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Abstract

In this thesis, we investigate cognitive load detection and classification based on

minimally invasive methods. Cognitive load detection is crucial for many emerg-

ing applications such as advanced driver assistance systems (ADAS) and industrial

automation. Numerous studies in the past have reported several psychological mea-

sures, such as eye-tracking, electrocardiogram (ECG), electroencephalogram (EEG),

as indicators of cognitive load. However, existing physiological features are invasive

in nature. Consequently, the objective of this study is to determine the feasibility of

non-invasive features such as pupil dilation measurements low-cost eye-tracker with

minimal constraints on the subject for cognitive load detection. In this study, data

from 33 participants were collected while they underwent tasks that are designed to

permeate three different cognitive difficulty levels with and without cognitive maskers

and the following measurements were recorded: eye-tracking measures (pupil dila-

tion, eye-gaze, and eye-blinks), and the response time from the detection response

task (DRT). We also demonstrate the classification of cognitive load experienced by

humans under different task conditions with the help of pupil dilation and reaction

time. Developing a model that can accurately classify cognitive load can be used in

various sectors such as semi-autonomous vehicles and aviation. we have used a data

fusion approach by combining pupil dilation and DRT reaction time to determine if

the classification accuracy increases. Further, we have compared the classifier with

the highest classification accuracy using data fusion against the accuracy of the same

classifier with only one feature (pupil dilation; reaction time) at a time.
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Chapter 1

Introduction

In this manuscript-style thesis, we explore the research and development of technology

in the realm of cognitive load detection using psychological measurements presented

by the author as a collection of their previously submitted works. Cognitive load

detection and classification using psychological measures itself is a broad topic which

boasts an increasing number of practical applications in Semi-autonomous vehicles,

aviation, and other industries. One specific application of cognitive load detection and

classification is in semi-autonomous vehicles to keep the driver safe during unusual

circumstances.

Autonomous and semi-autonomous industries continuously strive to make the

driving experience as safe as possible. Compared to full manual control, vehicles

now come with advanced features such as adaptive cruise control, automatic lane

change, the anti-braking system which assist the driver to have a safe and smooth

ride. These features are termed as advanced driver assisted systems (ADAS) [8].

ADAS is formally defined in the later section. Even though these features help en-

sure safety, the choice of activating these features remains with the driver. The driver

being a human is usually unaware of his or her cognitive state. High cognitive load

causes mental fatigue which deteriorates the ability of the driver to drive with pre-

caution. Such a cognitive state can result in a condition that might be dangerous for
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both the fellow passengers on the road as well as the driver. Failure to activate the

ADAS under such circumstances can result in tragic incidents. ADAS systems can be

designed to adapt and activate themselves with a driver’s cognitive state making the

driving experience even more safer [11]. To make reliable and accurate, cognitive load

detection and classification models based on psychological measurements i.e. reaction

time [9] and pupil dilation [7] which can be applied in the field of semi-autonomous

vehicles and other industries will be explored later in the chapters. As such the au-

thor has dedicated his research and time to this end and has striven to investigate

minimally invasive techniques to help detect and classify cognitive load depending on

the difficulty of the task.

1.1 Organization of the Thesis

The author has elected to present this thesis structured according to the manuscript

format rather than the traditional format. That is, the chapters to follow consist

of manuscripts previously written and submitted by the author, with the first au-

thorship, are included in this thesis as written at the times of their submissions, in

chronological order, with alterations to format and slight modifications to content

to maintain a cohesive thesis structure. As prescribed by the manuscript format,

abstracts have also been omitted. The author believes that by virtue of the chosen

format their thought process, understanding of the research topic and its place in the

modern world, and journey toward producing increasingly meaningful contributions,

are far more accurately conveyed as a story told through a collection of chronological

works.

While a traditional thesis commonly contains a general literature review and prob-

lem statement, the author has chosen to forego these sections in the traditional sense.

The reader will find that each of the manuscript chapters provides their own intro-

ductions which serve the purpose of familiarizing the reader with both the context of
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the research and relevant literature - however, the content discussed in each reflects

the knowledge and understanding of the topic at their respective times of writing.

As such, the next section will present the key points from each manuscript chapter

introduction as well as some additional thoughts and findings at the time of writing.

Each of the manuscript chapters also contain a section describing the problem to be

addressed by the research. To include a general literature review and problem state-

ment in this thesis would be to introduce unnecessary redundancy. It must be noted,

however, that some amount of redundancy will persist throughout the manuscript

chapters as a consequence of each being originally written as their own, standalone

entities.

The remainder of this thesis is organized as follows: Chapters 2 provides brief

description of the data collection procedure, type of data collected, experimental

design, tasks, descriptive and inferential statistical analysis of the collected data,

comparison of dual-task and single-task performance on cognitive load and feasibility

of pupil dilation as a measure of cognitive load. A conceptual understanding of each

is necessary to understand the subject matter of Chapter 3. In Chapter 3, where

the first author demonstrates the classification of cognitive load using three different

classifiers i.e. support vector machine, logistic regression, and k-means with data

fusion. In the later section, the first author compares the above-mentioned classifiers

based on classification accuracy. Chapter 3 also describes the use of a new method

for cognitive load detection based on pupil dilation and reaction time. Finally, the

author concludes the findings of this research along with future work.

1.2 Understanding Advanced driver assistance sys-

tems

The world health organization reported a global status on road safety in 2018 claiming

1.35 million deaths from car accidents [3]. A 2016 global report from safer America
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showed that 95% of all vehicles involved in fatal car accidents were passenger cars

or light trucks and 50% of fatalities in car accidents were drivers [1]. The National

Highway Traffic Safety Association from different countries regulate and enforce safety

standards placed on automobile manufacturers. Due to this manufacturers are com-

peting to offer a cutting edge system that assists drivers in safe and accident-free

driving. Such systems are known as advanced driver assistance systems (ADAS).

The ADAS is an intelligent safety system that tries to improve road safety in terms

of crash avoidance, crash severity mitigation and protection, and automatic post-crash

notification of collision [2]. There are various driver assistance systems each working

to provide a different feature. Some are critical to safety whereas some help driver

avoids minor accidents. Examples of ADAS are automatic cruise control, automatic

lane change, lane keep assist and collision braking mitigation system [10].

1.3 Pupil dilation and Its applications

Pupil dilation is usually measured using eye trackers. Eye tracker uses infrared cam-

eras to capture pupil dilation. With the recent development in technology, pupil

dilation can be measured using low-cost portable cameras thus making pupil dilation

useful in a range of applications. Researchers have suggested that pupil dilation con-

tains a lot of information regarding human behavior, health [6] and emotions [12].

Human behavior, health, and emotions can be predicted from the pupil dilation which

has found a variety of applications like:

1. Interpretation and analysis of fMRI data: Siegle, stenger, konecky and carter

[13] compared the time course of pupil dilation with that of fMRI signal in the

middle frontal gyrus during a digit sorting task to suggest that activity in that

area indexed the working memory subtask of digit sorting.

2. Lie detection: Wang, spezio, and camerer [15] demonstrated that pupil dilation

is proportional to the size of the lie, which can be due to two reasons i.e. lying

4



involves more complicated process or simply due to guilt.

3. cognitive workload detection: Researchers examined the effect of increasing

cognitive workload tasks on pupil dilation and found out that pupil dilation

increases with task difficulty and hence can be a good measure of cognitive

load [10].

1.4 Detection Response Task overview

Detection response task (DRT) is a method that evaluates the attentional aspect

of cognitive load in drivers. Response time and the missed rate is measured using

DRT. Response time is interpreted as the attentional effect of cognitive load [5]. DRT

consists of a different form of stimulus i.e. visual, auditory and tactile and the response

is in the form of micro-switch. In visual DRT the driver is presented with a visual

target in the form of a red dot. The driver has to press the microswitch every time

the visual target is presented. In auditory DRT the driver is presented with an audio

target in the form of the auditory signal. The driver has to press the microswitch

every time the hear auditory signal. In tactile DRT the driver is presented with a

stimulus in the form of vibrations produced by a small vibration generator device.

The driver has to press the microswitch every time they feel a vibration produced by

the device.

All the types of DRT measure response time and missed rate in a similar fashion.

Response time is measured as time from the stimulus onset until the response onset

[5]. Missed rate is measured as no response is given within 100 - 2500 milliseconds

after stimulus onset [5]. Many researchers have used DRT to measure the cognitive

load experienced by the driver [4]. Longer reaction time indicate a higher cognitive

load [14]. DRT is an accepted standard to measure cognitive load in the driving

environment [9].
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Chapter 2

On the Feasibility of Cognitive

Load Detection through Pupil

Dilation Measurements in ADAS

2.1 Introduction

Semi-autonomous vehicles are rapidly taking leverage over manually controlled vehi-

cles. The important factors contributing to this changeover are the advanced driver

assistance systems (ADAS) [25] which aims to facilitate driving with minimal effort

by the human driver. The ADAS based intelligent safety systems could improve road

safety in terms of crash avoidance, crash severity mitigation and protection, and au-

tomatic post-crash notification of collision. Further, ADAS could be useful as an

integrated in-vehicle or infrastructure-based systems which contribute to all of these

crash phases [6]. ADAS takes input from the driver and various in-vehicle systems

to produce scheduled outputs such as automatic braking, collision warning and lane

change assist which are critical to the safety of drivers [25]. The choice of activat-

ing ADAS remains with the driver. It is estimated that although ADAS successfully

reduced road accidents by 25% [16], studies have shown that one of the important
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reasons for ADAS failure is due to human error. Crash data studies have found

that driver error and other human factors contribute to as much as 93% of vehicle

crashes [9]. Human error can occur due to lack of training on how to use ADAS, the

complexity of ADAS, change of human behavior and sole attention on ADAS rather

than primary task i.e. driving [10]. Instead of providing full control to the driver,

ADAS can be designed to adapt and trigger based on feedback received from the

driver’s cognitive state. Consequently, cognitive load detection has become one of the

active research topics of the recent past. Tianyi Hong and Huabiao Qin [15] proposed

to detect drowsiness through the percentage of eye closing data, i.e., the number of

blinks, through steering mounted camera and depending on the level of drowsiness

a warning message was displayed or the vehicle was slowed down and stopped thus

avoiding a crash or any unusual circumstances. Humans have limited capacity and

the ability to focus attention deteriorates under conditions of high load on cognitive

control processes such as working memory [17]. Cognitive load delays a driver’s re-

sponse to critical events [9]. Under conditions of high cognitive load, failure of ADAS

due to human error can result in undesired incidents such as accidents.

One of the crucial steps in developing a cognitive state-adaptive ADAS is mea-

suring the cognitive load experienced by the driver [9, 11]. Unlike physical load, the

cognitive load experienced by an individual cannot be determined through direct

measurements. Researchers have suggested that cognitive load can be detected using

analytical and empirical methods [27]. Analytical methods are aimed at evaluating

the cognitive load by collecting analytical data with methods such as mathemat-

ical models and task analysis. Empirical methods involve estimating the cognitive

load by collecting subjective data using rating scales, performance data using primary

and secondary task techniques and psychological data using psychological techniques.

Psychological techniques are based on the assumption that changes in cognitive func-

tioning are indicated by psychological variables [23]. Heart rate, heart rate variability,
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reaction time and pupil dilation are some examples of psychological variables. De-

tection response task (DRT) is one of the accepted standards for measuring reaction

time among drivers capturing the attentional aspect of cognitive load [13]. Literature

suggests that reaction times are longer with higher cognitive load imposed by the

task [28]. Although DRT is an accepted standard for measuring cognitive load, it

needs to be in contact with the driver/participant under study; hence, DRT is con-

sidered an invasive measure of cognitive load detection. What is primarily preferred

in ADAS and other human-machine automation systems are non-invasive measures

of which eye-tracking is a good example. The cognitive functioning of the human

brain can be detected through eye-tracking measurements such as pupil dilation, eye

gaze, and eye blinks. Pupil dilation can dilate up-to 0.5mm in response to cognitive

processing stimuli [8]. Researchers have suggested that any sensory movement —

whether tactile, auditory or gustatory — tigers pupillary reflex dilation. The mental

process, emotional effort, and motor actions also evoke the pupil dilation [8]. Past

studies have shown that the mean and variance of the pupil dilation increases with

cognitive difficulty [18]. It was also shown that eye-tracking can be used for detecting

and tracking transient changes in the pupil dilation for multiple levels of cognitive

difficulty [18]. Short-duration studies involving pupil dilation suggest that while in-

formation is received into the memory pupil dilates slightly, dilation increases when

the information is processed and constricts when information is retrieved. For the

long-duration task, the peak pupillary dilation is consistently higher than the short

duration task but the constriction during memory retrieval is almost similar in both

the conditions [7].

Despite the challenges in using pupil dilation as a measure of cognitive load, the

technical advances in optical sensing and artificial intelligence continue to improve the

feasibility of this becoming a reality in the future. With the recent development in the

field of eye-tracking pupil dilation can be measured through low-cost cameras with

high efficiency. Researches have come up with an accurate and real-time estimation
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of pupil size through portable cameras such as webcams [24] which can be easily

installed in vehicles. With successful detection of the cognitive state through non-

invasive measures, such as eye tacking, it can be possible to develop more reliable

ADAS.

In this chapter, we compare the measured pupil dilation against the following

measures of cognitive load:

• Subjective measures: The NASA task load index (NASA-TLX) [14], a retro-

spective set of questionnaires, is one of the well known subjective measures of

cognitive load.

• Standardized measures: The International Standards Organization (ISO) has

standardized DRT as an acceptable measure of cognitive workload (ISO 17488,

2016). The following DRT measures were recorded for comparative analysis:

1. Response time: The time it took for the participant to respond to a stimuli

(administered in the form of buzzer) by pressing a button. It is expected

that as the cognitive load experienced by the participant increases, so will

the response time.

2. Missed trials: The number of times the participant failed to respond to

the stimuli. It is expected that as the cognitive load experienced by the

participant increases, so will the missed trials.

• Performance measures: Here, the accuracy of the n−back experiment is con-

sidered to be an indicator of cognitive load.

Based on the analysis performed, the following observations were made in this chapter:

1. Pupil dilation increased with cognitive load: When tested among four difficulty

levels, pupil dilation showed a statistically significant difference in 3 out of 6

pairs of cognitive load.
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2. Reaction time increased with cognitive load: When tested among four difficulty

levels, reaction time showed a statistically significant difference in 2 out of 6

pairs of cognitive load.

3. Demonstration of multiple measures for cognitive load detection: Cognitive load

was detected by combining the following measures:

• Subjective measures: NASA-TLX

• Standardized measures: (a) reaction time and (b) total number of missed

trials

• Psychological measures: Pupil dilation

• Performance measures: n−back accuracy

4. DRT acted as an additional cognitive load: This observation is statistically

confirmed using pupil dilation. Further, this was confirmed by NASA-TLX as

well as n−back accuracy (performance measure). We demonstrate the difference

between cognitive load experienced by an individual performing a single task

vs multitasking through pupil dilation.

The rest of this chapter is organized as follows: Section 3.2 provides the descrip-

tion of the procedure followed for participant recruitment, apparatus used, tasks and

procedure followed for conducting the experiment; Section 2.3 consists of data anal-

ysis using descriptive statistics such as plotting the mean and standard deviation of

collected data; also elaborates inferential statistical techniques used for an in-depth

analysis of collected data to validate the findings of descriptive statistics. and Section

3.6 concludes this chapter.

2.2 Data Collection Setup

In this Section, we summarize the data collection setup and procedures.
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Figure 2.1: The Gazepoint (GP3) eye-tracking system [3]. The pupil dilation
data were recorded using the GP3 eye-tracking system without imposing any physical
constraints on the head; the participants were asked to focus on the ‘+’ sign displayed
on the screen.

1. Subjects: 33 participants ranging in age from 18 to 30 years (M = 22 , SD

= 3) were recruited for this study. All the participants were students (18 un-

dergraduate students and 15 graduate students) at the University of Windsor;

The solicitations were announced in classrooms and via e-mail circulation at

the University of Windsor. Participants received a $20.00 gift card that was

announced in the solicitations.

2. Apparatus: The following two apparatus were used to collect psychological

data during the experiments.

(a) Eye-Tracker: The Gaze-Point (GP3) eye-tracking system [3] was used to

collect the following eye-tracking data: pupil dilation, eye-gaze fixations

and eye-blinks (Figure 2.1).

13



(b) DRT Recorder. Reaction time was collected through Detection Response

Task (DRT) [2]. The DRT device had a stimulus in the form of tactile

vibration generator and response through a microswitch (Figure 2.2).

(a) DRT stimulus (vibrations)

(b) DRT response (push-button switch) [13]

Figure 2.2: DRT stimulus and response. The DRT stimulus comes in the form
a a vibration; in response to each vibration, the participant is required to press the
push-button switch shown in (b). The time between the start of the DRT vibration
and the response is measured in milliseconds.

3. Tasks: The participants had to perform two types of tasks:

(a) Detection response task, referred from hereafter as the DRT task. Here,

the participant has to press a button in response to the vibration produced
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Figure 2.3: Experiment Setup: The devices used for data collection.

by the DRT device.

(b) Delayed digital recall task, referred from hereafter as the n−back task. The

details of the n−back task are given next.

The n−back task has a serial presentation of a stimulus in the form of audio

(series of numbers) spaced approximately one second apart which involves the

storage and continual updating of information in working memory [1]. The

n−back tasks were divided into three stages with increasing difficulty:

• Zero-back: Participants had to repeat out loud same number they just

heard (see Table 2.1 for sample response).

• One-back: Participants had to repeat out loud one number previous to the

number they just heard (see Table 2.2 for sample response).

• Two-back: Participants had to repeat out loud two numbers previous to

the number they just heard (see Table 2.3 for sample response).

The duration of each n−back task was approximately three minutes during

which approximately seventy n−back responses are collected. The first ten
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stimuli and the expected responses of the 0−back, 1−back and 2−back tasks

are listed in Tables 2.1, 2.2 and, 2.3 respectively.

Table 2.1: Zero-back tasks: Stimuli and the expected response (first ten out of 72
numbers are shown)

stimulus 0−back
8 8
7 7
4 4
5 5
2 2
3 3
1 1
9 9
6 6
0 0

Table 2.2: One-back tasks: Stimuli and the expected response (first ten out of 68
numbers are shown)

stimulus 1−back
7 -
3 7
6 3
4 6
0 4
5 0
8 5
1 8
9 1
2 9

The n−back experiment was divided into two stages:

(a) Dual-Experiment: The participant had to perform the n−back task while

performing the DRT.
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Table 2.3: Two-back tasks: Stimuli and the expected response (first ten out of 67
numbers are shown)

stimulus 2−back
5 -
3 -
4 5
8 3
0 4
7 8
1 0
9 7
6 1
8 9

(b) Single-Experiment: Participants had to perform the n−back task without

the DRT.

4. Procedure: Each participant completed two sessions each lasting approxi-

mately twenty minutes. Each session was run by a script that causes the events

to take place within the environment at the scripted time. The sequence of

the n−back task was manipulated for each participant using the Latin square

technique [5] to counterbalance the experiment.

• Dual−Experiment: A 2 (tasks) ∗ 4 (levels i.e control, 0-back, 1-back, 2-

back) within-subject experimental design was considered. In a within-

subject design, every single participant is subjected to every single condi-

tion, including the control (CTRL) and has to perform every task included

in the design. Participants performed the n−back task (zero, one, two)

along with the DRT with their response to n−back being recorded to cal-

culate accuracy. For the DRT, a stimulus i.e. a small electric vibrator

(tractor) generating mild vibrations was attached to the participant’s left

or right arm depending on whether they are left-handed or right-handed.

The response switch was attached to the index finger of the opposite hand.
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Participants had to press the switch every time they felt a vibration, and

also repeat out loud the number from n−back task at the same time.

Participants were instructed that their primary task is to repeat numbers

accurately while concentrating on the plus sign displayed on the screen

in front of them and the secondary task is to press the response switch.

Eye-tracking data were also recorded at the same time. Additionally, par-

ticipants performed a control task with just the DRT alone. Subjective

measure was recorded using the NASA task load index (NASA-TLX) form

in which the participants had to rate each n−back task and control task

on six different scales. NASA-TLX is a subjective, multidimensional as-

sessment tool that rates perceived workload to assess a task [4].

• Single−Experiment: A 1 (task) ∗ 3 (levels) within-subject experimental

design was considered. Participants performed the n−back task while

concentrating on the plus sign on the computer screen in front of them

without DRT. Eye-tracking data were recorded. Subjective measure was

recorded using the NASA-TLX form in which the participants had to rate

each n−back task on six different scales.

Due to a malfunction in the eye-tracking device, the data from participants 29 to

33 were excluded from further analysis. As a result, we consider only the data from

the first 28 participants for the analysis presented in the remaining sections of this

chapter.

2.3 Approach to Data Analysis

In the following sections, we present analysis of the collected data. Analysis is per-

formed in two parts:

1. Descriptive statistical Analysis: Involves visual analysis of mean and stan-

dard deviation of the psychological data collected across 28 participants and
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two stages (dual and single experiment).

2. Inferential statistical Analysis: Involves a statistical analysis of the mean

of the psychological data collected across 28 participants and two stages (dual

and single experiment) to validate observations from descriptive statistics.

Descriptive statistics suggest that the psychological measures collected across

28 participants during the n−back task are significantly different depending

upon the difficulty of the task. For instance descriptive statistics indicate that

the mean of reaction time increase from CTRL to 2−back (Figure 2.4). As

the sample size of the data under consideration is small (only 28 participants),

results obtained from descriptive statistics might have occurred due to chance

i.e. the psychological measures may not be different from each other depending

on the task. To justify our findings i.e. psychological measures are different

during the n−back task we analyze collected data using inferential statistics,

i.e., through formal hypothesis testing.

• Following hypothesis were tested:

(a) Hypothesis 1: Mean reaction time increases with the increase in n−back

difficulty.

(b) Hypothesis 2: Mean of normalized pupil dilation collected during dual

experiment increases with an increase in n−back difficulty.

(c) Hypothesis 3: The means of NASA-TLX scales recorded during the

dual experiment are significantly different. Mental demand, temporal de-

mand, effort and frustration experienced by the participant’s increases with

n−back difficulty.

(d) Hypothesis 4: Mean of normalized pupil dilation collected during single

experiment increases with increase in n−back difficulty.
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(e) Hypothesis 5: Mean of NASA-TLX scales recorded during single exper-

iment are significantly different. Mental demand, temporal demand, effort

and frustration experienced by the participant’s increases with n−back

difficulty.

(f) Hypothesis 6: The cognitive load experienced by an individual is higher

during multitasking compared to a single task. Dual experiment had two

tasks (i.e multitasking) compared to single experiment with one task. This

hypothesis is tested by comparing mean of normalized pupil dilation from

the dual experiment stage with mean of normalized pupil dilation from sin-

gle experiment stage and the assumption is, pupil dilation is higher during

the dual-experiment than the pupil dilation during single experiment.

(g) Hypothesis 7: Mean n−back accuracy recorded during the dual and

single experiment is significantly different.

(h) Hypothesis 8: Mean mental demand scale recorded through NASA-TLX

during dual and single experiment is significantly different.

• Following procedure was followed for hypothesis testing:

(a) Testing the assumption of sphericity: Sphericity is the condition

where the variances of the differences between all combinations of related

groups (levels) are equal. Sphericity is tested to determine the type of

distribution of data under analysis. Violation of sphericity is when the

variances of the differences between all combinations of related groups are

not equal. Mauchly’s test of sphericity is a formal way of testing the

assumption of sphericity. Mauchly’s test of sphericity tests the null hy-

pothesis that the variances of the differences are equal. Thus, if Mauchly’s

test of sphericity is statistically significant (p < .05), we can reject the null

hypothesis and accept the alternative hypothesis that the variances of the

differences are not equal i.e., sphericity has been violated. If sphericity is
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not violated t-test or analysis of variance (ANOVA) is used to analyze the

data. If sphericity is violated we use either Chi-square or Fisher test to

analyze the data. As our data did not violate the condition of spheric-

ity we have used ANOVA. The t-test is not used for analysis as it takes

into consideration only two groups at a time whereas we have four groups.

(Mauchly’s test of sphericity is conducted only before repeated measures

ANOVA) [22].

(b) Repeated measure ANOVA: A repeated-measures ANOVA is also re-

ferred to as a within-subjects ANOVA, which is a test to detect any overall

differences between related means of different groups. ANOVA is used to

investigate either changes in mean scores over three or more time points, or

differences in mean scores under three or more different conditions. The re-

peated measures ANOVA tests two hypotheses, the null hypothesis states

that the related means of different groups are equal and the alternative

hypothesis states that the related means of different groups are not equal

(at least one mean is different from another mean). Thus, if ANOVA is

statistically significant (p < .05), we can reject the null hypothesis and

accept the alternative hypothesis [26].

(c) Post HOC for repeated measure ANOVA: ANOVA detects the over-

all differences between related means of different groups but it does not

tell which specific group differed. To determine which pair of groups (e.g.

CTRL and 2−back) are significantly different from each other we con-

duct a multiple-comparison test on our data (i.e reaction time and pupil

dilation). Multiple comparison test analyzes two hypotheses, the null hy-

pothesis states that the related means of two groups (at a time) are equal

and the alternative hypothesis states that the related means of two groups

(at a time) are not equal. Thus, if multiple comparison test is statistically

significant (p < .05), we can reject the null hypothesis and accept the
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alternative hypothesis [21].

(d) Effect size: Effect size (cohen′s d) is a statistical concept that measures

the strength of the relationship between two variables on a numeric scale.

The effect size was calculated using Cohen’s d. Cohen’s d is known as the

difference of two related groups means and it is divided by the standard

deviation (of the difference) from the data.

2.4 Data Analysis of the Dual Experiment

2.4.1 DRT Response Time

Descriptive Analysis of DRT Response Time

Figure 2.4 shows the characteristics of the mean reaction time with different diffi-

culty levels in the n−back task. This figure is based on the data from 28 participants

for each difficulty level; during the control task (denoted as CTRL) the participant is

required to respond to the DRT vibrations without needing to respond to the n−back

task. The reaction time increases with the difficulty level from CTRL until 2−back.

Reaction time below 100 ms (also known as a premature response) and above 2500

ms (also known as a un-requested response) were removed during data analysis. Also,

the number of misses, where the participant did not press the response button, was

not included.

Inferential Analysis of DRT Response Time

• Hypothesis 1: Mean reaction time increases with the increase in n−back diffi-

culty.

Dual Experiment with two tasks (DRT and n−back) ∗ four levels (CTRL, 0−back,

1−back, 2−back).

Mean reaction time data analysis using Mauchly’s test [chi-square x2(5) = 7.85, p =
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Figure 2.4: Mean reaction time data of 28 participants. The mean reaction
time increases with difficulty i.e. shorter reaction times are observed for CTRL task
and as the cognitive load increases reaction time also increases. Mean reaction time
is highest during 2−back task.
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.16] did not indicate any violation of sphericity.

Within subject or repeated measure ANOVA was considered to analyze mean response

time data. The analysis revealed significant difference [F (3,78) = 3.016, p < .034,

cohen′s d = .10] between the overall mean of reaction time for different groups.

Post HOC analysis of the mean reaction time data revealed only two pair of groups

i.e CTRL and 1−back [p = .005, cohen′s d = 1] and, CTRL and 2−back [p = .001,

cohen′s d = 1.26] are significantly different from each other. Figure 2.5 shows that

mean reaction time increases from CTRL task to 1−back and CTRL task to 2−back

task i.e longer reaction time as the task got difficult.

300 400 500 600 700 800 900

Mean Reaction Time (ms)

2-back

1-back

0-back

CTRL

Post HOC Analysis

Figure 2.5: Post HOC analysis for hypothesis 1. Blue line indicates the task
who’s mean is significantly different than the other task (highlighted in red color).
Black line represents the task who’s mean does not differ significantly compared to
the other tasks. 1−back and 2−back tasks have reaction time means significantly
different from CTRL tasks. Longer reaction times are observed during 2−back and
1−back task as compared to CTRL task which indicate increasing in cognitive load
with increase in task difficulty.
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2.4.2 Missed DRT Trials

Descriptive Analysis of Total Number of Missed DRT Trials

The number of misses is defined as the number of times participants failed in re-

sponding to DRT vibrations [13]. The total number of missed DRT trials is calculated

as the number of misses divided by trial number and multiplied by 100 to calculate

the percentage of the missed DRT trials. Figure 2.6 represents the percentage mean of

the total number of misses across 28 participants during four different tasks. The trial

number for the individual task was approximately between 40-50 trials. The total

number of misses is increasing from the CTRL task to 2−back task which indicates

that cognitive load increased with task difficulty.
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Figure 2.6: Total number of missed DRT trials. Total number of missed DRT
trials increases with difficulty of the task.

2.4.3 Pupil Dilation

Descriptive Analysis of Pupil Dilation

Since the size of the pupil dilation might be different for each individual based
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on their physical characteristics, it is necessary to normalize the mean pupil dilation

data. The pupil dilation data is normalized by dividing the measured pupil dilation

by the average pupil dilation during the CTRL stage. Figure 2.7 shows the result of

such normalization: the top plot shows the measured pupil dilation and the plot at

the bottom shows the normalized pupil dilation.

Figure 2.8 Shows the plot of mean pupil dilation with different difficulty levels in

the n−back task. This figure is based on the data from only 28 participants for each

difficulty level. Pupil dilation data was collected when the participants performed

the n−back task along with DRT. Pupil dilation increases with difficulty level from

CTRL until 2−back.

Inferential Analysis of Pupil Dilation

• Hypothesis 2: Mean of normalized pupil dilation collected during dual experi-

ment increases with increase in n−back difficulty.

Dual Experiment with two tasks (DRT and n−back) x four levels (CTRL, 0−back,

1−back, 2−back)

Mean of normalized pupil dilation data analysis using Mauchly’s test [chi-square

x2(5) = 12.117 , p = .7 ] did not indicate any violation of sphericity.

Within subject repeated measure ANOVA was considered to analyze pupil dilation

data. The analysis revealed significant difference [F (3,78) = 4.578, p = .01, cohen′s

d = 1.1] between the overall mean of normalized pupil dilation for different groups.

Post HOC analysis of the mean of normalized pupil dilation data revealed only three

pair of groups i.e CTRL and 1−back [p = .0081, cohen′s d = 0.8], CTRL and 2−back

[p = .00, cohen′s d = 1.2], and 0−back and 2−back [p = .00, cohen′s d = 1] are

significantly different from each other. Figure 2.9 shows that mean of normalized

pupil dilation increased from CTRL to 1−back task and CTRL to 2−back task i.e

pupil dilation increases with the difficulty of the task. Pupil dilation results can be

considered valid as the response time results show a similar pattern during CTRL to
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Figure 2.7: Pupil dilation for single participant (dual experiment). The pupil
dilation data is normalized by dividing the measured pupil dilation by the average
pupil dilation during the CTRL stage.
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Figure 2.8: Mean pupil dilation data of 28 participants (dual Experiment).
The mean pupil dilation increases with difficulty i.e. smaller pupil dilation is observed
for CTRL task and as the cognitive load increases pupil dilation also increases. Pupil
dilation is maximum during 2−back task.
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1−back and CTRL to 2−back condition i.e an increased cognitive load experienced

by the subjects.

2.4.4 NASA-TLX

Descriptive Analysis of NASA-TLX Data

NASA-TLX data was collected after CTRL and each n−back task. Participants

had to rate tasks performed on six different scales i.e. mental demand, physical

demand, temporal demand, performance, effort, and frustration. For visualization

and analysis only mental demand, temporal demand, effort and frustration scales

were considered as the participant did not perform any task that was physically

demanding and also the performance on the task was determined by calculating the

accuracy.

Figure 2.10 (a) shows the plot for NASA-TLX scales i.e mental demand, temporal

demand, effort and frustration across 28 participants and 2 (tasks) * 4 (levels). Mental

demand, temporal demand, effort, and frustration increased with the difficulty of the

task.

Inferential Analysis of NASA-TLX Data

• Hypothesis 3: Mean of NASA-TLX scales recorded during dual experiment are

significantly different. Mental demand, temporal demand, effort and frustration

experienced by the participant’s increases with n−back difficulty.

A within-subject multivariate ANOVA with tasks (DRT and n−back with four condi-

tions) as the independent variable and the four scales of NASA-TLX (mental demand,

temporal demand, effort and frustration) as the dependent variables were consid-

ered. Significant effects of task were found for mental demand [F (3,23) = 4.52, p =

.002,cohen′s d = 1.8], temporal demand [F (3,23) = 4.07, p = .01, cohen′s d = 1.6],

and frustration [F (3,23) = 5.79, p = .004, cohen′s d = 1.68]. Ratings for effort did

not differ across the task conditions.
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Figure 2.9: Post HOC analysis for hypothesis 2. Blue line indicates the task
who’s mean is significantly different than the other task (highlighted in red color).
Black line represents the task who’s mean does not differ significantly compared
to the other tasks. The pupil dilation means of 1−back task and 2−back task are
significantly different from CTRL task and pupil dilation mean of 0back is significantly
different from 2−back. Dilation of increases with difficulty of the task i.e pupil dilates
more during 1−back and 2−back tasks as compared to CTRL task which indicate
increasing in cognitive load with increase in task difficulty.
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Figure 2.10: Mean of NASA-TLX rating (dual and single experiment) across
28 participants. Ratings of tasks performed during dual and single experiment are
visualized using the mental demand, temporal demand, effort and frustration scales.
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2.5 Data Analysis of the Single Experiment

In this subsection, we summarize the data visualization for single experiments where

the DRT was not present. Without DRT, the measurements to be visualized are the

pupil dilation and NASA-TLX data.

2.5.1 Pupil Dilation

Descriptive Analysis of Pupil Dilation

Similar to before, the pupil dilation information needs to be normalized since its

initial size depends on individuals. The pupil dilation data for the single experiment

is normalized by dividing the measured pupil dilation by the average pupil dilation

during the 0-back stage.

Figure 2.12 shows the plot of mean of normalized pupil dilation with different

difficulty levels in the n−back task. This figure is based on the data from only 28

participants for each difficulty level. Pupil dilation data were collected when the

participants performed the n−back task without DRT. There was no control stage

during this experiment. Pupil dilation increases with difficulty level from 0−back

until 2−back.

Inferential Analysis of Pupil Dilation

• Hypothesis 4: Mean of normalized pupil dilation collected during single experi-

ment increases with increase in n−back difficulty.

Single Experiment with one tasks (n−back) x three levels (0−back, 1−back, 2−back)

Mean of normalized pupil dilation data analysis using Mauchly’s test [chi-square x2(3)

= 8.1 , p = .8 ] did not indicate any violation of sphericity.

Within subject repeated measure ANOVA was considered to analyze pupil dilation

data. The analysis revealed significant difference [F (2,52) = 4.578, p = .004, cohen′s

d = 1.1] between the overall mean of normalized pupil dilation for different groups.
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Figure 2.11: Pupil dilation for single participant (single experiment). The
pupil dilation data is normalized by dividing the measured pupil dilation by the
average pupil dilation during the CTRL stage.
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Figure 2.12: Mean pupil dilation data of 28 participants (single experiment).
The mean pupil dilation increases with difficulty i.e. smaller pupil dilation is observed
for 0−back task and as the cognitive load increases pupil dilation also increases. Pupil
dilation is maximum during 2−back task.
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Post HOC analysis of the mean of normalized pupil dilation data revealed only two

pair of groups i.e 0−back and 2−back [p = .00, cohen′s d = 1], and 1−back and

2−back [p = .00, cohen′s d = .9] are significantly different from each other. Figure

2.13 shows that mean of normalized pupil dilation increased from 0−back to 2−back

task and 1−back to 2−back task i.e pupil dilation increases with the difficulty of the

task.
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Post HOC Analysis

Figure 2.13: Post HOC analysis of hypothesis 4. The pupil dilation means of
0−back task and 1−back task are significantly different from 2−back task. Pupil
dilation increases with difficulty of the task i.e pupil dilates more during 2−back
tasks as compared to 0−back and 1−back task which indicate increasing in cognitive
load with increase in task difficulty.

2.5.2 NASA-TLX

Descriptive Analysis of NASA-TLX Data

NASA-TLX data was collected after CTRL and each n−back task. Participants

had to rate tasks performed on six different scales i.e. mental demand, physical

demand, temporal demand, performance, effort, and frustration. For visualization
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and analysis only mental demand, temporal demand, effort and frustration scales

were considered as the participant did not perform any task that was physically

demanding and also the performance on the task was determined by calculating the

accuracy.

Figure 2.10 (b) shows the plot for NASA-TLX scales i.e. mental demand, temporal

demand, effort and frustration across 28 participants and 1 (task) * 3 (levels). Mental

demand, temporal demand, effort, and frustration increased with the difficulty of the

task.

Inferential Analysis of NASA-TLX Data

• Hypothesis 5: Mean of NASA-TLX scales recorded during single experiment are

significantly different. Mental demand, temporal demand, effort and frustration

experienced by the participant’s increases with n−back difficulty.

A within-subject multivariate ANOVA with tasks (n−back with three conditions) as

the independent variable and the four scales of NASA-TLX (mental demand, tem-

poral demand, effort and frustration) as the dependent variables were considered.

Significant effects of task were found for mental demand [F (2,24) = 17.41, p = .00,

cohen′s d = 2.4], temporal demand [F (2,24) = 7.59, p = .002, cohen′s d = 1.9].

Ratings for effort and frustration did not differ across the task conditions.

2.6 Comparative Analysis of Dual and Single Ex-

periment Data

In this section we compare data from dual and single experiment.

2.6.1 Pupil Dilation

Inferential Analysis of Pupil Dilation
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• Hypothesis 6: Cognitive load experienced by an individual is higher during

multitasking compared to single task.

This hypothesis is tested by comparing mean pupil dilation from the dual experiment

stage with mean pupil dilation from single experiment stage and the assumption is

mean pupil dilation is higher during the dual-experiment than the mean pupil dilation

during single experiment. One-way ANOVA was considered to analyze the difference

between mean pupil dilation data. The analysis revealed significant difference [F

(1,167) = 12.65, p = .0005, cohen′s d = 0.5] between the mean pupil dilation from dual

experiment stage and single experiment stage. As expected multi-tasking imposes

higher cognitive load on the subjects as compared to performing just the primary

task (Figure 2.14) pupil dilation can successfully differentiate cognitive load depending

upon the type of tasks.
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Figure 2.14: Post HOC analysis of hypothesis 6. Pupil dilation means are
significantly different for dual and single experiment. Pupil dilates more during dual
experiment as compared to single experiment.
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2.6.2 n−back Accuracy

Descriptive Analysis of n−back Accuracy

Figure 2.15 shows the plot of n−back accuracy from the dual and single experiment

stage.

Accuracy was calculated by comparing the original n−back series the participant

heard and their response that was recorded in the form of audio for each n−back task.

The first graph is the plot of overall-mean accuracy across 28 participants during zero,

one and two back condition. The second graph is the plot of overall-s.d. of accuracy

across 28 participants during zero, one and two back condition. The orange line in

both the graphs represents the accuracy during the single experiment and the blue

line indicates accuracy during the dual experiment. Figure 2.15 clearly represents

that the mean accuracy reduces as the task becomes difficult for both dual as well

as single experiment stage, but the accuracy during the dual experiment is lower

than the accuracy during single experiment due to the fact that participants were

performing two tasks i.e. n−back and DRT during dual experiment stage whereas

participants were performing just the n−back task during the single experiment.

Inferential Analysis of n−back Accuracy

• Hypothesis 7: Mean n−back accuracy recorded during the dual and single

experiment is significantly different.

This hypothesis is tested by comparing mean n−back accuracy from the dual ex-

periment stage with mean n−back accuracy from single experiment stage and the

assumption is that mean n−back accuracy is higher during the single experiment

stage as compared to dual experiment stage. One-way ANOVA was considered to

analyze the difference between the mean n−back accuracy data. The analysis re-

vealed significant difference [F (1,167) = 5.6, p = .01, cohen′s d = 0.3] between the

mean n−back accuracy from dual experiment stage and single experiment stage. As

expected multi-tasking imposes higher cognitive load on the subjects as compared to
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Figure 2.15: Mean accuracy data of 28 participants (dual and single exper-
iment). Orange line in both the graphs represents the mean accuracy during single
experiment and blue line indicates mean accuracy during dual experiment.
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performing just the primary task, which is reflected by the low accuracy during dual

experiment. Mean n−back accuracy is high during the single experiment as compared

to the dual single experiment (Figure 2.16).

78 80 82 84 86 88 90 92 94

Mean N-Back Accuracy (%)

Single

Dual

Post HOC Analysis

Figure 2.16: Post HOC analysis of hypothesis 7. n−back accuracy means are
significantly different for dual and single experiment. Accuracy is higher during single
experiment as compared to dual experiment.

2.6.3 NASA-TLX

Inferential Analysis of NASA-TLX data

• Hypothesis 8: Mean mental demand scale recorded through NASA-TLX during

dual and single experiment is significantly different.

This hypothesis is tested by comparing mean mental demand from the dual experi-

ment stage with mean mental demand from single experiment stage and the assump-

tion is that mean mental demand is higher during the dual experiment as compared

to the single experiment. One-way ANOVA was considered to analyze the difference

between mean mental demand data. The analysis revealed significant difference [F
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(1,161) = 6.9, p = .0093, cohen′s d = .5] between the mean mental demand from dual

experiment stage and single experiment stage. As expected multi-tasking imposes

higher cognitive load on the subjects as compared to performing just the primary

task, which is reflected by the higher mental demand dual experiment. (Figure 2.16)

mean mental demand is higher during the dual experiment as compared to the single

experiment.
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Figure 2.17: Post HOC analysis of hypothesis 8. Mental demand means are
significantly different for dual and single experiment. Mental demand is higher during
the dual experiment as compared to single experiment.

2.7 Conclusions and Discussions

In this chapter, we investigated the feasibility of using pupil dilation as a measure of

cognitive load in advanced driver assistance systems (ADAS); as such, a low cost eye-

tracker used to measure the pupil dilation without imposing any physical restrictions

on the participants.
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The experiments were divided in to dual and single ones. Furing the dual exper-

iment, the participants performed the detection response task (DRT) in addition to

performing the n−back memory task that required mental work that increased with

the value of n; in addition to other measurements, the reaction time (RT) and the

pupil dilation (PD) were used in the subsequent analysis. During the single experi-

ments, the participants performed the n−back memory task only; here, the measured

PD was used for analysis.

The dual experiments consisted of the following four stages in increasing order

of cognitive load: CTRL (which stands for control), 0−back, 1−back and 2−back.

Statistical inference analysis of recorded data (RT and PD) resulted in the conclusions

shown in Table 2.4 about the statistical differences of the measured pairs.

Table 2.4: Result of statistical difference (dual experiment)

RT PD
[CTRL] to [0−back] False False
[CTRL] to [1−back] True True
[CTRL] to [2−back] True True
[0−back] to [1−back] False False
[0−back] to [2−back] False True
[1−back] to [2−back] False False

The single experiments consisted of the following three stages in increasing order of

cognitive load: 0−back, 1−back and 2−back. There was no CTRL stage. Statistical

inference analysis of recorded data (PD) resulted in the conclusions shown in Table

2.5 about the statistical differences of the measured pairs.

Table 2.5: Result of statistical difference (single experiment)

PD
[0−back] to [1−back] False
[0−back] to [2−back] True
[1−back] to [2−back] True
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Findings of the pupil dilation coincide with DRT findings for the task CTRL to

1−back and CTRL to 2−back which helps support our objective i.e non-invasive

or remote eye tracking (measuring pupil dilation) is a viable solution for detecting

cognitive load experienced by an individual. Additionally, findings of pupil dilation

can be validated from the analysis of NASA-TLX scales which indicate that mental

demand and frustration imposed by the task on the participant increases with task

difficulty.

Comparison of the pupil dilation data from the dual and single experiment shows

that cognitive load experienced during two simultaneous tasks is higher than cognitive

load imposed by a single task; this is evident from the higher pupil dilation during

the dual experiment stage. In other words DRT acts as an additional cognitive load

during the dual experiment. Further this finding was confirmed by the comparison of

mental demand scale (NASA-TLX) from dual and single experiment, which revealed

that mental demand is higher during the dual experiment as compared to single

experiment; additionally, n−back accuracy comparison showed lower accuracy during

dual experiment as compared to single experiment. Pupil dilation can evidently detect

cognitive load experienced by an individual; besides, it can also detect additional

cognitive load imposed by a second task.

This study has one limitation: participants were not driving even though this

study is dedicated to improving the ADAS in semi-autonomous vehicles. However,

it must be pointed out that many similar studies conducted in a controlled labo-

ratory setting have provided findings that were then replicated in a more realistic

environment [12]. Further, cognitive load detection based on pupil dilation has other

applications in human-machine system automation [19,20] where the findings of this

chapter will be useful.

Even though the pupil dilation showed comparable performance to DRT as a

detector of cognitive load, there are known limitations of PD that is not tested in

this chapter. For example, the pupil dilation is affected by other stimuli, such as
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external light, whereas the DRT does not suffer from such external factors. Further

research is required for repeating the same finding in a simulated as well as real driving

environment is crucial to developing this towards real-world applications. Based on

the data reported in this chapter, further studies will be needed to investigate the

following three aspects:

1. Applying signal processing to pupil dilation data: Developing signal processing

approach for improving the detectability of cognitive load through pupil dilation

measurements. Raw pupil dilation data is masked by noise which reduces the

capability of data to precisely predict cognitive load. Signal processing of the

data can help detect cognitive load accurately for multiple difficulty levels.

2. Data fusion method: In addition to pupil dilation, there are other information

that can be potentially combined for improved cognitive load detection.

3. Predictive model: Developing a machine learning model to accurately predict

cognitive load through pupil dilation. Such a model will exploit the “training

data” collected offline to train as such it can be used on new subjects (and

applications) without the requirement for the lengthy training phase.
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Chapter 3

Comparison of Cognitive Load

Classification Based On Pupil

Dilation and DRT Reaction Time

3.1 Introduction

Pupil dilation and response time are considered as reliable parameters for indexing

information processing loads [9, 17]. Time locked averaging of pupil dilation data

concerning events provoking cognitive activity can be related to changes in the cen-

tral nervous system that are systematically associated with cognitive processing i.e.

when people are faced with a challenging cognitive task, their pupil dilates. This phe-

nomenon is also called task-evoked pupillary response [4]. Change in pupil dilation

due to the difficulty of the task is relatively small but have a lot of predictive strength

in terms of cognitive load detection.

Response time collected through the detection response task is an accepted stan-

dard for capturing the attentional aspect of cognitive load [5]. Response time varies

depending upon the cognitive demand placed by the task. Longer reaction times are

observed when a task has high cognitive demand [21]. With the development in fields
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of eye-tracking and devices measuring response time, cognitive load detection has be-

come a little easier [16]. The big question to answer here is how can the cognitive load

be classified among different difficulty levels. Cognitive load varies depending upon

the difficulty of the task and the number of mental resources available to complete

the task [19]. It becomes crucial to classify cognitive load depending on the task to

help individual in better resource allocation as well as improving the performance.

Cognitive load can be classified with the help of classification algorithms [15]. A

classification algorithm trains on the available information such as pupil dilation with

preassigned class labels and tries to classify the new dataset. Many different classify-

ing algorithms can help in distinguishing between the cognitive load. A classifier with

high accuracy can be used to detect the cognitive context in a variety of applications

that require human-machine interaction. One such example is designing an adaptive

advanced driver assisted systems also referred to as ADAS. ADAS generally assist

the driver to ease the driving experience or to prevent any unusual circumstances.

The problem with existing ADAS is that they are not completely adaptive according

to the driver’s mental state. A well trained cognitive load classifier based on pupil

dilation and reaction time features can help develop such an adaptive system [10].

For instance, if a driver is experiencing cognitive load which is higher than normal,

an adaptive ADAS system can be designed to measure and classify the cognitive load,

making it adapt i.e. improvise further course of action by providing additional assist

or displaying a warning message that can help prevent any unsafe condition. Cognitive

load classification demonstrated in this chapter can be helpful in such environments.

Researchers have demonstrated the classification of cognitive load using psycho-

logical parameters similar to pupil dilation and reaction time. MH kutila, M jokela

and T makinen [11] used support vector machine classier for classifying cognitive

load using eye gaze, head and lane-keeping variance with approximately 60% to 80%

confidence. Similar research was done by Bo yin and Natalie ruiz [20], they used a

Gaussian mixture model to classify 3 levels cognitive load based on speech features
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with a classification accuracy of 71.1%.

Observations of this chapter are listed below:

1. Classification of cognitive load using multiple features: We have demonstrated

the classification of cognitive load by combine two features i.e. pupil dilation

and reaction time.

2. Comparison of classification algorithms for cognitive load classification: Various

classification algorithms are available for classifying data, we test the accuracy of

the three most commonly used algorithms i.e. support vector machine, logistic

regression, and k-means to determine the best fit for classifying cognitive load

in this research.

3. Demonstrate cognitive load detection through the signal to noise ratio (SNR): We

compare the detectability in terms of a newly proposed metric called SNR [12].

4. Comparison of single feature classification with classification using data fusion:

We compare the accuracy of classification obtained using the single feature

(pupil dilation; reaction time) with classification accuracy obtained from data

fusion to test the effectiveness of data fusion in cognitive load classification.

The rest of this chapter is organized as follows: Section 3.2 provides the description

of the procedure followed for data collection, apparatus used, and tasks involved in

the experiment; Section 3.3 describes three different classification algorithms used in

this chapter.; Section 3.4 explains the data fusion approach, structure of the data,

procedure followed for classification and accuracy analysis of the algorithms used.

Section 3.5 illustrates the performance analysis of classifier with individual and fused

features. and Section 3.6 concludes this chapter.
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3.2 Data Collection

In this section we provide a short description of procedure followed for collecting pupil

dilation and reaction time data which is used later in this chapter for classification

analysis. The details of the data collection setup, procedures and graphical/statistical

analysis of the collected data is presented in [3].

• Thirty-three participants were recruited.

• Reaction time data was collected using the detection response task referred to

as DRT. DRT consisted of a stimulus in the form of vibrations generated by

a small tactile generator and response was in the form of a microswitch. The

stimulus was attached to the participant’s forearm and the microswitch was

attached to the index finger of the other hand. The participant had to respond

by pressing the microswitch every time they feel a vibration produced by the

stimulus. The time between the vibration generated and the participant pressed

the microswitch was recorded as the reaction time [5].

• Pupil dilation data was collected using an eye-tracking device.

• Delayed digital recall task referred to as n-back, with three difficulty levels

was used to permutate the cognitive difficulty. The n-back task has a serial

presentation of a stimulus in the form of audio which is placed several seconds

apart and the participants had to repeat out loud the number they just heard [1].

The three difficulty levels are:

1. 0-back: Participants heard a series of number and they had to repeat out

loud the same number they just heard.

2. 1-back: Participants heard a series of numbers and they had to repeat out

loud one number previous to the number they just heard.

3. 2-back: Participants heard a series of numbers and they had to repeat out

loud two numbers previous to the number they just heard.
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• A within-subject design was used in order to carry out the experiment. En-

tire experiment was divided into two stages i.e. dual experiment and single

experiment.

• During the dual experiment participant had to perform two tasks i.e. DRT

and n-back. In addition to three n−back tasks participants also performed a

control task (CTRL). During the CTRL task participants had to respond just

to the DRT vibrations without having to repeat any numbers. Pupil dilation

and response time were recorded during this stage.

• During the single experiment participant had to perform just the n-back task.

Only pupil dilation data was recorded during this stage. There was no CTRL

task during this stage. In this chapter, the data i.e pupil dilation and reaction

time from the dual experiment is considered. The data used for analysis in the

present chapter is summarized in Table 3.6 and Table 3.7

3.3 Classification algorithms

In this section, we provide a description of the classification algorithms used for

classifying the cognitive load experienced by the participant using response time (RT)

and pupil dilation (PD). Also, a recently developed method called SNR is used for

detecting the cognitive load. SNR is discussed in detail in the latter part of this

section.

For this chapter, the classification has been limited only to binary classification.

As the classification model in this chapter is demonstrated in reference to the ADAS

application. When developing a cognitive load adaptive ADAS the measured cognitive

load, for instance through pupil dilation will make the operation of ADAS twofold i.e

if the cognitive load is low a warning message will be displayed and if the cognitive

load is high ADAS will be activated. This will be done by classifying the detected
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Table 3.6: Mean reaction time (RT in milliseconds)

Participant ID CTRL 0-back 1-back 2-back
1 697.46 670.43 598.07 636.23
2 321.56 366.79 466.31 539.48
3 389.72 381.10 503.96 554.10
4 306.63 607.00 808.06 629.52
5 330.74 520.37 476.27 429.56
6 418.10 626.07 946.48 765.88
7 543.08 629.20 666.94 576.40
8 1056.43 1175.31 1282.96 1503.26
9 255.39 313.25 396.32 431.00
10 365.40 415.77 407.76 529.28
11 374.63 415.77 632.36 628.35
12 1356.38 987.24 885.05 1082.15
13 339.89 486.25 729.35 1059.45
14 331.27 474.10 674.96 941.90
15 240.65 366.83 418.40 478.40
16 342.30 409.45 435.48 630.54
17 415.68 522.12 693.56 859.93
18 285.65 380.18 485.92 510.83
19 362.02 461.04 850.31 823.42
20 374.07 1401.69 1309.05 1000.23
21 827.10 920.43 1104.00 1159.50
22 830.45 855.67 1212.03 913.34
23 290.30 483.90 534.39 984.59
24 404.41 500.95 1223.31 404.41
25 260.72 319.44 418.98 727.33
26 505.58 554.72 681.10 708.10
27 279.26 364.81 411.94 555.83
28 275.76 278.92 312.49 304.25
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Table 3.7: Mean pupil diameter (PD in pixels)

Participant ID CTRL 0-back 1-back 2-back
1 1 1.01 1.08 1.17
2 1 0.98 1.03 1.27
3 1 1.10 1.19 1.33
4 1 1.06 1.05 1.02
5 1 1.28 1.17 1.14
6 1 0.99 1.06 1.32
7 1 0.83 0.89 0.95
8 1 1.36 1.49 1.39
9 1 1.10 1.12 1.18
10 1 0.99 1.02 1.71
11 1 0.96 1.16 0.98
12 1 1.03 1.20 1.24
13 1 0.91 1.10 1.09
14 1 1.07 1.04 1.25
15 1 1.02 1.16 1.13
16 1 1.12 1.13 1.17
17 1 1.01 1.15 1.19
18 1 0.95 0.97 1.17
19 1 0.92 1.11 1.03
20 1 1.25 1.23 1.25
21 1 0.92 0.89 0.93
22 1 1.03 1.04 1.14
23 1 1.00 1.34 1.24
24 1 1.08 1.05 1.08
25 1 1.04 1.05 1.02
26 1 0.95 0.99 1.40
27 1 1.06 1.22 1.21
28 1 1.29 1.32 1.46
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cognitive load as either low or high. For this reason, the further sections will only

discuss binary classification. The presented way of classification can be referred to

as group learning. Group learning can be defined as learning a pattern from a group

and generalizing it for the entire population. In this chapter mean pupil dilation and

mean reaction time across 28 participants are analyzed and classified for detecting

cognitive load.

3.3.1 Types of classification algorithms used

1. Support vector machine: Support vector machines (SVM) is a widely used

classification technique. SVM separates two classes of data by finding the best

hyperplane which separates the class1 data from class2 data. SVM selects the

hyperplane which has the largest margin separating the two classes. The goal

of SVM is to develop a model which predicts the target values given only the

test data attributes [8].

SVM is just like 1 layer or multi-layer neural networks. SVM works on a concept

called support vectors i.e the data points that lie close to the decision surface

(hyperplane) [7]. These points are difficult to classify, SVM finds the best hyper-

plane which separates these points. Linearly separable data sets are classified

in a hyperplane and non-linearly separable data sets are classified using the

kernel function. Kernels are usually used to classify non-linearly separable data

sets by gaining linear separation. Linear separation is achieved by mapping the

data to a higher-dimensional space. Some of the examples of kernel functions

are polynomials, radial bias also known as Gaussian kernel function and multi-

layer perceptron or sigmoid function [2]. For our analysis, we have used the

gaussian kernel function. Matlab’s inbuilt support vector machine model [14]

was used to classify the reaction time and pupil dilation data. SVMModel from

Matlab was feed with a matrix of input features (each row was one observa-

tion and each column was one feature), class labels corresponding to each value
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of the predictor data and Kernel function depending upon the type (linearly

separable or non linearly separable) of input features.

2. Logistic regression: Logistic regression is a statistical method for predicting

binary classes. A logistic function is used in order to predict the probability

that particular data belongs to one of the class under consideration.

Logistic regression is a binary and multi class classifier. Logistic regression

works on a hypothesis also called as the logistic function (equation 3.1). Logistic

regression uses a threshold for the hypothesis (equation 3.2). If the calculated

hypothesis function is smaller than 0.5 logistics regression model predicts that

the data belongs to class with label 0. If hypothesis function is greater than

0.5 logistics regression model predicts that the data belongs to class with label

1. In our case the label 0 and 1 corresponds to the class CTRL, 0, 1, and

2−back. In equation 3.1 x is the input feature feed to the logistic regression

i.e. reaction time and pupil dilation. Predictions are made based on the input

feature and θ. Initially θ is set to zero. One of the crucial steps in performing

logistic regression is selecting the value of θ. Logistic regression uses a cost

function in order to determine θ. Cost function is known as the penalty classifier

pays if θ is large. In order to minimize cost, gradient descent is carried out.

Gradient descent produces a value of theta which is minimum and optimal for

the classifier thus reducing the penalty. After calculating the optimal theta

classifier can accurately make class predictions for the input features.

hΘ(x) =
1

1 + expΘᵀ
x

(3.1)

if hΘ(x) ≥ 0.5, predict y = 1

if hΘ(x) ≤ 0.5, predict y = 0
(3.2)
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where:

hΘ(x) = Prediction

Θ = Cost

x = Input feature

3. K-means: k-means allocates a specific location to every feature (response time

and pupil dilation) in a space, then it locates the centers for the individually de-

fined clusters or classes in a multidimensional space. Each point is then assigned

to the cluster whose arbitrary mean vector is closest. The procedure continues

until there is no significant change in the location of class mean vectors between

successive iterations of the algorithms [18]. K-means is an iterative, data par-

titioning algorithm. K-means groups similar data points together in respective

clusters. Cluster is a collection of data points combined together because of

certain similarities. K-means works on the principle of centroid allocation. A

centroid is the imaginary or real location representing the center of the cluster.

K-means algorithm identifies the total clusters through the number of centroids

and then allocates every data point to the nearest cluster. The means in the

k-means refers to averaging of the data; that is, finding the centroid [6]. Mat-

lab’s inbuilt k-means algorithm was used in order to classify the cognitive load

based on reaction time and pupil dilation [13].

Matlab’s k-mean function requires input in the form of features on which clas-

sification is based, the number of clusters and, distance metric. The distance

metric determines the function to be used in order to calculate the distance of

a particular point from the centroid. Matlab’s sqeuclidean function was used

as the distance metric. Sqeuclidean is defined as the squared of the distance

between the data point and centroid.
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3.3.2 Signal to noise ratio (SNR) as a measure of detectabil-

ity

Assuming that the feature data (summarized in Table 3.7 and Table 3.6) are dis-

tributed Gaussian, a measure of detectability was presented in [12] for real-time de-

tection of change in cognitive load. Termed as the signal to noise ratio (SNR) in [12],

this measure of detectability is a single scale (compared to two scales, i.e. mean and

standard deviation) to compare the similarity of two groups of data. When the SNR

is high, so is the detectability of data as belonging to one group vs another. The SNR

(between two groups of data) is defined as follows.

SNR =
|µ1 − µ2|

max{σ1, σ2}
(3.3)

SNRdB = 20 log

(
|µ1 − µ2|

max{σ1, σ2}

)
dB (3.4)

where

µ1 = Mean of class 1

µ2 = Mean of class 2

σ1 = S.D of class 1

σ2 = S.D of class 2

3.4 Cognitive load classification results

The data and procedure used for classification are described in this section followed

by the analysis using the three classification algorithms discussed in the previous

section.
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3.4.1 Data fusion

Data fusion approaches aim to improve classification/prediction accuracy using sev-

eral features. In this chapter we wanted to see if we could improve classification

accuracy by fusing two features: PD and RT. For this no specific data fusion strat-

egy was employed, rather the classification algorithms jointly considered these two

features for training and testing.

3.4.2 Data structure

Data under analysis consisted of two features i.e. mean response time and mean pupil

dilation across 28 participants, as summarized in Table 3.6 and Table 3.7. Features

for classification was considered in [RT, PD] pairs (see Table 3.9 for an example).

Table 3.8: Sample features used by the classifier

Participant ID Mean RT Mean PD Label
1 697.46 1 CTRL
2 321.56 1 CTRL
3 389.72 1 CTRL
4 306.63 1 CTRL
...

...
...

...
27 279.26 1 CTRL
28 275.76 1 CTRL
1 636.23 1.17 2-back
2 539.48 1.27 2-back
3 554.10 1.33 2-back
4 629.52 1.02 2-back
...

...
...

...
27 555.83 1.21 2-back
28 304.25 1.46 2-back

The classification analysis is done for one pair at a time, for example, data from

CTRL and 2−back as shown in Table 3.8; this binary classification analysis was

repeated for all the possible pairs listed in Table 3.9.
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Table 3.9: Classification pairs

Class1 Class2
CTRL 0-back
CTRL 1-back
CTRL 2-back
0-back 1-back
0-back 2-back
1-back 2-back

3.4.3 Procedure for classification:

Following steps were followed for classifying the input features:

1. Training phase: In this step we train the classifier on the data that has preas-

signed class labels. Classifiers were fed with different combinations of training

data as shown in Table 3.10; once the data for training is selected, the remaining

is used for testing. For example, considering that there were 28 participants,

using 80% training and 20% testing meant that data from 22 participant was

used for training and the remaining data (6 participants) was used for testing.

2. Testing phase: In this step, we use data with unknown labels and try predicting

the class or category of the data using the trained classifier.

The features for different combinations of testing and training data were selected

randomly. Each combination of testing and training data was repeated 100 times.

Accuracy was calculated for each repetition. The overall accuracy of each combination

was the mean calculated over the repetitions. Further, it must be emphasized that

even though the training data was selected randomly, the same training-testing data

pairs were used for the analysis by all three classifiers (SVM, logistic regression and

k-means) and the results summarized and discussed in the next three subsections.

Next, we present the results of classification analysis for each type of classifier.
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Table 3.10: Percentage of training and testing data

Trial Number Training data(%) Testing data(%)
1 80 20
2 75 25
3 70 30
4 65 35
5 60 40
6 55 45
7 50 50

3.4.4 Support vector machine

The classification was done for all the possible pairs and the results for each pair

is shown as a row in Table 3.11. The first two columns of the Table 3.11 represent

the pair of groups under classification and columns 3 to 9 represent classification

accuracy for different combinations of testing and training data. According to the

average classification accuracy by the SVM in Table 3.11, we can observe two trends:

(i) the accuracy did not significantly drop as the training data was reduced to 50 %;

and (ii) the accuracy increased, albeit by a small amount, with the difficulty gap in

most cases.

Table 3.11: Accuracy of SVM using using data fusion

Class-1 Class-2 80-20 75-25 70-30 65-35 60-40 55-45 50-50
CTRL 0-back 85.45 83.57 84.4 84.45 84.72 84.64 85.5
CTRL 1-back 88.54 88.147 87.47 88.35 87.8 88.64 88.85
CTRL 2-back 90.18 89.85 89.05 88.15 88.13 89.04 88.25
0-back 1-back 85 84.92 84.17 83.65 83.81 83.88 83.71
0-back 2-back 89 89.14 87.8 87.5 87.18 86.16 86.96
1-back 2-back 88.63 88.14 88.82 87.2 87.31 87 87.5
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3.4.5 Logistic regression

The classification accuracy of logistic regression for each pair is shown as a row in

Table 3.12. The first two columns of the Table 3.12 represent the pair of groups

under classification and columns 3 to 9 represent classification accuracy for different

combinations of testing and training data. One immediate observation of the results

in Table 3.12 is that the classification accuracy is much less compared to the SVM

classification accuracy that is summarized in Table 3.11.

Table 3.12: Accuracy of logistic regression using data fusion

Class-1 Class-2 80-20 75-25 70-30 65-35 60-40 55-45 50-50
CTRL 0-back 67.2 67.42 67 66 69.7 70.5 67.5
CTRL 1-back 84.18 86.5 85.7 86.8 86.1 86.9 86.5
CTRL 2-back 85.9 87.85 88.47 88.5 88.77 89.04 88.95
0-back 1-back 65.18 66 64.7 64.25 65.36 66.28 66.9
0-back 2-back 73.3 74.57 71.6 74.3 74.5 73.4 74.3
1-back 2-back 65.9 62.3 64.2 63 64.8 65.3 63.5

3.4.6 K-means

Table 3.13 shows k-means accuracy of classification. The first two columns of the Ta-

ble 3.13 represent the pair of groups under classification and columns 3 to 9 represent

classification accuracy for different combinations of testing and training data. Once

again, the observation of the results in Table 3.13 is that the classification accuracy

is much less compared to both the SVM classification accuracy as well as that by the

logistic regression approach, summarized in Tables 3.11 and Table 3.12, respectively.

Next, let us analyze the numbers reported in Tables 3.11, 3.12 and 3.13. Figure

3.18 shows a comparison of binary classification accuracy of all three classifiers con-

sidered in this section. Here, the accuracy is averaged for all six classification pairs,

i..e, each bar for SVM shows the average of the corresponding column in Table 3.11.

From this figure, it clearly shows that the SVM outperforms all the other classifiers
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Table 3.13: Accuracy of k-means using data fusion

Class-1 Class-2 80-20 75-25 70-30 65-35 60-40 55-45 50-50
CTRL 0-back 45.45 57.1 47 45 50 44 53.57
CTRL 1-back 27.7 57.1 47.05 55 45.4 76 71.42
CTRL 2-back 54.5 35.7 41.1 20 45.4 64 39.2
0-back 1-back 36.3 50 35.2 65 63.6 44 53.5
0-back 2-back 54.5 50 52.9 55 63.6 60 57.14
1-back 2-back 54.5 42.8 52.94 65 54.5 48 42.8
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Figure 3.18: Comparison of classifiers. SVM classifier has the highest accuracy in
comparison to the accuracy of logistic regression and k-means.
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in terms of accuracy. Also the classification accuracy did not suffer significantly when

the amount of training data was reduced up to 50% (14 participants). Later in section

3.5, we will see that when the training data is reduced below 50% the classification

accuracy starts to decrease.

3.5 Performance analysis of individual and fused

classifiers

In section 3.4, we discussed the classification performance when features are con-

sidered jointly i.e. always PD and RT are jointly considered. Also, since the SVM

classifier significantly outperformed the other two classifiers, we will limit our analysis

to SVM classifier only. Let us compare the classification performance as follows for

further insights:

• Classification using RT only: summarized in Table 3.14

• Classification using PD only: summarized in Table 3.15

• Classification using the fused {PD, RT} pairs (data fusion): summarized in

Table 3.11

The objective of such analysis is to understand each feature (PD and RT) in terms

of their individual ability to classify cognitive load. The summary of Table 3.14,

Table 3.15 and Table 3.11 are illustrated in Figure 3.19. It shows that accuracy re-

mains stable until the training data is reduced to 50% . Beyond that, the accuracy

reduces when the training data is reduced. Such behavior is seen to be the same

when single features were used as well as when both features were jointly used to

classify. Further the PD as a single feature yields the highest accuracy compared to

RT alone and PD, RT pairs. The fact that the RT, PD pair yielded less accurately

compared to PD alone indicates that, compared to PD, RT did not have any addi-

tional information about the cognitive load of the participants. This is an important
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conclusion that needs to be further studied for a better understanding. Figure 3.20

shows the SNR for pupil dilation and reaction time. Pupil dilation SNR is higher

than reaction time SNR. Higher SNR indicates better detectability and hence better

classification. Comparison of SNR between the features PD and RT indicate that

PD is a better classifier of cognitive load compared to RT. This was also confirmed

through classification experiments summarized in Table 3.14 and Table 3.15.

Table 3.14: Accuracy of SVM using reaction time

Class-1 Class-2 80-20 75-25 70-30 65-35 60-40 55-45 50-50 SNR RT
CTRL 0-back 85 84 84.3 83.7 84.6 85.2 85 -12.5
CTRL 1-back 87.45 87.3 88.41 88.2 87.4 87.8 88.28 -4.9
CTRL 2-back 89 90.5 88.5 88.9 89.95 88.8 88.4 -3.5
0-back 1-back 83.9 84.5 84.9 85.3 84.05 84.7 83.4 -9.1
0-back 2-back 89.45 87.64 88 87.45 87.3 85.96 87.2 -7
1-back 2-back 89 88.85 88.1 88.35 88 88 87.7 -21.18

Table 3.15: Accuracy of SVM using PD

Class-1 Class-2 80-20 75-25 70-30 65-35 60-40 55-45 50-50 SNR PD
CTRL 0-back 87.9 88.7 86.5 86.6 87.4 86.8 86.5 -2.1
CTRL 1-back 92.3 92.7 92 91.5 92 90.3 91.3 4.9
CTRL 2-back 89.27 89.7 89.5 88.7 89.18 89.6 88.6 7.3
0-back 1-back 84.6 85.3 84.5 85.1 84.9 85.3 85.5 -5.3
0-back 2-back 86 86.5 85.2 86.6 85.9 85.84 85.7 -0.2
1-back 2-back 88.7 89.42 89.5 87.9 88.1 88.3 87.8 -5.5

3.6 Conclusions and Discussions

In this chapter, we investigated the classification algorithms for binary classification

of cognitive load using multiple features. After comparing the accuracy of all three

classifiers i.e. SVM, logistic regression and k-means, SVM was found to have the

highest classification accuracy.
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Figure 3.19: Comparison of classification accuracies. SVM using only PD and
only RT has high accuray as compared to SVM using data fusion. Accuracy is high
for all the SVM’s when the percentage of training data is high

It was possible to train on 50% of the data to attain the highest classification

accuracy with all the three classifiers. Further decrease in the training data resulted

in reduced accuracy of the logistic regression and k-means classifier (see Figure 3.18).

For this research classifier with data, fusion was in-effective in terms of attaining

high classification accuracy as compared to the accuracy of classifiers with only pupil

dilation; reaction time. Further research with more features is required to verify this

finding. When the accuracy of SVM using only PD was compared with accuracy of

SVM using only RT and data fusion, SVM with PD outperformed the SVM with

RT and data fusion. Lower accuracy of SVM using RT suggests that reaction time

does not reveal much information about cognitive load. This might be true because

the participant performed the DRT task three times in a row which might cause a

learning effect. The learning effect makes the task feel less difficulty due to repeated

performance. The second reason that might have caused reaction time to be not

as significant as pupil dilation is because reaction time was recorded through the

button press and pressing a button requires muscle activity. Performing the same
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Figure 3.20: Comparison of SNR, a measure of detectability. The features PD
and RT were compared in terms of SNR. It can be noticed that the SNR increases as
the load-gap increases i.e. SNR increase along CTRL-0, CTRL-1 and CTRL-2 and it
increases along 0-1, 0-2 as well

task creates storage in the muscle memory improving the performance of the task.

This finding requires further research which is beyond the scope of this chapter. In-

fact the comparison also revealed that reaction time might have caused a decrease in

the efficiency of the classifier with data fusion, further research is required to have a

concrete conclusion about this finding.

The recently found approach SNR proved to be a metric of detectability for dif-

ferent pairs of classes. This finding was confirmed by the high accuracy of the SVM

classifier. SNR and SVM classifier both kind of worked in validating each other’s

findings. A high value of SNR indicated that there is a significant difference between

two classes and SVM proved it right by showing high classification accuracy for the

particular pair of classes. Similarly, the high classification accuracy of SVM for pair

of the class corresponding to the high value of SNR, proved that SNR can effectively

detect cognitive load among different pairs of classes. Based on the data reported in
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this chapter, further studies will be needed to investigate the following three aspects:

1. Applying signal processing to pupil dilation data: Developing signal processing

approach for improving the detectability of cognitive load through pupil dilation

measurements. Raw pupil dilation data is masked by noise which reduces the

capability of data to precisely predict cognitive load. Signal processing of the

data can help detect cognitive load accurately for multiple difficulty levels.

2. Investigating missed DRT trials: Missed DRT trials are defined as the number

of times participants failed to respond to DRT vibrations. Analysis of missed

DRT trials might reveal significant information regarding the cognitive load.

3. Analysis of individual learning: The present approach of this chapter detects

and predicts cognitive load based on group learning. Generalizing it for the

population is not ideal as the pupil may dilate differently depending on various

individual aspects; similarly reaction time may vary from individual to individ-

ual. Developing a model based on an individual can help in better detection

and prediction of cognitive load.
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Chapter 4

Thesis Conclusion

In summary, we have investigated and presented in this thesis two factors contributing

towards development of cognitive state adaptive ADAS. Firstly we demonstrated how

cognitive load can be detected using psychological measures (chapter 2), validated the

findings of pupil dilation and also compared the effect of multi tasking vs single task on

cognitive load through pupil dilation. Secondly we presented comparison of cognitive

load classifiers along with the effects of using data fusion vs single feature(pupil

dilation and reaction time) on the classifier accuracy (chapter 3). A new approach i.e

SNR for cognitive load dectability was also demonstrated (chapter 3).

One of the crucial steps in developing a cognitive load measurements is to collect

data that helped predicting cognitive load. Analysis of the collected data i.e reaction

time and pupil dilation in (chapter 2) showed that:

1. DRT reaction time can measure cognitive load among multiple levels: Reaction

time is considered as a standard for measuring cognitive load. The collected

reaction time during three difficulty levels and CTRL stage (dual experiment)

was able to determine cognitive load among two out of six pairs difficulty levels.

Reaction time increased with cognitive load (chapter 2).

2. Pupil dilation collected through non-invasive approach was able to measure cog-

nitive load among multiple difficulty levels: Validating whether pupil dilation
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is capable of measuring cognitive load was one of the important objective of

this thesis. Pupil dilation collected during three difficulty levels and CTRL

stage(dual experiment) was able to determine cognitive load among three out

of six pairs difficulty levels (chapter 2). This finding was validated through

DRT, NASA TLX and n-back accuracy.

3. DRT imposes extra cognitive load other than the primary task: One of the unique

findings of this thesis is that DRT which is a measure of cognitive load imposes

extra load on the individual. This finding was demonstrated through comparing

the pupil dilation from dual experiment with the pupil dilation from single

experiment. Pupil dilation was higher during the dual experiment where the

DRT was present as compared to pupil dilation during the single experiment

where the DRT was absent (chapter 2).

After successfully detecting the cognitive load the next goal was to build a model

that can predict cognitive load accurately. The analysis of the classifiers showed that:

1. Support vector machine has the highest accuracy among the compared classifiers:

After analyzing there different binary classification algorithms for cognitive load

support vector machine has the highest accuracy (90%) as compared to logistic

regression and k-means.

2. Pupil dilation has more information regarding cognitive load as compared to

reaction time: Accuracy of the classifier with pupil dilation was high compared

to the accuracy of classifier with reaction time and data fusion. Pupil dilation

outperforms reaction time and data fusion technique for classifying cognitive

load.

The culmination of the works presented in this thesis serves as a potential bench-

mark in a niche technological field that is presently under-developed. Making an

driver assistance system that accommodates it’s operation depending on his/her cog-

nitive state is the need of the hour. We imagines a future in which the ADAS system
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could be modulated automatically instead of keeping it in the hands of the vehicle

driver. Existence of such a system will not only help keep the driver safe but also will

ensure the safety of the fellow road companions. With the help of application-specific

systems such as the works presented in this thesis, a more widespread accessibility of

cognitive load detection and classification will certainly prove to benefit the general

public, industry, and academia alike.

In terms of future work, we suggests replicating the same experiment in real-time

driving environment. Presently the findings correspond to a laboratory environment.

Real time driving environment can introduce a variety of new variables which need

to be accommodated. It has been established that pupil dilation (from non invasive

techniques) can effectively measure cognitive load. This provides an opportunity to

use pupil dilation instead of DRT which is a invasive technique for measuring cognitive

load in driving environment for future work. The cognitive load classification in

the present work is based on group learning it will be more realistic in terms of

applicability to consider individual learning effect. Exploring the other features of

DRT such as the missed trials might help improving the accuracy of classification for

cognitive load. Lastly developing a model for real time cognitive load detection based

on psychological measures.
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