMTree

begin
1. if TTag is not a block-level tag

1.1 repeat
1.1.1 Store TTag in tagArray
1.1.2 Store TTagSiblings found in tagArray

until end of TTag sibling
1.2 for each TTag sibling in tagArray

1.2.1 if TTagSibling is a block-level tag
- Associate respective content object to tagArray[TTagSibling index-1]
- Store this object in ContentObjectArray
- increment indTag
- TTag = next TTagSibling
- Call recursive

ProcessContentSibling(TTag,DOMTree,ContentObjectArray,indTag)
1.2.2 else

- Associate respective content object to tagArray[TTagSibling index]
- Store this object in ContentObjectArray
- increment indTag

endFor
2. else

2.1 If (TTag = series2) return;
2.2 Call CheckTagObject(TTag, DOMTree, ContentObjectArray)
2.3 TTag is set to next node of DOMTree by depth-first search
2.4 Call ProcessContentSibling(TTag,DOMTree,ContentObjectArray,indTag)
2.5 TTag is initialized to next node of DOMTree by breath-first search

endlf

Figure-45: Modified ProcessContentSiblingO algorithm,

into the ContentObjectArrayQ. Similarly, line 20 starts another data block which ends at

line 33. Line 34 ends this data region. Line 35 starts with another data region that ends at

line 192. Line 58 and 69 are two text data blocks "SHOP BY PRICE" and "SHOP BY

BRAND" as shown in left pane of figure 06 at page 14. These embedded tags and

contents are hidden in figure 08. Similarly, line 105, 113, 121, 131, 139 and 147 are six

monitor data blocks embedded into hidden tables as shown in figure 08.

84

Algorithm CheckTagObject (TTag, DOMTree, ContentObjectArray)

Comments: This algorithm checks for data block and data region

Input: TTag is the HTML tag value
Output: Null
Variable: OpenTag Enumeration {<table>, <div>, <tr>, } /* Set of tags usually represents parent

CloseTag Enumeration {</table>, </div>, </tr>, } node of data block and data region */
begin

1.0 if TTag is in OpenTag Enumeration
1.1 Create an instance of OpenType Seperator element
1.2 Set attribute value = "{"
1.3 Store this object in ContentObjectArray

2.0 Else if TTag is in CloseTag Enumeration
2.1 Create an instance of OpenType Seperator element
2.2 Set attribute value = " } "
2.3 Store this object in ContentObjectArray

3.0 Else if TTag is "<form >"
3.1 Get attribute "action" value
3.2 Create an instance of Form class element
3.2 Set tag value = <form> and action attribute value
3.3 Store this object in ContentObjectArray

4.0 Else
4.1 return

end

Figure- 46: Algorithm to insert separator object in ContentObjectArray

When the algorithm hits at line 193 it gets series 2 pointer and returns the populated

ContentObjectArrayQ to the main algorithm WebOMiner() (figure 36, page 74). Two

partial snapshots of this ContentObject Array [] are given in the following figure 47:

.{} < [<link> (^jT) (*b) (^gT) (<hnk>) (arTgT) (7\ Q\ (4^)

11 13 13 15 15

(A) Navigation data block contents

17

\

17 19 20 21

Cells indicate the line number of
DOM tree at figure 08

S 0(3)00 00©
102 103 104 105 110 111

(B) Product data block contents

Figure 47: Snapshot of ContentObjectArray[]

85

3.5.4 Web Miner Module:

Line-D of our main WebOMiner algorithm (figure 36) mines populated

ContentObjectArrayQ for identification of data blocks and their classification to make

contents ready for database entry. Line-D starts with calling our mining algorithm

MineContentObjectsO (shown in figure 48, page 86). It inputs populated

ContentObjectArray!] and outputs a set of content patterns ready to input into database

table for content integration. Line 1.0 of this algorithm does the vital job. It scans

ContentObjectArrayQ for open and close separator object and identifies candidate tuples

by matching key objects and minimum support. It then refines separator objects by

deleting themselves.

Algorithm MineContentObjects(ContentObjectArray)

Input: ContetObjectArray // Data structure contains content objects
Output: A set of patterns of object's contents

begin
1.0 Call IdentifyTupIe() /* Generates NFA & return ContentObjectArray

with tuples by refining separator objects; */
2.0 For each tuple in ContentObjectArray

2.1 Copy,objects in TupleList as per generated NFA;
2.2 Call SqueezeTuple() to refine object tuple;
2.3 Store Squeezed tuples in a list according to their categories;

endFor;
3.0 Calculate support for each tuple category;
4.0 If targeted category satisfy the minimum support

4.1 Call CreateDBTabIe.insertData() each tuple in data table;
endlf;

end;

Figure- 48: Algorithm to Mine Content Objects

At the same time, this algorithm generates Seed NFA pattern for data blocks. Line 2.1,

2.2 and 2.3 extract objects of all tuples by matching with refined NFA and store identical

tuples into TupleList. Line 3.0 counts tuples and checks support for all tuple categories

and if they satisfy the support, line 4.1 stores objects into relational database.

86

In case of our running example, the mining algorithm MineContentObjectsO

inputs the entire populated ContentObjectArray!] (partial snapshot is shown in figure 47).

The algorithm starts with calling another algorithm IdentifyTuple() as shown in figure 49.

Algorithm IdentifyTuple(ContentObjectArray[])

Input: ContentObject Array []
Output: Set of Tuples in ContentObjectArray
Other variable: pointer header, prev, current, DoubleLinkedList PointerArray, Enum PatternTable
begin

1.0 For each object in ContentObjectArray
1.1 If object is type open-separator element

1.1.1 Create a PointerArray node
1.1.2 If pointer header is null

- Refer header = node, current = node, prev = node
- node.nextl = current object of ContentObjectArray

else
- current.next2 = node
- prev = current
- current = current.next2
- node.nextl = current object of ContentObjectArray

1.2 Else if object is type close-separator element
1.2.1 Boolean flag = CheckMinSupport();
1.2.2 If flag = true

- Replace current object notation to close-tuple notation
- Replace current.nextl notation to open-tuple notation
- GenerateSeedNFA();
- PointerArray.current.nextl = null
- prev.next2 = null
- Reset PointerArray count to null

Else
- Destroy current object
- Destroy PointerArray.current.nextl object
- set current = prev
- set prev.next2 = null

1.3 else
- Increment count of respective objects in Pattern Table

endFor
end

Figure-49: Algorithm for identifying object tuples

This algorithm scans for objects in the ContentObjectArray!]. In case of snapshot A of

figure 47, the algorithm hits at line 1.1 and creates a pointer node and points to open-

separator object as shown at cell 7 (object of line number 7 from DOM tree) of figure 50.

87

13 13 15 15 17 17 19 20

({J (jj Nmk>) () Minb) (<imgT) Hmk>) (̂ img>) (<link>) UirngT) Nmb) () n J u j

PointerArray

11 11 13 13 15 15 17 17 19 20

fc © Q 00
(B) Resultant data tuple

Figure 50: Identification of Data block

At next iteration it scans another open-separator object at cell 8, creates another pointer

node and points next to previous one as per line 1.1 of the algorithm. This node points to

cell 8 as shown in figure 50. Successive iterations scans a set of repeated pattern of

<link> and <image> objects from cell 9 to 17, thus the algorithm increment the count of a

data table called "PatternTable" as shown in figure 51 as per line 1.3 else condition of the

algorithm.

PatternTable is a data table that contains a

set of Enumeration of key objects for

candidate tuples. It needs to list some key

objects that can distinguish any data block

from others. When the algorithm identifies

any content object in ContentObjectArray,

it increment the count for all rows of same

Figure-51: PatternTable (data table) type object in Pattern Table.

Enum Product'

Enum Noise x

Enum List-v.

Enum Form^

Enum Text^

Type
<image>
<title>

<number>
<brand>
<price>
<link>

<image>
<link>
<title>
<form>
<text>
<text>

count
2

2
1

88

We set a criterion for support in favor of identifying any data block.

For example, in case of Product data block, it should identify at least 3/5 listed objects. In

case of List data block, count of given pair should be at least 3.

When the iteration scans at cell 19, it hits line 1.2 of the algorithm and checks for

minimum support for data block at pattern table. If the minimum support satisfies as per

line 1.2.1, the algorithm then forms tuple by changing the notation of respective open and

close separator object to tuple notation. Resultant data tuple is shown in figure 50(B).

Similarly, snapshot B of figure 50 identifies product tuple as shown in figure 52 below.

Figure-52: Data block Identification / Tuple formation.

In figure 50A we see three image objects in this data block. Last two encoded <link> and

<image> objects are for "Add to Cart" image with link to "shopping cart" page, and

"More Info" image with link to "Customer Ranking".

Next step of the algorithm as per line 1.2.2 is to generate Seed NFA by calling the

algorithm GenerateSeedNFA() (figure 53). GenerateSeedNFA() automatically generates

candidate NFA by second pass iteration through all objects of a identified tuple for

89

Algorithm GenerateSeedNFA (Enum x)

Input: Enumeration x //Pattern Table of specific tuple type x
Output: Seed NFA of tuple type x

Begin
1.0 If Seed NFA exist

1.1 setqc<—q0;
2.0 else

2 1 Initialize data structure for NFA, N= (Q, S, 5, q0, F);
2.2 Se tQ<-{q 0 } , 5 < - 0 , F < - 0 ;
2.3 setqc<—q0;

3.0 For each object's' in sequence of tuple
3.1 If 3 8(qc, s) = qn or 3 8(qc, E) = cj, • 5(q,, s) = qn in Seed NFA

3.1.1 setqc<—qn;
3.2 Else if 3 8(qc, s') = q„ ; where s ' ^ s //Tocreate stransition

3.2.1 Create new state qa ; a < c
3 2 2 Create transition 5(qa, e') = qc ; //1 e , 5 <— 5 U{((qa, £'), qc)}
3.2.3 set q c < - q a , Q < - Q U {qc} ;
3 2 4 Create transation 5(qc, e') = q,, qc <— q,; here c < j
3.2.5 Create new state qm and §(qc, s) = qm , // l e , 8 <— 8 U{((qc, s), qm)}
3.2.6 set q c <-q m , Q < - Q U {qm} ;

3.3 else
3.3.1 Create new state qc+i and 8(qc, s) = qc+i, // l e , 8<— 8 U{((qc, s), qc+t)}
3.3.2 set q c < - q c + 1 , Q < - Q U { q c + 1 } ;

Endif
3.4 I f ' s ' is the last object in tuple

3.4.1 If Q n q c + l = 0;
Se tq c <-F ;

3.4.2 Else
Refine Seed NFA to create representation pattern;

endif
endif

endFor
End

Figure- 53: Algorithm GenerateSeedNFA to generate candidate NFA

effective extraction of data from ContentObjectArray!] and wide range of other pages

from WWW. It input all data structure of algorithm IdentifyTuple() as global and works

with satisfied Enumeration type to create its seed NFA. The algorithm identifies the tuple

type from PatternTable and looks for any existing Seed NFA for that tuple type. If not

exist, it start creating a new NFA by scanning objects and creating NFA state along with

appropriate transition between states as per figure 53. In case of our running example

90

data tuple shown in figure 47(B), since the existing Seed NFA is null, the algorithm

creates the starting state 'qo' and refer 'qc'(current state) to 'qo' as per line 2.0. For <link>

object at cell 9 it creates another state 'q-', refer it as next to the header state 'qo', store

<link> object into 'q0 ' and refer 'q-' as 'qc ' per line 3.3. This ensures a transition from

'qo' to 'qi ' for <link> object. For second iteration it scans <image> object of cell 9,

creates state 'q2', refer it as next to 'qi', store object into 'qi' and refer 'q2 ' as 'qc' per line

3.3. This process continues until the last <image> object of the tuple at cell 17. Since it is

the last object, the last state is denoted by 'F ' as per line 3.4.1. The next step is the

refinement of the generated Seed NFA as per definition of section 3.4.3.

Line 2.0 of our mining algorithm MineContentObjectsO shown in figure 48 at

page 88 uses function SqueezeTuple() which basically squeezes the tuple length to

represent their general pattern. For example our running example nevigation tuple is as

follows:

(<link>, , <link>, , <link>, , <link>, ,<link>, ,)

This length of this tuple is unknown with a set of repeated tags <link> and . These

repeated tags follow a general pattern. We can squeeze these tuples with their common

pattern of a link tag followed by a title text tag as ^ " (< link >,),.

91

Algorithm SqeezeTuple(TupleList)

Input: TupleList
Output: Squeezed TupleList

begin
1.0 For each tuple in TupleList

1.1 Calculate the length of Tuple;
1.2 If tuple length is more then One

1.2.1 Set header pointer to first object location;
repeat

If object is not a separator object
1.2.1.1 Create an instance of Linked List;
1.2.1.2 Put the object in Linked List;
1.2.1.3 Store the Linked List at objects original position at TupleList;
repeat

If current object is "instanceOf header object
1.2.1.3.1 Replace object from TupleList to end of LinkedList;
1.2.1.3.2 Increment current pointer; //Illustration purpose only

else
1.2.1.3.3 Increment current pointer; //Illustration purpose only

until end of tuple;
1.2.1.4 Increment header pointer;

until end of tuple;
endif;

endFor;
end;

Figure- 54: Algorithm for squeezing object tuples

The need for this squeezing of tuples to their pattern is for the generalization of the same

types of data block, so that pattern of any tuple containing any length can be represented

in the same category. We use LinkedList data structure to squeeze this tuple without

disturbing its data representation order.

Line 4.1 of figure 48 then call CreateDBtable.intertData() algorithm as shown in

figure 55 below creates database connection, creates primary and foreign key and checks

for tuple type and finally insert data into database table.

92

Algorithm CreateDBTable.insertData()

Input: ArrayList, String CompanyName
Output: Populated data table

Begin,
1. Register Oracle driver and create Oracle connection.
2. PrepareStatement for different Data Tables.
3. Check tuple type and company name data coming from and set primary key
4. for each object in a tuple

4.1. Check object type and retrieve data from object.
4.2. SetString to PrepareStatement list.
4.3. Insert data into respective data table.

Endfor
End

Figure- 55: Algorithm CreateDBTable.insertData()

Figure 56 shows how we propose to squeeze the List Tuple and a Form Tuple using

LinkedList data structure. Here figure 56 (A) is the original tuple and (B) is the squeezed

format of the tuple. Figure 56 C is another example of squeezed text tuple.

In our MineContentObjectsO algorithm of figure 48, we considered minimum

support which we think is important to consider. For example, in a product list page of a

Q <linb J^j (^<link>j f y fy\

Header (A) Original Tuple Header

©

(B) Squeezed Tuple

Figure- 56: Example of Squeezing tuples

93

business to customer web page, major information in body zone is about their products

(i.e. Product tuples), hyperlinks to other pages about their services, products (i.e. List

tuples), others like advertisements, noises (i.e. Noise tuples) and presentation images (i.e.

singleton tuples). Following table 02 gives an overall idea about different category tuples

in monitor Product List page of four different web sites:

; Type of Tuple

List Tuple

Product Tuple

Text Tuple

Form Tuple

Singleton Tuple

Noise Tuple

Total

ConipUSA

21

18

2

0

0

8

49

Pest Buy

10

7

1

1

0

4

23

Circuit City

11

18

3

2

5

11

50

Future Shop

13

10

0

0

0

4

27

•\\erago

13.8

13.3

1.5

0.8

1.3

6.8

37.3

Percetijafe'

37%

36%

4%

2%

3%

18%

100%

Table-02: Different tuples in monitor web page of some commercial website

Minimum support is an important measure for identifying the positive web pages. Some

other pages may also contain few product data block but mostly emphasized in other

information, those pages are not truly the product list page. We don't want to extract

information from those pages. In case of those pages, the percentage of Product Tuple

will be inconsistent in numbers with an average product list page. It is very important for

the data consistency before entering into the data base.

3.6 Warehouse and Mining for Integration

Our target is comparative mining or web content data integration. In section 3.1-

3.5 we discussed how we will be able to mine the web content objects, extract and store

the related data for integration. This first level mining is sufficient to integrate the related

94

file://�//erago

information from positive pages of different websites containing similar data information

as shown in figure 06 for computer monitor.

I , I„I. . I I , I . Ii -.11 ^ISr

It
Data Records

• i i *

l&-an. — x..\.

^ 7 0 C

rf. e ^ 3 J> I

C*$

s: :s
• N

111C Data Records

• S

Bi ma
Figure-06: Data blocks

In case of personalization of web content if we want comparative price of monitors, this

first level mining will give the comparative information from different pages. But a single

product list page may contain information about different products including the monitor

as shown in figure 55. So, our database will be a combination of heterogeneous products.

This implies the necessity for warehousing. For knowledge discovery from extracted web

content data, a suitable database, data warehouse and second level mining is obvious.

This section is similar to traditional data mining, which is beyond the scope of this thesis

work.

95

4. Evaluation of WebOMiner System
We are done with basic implementation phase of our algorithms and working to

give our algorithms in a scalable, robust and generalized shape. Since our system is a

very first effort for mining web contents using object-oriented approach, a valid

comparison in performance with other extraction and mining techniques do not exist.

More improvement is required in algorithms of our architecture to make it robust

enough to handle vast complexity of corporate commercial websites. Our crawler module

needs to create the functionality for automatic selection of the targeted documents from

the web, Cleaner module needs to handle long tag attributes as described in section 3.3

(04) to make it robust to handle all kinds of complex webpage to make web documents

cleaned and well-formed to create DOM tree. All these are pre-processing work for our

thesis problem. More details of the limitations of our system are discussed in Appendix-

A. At this point, we therefore, created simplified mirror of six popular commercial

websites to test and experiment of our extraction and mining algorithms.

4.1 Strength of WebOMiner

Our WebOMiner system for web content mining using object-oriented model is a

novel approach for extraction and mining of web contents. Earlier language based

systems are outperformed by semi-supervised and unsupervised wrapper induction and

wrapper generation systems. Popular and mile-stone semi-supervised system IEPAD

identifies repetitive patterns by building binary suffix tree and use center star method

(described in section 2.2.B) for extraction pattern recognition. Unsupervised popular and

mile-stone system RoadRunner generates wrapper from a set of webpage by matching

and aligning HTML token (tag) and by collapsing the mismatched tokens (figure 04,

section l .2.2). All these popular systems are difficult to compare with our WebOMiner

system because of variance in extraction process.

Another mile-stone wrapper generation system DEPTA (described in section 2.3.2)

builds DOM Tree to analyze web document and uses single web page for wrapper

generation like our WebOMiner system. In compared to IEPED and RoadRunner,

DEPTA system is closer in similarity with our WebOMiner system. We therefore

compared our system with DEPTA. The comparative analysis is given below:

96

1. DEPTA does not analyze and correct the HTML code for DOM tree creation. The

authors left the job for future work. Creation of DOM tree is not possible unless the entire

web document is in local machine and prior correction of all missing and ill-formatted

tags accordingly. Our WebOMiner system's crawler module automatically dumps all

HTML comments embedded into the HTML documents. For example, in figure 56 (A)

below line 1 contains comment which is cleaned in line 1 of figure 56(B).

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

<table>
<tr>

<td>datal</td>
<td>data2</td>

</tr>
<tr>

<td>data3</td>
<td>data4</td>

</tr>
</table>

1.
2.
3.
4.
5.
6.
7.
8.
9.

<table> <!—This table output data >
<tr>

<td>datal
<td>data2</td>

<tr>
<td>data3</td>
<td>data4

</tr>
</table><hr />

(A) Ill-formatted HTML code (B) Cleaned HTML code

Figure -56: Illustration of HTML code cleaning

The cleaner module of our system has two-fold functionality. Firstly, it automatically

analyzes the HTML documents for missing tags and automatically inserts, missing tags at

appropriate location. For example, figure 56(A) above has two missing end <td> tags at

line 3, and line 7, one missing <tr> end-tag at line 5 which are corrected in figure 56(B).

In case of inline tags, as shown in line 9 (e.g., <hr/> and
) the cleaner first correct

the inline tag
 to
 and then it identifies <hr /> and
 as inline tag and

removes them as shown in figure 56(B).

2. DEPTA uses web browser to render web page manually to get visual information,

which is then utilized to clean tags and to construct a DOM tree. Requirement of manual

rendering is contrary with automatic extraction. Our system is not dependent on manual

rendering by web browser. Given a URL string, our system automatically extracts the

web document from the WWW, analyze and correct the HTML code automatically to

create DOM tree.

97

3. Formatting tags destroy the structural relationship of the textual contents in DOM

Tree. DEPTA uses manual web browser rendering to get visual information of page tag

structure to improve the accuracy of data record. Before creating DOM tree, they observe

the web document and infer the structural relationship among tags and remove necessary

formatting tags in HTML textual contents manually using visual information from

browser rendering. For example, the formatting tags of figure 21(C) within the textual

content fragments the single text content object into four separate objects in two different

levels in DOM tree that destroy the structural relationship of the textual contents as

shown in figure 21(C) below:

<a>This is a test example for DOM tree

(A)Original textual content

Element:
<a>

Text:
"This is a test example for DOM tree."

(B)Original DOM sub-tree

<a><i>This is a test example</i>forDOM tree

(C) Formatting tags in textual content

Element:
<a>

Element:
<i>

Text:
"for"

Element:

Text:
"tree"

Text: JeXt'„
'This is a test example " DOM

(D) Sub-tree after using formatting tag

Figure-21: Formatting tags within textual fragment

This is a problem in web content extraction. Figure 21(A) is the textual content when no

formatting tag is used and the resultant DOM sub-tree is shown in figure 21(B) that

ensures structural relationship of the content. But if the formatting tag <i> and are

used within the textual content as shown in figure 21(C), the resultant DOM tree as

shown in figure 21(D) destroys the structural relationship of the textual content. DEPTA

can not handle the situation automatically and relies on correction by manual observation

from web browser rendering.

98

In our WebOMiner system we defined the formatting tags in filter module to

clean-up these formatting tags automatically before building DOM tree without using

browser interaction.

4. DEPTA identifies data records using Tree-Distance measure by visual clues (i.e.,

the physical location of the information on the computer screen by using web browser).

Each HTML element in web browser is rendered as a rectangle as shown in figure 18,

and each HTML element corresponds to the node in DOM tree. In this approach, four

boundaries of the targeted rectangle of web page are located using x-coordinate and y-

coordinate first by calling any rendering engine of a web browser. It then follows the

sequence of open tags and checks for containment to build tree. Containment check

means checking if one rectangle is contained in another. Boundary conditions are then

defined (shown in figure 18) for each data records to create tree for each data records.

This system is not automated and depends on the manual analysis and use of browser

rendering engine.

In our WebOMiner system, we used the observations discussed in section 3.4.1.

for data record identification. We observed that all objects of a rata record are contiguous

in a DOM sub-tree and each data records are disjoint with other data records. Therefore,

there should be a single parent node that represents the sub-tree of an entire data record in

DOM tree. Our system identify this parent node for each data records and uses separator

object to ensure the integrity relationship in related objects of a data record (discussed in

section 3.4.2 and 3.4.3). This system is automatic and not dependent on browser

rendering engine.

5. DEPTA aims to extract and mine only the targeted facts from the web page. For

example, in case of our running example (figure 06, page 14), data regions are shown in

dotted boxes and in data region-1 we have shown the data blocks in blue dotted box.

DEPTA only extract information from data region-1. Their tree-matching and tree-

alignment technique can handle only one "seed-tree" that produces from multiple data

records from data region-1. For each data records in data region-1, they need to execute

tree-matching algorithm for each DOM sub-tree for data records and then use tree-

99

alignment algorithm to create a representative "seed-tree". Since data region-1 consists

of six data records, their "seed-tree" is constructed by executing tree matching and tree

alignment algorithm for at least 6 times. The result is a single excel data table containing

six rows representing six data records of the region-1 of our running example and the

columns are created by extracted content data according to generated "seed-tree" tag

structure. DEPTA is not able to extract information from other regions of the web page.

For example to extract information from data region-2, it needs to generate another

"seed-tree", which is not possible as DEPTA can handle only one "seed-tree" for

extraction.

On the other hand, our WebOMiner system is most comprehensive in extraction

of web content. Our system does not strictly rely on the extraction of only one kind of

data from the web page. WebOMiner extracts all kinds of data from all regions of body

zone of a web page. Unlike DEPTA and all other existing systems WebOMiner extract

data from all regions from bodyzone of web document including product data, navigation

data, advertisement, etc. Our system generate NFA wrapper for each type of data record

at their first occurrence and then use that wrapper to extract information from subsequent

occurrence of data records and at the same time refine the NFA wrapper to give unified

form. This NFA wrapper is then ready to create grammar for extraction from subsequent

pages.

6. DEPTA is only able to extract textual contents from the web. It is unable to

extract the image or any other form of multimedia contents from the web page. This is

because of DEPTA does not analyze the tag attributes; it only extracts the tag encoded

text from the DOM tree. For example, web document images are image-file those are

referred into the <image> tag attribute itself. By analyzing the <image> tag attribute "alt"

we can identify the image and "href refers to the physical location of image file from

which it needs to be extracted.

Our WebOMiner system is able to extract heterogeneous web content data

because our system analyzes the tag attributes from the DOM tree during the traversal.

So, it can effectively identify and extract the images from the data block as discussed in

section 3.1.5.

100

7. DEPTA web content extraction is based on web page tag structure. It evaluates

the tag similarity to extract contents without knowledge of content itself. DEPTA analyze

only the HTML tag DOM tree (e.g., similar to HTML DOM tree, but only tags are

considered) for comparison of adjacent substring. In case of any similar data embedded in

intertwined tag, DEPTA wrongfully identify them. For example,

 17"
 Sony
 LCD Monitor
<p> $199.99</p>

 Sony
 17"
 LCD Monitor <yii>
<p> $199.99</p>

Here in both cases HTML tag alignment is similar but data record 'Sony' and '17" ' are

intertwined in and tag. As long as tag alignment is same, DEPTA extracts

contents and stores records into respective row in excel sheet. So, data record 'Sony' and

'17" ' will be wrongfully stored into wrong column.

But our WebOMiner system is not dependent on HTML tag structure and its

alignment. WebOMiner system identifies the data type while extracting and create

respective object. So, it can store data records into database robustly.

8. DEPTA generates excel table for extracted web content data. An Excel data table

is a data grid, it can not be considered as functional data base. It does not have any

identification for each data column. It is because of DEPTA extracts web content data

only based on tags and store similar tag encoded contents into same excel column.

Manual labeling and transformation is required to store those data into data table to create

fully functional database.

On the other hand, our WebOMiner system uses fully functional relational

database for storing data records. It identifies content type during the extraction process

and create respective object to hold the content and other related information into the

object. Our system therefore has prior knowledge in data record type that infers to

specific data table and data table attributes are obtained from object class type. This

makes our system possible to store web contents into relational database directly.

101

4.2 Empirical Evaluations

As discussed in the beginning of section 4 of this thesis, we have created

simplified mirror of six popular web sites (e.g., futureshop.ca, compUSA.com,

bestbuy.ca, walmart.ca, shopping.com, dell.com as of July 10, 2010) for empirical

evaluation of our system using different page structures. Our system is implemented in

Java programming language. We then run our system in 32-bit Windows Vista Home

Premium operating system at Intel Due Core 2.26 GHz, 3.00 GB RAM Sony machine for

each of these mirror web sites for empirical evaluation of our WebOMiner system. We

use the standard precision and recall measures to evaluate the results of our system.

Precision is measured as average in percentage for the number of correct data retrieved

divided by the total number of data retrieved by the system. Recall is measured as

average in percentage for the total number of correct data retrieved divided by the total

number of existing data in the web document. The results of the retrieval by our

WebOMiner system is tabulated in table 02 below:

V*. ensile

www.futureshop.ca

www.compUSA.com

www.bestbuy.ca

www.walmart.ca

www.shopping.com

www.dell.com

Hata records

Product

10

18

7

2

40

14

List

13

21

10

4

4

13

\oi*.c

4

8

4

2

4

4

Icxl

0

2

1

-

-

-

Total

27

49

22

8

48

31

Recall

Precision

Data record I'xtntclion

(orivci

27

47

21

8

47

28

Wrong

0

0

0

0

0

0

Missing

0

2

1

0

1

3

96.22%

100%

Table 03: Experimental result showing extraction of data records from web pages.

4.3 Experimental Results

The purpose of our experiment is to measure the performance of WebOMiner

system for data record extraction. Table 03 shows small scale experimental results as

performance measure for our WebOMiner system. We have taken one page per web site

for experiment and the numbers in "Data Record" column shows different types of data

records in those pages. The Total column shown total number of data records for each

102

http://compUSA.com
http://shopping.com
http://dell.com
http://www.futureshop.ca
http://www.compUSA.com
http://www.bestbuy.ca
http://www.walmart.ca
http://www.shopping.com
http://www.dell.com

pages. For those pages WebOMiner system is able to identify data records correctly. No

wrong data record identification is observed and it makes sense because our system is not

based on the prediction. It missed seven out of total 185 data records in all six web pages

from different websites.

We observed the reason for missing those seven data records. All of those missing

are in List type data records and because of mixing object type in data tuple. Our

definition of List data tuple is a set of <link> followed by <text> and there should be at

least 3-pairs in the tuple to be qualified as List tuple. But those seven missing tuple

contains some pairs of <link> followed by <image> and some pairs of <link> followed

by <text> and therefore did not satisfy any of the criteria.

5. Conclusion & Future Work

This thesis includes lot of pre-processing work to prepare data for mining that are

not addressed by Annoni and Ezeife (2009). We developed an architecture (we call it

WebOMiner) for extraction and mining of web contents using object-oriented model. Our

architecture has 4-modules, crawler module, cleaner module, extractor module and the

miner module. We developed algorithms for crawler module, modified freeware software

"tagsoup" for cleaner module, modified and enhanced algorithms for extractor module

initially developed by Annoni and Ezeife (2009) and developed algorithm for miner

module. We introduced an approach of generating and using automata for mining web

content objects. In this thesis, we used data block and data region concept to ensure

consistency between related data, we relate HTML tag attribute information with its

content to identify contents. We define object class hierarchy according to our problem

domain and address schema matching problem to unify similar contents from different

web sites. We also prevent noisy contents entering into database table. Our miner

algorithm is based on Automata patterns that have two fold uses: data extraction and

automatic database schema generation. We then checks minimum support to ensure data

consistency before entering into database. Currently we are working on the

implementation of cosign similarity algorithm for automatic classification of tuple from

the ContentObjectArray which will eliminate the requirement for the definition of

PattaernTable and algorithm SqueezeTuple algorithm.

103

5.1 Future work

Since this is a very first effort to mine web content data using object-oriented

approach, we feel there is plenty of room for improvement and to open new thread. In our

WebOMiner architecture further improvement of our algorithms are required to make the

system robust and scalable. Our crawler module algorithms require further improvement

for automatic identification of positive web pages and functionality to exclude negative

web pages from the www. Cleaner module needs the functionality to handle long tag

attributes in effective way. There is plenty of scope to improve the extractor module for

cleaning of unwanted noisy contents before creating expensive objects. In miner module

we introduced automata pattern to mine related contents from specific domain context.

Further experiment is required to mine contents from other domain context (such as

unstructured content data) and domain independent mining. Automatic database schema

generation from the automata pattern is an important task to develop for storing web

contents in relational database. Use of Automata for pattern recognition and generation of

regular expression from repeated pattern of web content is a new approach in data

mining. We observed that generated pattern from B2C websites may not be complete for

all possible conditions; further improvement to develop a unified pattern need further

experiment. Moreover Annoni and Ezeife's (2009) anticipate use of presentation objects

along with content objects for mining web contents is still a research issue.

104

References
Ai, D., Zhang, Y., Zuo, H., & Wang, Q. (2006). Web Content Mining for Market Intelligence

Acquiring from B2C Websites. Springer-Verlag Berlin HeidelbergWISE Workshops,

LNCS4256, 159-170.

Annoni, E., & Ezeife, C. I. (2009). Modeling Web Documents as Objects for Automatic Web

Content Extraction, In proceeding of ACM / LNCS sponsored 11th international

conference on Enterprise Information Systems (ICEIS 09) page 91-100, May 6-10, 2009

Arocena, G.O. and Mendelzon, A.O. (1998). WebOQL: Restructuring Documents, Databases,

and Webs. In Proceeding of the 14th IEEE International Conference on Data

Engineering. (ICDE), 24-33, 1998.

Arumugam, S. (2006). Classification Techniques for Categorization of Hypertext Documents.

Lecture Notes on Computer Science, Springer Science + Business Media, LLC.

Baumgartner, R., Flesca, S., and Gottlob, G. (2001). Visual Web Information Extraction with

Lixto. In proceeding of 27th international conference on Very Large Data Bases. 2001,

119-128.

Bhowmick, S. S., Madria, S. K., Ng, W. K., & Lim, E. P. (1999). Web Warehousing: Design and

Issues. Lecture Notes of Computer Science, Springer-Verlag Berlin 1552, 93- 105.

Borges, J., & Levene, M. (1999). Data mining of user navigation patterns. In Proceedings of the

KDD Workshop on Web Mining, San Diego, California, 31-36.

Bornhovd, C , & Buchmann, A. P. (1999). A Prototype for Metadata-based Integration of Internet

Sources. In Proceeding ofCAiSE'99, Heidelberg, Germany, June.

Buchner, A. G., & Mulvenna, M. D. (1998). Discovering Internet Marketing Intelligence through

Online Analytical Web Usage Mining, SIGMOD Record, Vol.27, No.4, New York, NY,

USA, 1998. Pages 54-61.

Ceci, M., & Malerba, D. (2007). Classifying web documents in a hierarchy of categories: a

comprehensive study. Lecture Notes on Computer Science, Springer Science + Business

Media, LLC.

Chakrabarti, S. (2003). Mining the Web: Discovering Knowledge from Hypertext Data. USA,

Morgan Kaufmann Publishers.

Chang, C , & Lui, S. L. (2001). IEPAD: Information extraction based on pattern discovery. In

proceeding of the 10th international conference on WWW Hong Kong, page: 681-688.

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (2003). Robust and efficient fuzzy match

for online data cleaning. In proceeding of the ACM SIGMOD International Conference

on Management of Data, San Diego, CA, ACM Press, 313-324.

105

Chawathe, S., Garcia-Molina, H., & Hammer, J. (1994). The TSIMMIS project: Integration of

heterogeneous information sources. In Proceeding ofIPSI'94, Japan, March.

Chow, C. K. (1957). An optimum character recognition system using decision functions. IRE

Transactions 247—254.

Chriisment, C , Dousset, B., Karouach, S., & Mothe, J. (2004). Information mining: extracting,

exploring and visualising geo-referenced information. SIGIR-04 Workshop on

Geograpghic information retrieval.

Cimiano, P., Handschuh, S., & Staab, S. (2004). Towards the self-annotating web. International

WWW conference, NY, USA, 462-471.

Crescenzi, V., Mecca, G., Merialdo. P. (2001). RoadRunner: Towards Automatic Data Extraction

from Large Web Sites. Proc. ofVLDB 2001, Rome, September 2001, pp. 109-118.

Darmont, J., Boussaid, O., & Bentayeb, F.(2002). Warehousing Web Data. Conference on

Information Integration and Web-based ..., 2002

Dung, X. T., Rahayu, W., & Taniar, D. (2007). A high performance integrated web data

warehousing. Cluster Computing, Volume-10 Issue-1, Kluwer Academic Publishers,

March 2007.

Etzioni, O. (1996). The World Wide Web: Quagmire or gold mine. Communications of the ACM

39(11): page 65-68, 1996

Ezeife, C. I., Saeed, K., & Zhang, D. (2009). Mining Very Long Sequences in Large Databases

with PLWAPLong. In proceedings of the 13th ACM sponsored International Database

Engineering & Applications Symposium, Cetraro, Calabria, Italy, 16-18 September 2009

(IDEAS 09).

Grumbach, S. & Mecca, G. (1999). In search of the lost schema, ICDT-99, Lecture Notes in

Computer Science, Springer, Vol. 1540, page 314-331.

Gupta, S., Kaiser, G., & Stolvo, S. (2005). Extracting context to improve accuracy for HTML

content extraction. In Proceeding of International WWW Conference, Japan, May 10-14.

He, B., & Chang, K. (2003). Statistical schema matching across web query interfaces. In:

SIGMOD '03.

Jupiter Media Corporation (2007). XML Parsers: DOM and SAX Put to the Test. Retrievedfrom:

http://www. devx. com/xm l/A rticle/16922/1954

Kaufman, L., Rousseeuw, P.(1990). Finding Groups in Data: An Introduction to Cluster Analysis.

John Wiley & Sons, 1990.

Kosala, R., & Blockeel, H. (2000). Web mining research: a survey. SIGKDD Explor. Newsletter.

2(1): 1-15.

106

http://www

Laender, A.H.F., Neto, B. R., and A.S. da Silva, A. S. (2002). Debye-Date Extraction by

Example. Data and Knowledge Engineering, 40(2): 121-154.

Levering, R., Cutler, M. (2006). The portrait of a common html web page. In DocEng'06, ACM

symposium on Document engineering, NY, USA. ACM, 198-204.

Li, J. and Ezeife, C.I. (2006). Cleaning Web Pages for Effective Web Content Mining. In

proceedings of the 17th International Conference on Databases and Expert Systems

Applications, DEXA 2006, Krakow, Polland, Sept 4-8, published in LNCS, pp. 560-571,

Springer Verlag.

Liu, B. (2007). Web Data Mining; exploring hypertext, content and usage. Lecture Notes on

Computer Science, Springer Science + Business Media, LLC.

Liu, B., & Chen-Chung-Chang, K. (2004). Editorial: special issue on web content mining.

SIGKDD Exeplor. Wewsl, 6(2): 1-4

McCallum, A., & Nigam, K. (1998). A comparison of event models for Naive Bayes text

classification. In AAAI-98 Workshop on Learning for Text Categorization. Menlo Park

California: AAAI, 41-48.

McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley, New

York.

Muslea, I., Minton, S., & Knoblock, C. (1999). A hierarchical approach to wrapper induction. In

AGENTS'99: Proceedings of the third annual conference on Autonomous Agents, , New

York, USA. ACM, 190-197.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The Page Rank Citation Ranking;

Bringing order to the Web. Technical Report, Compute Science Department, Stanford

University, 1998.

Pant, G., & Srinivasan, P. (2005). Learning to Crawl: Comparing Classification Schemes. ACM

Transactions on Information Systems, Vol. 23, (4), October 2005, 430-462

Petrushin, Valery A., & Khan, L. (2007). Multimedia Data Mining and Knowledge Discovery.

(Eds.) 2007, XXVI, 526p. 213 illus., Hardcover ISBN: 978-1-84628-436-6.

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. The

VLDB Journal 10: 334-350 (2001), Springer.

Raposo, J., Pan, A., Alvarez, M., Hidalgo, J., A. Vina, A. (2002). The Wargo System: Semi-

Automatic Wrapper Generation in Presence of Complex Data Access Modes. In

proceeding of 13th international workshop on Database and Expert Systems

Applications, 2002, 313-320.

107

Song, R., Liu, H., Wen, J-R., Ma, W-Y. (2004). Learning block importance models for web

pages. In KDD '03, pages 203-211, Ney York, NY, USA, ACM.

Stonebraker, M., & Hellerstein, J. M. (2005). Content Integration for E-Business. ACM SIGMOD

2001 May 21-24, Santa Barbara, California USA. Copyright 2001 ACM 1-58113-332-

4/01/05.

Tan, X., Yen, D. C , & Fang, X. (2003). Web warehousing: Web technology meets data

warehousing. Elsevier Science Ltd, OH, USA, page 131-148.

Wu, W., Yu, C , Doan, A., & Meng, W. (2004). An interactive clustering-based approach to

integrating source query interfaces on the deep web. In proceedings of the ACM

SIGMOD international conference on Management of data, 2004, 95 - 106

Yang, W. (1991). Identifying syntactic differences between two programs. Softw. Pract. Exper.,

21(7):739-755, 1991.

Yi, L., Liu, B., & Li, X. (2003). Eliminating noisy information in Web pages for data mining.

SIGKDD-2003, August 24-27, 296-305.

Yu, S., Cai, D., Wen, J-R., Ma, W-Y. (2003). Improving pseudo-relevance feedback in web

information retrieval using web page segmentation. In WWW'03, pages 11-18, Ney York,

NY, USA, ACM.

Zhai, Y., & Liu, B. (2006). NET - A System for Extracting Web Data from Flat and Nested Data

Records. Lecture notes in computer science, Springer, Vol 3806, 487-495.

Zhai, Y. and Liu, B. (2007). Extracting Web Data Using Instance-Based Learning. Lecture notes

in computer science, Springer, vol. 10(2) pages 113-132

Zhao, H., Meng, W., Wu, Z., Raghavan, V., & Yu, C. (2005). Fully automated wrapper

generation for search engines. In WWW'05: Proceeding of the 14th international

conference on WWW, NY, USA, ACM, 66-75.

Zhao, L. and Ng, W. K. (2004). WICCAP: from semi-structured data to structured data. In

proceeding of 11' IEEE international conference and workshop on Engineering and

Computer based Systems. Brno, Czech Republic, May 24-27: 86-93

Zhu, Y. (1999). A Framework for Warehousing the Web Contents. Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, Volume 1749/1999, 773-799

Zhu, Y., Bornh'bvd, C , & Buchmann, A. P. (2001). Data Transformation for Warehousing Web

Data. In Proceedings of the Third Int'I Workshop Advanced Issues of E-Commerce and

Web-Based Information Systems (WECWIS'01), 1530-1354/01,2001

108

APPENDIX-A

109

WebOMiner System Manual

Developed by Titas Mutsuddy

110

Table of Contents

1.0 System Architecture 112

2.0 User Interface 113

2.1 How to debug, run the program and get the result 114

3.0 Operating System 115

4.0 Programming Environment 115

5.0 Installation of the system 116

5.1. Installation of NetBeans IDE 116

5.2. Load and Run tagSoup software 119

5.3. Installation of Oracle XE lOg 120

5.4. Installation of JDeveloper 121

6.0 Data Base, Schema and File format 121

7.0 Limitations of the software 128

8.0 Java Tools 130

111

1.0 System Architecture

Our WebOMiner system architecture consists of four modules: Crawler module, Cleaner

module, Extractor module and Miner module. The overall architecture of the

WebOMiner system is shown in figure 1 below:

WWW

I t»gt nd:

/ _ ^t

•=

' =

Program; Process

Process flow

D&U

DdLi flow

w l*ts,alHl«
Paae

7 / Weill ortnssj
liTVn page

Oem&j , ^«.-i.™ , I I W M l r e e o l | / Bod>/out*-
- - * | HI Ml page /•» I HI ML page | ' N of Web Doc

Crawler &
Extractor
Pi ograra

tagSoap
Tag
Fitter

ygSo.jp fwwiv cut erg'

Javj
1KJM
Parser

Web Zone
identifier

Content
Extractor

\) Crawler Module (B) C leaner Module (C) Extractor Module

Database i I Classified
SU-etTd p i luplts

lup lwm
Content-

Ob* ect \nay

Content I i Web Content J
\rrai. I / Objstl I taisea J

Second
Le\td
Mmmg

DataBase H Storage
Date

Mirugor

tuple
C lasstficr

M A
Generator

Obieu
(leaner

(D) Miner Module

Figure -1: Main program of WebOMiner system

Here, the crawler module crawls through the WWW to find targeted web page, streams

entire web document including tags, texts and image contents and it then creates a mirror

of original web document in the local computer. Our crawler module also discards all

comments from the HTML document. That means it have the functionality to exclude all

comments from the web documents. Cleaner module first looks for ill-formatted HTML

tags and missing end-tags and insert missing tags at appropriate location. It then filters

inline tags to conform structural relationship of text contents. The resultant of the cleaner

module is a web page in local directory which is well-formed and cleaned. Extractor

112

http://ygSo.jp
file:///rrai

module take this web page as input and extracts the contents from the body zone of the

web page, creates objects and store content objects into ContentObjectArray and Miner

module mines extracted contents from the ContentObjectArray and store contents into

database WebOMiner program entry points and process flow sequence of algorithms are

discussed in section 3.5 of the thesis.

2.0 User Interface

At this point WebOMiner system does not contain any Graphical User Interface (GUI)

for its user. The system is possible to run from command line or from any integrated

development environment (IDE) which is compatible with Java development

environment The system is developed using NetBeans IDE 6.7.1., compiled and

debugged from the entry point "Main" program. During testing, the program takes one

URL at a time at the main program as shown in figure 2 below, it is possible to put a set

of URL string in an input file and run those URL strings as input for the Main program

one after another sequentially by calling that input file.

f-ti lit w? '•sv.jjitt % t 3dKtc fun Etfcti^ftfo: <M!"t Tosls sVncfvW Ht^i

T

"fieCa .e tOfĉ Kis j

•=mE*HT1't *"ja

Source files under
package "Thesis"

ojdbcl4jar location

.Click on Debug Project
(Thesis) to debug and run

Input URL

Debug console

Figure -2 Main program of WebOMiner system

113

2.1 How to debug, run the program and get the results:

To debug and run the system we need to confirm the following first:

1. Conform operating system requirement described in section 3.0.

2. Install java SDK 1.5 or later version and set the class path / path in environment

variable. Setting an environment variable is discussed in "forums.sun.java" in the

flowing link:

http://forums.sun.com/thread.ispa?threadID-=5450340

3. For debugging and running the system from IDE we need to down load and install

NetBeans IDE as described in section 5.1.

4. Import "Thesis" project in NetBeans IDE by using following steps:

File -> Import Project -> Browse -> select "Thesis" from CD -> ok. The "Thesis"

project will be imported to NetBeans IDE.

5. Install Oracle lOg XE or OraclelOg or later version as described in section 5.3.

6. Install JDeveloper IDE as described in section 5.4.

7. Create database tables using JDeveloper IDE as per database schema described in

section 6.0.

8. Place the "ojdbcl4.jar" driver file in "libraries" folder under "Thesis" package as

shown figure 2.

9. Prior to any experiment or enhance / modification of the system. First try to compile,

run and get the results from sample mirror webpages given under "NetBeansProjects/

Thesis". All respective photos are inside the "NetBeansProjects/Thesis/photo" folder.

10. Rent a domain name and upload the sample webpages and respective images into the

domain. Check from browser if the webpages are running appropriately from the

rented domain.

12. Note that the domain should be forced advertisement free. Forced advertisements

destroy the HTML tag structure and destroy DOM building. Using the web browser,

right click and click on "view source" to check for any forced advertisement

embedded into the webpage by the domain name providers.

12. Write down/copy the web address from the address bar of the web browser.

114

http://forums.sun.com/thread.ispa?threadID-=5450340

13. Open the main program of the "Thesis" package and paste or write down the url

address into Input URL string as shown in figure 2.

14. Go to Debug button in Manu bar of the NetBeans IDE, click it and select and click

Debug (Thesis) button as shown in figure 2. If the URL is linked properly, we will

see the list of image downloading sequence in the output console shown in figure 2.

15. To look at the populated database tables,

Go to start Manu ->A11 Programs -> Oracle Database lOg -> Database Homepage

-> Enter username and password in Oracle database login.

16. After login to Oracle database, go to SQL Manu -> select SQL Command->Enter

command.

17. From the new window enter SQL command and click on "Run" button. The results

will be shown in "Results" window below as shown in section 6.0.

3.0 Operating System

System is developed in 32-bit Windows Vista Home Premium operating system at Intel

Due Core 2.26 GHz, 3.00 GB RAM Sony machine. This system is portable in University

of Windsor CDF Solaris Operating System on Unix environment. In that case, only minor

changes from Windows based syntax to Unix compatible syntax transformation is needed

to compile, execute and run the program.

4.0 Programming Environment

The application is programmed and tested in Java 2 Platform Standard Edition version

1.6.016, which is installed in Windows Vista Home Premium edition. The advantages of

this environment are as follows:

• Regular expression capability.

• The improved Java Doc.

• Low coupling and usability.

• Relatively easy implementation of Object-Oriented design pattern.

115

5.0 Installation of the system

5.1. Installation of NetBeans IDE:

5.1.1. Installing the Software Bundle on Microsoft Windows:

To install the software, we must need to have administrator privileges on our system. The

installer places the Java Runtime Environment (JRE) software in %Program

Files%\Java\jre6, regardless of the specified JDK install location.

Note: This installer does not displace the system version of the Java platform that is

supplied by the Windows operating system.

Both the JDK and IDE have been tested on the following Windows platforms:

• Microsoft Windows XP Professional (SP3), Windows 7 Professional/Windows

Vista Home/Professional

Before Installation:

1. We need to verify our system to meet or exceed the following minimum hardware

requirements:

o 800MHz Intel Pentium III or equivalent

o 512 MB of RAM.

o 750 MB of free space

Note: The installer uses the %USERPROFILE%\Locai s e t t ings \Temp

directory to store temporary files.

2. First need to verify that we have administrator privileges on our system.

3. Then download the jdk-6u21-nb-6_9_l-windows-ml.exe installer file.

Installing the Software:

1. We need to double-click the installer jdk-6u2l-nb-6_9_l-windows-ml.exe file

to run the installer.

116

file:///Temp

2. At the JDK Installation page specify which directory to install the JDK into and

click Next.

3. At the NetBeans IDE Installation page, we need to do the following:

1. Specify the directory for the NetBeans IDE installation.

2. Accept the default JDK installation to use with the IDE or specify another

JDK location.

4. Review the Installation Summary page to ensure the software installation

locations are correct.

5. Click Install to begin the installation. When the installation is complete, we can

view the log file, which resides in the following directory:

% USERPROFILE%\.nbi\log.

5.1.2. Installing the Software Bundle on Solaris OS (SPARC and x86 Platform

Editions) and Linux Platforms

We can install the JDK software and NetBeans IDE in directories of our choice.

We do not need to be a root user to use this installer unless we choose to install this

bundle in a system-wide location.

Note: This installer does not displace the system version of the Java platform that is

supplied by the operating system.

Both the JDK and NetBeans IDE 6.9.1 have been tested on the following:

• Solaris 10 OS (x86 and SPARC)
. Ubuntu9.10

Before we install:

1. If we need to install on Solaris OS, install the required Solaris OS patches before

proceeding further. If we install this bundle without having first installed the proper

Solaris patches, we may experience unexpected behavior with the installer or the

Java platform.

117

2. Verify that our system meets or exceeds the recommended minimum hardware

requirements as follows:

o Ultra 10 workstation, UltraSparc II 450 MHz, AMD Opteron 1200 Series

1.8 GHz, or Pentium III workstation, 800 MHz

o 512 MB of RAM

o 650 MB of free space

Note: The installer uses the /tmp or the /var/tmp directory for temporary files.

3. We need to download the installer file and save it on our system.

o For Solaris OS SPARC Platform Edition, the installer file name is jdk-

6 u 2 1 - n b - 6 _ 9 _ l - s o l a r i s - s p a r c - m l . s h

o For Solaris OS x86 Platform Edition, the installer file name is jdk-6u2i-

n b - 6 _ 9 _ l - s o l a r i s - x 8 6 - m l . sh

o For Linux operating system, the installer file name is jdk-6u2i-nb-6_9_i-

l i n u x - m l . s h

4. Navigate to the directory into which we downloaded the installer file and type:

chmod +x <instaiier-file-name> to change the installer file's permissions so it

can be executed.

Installing the Software:

1. Type the following command from the directory where we placed the installation
file:

. / < i n s t a l l e r - f i l e - n a m e >

2. At the JDK Installation page, we need to specify the directory where to install the

JDK and click Next.

3. At the NetBeans IDE Installation page, we need to do the following:

1. Specify the directory for the NetBeans IDE installation.

2. Accept the default JDK installation to use with the IDE or specify another

JDK location.

4. Review the Installation Summary page to ensure the software installation

locations are correct.

118

5. Click Install to begin the installation. When the installation is complete, you can

view the log file, which resides in the following directory:

- / . n b i / l o g .

Note: If we choose to install this bundle into a system-wide location such as / u s r / i oca l ,

we must first login as root to gain the necessary permissions.

5.2. Load and Run "tagSoup" software:

We have to load entire "tagSoup" software in the package sub-directory under the

directory NetBeansProjects. We named out package as "Thesis" and so the "tagSoup"

will need to be loaded at following path

"//NetBeansProjects/Thesis/taguoup"

This folder path included an "index.html" file that describes details about tagSoup

releases, what it does, source path and how to run as a stand-alone program. The main Jar

file "tagsoup- 1.2.jar" which is distributable to any other application is located in the

following folder:

"//NetBeansProjects/Thesis/taguoup/dist/lib/"

Create and update batchfile:

A batchfile named "test.bat" needs to be created for DOS from administrative privilege in

Windsows environment. For Unix environment, we need to change the access privilege

(e.g., read-write-execute) for the file folder to run the batch file. The details to create and

run the batch file are discussed in the following link:

"http://linux.about.com/library/cmd/blcmdll_batch.htm"

The access privilege for Unix environment is discussed in the following link:

"http://www.zzee.com/solutions/unix-permissions.shtml"

In case of converting DOS batch files from Windows to Unix Shell script is described in

details in the following link:

"http://tldp. org/LDP/abs/html/dosbatch. html"

119

http://linux.about.com/library/cmd/blcmdll_batch.htm
http://www.zzee.com/solutions/unix-permissions.shtml
http://tldp

The command string inside the batch file "test.bat" needs to be change automatically

from the source program every time before running the batch file. The command script

format into the batch file is given below:

"Java -jar tagsoup/dist/lib/tagsoup-1.2.jar —html —method=html -files
filenante.html src: filename, html dst: filename_.html"

Here, filename is the name of the URL. For example, in case of "futureshop.ca" the

source (e.g., src:) filename should be futureshop.html and destination (e.g., dst:) filename

will be futureshophtml.

What happens while run the application?

After execution of the crawler module with URL for example "compUSA.com''', a local

html file named "compUSA.html" will be created in the following path:

"//NetBeansProjects/Thesis/"

All the images of this web document will be stored in the "photo" sub-directory under the

URL source in the following path:

"//NetBeansProjects/Thesis/photo/"

When we run the batch file "test.bat", the "compUSA.html" file will be the input file for

tagSoup and will generate destination file "compUSA_.html". This "compUSA.html"

file will work as input file for extractor module of our system.

5.3. Installation of the Oracle software:

We used lightweight Oracle XE lOg edition for Windows environment as database

storage for our system. The software is available to free download from:

" www.oracle.com "

To install Oracle XE database lOg edition, download and install Oracle Database lOg

Express Edition on Windows environment using the following step:

1. Go to the Oracle Express Edition page.

2. Download the Oracle Database lOg Express Edition (Universal) - Multi-byte

Unicode database for all language deployment, with the Database Homepage user

interface available in the following languages: Brazilian Portuguese, Chinese

120

http://compUSA.com''
http://www.oracle.com

(Simplified and Traditional), English, French, German, Italian, Japanese, Korean

and Spanish.

3. Save the download file, OracleXEUniv.exe (216,933,372 bytes), to a temporary

directory.

4. Double click on OracleXEUniv.exe. Follow the installation wizard to finish the

installation. Remember to change the destination directory, set the SYTEM

password and take some notes like:

SYSTEM password: "your password"
D e s t i n a t i o n F o l d e r : C : \ l o c a l \ o r a c l e x e \
Por t fo r ' O r a c l e Database L i s t e n e r ' : 1521
Por t for ' O r a c l e S e r v i c e s for Microsof t T r a n s a c t i o n S e r v e r ' : 2030
P o r t for HTTP L i s t e n e r : 8080

To start Oracle XE server, Click on Start > All Programs > Oracle Database lOg Express

Edition > Start Database.

To stop Oracle XE server, Click on Start > All Programs > Oracle Database lOg Express

Edition > Stop Database.

Oracle Driver plug-in: We used Oracle driver ojdbcl4.jar which need to be plug-in into

lib folder of the package folder.

5.4. Installation of JDeveloper IDE:

Oracle JDeveloper IDE is available to free download from www.oracle.com and the

installation details are available in the oracle web site. We used this IDE to develop the

data tables and database schema for the oracle database.

6.0 Data Base Schema and format

Our intention is to develop database schema automatically from generated NFA. Right

now we did not achieve this goal and developed our database schema and tables manually

using the Oracle JDeveloper IDE. We used visual observation of incoming data from the

web page for schema development. We observed that from our problem domain,

maximum six types of data tuples may generate as discussed in section 3.2 of the thesis.

These are Product data tuple, List data tuple, Text data tuple, Noise data tuple, Form data

121

file://C:/local/oraclexe/
http://www.oracle.com

tuple and Singleton data tuple. In case of our example test web pages, only four data

tuples (Product, List, Text and Noise) exist and so we only generated four tables, one for

each data tuple type. That means the content data from one specific data tuple type will

be inserted into a specific data table. For example, all contents from any Product data

tuple will be inserted into "PRODUCT" table and so on. Two more data tables are also

generated; these are "COMPANY" and "LISTTYPE". We described below in brief

about these database tables:

COMPANY TABLE:

This table keeps track of web site ID from which data are coming and generates ID for

each web site to keep track the relationship between different tables by using Primary key

and Foreign key. Database schema for COMPANY table is given below:

Company(company_Name string, company id int),

EeBug Reficto Vensnng 1 o B'ndnw

-^

Figure-3: JDeveloper IDE screen shot for COMPANY table

122

^ - * ,c t« $ Sit Commands ^ ' i-j " •*•#*- =«•'-- ^ W - ' T ™ f e - *& -

- Auten-w*.*! ! . " , . , '0 . save Run

1 ray: --etu-nea in C 03 seconds

Figure-4: Oracle IDE screen shot for data in COMPANY table

PRODUCT TABLE:

This table holds the contents from the Product data tuples. Database schemas are given as

follows:

Product (title:string, image:image-file, prodNum:string, brand.string, priceJong);

Product (title .string, image .image-file, prodNum: string, price.iong);

Product (title .string, image .image-file, brand.string, prodNum: string, priceJong);

Product (title: string, image .image-file, brand.string, price.iong);

Product (title.string, image.image-file, price.iong);

Product (image: image-file, title .string, prodNum: string, brand.string, price: long);

Product (image:image-file, title-.string, prodNum:string, price:long);

Product (image:image-file, title.string, brand.string, prodNum:string, priceJong);

Product (image.image-file, title.string, brand.string, priceJong);

Product (image: image-file, title.string, priceJong);

123

B * Ed* 1!""' St h M-ivig te Eun Cebug Refa

_^.Appications Novig JgC-ymacCcn

i ng l o o]H nitow

^jDativKeDia^ain COMPANY W U 5 T TWE i > * * ; 5E

VARCHAR2(20)

WRCHiRZCUMO

VftRChflH2(00

^frfti-rrfl
Figure-5: JDeveloper IDE screen shot for PRODUCT table

- ^ 4, i &

. € !5a i a s sp -ss&Ssoi

F J S"

035SA

E-23D13

E18 i-f^

• l a s L ^ i C Ivnrc Til e a s * . 6 E 8) l f ' i 1 9 ' C 3

Is T-ts»<*n8n -w nir 2~1 *M 7- A 1 -tan

H3JW.pr»e rt3in-LB»BST aCMEE S

e&aJeae sHac f tneEISIH- ' a S as

S i - B U B S S a i l s - a s s K 3 4 C 1 M s L C D < P B « « W D U E S a - i s u n i 13HC

e*SG,lc f *so W-n24 C a s s CD .tonic* arwo c ^ « T r 2 1 C a :

b G E 2 / - u T 2 1 ^ C O K c r U e i B - X ^ t T - i f LGE 5 I Vtstssw » L ijfc!

Pl=nn Ploiins F 9 9 - t f „e sa se C B t t - n g t c P a e f> ">*, o &des ee

XT C C S O S S ^ t t *SQ4 nLCDW m o t ft 0 SJ« * 0 C l a s s ds:

5 a . s u S a - i s u 6X203 C D - J o n l o h t e a s n u g 9 t - o f l i

- f u n e a t i+Ti idaTZ"S 3 a "Tt -xsp ls •ri-o ThsHyvnOaTS 3 d e

33~is v aa"I£dr* B T J 2 Z - t e s t -*? - L D JkaMi t* b 3 ~ . u 3 B 2 f - z r , *

A s u s ^su « ? *->5H23 s" e s 69(1 CD 3 la v> ~ufle TTe S u s S H

m r J " L C C MOTPIJI ftiti " \ J> *t >i s ar , - l a g s - K i d s um! h

a e s o a s CfciaiSo ffT T i e - J ^ oiMrtor p-acn tasla of •flsuaaf

: t-ree L i-Monf! 7 2 ^ 1 c& 7«3 - j u t i . 5 J - 0 1 Dffta-nl 1 00 Na t to

loii 2 C s H 3 l » •> K S f l D-n m =2ft< GEi

•en Fu8 HO L"~D yoniltx *>-*Q 108a IOOUO 1 0>n:»"i. V S t Ms-he vis •)« S

; Miser » n H D L U te 92C 8 0 2 3 3 0 6 ^ . i i a

• r fc "Ni =n 'Taos s urnJa 3 rl t est

iLCDUon with *8 ">C0 Naf-e S n s 3 Gft

Q o L C C H o U 60 S'-O-iCOaS O am 3 t G

iljTG t r c d GAe--o«

e * i ^T
s u p s " i DsOp 5 9 OJOOO C n m o>

-tt c a ^ i i J H •) fJ 9 S H ' B O O O D-Tsin OX I

•«iLCDI>lo -jrw-miT* T»ire 0 OC u s 2C03 C

s CDC1 p i v,T I j r e TO H a w s e #5 K ^ i ^ S 9 M««ssfe i L C C I -nC» * B T

I d i_"C 4-niior TJ* a W a * s E 8 I H * r t 1 9 a 3 e - « e n L C f. tie 0„ 4

;Dfcu M * " * UHB T I B = 3 ~ i s u r a P 2 'OHD u t s e n o L C Honi**i(xlft T T n

S > Si-Is* w T V T u r n he fert-sj- !i 3 (32"T*f ^ c s nLCD toulJ»nh

flO LCCMfit-orTTi aSla t i i l^esE 8 HY3 19 a*S a s s e t s n L C (.ffllto 7_J -

r i r*- *5.-6 W W O i r s i i c . DC INTSvs

56 58 oOH OC01 &(i a"iic OB JnHva

3>Wt3,m J^J

yiot. «. jp3

J-TOi 1 « 8

) r M ^ 3 3

DT ^ o

- l o m j]

h S f B H 5

tio u ^ S amp

hll"J!!l p-j

Ji'*o?fn3£^i

^ • J ^ j f f l

Isvn s jp f l

•Jia - ! i = ^

•T5 0-S1 Z^-J

FuS, e c hu

FlK s^l-o

FutUtsS op

Fulufs t!(W

Futue t-c»"

Fulu*6 ! *?- ;

Futu eShM

Foft * (.

F i l l eSiioc

F A, eShoe

Fubji^Sho^

Ftih, e hop

F lui^Slios

Fo i -v op

10980

179 HO

93

0399

eg 99

9«»
8S9

179 G?

130 93

2C3 99

14999

10990

"9999

1 390

10933

Figure-6: Oracle IDE screen shot for data in PRODUCT table

124

http://5a.su

LIST TYPE TABLE

This table keeps track among the contents of multiple lists from each web page as well as

company (e.g., web page ID) from which those lists inserted from. The database schema

for this table is: ListJType (listjype string, id. integer);

fli Ed* l ^ n . Sf i t t t i t iavgst ! Ru* fiebug Hrfjrto Vsrsar ing Too *^ndow H (£

j i n s 9 e \ i » * ^ # * a ' » »> •

» I T „ »

rfc
* t lST HC TOG -^ITVPE n

VARCHflP2(5a)

fcjPRCKXIC

*CC*1PANY_PK Tl
^ < U 5 J-KTRG
j*LTVPEJ'K R<5

aBsassaasEB

Figure-7: JDeveloper IDE screen shot for LISTJTYPE table

Q B A C L C Di *>it £«p eis E« 01

S*f<*v. T = C f . - < * .

. J4
Save Run

Co-ic n*Ti Jo^

=- etimedbiC03s=' r

^

Figure-8: Oracle IDE screen shot for data in LISTJTYPE table

125

LIST TABLE:

This table stores content information of multiple lists from multiple web pages. The data

base schema is given below:

List (list_id:int, link: string, text string, company: string, list type:string),

F t Edit Vtw Starch Njvigatt Run C<b g ftefjcto Vemgi-i ng Tool IJf"

3 ' •<* •& &*$ *
^AppfcaODrK \avig -5Co«lMtlons ^ ^ D a t s b a s e Oagrsmi •^COT-PANY OHOI5E !_JPRODUCT < _ j l M j<ij&.I¥f

ia_Lj^j
Figure-9: JDeveloper IDE screen shot for LIST table

•BBBS
^rri7"

rf i-w-tes ^ . S Q t C i m * .

O Q A C L . & D3*

i O » » l £ ~

A ^ O r u M C B *

Jns
U «*"

CO

xp *•- i F c f o

» ^ * « *

-
a * ™ - * * * ™ » . *v :$&gmsM&8$M.-<»&{ifr' " \ \ „„,,„^A . .

ri K !» ' *̂

„ ^

"**•*
u
...

sav«

Took- i f -

V >

^ ^ W ,

Run

<n*-01

0J--0

0 3 3 3 J

(KUK

61.0

v*. oe

I 0

S3 08

•"O -=00

013 j

J)3 1

"JJj t

Mps^Vwr o » v i i - a a m .js

Wp*= * w a- i -usaM-mSe- i

'od'W3.'t"c!c!i.rl,'S asp

.-•.PJOUK, J ^te-lCf „at9 CI

'avpiicaat'ts as^cr ataac

"p rS 3Hr> s. atej fjfiatea- rs

'-ppjicato 3.^*8^0(1 ss)S5C

MHcai w sta^c cala^c

•aCE't a"tc s ate' j f> ate 3- iy

pplca*-:** ? al en ~ i i * ; c f t

•^vsuss ons at* -ata^

•app ^ J - H - S a t e - j ^ atej-rv

o-otfefTraKBSi*

(•->-<• o-jmas ?P

s i r asp -Cal i t- W 2

s c a s p c a t - f e l o *

ic aspT^afcc" H T

2ic3sp"Car f

I c a s p ^ a - 14 i

l a s p - a c e - " ?

icasp Cats -A

c •aspw-ft-C 412^

aap-Cafd 433

LTD 17

LCD 19"

5 LCOS

i a La claps

fl

e n p u s a

o n p y a - .

c^ P «>*

ocmfi 'SA

cnpJSA

o m p S *

c i p ^

cnpUSA

o.mp J ,

- } - 1> •£>*>

o n p i s *

c r i p j - ^

O !"f>LIS*

cmpJSft

o . r ip *!-,

o pUS*

cnpJSA

c ~ i p j B «

&,mp • «

C--U-JS4

UamT-sn

»*n&*,n

Jn^j io^n

J B S J I O ™

f j n k n w n

tJnft issfj

Jni .no*n

Unxn-y-ri

Jnfn t>

UnVdievn

Un n in

PCsFs phfl Is

PCs'-*-; pha-al

P- " e p h s i ^ s

PCs ' -? ph als

P"? = pha- t

P J e ft f 1

p - j e l l Is

F v s H e ph-fal

1 E!*CB o c-

Figure-8: Oracle IDE screen shot for data in LIST table

126

file:///avig

TEXT TABLE: This table stores Text contents from the web pages. The database schema
is given as: Text (textJd: int, text: string, company: string);

iaiM('gJH«^B^ j j p ^ M ^ j p $™jMJpf tSi^A^ski^FS&iJ&t-mKtTO^

£il« Edl tftw &)ch H4vg«t E"» Debug ftefestor Vs-ja-mg Iools Wndo

\ ± ^J? ^ ^ "* "" " *„ •* ** ^ *
^AppkabcmiNang ^Comcrtions 4 ̂ Database Nagrwil " ^CCWf iW

« ^ T ^ ~" ~ «

' " I I V A '„""" •i1'r£M

•3 COWAN*

itjNoist "-PKOCUCT

Figure-10: JDeveloper IDE screen shot for TEXT table

T*?a5IV<. - •—?
* ! > - £ ! **- - * * 9 " ***•*-- T™*<- * * -

I O R A C s - f c B « ' * M W • <)>•*»» f ' l t f f l - u »

S»u* Run

2 -t

^ i^

2 •*-*

L"
* 47

2 B

«1*8

2 - 1

.. J

2 ' -

2 54

U r s r

ais3 t*cu'P-|-eRan9f

S 1 S-tfl

S* t-,S9')

S1 O t o ' J i

81 OloS ->3

S&.O.Jw-e

H < J - 3 Y B R A B J

• • e M e i a 3b> i-ma

* * - . « ! • .

D o :

M a d i i e

Hsrns-ree

e j i i e a i n * 1 0 0 s e c c n d s

•u*

iQisaLr'(tai

M-np i -V

co-ipOS*

.•OTpLiS*-

CCOTPCSA

'•empCSA

w i t t S - .

0>!tlOVO

""*-8*
raiipL^y,

<*• 111H.C*

CCHf SA

com*&.S"

j l f - ^ f o , --fffllflfliiH

Figure-11: Oracle IDE screen shot for data in TEXT table

NOISE TABLE:

Noise table stores the noise contents from the web page. The database schema for noise

table is: Noise(id: int, link: string, image: string; company: string);

127

F> £d* Vr» Seat Hiwgte Bun Sftmg

f -$ 4 A I I •# *

Figure-12: JDeveloper IDE screen shot for NOISE table

7.0 Limitations of the software

This is the very first effort for mining web contents using object oriented model. There is

plenty of room for improvement of our system in future. Limitations of the current

system and future work as identified are stated as below:

Crawler module: Current crawler module can take one URL string at a time for

extraction and mining of web contents. Further improvement is required in future for

automatic identification of positive web pages from the web. Present implementation of

this module is designed aiming to work for basic functionalities as crawler with the

functionality to download data stream from the targeted web pages into the local

computer and cleaning or the web page comments from it. For robustness and scalability,

we need to improve the current crawler module to handle all kinds of situations from the

web.

128

Cleaner module: Currently we are using open source software "tagSoup" for cleaning

the web pages. Development of an independent cleaner module may improve the systems

performance and usability in future.

Extractor module: One major problem with the extractor module is its inability to

handle long tag attribute values. A reasonable way to handle long HTML tag attribute

value is needed that are currently blasting the DOM Tree creation. We need to find out a

way to reduce the tag attribute value length without loss of resources from it. A

reasonable solution by finding any alternative way to create DOM from other platforms

may solve the problem. Another noticeable limitation of this system is its limited capacity

to handle noise contents from the web page. More research is required to handle noise

from data tuples.

Miner module: We introduced the idea of using NFA for mining web contents in this

thesis. This NFA has two fold uses: Generation of extraction pattern for contents and

generation of database schema, cardinalities to create tables and to store contents into

relational database. In this thesis we generated extraction pattern but generation of

database schema from the generated NFA is pending to develop. Another limitation is the

use of pattern table for classification of tuples from the ContentObjectArray.

Implementation of any automatic classification using co-sign or other similarity

algorithm will eliminate the use of semi-automatic use of pattern table and squeezeTuple

algorithm from the miner module.

8.0 Java Tools

We used a set of Java tools for the development of WebOMiner system. Table - A list

some important java tools we used for the development of the system and their reference

URL's for future developer's reference.

129

Table - A

J a w « l "'•• Inference TOIL ' " * |

ArrayList
BufferedlnputStream
Class
File
Hashset
HttpURLConnection
InputStream
InputStreamReader
javax.xml.parsers.DocumentBuilder
javax.xml.parsers.DocumentBuilderFact
ory
NodeList
org.w3c.dom.traversal.DocumentTraver
sal
org.w3c.dom.traversal.NodeFilter

org.w3c.dom.traversal.NodeIterator

Process
Runtime
String
Sql
StringTokenizer
Thread
URL

http://download.oracle.eom/javase/l.4.2/docs/api/iava/util/ArravList.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/BufferedInputStream.html
http://download.oracle.eom/iavase/l.5.0/docs/api/java/lang/Class.html
http://download.oracle.eom/iavase/l.4.2/docs/api/iava/io/File.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/util/HashSet.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/net/HttpURLConnection.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/InputStream.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/InputStreamReader.html
http://download.oracle.eom/javase/l.4.2/docs/api/javax/xml/parsers/DocumentBuilder.html
http://download.oracle.eom/javase/l.4.2/docs/api/javax/xml/parsers/DocumentBuilderFacto
rv.html
httrj://download.oracle.com/iavase/1.4.2/docs/api/org/w3c/dom/NodeList.html
http://download.oracle.eom/iavase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/pac
kage-tree.html
http://download.llnw.oracle.eom/iavase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversa
1/class-use/NodeFilter.html
http://download.oracle.eom/javase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/clas
s-use/Nodelterator.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/lang/Process.html
http://www.science.uva.n1/ict/ossdocs/java/jdkl.3/docs/api/java/lang/Runtime.html
http://download.oracle.com/iavase/1.5.0/docs/api/iava/lang/String.html
http://download.oracle.eom/javase/6/docs/api/java/sql/package-summarv.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/util/StringTokenizer.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/lang/Thread.html
http://download.oracle.eom/javase/6/docs/api/java/net/URL.html

130

http://download.oracle.eom/javase/l.4.2/docs/api/iava/util/ArravList.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/BufferedInputStream.html
http://download.oracle.eom/iavase/l.5.0/docs/api/java/lang/Class.html
http://download.oracle.eom/iavase/l.4.2/docs/api/iava/io/File.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/util/HashSet.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/net/HttpURLConnection.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/InputStream.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/InputStreamReader.html
http://download.oracle.eom/javase/l.4.2/docs/api/javax/xml/parsers/DocumentBuilder.html
http://download.oracle.eom/javase/l.4.2/docs/api/javax/xml/parsers/DocumentBuilderFacto
http://download.oracle.eom/iavase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/pac
http://download.llnw.oracle.eom/iavase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversa
http://download.oracle.eom/javase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/clas
http://download.oracle.eom/javase/l.4.2/docs/api/java/lang/Process.html
http://www.science.uva.n1/ict/ossdocs/java/jdkl.3/docs/api/java/lang/Runtime.html
http://download.oracle.com/iavase/1.5.0/docs/api/iava/lang/String.html
http://download.oracle.eom/javase/6/docs/api/java/sql/package-summarv.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/util/StringTokenizer.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/lang/Thread.html
http://download.oracle.eom/javase/6/docs/api/java/net/URL.html

VITA AUCTORIS

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

Titas Mutsuddy

Chittagong, Bangladesh.

1968

Chittagong University of Engineering and Techno lo
Chittagong, Bangladesh.
Bachelor of Science in Civil Engineering (1992)

University of Windsor, Windsor, ON, Canada
Bachelor of Computer Science (Honors) (2005)

Wayne State University, Detroit, MI, USA
Master of Science in Civil Engineering (2008)

University of Windsor, Windsor, ON, Canada
Master of Science in Computer Science (2010)

	Towards Comparative Web Content Mining using Object Oriented Model
	Recommended Citation

	ProQuest Dissertations

