University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Towards Comparative Web Content Mining using Object Oriented
Model

Titas Mutsuddy
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Mutsuddy, Titas, "Towards Comparative Web Content Mining using Object Oriented Model" (2010).
Electronic Theses and Dissertations. 8012.
https://scholar.uwindsor.ca/etd/8012

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8012?utm_source=scholar.uwindsor.ca%2Fetd%2F8012&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Towards Comparative Web Content Mining using Object
Oriented Model

Titas Mutsuddy

A Thesis
Submitted to the Faculty of Graduate Studies through the School of
Computer Science in Partial Fulfillment of the Requirements for the Degree
of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2010
© 2010 Titas Mutsuddy



Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4

Canada
Your file Votre référence
ISBN: 978-0-494-80235-9
Our file Notre référence
ISBN: 978-0-494-80235-9
AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a Ia loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manquant.



Author’s Declaration of Originality

I hereby certify that 1 am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,
quotations or any other material from the work of other people included in my thesis,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iii



Abstract

Web content data are heterogeneous in nature; usually composed of different
types of contents and data structure. Thus, extraction and mining of web content data is a
challenging branch of data mining. Traditional web content extraction and mining
techniques are classified into three categories: programming language based wrappers,
wrapper (data extraction program) induction techniques, and automatic wrapper
generation techniques. First category constructs data extraction system by providing
some specialized pattern specification languages, second category is a supervised
learning, which learns data extraction rules and third category is automatic extraction
process. All these data extraction techniques rely on web document presentation
structures, which need complicated matching and tree alignment algorithms, routine
maintenance, hard to unify for vast variety of websites and fail to catch heterogeneous
data together. To catch more diversity of web documents, a feasible implementation of
an automatic data extraction technique based on object oriented data model technique,
OOWeb, had been proposed in Annoni and Ezeife (2009).

This thesis implements, materializes and extends the structured automatic data
extraction technique. We developed a system (called WebOMiner) for extraction and
mining of structured web contents based on object-oriented data model. Thesis extends
the extraction algorithms proposed by Annoni and Ezeife (2009) and develops an
automata based automatic wrapper generation algorithm for extraction and mining of
structured web content data. Our algorithm identifies data blocks from flat array data
structure and generates Non-Deterministic Finite Automata (NFA) pattern for different
types of content data for extraction. Objective of this thesis is to extract and mine
heterogeneous web content and relieve the hard effort of matching, tree alignment and
routine maintenance. Experimental results show that our system is highly effective and it
performs the mining task with 100% precision and 96.22% recall value.

Keywords: Web content mining, Object-oriented mining, Automatic web data extraction,
Wrapper induction, Web information integration.

v



Acknowledgement

I would like to give my sincere appreciation to all of the people who have helped
me throughout my education. I express my heartfelt gratitude to my wife and daughters
for their support throughout my graduate studies.

I am very grateful to my supervisor, Dr. Christie Ezeife for her continuous
support throughout my graduate study. She always guided me and encouraged me
throughout the process of this research work, taking time to read all my thesis updates.

I would also like to thank my external reader, Dr. Gokul Bhandary, my internal
reader, Dr. Asish Mukhopadhyay, and my thesis committee chair, Dr. Xiaobu Yuan for
making time to be in my thesis committee, reading the thesis and providing valuable
input. I appreciate all your valuable suggestions and the time, which have helped improve
the quality of this thesis.

At last, I would express my appreciations to all my friends and colleagues, for
their help and support. Especially, I would like to thank Chris Drouillard and Mohammad

Harunorrashid for their help in implementation. Thank you all!



Table of Contents

Author’s Declaration of Originality...........oveviineieniiiiiiiiiii e iii
ADSETACT. .ottt e et iv
ACKNOWIBAZEIMENT. ... ettt v
Table Of FIGUIES....uitineiei i e e e et e seeneas viii
Table of Tables.......cc.vieiii e ix
L IErOdUCHION. c.ou e 1
L0 WD MITNG. c...vveeeeee ettt se et er et sb et avae s e e mmaesseneen e 2
L.1.1 Web Usage Mining.........euveveveerirenurersenenenereneneeneneneneneanenenin 3
1.1.2 Web Structure mining...........cccoviiiiiiiiiiiiiin 4
1.1.3 Web Content mining...........oeveverriiieioieiiiiieiiiiieeeiaiinenns 5
1.2 Phases of Web Content MiRing............cccocemiiniecinineiiinciee e 6
1.2.1 Web Page cleaning........ccovvuieviriiiininieniiicnneteieneeeeaeienenenen 7
1.2.2 Web data eXtraction........coevuvrerenerererneneneriiiiaieenenieeeaeaenenn 8
1.2.3 Web data classification and categorization...........c.c.coeveuinininnnnn. 12
1.2.4 Web data Warehousing...........c.cocieieiiiiiiiiiiiiicnn, 15
1.2.5 Mining Web COntent.........ccoevuieiiiiiiinerinniiineneeeneneneanaeenens 17
1.3 Object-Oriented Web Data EXIFACHON. ............c..ccevvevvierieeiinieeiesinessinsenens 20
1.4 Thesis contribution... - et eh et fee e tee ees et ee be hee e een eea ees nee e cen cenae 23
1.5 Outline of the Theszsproposal 25
2. Previous/Related Work..........ooiiiii i 26
2.1 Wrapper Programming Language... 26
2.1.1 DEByE: Data Extraction By Example .................................... 27
2.1.2 WICCAP : From semi-structured to structured data..................... 27
2.2 Wrapper Induction ... . 29
(4) StrngdztDzstance 30
(B) Center Star Method... 31
(C) Simple Tree Matching 32
(D) DOM Tree building... 34
2.2.1 STALKER: Hierarchical approach to Wrapper Inductlon 35
2.2.2 IEPAD: Information Extraction Based on Pattern Dlscovery ......... 37
2.2.3 Instance based Wrapper Learning...........c.cccoeevevininiininnininin, 39
2.3 Automatic Wrapper Generation .. . 41
2.3.1 RoadRunner: Towards Automatlc Data Extractlon from Large Web51tes 42
2.3.2 DEPTA: Data Extraction based on Partial Tree Alignment .......... 43
2.3.3 OWMiner: Modeling Web documents as Objects for Automatic Web
Content EXtraction ..........cooviiiiiiiiiiiiiiiiiiiiee 44
3. Object-Oriented Web Content Mining..........cc.ocoviiiiiiiiiiiiiiiiinne, 50

3.1 Problem AdAresSed... ... ... oo cov e oee oo eee oo e e e e e ae e e e e e e 50
3.2 Web COntent OBJECES ... ... ... oo oiesceeces eee e cee et e et ve aen e we e eet eee b cen s 52

321 TeXt CONLEMS. .. veiiieteie vt ettt et e et et e e e e enenes 53
3.2.2Image CONLENES. ...ueneniniintiiitieiie e, 53
3.2.3 FOIm CONBNLS. ..e\uententinient ittt et e e eeeaneaneneeneaeeeenenane 54
3.2.4 PIug-in CONENLS. . ..ivititrtie et eeneeet e eeeaeaaaenens 54
3.3 Challenges and Thesis approach to SOIULION... ... ... cccocevcv e e ccive e e 55
3.4 Problem Domain... 59
3.4.1 Data Reglon and Data Block Identlﬁcatlon ............................... 60
342DataModel...cc.oniiiiiii e 63

3.4.3 Tuple formation from Data block.........c.cooeiiiiiiiniiiiinn 66



3.5 Proposed WebOMiner Architecture and algorithms.. ... ...... ...
3.5.1 Crawler Module ........oveiiiiiiiiiiii
3.52 HTML Cleaner Module ......c.covveniiiiiiiiiiiiiin
3.5.3 Content Extractor Module
3.5.4 Web Miner Module ..........oooiiiiiiiiiiii
3.6 Warehouse and Mining for Integration
4. Evaluation of WebOMiner System...........cooeiiiereiiiniiiiiniiiiiiiiieene
4.1 Strength of WebOMINEF .. ... ..o o cee et e et e et e e e e et e e et e
4.2 Empirical EValUQIiON ... ... ... ... o cev et et e et e et e et e e it et e e e
4.3 Experimental RESUILS ... ... ... ... vovceees oot et et et et e e et e e e e
5. Conclusions and Future work............cooooiiiiiiiiiiiii
S FULUFE WOFK ... .. cev e e et s e et e et et e e e eee vt e e e e e e s
REfOIENCeS. .. eenieie it
Appendix A...System Manual
Vita Auctoris

73
74
79
80
86
94
96
96
102
102
103
104
105
109
131

vii



Figure-01
Figure-02
Figure-03
Figure-04
Figure-05
Figure-06
Figure-07
Figure-08
Figure-09
Figure-10
Figure-11
Figure-12
Figure-13
Figure-14
Figure-15
Figure-16
Figure-17
Figure-18
Figure-19
Figure-20
Figure-21
Figure-22
Figure-23
Figure-24
Figure-25
Figure-26
Figure-27
Figure-28
Figure-29
Figure-30
Figure-31
Figure-32
Figure-33
Figure-34
Figure-35
Figure-36
Figure-37
Figure-38
Figure-39
Figure-40
Figure-41
Figure-42
Figure-43
Figure-44
Figure-45
Figure-46
Figure-47
Figure-48
Figure-49
Figure-50
Figure-51
Figure-52
Figure-53
Figure-54
Figure-55
Figure-56

Table of Figures

Web structure graph.......c.oeevveriiiiiiiiniiii
Blocks of a typical web page........ccovvveiiiniiiiiiiinen
Semi Structured web content data............cc.oovvivenininenen.
Simple Tree matching for Wrapper Generation.................
Common B2C web site structure..........coooeevevveeeninininin
Data regions and data blocks............ccooieiiiiiiiiint.

Query interface from same domain of airline ticket reservation
DOM tag tree of CompUSA.com web document for figure 06.

Logical view of WDEL language ..............ccccoooiiieenn..
Edit distance matrix and back trace path.........................
Example of center star method........c.oeevviiinvivenenenennn.

Tree Matching and aligning in (X), Aligned data nodes under N1 in (Y)

Boundary co-ordinates and resulting tree........................
(a) Training data blocks, (b) Logical presentation..............
Similarity measure for identifying “price”............cocoeenven
Iterative Tree alignment with two iterations.....................
Object Exchange Graph Model....................coon,
Hierarchy of Web Object Model.................coocoiininn
OWebMiner algorithm...........c.oooviviiiiiiiiiii e
Example of simple static web textual data......................
Formatting tags within textual fragment ..................oooll
Difference in schema for similar information...................
Schema matching at object creation..................ccoovens
Intersection of biock level and non-block leveltag.............
Graphical Tree representation of data block and data region. ..
Data block representation.................coovviiiiieiniiann.
Data Tuple of Product Data block...........coocveeniinininiiin
Content objects of a product list data block......................
Example of simple content hierarchy in a data block...........
NFA notation for Product tuple............cccoovviiiiiinnnn
NFA presentation of List tuple...................coc,
NFA presentation of Form tuple...............ocooooiinnn
NFA presentation of Text tuple........ocovvvvriiiieiiieeneninn.
NFA presentation of Singleton tuple.............ooevinianiinin.

WebOMiner Architecture for Object-Oriented web content mining

WebOMiner main algorithm..............c.ooooon,
Class diagram for Crawler module..........cccocoeeiiiniinnnnae.
Algorithm SiteMapGenerator and MySpider....................
Algorithm Crowler.traverse(). ... ..covevereueeninnenneeneennen
Pagelnfo.extract() and WebPageXractor.parse() algorithm...
SimpleHTMLParser algorithm..........c.cooooeiviiiiiinnn.
Algorithm DOMTree.CreateTree().....c.cvvvveervenernannenn.
OWebMiner algorithm.................c..o,
Modified ContentWebObjectScan algorithm...................
Modified ProcessContentSibling algorithm.....................
Algorithm to insert separator object in ContentObjectArray..
Snapshot of ContentObjectArray...........ocoveiiniiiinnininnns
Algorithm to Mine Content Object...........ccovvveeeininninianne
Algorithm to Identify Object Tuple .........ocoeeeiiiiieninnnne
Identification of data block............coocoeviiiiii
Enum set Pattern Table.............cc.cocciiiiiniiniin
Data block identification/Tuple formation...............c.c....e.
Algorithm GenerateSeedNFA to generate candidate NFA....
Algorithm for squeezing object tuples.................oeuennn
Algorithm CreateDBTable.insertData...............coeeeeennnn
Example of Squeezing tuple................co.ooo.

viii


http://ofCompUSA.com

Table of Tables

Table-01  Web Log Information............c.oooooiiiiiiiiiiii
Table-02  Tuple types in monitor web page..............cooviiiiiiinin,

Table- 03 Experimental Results



1. Introduction

World Wide Web (WWW) is growing exponentially over the years. So, web
documents became a largest repository of information (Kosala & Blockeel, 2000).Web
content usually means to those information that a user see in a web document. It also
includes some hidden information that helps user interaction with web contents. Web
contents are heterogeneous in nature and may be in different forms like text, image,
hyperlink, metadata, audio, video and others with their combinations. A complete
classification of all these different types of web contents does not exist.

When any mechanism is used to extract relevant and important information from
web document or to discover knowledge or pattern from web document, it is then called
web content mining. Traditional mechanisms are: providing a language to extract certain
pattern from web page, discovering frequent pattern, clustering for document
classification, machine learning for wrapper (e.g., data extraction program) induction,
and automatic wrapper generation. All these traditional mechanisms are unable to catch
heterogeneous web contents together as they strictly rely on web document presentation
structure. Annoni and Ezeife (2009) present a model for representing web contents as
objects. They encapsulated web contents in object-oriented class hierarchy which enable
to catch heterogeneous contents together in unified way without strictly relying on
presentation structure.

This thesis studies the idea of modeling web contents in objects and develops a
mining process for object-oriented data model for web content integration or comparative
mining. The rest of this chapter is organized as section 1.1 introduces web mining and its

categories; section 1.2 introduces the phases of web content mining and section 1.3



introduces the idea of object-oriented web content extraction, section 1.4 Thesis

contributions and section 1.5 outline of the Thesis Proposal.

1.1. Web Mining

Organizations that have large amount of data need to make decisions that impact
their future activities. Data mining is a process of extracting relevant and important
knowledge from that large data to facilitate decision making. According to Etzioni
(1996) web mining is a data mining technique to automatically discover and extract
information from web documents and services. Web mining became important for
knowledge discovery in business development, merchandise, personalization, and
integration of web information. Borges et al. (1999) categorized web mining into three
areas; web structure mining, web usage mining and web content mining. Kosala et al.
(2000) defined web structures as inter-document structure of web pages which is
represented by hyperlinks within the web itself. These hyperlinks are used in web pages
for navigating to other web pages for interested information. From data view of web
content mining, Kosala et al. (2000) defines web structure within the web documents
(intra-document structure), the way how web content data are represented. Web usages
are the history of user’s visit to web pages generally stored in chronological order in web
log file. Web contents are all the hard data such as text, images, audio, multimedia
information in the web pages. Web contents are primary information of a web page.
There are some other information or block in the web pages such as advertisement,
attached pages, copyright notices. These are also web contents and usually are not

considered as part of the primary page information. This unwanted information in a web



page is called the noise information, and usually need to be cleaned before mining the
web content (Gupta et al., 2005; Li and Ezeife, 2006).

1.1.1. Web Usage Mining
Web usage information or the history of user’s visit to different web pages are
generally stored in chronological order in web log file, server log, error log and cookie

log (Buchner and Mulvenna, 1998). General format of a web log string is as follows:

137 207 76 120-{30/Aug/2001 12 03 24-0500] “http //www cricinfo com/bangladesh/content/current/team

/25 htm HTTP/1 0” 200 27817

This web log string has certain set of information about user access to web as follows:

Field Description Example
Host/ip | Remote client [P address 137.207.76.120
User Remote log user name ‘—’ for anonymous user or ‘xyz’ for particular user.
Date Date, time and time zone of request | 30/Aug/2001:12:03:24-0500

Request | User Request Identifier (URI) with | URI: http, ftp, mailto etc

URL the Uniform Resource URL: http-//www.cricinfo com/bangladesh/content
Locator(URL) string /current/team/25 html HTTP/I 0"

Status Status code returned to client 200 [series of success]

Bytes Bytes transferred 2781 bytes

Table-01: Web log information
Web usage mining finds the relationships or patterns of the user’s visit to different web
pages from the access log files. The frequency of certain web page visit and the common
traversal paths by the users are important information for discovering the browsing
behavior of the web page users. If a web user visits most of the times to a certain type of
page of web site, for example: “hetp.//.......... /...../products/games/hardware.html”, which

is a path for game hardware, this means that particular customer is interested to buy game


http://www.cricinfo
http://

hardware products. Web usage mining helps to get this information and is used by
marketing companies to sell their products to the targeted customers.

1.1.2. Web Structure Mining

A web structure defines the structure of a web site (Kosala et al., 2000). Web sites
usually consist of a set of web pages. Each page of a web site represents a set of
information. Hyperlinks (or links) are used in web pages to navigate from one web page
to other web pages of the site for navigating information. Web structure mining is the
process of discovering structure information from the web. This type of mining can be
performed either at the (intra-page) document level or at the (inter-page) hyperlink level
(Kosala et al., 2000). In case of intra-page web structure, Hyper-Text Mark-up Language
(HTML) presentation tags represent the page structure and are commonly used for web

content mining. By web structure mining, it usually means the inter-page structure

mining of web site where structure of a web site is represented as a typical web graph as

/» Hyperlink

O

Web Document

Figure-01: Web structure graph
shown in figure 01. A web graph consists of web pages as nodes, and hyperlinks as edges
connecting between two related pages. Revealing web documents structure are effective
for navigation purposes. For example, from the links, important web pages can be

discovered for a particular keyword, which is a key technique for search engines. Other



important applications of web structure mining are: discovering the topology of
hyperlinks and then categorizing the web pages, generating similarities and relationships
between different web sites, page ranking, and link-based similarity search.

1.1.3. Web Content Mining

Web contents are the core data or information of a web page. These data can be in
the form of text, image, audio, video, multimedia, hyperlinks or in combination of these
formats in a web page. Web content data can also be un-structured (e.g., bulk text), semi-
structured (e.g., HTML page content), structured (e.g., XML, table, database generated
and multimedia data).

Un-structured web content data are represented by a full bag of words or texts or
phrase-based feature representations. These features can be Boolean or frequency based
and can be reduced using different feature selection techniques. Common text mining
techniques like machine learning, statistical and Natural Language Processing (NLP) can
be used for mining the unstructured web content data (Kosala et al., 2000).

Multimedia web data are the multimedia data embedded or triggered by web page
through a mouse or keyboard event or automatically generated event while browsing
through the web page. Multimedia data mining is comparatively a young sector of
research area developing in recent years with increasing demand of surfing for music,
music video, movie; online music group, large varieties of online communities for
sharing personal information, hobbies and interests especially in teenage and young age
groups. Common statistical machine learning theory or fuzzy logic theories are used for

mining the multimedia web data (Petrushin et. al., 2007).



Semi-structured and structured data are most common types of data format for
web documents. Typical HTML web page contents are semi-structured web data, which
corresponds to a collection of facts and consists of text, image, hyperlink, structured
records such as list, table, and database generated content. These types of featured data
are rich and common representation of the web document structure.

Web Content ‘mining is the process of extracting targeted facts from web
documents. Web content corresponds to the collection of facts a web page is usually
designed to convey to the users. Web content mining aims for a target fact to be extracted
from web document or to discover patterns from web document. Common applications of
web content mining identify the topic represented by a web document, categorize web
document, find similar web pages across different servers, enhance standard query
relevance with user or role, recommendation of top relevant documents in a collection,

filter documents based on targeted facts.

1.2. Phases of Web Content Mining

Web content mining need several steps of pre-processing before mining it
efficiently. First it needs to identify targeted facts in web documents and need to exclude
noise contents (Li and Ezeife, 2006). Next step is the extraction of targeted facts from
web documents. After extraction, it then needs to classify extracted contents according to
their category. This data are then ready for mining to discover knowledge or underlying

patterns.



1.2.1. Web page cleaning
A typical web page consists of a set of semantic blocks. Each block contains data
contents. There is no unified way to represent data contents and blocks. In general, most

web pages have three major blocks; header block, body block and footer block as shown

N
/}‘25// }\mEWl)‘ém * pars ¥ dijens
L

Sutos Enterlalnment Mows Ulsstyle Monoy Musir Green 5imppmg Spam Tech Aravel Yidoo Mow

Bamre N sy wemr wENE SR RO SNSE  0OT GOW8 Whw ol SRR WO s, s P

ridewtoal o oo

Yop five wideos of the week Header Block
AR LN b oafat s gy §

A

) . Advertisement Block!
e | videos
= g shdm oy Ho bapndeat
L ER
o v specr s ol b Bsoweed
13 Bromit 8

* Hatlond o 1 b boads 8
s fweer ol s e yrythy v
L &

Money
e pvear e abe b B S Te e 4 el
5}@3 sre b MSN
wE e EEeed udnB SHNEE g RS W BN ES - an g
g e ata:rod L&S!ors §OFrad it o MBN Wég T opy Co ofs Searth v 4
N A f T oy EEIS SRR B o
b3
§ EEE RS Y § Fre g g vy s §N . t. Bl k
IS DI VS S S . Vasls meil > avigation biocks
é S s % H § e Vol :
§ EEREE S PLN SR S TP § 3 (R E PR §
2 windons Live £4o0 1o 2T BT L Moo i ¥ 2 csalkazen e
§ § ~obus Loom et § § b der ey g
s ewve @ R BRS B W ENY S G0 40 SRR @SN ARET

e s s e avm 2 o e Footer Block
i gy vy /
4 <¢A:j s jvi o o e ; § R 5
PIY SUETA v % 7 S o

Figure-02: Blocks of a typical web page

in figure 02 (Annoni and Ezeife, 2009). The body block contains the major web
document information. Other blocks like advertisement blocks, navigation block may be
contained in all these three major blocks. A header block consists of page heading,

company logo, advertisement and search option. Body block may consist of a set of



content blocks, navigation blocks, advertisement blocks. This is the core part of the web
document including a set of noise blocks. Footer block consists of copyright notice,
advertisement and navigation bar. These heterogeneous web pages need pre-processing
like cleaning the noise contents for effective page classification/categorization and data
warehousing (Chaudhuri et al., 2003; Gupta et al., 2005). It is easy for a person to
understand the structure of a webpage by browsing them but difficult job for a machine to
do automatically. There is no easy way to differentiate the noise blocks from content
blocks (Li and Ezeife, 2005). For example, an advertisement in a page may become
important if user is interested in it and it can contain important citation links that are
valuable for PageRank (Page et al., 1998). But at the same time, an advertisement block
may be considered as noise if user is not interested in it. So, it may deteriorate the page
classification and mining quality. Many researchers just only extract data from the web
pages (Chaudhuri et al., 2003) but other researchers emphasize on removing the noise
contents from the web documents for improving quality of web content mining (Yi et al.,
2003; Li and Ezeife, 2006).
1.2.2. Web data extraction

A typical web page contains a set of data objects or records such as a list of
products, services and image or text explaining details of their products. These data may
be hard coded or generated from databases and encoded by hypertext tags of the web
page in leveled or hierarchical structure. There is no unified data model for web pages.
So, extraction of web content data is highly dependent on the presentation structure of the
web page. Wrapper (e.g., data extraction program) induction (Muslea et al., 1999) and

Automatic Wrapper Generation (Liu et al., 2004) are two popular web data extraction



techniques widely used today. Former technique is a supervised learning process and the

latter is unsupervised learning process. In supervised learning, it needs a set of sample

web pages or training pages for user defined marks / labels to learn extraction rules from

these training pages first. Then, the same rule is applied to other pages of the WWW for

information discovery. Figure 03(a) shows simple personal information which can be

represented in hierarchical structure as shown in figure 03(b) and in leveled structure

Name: Dr. C. I. Ezeife Person
Position: Professor
Dept: Computer Science
Ph: (519)253-3000 Name  Position Department  List (Publications)
Email:cezeife@uwindsor.ca
Publications: /\ /\
2009 Phone  E-mail Year List
Names, XXXXXXXXX
2008 /\
Names, yyyyyyyyy Persons Title
(@) (b)
Person
Name Position Dept Phone Email Pub: year names xxxxx, year names Yyyyy

(c)

Figure- 03: Semi Structured web content data

as shown in figure 03(c). To extract the targeted information or items from nodes the

wrapper needs a rule that will extract information from the parent node. In this process,

user first marks some targeted items from a set of similar training web pages (called

positive pages), then an algorithm or the rule is developed for these training pages to


mailto:cezeife@uwindsor.ca

extract the information from the nodes and if the defined rule works as expected, then this

rule is used for other web pages in the WWW for information extraction. For example:

Problem: We are interested to extract the area code of phone numbers for all branches of
PizzaPizza store of Canada.

Training Examples: Let’s take four distinctive web pages as training pages from

PizzaPizza store branch websites from different corner of the county. The address data

block of these training pages are E1, E2, E3 and E4 as shown below:-

E1: 2203 Wyandotte St W,<i> Windsor </i> <b> ON </b>, Phone 1-<b> 519 </b>-948-5133
E2: 158 Dundas Street, <i> London </i> <b> ON </b>, Phone (519) 667-1111

E3: 7348 Kingsway <i> Burnaby </i> <b> BC </b>, Phone 1-<b> 604 </b>-519-1111

E4: 5184 Avenue du Parc, <i> Montreal </i> <b> QC </b>, Phone: (514) 737-1111

Extraction rules: To extract area codes of phone numbers from above mentioned training
pages, user needs to develop an algorithm based on some extraction rules. One possible

set of extraction rules are shown below:

Start Rule: End Rule:
R1: SkipTo ( () SkipTo () )
R2: SkipTo ( -<b>) SkipTo( </b>)

Here, R1 and R2 are rules, each of which have a Start rule and an End rule. The wrapper
needs to identify the list of store location page from PizzaPizza web site for each
province. It then needs to identify data blocks. The wrapper then can start iteration with
its R1 Start rule, if it succeeds then it ends with R1 End rule or it iterates to R2. Here,
when wrapper program identified the data block of E1 training example, it will start with
R1 Start rule which fails and then it will try with R2 Start rule (e.g., hits -<b>) which

succeeds. It will then start extracting all characters until it hits the R2 End rule (e.g., hits

10



</b>). Similarly, E3 will be extracted by R2 and E2 and E4 will be extracted by R1. The
algorithm ends when all the positive examples are covered.

Problem with this kind of supervised learning is the need for heavy manual
labeling of training pages. This is labor intensive, time consuming and needs regular
wrapper maintenance effort. So, automatic wrapper generation for data extraction is
becoming more popular over the years. In this technique, a single page (positive page) or
a set of pages are given with multiple data records and then it generates the extraction
patterns from the WWW. Common technique is to identify the data regions and data
records through string matching or document tree matching (Muslea et al., 1999; Zhao et
al., 2005; Liu, 2007). The string matching technique (discussed in section 2.2.A) needs to
identify the edit distance for matching and the document tree matching technique
(discussed in section 2.2.C) is needed for matching web presentation tree and its
alignment. For example, automatic wrapper generation from a set of positive pages by
tree matching based of “Road Runner” algorithm (Crescenzi et al., 2001) is shown in
figure 04. Here, authors use multiple sample pages: each contains one or more data
records. At the beginning, a sample page is taken as the wrapper. This wrapper is then
refined by solving the mismatches between the tokens of wrapper and each sample page.
Using this set of sample pages, a wrapper as regular expression is generated. Figure 04
shows string mismatch and tag mismatch and the generated wrapper after solving

mismatch between two sample pages.

11



- Wenppe v fomdbally Page 1): - sennle i Pugc 2

93 W “HTHL> parsing nl: <HTHL>

(1550 Books of- ‘ 3~ Bonka of

[EXH <R ug: <B»

0 Johe Szith iy ovin tpsetnaltoh (RPCHATA 4 ng s Paul Jones

oh: /B> t uhy 4B

0F LHE> tag wrentiloh (V) Gemm— 10 <THG sros.. . 0>

L 67: <UL

o7 LI [ <Li»

OB~ 101 <I»Titlar<f I $a-1i: <I*Tivlar</I>»

11: B Priner s siiy vt s b (BPODATA 132 X¥L at dHork

12 </LIs 13: <L

132 <LI» HET S L35 K

14-16:  <1>Title:</I> Hbet7:  <ITicle:</I>

172 Comp. By strang yutsn ard s BPCHATA ¢ {18 HTHL Scrapis :

18: </LI> t i FCE LD | N
{19: </ UL tag masrmatol (4) 207 <Li> |

0 </HTHL> 21-23: <D>Title:</ 1>

teymenad fay wooreh and P Jarascript
sguare il g —ad 252 <fLI»

- Wroapps v afte s solvang wesunibofie s ;3 z‘f;;:ﬂ.)

<HTHL:Books of (<BX8PCDBATAZ/BY

{ <IN sros.. ./ )7
<>
{ <LIxRI»Titla:</TPEPCDATA/LI> 37
< UL>«/HTHL»

Figure-04: Tree matching for Wrapper Generation (Liu, ACL Tutorial 2007).

Recently, Annoni and Ezeife (2009) modeled web documents as object oriented web data

model for automatic web content extraction. Section 1.3 discusses in details of this new

approach.

1.2.3. Web Page classification and categorization

Web page classification or categorization is the process of automatically assigning

web pages into a set of predefined categories. In general, certain types of web data are

usually found in certain pages of a web site. For example, an online product sales website

or Business to Customers (B2C) website contains a set of web pages and navigation

sequence (Ai et al., 2006) as shown in figure 05. This means, for example, that visiting a

12



Sales

record

webpage
Product Product Product Shopping

ioati i details . cart
Navigation [——= List — —
webpage webpage webpage webpage
I Y -4

Seller’s
information
webpage

Figure-05: Common B2C web site structure (Ai et al., 2006)
B2C retail store website like “Future Shop” (www.futureshop.ca), one first finds an index
page or product navigation page. Clicking on a link on this page brings up product-list
page, list of all products or certain category of products including product image, product
name, product Id, short description and price of each product are listed in product-list
page. Clicking to a specific product in the list will bring up product-details page, which
gives detailed information of that product and so on until we hit the “Shopping Cart”
page. User navigation is generally restricted beyond this page after putting personal and
payment information for buying products. Figure 06 shows the monitor page of
CompUSA.com, which is an example of product-list page. We will use this page of
figure 06 and example 1.1 (page 19) as running example in subsequent sections of this
thesis. We have selected product-list page because in the entire structure of a retail store
website (shown in figure 05), product list page is the most data-rich page for comparative

mining.

13


http://www.futureshop.ca
http://CompUSA.com

Navigation block Data Region-2 Data Region-1 Data Records Advertiiement
f wz?gwmm&@Mfﬁw&w&s%m Brgy 4 e n ittt \-‘

w Tria My Orbe D At dop
The AY New A . .
ot g «i‘«”m’ by . . :
; DRI E e ey LA S S . G Cards ¥ Lests ¢ Sates
3 o
”* d . . -
%4’%?‘ ‘/fﬁr oHY o mm wpd e o . R WAL W -
: N
§ S : . " & \: N mﬁ%w% |
§SUBCA?,EGORIES .2\{ -----||-:-iifh&ncnnn.-----}n.r-w------ié--nbn\\f}LQ“m '
[ -
bR aed: 0% 13 f}: - o s s ?Cm«x!e acecnt P
L : - s = Carporat, Sees
i;,?u,j ‘-Z §: H - Governsnd Edaug on §
eni® - H i » - AR
. HH 3wk -
§ T : Samsung P2STOHD 25 * & Sannspree STISDMSE 19» 5 & €Machne EISIHVb 19" g@w’%@?ﬁ% Cart g
P 1CD2® "% Wide LCD Monitor 2 3,de LCD Displsy wTy & 5 Class Bude LCD -
fn 1 2 g » TV Tuner ® Muner * ¥ Monttor
N 2 S SR - Be Sar wm. ¥ FED Boimasereen Bm hrmprs YD NB 8 Wi MM The ek arhas EIS HYD IS Class
. O » B Rdeacreen LB Slom or
D M DLt v T Tumenon kgn i an o e nes B S360H: 0003
Fuu LMoo waemmmasoao e - igion PR R o oviun
Ty g oy g (Rl b 9% 2 e 148 9% attrr sebide R 310099 =4
» Al ~HOREINFG . mm}‘

o e s (EERENE ool B
SHOP BY PRICE g

l-u---------u-----,'----- NN N NN A S VR SRR AR ARG RN

SelectYourPrice Range v J9 e E AREREARERE
-

BN RAYRARENARRANNANERSEAE

i
-
;

3 = :
. I ey ..
SHOP BY BRAND %: - @ 2
- &8 HH ;
P e nw R )8 L B i
P58 Perlpherahed 3 qsome V22339 : iSamsung BBAD2" 2 1 Viewsonic VX243
3 Deshoop 2Cs = 22" Wide LCD = 41080p LCD Momtor = 24* Class LCD Vionitor
& s/HDTY Tuner B W eronie VHAB wmch Class
”\{( s ys LLDs » \onitor E Eaoms % ED o Wibtasne M den sen ADLED Mor tor
e botks on ;g';; e o Z™™ D TDon v 15 xiCS0 . u NS
§ ";&Z o pio w i, Dwame 500 V&t e na = w 20> Dynauclom 676 HD-ED T, B
“otebooks Laprops SR 9 Dyrame » B RS 3o L OVEVCA BDTY Tanar 1 B GaECOPRe Tavas
Prrers B Ol 51709 TN RS s = mury 308 99
e sras 77 = ¢
Pro.cctary v S e
AUREATLY WS SR AW el SR eean  mEEE W

Figure-06: Data regions and data blocks
It gives brief information about different products such as product image, brand, model
or product number, short description, price and navigation to more information such as
details specification and user feedback. A set of all these information for a specific
product is called “data record”. Similar category data records are in general organized in
“data region” of a product-list page. Figure 06 shows data region-1 consists of six similar
category data records. Other nteresting information in a product-list page is set of
navigation blocks and advertisements. A navigation block consists of a set of pair of a
hyperlink or URL and a text Users read the text and if interested, click on that hyperlink

to bring up that page Advertisements are generally pair of hyperlink and image. This

14



image is about the product or company and the related hyperlink brings user to the
related page. Advertisements in general bring the user to a new website.
1.2.4. Web Data Warehousing

Data warehouse refers to a database that is maintained separately from the
operational database. It allows heterogeneous database integration with a variety of
application systems. Web content data are scattered in different web sources and need to
integrate in a warehouse environment for analysis and discovery process. In relational
database management system (RDBMS), data warehousing is comparatively easy
because data are historical and nonvolatile. But web content data are updated frequently,
it is volatile and not historical (Bhowmick et al., 1999; Dung et al., 2007). The
maintenance of a data warehouse based on the web content data is not easy in
comparison with company based conventional data warehouse. One potential problem is
the “multiform” of web data, which needs to convert into unified format to store in
physical database. For example, an image data needs to be extracted and stored in
different physical location with unique id and its reference needs to be stored in the
database. A mapping is required between the database and the physical location to get the
image. Some researchers adopted the web data extraction system in virtual approach
without creating physical data base and warehouse (Bornhdvd, and Buchmann, 1999;
Chawathe et al., 1994; Liu, 2007). In this system, the related data are integrated from the
WWW in real time on the fly as query response. This technique is called Web Query

Interface Integration.

15



[T Whvers wrt-wtee s 6 Yok3 SNt 1o Sravei

e e sz
H RE s e s mme N s e

¥

LT Bevssimporoneeesccsons s 3 s s o+

gt T T
g e >
e 2l Lo §

FEWho ks Quing oo RS sp?

£ e

P Thve dte ey R s as

LIRS R TR e

I B o

3 Do yuts B iy m»ummﬁs&?

fbof!fho«mxo HY y Tt 5T R

—

s PN e p—

FM o Wwwwgw s WWRWW ‘ Lmng fom De anum dals

o ¥ . ; F w o tovooreosbesooet § osbord BRI T B4 AR Feb v 26:§

el A .

FrEhag e e s %z%;m@% Moy~ 119 <7 2004 - ﬁ/@ Gmnuw ) thmmos ,
mﬁsmg«u V7 2} Tk ) 1 4|05

:ﬁ’»«: :Ezmwj or s éizg o

o v Wﬂ:ﬁ“ % it gf;lf Passengers  Prefored cabin
;: NA . f;m?jétéimgmw;:é 1 § EconO'ny/Coach

il

Figure- 07: Query interface from same domain of airline ticket reservation.
Web query interface integration provides a global query interface to the user so that user
does not need to manually query individual web source for required information. For
example, in case of airline ticket reservation of figure 07, two query attributes of
interfaces do not have matching attributes but their domain is same. To create a global
query interface for these interfaces, an efficient mapping is required for each attribute. In
this case, web content data from different web sources are not replicated and guaranteed
the consistency but there is no tight control over the quality of data that are usually
obtained from the data warehouse and sophisticated query optimization is not possible.

Other researchers adopt the data warehouse based approach (Zhu, 1999; Darmont
et al., 2002; Zhu et al., 2001; Dung et al., 2007). Most of the researchers in this area rely
on the already established Online Analytical Processing (OLAP). OLAP is a category of
applications and technologies that allow the collection, storage, manipulation and

reproduction of multidimensional data with the goal of analysis. The classical data

16



warehouse approach is not very adequate to deal with multiform data (e.g., texts, images,
sounds, videos etc). OLAP is also recognized as inefficient and ill-adapted (Darmond et
al., 2002). Zhu, et al. (2001) modeled a semi-automated approach to use the relational
model based star schema for transformation task for storing web data into existing data
warehouse. Darmont, et al. (2002) modeled a logical XML schema with DTD to
transform the multiform web data into XML document and then mapped to relational
database which contents were then remodeled in multidimensional way to store in star
schema based warehouse.

1.2.5. Mining Web Content

Web content mining is the overall process of discovering potentially useful and
previously unknown information or knowledge from the web content. It has four major
tasks; Resource finding, Information selection/pre-processing, Generalization and
Analysis. Web content mining research can be broadly classified into two streams. First
stream is the Information Retrieval (IR) and the second stream is the Information
Extraction (IE) from web page. There is a common misunderstanding about Information
Retrieval and Information Extraction (Kosala et al., 2000).

Information Retrieval (IR) process tries to retrieve all the relevant documents and
at the same time retrieve as few of the non relevant documents. Modern search engines,
web document classification are examples of IR process. For example, “google” is an
example of IR process. For any “text” keyword, its engine traverses in WWW, classifies
relevant web pages of given keyword and indexes them and returns result as per their
rank. Information extraction (IE) is the process of extracting the relevant or targeted

information from the given documents. Information extraction from general WWW

17



without any targeted fact is meaningless. This process focuses on specific web sites or
contents for extraction and often used in Web Content Data Integration (Liu, 2007) by
building a virtual database or finding the schema of web documents or building web
knowledge base (Kosala et al., 2000). IE process is also used as a part of web content
mining for building the web data warehouse. Annoni and Ezeife (2009) proposed
representing web documents as Document Object Model (DOM) Tree based object-
oriented model for web content extraction. Section 1.3 discussed about this model. Our
research area is in [E process and given below a motivational example for your work.
Motivational Example:

Develop a shopping planner that is able to answer the following type queries:

1. Given a product type, output all related products on sale around Windsor area
right now and advice the user about buying the product based on buyer feedback.

2. Given a flight trip plan from Windsor to Delhi, India with 2 night halt in London
and want to touch Frankfort airport on the way to Delhi, output all flight in
ascending price and advice the user about the best time and airline to plan the
rip.

3. List all journal and conference publications on “Sequential Pattern Mining” in
2010 by title, authors, journal/conference, place, page and date.

4. List all 177 LCD Samsung monitor selling around Windsor with price range less
then $200 and show the user graphical variation about its price in last 1 year and
where and when is the best time to buy.

5. List all songs by albums of singer Lionel Richie with option to play any music
with user event and show user feedback or ranking of the music.

To solve these problem queries using free web data we need to extract relevant
information from web and store into any central repository, we then need to either create
a data warehouse or analyze query for mining from the repository to result the user. One
thing we need to make clear at this point to distinguish our problem with similar

approach offer by “Web Query Interface” and “Web Service”. “Web Query Interface” is

discussed in section 1.2.4 and it is clear that it can not answer our query. The “Web

18



Service” is a new approach used in “Semantic Web” which generally deals with Business
to Business (B2B) data integration. Web Service is a proprietary service and needs to buy
the service from the service provider. Semantic web uses XML based Web Service
Description Language (WSDL) for enterprise data integration. It does not deal with free
HTML web information. Different provider companies’ offer their service or data to use
by other business or parties through semantic web and can use their service in buyer
Company’s business webpage. For example, “google tool bar” is a common web service
offered by “Google” to use by other business / corporate company web sites for search
option. Similarly, “Chapters”, “Burns & Nobles”, “Amazon” and “e-bay” web service
can be used to integrate book domain information integration.

Both “Web Query Interface Integration” and “Web Service” gives instantaneous
information and do not hold any historical information. Our system deals with free
HTML web information and need historical events to answer these queries. In this thesis,
we are working for data extraction problem from the web toward answering the
motivational example queries above using object-oriented web data model and we state
our thesis problem as following example 1.1:

Example 1.1: Given a product list web page of a retail store shown in figure 06, extract
all types of information like:

(i) Those related to data records such as product image, product brand,

product id, short description, product price.

(ii)  Navigation information such as link URL, link id or name.

(iii)  Advertisements such as product advertised, image, URL links to related

website.
The extracted information will be stored in the database for comparative mining and

querying.

19



1.3. Object Oriented Web Content Extraction

Annoni and Ezeife (2009) propose an object-oriented web data model for
extraction and mining of full diversified web data including contents and page
presentation structure. They modeled web data as web content objects and web
presentation objects to address a unified way of mining unstructured, loosely or strictly
structured data. They divided the web documents into three zones; header, body and foot
zone, based on value in content mining and their physical location in web browser. They
assumed that a web document should compose of at least one zone object (i.e. body zone)
and up to three zones (i.e., header zone, body zone and the foot zone). In web browser, a
header zone located at top of the web page, foot zone at bottom of the page and the body
zone is the main body of the web page between header and foot zone. The header zone
usually consists of page identification information, company logo image, company name,
advertisements. This zone is useful for extracting information about the page content,
metadata but does not have any importance for data contents and its mining. The body
zone is the basket that contains the page contents and most important for content mining.
At the same time, it is also crucial to clean effectively for extracting real valued contents.
The footer zone usually contains the copyright information, advertisement, and links that
have no value in terms of content mining. A web page usually contains a set of hypertext
presentation tags including the customs tags defined by page designer. Annoni and Ezeife
(2009) propose not to evaluate all the tags of a web document. They tried to ignore less
valuable presentation tags of the web page because this is time consuming and is not
always meaningful. The question is how these zones and their boundaries are to be

identified. A well formed HTML page tag format is

20



<htmI><head></head><body></body></html>. This hierarchical format indicates that all
the tags of a page should be within the root tag <html> and then it has two child tags
<head> and <body>. All the information within the <head> tag is the header information
and the content data are within the <body> tag. But the real time web page presentation
format is not so simple. Lots of different pre-formatting information, styling information,
embedded client side and server side scripting programs in different languages, flash
programs, meta data are the puzzling problem for efficient page content data extraction. It
is easy to identify that the meta-data, scripting functions have become part of the header
zone information but there is not necessarily a clear boundary between the header zone
and the body zone.

Annoni and Ezeife (2009) suggest two tag series (a set of at least five or more <a>
or <area> sibling tags) to distinguish the boundary between these zones. An <a> or
<area> tag in an HTML file represents navigation URL. They observed that, a set of first
five or more sibling <a> tags indicate the starting of body zone and called it series-1. The
last set of five or more sibling <a> tags indicate the end of body zone of a typical web
page and they called it series-2. They used two hypotheses for searching these series as
follows:

1. If the search process of series-1 goes over half of the DOM tree size, the web
document does not have header zone and series-1 is empty. The body zone’s
first tag is the first region node child of the closest region node in the sub-tree
of “body” root.

2. If the search process of series-2, from half size of the DOM tree to its end

returns null, the web document does not have foot zone and body zone’s last

21



tag is the last region node child of the closest region node in the sub tree of

“body” root.

[ 118 i

7 b 1% H

1 rled> il azle>

TN Header Zone |4 w

4 ea> 12 7

£ chty 118 4>

Y S e e P - “E'egf(; t;; Tom N

8 < L-tomophone™s 3 fatler

§ <G o itp tattercomeorass 1oz danex Series 1 )137 <y

it <3 my="gpplatons campagns.campaignieriplate asoCampanD=73" 13 -

13 <g o= ltps ! oy Compusa coregisesardarTrack asp 4 += Tracx My Order 13 dzles

15 <3 g= Mitps / s CorpuSa corvsecure orderogn asgPPG=1 < By Acoourt > 31&5 ~1f>

7 <3 o= secturs helpmdex asp  e=HelpD i 148 <

1 € o dzde>

il 4> 18 16>

A <37~ hitp v corrause com > 15 <

Pl <3~ o retadstores corpusaStores index asp > 15 <ghe

b < rie hlp ‘eompusa shoplocal com comausaldefault aszxachon=enty, » 156 <oy

z 4 o= apheatens.gfcard goad asp 7 edby WEEEEEE - b= 50>

& - areisectors wishhst ner vshist asp> 1 <p

ki @ seutazlogn asa™ W il o e e o omn e we e s s
3 < B < d-footstrp s Region tag
¥ o | 19 4y

B dabe =N Region tag |47 gl andeatons camoa gracarsagntengate as CarpaniD=">
% ¢yl b <@ ip aughcatiens sampagneansagatenpate aspCarpa gall="3 »
¥ <t agea oi-4EEEETE wir= 150" M gl goctors aboutus pary asp >

% ks Body Zone Pt <t o aopheat v evallemalranager aso - Series 2
g - a4 W <abrsf=" 155 ndex 357 ¢ 3207 Mhlnk

& g - P <aht 7155 inden asp >

8 Sy M szar

ul <f V2] <6 .= foud singd »

L <t 3o =#(C0000 %% s hgr=lef L fe= oadding 4o O 2o dpx float ek wadth 210 »

18 sge v #EEEREE gz =4 a Ao =it o>

10 dri=aopt m 1 -=Tatnght oth T > Foot Zone
ol ¥ 2% e

L <gw bid <& 4 o= postion axsole b 220 paddng dox rargn Lox 20 Opx oe heigh
i b b NE

M2 o P2l LR
m <afer ! 25 FE T

Tt e Soen WL ML e o T R PR R R - Y, W

Figure 08: DOM tag tree of CompUSA.com web document for figure 06.

In case of our running example, figure 06 at page 14 shows the page what a user
sees in a web browser. The internal page tag structure of figure 06 is given in figure 08
above (generated by XML viewer interface, a product of Altova.com). This hierarchical

tag structure represents a tree for the entire webpage and illustrates how the contents of

22


http://ofCompUSA.com
http://ofAltova.com

the webpage are shown to the user. Web contents that are seen in figure 06 are embedded
between these tags in this tag tree. Figure 08 shows line number of each tag and the
symbol “@ > represents embedded hidden tag in between the given tag at that line. The
symbol “® ” represents open embedded tag. We kept some child tag structure hidden to
keep the figure 08 readable to reader and to identify easily the sibling tag structure. Any
gap in line number indicates embedded child tags. For example, in figure 08 line numbers
jumped from 58 to 69, that means there are 10 lines of hidden embedded tags at line 58
<div> tag and indicated by the symbol “@® . Here, line 7 starts with a region tag that
consists of two data navigation block “<div>" starts at line 8 and 20. Line 9 to 17
indicates the first five sibling <a> tags as per Annoni and Ezeife’s (2009) definition and
identifies as series-1. So, line 7 region tag clearly distinguishes between header and body
zone. Similarly, line 207 to 217 indicates the last six sibling <a> tag series which is
identified as series-2. So, the region tag at line 193 clearly distinguishes between the

body zone and foot zone.

1.4. Thesis Contributions

This thesis includes lots of pre-processing work to prepare data for mining that
are not addressed by Annoni and Ezeife (2009). We developed the architecture (we call it
WebOMiner) for extraction and mining of web contents using object-oriented model. Our
architecture has 4-modules: crawler module, cleaner module, extractor module and miner
module. We developed algorithms for crawler module, modified freeware software

“tagsoup” (http://home.ccil.hangorg/~cowan/XMIL /tagsoup) for cleaner module, modified

and enhanced algorithms for extractor module initially developed by Annoni and Ezeife

23


http://home.ccil.hangorg/~cowan/XML/tagsoup

(2009) and developed algorithm for miner module. We introduced an approach of

generating and using automata for mining web content objects. The following are main

contributions of the thesis in extractor and miner module of WebOMiner system:

1.

We define data block and data region to ensure consistency between related data
that is not addressed by Annoni and Ezeife’s (2009). We therefore modified their
ProcessContentSibling() algorithm to identify data block and data region.

In web page, information about content usually reside as tag attribute. We address
to relate HTML tag attribute information with related contents to ensure
identification of content, to assign object and other information together.

We define object class hierarchies according to our problem domain and defined
schema matching to unify similar contents from different web sites.

We identify noisy contents in data block and prevent them entering into database
table.

We implement and materialize object-oriented data model for web content and
extract heterogeneous related web contents together.

We define a mining algorithm that identifies data block, generates a Non-
Deterministic Finite Automata (NFA) based wrapper for extraction of related
contents. Then classifies all data blocks of a web page according to their type and
checks minimum support to ensure data consistency before entering them into

database.

This thesis proposes a two level mining process. The first level mining (as discussed

above) extracts and classifies content data from noisy flat object array defined by Annoni

and Ezeife (2009), which is ready to enter into database table. This thesis then

24



recommends data warehouse and second level mining for deep knowledge discovery.
Second level mining is similar to traditional data mining process, so excluded from the
scope of this thesis work. We also study the advantages/benefits of this new approach
over the existing approaches and conducted performance analysis. The second level

mining is beyond the scope of this thesis work.

1.5. Outline of the Thesis Proposal

The remainder of the thesis is organized as follows: Chapter 2 reviews related
work to this thesis. Chapter 3 details discussion of the problem addressed along with the
new algorithms proposed. Chapter 4 gives performance analysis and experimental results.

Chapter 5 draws the conclusion of this research and discusses future work.

25



2. Previous/Related Work

Our research area of web content mining is in Information Extraction (IE), which
is focused on structured data extraction techniques and classified into three categories:
wrapper programming language, supervised learning like wrapper induction, and
automatic wrapper generation. Related works in this chapter are organized as wrapper
programming language in section 2.1, wrapper induction in section 2.2, and automatic

wrapper generation in section 2.3.
2.1 Wrapper Programming Language

Wrapper programming language provides some specialized pattern specification
languages to help user construct extraction programs. Most of them provide visual
interface to hide their complexities under simple graphical wizards and interactive
processes. There is a wide body of research on Wrapper Programming Language based
extraction and some examples are Lixto (Baumgartner et al., 2001), DEByYE (Laender et
al., 2002), Wargo( Rapaso et al, 2002), WebOQIL (Arocena et al., 1998) and
WICCAP(Zhao and Ng, 2004). All these extraction systems use Graphical User Interface
(GU]) to interact with user input and hide internal complexity from the user. Lixto system
internally uses logic-based declarative language “Elog” for extraction of content element
from targeted web page given by user in GUI. Resultant outputs are given in XML
format. Wargo system internally relies on two wrapper programming languages:
Navigation SEQuence Language (NSEQL) for specifying navigation sequence and Data
EXTraction Language (DEXTL) for specifying extraction pattern. We discussed the

DEBYE, and WICCAP System below in section 2.1.1, and 2.1.2.

26



2.1.1 DEBYyE: Data Extraction By Example

DEBYE is an interactive tool that receives as input a set of example objects taken
from a sample Web page and generates extraction patterns that allow extracting new
objects from other similar pages (e.g., pages from the same Web Site). DEBYE features a
GUI that allows the user to assemble nested tables (with possible variation in structure)
using pieces of data taken from the sample page. The tables assembled are examples of
objects to be identified on the target pages. From these examples, DEBYE generates
object extraction patterns (OEP) that indicates the structure and the textual surrounding of
the objects to be extracted. These OEP are then fed to a bottom-up extraction algorithm
that takes a target page as input, identifies atomic values in this page, and assembles
complex objects using the structure of the OEP as a guide.
2.1.2 WICCAP : From semi-structured to structured data

Web Data Extraction System (WICCAP) uses Web Data Extraction Language
(WDEL), which is one kind of scripting language to provide features transforming web
data. Basic unit of this language is symbol, which represents the nodes of trees. A symbol
can have a set of sub-symbols. A Term is used to represent a tree. A Term in tree

language can be mapped into tree graph. For example a Book Domain tree language is

TN
4 JBusines Books
g Al
- ~
/,—"/ AN
o \”\
e -
/1\’\ PR -~
LY i Book2 Y Books
’> - A \? <
a b a
/ \'\ \\- ' \\
5, . I \
o "{ P, ~ - o £ /}L‘ >
K L Price I : xummlf N Price ™~ Authe \’ Prive
A A R KN A
2N Alrst Popaban Bom e l\ Mgt Popul v feean
" i ' /}'

Figure-09: Logical view of WDEL language

27


file:///Pn~e
file:///nttioy

given above can be represented logically as tree graph shown in figure 09. Note that,

Business Book(Bookl), Business Book(Book2) and Business Book(Book3) are three

different Terms, because they represent three distinctive tree under Bookl, Book2 and

Book3 in tree graph. The authors defines the tree grammar as 4-tuple, G = {S, N, F, R}.

Where, S = Set of root symbols, N = Set of Non-terminal symbols, F = Set of symbols

and R = Set of generation rules. Where, Se N and Ne F, R is in the form 4 — S, here 4 is

a non-terminal node and £ is a term over F. For a given Term in figure x:

Business _Book(Bookl (317.49,Greg)), the replacement of book title Bookl by #book,

price 317.49 by #price, and author name Grag by #name will enable to symbolize the

Term as : Business Book(#book(#price, #name)). Therefore, the grammar for extraction

of Term can be represented as follows:

F = {Business_Book, nil, #book, #price, #iname, WICCAP, Book, Price, Author}

S = {WICCAP}

N = {WICCAP, Book, Price, Author}

R =

WICCAP — mil

// WICCAP = root symbol of the grammar

//Generation rule starts with root symbol

WICCAP — Business_Book(Book}
Book — #book (Price, Author)

Price — #price
Author — #name

The absolute paths for physical structure of web contents in WWW are in general

complicated. So authors use mapping of physical structure with their logical view in tree

graphs as shown below:

<A HRIT="URI"> LRI

(a1 Full Pash

Bunkd

Businwess - N\E
Bk, N

Mapping Buokd

th Collapse

28



Therefore rules need to redefine as (A) below and this mapping raises the need for

another grammar to describe the physical paths shown in (B) below.

WICCAP — ml PhyStr — mapping(Link, PhyStr)
WICCAP — Business_Book (PhyStrl, Book) Link — text (URI),

Book — #book (PhyStr2, Price, Author) URI — #pcdata

Price — v (PhyStr3, #price) | loc (Pattern), Pattern — #pcdata
Author —v (PhyStr4, #name) | pathexp (Path), Path — #pcdata

| fromcode (Form), Form — #pcdata

(A) (B)

These grammars describe the schema of original web documents to be extracted, schema
of extracted data and relationship between them. WDEL script is an instance of Terms
that can be generated corresponding to WDEL grammar. WICCAP generates the output
in portable XML data format that can easily be stored in relational database or can be
viewed as required.

Main problem for wrapper language based extraction system is their reliability on
diversified wrapper languages. None of these languages are standard, used by vast users
and therefore fail to become popular in vast user community.

2.2 Wrapper Induction

Wrapper induction is either supervised or semi-supervised learning process for
extraction and mining of web contents. It needs a set of sample web pages (called training
pages) for user to define marks / labels to learn extraction rules from these training pages
first. Then the same rule is applied to other pages of the WWW for information
discovery. We now like to discuss about three popular algorithms that most of the
Information Extraction (IE) systems use. These are String Edit Distance, Center Star

Method, and Simple Tree matching algorithm.

29


file:///fromcode

(A) String Edit Distance:

String edit distance is a popular and widely used string matching/ comparison
technique to find the same type encoded instances. The edit distance of two strings, s;
and s, is defined as the minimum number of point mutation required to change s, into s..
The point mutation may be to change a character, insert a character and delete a
character. If ¢; and ¢; are two last characters of s; and s, respectively, then edit distance
between s; and s, can be denoted as d (5;, s2)=d (s;.+tc1, s2tcy). If p (c;, c2) denotes the

penalty for changing, inserting or deleting a character, then

( ) 0,if ¢, =c,

c,c,)=

PG & 1,otherwise

For example, let s; = XGYXYXYXand s, = XY X Y X YT X are two strings. The edit

distance is computed as follows:

d(s1,s2)
(| s1|+|s2])/2

ED (S 1 S2) =
The edit distance matrix is given in figure 10. The final edit distance value is 2, which is
the value in the bottom right corner cell. Figure 10 also shows the trace back path. Notice

that a diagonal line means match or change, a vertical line means insertion, and a

horizontal line means deletion. Thus, the final alignment of our two strings is:

Y -
Y T

S G Y Y

X X X X
82! X - Y X Y X X

The time complexity of the algorithm is O (]s/||s2|) to fill the matrix.

30



5 X 6 Y X Y X Y X

s2| 0w 1|23 ]4|5]|8]|7]8
X| 1| os=tf 2|23 ]a]8]5]|7
Y211 1d2]z|4]5]s
X|3]2 21423 ]4]¢
vy 4|ajalz|2]1d2]2]4

- -~ -
x|5]4]4]3]2]2 ’z,ﬁz 3
y|le[s|s[a]3]2]2[12
Tl7 5|65 [4]23][3]242
xle|r]|7]a|s]ala]af2

Figure-10: Edit distance matrix and back trace path (Liu, 2007).
(B)  Center Star Method:

It is a classical technique for multiple string alignment. Chang et al., (2001)
introduced it for data extraction based on alignments of HTML strings. In this method a
set of strings are assumed as aligned as ‘S’. A string s. is selected as center string that
minimizes:

D o ASH(Ser®1) o Equation (3)

Here, d (s, s,) is the distance between two string s. and s,. The algorithm then iteratively
computes the alignment of the rest of the strings with s.. Figure 11 illustrates an example
of string alignment using center star method and latter we will illustrate how it is using
for web content extraction.

Let us have three strings, S = {ABC, XBC, XAB}. According to Center Star
method, first string selects as center string. So, ABC is selected as the center string s, and
initializes multiple sequence alignment M by string ABC. Now we need to align other

strings iteratively with respect to ABC.

31



[teration 1: Align c* (=s.) with s = XBC:
c* A B C
|
s X B C
UpdateM :A B C —> A B C
X B C
Iteration 2: Align c* with s = XAB:
c* : - A B C
I
s": X A B -
UpdateM : ABC—> - A BC
XBC - XBC
X AB -

Figure-11: Example of Center Star Method
In figure 11, next string “XBC” is taken from the set S and aligned in iteration 1 by
matching character B and C. The algorithm then updates a multiple sequence alignment
M by including XBC aligning B and C with center star. Next, empty space is created to
each string in M to accommodate for next alignment. In iteration 2, it aligned XAB
matching A and B with center star and update M accordingly. There is a question of
aligning ABC and XBC in iteration 1 since we don’t know which of the following

alignments is better:

(M A B )
B

S
w ™
ol®!

- C
X C

The authors did not resolve the problem in the paper. If there are k strings in S and all
strings have length n, then time complexity of pair-wise alignment is O(kn’) and overall
time complexity is O(’n’). So, this algorithm runs slowly for pages containing many
data records and /or data records containing many tags.

(C) Simple Tree Matching:

Tree matching technique is similar to the string matching technique. It is

introduced by Yang et al (1991). Zhai et al. (2005) used this Simple Tree Matching

32



(STM) algorithm to extract web data in flat and nested records. This algorithm associate
minimum set of operations needed to transform one tree to another. In this classic
formulation, the set of operations used to transform one tree into another includes, node
removal, node insertion and node replacement. Algorithm takes two inputs: root of the
tree and a threshold value, and outputs extracted data in relational table.

For a given tree root, if tree depth > 3, the algorithm recursively traverses down
the tree and performs matching operation between two child sub-trees of a node. It then

aligns and links matched data items. For figure 12 below algorithm compares root of two

X) (Y)
Figure-12: Tree Matching and aligning in (X), Aligned data nodes under N1 in (Y)

sub-trees A and B of input tree first (for example, sub-tree under node N4 and N5 of
figure 12(X)). If roots contain identical symbols, then the algorithm recursively finds the
maximum matching between first-level sub-trees of 4 and B and saves it in a # matrix.

Maximum matching between A and B is denoted by W (4, B) and defined as below:

M il
wias=" TR =R
mf 4. .40 B BoY~1  otherwise
Wi =0 { represents au empty sub-tiee hst
mils r=mi, st=0 s matches any non-empty sub-free list
A A (B, B = maxian{d; Aih By By~ Wid, B}
?HH;'}I -i§> {B; B” ;’}

miiA, ded B B,

33


http://siib-ti.ee

W(A,B) is a matrix populated based on weight parameter. If root of 4 and B do not
contain identical symbol, the weight is zero. Otherwise, its value will be based on the
number of pair node matching of their sub-tree. The definition of m(.. , ..) is similar to
string edit distance but authors compute the maximum matching rather than distance.

To find the maximum matching between sub-trees N2 and N3 of figure 15(X),
their root compared first. Since N2 and N3 contain identical symbols, M5, 3[3, 2] +1 (as
per Ra = Rp condition in above W(4,B) equation, here 2, 3 denote Node N2 and N3) is
returned as maximum matching value between trees N2 and N3. M, ; matrix is computed
based on W, 3 matrix. Every entry in Wa_3[i, j] is the maximum matching between i and
jth first level sub-trees of A and B. At level N4-N35, t2-t4 and t3-t5 are matched, so they
are aligned and linked. At matched level N2-N3, it will only align N4 sub-tree and N6
sub-tree as shown in figure 12(Y), N5 will be omitted since it has same structure as N4.
In this case, t2-t8 and t3-t9 are linked. T1 and t7 also linked as they matched. N4 is
marked with “*’ in figure-12(Y) as it is turned into prototype data record of match
algorithm.

(D) DOM Tree building:

Building DOM tree from input pages is a necessary step for many data extraction
algorithms. There are two existing approaches for building DOM Tree; Using Tags Alone
and Using Tags along with Visual Cues. First approach only uses the tag pairs (e.g., start
tag <> and end tag </ >) for building the DOM Tree but HTML mark-up language also
allows non-pair tags (e.g., <br />) as well as freedom from the necessity to close some

inline tags (e.g., <li>, <hr>, <p>, etc). HTML is a flexible mark-up language and page

34



designer’s error in using tag is mostly accepted. So, DOM Tree building by using the Tag
Alone requires HTML code cleaning before building the tree.

Second approach is using the Tags and Visual Cues, which use the visual
information (i.e., the physical location of the information on the computer screen by using
web browser) along with the rendering tags. This approach is more robust because of its
error tolerance. In this approach, four boundaries of the targeted rectangle of web page
are located first by calling any rendering engine of a browser. It then follows the
sequence of open tags and checks for containment to build tree. Containment check

means checking if one rectangle is contained in another. In figure 13, there are three

left right tep botiom
I «~table> 160 360 200 400
AN S { 160 300 200 300
3 <tdr deal <ed> (100 200 200 300
4 <fdd>datal <otd> 2000 360 200 300
5 N v 100 300 300 400
6 <td> datad = td> (100 200 300 400 table
7 <td> datad 260 300 300 400 ir te
g =t /\\ /\\
§ </table> td td  wd d

Figure-13: Boundary co-ordinates and resulting tree (Liu, 2007).
errors in HTML tag structure at lines 3,4 and 7 but this HTML segment can be rendered
correctly in a browser. Boundary condition is shown in the figure which can be used to
build the tree shown in the right side of figure 13.
2.2.1 STALKER: Hierarchical Approach to Wrapper Induction
Muslea et al., (1999) introduces this supervised learning approach, where a set of
extraction rules is learned from a collection of manually labeled pages or data records.

The rules are then employed to extract target data items from other similar formatted

35



pages. Data are embedded into the webpage in presentation tag tree. To extract data from
any node of interest, the wrapper uses the presentation tree of the webpage and defines a
set of extraction rules including Start Rule and the End Rule. The Start Rule indicates the
starting point of the data extraction and the End Rule is the rule where to finish the
extraction. Muslea et al., (1999) developed “Stalker”, which is the main algorithm for
wrapper induction. An example of this algorithm is given below:

Consider a data block representing the address and phone number of chain

restaurants. The presentation tree and a training example data are shown in figure 14

1: <p> Restaurant Name: <b>Good Noodles</b><br><br>
2: <li> 205 Willow, <i>Glen</i>, Phone 1-<i>773</i>-366-1987</1i>
3: <li> 25 Oak, <i>Forest</i>, Phone (800) 234-7903 </li>
4. <1i>324 Halsted St.<i>Chicago</i>Phone 1-<i>800</i>996-5023</1i>
5: <li> 700 Lake St., <i>Oak Park</i>, Phone: (708) 798-0008 </li></p>
(a) Training Data
Tuple: Restaurant
String: Name Set: Addresses
String: String: Integer: String:
Street City Area-code Phone
(b)

Figure-14: (a) Training data blocks, (b) Logical presentation.
Figure 14(a) is an example training page of Good Noodles restaurant having four
distinctive branch addresses. This page shows its name in line 1 and then followed by

four data blocks shown in line 2,3,4,5 showing addresses of its branches. We want to

36



extract area code of phone numbers from all branch addresses of this restaurant. The

wrapper needs to go through the following steps for extraction:

2. Identify entire list of addresses. We can use the start rule SkipTo(<br><br>), and the
end rule SkipTo(</p>) ( note: A different rule is required to reach the data block).

3. TIterate through the list (lines 2-5 in figure 14(a)) to break it into four individual
records. To identify the beginning of each address, wrapper can start from first token
of parent and repeatedly applies the start rule SkipTo (<li>) to the content of the list.
Successive address starts from where the previous one ends. Similarly, we can use the
end rule SkipTo (</li>) to identify the end of each addressj

4. Once each address record is identified, we need to use disjunctions. Possible

disjunction Start Rule and End Rule can be as follows:

Start Rule End Rule
R1: SkipTo( () SkipTo() )
R2: SkipTo(-<i>) SkipTo(</i>)

Once wrapper is generated, it is applied to other web pages that contain similar data and
are formatted in the same way as the training examples. So, if the web site presentation
changes, it needs to repair the wrapper. The verification of wrapper’s validity in advance
of any change is a big problem until we identity the garbage data. Secondly, it is not easy
to be able to repair the wrapper automatically with the identification of change in
webpage.
2.2.2 IEPAD: Information Extraction Based on Pattern Discovery

[EPAD (Chang et al, 2001) is one of the first IE systems that generalize

extraction patterns from unlabeled Web pages. This method exploits the fact that if a

37



Web page contains multiple (homogeneous) data records to be extracted, they are often
rendered regularly using the same template for good visualization. Thus, repetitive
patterns can be discovered if the page is well encoded. Therefore, learning wrappers can
be solved by discovering repetitive patterns. IEPAD uses a data structure called PAT
trees, which is a binary suffix tree, to discover repetitive patterns in a Web page. Since
such a data structure only records the exact match for suffixes, [IEPAD further applies the
center star algorithm (discussed in section 2.2(B)) to align multiple strings which start
from each occurrence of a repeat and end before the start of next occurrence. Finally, a
signature representation is used to denote the template to comprehend all data records.
For example, in the following web page shown below contains repeating pattern and so

can be used as input to IEPAD.

<htmI><title>xyz</title>
<body> Book name </b> Data Mining
<b>Reviews</b>
<ol><li>
<b>Reviewer name</b> Jeff
<b>Rating</b> 2
<b>Text</b> Some text-1
</li>
<[i>
<b>Reviewer name</b> Jane
<b>Rating</b> 6
<b>Text</b> Some text-2
</i>
<fol>
</body>
</html>

By encoding each tag as an individual token (e.g., “T”) and any text between two

adjacent tags as a special token “T,” IEPAD discovers the following pattern with two
“<Ii><b>T</b>T<b>T</b>T <b>T</b>T</li>"

occurrences. The user then has to specify, for example, the second, fourth, and sixth “T”

tokens, as the relevant data (denoting reviewer name, rating, and comment, respectively).

38



2.2.3 Instance based Wrapper Learning

Zhai and Liu (2007) introduced this instance-based wrapper learning, which is
another approach for wrapper building without learning extraction rules. It extracts target
items in a new instance/page by comparing the prefix and suffix token strings with those
of the corresponding items in the labeled example. If some item in an unlabeled example
cannot be identified, it is sent for labeling. The need for labeling is to identify and
handling for any missing item in the page. Let us take an example for extracting “name”,
“image” and “price” of a product from a web page. The template (7)) for this extraction
can be represented as below:

T, = Palyapes POipages PO prce)
Each pat, in T, consists of a ‘prefix’ string and a ‘suffix’ string of item ‘/°, for example, if
product image is embedded in the following presentation tag source:
... <table><tr><td> <img> </td><td></td> ...
then we can use the following pattern to identify token:
patimg = (img, prefix:0<table><tr><td>0, syffix: O</td><td></td>0).

For each unlabeled example ‘d’, it tries to identify every target item in ‘d’ by matching
the ‘prefix’ and ‘suffix’ tokens. It saves the candidate sequence of tokens which are
partially matched and if a sequence of ‘prefix’ and ‘suffix’ tokens match uniquely, the
targeted item is extracted. All those partially matched sequences are then discarded. If
any token does not match it calls a function for labeling the token. The label page
function tries to identify if the targeted token is missing or not. If it found it as missing,
the entire token identifies as partially matched sequence. The key to instance-based

learning is the similarity or distance measure. It measures whether an item in the new

39



page is similar to, or is of the same type as a targeted item in a labeled page. Figure 15

below shows how we can identify target item “price” from an HTML source:
prefiv: ~<rable> <tr»  <ul> <g b price

- b

- “ap <brag

- <<l 3 < i;‘*iz 5 Vib;\{:ﬁ}

- “reny b

HTML
source of the i 3 4
CLo~tde <font> <b>, L <td> <font> <i> <b> ... 3

8 o 10 15 16 17 18
s < i <> $25.60 ...
! 22023 24 33
i ... <br> <font> <> <b>
65 66 67 68
| N "

— — |

Figure-15: Similarity measure for identifying “price”
In figure 15, five tokens “<table><tr><td><i><b>" are saved as prefix string of item
“price” from a labeled example. For a given HTML source shown in figure 15, we found
four <b>’s, three <i><b> together, and only one <td><i><b> together, which match
some prefix tokens of “price” that can be defined as “sufficient match” for identifying
“price” item.

Wrapper induction techniques become more popular then wrapper language based
approaches because of its freedom to use popular programming languages. But still it
suffers for the requirement of heavy manual labeling of training pages. This is labor
intensive, time consuming and needs regular wrapper maintenance effort. So, automatic

wrapper generation for data extraction is becoming more popular over the years.

40



2.3 Automatic Wrapper Generation

Researchers studied the problems and limitations of wrapper induction and
concluded that automatic or unsupervised extraction is possible, because data records in a
web page are usually encoded using a very small number of fixed templates or patterns.
Their study focused on two types of extraction process: Extraction based on single page
and Extraction based of multiple pages.

For automatic extraction based on single list page, the entire web page code as a
single string ‘S’, which contains k& non-overlapping substring s;, 5, $3.....8x with each s;
encoding an instance of certain set type and contain a collection of non-overlapping sub-
substring of tuple type. For example, figure 06 (page 14) shows two data regions: Data
Region 1 and Data Region 2. We can represent them by two substrings s; and s, of that
web page string °S’. Substring s; contains a set of non-overlapping data records, s; = enc,
(i1, iy 13, 14} and s = enc; {i), iy, i3...}. Here, s; contains four encoding of data records,
ency (i), j €{1, 2, 3, 4} of tuple typeo,. Similarly, substring s, contains data encoded
records enc; (i), j €{1, 2, 3...} of tuple type o, . An algorithm needs to work on the string

‘S’ to find each substring and construct the tuple type by generating a pattern from each
substring representing the mark-up encoding function enc;.

For extraction based on multiple pages (Grumbach and Mecca, 1999), input
consists of a collection of ‘A’ encoding, enc (i)), enc (i), ...., enc(iy of instances of type
o, where a collection of ‘6> HTML strings encodes ‘k’ instances of same type. An

algorithm works on the encoded instances and constructs a pattern.

41



2.3.1 RoadRunner: Towards Automatic Data Extraction from Large Web Sites
RoadRunner considers the site generation process as encoding of the original
database content into strings of HTML code. As a consequence, data extraction is
considered as a decoding process. Therefore, generating a wrapper for a set of HTML
pages corresponds to inferring a grammar for the HTML code. The system uses the
ACME matching technique to compare HTML pages of the same class and generate a
wrapper based on their similarities and differences (figure 4, page 12). It starts by
comparing two pages, using the ACME technique to align the matched tokens and
collapse for mismatched tokens. There are two kinds of mismatches: string mismatches
that are used to discover attributes (#PCDATA) and tag mismatches that are used to
discover alignments, RoadRunner adopt UFRE (union-free regular expression) to reduce
the complexity. The alignment result of the first two pages is then compared to the third
page in the page class. In addition to the module for template deduction, RoadRunner
also includes two modules, Classifier and Labeler to facilitate wrapper construction. The
first module, Classifier, analyzes pages and collects them into clusters with a
homogeneous structure, i.e., pages with the same template are clustered together. The
second module, Labeler, discovers attribute names for each page class. iterators (+) and
optional (?). Figure 4 (page 12) shows both an example of matching for the first two
pages of the running example and its generated wrapper. Since there can be several
alignments, RoadRunner adopts UFRE (union-free regular expression) to reduce the
complexity. The alignment result of the first two pages is then compared to the third page
in the page class. In addition to the module for template deduction, RoadRunner also

includes two modules, Classifier and Labeler to facilitate wrapper construction. The first

42



module, Classifier, analyzes pages and collects them into clusters with a homogeneous
structure, i.e., pages with the same template are clustered together. The second module,

Labeler, discovers attribute names for each page class.

2.3.2 DEPTA: Data Extraction based on Partial Tree Alignment

Zhai and Liu (2006) introduced this enhancement of Simple Tree Matching
algorithm (discussed in section 2.2.C) for web content data extraction. In their algorithm
of partial tree alignment, authors align multiple DOM trees by progressively growing a
seed tree (7). The seed tree is initially picked to be the tree with the maximum number of
data fields. The reason for choosing this seed tree is to have a good alignment with data
fields in other data records. Then, for each 7,(i#s), the algorithm tries to find for each
node in 7, a matching node in 7;. When a match is found for node 7.,/j/, a link is created
from T.[j] to T[k] to indicate its match in the seed tree. If no match can be found for
node 7,/j/, then the algorithm attempts to expand the seed tree by inserting 7,/j] into T.
The expanded seed tree 7T is then used in subsequent matching. Figure 16 shows aligning

multiple trees:

laitial Rer §

{ ’evfri
T 3\0 sode mserted
sox {8 N
®) j ggﬁhm o
\ )
S, aml B
containg anly T,

VIOICINIO,

Figure-16: Iterative Tree alignment with two iterations

43



The partial tree alignment algorithm input a set of trees, S= {7}, T, and T3}. Initially it
sorts § by descending order according to not aligned data items. then sets 7; as 7; and
remove T, from S. It then aligns each of the rest trees against 7 until end of trees in S.
For next unaligned tree, the algorithm matches tree and finds all the matched pairs by
tracing the matrix results. In Figure 16, Ts and 7> produce one match, node b, whereas
nodes n, ¢, k, and g have no matching nodes in 7. it then attempts to insert them into 7.
In Figure 16, none of the nodes n, ¢, k, and g in 7> can be inserted into 7; because no
unique location can be found. So it inserts 75 into R, which is a list of trees that may need
to be further processed. Since T3 is the last tree in S, when matching 73 with T, all
unmatched nodes c, h, and k can be inserted into 7. Thus, 73 will not be inserted into R
and set “flag :=true” to indicate that some new alignments/matches are found or some
unmatched nodes are inserted into 7. It then check for stopping conditions: “S = 0, and
flag = true”, which means that we have processed all the trees in S, and some new
alignments are found or insertions are done. Then, trees in R should be processed again.
In Figure 16, T is the only tree in R, which will be matched to the new T in the next
round.

2.3.3 Modeling Web Documents as Objects for Automatic Web Content

Extraction.

This is the theme paper of this thesis. Annoni and Ezeife (2009) proposed this
idea of encapsulating heterogeneous web contents into object class hierarchy to extract
and mine web contents in a unified way. All papers discussed so far in this related work
of web content extraction rely on the web content presentation tree structure and extract

only a limited targeted facts from the web page. The overall extraction and discovery of

44



all contents of a web page is not aimed. The main purpose of this paper is to propose a
new data model for semi-structured web contents so that user can extract all kinds of
heterogeneous web data together without loosing their relationships.

Abiteboul S. (1999) dreams for such a data model in Object Exchange Model
(OEM). OEM is a directed graph containing object as vertices with unique object id (0id)
and labels on the edge. Abiteboul S. (1999) tries to identify possible functionality
requirements of this new data model and outlines web content data model as shown in
figure 17. He defines two basic web content types: atomic type (e.g., integer, real, string,

Guide

y{/x;
3

i
cdhalry b zm ad zmm b u:'%qmz }iuw(
/\{/ I ;ﬁ»\
W e @ W)y \ &y L&y
gowmmet  Chet Chu \ Vietnames2 ‘~mgun Mountam Mullo Pifkl} cheap fast foud McDondld s
Yiew

i gel ) uf(’

\
&4 & ‘\l‘/” \:,///

FlC.munoReal Pals Alte 92310

Figure-17: Object Exchange Model Graph (Abiteboul, S. 1999)
gif, html, audio, java, etc) and complex type (e.g., structure, table data, etc) and shows
that OEM database can be viewed as a relational data with binary relation
VAL(oid,atomic_value) to specify values of atomic objects and MEMBER(oid,label,01d)
to specify values of complex objects. A suitable query language can be implemented to

extract information from this OEM database model.

45



Annoni and Ezeife (2009) proposed object-oriented paradigm to model web data
to capture both content and presentation objects of a web document. Toward mining web
contents using object-oriented model, their paper have two major contributions for web
content extraction: (A) They define and give framework of object-oriented data model
and (B) They give the idea of how to extract web objects from the web page. They give a
high level algorithm called OWebMiner() for web object extraction (figure 19, page 48)
and an algorithm called ProcessPresentationSibling() for presentation (e.g., web page tag
structure) object extraction process. Their anticipated use of presentation objects is to
associate with content objects for mining process. Annoni and Ezeife’s (2009) proposed
framework for object-oriented data model is based on the following concepts:

1) They agree with Yu. et al. (2003) and Song et al. (2004) that related documents share
same space and web page presentation tag structure. The web document segmentation
work uses DOM tree, data location features and data presentation features to
distinguish data blocks.

2) Unlike Yu. et al. (2003) and Song et al. (2004), Annoni and Ezeife (2009) proposed
not to evaluate all HTML tags because all HTML tags are not always meaningful.
They observed that main HTML tags (e.g., non-empty tags such as <table>, <link>,
<form> tags) have impact in content and presentation and pre-formatting and in-line
tags such as <pre>, <br /> should be avoided.

Annoni and Ezeife (2009) thus rely on DOM tree of web document and use “vision based

context structure” for data x-coordinate and y-coordinate location of webpage features,

web document zone, data’s width, height and center location, and data presentation

features such as style, type, fonts and spaces to identify data blocks. They also propose

46



not to evaluate the pre-formatting and in-line tags but they did not included any guideline
or idea about how to filter these unwanted tags from the DOM tree in automatic content
extraction.

Annoni and Ezeife (2009) define the web document zone to represent the entire web
document as an object named WebZone object as shown in figure 18. A WebZone object
is represented by WebElement and WebRender objects. So, from content view, a
WebZone is a composition of WebElement objects which are divided into three zones:

HeaderZone, BodyZone and FootZone as discussed in section 1.3.

Webpage WebZone WebElement
webElementCenterX 1nt

webElementCenterY int

title: string webZoneCenterX it
address: string webZoneCenterY 1nt webElementWidth 1nt
pageWidth: int Is Composed of | webZoneWidth int Is Represented by |- webElementHeight nt
pageHeight: int @p————| webZoneHeight int K> 1

webZoneBGceolor str WebRender

namespace: string webZoneFirstTag str

webZoneLastTag str webRenderCenterX 1nt

webRenderCenterY 1nt
webRenderWidth 1nt
webRenderHeight int

A

HeaderZone BodyZone FootZone

Figure-18: Hierarchy of web object model
They classify WebElement into six web content types by relying on four basic content
types initially proposed by Levering and Cutler (2006): Text, Image, Form and Plug-in
content. In addition to these four types they define two new types: Separator element and
Structure element (discussed in section 3.2). Annoni and Ezeife’s (2009) main algorithm

OWebMiner() is given in figure 19:

47



Algorithm OWebMiner()

Input: a set of HTML files (WDHTMLFile) of web documents.
Output: a set of patterns of objects.

Begin
For each WDHTMLFile
(A) Extract web presentation objects and content objects
sequentially with respect to their hierarchical dependencies.
(B) Store the object hierarchies into a database table
endFor
(C) Mine patterns lying within objects
end

Figure 19: OWebMiner() algorithm (Annoni and Ezeife, 2009)
In this algorithm, they basically say that the algorithm will take a set of webpages
(WDHTMLFile) and for each WDHTMLFile, line (A) of the algorithm will extract all
the content and presentation objects into two separate object arrays according to their
DOM hierarchical dependencies. Line (B) will store web objects into database. Line (C)
will mine the extracted contents from the database.

They also developed sub-algorithm (A) of their main algorithms OWebMiner()
called PresWebObjectScan() and ContWebObjectScan(). ContWebObjectScan() uses
array data structure ContentObjectArray[] to store content objects. Process began with
root of DOM Tree “<htmi>”. When it hits series-1 (discussed in section 1.3), it calls
algorithm PrecessContentSibling() (modified version is given in figure 46) to start
extraction of content objects and continue until it hits series-2 (discussed in section 1.3).
ProcessContentSibling() algorithm inputs DOM Tree, a pointer called “TTag” which
indicate current tag to process in DOM Tree, ContentObjectArray[] and a variable
“indTag” which is a global index for labeling content objects per zone. The algorithm
recursively traverses DOM tree block-level tags by depth-first search until it hits non-

block level tag and reset “TTag” pointer to represent current processing tag. If depth-first

48



search hits a non-block level tag, it processes all it’s siblings into an array called
“tagArray”. For all non-block level tags in “tagArray”, the algorithm then associates a
content object to tag value. Otherwise it recursively calls itself to advance “TTag”
pointer. The algorithm finally returns the ContentObjectArray[] with full content objects
from body zone of web page. Annoni and Ezeife (2009) stops at this point in their paper

and left the remaining mining from the content object array as future work.

49



3. OO Web Content Mining

As discussed in section 2.3.3, Annoni and Ezeife (2009) proposes object-oriented
data model for extraction and mining of heterogeneous web contents. They gave the
framework for web content elements, web presentation elements, and an algorithm (called
OWebMiner) for extraction of web objects. The entire architecture of the system,
definition of data base schema and mining technique were pending to develop. We
studied their work and propose two-level mining process for knowledge discovery. This
thesis develops the architecture (we call it WebOMiner) for web content mining using
object-oriented model. It develops, extends and modifies necessary algorithms for
WebOMiner system. It also deﬁr.les the data base schema and gives guideline for

automatic database schema generation. This thesis addresses the following problems in

Annoni and Ezeife’s (2009) work toward development of WebOMiner system.
3.1 Problem Addressed

1. ProcessPresentationSibling and ProcessContentSibling algorithms proposed by
Annoni and Ezeife (2009) called from their OWebMiner algorithm splits
presentation and content objects from DOM tree and store into separate flat array
data structures in sequential order as per their hierarchical dependency. So, all
content objects are added into the array sequentially until the end of body zone.
Within DOM tree all related data are structured as data block but in their flat array
data structure, content data are loosing their relationships. Their algorithm does
not address the requirement for identification of data block and data region. It is
important to extract related data together or create clear separation between data

blocks and data regions. We address this in our thesis in section 3.4.1.

50



They proposed “vision based context structure” to locate data using x-coordinate
and y-coordinate location features as discussed in section 2.3.3. This feature is
useful when using browser rendering engine, but for automatic extraction process
without use of web browser, co-ordinate location of any feature is not possible.
Annoni and Ezeife (2009) defines separator element as follows:
“Spaces between contents which emphasize them and make them
instinctively meaningful for human beings such as line, blank and empty
space. They could be enclosed within HTML tags <hr>, <br>."
This definition is ambiguous and specific purpose is not clear. They did not
discuss about how this separator element will be used and their algorithm did not
address the use of separator element in content or presentation object extraction.
We define the use of separator element for identification of data block and data
region in our problem context as discussed in section 3.4.3.
They did not define the object classes, size of object classes, object class
hierarchy, object class dependencies, and functionalities of object classes. They
only classify the web content elements but did not associate object types with
contents, nor discuss how to control the creation of expensive objects.

Annoni and Ezeife (2009) did not address the issue of associating leaf level tags
with specific contents. A leaf level tag contains important information about the
associated content. It is important to associate leaf level tags before assigning an
object to a content type. For example in a data block there are three image tags as

shown below:

<img id= “line” src= “http://................ oalt=“line” /> ..............(1)
<img id= “monitor” src= “http.//............... ?alt= “monitor” /> ... .......(2)
<img src = P/ iciiiaeeiannn. ooalt=add” /> (3)

51


http://
http://
http://

Here HTML tag at line (1) and (2) have three tag attributes: “id”, “src” and “alt”.
line (3) have two attributes: “src” and “alt”. Tag attributes are variable inside a tag
and each attribute should have a value. First image tag of line (1) is a line
separator as identified from the value of attribute “id” and “alt”, second image tag
of line (2) is for “monitor” as identified from “id” and “alt” attribute and the third
image tag is for “Add to Cart” hyperlink identified from “alt” attribute. If we
don’t care about tag attribute of a source image, we will not be able to identify the
image we want. We resolved this problem by analyzing tag attribute in our thesis.
6. Annoni and Ezeife (2009) did not address the issue of preventing noisy data entry
into database table. Their algorithm does not refine contents before entering into
database table. We address this issue by cleaning noises from data tuple.
Our approach to address these problems is discussed in next consecutive sub-sections of
this chapter as: web content objects in section 3.2, challenges for extraction and mining
in section 3.3, thesis problem domain and approach to solution in section 3.4, Mining
technique in section 3.4.3, our proposed architecture of the system and algorithms in

section 3.5 and warehouse and mining for integration in section 3.6.
3.2 Web Content Objects

The State of the Art for the web data model proposed by Annoni and Ezeife
(2009) is the wrapping of web data in objects to use object-oriented approach which they
claim enables to mine in a unified way. It raises the probvlem of classifying web contents
in object type. A complete list of web content types do not exist yet and over the
evaluation and advancement of technology, user demand, business and marketing

demand, new type of contents are adding over time. So, they rely on the following four

52



basic content types proposed by Levering and Cutler (2006). We also use these content
types in our thesis:

3.2.1 Text content: These are the textual web content data found in the leaf level of
the DOM tree. These could be raw text with or without alignment or the List text in

ordered or unordered form. A simple format of web content data are given in figure 20:

<h2>Intro. Algorithms</h2>
<b>by C. 1. Ezeife</b>
</div>
<p> This is the text book for
“Introduction to algorithm” course of
computer science department, University of
Windsor, Canada</p>
<p align = “left”>
copyright@cs.uwindsor.ca
</p>
</body>
</html>

<html> <body>
<head> Basic requirements of this course are to
<title>CS 60-140</title> fulfill the following tasks:
</head> <ul><li> Four assignments. </1i>
<body> <li> Two mid term exam. </li>
<div align= “center’> <li> One Final exam. </li>

</ul>
Students are required to attend the following lab
sessions for this course.
<ol><li> Problem-01 of page 34 </li>
<li> Problem-10 of page 99 </li>
<li> Problem-06 of page 120</li>
</ol>
Some tips for the students:-
<dl><dt>Want good grade?</dt>
<dd>Go to every class.</dd>
<dt>Want job soon ?7</dt>
<dd>Do all assignments and labs</dd>
</dl>
</body>

Figure-20: Example of simple static web textual data
3.2.2 Image content: Image or pictures embedded into the web documents are image
contents. There are two types of image content in web documents, image and map. [mage
is a simple picture referring to a physical image document in any physical location. For
example, <img src = “bird.gif” /> or <img src = “//photo/bird.bmp” />, <img src =
“bird.jpg” alt="bird” />, <img src="http://netletter.com/photo/bird.gif* /> are simple
links to different formatted image files at different physical locations that are embedded
into the web document. When an image is associated with a mapping defined by HTML

tag, it is called the image map. For example, in case of client side mapping:

53


mailto:copyright@cs.uwindsor.ca
http://netletter.com/photo/bird.gif'

<map name = “brainmap”>
<area shape="rect” cords="15, 15, 220, 100 href="fantacy.htm” />
</map>

<img src = “brain.gif” usemap="#brainmap” />

Similarly, for server side mapping <ismap> attribute is also used.
3.2.3 Form content: Web page forms are normally used to gather information from
web page users such as user feedback about any topic related to web content, orders
through internet, other information from the reader of the web page. These form contents
are enclosed within the keyword tag <form> and different input formats are used to
gather the information. For example, by the HTML tag <textarea>, users are allowed to
type any command or textual information, within the tag <select>, users are allowed to
select any pre-defined option from a set of options by <option> tag. By check box (i.e.,
<input type= “checkbox” >), a user can select one or more pre-defined options.

Similar approach is used for long time in case of Dynamic web pages by
interactive pages. Programmers are using popular programs like Java applets, JavaScript,
CGI programming, php programs, ActiveX control for dynamic interaction with the web
page readers to gather information from the user or help user to get required information.
3.2.4 Plug-in content: Plug-in contents are dynamically generated contents in the
web pages from either server side database or automated calculation by the functions or
programs. Two types of computer programs are used for Plug-in contents; client-side and
server-side programs. In case of client-side programs, the controlling computer functions
or programs along with database accessibility are embedded into the webpage, so it is

more vulnerable in terms of database security. Server-side programs which are embedded

into the webpage are usually interacted with another controller program at server and

54



generate the dynamic contents supplied by the server. Within HTML embedded CGI,

php, visual basic program codes are example of plug-in contents. For example:

CGI Code: < -- #command exec = “scriptName” -- >
Visual Basic Code: <% program %>
Php code: <? php program ?>

Annoni and Ezeife (2009) uses these four basic web content types as discussed
above; moreover they propose two additional content types “Separator” and “Structure”
in their literature. They define the “Separator” element as spaces between contents such
as line <In>, blank <&nb> and empty spaces <tb>. They could also be enclosed within
HTML tags horizontal rule line <hr />, a line break <br /> etc. The “Structure” element,
they mean the database generated structured data of different content types. There is no
specific tag associated to structure content. It can be generated within any HTML tag.

3.3 Challenges and Thesis Approach to Solution

We face a set of challenges toward implementation and development of object-
oriented web content extraction and mining algorithms as discussed below:

01. Requirement of a crawler algorithm that can automatically identify the positive web
pages (e.g., web pages within our problem domain) from the WWW and the
functionality for extraction of HTML document, its contents including image-files,
video-files into local directory. We developed mini-crawler and extractor algorithm
that crawls into given input URL or a set of input URLs that sequentially extract
HTML documents including image-files into user defined local directory. Our
crawler algorithm does not have the functionality for automatically identification of
positive web pages (e.g., product list pages as per section 1.2.3 in our problem

domain) for data extraction from WWW.

55



02. Majority of HTML documents in WWW are not well-formed as per W3C standard. A

03.

well-formed document structure is the pre-condition for building DOM tree. Current
commercial vendor specific HTML code cleaning software’s (like java HTML tidy or
“tidy” by fourceforge.net) are not robust enough to handle most of the current
commercial web pages. We wuse free open source software “tagsoup”
(“http://home.ccil.org/~cowan/XML/tagsoup/”, licensed under Apache License,
version 2.0) for embedding missing closing tags. We modified its functionality to
make ill-formatted web pages well-formed and to exclude inline tags.
Inline and decorative tags are another problem for extraction of content data and for
DOM creation. Decorative inline tags split contents in DOM tree. For example the
following “<a>" tag encloses a single line of text.
<a> This is a test example for DOM tree. </a>

But in HTML document, this text may be represented in different ways for attraction
to viewer like the following:

<@><i> This is a test example</i> for <b>DOM</b> tree. </a>
Hare “<i>” tag is used in part of the text to view in italic font and <b> tag is used to
bold only the “DOM” word. The DOM representation is shown in figure 21 below.
Here original text content is split into four parts in two different levels in DOM sub-
tree. When we traverse through DOM for object creation, it creates four different text
objects without structural relation. To overcome from this problem, we need to filter

unnecessary decorative/formatting tags and inline tags. The use of Java DOM filter

56


http://fourceforge.net
http://home.ccil.org/~cowan/XML/tagsoup/

<a>This is a test example for DOM tree</a>
(A)Original textual content <a><i>This is a test example</i>for<b>DOM</b> tree</a>

(C) Formatting tags in textual content

Element: Element:
<a> <g>

Element: Text: Element: Text:

<i> “for” <b> “tree”
Text: |
“This is a test example for DOM tree.”
Text: Text:
(B)Original DOM sub-tree “This is a test example” “DOM”

(D) Sub-tree after using decorative tag

Figure-21: Formatting tags within textual fragment

class filters-out the selected element from the DOM tree including its contents that is

unwanted. So, we modified “tagsoup” module to filter out decorative tags from HTML

tag structure.

04. Java DOM package itself can not handle real time long tag attribute values. For

example in the following “<a>" tag is from “compUSA.com” website.

“<a href="http://compusa.shoplocal.com/compusa/default.aspx?action=entry&amp;
pretailerid=-98291&amp;siteid=147&amp;adref=[any&amp;storeID=2595483">"
Here “href” attribute contains a long string value. Within this “href” attribute value

K

there are five signs and Java DOM parser looks for value enclosed by “ ” for each
equal signs while creating DOM tree. Further improvement of our filter is required in
the future to handle these types of long attribute values. We therefore used simplified

version of mirrored or simulated commercial web pages by reducing length of tag

attribute value to test and evaluate our system.

57


http://compUSA.com
http://compusa.shoplocal.com/compusa/default.aspx?action=entry&amp

05. Schema matching in web data context is a challenge for information integration. For

example, two schemas for customer C, and C, in figure 22 are for the same

information from two different web pages.

G

Customer
CustID
Company
Contact
Phone

&)

Cust

Id
CompName
First Name
Last Name

Figure-22: Difference in schema for similar information

To match these two schemas a representative schema mapping is required. Schema

matching mostly relies on semi-automatic matching in specific domain. Researchers

addressed this problem with domain specific approach. In our problem context,

schema matching is handled during object creation.

Customer

[}

HID=" ]

<span classz “CustID”

/’__,/V

<li name =“id” ........

........ >85075</span>

> 92476 </li>

Figure-23: Schema matching at object creation

In this thesis, we use linguistic approach (e.g., equality in names or synonyms) for

mapping synonym with 1: m match cardinality for string matching. For example,

“Customer” object attribute “id” in figure 23 is mapped to “CustID” and “id” in two

different types HTML tag attribute during object assignment and then store respective

value in object. This ensures the consistency in database entry.

58



3.4 Problem domain

For the specific domain of B2C websites, we have selected to mine a most
common data-rich web page, which is the product list page (discussed in section 1.2.3).
From the common B2C webpage structure shown in figures 05 and 06 (page 13 and 14),
product list webpage is commonly a data rich page. We observed that, a product list page
usually contains brief list of all or specific types of products. There is a set of product list

pages in a B2C website. We define a product list page as follows:
Definition 1: If ‘w’ is a B2C website and ‘p’ is a webpage in ‘w’ such that w= Y::1 o,

then a page p,ew where j>1, 1s a product list page iff ‘p,’ contains a set of tuples t of
type o, where a > 1, having distinct instance type.

In case of our running example shown in figure 06, it consists of a set of content
data blocks that are arranged in different data regions (discussed in section 3.4.1). One
region usually contains similar categories of data. Advertisement region contains
hyperlinks with a set of services. Main product data region contains a set of data blocks.
Each data blocks are hyperlinked (by “MORE INFO”) with separate product details page
and contains some key information like image of the product, product name, product
number, brand or manufacturer, product price and a hyperlink for shopping the product.
This information is defined as instances or objects of distinctive type. This page also
contains other blocks like list of other products and services (e.g., navigation block),
advertisements (e.g., noise block). Our target is to pick up this key information

systematically from each data block and store in a data base for mining.

59



Navigation block Data Region Data Record Advertiiement

I suobprommet sa0soswinan w&ﬂa Y, | b oreamen e $Orde Msaddow ep
The AY-Mew o’ o -
o B .
Laviors 0 < ¢ A GF Cords o Lists t e Seles
.
% K . 0
35 e « - SR Y s
° @Tfr ORS,»" ‘.&\3& & S “\§\\ y ) &?&g{i}tﬁ 3
P N
%SUBSAT:EGORIES |‘|n|.\n-.fn ni-hilin.l-.-lllnunn\.\uﬁhinlnu.-_'Q%”l .
? LFDB .ﬁh . .. » . « Creute Acucbnt B
DB ehlit wa - g
;o . s porate Szﬁcs
§ oD 4 b = i Goverweny Education ?
S Bt . - e - e TR s
i FH o s ina Pour Shopsmg ©
s 3 ' apeing
R 4 Samsung P25TOHD 25" % iynuspree STIODMSE 197 3 & €Vlachine E1STHV b 19" § N
. Lep2e G e LCD Monttor 235 ,4e LCD Displsg wIV  § § 1358 Wide LCD :
1w uner : ontor
% Bl e %: ?‘écmwa HOBudsocen 2 -.:!;‘:::;m%s? SDED ¥ Fodmarwsn E E .&;i’f‘m‘g“ﬁ% # E‘”}é‘ E\ - S " -
A Mouter e ThTueman D ow e T Timerbon 8 oo &ﬂgzeﬁxm“ o e ek Hare
% Betub lew M s n 3 v mameadsomdtoln o woTreiRla atmes opeminbon W wgo L T, v Fealured Toriapage dedlst 1
e Arms B T3 9 A b S1I9 46 51 1 pebate® oy %{Cﬂcﬁ} .éW e ¥
y -
[N [ s 5 TANT | P JAUREBED, v 8 PaR 33 B0 e s et
- -----------------;‘;- [ RS
SHOP BY PRICE F
Select YourPice Range v gNuma® SAE R AARRA RN AN AN REASSRAa TR o
- .y x5 s
§ SHOP BY BRAND  * H = ie
-
,i;g Setect Brand by Name = : :: "3
K:’ % AR | ) \ iy ’3&;‘ 2. )ktm’_jiﬂ'” : :
a0 -u L]
| PSR Pedpberabs w Lo vna23awar S SSamsung 2333HD 237 1 L Vaewsome V2433wm
| Dok opocs 32" Wade LCD : ':.‘080;) LCD Montor 3 % 24" Class LCD Vonitor
HDTV Tuner. B Spewsonie hod3 wmaw Class
Aemmors LODS : \iomigrdﬂwgz‘ o o s is ED 3 & ducsecn X damecon D LED v o
Methooks o ok Soye EUED D don x 380 (35 » g S7NEC
RIS % «UD Blen tor Duge.al, O L @ mpnen b ame. 667 a4 % w 20001 Dynauc2m. 6TG BB ED T
# “otcboohs  Lap ops @ s S5 Ognams 39 471680 - 165 OTALD WGARDT i % BGECOMee: Trmme,
% Pomers o POk 570 : Wyel Sotiad = m Ook 205 9
[§ AL T AR Hesmmas 5 . ; L g
I m §----------u------ i ---wrtirri---'- sanmE TR
N waaE s Vp W 5 FEEEE WS SR RRES . SEeG  WEEE PEVE GO

Figure-06: Data regions and data blocks.

There is no easy way to pick up this information. This set of key information is similar
for almost every product list pages but their schemas may be different.
3.4.1 Data Region and Data Block Identification

Annoni and Ezeife (2009) defines HTML tags into two categories; “block-level”
tags and “non-block” level tags. They define a block level tag as HTML tags that are
either the child of sub-tree “body” or another block-level tag and should be the parent of
other tags. For example: <table>, <head>, <body>, <p>, <li>, <form>. A non-block level
tag is an inline tag or teat level tag which is the child of a block level tag and mainly lies
in DOM tree leaf. A complete set of block-level and non-block level HTML tags does not

exist. In dynamic web pages, designers are allowed to define their own tags using the tag

60



library. Moreover, block-level and non-block level tags are not disjoint. Same tag can be
used as block-level or non-block level tag.

In case of our running example, the DOM tag tree (figure 08 at page 22), data blocks are
represented in nested table at lines 105, 113, 121, 131, 139 and 147. Each of this block-
level ‘<table>’ tag contains a set of block-level ‘<tr>" and ‘<td>’ tag. In some cases,
block-level and non-block level tags may not necessarily be disjoint as shown in figure

24, where <td> tag is used both as block-level and non-block level tag.

<table> <!- - Subcategories listing begins - ->
<tr><td>Item Number </td> //Non-block level <td> tag
<td><a href = “http:/.....” > //Block-level <td> tag
<span class = “prodtitle” ....> LCD Monitor </span>
<fa></td>
<td> e, <ftd>
<ftr>
</table>

Figure -24 Intersection of block level and non-block level tag
A data region and data block is enclosed by one to many block level tags. There is
no easy way to identify this region and data blocks. In this thesis, we define the following
three important observations to identify data regions and data blocks based on DOM tree.
Observation 1: If T represents the DOM tree of product list page p,ew, and
R, R,, R,,.... R, represents data regions in T', then R, is a sub-tree
of I'and YR, €T are disjoint.
Observation 2: A data regionR, consists of a set of data records 1. All data records tin a

data region R, typically represent similar list of objects and V1. e R,

are contiguous in‘R,.

61


http://

Observation 3: All data records t of any data region R, are formed by some sub-tree of

same parent node and are disjoint.
Observation 1 states that, in our problem domain, if “I"” represents a DOM tree of an
entire web page tags including contents, then it contains a set of data regions. They are
disjoint and are sub-trees of I". Our running example (figure 08 at page 22) shows data
region nodes at line 7, 35 and 193. Observation 2 states that, a data region in DOM Tree
consists of a set of data records (defined as tuple in this thesis) and all data records in a
region, in general, represent similar set of data and are contiguous in a data region. In
case of our running example, data region of line 7 have two similar navigation data
blocks at line 8 and 20, region of line 35 have a set of eight similar data blocks at lines
58, 69, 105, 113, 121, 131, 139 and 147. All these data blocks are contiguous in sub-tree
of data regions. Observation 3 states that all data records in a data region formed by
same parent node data records are disjoint in DOM tree. To explain this, we graphically
represented (partially) our running example DOM tree in figure 25 below. Here, “T"”

represents the root of the DOM tree. This page has three disjoint data regions‘R,,
RN, and R, ; all are sub-tree of “I'”. Data region N, has eight contiguous data records

T1, T2,..., T Data records 11, 1o are similar and t3,... ,Tg are similar.

62



html (T)

head bod

title div(1) table( $R2) div(‘R3)

table (t3) table(t;) table

AN

tr tr tr tr
t

tr ;\ tr
tld td td t!i Id td td tld
VAN /\

td td td td td td

/\ Data /\ Data

Block 1 Block 2

Figure-25: Graphical tree representation of data block and data region.

Figure 25 shows the disjoint characteristics of data regions and data blocks. We observed
that a data region or data block can be within any block level mark-up tag but usually lies
within tags like <div>, <table>, <tr>, <span>. This set is not complete and intersecting
with non-block level tags. Observation of positive page tag structure is helpful to identify
the region and data block. We denoted the region and data l;lock by the set notation “{’,
‘}°. In our case, we used <div> and <table> tag as region and data block.
3.4.2 Data Model

Structured data of web page are generally encoded with HTML mark-up and in
nested relation. Data records or blocks are related information about any fact. For
example, figure 06 (page 14) shows six data records about computer monitors in a single
data region. Each record consists of a set of information like image of monitor, brand

name, model number, short description, retail price, etc. All these information are related

63



to a single entity and so six data records in figure 06 represents six distinctive entities.
Grumbach et al., (1999) defined data block in nested relation as follows:
e There is a set of basic types, B = {B), B, ..., Bi}. Each B, is an atomic type, and
its domain, denoted by dom(B)), is a set of constants;
o IfT, T, ..., T, are basic or set types, then [T}, 7%, ..., T,] is a tuple type with the
domain dom([T1, T2, ..., T,]) = {[vi, V2, ..., va] | Vi € dom(T)};
e IfTis atuple type, then {T} is a set type with the domain dom({T?}) being the
power set of dom(T).
We will use similar notations for our data model. We used set notation ‘{’, ‘}’ for
representing the data records or blocks. In the context of web content, B, is usually a text
string, image-file, price as string (of type long) representing distinctive related instance.

For example, a product data record can be represented as in figure 26:

e title (of type string)

e image (of type image-file)

¢ diffSize, consisting of a set of instances
o product number (of type integer)
o brand (of type string)
o price (of type long)

Figure-26: Data block representation (Grumbach et al., 1999)
The set format of mark-up encoded product data can be denoted as:
{<title>, <image>, {<number>, <brand>, <price>}}
Here, the tag ‘<title>" is not representing the mark-up tag itself but the content encoded
by the mark-up tag with value of attribute name or class or id = “title”. This data format
is not unique and can be different in mark-up encoding and in nested formation for

different data regions and web page structures. A nested data block or record usually

64



contains some additional contents like decorative image, “Add-to-Cart” image or button
including link, “More Info” image, link to product details page. These additional content
information in general, can be treated as noise content in data block and need to be
cleaned up. For example, the same product data can be in the following format in the web
page:
{{<image> }} {<title>, {}, <number>, <brand>, <price>}}}
Presentation/noise block Image block Cascading block
We define a data block as data tuple when a data block’s nested relation are collapsed to
flat relation and clean-up any unwanted instances like separator object for nesting inside
a data block. For example, when we will collapse the instances of the above data block
and clean-up the internal nested noise block, image block and any cascading block, the
resultant data tuple will be as follows:
{ <image>, <title>, <number>, <brand>, <price>)

We used the notation ‘{(” and ‘)’ to denote a data tuple T We define the data tuple as
Definition 2: A tuple © 1s a domain type dom(t) which consists of a set of distinct related
instances of atomic or basic type, B = {B;, By Bjs, ....By} in flat mark-up encoding
relation.

A mark-up encoding is a pair of mark-up tags open-tag ‘<>’ and close-tag ‘</>’
respectively. Mark-up encoded data instances reside in the leaf level of tree type
encoding and each instance or attribute of a tuple can be encoded differently to

distinguish them or unrelated catalyst instance (e.g., decorative <img>) may be used to

highlight the importance. A tuple t denoted by notation “(’& )’ can be written as,

7= (B, B2, Bs,...Bx) . In the context of web content, B, is usually a text string, image-file,

65



price representing distinctive instance. The product data tuple of figure 26 can be

modeled as shown in 27:

Product { title: string;
image: image-file
product number: integer;
brand: string;
price: long; )

Figure-27: Data tuple of product data block
3.4.3 Tuple formation from Data Block

As stated by Annoni and Ezeife (2009), we observed that a product list webpage
contains six basic types of content data blocks. These are Product data block, List or
Navigation data block, Form data block, Text data block, Decorative/Singleton data block
and the Noise / Advertisement data block. We need to identify data tuple from these
content data blocks.

A Product data block is an important data block in product list page. Related
information of a typical product data block are: an image of the product, the name or title
of the product, product number, brand, and price. Additional information like rebate in
tagged price, brief description of the product, etc may exist and not necessarily all page
contains all the information. These information or elements are found as either ordered or
un-ordered list and in flat or nested HTML tag encoded relation. The set format of
product data block in nested relation is denoted as below:

{<image>, {<title>, <number>, ... , <brand>, <price>}}
Some pages may contain less information like: {<image>, <title>, <brand>, <price>}

According to Annoni and Ezeife (2009), these information need to be identified

and assign respective object to them (i.e. image object for image element, text object for

66



text element, etc). Their anticipated use of separator element / object is not clear and their
ProcessContentSibling() algorithm did not define or give guideline for the use of
separator objects. We redefine the use of separator object to identify data regions and
data blocks. Therefore, in object view, proposed product tuple (e.g., a flat product data

block after cleaning) will look like the following figure 28:

@ <1mage> .“”

NN

Separator Object Image ObJect Text Objects Price Object Separator Object

Figure- 28: Content objects of a product data block.
The identification of a data tuple is not easy task. Objects of a data block may exist in
different level in a DOM tree. For example in case of our running example the data

blocks are as follows:

<Aable><tr™> ... .o </tr> // Data block

it

i

<tr> // Data block
<td><a href=“....... ” ><imgsrc="....... ? [><[a></td>
<td>
<table><tr><td> &nbsp </td>
<td><ahref="*.....” ><a>
<span class = “prodtitle” ...> Title content<br></span>
<span class = “prodspec” ...> Specification <br></span>

<span class = “prodprice”...> Price <br></span>
</td></tr>
</table></td>
</tr>
<>t </td></tr> //Data block
</table>

Figure-29: Example of simple content hierarchy in a data block.
To resolve the problem of identifying data blocks, we used Separator element/object and

classified Separator element in two categories: open-separator, denoted by set notation

67



symbol ‘{’ and close-separator denoted by °}’ symbol. An open-separator element
represents some predefined block-level open-tag (like <table>, <tr>, <div>) which are
candidate tag for root of data block and data region. Similarly, their end-tag (e.g.,
</table>, </tr>, </div>) is represented by close-separator element. For example, if we
represent <table> tag as open-separator and denote it by the set notation ‘{’, and </table>
tag a close-separator and denote by a set notation ‘}’, then the product data block of
figure 29 can be represented as: {<image> {<title>, <specification>, <price>}}

For tuple formation of this data block, it needs to flatten/collapse and keep all
object instances at the same level. So interior set notation should be deleted and the outer
set notation is replaced by the tuple notation °(’ and ‘)’. It also needs to clean up the
noise block, null block, cascading set notations within the data blocks to build it as tuple.
Some websites use price contents as image to highlight the importance. For example,
future shop’s price tag is like below:

<a href = “http://......”" ></a><img id = “pricepill” src = “http://.....” alt = “$124.99></img>
it may contain other images like, an image for “add to cart” option, “more info” image,
other presentation images, block separator images. So it is a challenge to pick up the
product image from these different images in a data block. One approach is to match the
“alt” attribute of image tag to identify the product image.

For tuple identification, we use a Non-deterministic Finite Automata (NFA) based
approach of pattern matching. Details of this NFA formation is discussed in section 3.5.4.
An NFA is a finite state machine where number of state is finite and for each pair of state

and input symbol there may be several possible next states by consuming input symbol or

68


http://
http://

without consuming any input symbol by epsilon transition (¢) For example, a NFA for

any string beginning with ‘0’s followed by ‘1°s will be as follows:

Any string like “0001111” or “0111” will be accepted by this finite state machine but any
string like “01011” will be rejected by it. A finite state machine as defined above is a
classical mathematical abstraction used to design digital logic or computer program and
can solve a large number of problems An epsilon transition (¢) in an NFA allows a
transition from one state to another without consuming any input symbols. This epsilon
transition is important to allow transition from one state to several states to consume
distinctive symbols. In our case the NFA representation of a product tuple can be

represented as figure 30:

Figure-30: NFA notation for product tuple

This product tuple NFA can be mapped to the following 10 schemas:

Product (title string, image image-file, prodNum string, brand string, price long),
Product (title string, image image-file, prodNum stving, price long),
Product (title string, image image-file, brand string, prodNum string, price long),

Product (title string, image 1mage-file, brand string, price long),

69



Product (title:string, image:image-file, price:long);
Product (image:image-file, title:string, prodNum:string, brand.:string, price:long);
Product (image.image-file, title:string, prodNum:string, price:long);
Product (image.image-file, title:string, brand:string, prodNum:string, price:long);
Product (image.image-file, title:string, brand.string, price:long);
Product (image:image-file, title:string, price:long);

The List tuple contains a set of hyperlinks and their related title. List tuple usually

redirects the web page users to different resources of the web site. The common format of
the List tuple is as follows:
{<link>, <title>, <link>, <title>, <link>, <title>, <link>, <title>................. N

For example, in figure 08 at page 22, line 8 to 19 will generate a List tuple where line 8
and 19 will create open brace “{” and close brace “)”. Line 9 to 13 contains a series of
<a> tag with its text contents. Here <a> tag is of type <link> and related contents are of
type <title>. So, the resultant tuple looks like the format shown above. This tuple consists
of a set of <link> and <title> tags in ordered format. We observed that this pair of tags

usually contains at least three to unknown finite length. We redefine this tuple as:
Y:’zl (< link >,< title >),. This expression is useful for NFA generation, because a web

site contains set of List tuples with various lengths. The NFA representation of this

expression is shown in figure 31:

Q <link> . <title> . <link>

Figure-31: NFA presentation of List tuple

<title>

This List tuple can be mapped to the schema: List (link: string, title: string),

70



The Form tuple may be of different kinds. This usually takes the user input as
text, or selection of a specific option and is normally user event driven. All content
information of a form tuple is contained under the block level tag <form>. The block
level <form> tag has important information about the action of the user event. We
therefore need to extract attribute information from the <form> tag and defined the Form
tuple start with <form> tag followed by a set of leaf level texts under non-block level tag
<option>, <select>, <input> and / or <textarea> with unknown length. This tuple looks
like the following: {<form>, <text>, <text>, <text>................. N
Here, <form> tag is added as key identifier as a part of content object. There are two
reasons for using this identifier: it will distinguish the Form content from Text content,
and <form> tag contains two important attribute information about its texts; “name” and
“action”. The “name” attribute gives the information about its embedded texts and the

“action” attribute gives us the URL of the webpage where the action will be triggered.
We redefined this tuple as <form> szl (<text>),. The NFA representation of this

expression is shown in figure 32:

<text>

<text>

Figure-32: NFA presentation of Form tuple

This Form tuple will map to following two schemas:

Form (form: boolean, name: string, action: string);
FormContent( name: string, text: string);

The Text Tuple may contain raw text in the web page or a bag of text describing

something. The tuple may contain a set of Text objects as follows:

71



(<text>, <text>, <text>, <text>, <text>..........ccccccen.. N

We redefined this Text Tuple as Yj:l (<text >),. The segmentation of this text instances

needs further research in case of problem domain that contains bulk text or text corpus.
The NFA representation of this expression shown in figure 33 can be mapped to the

schema: Text (text: string);

Figure-33: NFA presentation of Text tuple
The Noise / Link Tuples are a set of hyperlink with image. The tuple can be

represented by (<link>, <image>, <link>, <image> ............. Y. We redefined tuple
as: Yj:; (< link >,< image >), . NFA representation of Noise/Link tuple shown in figure 34

can be mapped to the schema: Noise (link: string, image: image-file);

<link>

0 <image>

Figure-34: NFA presentation of Singleton tuple

—>

A Singleton Tuple can be anything for presentation purpose. Sometimes some
stand alone attractive images with or without links are used in web pages for better
representation or make the presentation attractive. This tuple can be represented by

(<image>) or {<link>, <image>) So, a Singleton tuple may have intersection with

Noise/Link tuple.

72



3.5 Proposed “WebOMiner” Architecture and Algorithms

We developed the architecture for extraction and mining of web contents using

object-oriented model. We call it “WebOMiner” which is shown in figure 35 below:

Legend:

I

Program/Process

Process flow

(D) Miner Module

...... » Data flow
ey Local HTML WellFormed Cleaned DOM Tree of Body Zone
i Page HIML page | T HTML page [1 HTML page [ P of Web Doc
T ' T
: Y ¥ I ,oA b !
: : ' L - M :
: — e v oy v
Crawler & tagSoup ¥ i) g Java Web Zone Content
Extractor > tlter > EOM ! Identifier {®| Extractor | [
arser
Program tagSoup (www ccil org) ) A
] t
(A) Crawler Module (B) Cleaner Module (C) Extractor Module : '
---------- [
Tuples in Content Web Content
Database Classified Content- . onten
/ Schema /’E / Tuples / ObjectArray | | Objectmay Obyect Classes
R . l :
" M Y T v
! 1 -1 Tuple ' \
A A 4 Classifier : A 4
Second ’ Data Object
Level Data Base [* Storage X Cleaner
Mining Manager NFA  |le—
Generator

Figure 35: WebOMiner Architecture for Object-Oriented web content mining.

This architecture (figure 35) has four modules: (1) Crawler module (2) HTML cleaner

module (3) Content extractor module and (4) Web miner module. These modules are

called sequentially by our main algorithm WebOMiner (shown in figure 36).

73




Algorithm Main
Input: Set of HTML files (WDHTMLFile) of web documents.

Output:  Set of patterns of objects.
Variable: ContentObjectArray[].

Begin
For each WDHTMLFile
A. Call SiteMapGenerator() to crawl and extract webpage into local directory from
WWW. /* figure 38 %/
B.  Call tagSoup.html() to clean-up HTML code. /* called by running test. bat file*/
C. Call OWebMiner.BuildDOMTree() to create DOM tree of refined HTML file and
extract web content objects sequentially from DOM Tree. Store objects in

ContentObjectArray[]. /* figure 43 %/
D.  Call MineContentObject.IdentifyTuple() to identify data records and classify
records according to their pattern. /* figure 49 %/

E. Call CreateDBTable() to store data records into a database table
endFor /* figure 55 %/

F. Mine for knowledge discovery within extracted contents. /* pending to develop */
End

Figure-36: WebOMiner main algorithm

We now will explain below the modules of our system and will discuss how our

WebOMiner algorithm works.

3.5.1 Crawler Module:

We developed a mini-crawler algorithm that crawls through the WWW to find

targeted web page, streams entire web document including tags, texts and image contents

and it then creates a mirror of original web document in the local computer. Our crawler

module dumps the comments from the HTML document. That means it have the

functionality to exclude all comments from the web documents. The class diagram of

crawler module is given in figure 37 below.

74



%

/
Crowler SiteMapGenerator PageInfo
{abstract}
- url: URL
- baseUri- URL 1 - perentUri: URL
- visited: HashSet + main() - link: URL[ ]
- delay: Iint + generate() - DomTree: Arraylist
- base: String
+ extract(Reader):
+ traverse ()
- getWebPage (URL, URL) V]
+ getContent (URL): byte MySpider
+ getBaseUr!(): URL
2 handleLink (Pagelnfo) webPageExtractor
? handleLink()
- openFile()
+ processContent()
GetGraphics + processTag()
+ processEndTag()
+ getTag()
? handleLink(Pagelnfo) + getTree()
- savelmage(URL, File)
DomTree A4
SimpleHTMLParser
Node + tag: String {abstract}
+ level: int
. + list: ArrayList
I r:\?é S,tlr?:g ! q + parse (Reader)
1..% + CreateTree(int, String) - handleTag (int, Buf Reader)
+ getTag() + handleNewTag() - handieContent (Buf Reader)
+ getLevel() + handleEndTag() - handieComment(Buf Reader)
+ handleContent() - read (Buf Reader, char, int)
+GetTree()

Figure-37: Class diagram of Crawler module

The WebOMiner algorithm line-A starts with calling generate () method of class

“SiteMapGenerator” (figure 38). This class contains a private class called MySpider that

inherits abstract class Crowler. This algorithm takes a URL string as input and outputs

HTML file in local machine. The algorithm sets the input URL string as BaseURL and its

“generate()” method calls MySpider’s super class method “traverse()” by passing

BaseURL. The result outputs an ArrayList of Nodes having tags and contents of HTML

file. Node information is then written into the output HTML file.

75



Algorithm SiteMapGenerator.generate()

Input: URL String

Output: null

Begin
1. Set baseURL variable = URL String.
2. Pagelngo = Call private class MySpider.traverse() by passing baseURL

//calls super class Crowler.traverse() method

3. Call MySpider.handleLink() by passing Pagelnfo object

End

Algorithm MySpider.handleLink()
Input: Pagelnfo Object
Output: HTML file in local computer

Begin
1. Arraylist = Call Pagelnfo.getTree() //Calls superclass getTree()
2. do

- Extract Node information
- Populate buffer string with level
Until end of Arraylist
3. Create or Open output file using openfile() method
4. Write buffer string into output file
End

Figure-38: Algorithm SiteMapGenerator.generate() and MySpider.handleLink()
“traverse()” method is the main method of the abstract class Crowler that creates Http

connection for network data transfer and calls “extract()”” method of Pagelnfo class.

Algorithm Crowler .traverse()
Input: baseURL
Output: Pagelnfo object

Begin
1. Set delay time and sleep time for network data transfer.
2. Create HttpURL Connection using baseURL.
3. Varify connection validity by responseCode, contentType and contentLength.
4. Pagelnfo = Call PageInfo.extract() method passing InputStreamReader object.
5. Close InputStreamReader object.
6. Close HttpURL Connection.

End

Figure-39: Crowler.traverse() Algorithm
“extract()” is the main method of Pagelnfo class that inputs InputStreamReader object
and returns Pagelnfo object to the caller class. This method verifies the network

connection, contentLength and calls inherited “parse()” method of WebPageXtractor

76



class by passing the Reader class object. It then calls inherited “getTree()” method of

WebPageXtractor class which returns an Arraylist created by “parse()”” method.

Algorithm Pagelnfo.extract()
Input:  InputStreamReader
Output: Pagelnfo object

Begin
I. Check validity of HitpURL connection, content length, socket timeout.
2. Call WebPageXtractor.parse() method by passing Reader object
/[Calls super class SimpleHTMLParser.parse() method
3. ArrayList = Call WebPageXtractor.getTree() method that calls superclass
DOMTree.GetTree() method.
End

Algorithm WebPageXtractor.getTree()
Input: Reader object
Output: ArrayList

Begin
1. ArrayList = call DOMTree.GetTree()
2. Tokenize content and add to ArrayList
3. Tokenize Tag and add to ArrayList
4. Tokenize EndTag and add to ArrayList
5. Extract <a> tag attribute “href”
6. Extract <image> tag attribute “src”
end

Figure-40: Pagelnfo.extract() and WebPageXractor.parse() algorithm
WebPageXtractor (figure 40) also has some additional methods processTag(),
processEndTag(), processContent(), extractHref(), extractSrc() to process the HTML tag,

end tag, content, and to extract “<a>” tag attribute “href” and “<image>" tag attribute

SimpleHTMLParser (figure 41) is an abstract class that has “parse()” method
which manages the incoming data stream from network and parses by looking ahead of
incoming data to determine the type of data stream and handles the data as per their type
using the methods handleTag(), handleContent(), handleComment(). Whenever it

identifies any comments in the incoming data stream it dumps them. This class uses

77



Algorithm SimpleHTMLParser.parse()
Input: Reader object
Output: null

Begin
1. Set 10 characters to read in buffer[] and set sleep time.
2. Set read-ahead marker to buffer[] index to 3 advance character.
3. Read input stream until get a tag
4. ifiinput stream is tag
- if input stream start with ‘</*, it is endTag
i. Append to buffer string until symbol <>’
ii. Set type = SimpleHTMLToken. ENDTAG
iii. Call DOMTree.createTree(type, bufferstring).
- Else
i. Append to buffer string until symbol >’
ii. Set type = SimpleHTMLToken. TAG
iii. Call DOMTree.createTree(type, bufferstring).
Else
- if first 3-character are < <! -’
i. reset read-ahead pointer to original position
ii. dump the comments.
- Else
i. Append to buffer string
ii. Set type = SimpleHTMLToken. CONTENT
iit. Call DOMTree.createTree(type, bufferstring).
End

Figure-41: SimpleHTMLParser.parse() algorithm
enumeration “SimpleHTMLToken” to mark the incoming data type. It inherits the
“CreateTree()” method of DOMTree class (figure 42) to encapsulates the data into node
object by maintaining tag hierarchy and then adds those objects into ArrayList which it

returns to the caller method to write the HTML file into local directory.

78



Enumeration SimpleHTMLToken
Begin
Static final TAG = 0;
Static final ENDTAG = 1;
Static final CONTENT = 2;
Static final UNDEFINED = -1;
End

Algorithm DOMTree.CreateTree()
Input:  type, string
Output: null

Begin
1. Check type of input string
2. iftype=TAG

Algorithm DOMTree.GetTree()

Input: null
Output: ArrayList
begin

-Return populated ArrayList
end

2.1 Set input at same level and put into Node.

2.2 Add Node to ArrayList.

Else

2.3 Set input into next level and put into Node.

2.4 Add Node to ArrayList.

3. iftype =ENDTAG

3.1 Set input in previous level and put into Node

3.2 Add Node to ArrayList

4. iftype= CONTENT

4.1 Set input in same level and put into Node

4.2 Add Node to ArrayList.

End

Figure-42: Algorithm DOMTree.CreateTree()

3.5.2 HTML Cleaner Module:

WebOMiner algorithm line-B calls tagSoup.html() method to start cleaning of a given

changes in tagSoap are noted below:
(1) File:- “/src/definitons/html.tss}”

e Removed all <attribute name="{{attributeName}}' default="{{defaultValue}}'/>

they were inserting default attributes that weren't present in the webpage.
e Line 2166 Added <contains group="M INLINE'/>
o Line 2167 Added <contains group="M BLOCK'/>

webpage. “tagsoup” module is an open source software under the Apache license and
available from “http://home.ccil.hangorg/~cowan/XMIL /tagsoup”. We used it with some

modifications to clean-up the HTML code and make DOM tree well-formed. Our

79


http://home.ccil.hangorg/~cowan/XML/tagsoup

o Allow the <a> tag to contain other tags that it normally wouldn't, and act more
like it does in browsers

(2) File:- “/src/java/org/ccil/cowan/tagsoup/CommandLine.java”

e Line 87:
new dst = src.substring(0, j) + " _.html";
old dst = src.substring(0, j) + ".xhtml";
changed the the name of the generated output file

(3) File:- “src/java/org/ccil/cowan/tagsoup/ XML Writer.java”

e Function “startElement” line 573 in
add condition for elements to be removed
- if it is to be removed, don't write element to file
- ifitisn't
add condition for self closing element
if it is self closing write "/>" instead of ">"
e Function “endElement” line 629
add condition for elements to be removed
- if it is to be removed, don't write closing element to file
e Line 1177
new -> char chf] = atts.getValue(i).replaceAll("\"\"$","").toCharArray();
old -> char ch[] = atts.getValue(i).toCharArray(),
remove "" (2 double quotes) from end of attribute value
e function “writeEsc” line 1221
remove switch case that was replacing characters with escaped codes
add check to make sure characters were valid ascii
add check to find " (double quote) in attribute value
replace it with ' (single quote)

These changes in tagsoap module reflect our need for inserting missing tags at
appropriate location, handles and removes inline tags <br />, <hr/>, inserts missing “/ at
the end of un-closed <image> tag, clean up unnecessary decorative tags. The result is a
refined HTML page in local directory.
3.5.3 Content Extractor Module:

Content Extractor Module creates the DOM Tree from HTML page and extracts

the contents from the DOM tree, assigns respective objects as per pre-defined object class

80



to the contents and sets information into objects and finally puts objects into ArrayList. It
also identifies the data regions and data block and used separator object to segment the
respective data of a data blocks from other data blocks. We use Java DOM package to
create and parse DOM Tree of the webpage.

Our WebOMiner() algorithm line-C calls OWebMiner.BuildDOMTree() method

which is given below in figure 43:

Algorithm OWebMiner.BuildDOMTree()

Input: Refined HTML file of web documents.
Output: Populated ContentObjectArray[].

Begin

1. Use Java DOM Package to create DOM Tree.

2. Call ContentObjectArray() to identify series-1 and series-2
End

Figure 43: OWebMiner.BuildDOMTree algorithm
We modified Annoni and Ezeife’s (2009) ContentWebObjectScan() algorithm as per our
requirement to catch body zone content objects according to their definition (discussed in
section 1.3). The modified version of ContentWebObjectScan() algorithm is given in

figure 44 below.

81



Algorithm ContentWebObjectScan (DOMTree, ContentObjectArray[])

Input:  DOM Tree of the web document, ContentObjectArray[].
Variable: Pointer seriesl, series2, TTag;

Int tagCount, numTag, count, indTag;

ArrayList SiblingArrayf];
Output: Populated ContentObjectArray[}

Begin,
1. ContentObjectArray[] = null;
2. set TTag = “<body>" tag of DOM Tree
3. numTag=DOMTree.getLength(); // getLength() returns total node of DOM Tree
4. while(tagCount < int(0.5*numTag))
4.1 if{ TTag is not block-level tag AND TTag starts with “<a” AND series1 = null)
4.1.1 repeat
- Store TTag into SiblingArray
- Store TTag Siblings into SiblingArray
until end of Sibling
4.1.2 for each TTagSibling in SiblingArray
if (TTag starts with “<a”)
- countt+
endfor
4.1.3 if (count > 5)
- seriesl = TTag.parent;

- break;
endif
4.2 else
- TTag= TTag.next as per DOMTree depth first search
- tagCount++;
endwhile

5. while (tagCount < numTag)
5.1 if(Ttag is not a block-level tag AND (tagAttribute=“CopyRight” OR “PrivacyPolicy”))
- series2 = TTag.Parent;
- break;
endwhile
6. Call ProcessContentSibling ( seriesl, DOMTree, ContentObjectArray, series2, indTag);
End

Figure-44: Modified Content WebObjectScan algorithm
This modified version of ContentWebObjectScan() algorithm (figure 44) identifies the
starting and finishing point of BodyZone as per definition of Annoni and Ezeife (2009)
and sets series-1 and series-2 pointer in the DOM tree. For our running example DOM
tree, the ContentWebObjectScan() algorithm sets the TTag initially to the “<body>" tag
at line 6 of the DOM tree. We intentionally set it from “<body>" tag to avoid all

embedded program code and style sheet information of the web page within “<head>"

82



tag. Process begins with initializing an array called ContentObjectArray[], when it
reaches at line 9 “<a>" tag, it identifies series-1 by scanning siblings of “<a>" tag. The
algorithm also identifies series-2 by keyword “<a>" tag attribute ‘“PrivacyPolicy” or
“CopyRight”, it complies with the definition of “Foot zone” by Annoni and Ezeife
(2009).

Line 6 of ContentWebObjectScan() algorithm (figure 44) calls
ProcessContentSibling(), which is also a modified version of ProcessContentSibling()
algorithm initially defined by Annoni and Ezeife (2009). Our modification of this
algorithm is to reflect the identification of data regions and data blocks by using separator
element. Modified version of this algorithm is given in figure 45.

In case of our running example DOM tree (shown in figure 08, page 22), this
algorithm starts storing content objects into the ContentObjectArray[] until it hits the Foot
zone by identifying series 2. Here, series-1 is set to TTag (current pointer at DOM tree) at
line 7, which is a “<div>" tag (region node). The algorithm hits at line 2.2 of figure 45
and calls CheckTagObiject() of figure 46., this algorithm creates an OpenSeparator object
and stores it into the ContentObjectArray[]. TTag is then set to the next child tag “<div>"
at line 8 (data block node) and similarly stores another OpenSeparator object into
ContentObjectArray[]. The TTag is again set to its child node “<a>" at line 9 and the
algoritl;m recursively calls itself. Since it is a non-block level tag, the algorithm hits at
line 1 of figure 45 and stores respective “<link>" followed by “<image>" objects for all
five siblings (line 9 to line 17) into CententObjectArray[] as per line 1.2.2 of the

algorithm. Line 19 ends a data block and the algorithm stores a closing separator object

83



Algorithm ProcessContentSibling (TTag, DOMTree, ContentObjectArray, series2, indTag)

Input: TTag is the HTML tag value which its sibling will be processed
Output: ContentObjectArray populated by content objects form DOMTree

begin
1. if TTag is not a block-level tag
1.1 repeat
1.1.1 Store TTag in tagArray
1.1.2 Store TTagSiblings found in tagArray
until end of TTag sibling
1.2 for each TTag sibling in tagArray
1.2.1 if TTagSibling is a block-level tag
- Associate respective content object to tagArray[TTagSibling index-1]
- Store this object in ContentObjectArray
- increment indTag
- TTag = next TTagSibling
- Call recursive
ProcessContentSibling(TTag,DOMTree,ContentObjectArray,indTag)
1.2.2 else
- Associate respective content object to tagArray[TTagSibling index]
- Store this object in ContentObjectArray
- increment indTag
endFor
2. else
2.1 If (TTag = series2) return;
2.2 Call CheckTagObject(TTag, DOMTree, ContentObjectArray)
2.3 TTag is set to next node of DOMTree by depth-first search
2.4 Call ProcessContentSibling(TTag,DOMTree,ContentObjectArray,indTag)
2.5 TTag is initialized to next node of DOMTree by breath-first search
endIf

Figure-45: Modified ProcessContentSibling() algorithm.

into the ContentObjectArray[]. Similarly, line 20 starts another data block which ends at

line 33. Line 34 ends this data region. Line 35 starts with another data region that ends at

line 192. Line 58 and 69 are two text data blocks “SHOP BY PRICE” and “SHOP BY

BRAND?” as shown in left pane of figure 06 at page 14. These embedded tags and

contents are hidden in figure 08. Similarly, line 105, 113, 121, 131, 139 and 147 are six

monitor data blocks embedded into hidden tables as shown in figure 08.

84



Algorithm CheckTagObject (TTag, DOMTree, ContentObjectArray)
Comments: This algorithm checks for data block and data region

Input: TTag is the HTML tag value
Output: Null
Variable: OpenTag Enumeration {<table>, <div>, <tr>, <span>} /* Set of tags usually represents parent
CloseTag Enumeration {</table>, </div>, </tr>, </span>} node of data block and data region */
begin
1.0 if TTag is in OpenTag Enumeration
1.1 Create an instance of OpenType Seperator element
1.2 Set attribute value = “{”
1.3 Store this object in ContentObjectArray
2.0 Else if TTag is in CloseTag Enumeration
2.1 Create an instance of OpenType Seperator element
2.2 Set attribute value = “}”
2.3 Store this object in ContentObjectArray
3.0 Else if TTag is “<form ........ >”
3.1 Get attribute “action” value
3.2 Create an instance of Form class element
3.2 Set tag value = <form> and action attribute value
3.3 Store this object in ContentObjectArray
4.0 Else
4.1 return
end

Figure- 46: Algorithm to insert separator object in ContentObjectArray
When the algorithm hits at line 193 it gets series 2 pointer and returns the populated
ContentObjectArray[] to the main algorithm WebOMiner() (figure 36, page 74). Two

partial snapshots of this ContentObjectArray[] are given in the following figure 47:

\

ddeeEldeaEe @]

Vg 3 9 9 11 11 13 13 15 15 17 17 19 20 21
(A) Navigation data block contents

Cells indicate the line number of
DOM tree at figure 08

0El@EEE@E@RO0

102 103 104 105 110 111

—t.

(B) Product data block contents

Figure 47: Snapshot of ContentObjectArray[]

85




3.5.4 Web Miner Module:

Line-D of our main WebOMiner algorithm (figure 36) mines populated
ContentObjectArray[] for identification of data blocks and their classification to make
contents ready for database entry. Line-D starts with calling our mining algorithm
MineContentObjects() (shown in figure 48, page 86). It inputs populated
ContentObjectArray[] and outputs a set of content patterns ready to input into database
table for content integration. Line 1.0 of this algorithm does the vital job. It scans
ContentObjectArray[] for open and close separator object and identifies candidate tuples
by matching key objects and minimum support. It then refines separator objects by

deleting themselves.

Algorithm MineContentObjects(ContentObjectArray)

Input: ContetObjectArray // Data structure contains content objects
Output: A set of patterns of object’s contents

begin
1.0 Call IdentifyTuple() /* Generates NFA & return ContentObjectArray
with tuples by refining separator objects; */
2.0 For each tuple in ContentObjectArray
2.1 Copy-objects in TupleList as per generated NFA;
2.2 Call SqueezeTuple() to refine object tuple;
2.3 Store Squeezed tuples in a list according to their categories;
endFor;
3.0 Calculate support for each tuple category;
4.0 Iftargeted category satisfy the minimum support
4.1 Call CreateDBTable.insertData() each tuple in data table;
endIf;
end;

Figure- 48: Algorithm to Mine Content Objects
At the same time, this algorithm generates Seed NFA pattern for data blocks. Line 2.1,
2.2 and 2.3 extract objects of all tuples by matching with refined NFA and store identical
tuples into TupleList. Line 3.0 counts tuples and checks support for all tuple categories

and if they satisfy the support, line 4.1 stores objects into relational database.

86



In case of our running example, the mining algorithm MineContentObjects()
inputs the entire populated ContentObjectArray[] (partial snapshot is shown in figure 47).

The algorithm starts with calling another algorithm IdentifyTuple() as shown in figure 49.

Algorithm IdentifyTuple(ContentObjectArray[])

Input: ContentObjectArray[]
Output: Set of Tuples in ContentObjectArray
Other variable: pointer header, prev, current, DoubleLinkedList PointerArray, Enum PatternTable
begin
1.0 For each object in ContentObjectArray
1.1 If object is type open-separator element
1.1.1 Create a PointerArray node
1.1.2 If pointer header is null
- Refer header = node, current = node, prev = node
- node.next1 = current object of ContentObjectArray
else
- current.next2 = node
- prev = current
- current = current.next2
- node.nextl = current object of ContentObjectArray
1.2 Else if object is type close-separator element
1.2.1 Boolean flag = CheckMinSupport();
1.2.2 If flag = true
- Replace current object notation to close-tuple notation
- Replace current.next! notation to open-tuple notation
- GenerateSeedNFA();
- PointerArray.current.nextl = null
- prev.next2 = null
- Reset PointerArray count to null
Else
- Destroy current object
- Destroy PointerArray.current.next1 object
- set current = prev
- set prev.next2 = null
1.3 else
- Increment count of respective objects in Pattern Table
endFor
end

Figure-49: Algorithm for identifying object tuples
This algorithm scans for objects in the ContentObjectArray[]. In case of snapshot A of
figure 47, the algorithm hits at line 1.1 and creates a pointer node and points to open-

separator object as shown at cell 7 (object of line number 7 from DOM tree) of figure 50.

87



JoeooeeE@EE00

(A) Navigation data block contents
Header

Prev

Current

PointerArray
7 8 9 9 11 11 13 13 15 15 17 17 19 20

10| @] @@ @@ @@ @@ oo

(B) Resultant data tuple

Figure 50: Identification of Data block
At next iteration it scans another open-separator object at cell 8, creates another pointer
node and points next to previous one as per line 1.1 of the algorithm. This node points to
cell 8 as shown in figure 50. Successive iterations scans a set of repeated pattern of
<link> and <image> objects from cell 9 to 17, thus the algorithm increment the count of a

data table called “PatternTable” as shown in figure 51 as per line 1.3 else condition of the

algorithm.
[ Type ot PatternTable is a data table that contains a
<image> 2 . .
Enum Product <title> 1 set of Enumeration of key objects for
Enum Noi <number> 1
um Olse\ <brand> 1 candidate tuples. It needs to list some key
<price> 1
Enum List <link> 1 i isti i
\ e — > objects that can distinguish any data block
Enum F <link> 1 . . .
aum Orm\ <title> from others. When the algorithm identifies
Enum Text <form>
\ <text> any content object in ContentObjectArray,
<text>
it increment the count for all rows of same
Figure-51: PatternTable (data table) type object in Pattern Table.

88



We set a criterion for support in favor of identifying any data block.
For example, in case of Product data block, it should identify at least 3/5 listed objects. In
case of List data block, count of given pair should be at least 3.

When the iteration scans at cell 19, it hits line 1.2 of the algorithm and checks for
minimum support for data block at pattern table. If the minimum support satisfies as per
line 1.2.1, the algorithm then forms tuple by changing the notation of respective open and
close separator object to tuple notation. Resultant data tuple is shown in figure 50(B).

Similarly, snapshot B of figure 50 identifies product tuple as shown in figure 52 below.

102 103 104 105 110 111 y

\OOES 00 DD T DI,0/0]0]

ContentObjectArray \

PointerArray

Figure-52: Data block Identification / Tuple formation.
In figure S0A we see three image objects in this data block. Last two encoded <link> and
<image> objects are for “Add to Cart” image with link to “shopping cart” page, and
“More Info” image with link to “Customer Ranking”.
Next step of the algorithm as per line 1.2.2 is to generate Seed NFA by calling the
algorithm GenerateSeedNFA() (figure 53). GenerateSeedNFA() automatically generates

candidate NFA by second pass iteration through all objects of a identified tuple for

89



Algorithm GenerateSeedNFA (Enum x)

Input:  Enumeration x //Pattern Table of specific tuple type x
Output: Seed NFA of tuple type x

Begin

1.0 If Seed NFA exist
1.1 set g.<—qo;

2.0 else
2 1 Imtiahize data structure for NFA, N=(Q, Z, 8, qq, F);
2.2 Set Q¢—{qo}, 6¢—0,F<-0;
2.3 set q.<—qo;

3.0 For each object ‘s’ in sequence of tuple
3.1 If 358(q., 8) =qa or 38(qc, €)=q, 0 8q,, s) = g, in Seed NFA

3.1.1 set qe<—qp;

3.2 Elseif 38(qc,s")=q,; wheres #s //To create ¢ transition
3.2.1 Create new stateq,; a <c
3 2 2 Create transition 8(qa, €) = qc ; /f1e,8<¢=08 U{{(qa, €7, 9}

3.23setqeéq., Q< QU {q.};
3 2 4 Create transation 8(qc, €) =q,, . ¢—¢q;; herec<j
3.2.5 Create new state q,, and 6(qc, S) = Qm » e, 863 U{(qe,5), qm)}
32.6setqe¢—qm, Q< QU {qn};
33 else
3.3.1 Create new state qc+1and 8(qc, $) = qer1, //1€,84=06 U{((qc, S)> 9e1)}
3.32setqe¢ o1, Q< QU {qct1} ;
Endif
3.4 1f s’ is the last object in tuple
3411fQN Qe =0;
Set q.«<—F;
3.4.2 Else
Refine Seed NFA to create representation pattern;
endif
endif
endFor
End

Figure- 53: Algorithm GenerateSeedNFA to generate candidate NFA
effective extraction of data from ContentObjectArray[] and wide range of other pages
from WWW. It input all data structure of algorithm IdentifyTuple() as global and works
with satisfied Enumeration type to create its seed NFA. The algorithm identifies the tuple
type from PatternTable and looks for any existing Seed NFA for that tuple type. If not
exist, it start creating a new NFA by scanning objects and creating NFA state along with

appropriate transition between states as per figure 53. In case of our running example

90



data tuple shown in figure 47(B), since the existing Seed NFA is null, the algorithm
creates the starting state ‘qo” and refer ‘q.’(current state) to ‘qo’ as per line 2.0. For <link>
object at cell 9 it creates another state ‘q;’, refer it as next to the header state ‘qq’, store
<link> object into ‘qy’ and refer ‘q;” as ‘qc’ per line 3.3. This ensures a transition from
‘qo” to ‘qi’ for <link> object. For second iteration it scans <image> object of cell 9,
creates state ‘qy’, refer it as next to ‘q;’, store object into ‘q,’ and refer ‘qy” as ‘q.’ per line
3.3. This process continues until the last <image> object of the tuple at cell 17. Since it is
the last object, the last state is denoted by ‘F’ as per line 3.4.1. The next step is the
refinement of the generated Seed NFA as per definition of section 3.4.3.

Line 2.0 of our mining algorithm MineContentObjects() shown in figure 48 at
page 88 uses function SqueezeTuple() which basically squeezes the tuple length to
represent their general pattern. For example our running example nevigation tuple is as
follows:

(<link>, <img>, <link>, <img>, <link>, <img>, <link>, <img>,<link>, <img>, )
This length of this tuple is unknown with a set of repeated tags <link> and <img>. These

repeated tags follow a general pattern. We can squeeze these tuples with their common

pattern of a link tag followed by a title text tag as Z;’ (< link >,<img >),.

91



Algorithm SqeezeTuple(TupleList)

Input: TupleList
Output: Squeezed TupleList

begin
1.0 For each tuple in TupleList
1.1 Calculate the length of Tuple;
1.2 If tuple length is more then One
1.2.1 Set header pointer to first object location;
repeat
If object is not a separator object
1.2.1.1 Create an instance of Linked List;
1.2.1.2 Put the object in Linked List;
1.2.1.3 Store the Linked List at objects original position at TupleList;
repeat
If current object is “instanceOf” header object
1.2.1.3.1 Replace object from TupleList to end of LinkedList;
1.2.1.3.2 Increment current pointer; //Illustration purpose only
else
1.2.1.3.3 Increment current pointer; //Illustration purpose only
until end of tuple;
1.2.1.4 Increment header pointer;
until end of tuple;
endif;
endFor;
end;

Figure- 54: Algorithm for squeezing object tuples
The need for this squeezing of tuples to their pattern is for the generalization of the same
types of data block, so that pattern of any tuple containing any length can be represented
in the same category. We use LinkedList data structure to squeeze this tuple without
disturbing its data representation order.
Line 4.1 of figure 48 then call CreateDBtable.intertData() algorithm as shown in
figure 55 below creates database connection, creates primary and foreign key and checks

for tuple type and finally insert data into database table.

92



Algorithm CreateDBTable.insertData()
Input:  ArrayList, String CompanyName
Output: Populated data table
Begin,
1. Register Oracle driver and create Oracle connection.
2. PrepareStatement for different Data Tables.
3. Check tuple type and company name data coming from and set primary key
4. for each object in a tuple
4.1. Check object type and retrieve data from object.
4.2. SetString to PrepareStatement list.
4.3. Insert data into respective data table.
Endfor
End

Figure- 55: Algorithm CreateDBTable.insertData()
Figure 56 shows how we propose to squeeze the List Tuple and a Form Tuple using
LinkedList data structure. Here figure 56 (A) is the original tuple and (B) is the squeezed
format of the tuple. Figure 56 C is another example of squeezed text tuple.
In our MineContentObjects() algorithm of figure 48, we considered minimum

support which we think is important to consider. For example, in a product list page of a

<0

DO OO

(A) Original Tuple Header
AW

OO ©

0,

0
000008

(B) Squeezed Tuple (©)

Figure- 56: Example of Squeezing tuples

93



business to customer web page, major information in body zone is about their products
(i.e. Product tuples), hyperlinks to other pages about their services, products (i.e. List
tuples), others like advertisements, noises (i.e. Noise tuples) and presentation images (i.e.

singleton tuples). Following table 02 gives an overall idea about different category tuples

in monitor Product List page of four different web sites:

;L/is(t Tu})ﬁ ;
Product Tuple 18 7 18 10 13.3 36%
Text Tuple 2 1 3 0 1.5 4%
Form Tuple 0 1 2 0 0.8 2%
Singleton Tuple 0 0 5 0 1.3 3%
Noise Tuple 8 4 11 4 6.8 18%
Total 49 23 50 27 37.3 100%

Table-02: Different tuples in monitor web page of some commercial website
Minimum support is an important measure for identifying the positive web pages. Some
other pages may also contain few product data block but mostly emphasized in other
information, those pages are not truly the product list page. We don’t want to extract
information from those pages. In case of those pages, the percentage of Product Tuple
will be inconsistent in numbers with an average product list page. It is very important for

the data consistency before entering into the data base.
3.6 Warehouse and Mining for Integration

Our target is comparative mining or web content data integration. In section 3.1-
3.5 we discussed how we will be able to mine the web content objects, extract and store

the related data for integration. This first level mining is sufficient to integrate the related

94


file://�//erago

information from positive pages of different websites containing similar data information

as shown in figure 06 for computer monitor.

rtea Compuriers, Lapimps / Dioteneeks, soniiessPrinters - Winaiwws atemet Exphontr

it @ i gt A S “%ﬁ\ _W

Tort o Compne Ladp  olshonk b v W Pgew v Tedsv iy

e s -
Fre enon 4 >

RS Da
ot prvws B AN IR E R IR RN RS ta AN N REER RNy
{8 as

wE BFKSERC B

Brands

[EENTRRRY]
¥

B
e
.
3
e
..
an
wua
ey
b
b
i
<
b

MiadiFold 4
»

e P AT e :\
7’ TN
7’ H .
”’ H
7’ = Data Records
Data Records . 7’ é
A S ~ : 7

T 4

¢4

[ P . S - -~ T S S P T

Figure-06: Data blocks
In case of personalization of web content if we want comparative price of monitors, this
first level mining will give the comparative information from different pages. But a single
product list page may contain information about different products including the monitor
as shown in figure 55. So, our database will be a combination of heterogeneous products.
This implies the necessity for warehousing. For knowledge discovery from extracted web
content data, a suitable database, data warehouse and second level mining is obvious.
This section is similar to traditional data mining, which is beyond the scope of this thesis

work.

95



4. Evaluation of WebOMiner System

We are done with basic implementation phase of our algorithms and working to
give our algorithms in a scalable, robust and generalized shape. Since our system is a
very first effort for mining web contents using object-oriented approach, a valid
comparison in performance with other extraction and mining techniques do not exist.

More improvement is required in algorithms of our architecture to make it robust
enough to handle vast complexity of corporate commercial websites. Our crawler module
needs to create the functionality for automatic selection of the targeted documents from
the web, Cleaner module needs to handle long tag attributes as described in section 3.3
(04) to make it robust to handle all kinds of complex webpage to make web documents
cleaned and well-formed to create DOM tree. All these are pre-processing work for our
thesis problem. More details of the limitations of our system are discussed in Appendix-
A. At this point, we therefore, created simplified mirror of six popular commercial

websites to test and experiment of our extraction and mining algorithms.

4.1 Strength of WebOMiner

Our WebOMiner system for web content mining using object-oriented model is a
novel approach for extraction and mining of web contents. Earlier language based
systems are outperformed by semi-supervised and unsupervised wrapper induction and
wrapper generation systems. Popular and mile-stone semi-supervised system IEPAD
identifies repetitive patterns by building binary suffix tree and use center star method
(described in section 2.2.B) for extraction pattern recognition. Unsupervised popular and
mile-stone system RoadRunner generates wrapper from a set of webpage by matching
and aligning HTML token (tag) and by collapsing the mismatched tokens (figure 04,
section 1.2.2). All these popular systems are difficult to compare with our WebOMiner
system because of variance in extraction process.

Another mile-stone wrapper generation system DEPTA (described in section 2.3.2)
builds DOM Tree to analyze web document and uses single web page for wrapper
generation like our WebOMiner system. In compared to IEPED and RoadRunner,
DEPTA system is closer in similarity with our WebOMiner system. We therefore

compared our system with DEPTA. The comparative analysis is given below:

96



I. DEPTA does not analyze and correct the HTML code for DOM tree creation. The
authors left the job for future work. Creation of DOM tree is not possible unless the entire
web document is in local machine and prior correction of all missing and ill-formatted
tags accordingly. Our WebOMiner system’s crawler module automatically dumps all
HTML comments embedded into the HTML documents. For example, in figure 56 (A)

below line 1 contains comment which is cleaned in line 1 of figure 56(B).

1. <table> <!--This table output data > 1. <table>
2 <tr> 2 <tr>
3 <td>datal 3 <td>datal </td>
4, <td>data2</td> 4 <td>data2</td>
5. <tr> 5 </tr>
6 <td>data3</td> 6. <tr>
7 <td>datad 7 <td>data3</td>
8 </tr> 8 <td>datad</td>
9. <ftable><hr /><br > 9 <ftr>

10. </table>

(A) ll-formatted HTML code (B) Cleaned HTML code

Figure -56: Illustration of HTML code cleaning
The cleaner module of our system has two-fold functionality. Firstly, it automatically
analyzes the HTML documents for missing tags and automatically inserts. missing tags at
appropriate location. For example, figure 56(A) above has two missing end <td> tags at
line 3, and line 7, one missing <tr> end-tag at line 5 which are corrected in figure 56(B).
In case of inline tags, as shown in line 9 (e.g., <hr/> and <br />) the cleaner first correct
the inline tag <br> to <br /> and then it identifies <hr /> and <br /> as inline tag and

removes them as shown in figure 56(B).

2. DEPTA uses web browser to render web page manually to get visual information,
which is then utilized to clean tags and to construct a DOM tree. Requirement of manual
rendering is contrary with automatic extraction. Our system is not dependent on manual
rendering by web browser. Given a URL string, our system automatically extracts the
web document from the WWW, analyze and correct the HTML code automatically to
create DOM tree.

97



3. Formatting tags destroy the structural relationship of the textual contents in DOM
Tree. DEPTA uses manual web browser rendering to get visual information of page tag
structure to improve the accuracy of data record. Before creating DOM tree, they observe
the web document and infer the structural relationship among tags and remove necessary
formatting tags in HTML textual contents manually using visual information from
browser rendering. For example, the formatting tags of figure 21(C) within the textual
content fragments the single text content object into four separate objects in two different
levels in DOM tree that destroy the structural relationship of the textual contents as

shown in figure 21(C) below:

<a>This is a test example for DOM tree</a>
o <a><i>This is a test example</i>for<b>DOM</b> tree</a>
(A)Original textual content

(C) Formatting tags in textual content

Element:

Element:
<g> <a>

Element: Text: Element: Text:

<i> “for” <b> “tree”
Text:
“This is a test example for DOM tree.”
Text: Text:
“DOM”

(B)Original DOM sub-tree “This is a test example”
(D) Sub-tree after using formatting tag

Figure-21: Formatting tags within textual fragment

This is a problem in web content extraction. Figure 21(A) is the textual content when no
formatting tag is used and the resultant DOM sub-tree is shown in figure 21(B) that
ensures structural relationship of the content. But if the formatting tag <i> and <b> are
used within the textual content as shown in figure 21(C), the resultant DOM tree as
shown in figure 21(D) destroys the structural relationship of the textual content. DEPTA
can not handle the situation automatically and relies on correction by manual observation

from web browser rendering.

98



In our WebOMiner system we defined the formatting tags in filter module to
clean-up these formatting tags automatically before building DOM tree without using

browser interaction.

4. DEPTA identifies data records using Tree-Distance measure by visual clues (i.e.,
the physical location of the information on the computer screen by using web browser).
Each HTML element in web browser is rendered as a rectangle as shown in figure 18,
and each HTML element corresponds to the node in DOM tree. In this approach, four
boundaries of the targeted rectangle of web page are located using x-coordinate and y-
coordinate first by calling any rendering engine of a web browser. It then follows the
sequence of open tags and checks for containment to build tree. Containment check
means checking if one rectangle is contained in another. Boundary conditions are then
defined (shown in figure 18) for each data records to create tree for each data records.
This system is not automated and depends on the manual analysis and use of browser
rendering engine.

In our WebOMiner system, we used the observations discussed in section 3.4.1.
for data record identification. We observed that all objects of a rata record are contiguous
in a DOM sub-tree and each data records are disjoint with other data records. Therefore,
there should be a single parent node that represents the sub-tree of an entire data record in
DOM tree. Our system identify this parent node for each data records and uses separator
object to ensure the integrity relationship in related objects of a data record (discussed in
section 3.4.2 and 3.4.3). This system is automatic and not dependent on browser

rendering engine.

5. DEPTA aims to extract and mine only the targeted facts from the web page. For
example, in case of our running example (figure 06, page 14), data regions are shown in
dotted boxes and in data region-1 we have shown the data blocks in blue dotted box.
DEPTA only extract information from data region-1. Their tree-matching and tree-
alignment technique can handle only one “seed-tree” that produces from multiple data
records from data region-1. For each data records in data region-1, they need to execute

tree-matching algorithm for each DOM sub-tree for data records and then use tree-

99



alignment algorithm to create a representative “seed-tree”. Since data region-1 consists
of six data records, their “seed-tree” is constructed by executing tree matching and tree
alignment algorithm for at least 6 times. The result is a single excel data table containing
six rows representing six data records of the region-1 of our running example and the
columns are created by extracted content data according to generated “seed-tree” tag
structure. DEPTA is not able to extract information from other regions of the web page.
For example to extract information from data region-2, it needs to generate another
“seed-tree”, which is not possible as DEPTA can handle only one “seed-tree” for
extraction.

On the other hand, our WebOMiner system is most comprehensive in extraction
of web content. Our system does not strictly rely on the extraction of only one kind of
data from the web page. WebOMiner extracts all kinds of data from all regions of body
zone of a web page. Unlike DEPTA and all other existing systems WebOMiner extract
data from all regions from bodyzone of web document including product data, navigation
data, advertisement, etc. Our system generate NFA wrapper for each type of data record
at their first occurrence and then use that wrapper to extract information from subsequent
occurrence of data records and at the same time refine the NFA wrapper to give unified

form. This NFA wrapper is then ready to create grammar for extraction from subsequent

pages.

6. DEPTA is only able to extract textual contents from the web. It is unable to
extract the image or any other form of multimedia contents from the web page. This is
because of DEPTA does not analyze the tag attributes; it only extracts the tag encoded
text from the DOM tree. For example, web document images are image-file those are
referred into the <image> tag attribute itself. By analyzing the <image> tag attribute “alt”
we can identify the image and “href” refers to the physical location of image file from
which it needs to be extracted.

Our WebOMiner system is able to extract heterogeneous web content data
because our system analyzes the tag attributes from the DOM tree during the traversal.
So, it can effectively identify and extract the images from the data block as discussed in

section 3.1.5.

100



7. DEPTA web content extraction is based on web page tag structure. It evaluates
the tag similarity to extract contents without knowledge of content itself. DEPTA analyze
only the HTML tag DOM tree (e.g., similar to HTML DOM tree, but only tags are
considered) for comparison of adjacent substring. In case of any similar data embedded in

intertwined tag, DEPTA wrongfully identify them. For example,

<ul> <ul>
<li> Sony </li> <li> 17” </li>
<span> 17” </span> <span> Seny </span>
<li> LCD Monitor </li> <li> LCD Monitor </1li>
<p> $199.99</p> <p> $199.99</p>

</ul> <ful>

2

Here in both cases HTML tag alignment is similar but data record ‘Sony’ and ‘17” * are
intertwined in <li> and <span> tag. As long as tag alignment is same, DEPTA extracts
contents and stores records into respective row in excel sheet. So, data record ‘Sony’ and
‘17” ’ will be wrongfully stored into wrong column.

But our WebOMiner system is not dependent on HTML tag structure and its
alignment. WebOMiner system identifies the data type while extracting and create

respective object. So, it can store data records into database robustly.

8. DEPTA generates excel table for extracted web content data. An Excel data table
is a data grid, it can not be considered as functional data base. It does not have any
identification for each data column. It is because of DEPTA extracts web content data
only based on tags and store similar tag encoded contents into same excel column.
Manual labeling and transformation is required to store those data into data table to create
fully functional database.

On the other hand, our WebOMiner system uses fully functional relational
database for storing data records. It identifies content type during the extraction process
and create respective object to hold the content and other related information into the
object. Our system therefore has prior knowledge in data record type that infers to
specific data table and data table attributes are obtained from object class type. This

makes our system possible to store web contents into relational database directly.

101



4.2 Empirical Evaluations

As discussed in the beginning of section 4 of this thesis, we have created
simplified mirror of six popular web sites (e.g., futureshop.ca, compUSA.com,
bestbuy.ca, walmart.ca, shopping.com, dell.com as of July 10, 2010) for empirical
evaluation of our system using different page structures. Our system is implemented in
Java programming language. We then run our system in 32-bit Windows Vista Home
Premium operating system at Intel Due Core 2.26 GHz, 3.00 GB RAM Sony machine for
each of these mirror web sites for empirical evaluation of our WebOMiner system. We
use the standard precision and recall measures to evaluate the results of our system.
Precision is measured as average in percentage for the number of correct data retrieved
divided by the total number of data retrieved by the system. Recall is measured as
average in percentage for the total number of correct data retrieved divided by the total

number of existing data in the web document. The results of the retrieval by our

WebOMiner system is tabulated in table 02 below:

Ww;.*r:htures op.ca 4 0
www.compUSA.com 18 21 8 2 49 47 0 2
www.bestbuy.ca 7 10 4 1 22 21 0 1
www.walmart.ca 2 4 2 - 8 8 0 0
www.shopping.com 40 4 - 48 47 0 1
www.dell.com 14 13 4 - 31 28 0 3
Recall 96.22%
Precision 100%

Table 03: Experimental result showing extraction of data records from web pages.

4.3 Experimental Results

The purpose of our experiment is to measure the performance of WebOMiner
system for data record extraction. Table 03 shows small scale experimental results as
performance measure for our WebOMiner system. We have taken one page per web site
for experiment and the numbers in “Data Record” column shows different types of data

records in those pages. The Total column shown total number of data records for each

102



http://compUSA.com
http://shopping.com
http://dell.com
http://www.futureshop.ca
http://www.compUSA.com
http://www.bestbuy.ca
http://www.walmart.ca
http://www.shopping.com
http://www.dell.com

pages. For those pages WebOMiner system is able to identify data records correctly. No
wrong data record identification is observed and it makes sense because our system is not
based on the prediction. It missed seven out of total 185 data records in all six web pages
from different websites.

We observed the reason for missing those seven data records. All of those missing
are in List type data records and because of mixing object type in data tuple. Our
definition of List data tuple is a set of <link> followed by <text> and there should be at
least 3-pairs in the tuple to be qualified as List tuple. But those seven missing tuple
contains some pairs of <link> followed by <image> and some pairs of <link> followed

by <text> and therefore did not satisfy any of the criteria.

5. Conclusion & Future Work

This thesis includes lot of pre-processing work to prepare data for mining that are
not addressed by Annoni and Ezeife (2009). We developed an architecture (we call it
WebOMiner) for extraction and mining of web contents using object-oriented model. Our
architecture has 4-modules, crawler module, cleaner module, extractor module and the
miner module. We developed algorithms for crawler module, modified freeware software
“tagsoup” for cleaner module, modified and enhanced algorithms for extractor module
initially developed by Annoni and Ezeife (2009) and developed algorithm for miner
module. We introduced an approach of generating and using automata for mining web
content objects. In this thesis, we used data block and data region concept to ensure
consistency between related data, we relate HTML tag attribute information with its
content to identify contents. We define object class hierarchy according to our problem
domain and address schema matching problem to unify similar contents from different
web sites. We also prevent noisy contents entering into database table. Our miner
algorithm is based on Automata patterns that have two fold uses: data extraction and
automatic database schema generation. We then checks minimum support to ensure data
consistency before entering into database. Currently we are working on the
implementation of cosign similarity algorithm for automatic classification of tuple from
the ContentObjectArray which will eliminate the requirement for the definition of

PattaernTable and algorithm SqueezeTuple algorithm.

103



5.1 Future work

Since this is a very first effort to mine web content data using object-oriented
approach, we feel there is plenty of room for improvement and to open new thread. In our
WebOMiner architecture further improvement of our algorithms are required to make the
system robust and scalable. Our crawler module algorithms require further improvement
for automatic identification of positive web pages and functionality to exclude negative
web pages from the www. Cleaner module needs the functionality to handle long tag
attributes in effective way. There is plenty of scope to improve the extractor module for
cleaning of unwanted noisy contents before creating expensive objects. In miner module
we introduced automata pattern to mine related contents from specific domain context.
Further experiment is required to mine contents from other domain context (such as
unstructured content data) and domain independent mining. Automatic database schema
generation from the automata pattern is an important task to develop for storing web
contents in relational database. Use of Automata for pattern recognition and generation of
regular expression from repeated pattern of web content is a new approach in data
mining. We observed that generated pattern from B2C websites may not be complete for
all possible conditions; further improvement to develop a unified pattern need further
experiment. Moreover Annoni and Ezeife’s (2009) anticipate use of presentation objects

along with content objects for mining web contents is still a research issue.

104



References

Ai, D., Zhang, Y., Zuo, H., & Wang, Q. (2006). Web Content Mining for Market Intelligence
Acquiring from B2C Websites. Springer-Verlag Berlin Heidelberg, WISE Workshops,
LNCS 4256, 159 — 170.

Annoni, E., & Ezeife, C. 1. (2009). Modeling Web Documents as Objects for Automatic Web
Content Extraction, In proceeding of ACM / LNCS sponsored 11" international
conference on Enterprise Information Systems (ICEIS 09) page 91-100, May 6-10, 2009

Arocena, G.O. and Mendelzon, A.O. (1998). WebOQL: Restructuring Documents, Databases,
and Webs. In Proceeding of the 14th IEEE International Conference on Data
Engineering. (ICDE), 24-33, 1998.

Arumugam, S. (2006). Classification Techniques for Categorization of Hypertext Documents.
Lecture Notes on Computer Science, Springer Science + Business Media, LLC.

Baumgartner, R., Flesca, S., and Gottlob, G. (2001). Visual Web Information Extraction with
Lixto. In proceeding of 27" international conference on Very Large Data Bases. 2001,
119-128.

Bhowmick, S. S., Madria, S. K., Ng, W. K., & Lim, E. P. (1999). Web Warehousing: Design and
Issues. Lecture Notes of Computer Science, Springer-Verlag Berlin 1552, 93— 105.

Borges, J., & Levene, M. (1999). Data mining of user navigation patterns. In Proceedings of the
KDD Workshop on Web Mining, San Diego, California, 31-36.

Bornhovd, C., & Buchmann, A. P. (1999). A Prototype for Metadata-based Integration of Internet
Sources. In Proceeding of CAiSE’99, Heidelberg, Germany, June.

Buchner, A. G., & Mulvenna, M. D. (1998). Discovering Internet Marketing Intelhgence through
Online Analytical Web Usage Mining, SIGMOD Record, Vol.27, No.4, New York, NY,
USA, 1998. Pages 54-61.

Ceci, M., & Malerba, D. (2007). Classifying web documents in a hierarchy of categories: a
comprehensive study. Lecture Notes on Computer Science, Springer Science + Business
Media, LLC.

Chakrabarti, S. (2003). Mining the Web: Discovering Knowledge from Hypertext Data. US4,
Morgan Kaufmann Publishers.

Chang, C., & Lui, S. L. (2001). IEPAD: Information extraction based on pattern discovery. In
proceeding of the 10" international conference on WWW Hong Kong, page: 681-688.

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (2003). Robust and efficient fuzzy match
for online data cleaning. In proceeding of the ACM SIGMOD International Conference
on Management of Data, San Diego, CA, ACM Press, 313-324.

105



Chawathe, S., Garcia-Molina, H., & Hammer, J. (1994). The TSIMMIS project: Integration of
heterogeneous information sources. In Proceeding of IPSI'94, Japan, March.

Chow, C. K. (1957). An optimum character recognition system using decision functions. /RE
Transactions 247-254.

Chriisment, C., Dousset, B., Karouach, S., & Mothe, J. (2004). Information mining: extracting,
exploring and visualising geo-referenced information. SIGIR-04 Workshop on
Geograpghic information retrieval.

Cimiano, P., Handschuh, S., & Staab, S. (2004). Towards the self-annotating web. International
WWW conference, NY, USA, 462-471.

Crescenzi, V., Mecca, G., Merialdo. P. (2001). RoadRunner: Towards Automatic Data Extraction
from Large Web Sites. Proc. of VLDB 2001, Rome, September 2001, pp. 109-118.

Darmont, J., Boussaid, O., & Bentayeb, F.(2002). Warehousing Web Data. Conference on
Information Integration and Web-based ..., 2002

Dung, X. T., Rahayu, W., & Taniar, D. (2007). A high performance integrated web data
warehousing. Cluster Computing, Volume-10 Issue-1, Kluwer Academic Publishers,
March 2007.

Etzioni, O. (1996). The World Wide Web: Quagmire or gold mine. Communications of the ACM
39(11): page 65-68, 1996

Ezeife, C. 1, Saeed, K., & Zhang, D. (2009). Mining Very Long Sequences in Large Databases
with PLWAPLong. In proceedings of the 13" ACM sponsored International Database
Engineering & Applications Symposium, Cetraro, Calabria, Italy, 16-18 September 2009
(IDEAS 09).

Grumbach, S. & Mecca, G. (1999). In search of the lost schema, ICDT-99, Lecture Notes in
Computer Science, Springer, Vol. 1540, page 314-331.

Gupta, S., Kaiser, G., & Stolvo, S. (2005). Extracting context to improve accuracy for HTML
content extraction. /n Proceeding of International WWW Conference, Japan, May 10-14.

He, B., & Chang, K. (2003). Statistical schema matching across web query interfaces. /n:
SIGMOD '03.

Jupiter Media Corporation (2007). XML Parsers: DOM and SAX Put to the Test. Retrieved from:
http://www.devx.com/xml/Article/16922/1954

Kaufiman, L., Rousseeuw, P.(1990). Finding Groups in Data: An Introduction to Cluster Analysis.
John Wiley & Sons, 1990.

Kosala, R., & Blockeel, H. (2000). Web mining research: a survey. SIGKDD Explor. Newsletter.
2(): 1-15.

106


http://www

Laender, A.H.F., Neto, B. R., and A.S. da Silva, A. S. (2002). Debye-Date Extraction by
Example. Data and Knowledge Engineering, 40(2):121-154.

Levering, R., Cutler, M. (2006). The portrait of a common html web page. In DocEng 06, ACM
symposium on Document engineering, NY, USA. ACM, 198-204.

Li, J. and Ezeife, C.I. (2006). Cleaning Web Pages for Effective Web Content Mining. In
proceedings of the 17" International Conference on Databases and Expert Systems
Applications, DEXA 2006, Krakow, Polland, Sept 4-8, published in LNCS, pp. 560-571,
Springer Verlag.

Liu, B. (2007). Web Data Mining; exploring hypertext, content and usage. Lecture Notes on
Computer Science, Springer Science + Business Media, LLC.

Liu, B., & Chen-Chung-Chang, K. (2004). Editorial: special issue on web content mining.
SIGKDD Exeplor. Wewsl., 6(2): 1-4

McCallum, A., & Nigam, K. (1998). A comparison of event models for Naive Bayes text
classification. In AAAI-98 Workshop on Learning for Text Categorization. Menlo Park
California: AAAI, 41-48.

McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley, New
York.

Muslea, 1., Minton, S., & Knoblock, C. (1999). A hierarchical approach to wrapper induction. /n
AGENTS’99: Proceedings of the third annual conference on Autonomous Agents, , New
York, USA. ACM, 190-197.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The Page Rank Citation Ranking;
Bringing order to the Web. Technical Report, Compute Science Department, Stanford
University, 1998.

Pant, G., & Srinivasan, P. (2005). Learning to Crawl: Comparing Classification Schemes. ACM
Transactions on Information Systems, Vol. 23, ( 4),' October 2005, 430462

Petrushin, Valery A., & Khan, L. (2007). Multimedia Data Mining and Knowledge Discovery.
(Eds.) 2007, XXVI, 526 p. 213 illus., Hardcover ISBN: 978-1-84628-436-6.

Rahm, E. and Bernstein, P.A. (2001). A survey of approaches to automatic schema matching. 7he
VLDB Journal 10: 334-350 (2001), Springer.

Raposo, J., Pan, A., Alvarez, M., Hidalgo, J., A. Vina, A. (2002). The Wargo System: Semi-
Automatic Wrapper Generation in Presence of Complex Data Access Modes. /n
proceeding of 13" international workshop on Database and Expert Systems

Applications, 2002, 313-320.

107



Song, R., Liu, H., Wen, J-R., Ma, W-Y. (2004). Learning block importance models for web
pages. In KDD 03, pages 203-211, Ney York, NY, USA, ACM.

Stonebraker, M., & Hellerstein, J. M. (2005). Content Integration for E-Business. ACM SIGMOD
2001 May 21-24, Santa Barbara, California USA. Copyright 2001 ACM 1-58113-332-
4/01/05.

Tan, X., Yen, D. C.,, & Fang, X. (2003). Web warehousing: Web technology meets data
warehousing. Elsevier Science Ltd, OH, USA, page 131-148.

Wu, W., Yu, C, Doan, A., & Meng, W. (2004). An interactive clustering-based approach to
integrating source query interfaces on the deep web. In proceedings of the ACM
SIGMOD international conference on Management of data, 2004, 95 — 106

Yang, W. (1991). Identifying syntactic differences between two programs. Sofiw. Pract. Exper.,
21(7):739-755, 1991.

Yi, L., Liu, B., & Li, X. (2003). Eliminating noisy information in Web pages for data mining.
SIGKDD-2003, August 24-27, 296-305.

Yu, S., Cai, D., Wen, J-R., Ma, W-Y. (2003). Improving pseudo-relevance feedback in web
information retrieval using web page segmentation. In WWW’03, pages 11-18, Ney York,
NY, USA, ACM.

Zhai, Y., & Liu, B. (2006). NET — A System for Extracting Web Data from Flat and Nested Data
Records. Lecture notes in computer science, Springer, Vol 3806, 487-495.

Zhai, Y. and Liu, B. (2007). Extracting Web Data Using Instance-Based Learning. Lecture notes
in computer science, Springer, vol. 10(2) pages 113-132

Zhao, H., Meng, W., Wu, Z., Raghavan, V., & Yu, C. (2005). Fully automated wrapper
generation for search engines. In WWW'05: Proceeding of the 14" international
conference on WWW, NY, USA, ACM, 66-75.

Zhao, L. and Ng, W. K. (2004). WICCAP: from semi-structured data to structured data. In
proceeding of 11" IEEE international conference and workshop on Engineering and
Computer based Systems. Brno, Czech Republic, May 24-27: 86-93

Zhu, Y. (1999). A Framework for Warehousing the Web Contents. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, Volume 1749/1999, 773-799

Zhu, Y., Bornh“ovd, C., & Buchmann, A. P. (2001). Data Transformation for Warehousing Web
Data. In Proceedings of the Third Int’l Workshop Advanced Issues of E-Commerce and
Web-Based Information Systems (WECWIS’01), 1530-1354/01, 2001

108



APPENDIX-A

109



WebOMiner System Manual

Developed by Titas Mutsuddy

110



1.0
2.0

3.0
4.0
5.0

6.0
7.0
8.0

Table of Contents

System ArchiteCture .........ooveviiiiiiiiiiiiiii e

LTS g (011 i £ 1o <R

2.1 How to debug, run the program and get the result.....................

Operating SYSLEIM ... vouvintiiii et et et

Programming Environment ...........c.oovviiiiiiiiiiiiiiiiiiiiiiii

Installation of the SyStem.......oeivvniveiniiiiiiiiiiiii e

5.1. Installation of NetBeans IDE.......ccovvvvriimiiiiiiiiiiiii e eeeeeenes

5.2. Load and Run tagSoup software...........c.ccooiiiiiiiiiiiin
5.3. Installation of Oracle XE 10g.......ccooviiiiiiiiiiiiiiiiiiiiiinnan

5.4. Installation of JDeVeloper.......ooveveiiiiiiiiiiiiiiiniiieiiiiiiens

Data Base,

Schema and File format.........ovuiiiiniiiiiieiiiiiiiinnnnnns

Limitations of the SOfTWAre .....oovviiiniiiiii e ieeaas

Java Tools

112
113
114
115
115
116
116
119
120
121
121
128
130

111



1.0 System Architecture

Our WebOMiner system architecture consists of four
module, Extractor module and Miner module.

WebOMiner system is shown in figure 1 below:

modules: Crawler module, Cleaner

The overall architecture of the

o e, 1 egiud:
/ \ l:l =  Prograny Process
(( / ——» = Process flown
WW W ;
! / /o= Dut
H / e d
Jf ______ » = Datzflow
T § H ¥
S recarnin | Wit ormed Clened | DOM Treeof Body /one
: Page { HIME page :“*,v HTMI page {1 L HEML page [ % ofBeb Do
P — e S !
; I P s 1
T
: T T v oy v
Cravler & tagSoap ¥ % Java Web Zone Content
batracter > Her > DOM e sdentifier Extractor | [
Parser
Program tagSoap ewww ool arg) ' &
¥ i
{4} Crawler Module (Bj Cleaner Madule (C) Pxtracior Module |
F o~ e §
! tupl poY e
{ Tiatabese f; y[ Chansifiad i f Ciign;n } [ o omtent 7 ,5 “;b Laf?ﬁm
- Fr ~ = b Obert A ot Jassey
! Suherra irj Fuples !f Object \my; " e e ] iwmj . ,']
: HEE ; ; :
1 N L4 : |
: s . Fuple s '
. h 4 k 4 (1} !
Second Pata s ‘ {ﬁneuv
Level Data Base N Storage Cheaner |
Mining o Manager NA
Generator
(D) Miner Madule

Figure -1: Main program of WebOMiner system

Here, the crawler module crawls through the WWW to find targeted web page, streams

entire web document including tags, texts and image contents and it then creates a mirror

of original web document in the local computer. Our crawler module also discards all

comments from the HTML document. That means it have the functionality to exclude all

comments from the web documents. Cleaner module first looks for ill-formatted HTML

tags and missing end-tags and insert missing tags at appropriate location. It then filters

inline tags to conform structural relationship of text contents. The resultant of the cleaner

module is a web page in local directory which is well-formed and cleaned. Extractor

112


http://ygSo.jp
file:///rrai

module take this web page as input and extracts the contents from the body zone of the
web page, creates objects and store content objects into ContentObjectArray and Miner
module mines extracted contents from the ContentObjectArray and store contents into
database WebOMiner program entry points and process flow sequence of algorithms are

discussed in section 3.5 of the thesis.

2.0 User Interface

At this point WebOMiner system does not contain any Graphical User Interface (GUI)
for its user. The system is possible to run from command line or from any integrated
development environment (IDE) which is compatible with Java development
environment The system is developed using NetBeans IDE 6.7.1., compiled and
debugged from the entry point “Main” program. During testing, the program takes one
URL at a time at the main program as shown in figure 2 below, it is possible to put a set

of URL string in an input file and run those URL strings as input for the Main program

one after another sequentially by calling that input file.

@ Thesis -Nethears IDEGTL i I
Fle dt e Negte So e dacto Fon CebugdeSis sen Tosk Wadow Help

&syﬁ&mv&jg‘%&w:{ﬁa
ah # Qeoye 7o 49 £
< ® zf

B Q;",:,Sm) . Click on Debug Project
(Thesis) to debug and run

6
=

Input URL

Debug console
s T D eC A 5 = 4 8y 3

Source files under
package “Thesis”

ojdbc14 jar location

Figure -2 Main program of WebOMiner system

113



2.1 How to debug, run the program and get the results:
To debug and run the system we need to confirm the following first:

1. Conform operating system requirement described in section 3.0.

2. Install java SDK 1.5 or later version and set the class path / path in environment
variable. Setting an environment variable is discussed in “forums.sun.java” in the
flowing link:

http://forums.sun.com/thread.jspa?threadlD=5450340

3. For debugging and running the system from IDE we need to down load and install
NetBeans IDE as described in section 5.1.

4. Tmport “Thesis” project in NetBeans IDE by using following steps:

File > Import Project = Browse > select “Thesis” from CD -> ok. The “Thesis”
project will be imported to NetBeans IDE.

5. Install Oracle 10g XE or Oracle10g or later version as described in section 5.3.

6. Install JDeveloper IDE as described in section 5.4.

7. Create database tables using JDeveloper IDE as per database schema described in
section 6.0.

8. Place the “ojdbcl4.jar” driver file in “libraries” folder under “Thesis” package as
shown figure 2.

9. Prior to any experiment or enhance / modification of the system. First try to compile,
run and get the results from sample mirror webpages given under “NetBeansProjects/
Thesis”. All respective photos are inside the “NetBeansProjects/Thesis/photo” folder.

10. Rent a domain name and upload the sample webpages and respective images into the
domain. Check from browser if the webpages are running appropriately from the
rented domain.

12. Note that the domain should be forced advertisement free. Forced advertisements
destroy the HTML tag structure and destroy DOM building. Using the web browser,
right click and click on “view source” to check for any forced advertisement
embedded into the webpage by the domain name providers.

12. Write down/copy the web address from the address bar of the web browser.

114


http://forums.sun.com/thread.ispa?threadID-=5450340

13.

14.

15.

16.

17.

Open the main program of the “Thesis” package and paste or write down the url
address into Input URL string as shown in figure 2.
Go to Debug button in Manu bar of the NetBeans IDE, click it and select and click
Debug (Thesis) button as shown in figure 2. If the URL is linked properly, we will
see the list of image downloading sequence in the output console shown in figure 2.
To look at the populated database tables,
Go to start Manu > All Programs = Oracle Database 10g = Database Homepage
- Enter username and password in Oracle database login.
After login to Oracle database, go to SQL Manu > select SQL Command—>Enter
command.
From the new window enter SQL command and click on “Run” button. The results

will be shown in “Results” window below as shown in section 6.0.

3.0 Operating System

System is developed in 32-bit Windows Vista Home Premium operating system at Intel

Due Core 2.26 GHz, 3.00 GB RAM Sony machine. This system is portable in University

of Windsor CDF Solaris Operating System on Unix environment. In that case, only minor

changes from Windows based syntax to Unix compatible syntax transformation is needed

to compile, execute and run the program.

4.0 Programming Environment

The application is programmed and tested in Java 2 Platform Standard Edition version

1.6.0_16, which is installed in Windows Vista Home Premium edition. The advantages of

this environment are as follows:

¢ Regular expression capability.
e The improved Java Doc.
e Low coupling and usability.

o Relatively easy implementation of Object-Oriented design pattern.

115



5.0 Installation of the system
5.1. Installation of NetBeans IDE:
5.1.1. Installing the Software Bundle on Microsoft Windows:

To install the software, we must need to have administrator privileges on our system. The
installer places the Java Runtime Environment (JRE) software in s$Program

Filess\Java\jre6, regardless of the specified JDK install location.

Note: This installer does not displace the system version of the Java platform that is

supplied by the Windows operating system.
Both the JDK and IDE have been tested on the following Windows platforms:

¢ Microsoft Windows XP Professional (SP3), Windows 7 Professional/Windows

Vista Home/Professional

Before Installation:

1. We need to verify our system to meet or exceed the following minimum hardware
requirements:
o 800MHz Intel Pentium III or equivalent
o 512 MB of RAM.
o 750 MB of free space

Note: The installer uses the $USERPROFILE%\Local Settings\Temp

directory to store temporary files.

2. First need to verify that we have administrator privileges on our system.

3. Then download the jdk-6u21-nb-6 9 1-windows-ml.exe installer file.

Installing the Software:

1. We need to double-click the installer jdk-6u21-nb-6 9 1-windows-ml.exe file

to run the installer.

116


file:///Temp

5.1.2.

At the JDK Installation page specify which directory to install the JDK into and
click Next.
At the NetBeans IDE Installation page, we need to do the following:

1. Specify the directory for the NetBeans IDE installation.

2. Accept the default JDK installation to use with the IDE or specify another

JDK location.

Review the Installation Summary page to ensure the software installation
locations are correct.
Click Install to begin the installation. When the installation is complete, we can

view the log file, which resides in the following directory:

$USERPROFILE%\ .nbi\log.

Installing the Software Bundle on Solaris OS (SPARC and x86 Platform

Editions) and Linux Platforms

We can install the JDK software and NetBeans IDE in directories of our choice.

We do not need to be a root user to use this installer unless we choose to install this

bundle in a system-wide location.

Note:

This installer does not displace the system version of the Java platform that is

supplied by the operating system.

Both the JDK and NetBeans IDE 6.9.1 have been tested on the following:

Solaris 10 OS (x86 and SPARC)
Ubuntu 9.10

Before we install:

1.

If we need to install on Solaris OS, install the required Solaris OS patches before
proceeding further. If we install this bundle without having first installed the proper
Solaris patches, we may experience unexpected behavior with the installer or the

Java platform.

117



2. Verify that our system meets or exceeds the recommended minimum hardware

requirements as follows:

o Ultra 10 workstation, UltraSparc II 450 MHz, AMD Opteron 1200 Series
1.8 GHz, or Pentium III workstation, 800 MHz

o 512 MB ofRAM

o 650 MB of free space

Note: The installer uses the /tmp or the /var/tmp directory for temporary files.

3. We need to download the installer file and save it on our system.

o For Solaris OS SPARC Platform Edition, the installer file name is jdk-
6uzl-nb-6 9 l-solaris-sparc-ml.sh

o For Solaris OS x86 Platform Edition, the installer file name is jdk-6u21-
nb-6 9 l-solaris—-x86-ml.sh

o For Linux operating system, the installer file name is jdk-6u21-nb-6 9 1-

linux-ml.sh

4. Navigate to the directory into which we downloaded the installer file and type:

chmod +x <installer-file-name> to change the installer file's permissions so it

can be executed.

Installing the Software:

1.

Type the following command from the directory where we placed the installation
file:

./<installer-file-name>

At the JDK Installation page, we need to specify the directory where to install the
JDK and click Next.

. At the NetBeans IDE Installation page, we need to do the following:

1. Specify the directory for the NetBeans IDE instalilation.
2. Accept the default JDK installation to use with the IDE or specify another
JDK location.
Review the Installation Summary page to ensure the software installation

locations are correct.

118



5. Click Install to begin the installation. When the installation is complete, you can

view the log file, which resides in the following directory:
~/.nbi/log.

Note: If we choose to install this bundle into a system-wide location such as /usr/local,

we must first login as root to gain the necessary permissions.

5.2. Load and Run “tagSoup” software:

We have to load entire “tagSoup” software in the package sub-directory under the
directory NetBeansProjects. We named out package as “Thesis” and so the “tagSoup”
will need to be loaded at following path
“//NetBeansProjects/Thesis/taguoup”

This folder path included an “index.html” file that describes details about tagSoup
releases, what it does, source path and how to run as a stand-alone program. The main Jar
file “tagsoup-1.2.jar” which is distributable to any other application is located in the
following folder:

“//NetBeansProjects/Thesis/taguoup/dist/lib/”

Create and update batch file:

A batchfile named “test.bat” needs to be created for DOS from administrative privilege in

Windsows environment. For Unix environment, we need to change the access privilege

(e.g., read-write-execute) for the file folder to run the batch file. The details to create and

run the batch file are discussed in the following link:
“http.//linux.about.com/library/cmd/blemdll_batch.htm™

The access privilege for Unix environment is discussed in the following link:
“http.//www.zzee.com/solutions/unix-permissions.shtml”

In case of converting DOS batch files from Windows to Unix Shell script is described in

details in the following link:

119


http://linux.about.com/library/cmd/blcmdll_batch.htm
http://www.zzee.com/solutions/unix-permissions.shtml
http://tldp

The command string inside the batch file “test.bat” needs to be change automatically
from the source program every time before running the batch file. The command script
format into the batch file is given below:
“java -jar tagsoup/dist/lib/tagsoup-1.2.jar --html --method=html --files
filename.html src: filename.html dst: filename_.html”
Here, filename is the name of the URL. For example, in case of “futureshop.ca” the
source (e.g., src:) filename should be futureshop.html and destination (e.g., dst:) filename

will be futureshop html.

What happens while run the application?

After execution of the crawler module with URL for example “compUSA.com™, a local

html file named “compUSA.html” will be created in the following path:
“//NetBeansProjects/Thesis/”

All the images of this web document will be stored in the “photo™ sub-directory under the
URL source in the following path:
“//NetBeansProjects/Thesis/photo/”

When we run the batch file “test.bat”, the “compUSA.html” file will be the input file for

tagSoup and will generate destination file “compUSA_.html”. This “compUSA_.html

file will work as input file for extractor module of our system.

5.3. Installation of the Oracle software:
We used lightweight Oracle XE 10g edition for Windows environment as database
storage for our system. The software is available to free download from:

“ www.oracle.com”

To install Oracle XE database 10g edition, download and install Oracle Database 10g
Express Edition on Windows environment using the following step:

1. Go to the Qracle Express Fdition page.

2. Download the Oracle Database 10g Express Edition (Universal) - Multi-byte
Unicode database for all language deployment, with the Database Homepage user

interface available in the following languages: Brazilian Portuguese, Chinese

120


http://compUSA.com''
http://www.oracle.com

(Simplified and Traditional), English, French, German, Italian, Japanese, Korean
and Spanish.

3. Save the download file, OracleXEUniv.exe (216,933,372 bytes), to a temporary
directory.

4. Double click on OracleXEUniv.exe. Follow the installation wizard to finish the
installation. Remember to change the destination directory, set the SYTEM
password and take some notes like:

SYSTEM password: “your password”
Destination Folder: C:\localloraclexe\
Port for 'Oracle Database Listener': 1521
Port for 'Oracle Services for Microsoft Transaction Server': 2030
Port for HTTP Listener: 8080
To start Oracle XE server, Click on Start > All Programs > Oracle Database 10g Express

Edition > Start Database.

To stop Oracle XE server, Click on Start > All Programs > Oracle Database 10g Express
Edition > Stop Database.

Oracle Driver plug-in: We used Oracle driver ojdbc14.jar which need to be plug-in into

lib folder of the package folder.

5.4. Installation of JDeveloper IDE:

Oracle JDeveloper IDE is available to free download from www.oracle.com and the

installation details are available in the oracle web site. We used this IDE to develop the

data tables and database schema for the oracle database.

6.0 Data Base Schema and format

Our intention is to develop database schema automatically from generated NFA. Right
now we did not achieve this goal and developed our database schema and tables manually
using the Oracle JDeveloper IDE. We used visual observation of incoming data from the
web page for schema development. We observed that from our problem domain,
maximum six types of data tuples may generate as discussed in section 3.2 of the thesis.

These are Product data tuple, List data tuple, Text data tuple, Noise data tuple, Form data

121


file://C:/local/oraclexe/
http://www.oracle.com

tuple and Singleton data tuple. In case of our example test web pages, only four data
tuples (Product, List, Text and Noise) exist and so we only generated four tables, one for
each data tuple type. That means the content data from one specific data tuple type will
be inserted into a specific data table. For example, all contents from any Product data
tuple will be inserted into “PRODUCT” table and so on. Two more data tables are also
generated; these are “COMPANY” and “LIST TYPE”. We described below in brief

about these database tables:

COMPANY TABLE:

This table keeps track of web site ID from which data are coming and generates ID for
each web site to keep track the relationship between different tables by using Primary key
and Foreign key. Database schema for COMPANY table is given below:

Company(company Name string, company 1d nt),
bGP RR T ot T A

£ gt Yew Search Navgat Bun Debug Refactoe Vemgnng 1o  Wndow Hep
LR A B I 3 f wWAe > & B =2 E &
‘Roplcations N g ~djConnactin T Hfpasbmesiogan  STCOEMN LI TRE IO RO o o Bust . e o .
B o . o e wowrn v e e
T eskesensee corery R
Serve

{ st sBicntogn: Spstfl % e X

e R RS

Columes
3 o

Figure-3: JDeveloper IDE screen shot for COMPANY table

122



s - Windows Inkemet B

ws v Sscev Soles v Trokv KEv

THIACALE Daravase $rpra Eabar G ow 7
{ SN .
| se T o
et Y [E R WNILEN e AR o [EEPTPIRVSVIRPEN F— 2 - i ot Mo
o ¥\ v st
> AgoromE s e 0 v save * Run
eeiect v frox -mpan
PR - - N
foals vre Frew o e/
-
GBIy WY LN 3 .
FunrsBhop 324
onrpUSs 115
2 rowe eturped in € 00 secords
gt b 21837
Lsngesgr vus fopy w0t @ 193¢ 2002 foacis Mdrgh 3 s ver

Figure-4: Oracle IDE screen shot for data in COMPANY table

PRODUCT TABLE:

This table holds the contents from the Product data tuples. Database schemas are given as

follows:
Product (title:string, image:image-file, prodNum:string, brand.:string, price:long);
Product (title:string, image:image-file, prodNum:string, price:long);
Product (title: string, image:image-file, brand:string, prodNum:string, price:long);
Product (title:string, image:image-file, brand.:string, price:long);
Product (title:string, image:image-file, price.:long);
Product (image:image-file, title:string, prodNum:string, brand.string, price:long);
Product (image:image-file, title:string, prodNum:string, price:long);
Product (image:image-file, title: string, brand:string, prodNum:string, price:long);
Product (image:image-file, title:string, brand:string, price:long);

Product (image:image-file, title:string, price:long);

123



S R oLy e T £ I~ w TED
Ee Edt Vew S h Nawgte Bun Debug Refato ¥ oang oo Wndow H p
g o oBmu @ K By # LMdw 2 B BWewgy B F
LmRpplc ations Nlavey ~igConnecbon L pPsbmseDagom  oCOMPANY . USTIVRE  (TWOSE  LJPRODICE L BT ERIST ST TR . -
% # 23 Nang. Type Mot HULL =
oyl PROD NUM VARGHAR2(20) 2

jCeonectons = B0 VERCHARZ( 00)

Apphcation Server i o1 VARCHARZ(4000

Ba0s server

gt

Oatabase ! ot VARGHARZ( 00

& DBCocnection FRce ROA 25
THeS swor

S data
e wMessages Log

435 PRODUCT COMPANY FX

HESISWORK COMPASRY P TRG@DBComecton

G a8 T Common x ¥ S agev sefev Tas G
CHIHEIE Ras s e «p ssEdren o ?
v <y
SRR P PR A, SRS AR AR X O N g
Auotomrl 3Ry 20 save Run
seec fumm o
Hesu s =
P
e = ¥ a8 PR
i F 5D SITBUNG “wBun FYCIOHRY RICO o0 WwWT neS  swgPe. PHT ¢ o 90T LCC Mondar el Tt M0 s an magsands und Rk s0xm s Fu Sho 29399
SONSE  Hanapme  rannipssST GDMEE § M COCIpis %T TaecT HanspeeS OSB ¥ descres  DHAM VT Tu & o 5 owwor pace 13t of 5y and ash proama  Fuws S o3 14933
EfS Ho  sHamme  HachneERSD 5 ass HeLuD haro Th etfach ¢ E GI401°C3 e Ade mee L oMont  720r 1 od 7R o0Ha5 0 1Dmam 1 00 Rative potom by Fokeche 10389
o7 W yveen w5 m SACHPF 5 FDueRdd B¢ me 2% M 2 A6 sen CBSsw 2 Da st 3 H 8PD Drnm  826r G pach m gy Rk sShe 17308
asmn Sameung  Sereug X FME 1 SRLCC {amrxHD  ue Semsug D2 de oenFul iOL-DHonio 9°0 1084 WY 1Dymam. VO1Nthe W 485 GOMDY (G WDF Twmer prex 1w Fuwndop B
@43 asse ds £ 56 wm24 Case CDYdomilr ewsd © «  wn24 Cass Sgeses snHDL o dor 920 802330 Dmz $UTG Hut DA GAETOR I8 Thsiand pr oom pg  Fulwre hop 0439
By o GE2.8T2% & COMondor Bacdt TRELGE 5 7 Mutestr o L DHOrYe 8 of Mafe 5 UNCa I Bt ek [ o Fuiie ho~ G299
LA Flonn Planne ¥ 9 8 diiesgme COMoolc Pa &P ™ 2 2des eerlCDHon  with #8 "0 Hane 5Ms 3 G& ghe m pg Fuhe -hog ER
2Ry ~ DEMISAL  wsos RICOB Mo b O O3 & B Clwss dasa nlCCHMo br 50 9WoC003 D am 39 G Fhom pm  FubaSlop 089
B2y ma s S BB COtients heca s ngE G en € hn G wANT Ty wamaey sgeand w3 b2 o om 5 o Fuueshos 820
2 P Uncar Hya TZ78 3 ¢ "D .oasps oFe TheHanduT2 3 dei ulo sur s m Dxdp R 0000 Com ok ohe wRSbmp  Fitu3 ho 179092
[ sems W saeun B2 2 dsueel Dam P 3amu 3B 2 A22Adsmess TEWar 3G 8 6 N0 Dvem X have paom ame Faken 18093
ez B Asus ASH O YE USHZ Y es e OO 2 B W Tupe Tre sus 6 H 168 LeeniCDMe wi T Ture 0 00 wms2A00 D am BhANT oG F eShoe 26399
723t 68 Han p ¢ Han spe ST SOMSB  we CDDaps WT Ture Th Hamner »§ 20058 @ Midescres LOOKh MM &« T Toe dng owad pace faste foguead a hon P120m3 oG F & eShoe 14299
EXg > =zchpe SachaeEWT 1 Cas % LD hoavor Th shiath SE 814739 a Jeres enil 3 o K 86 L8 BH 5WOIDpa e DD e hoa bepe  Fubwesthow 189937
P 5 53 vamsu PZT HDZr WELCDhe orw™ wme heSamsurgPZ D de sen o L CHONO(MRT T ne mmses Thges s und e L Apg Fuhe hop 9999
242 A& #VE DI o2 oM <3 2 @ OD spls wTeTuTer he lewsu & 3 R24Y L6 <@ nLCD dowlawmhY Tin- 505 W 00¢ Ouraoc 0 ks phe 3 F wsaShos 1 3g%
E @ » dachae Backne € BRH rCa M LCDM ator Th etlahivesE 8 310 2.5 deser enll Gl 7~ 56 G8o0H OCO1Dpa~yc 00 st proonr 2 Fub A op 1933

8 twse-dm 00 30 seccads

Figure-6: Oracle IDE screen shot for data in PRODUCT table

124


http://5a.su

LIST TYPE TABLE

This table keeps track among the contents of multiple lists from each web page as well as
company (e.g., web page ID) from which those lists inserted from. The database schema

for this table is: List Type (list_type string, i1d. integer);

OSSO ey AR AR TS 2 T % % D
€le Edt Yew Sewch Mwgste Run febug Refzcto Ve ‘ndow  Hefp
B Mg B ow SBE A B e o R VI L 0B
appkcatonsNavig  £4Caonechans Lajparabase Dragram COMPANY  QISF DPE. CINOISE  MRODUCT  LATEX  BolIST  BUSTRCTRG  ELTVPE 2K RS =
3 Kame Tive G R -
® 4% @ us TeE VARCHAR2(SE) Y
Oakabase E o R
A, DBCornnchont
£ THESISWORK
Frctons
s eriahzed Viow ogs
s entakeed Veew
packaoss
P ocedures
< SequrenKes
2z Smanms.
ales
5 ComPaNy
st
3L ST TYPE
g NOIE
2.3 RRODUCY
Lirea
e T
5 CovPRIY_PK TR
SrUs PK RG
PUWEPK RG
SN0 5c_PK TRG
PIE ¥ ORG
s
Views .
- . X
LIST TYPE Soucrs
L]
<o Corers
§ 1T e
an -
5 Corstrants St Daa

~Messages  og

- e
& S0 Comman. s (Y - ev Seievv Tock v g

l THRACLT U avave wvp 230 B9 o Lo ?

e IS VA
? sniliiBint.y b v R i o

2w x
i
Auocorurk ¥ s 20 hd Save Run
)
Results 5«5 e
4

Unigs wm W

Comm norl Jporader 10

P52 phare 102

ABE actnn s %

L£IBH €3 138

S tes 9

4 Atoount 13

? %% BRI C 035w nds

st
a0y BgE €43 o B P 290 O ade A ghams U

Figure-8: Oracle IDE screen shot for data in LIST TYPE table

125



LIST TABLE:
This table stores content information of multiple lists from multiple web pages. The data
base schema is given below:

List (list_1d:int, link: string, text string, company: string, list_type:string),

e s FRageets i TRERDRS AT R 3 N e G R
Fe Edt Vew Seoch Noigate Run Deb g Refacto Vemignmg Tool Wndow Help
3B 3 oM ou S E ABewm > EL R BN & B
. s Y LLCOMPANY  ISTTRE  ZINOBE  amobuT LB s - -
B 73 v B biame Tipo NotNL ’._E
. 1510 R v
w3 Connections. < N VARCHARZ 100}
Appicaton Serve BT VARGHAR2(4000)
. oA Server posi VARCHARZ(100)
Database 15T TYPE VARCHAR2(50)
P, OBcormectont
& K
Funchons: )

st Stwue

2R
5 Comrs E
o mstes ot
5T L Hcssa0es 100
13 compane
{g ust vee
. Const ant
P ST usT TvE s
> stk
B usT coMpaNY 7

HESISWORK LIST TYPE@OBCoorechion

a pous &S Commen s LA~ s v ogev v Teokv R
CAETLE Daa e Txp e nEdta Wow 7
ae mESS %
ma@;@im - et 8 il st st Jon- v, sotiionedidiid  wmBecdondettite & it v it GG
§ Avtororzet £ e 0D - Save Run
2 ec from o
# §
o gults &
§ ] 6% ek < ¥
AV0T pps R OMAULDM iSecD derTre Kasp racr By 018 1 CUps stmown
850 Mps aw DTNUSRECIMBE™WE 0% agn a3 TP 1 oo COPISA (Lt
fCeci ) =edorst elpdore asy Hel & FIgSn READ W
BLO: apucaen 8 .070f 3t O SiraspCale 59 16D Bacii o prs nmowm
L LA MagCf  MB0 5 casp Cattted O 1R o s o B4 Inznoen
46, Q€ ppd M & aMed HRAlER s ICISHRLEE 157 w7 crpJsA  Unin m
« 8 FREICERY S wdn o0 SRR slRaspTCar f LoD o mp SA Untnownn
83 68 LPIERE A3 MO Cales  fcaspAat 140 Ltoo o Mp 184 Insncan
5 e appt e § ateg n Jlegwy | 3|pTTabe 7 002 o2 cPIBUSA Unv v
"3 g spicate 3 & on~ateger dcasp Cat 4 % AT RS omp Jtn
4303 BPUCR 0ns ate e LaABPV I 3124 Ret heie s o pSa Uninaen
By e apps Jadoes ateg iy aleg e A3p™Tate 433 T es tm gty cmp S8 Un n em
& 3 filp werwoamp sac MLasd p Best pP 5 oSN PCs Fe phe s
4 e omp acevecHD tont = LCDs ompliss  PCsPe pheraf
§ &y & Mp aw oanp ssert 1 ed he 103 ompJSa P 2 pherale
i (oo flp weycomp 5265 o D s fets 0 & Latops 0. S~ FCsFE phe as
i AN T BIp W GME SRO Y AAp Pre o pUSA  PPEPe pherals
&g R M AW omp s3 o jerdr L orpJsA Pro e bt ls
648 hiprewo p 8 on o8 2. ne Saun PRsPe B s
087 pip Meawcemp 3G wse er Sansr comp 92 PusPe pherals
B2 DIE aws OOMp $1%M [P S3hon Aege. B Sume empass I Blacsance

Figure-8: Oracle IDE screen shot for data in LIST table

126


file:///avig

TEXT TABLE: This table stores Text contents from the web pages. The database schema
is given as: Text(text_id: int, text: string, company: string);

[ O A X O P (T TR T T i i2Y T £ T SN Y
Ble €dt Wew Seach Novgate Bun Debug Refactor Vespnmg Tools Wndow kelp
FAAF B & B - s HmBLe > B Yo s @my Bb
Frppiestona Novg YConnectons Siosamegegan  Teowmw  Tusitee  fhese  esowdr  hem fRus T .
B 8 ¥ i Nere
g Connechans -

+ 3 Appkeon Serve
+ L. BAM Server

Type ot W;i
o TEXF D NUBER 4
e VARCHARZ(4000)
company VARCHARZ(100)

% Functons

. Matenaized Views

- UDDIRegst ¥
2 WeBDAY Server -

~STE Structue
PR
-
@ o Sructure Dota
i3 COMPANY [ Messages Log
st

+ 8, e romay R
S~ TERT P

el - Widttes intevast Evplarer.

N N R N TR RN
Nk Aot A i
s Faomes 8008 Commen x Ypov 53 o v rigev wfeve Yok gEv

H LOHIAL K Dartsaee » press frnn [T

Leme T ERm Ay

endidconnchec D S v, RS Sl 2 et R B LS 5 “ PR L N
IR

AgSLoME B ¢ 00~ save Run

sececr ¢ € om revd

Results 5 © e x4 4
- 4
y < s ¢
ca SHOP o PRIe sorapt SA
2. sfec four Pz Range  compt A%
s 51 e
228 B Lampse
2% 5100 compLIA
2 51805 % ovmptns
a2 & o5 comSe
ca 50 compLSa
2 HUP BY BRAH. ampLe-
P Seafin 3m bm  comLSe p
2t Sem L g oL S .
2. awenn. mpLsx
o Dat [RTES
P & factine compl S8
234 Harns.ree ZLETN
s e Sen compLse

16 £0%s & JMedin O 30 seccnds

Figure-11: Oracle IDE screen shot for data in TEXT table

NOISE TABLE:
Noise table stores the noise contents from the web page. The database schema for noise

table is: Noise( id: int, link: string, image: string; company: string);

127



R Rk e R s Froptad g IHER DR EET 7 7 TR B
Ele fdf Vew Seach Navgste fun Debug Refacto Vemonng Taol Wadaw Help
Xame s . - 4% 4 &BISw > B t HmEUY b
‘G ropkcabons va g SsConneusons 1§ foatsbese Dagrom cowerwr st Tee 4 oisk -
proa - J— Py
2 E3 Name Typo Bt Nt "
# & <> D NEER 4 i
Dutabore b e VRRCHAR(100)
B OBConoectiont G VERCHARZ(100)
Fh THESTSWORK compaay VARGHARZ(100)
e ons.
Matenalized View ogs.
Hoterisiced View
Pockages
Procechres
Secuences
7 Swonyms
Tables
75 compaY
st
£ SLIST TvPE
i NOISE
#.3 PRODUCT
Ldron
g -t
 COMPANY PK Rt
|LST K TRe
L ¥ PXIRG
#NOLSe K TRG
7 FEXT P TRG
Tpes
Views .
SHOISE Sructure
* 3
5 ohmns
e
3 =

o MAGE Sctwe Data

ersages Log ”

“Fnose covpANY Fia

Figure-12: JDeveloper IDE screen shot for NOISE table

7.0 Limitations of the software

This is the very first effort for mining web contents using object oriented model. There is
plenty of room for improvement of our system in future. Limitations of the current

system and future work as identified are stated as below:

Crawler module: Current crawler module can take one URL string at a time for
extraction and mining of web contents. Further improvement is required in future for
automatic identification of positive web pages from the web. Present implementation of
this module is designed aiming to work for basic functionalities as crawler with the
functionality to download data stream from the targeted web pages into the local
computer and cleaning or the web page comments from it. For robustness and scalability,
we need to improve the current crawler module to handle all kinds of situations from the

web.

128



Cleaner module: Currently we are using open source software “tagSoup” for cleaning
the web pages. Development of an independent cleaner module may improve the systems

performance and usability in future.

Extractor module: One major problem with the extractor module is its inability to
handle long tag attribute values. A reasonable way to handle long HTML tag attribute
value is needed that are currently blasting the DOM Tree creation. We need to find out a
way to reduce the tag attribute value length without loss of resources from it. A
reasonable solution by finding any alternative way to create DOM from other platforms
may solve the problem. Another noticeable limitation of this system is its limited capacity
to handle noise contents from the web page. More research is required to handle noise

from data tuples.

Miner module: We introduced the idea of using NFA for mining web contents in this
thesis. This NFA has two fold uses: Generation of extraction pattern for contents and
generation of database schema, cardinalities to create tables and to store contents into
relational database. In this thesis we generated extraction pattern but generation of
database schema from the generated NFA is pending to develop. Another limitation is the
use of pattern table for classification of tuples from the ContentObjectArray.
Implementation of any automatic classification using co-sign or other similarity
algorithm will eliminate the use of semi-automatic use of pattern table and squeezeTuple

algorithm from the miner module.

8.0 Java Tools

We used a set of java tools for the development of WebOMiner system. Table - A list
some important java tools we used for the development of the system and their reference

URL’s for future developer’s reference.

129



Table — A

NT AR,
Java ools’

S WY
B\
N o
. « e xg\& \\\i\< 8
% P LY &
. > sl N . )

ttn://download.oracle.com/iavasejj .4.2/docsapi/ iavutil/ArravListm.htmmml

BufferedInputStream http://download.oracle.com/javase/1.4.2/docs/api/java/io/BufferedInputStream.html
Class http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Class.html

File http://download.oracle.com/javase/1.4.2/docs/api/java/io/File.html

Hashset http://download.oracle.com/javase/1.4.2/docs/api/java/util/HashSet.html
HttpURLConnection http://download.oracle.com/javase/1.4.2/docs/api/java/net/HttpURLConnection.html
InputStream http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputStream.html
InputStreamReader http://download.oracle.com/javase/1.4.2/docs/api/java/io/InputStreamReader.html

javax.xml.parsers.DocumentBuilder

http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/DocumentBuilder.html

javax.xml.parsers.DocumentBuilderFact
ory

http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/DocumentBuilderFacto
ry.html

NodeList

http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/NodeL ist.html

org.w3c.dom.traversal. DocumentTraver
sal

http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/pac
kage-tree.html

org.w3c.dom.traversal.NodeFilter

http://download.llnw.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversa
I/class-use/NodeFilter.html

org.w3c.dom.traversal.Nodelterator

http://download.oracle.com/javase/1.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/clas
s-use/Nodelterator.html

Process http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Process.html

Runtime http://www.science.uva.nl/ict/ossdocs/java/jdk1.3/docs/api/java/lang/Runtime.html
String http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html

Sql http://download.oracle.com/javase/6/docs/api/java/sql/package-summary.html
StringTokenizer http://download.oracle.com/javase/1.4.2/docs/api/java/util/StringTokenizer.html
Thread http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html

URL http://download.oracle.com/javase/6/docs/api/java/net/ URL.html

130


http://download.oracle.eom/javase/l.4.2/docs/api/iava/util/ArravList.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/BufferedInputStream.html
http://download.oracle.eom/iavase/l.5.0/docs/api/java/lang/Class.html
http://download.oracle.eom/iavase/l.4.2/docs/api/iava/io/File.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/util/HashSet.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/net/HttpURLConnection.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/InputStream.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/io/InputStreamReader.html
http://download.oracle.eom/javase/l.4.2/docs/api/javax/xml/parsers/DocumentBuilder.html
http://download.oracle.eom/javase/l.4.2/docs/api/javax/xml/parsers/DocumentBuilderFacto
http://download.oracle.eom/iavase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/pac
http://download.llnw.oracle.eom/iavase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversa
http://download.oracle.eom/javase/l.5.0/docs/guide/plugin/dom/org/w3c/dom/traversal/clas
http://download.oracle.eom/javase/l.4.2/docs/api/java/lang/Process.html
http://www.science.uva.n1/ict/ossdocs/java/jdkl.3/docs/api/java/lang/Runtime.html
http://download.oracle.com/iavase/1.5.0/docs/api/iava/lang/String.html
http://download.oracle.eom/javase/6/docs/api/java/sql/package-summarv.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/util/StringTokenizer.html
http://download.oracle.eom/javase/l.4.2/docs/api/java/lang/Thread.html
http://download.oracle.eom/javase/6/docs/api/java/net/URL.html

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

VITA AUCTORIS

Titas Mutsuddy
Chittagong, Bangladesh.
1968

Chittagong University of Engineering and Technology,
Chittagong, Bangladesh.
Bachelor of Science in Civil Engineering (1992)

University of Windsor, Windsor, ON, Canada
Bachelor of Computer Science (Honors) (2005)

Wayne State University, Detroit, M1, USA
Master of Science in Civil Engineering (2008)

University of Windsor, Windsor, ON, Canada
Master of Science in Computer Science (2010)

i3



	Towards Comparative Web Content Mining using Object Oriented Model
	Recommended Citation

	ProQuest Dissertations

