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Abstract

Discrete, binary data with over-dispersion and zero-inflation can arise in toxicology
and other similar fields. In studies where the litter is an experimental unit, there is a
“litter effect” which means that the litter mates respond more alike than animals from
other litters. In experimental data, foetuses in the same litter have similar responses
to the treatment. The probability of “success” may not remain constant throughout
the litters. In regression analysis of such data another problem that may arise in
practice is that some responses may be missing or/and some covariates may have
measurement error. In this dissertation we develop an estimation procedure for the
parameters of a zero-inflated over-dispersed binomial model in the presence of miss-
ing responses without/with considering covariate measurement errors. A weighted
expectation maximization algorithm is used for the maximum likelihood (ML) esti-
mation of the parameters involved. Extensive simulations are conducted to study the
properties of the estimates in terms of average estimates (AE), relative bias (RB),
variance (VAR), mean squared error (MSE) and coverage probability (CP) of esti-
mates. Simulations show much superior properties of the estimates obtained using
the weighted expectation maximization algorithm. Some illustrative examples and a

discussion are given.
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Chapter 1

Introduction

Discrete data in the form of proportions can arise in toxicology (Kleinman (1973);
Weil (1970)) and other similar fields (Crowder (1978); Donovan et al. (1994); Gibson
and Austin (1996); Otake and Prentice (1984)). In studies where the litter is an
experimental unit, there is a “litter effect” which means that the littermates respond
more alike than animals from other litters. In experimental data, foetuses in the same
litter have similar responses to the treatment. The probability of “success” may not
remain constant throughout the litters. This effect of litter is known as “heritability of
a dichotomous trait” (Elston (1977)) or intra-litter or intra-class correlation. A num-
ber of parametric (Skellam (1948); Haseman and Kupper (1979); Altham (1978)) and
semi-parametric models (McCullagh (1983); Nelder and Pregibon (1987); Godambe
and Thompson (1989)) have been used to analyse this kind of data in the form of
proportions. A popular parametric model is the two parameter beta-binomial model,
proposed originally by Williams (1975) and later applied by Paul (1982) assuming that
the binomial parameter varies between litters. A second problem for discrete data in

the form of proportions is that the zero count occurs more often than can be accom-



1.0 Introduction 2

modated by a binomial model or a beta-binomial model (Johnson et al. (2005)), So,
a zero-inflated beta-binomial model might be more appropriate for these data (Deng
and Paul (2005)).

A further complication that can arise in practical experimental data analytic situ-
ations is that some of the binomial or beta-binomial responses might be missing. A lot
of work has been done for the estimation of the parameters for normally distributed
data (Little and Rubin (2014); Rubin (1977)) and data that follow generalized lin-
ear models with missing data (Ibrahim et al. (2005)). Ibrahim (1990) proposes the
method of weights for parameter estimation in incomplete data in a generalized lin-
ear model where the missing data has a range. Ibrahim and Lipsitz (1996) use the
same method to estimate regression coefficients in a binomial regression model when
the nonresponse is nonignorable. Troxel et al. (1997) consider a weighted estimating
equation to analyse data with nonignorable missing response. Wang (1999) suggests
modified estimating functions to analyse the binary outcome potentially observed
at successive time points. Ibrahim et al. (2001) discuss the maximum likelihood
estimation method in a generalized linear mixed model when the nonresponse is non-
ignorable. Stubbendick and Ibrahim (2003) use the maximum likelihood method for
nonignorable missing response and covariates in a random effects model. More re-
cently, Mian and Paul (2016) develop procedures for the estimation of the parameters
of a zero-inflated negative binomial model with missing values.

Additional complications can arise in practical experimental data analytic situa-
tions when one or more of the covariates is measured with error. Measurement error
can happen when there is a difference between a measured value of a quantity and its
true value. When covariates are measured with errors, the usual regression estimates

by using the observed value of covariates, are biased (Stefanski and Carroll (1985)).
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Covariate measurement error has been considered to be an important subject in
many application areas. For example, in the field of medicine and epidemiology, indi-
vidual exposure to certain radiation or blood pressure of participants are recorded and
the influence on disease is investigated. In the mutagenic study (Liining et al. (1966)),
all individuals in a small group are given the same dose. However, because of the size
of the animals the actual dose will vary from animal to animal. In the Framingham
study (Kannel et al. (1986)), it is impossible to measure long-term systolic blood
pressure. As a substitute, the blood pressure observed during a clinic visit is avail-
able. The reason that the long-term blood pressure and single-visit blood pressure
differ is that blood pressure has major daily, as well as seasonal, variation (Carroll
et al. (2006)).

Many studies about measurement error models have focused primarily on lin-
ear models. Adcock (1878) deals with estimation in models of univariate regression
including measurement errors in variables. Gleser (1981) considers a multivariate
regression model with measurement error in variables. Interest in generalized non-
linear models is also popular. Prentice (1982) proposes an estimation method in
Cox’s failure time regression model when the regression vector is subject to mea-
surement error. Wolter and Fuller (1982) present an estimation procedure for the
coefficients of a nonlinear functional relation, where observations are subject to mea-
surement error. Carroll et al. (1984) consider binary regression models when some
of the predictors are measured with error. Stefanski and Carroll (1985) introduce
a bias-adjusted estimator and two estimators appropriate for normally distributed
measurement, errors for a logistic regression model when covariates are subject to
measurement error. Schafer (1987) develops the EM algorithm to obtain estimators

of regression coefficients for generalized linear models with canonical link when nor-
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mally distributed covariates are masked by normally distributed measurement errors.
Burr (1988) considers the Berkson case of the errors in variables in a binary regression
model. Generalized linear models with covariate measurement error can be estimated
by maximum likelihood using gllamm, a program that fits a large class of multilevel
latent variable models (Rabe-Hesketh et al. (2004)).

The purpose of this dissertation is to develop inference procedures for the param-
eters of a zero-inflated beta-binomial regression model where information on some
of the covariates are recorded with errors and/or some observations of the binomial
responses may be missing. A weighted expectation maximization algorithm (Demp-
ster et al. (1977)) is developed for the maximum likelihood (ML) estimation of the

parameters involved.

1.1 Organization of the dissertation

In Chapter 2, we review some literature related to zero inflated over dispersed binary
data, missing values issues and the measurement error process. In Chapter 3, we
develop an estimation procedure for the parameters of a zero-inflated beta-binomial
regression model in presence of missing values in the response variable. Results of
a simulation study with an illustrative example and discussion leading to some con-
clusions is given. Chapter 4 shows the estimation procedure for the parameters of
a zero-inflated beta-binomial regression model in presence of measurement error in
covariates without/with missing responses. Results of a simulation study with an
illustrative example and a discussion leading to some conclusions is given.

A plan for future study is given in Chapter 5. There is repetition in the chapters

because the chapters are intended for publication.



Chapter 2

Preliminaries and Literature

Review

2.1 Zero-inflated beta-binomial distribution

2.1.1 Binomial data model and beta-binomial Distribution

Suppose Z be a m-dimensional vector of Bernoulli-distributed outcomes, with success
probability p. Assuming the elements in Z to be independent given p, then Y =
2211 Zj, conditionally on p has a binomial distribution with parameters n and success

probability p. We have
My Ly m—y

The beta-binomial model (Skellam (1948); Kleinman (1973)) assumes the param-
eter p(0 < p < 1) to be sampled from a beta distribution with parameters o and 3,

i.e., the density of p is
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where B(a, #) denotes the beta function. The marginal density of Y is then given by

flas) = | (Z)pyu—p)m-yf(pm,ﬁ)dp

_(m\Bly+a,m—y+ )
B (y) B(a, §) 21)
_ (m) I'(y+a)l'(m+ 8 —y)l'(a+p)
y F(m+a+ BT (@T(B)

This is called the beta-binomial distribution with parameters a and 5. It can be

easily shown that

EY)=m (Oziﬁ) Var(Y)=m (Oziﬁ) (?:51—5) .
Ifﬂ':a;:ﬁ andgb:ﬁ,then

(m—1)¢

EY)=mnm Var(Y) =mmn(1 —7) {1 + 7o

} =mn(l —7)o?,

where 02 = 1 4+ (mljr—;)"ﬁ Because o > 0,8 > 0 and ¢ > 0, we have 0? > 1 and
Var(Y) > mn(1 — 7). When ¢ — 0, the beta-binomial distribution BB(m, ¢) tends

to the binomial(7) distribution.

2.1.2 Zero-inflated beta-binomial model

When we use the beta-binomial model to analyze over dispersion discrete data, some-
times more zeros are observed than expected. These data can be analyzed as a zero

inflated beta-binomial model with probability density function given by

w4+ (1 —w)f(0la, B) ify=0,

(1 —w)f(yla,B) it y >0,

f(y‘xi; o, Bv w) =

where w is zero-inflated parameter and f(y|a, 3) is defined by (2.1).
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ifW:aL_i_ﬂ and ¢ = +l8,then

( m—1

H (1+rp—m)

w+(1—w)T:il if y =0,
H (1+r9)
fylz; 7, ¢,w) = y—Tl:O m—y—1
(m+7¢) H (1—7m+r719)
(1—-w) (Z) r=0 r=0 if y >0,

H (1+79)

with E(Y) = (1 — w)mn, and Var(Y) = (1 — w)mn(l — 7) lsz + (1 — w)wm?n?,
where w is the zero-inflation parameter. We denote this distribution by ZI BB(w, ¢, w)
distribution. Inference regarding the parameters of the beta-binomial model and that

of the zero-inflated beta-binomial model has been developed earlier (Dean (1992);

Deng and Paul (2000)).

2.2 Missing data issue

Missing data make the parameter estimation and inference much more complicated
because almost all standard statistical methods are developed based on complete
information for all the variables included in the analysis. Absent observations on some
variables may make the parameter estimates biased by using the observed information

only.

2.2.1 Missing data mechanism

The missing data mechanism is characterized by the relationship between the miss-
ingness and the values of the the variables in the data set. Three kinds of missing

data mechanism can be identified (Rubin (1977)), which is very useful in practice.
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(1). Missing completely at random (MCAR): Suppose variable Y has some missing
values. We will say that these values are MCAR if the probability of missing data on
Y is unrelated to the value of Y itself or to the values of any other variable in the data
set. For example, We want to assess the relationship between the value of people’s
houses and income . The MCAR assumption would be satisfied if people who did not
report their income were unrelated to their house value and income.

(2). Missing at random (MAR)-a weaker assumption than MCAR: The probabil-
ity of missing data on Y does not depend on the value of Y after controlling for other
variables in the analysis (say X). Formally: P(Ymissing|Y, X) = P(Ymissing|X)
(Allison (2001)). For example: The MAR assumption would be satisfied if the proba-
bility of missing data on income depends on a house value, but is unrelated to income
given the house value.

(3). Missing not at random (MNAR): Missing values do depend on the value
of unobserved data, perhaps in addition to the observed data, For example: the
probability of missing data on income varies according to the house value and income.

The MCAR and MAR mechanisms are ignorable, which means the inference can
be done by analyzing the observed data only and without addressing the model of
missing data mechanism. In that sense, MNAR is nonignorable. In the nonignorable
case, methods that do not model the missing data mechanism are subject to bias.
Thus, the missing data mechanism must be modelled to get good estimates of the

parameters of interest.
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2.2.2 Methods for handling missing data

2.2.2.1 Conventional methods

(1). Complete case analysis: If a case has missing data for one of the variables, then
simply delete that case from the analysis. It is usually the default in statistical pack-
ages (Briggs et al. (2003)). Advantages: It can be easily used and is most popular
with any kind of statistical analysis and no special computational methods are re-
quired. Limitations: It can exclude a large fraction of the original sample. It works
well when the data are missing completely at random (MCAR), which rarely happens
in reality (Nakai and Ke (2011)).

(2). Imputation methods: Substitute each missing value for a reasonable guess, and
then carry out the analysis as if there were no missing values. The main imputation
techniques are:

(a). Marginal mean imputation: Compute the mean of X using the non-missing
values and use it to impute missing values of X.

(b). Conditional mean imputation: Suppose we are estimating a regression model
with multiple independent variables. One of them, X, has missing values. We select
those cases with complete information and regress X on all the other independent
variables. Then, we use the estimated equation to predict X for those cases it is
missing.

(c). Hot deck imputation: Replace values from “similar” responding units.

Limitations of imputation techniques in general: They lead to an underestimation
of standard errors and, thus, overestimation of test statistics. The main reason is that
the imputed values are completely determined by a model applied to the observed

data, in other words, they contain no error (Allison (2001)).
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2.2.2.2 Advanced methods

(1). Multiple Imputation (MI): The imputed values are draws from a distribution,
so they contain some variation. It replaces each missing item with two or more
acceptable values, representing a distribution of possibilities (Allison (2001)). The
idea of multiple imputation for missing data was first proposed by Rubin (1977).

MI is a simulation-based procedure. Its purpose is not to replace the individual
missing values as close as possible to the true ones, but to handle missing data to
achieve valid statistical inference (Schafer (1997)).

Limitation of MI method: The condition for the multiple imputation for missing

data is that the data should be missing at random (MAR).
(2). The Expectation-maximization (EM) algorithm: It is based on an expectation
step and a maximization step, which are repeated several times until the change of
estimated parameter reaches a preset threshold. Maximum likelihood estimates are
obtained.

The EM algorithm is a general iterative method of maximum likelihood estimation
for incomplete data. The essential idea behind the EM algorithm is to calculate the
maximum likelihood estimates for the incomplete data problem by using the complete
data likelihood instead of the observed likelihood because the observed likelihood
might be complicated or numerically infeasible to maximise (Dempster et al. (1977)).

Let yops be the observed data, y,,;s be the missing data, R be the missing data
indicator,  be the parameters which include the main model parameters and missing
data model parameters, and L(n) be the complete likelihood of the data. In the E
step, at (t + 1)st interaction we compute Q(n|n®™) = E(L(n|yos, R;n®). In the M

step, we obtain V) = mazQ(n|n®).
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Note that the E step does not always have a closed form. For discrete missing

data, we usually apply EM by weighting as following.

Q(nin')y = E(L(n|yobs, R;n™)

- ZyeSy lnf<y’ R’ 77) X p(ymis = y|yob57 R; U(t)),

(2.2)

where S, is the support of y and p(Ymis = Y|Yobs, ;7)) is called weight. We can

denote it as w®. Then (2.2) can be written as

QnnY) = 3,5, Inf(y, Ryn) x w.

If the missing data come from a continuous variable, we can employ Monte Carlo

(MC) method.

2.2.3 Monte Carlo methods

Monte Carlo methods solve the integration problem by sampling and averages. They
are a form of stochastic integration used to approximate expectations by invoking the
law of large numbers. Suppose we have x ~ f(z) and we want to compute the mean

of g(x). We can write

Then the estimate of u is
. I s
Hme = E ;g('x@>7

where 27, - - -,z are generated from f(z) and fi,,. is a Monte Carlo estimate of . By

the Law of Large Numbers, we have [i,,. converges to p with probability 1 as m — oc.

*

With this property, if we have an identical and independent sample z7,--- , z}, we

can approximate the expectation of any function with respect to x. Therefore, the

integration problem becomes how to get a good sample.
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Usually the target distribution f(x) is very complicated and hard to directly

sample. We introduce two kinds of common sampling techniques here.

e Importance sampling: We sample from a simpler proposal distribution h(z)

instead of f(x) and define the weight function as w(z) = % Then we have

i = B(g(z)) = / 9(a) f ()i = / 9(z)w(z)h(z)dz

and

e Rejection sampling:

Suppose we want to sample from the density f(x) as shown above. Under most
circumstances, it is difficult to sample directly from f(z) if f(z) has a compli-
cated form, for example, multiplication of a few density functions. Rejection
sampling is a general method for sampling points independently from a density
f(x). In rejection sampling, we can sample in this way:

1. Sample z; from h(z);

2. Sample u from the uniform distribution U 1);
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3. Accept the sample z; if it satisfied that u < f(z;)/(Mh(z;)); otherwise reject
it and return to step 1;

4. Repeat the draws z; from h(z) until a value is accepted.

M is a constant, finite bound on the likelihood ratio f(x)/h(x), satisfying 1 <
M < oo. In other words, M must satisfy f(x) < Mh(zx) for all values of z.
The main problem with this process is that many samples will get rejected in

high-dimensional spaces.

2.2.4 Modelling with missing data

There exist three ways to factor the joint distribution of the complete data and
missingness indicators: outcome dependent factorization, pattern-dependent factor-
ization, and parameter-dependent factorization.

For the ith observation, suppose € is the parameter for main model f(y;|z;), while
« is the parameter for missingness indicator model f(r;|y;, z;). The three correspond-

ing models available for incomplete data analysis are:

e Selection Model, which factors the joint distribution into a marginal distribution

for y; and a conditional distribution of r; given y;, i.e.,

f(yi7ri | th?a) = f(yz | Izae)f(rz | yhxiua)?

where f(r; | y;, x;, @) can be interpreted as self-selection of the ith subject into

a specific missingness group.

e Pattern-Mixture Model, which is a pattern-dependent model, and assumes that

distribution of repeated measures varies with the missingness patterns and that
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the joint distribution is factored as
f(yiuri ‘ l’i,e,()é) = f(yl ’ riaxive)f(ri | Li, Oé).

e Shared-Parameter Model. We assume that y; and r; are conditionally indepen-

dent of each other, given a group of parameters &;,

F(yorri | 208,0) = / P | € 8)F (s | Ea @) FE)A(E).

Shared parameters &; affect both y; and r;, thus can be either observable vari-

ables (e.g., gender) or latent variables (e.g., random-effects or latent scores).

2.3 Measurement error process

Measurement error in covariates has three effects (Carroll et al. (2006)):
e It causes bias in parameter estimation for statistical models.

e [t leads to a loss of power, sometimes profound, for detecting interesting rela-

tionship among variables.
e [t masks the features of the data, making graphical model analysis difficult.

In this study we will focus on the first problem. We partition the p dimension vector
of covariates x; for the ith observation as (u;, 2;), where the vector u; is observed only
indirectly through the measurement w; and z; is observed without error. Note that
u; and w; are ¢ dimensional while z; is p — ¢ dimensional. The main characteristic of
a measurement error issue is that we can observe a variable w,; which is related to u;
and the variable u; cannot be observed. The parameters in the model relating y; and

(z;,x;) cannot be estimated directly by fitting y; to (z;,w;). The goal of parameter
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estimation with covariate measurement error is to obtain nearly unbiased estimates
of parameters. Substituting w; for z;, but making no adjustments in the usual fitting
methods for this substitution will lead to estimates that are biased, sometimes very

seriously.

2.3.1 Function and structural modelling

(1). Functional modelling: When the unobserved true values are unknown constants
(fixed), in which no distribution can be assumed, then the measurement error model
is said to be in its functional form.

(2). Structural modelling: When the unobserved true values are identically and
independently distributed random variables with mean p and variance o2, the mea-
surement error model is said to be in the structural form.

In this study, we focus on structural measurement error modeling.

2.3.2 Measurement error models

Following Carroll et al. (2006), the measurement error model can be classified into
two general types which are used to relate w; to u;:

1. Error model, which includes the classical measurement error model.

W; = To + TuU; + T22; + €;.

The error term e; is independent of u;, z; and the responses and it is often assumed that
e; has mean zero and it follows a known distribution f(0, ), where 3 is the covariance

matrix of e;. The intercept 7y is a vector, which can be written as 79 = (7o1, -+ To4)” -

The coefficients 7, = (7,1, - - Tuq)T, T, = (To1, - - Tzq>T7 where 7,;(j = 1,--- ,¢) and
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T.x(k=1,---,p—q) are ¢ x 1 and (p — q) X 1 vectors respectively. If we set 79 = 0,
7. = 0, and 7, = I,, where I, is the ¢ x ¢ dimensional identity matrix, we have the
classical measurement error model.

2. Regression calibration model, which includes the Berkson error model.
U; = To + TwW; + T, 2; + €,

where, T, = (Tu1, "+ Twg)?. Ilf we set 79 = 0, 7, = 0, and 7, = I, we have the Berkson

measurement error model.

2.3.3 Differential and nondifferential Error

Nondifferential measurement error occurs when W has no information about Y given
U and Z, which means the measurement error is nondifferential if the distribution
of Y given (U, Z, W) depends only on (U, Z), in the other words, Y is condition-
ally independent of W given the true covariates. For example, we are interested in
the long term systolic blood pressure, but we can only measure the blood pressure
on a single day. In this situation, a single day’s blood pressure value includes no
information given by true long term blood pressure. Therefore, that measurement
error is nondifferential. Measurement error is differential otherwise. It may happen
in case-control studies. For example, in a nutrition study, the outcome is cancer and
the true predictor is long term diet before diagnosis, but the reported diet is obtained
only after diagnosis. People who develops breast cancer may change their diet, so the
reported diet after diagnosis is clearly still related to the cancer outcome.

Under nondifferential measurement error, one can typically estimate parameters
in models for responses given the true covariates even though the true covariates are

not observed. However, with differential measurement error, one must observe the
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true covariate on some observations (Carroll et al. (2006)). In this study, we focus on

nondifferential measurement error models.

2.4 Measurement error models and missing data

The typical explanation for the missing data problem (Little and Rubin (2014)) is
that values of some of the variables may not be observed for all observations. For
example, a variable may be observed for 75% of the study, but unobserved for the
other 25%. Most of the techniques for analyzing missing data (multiple imputation,
data augmentation, etc.) have been based on likelihood (Bayesian) methods.

The classical measurement error problem discussed above is one in which one
set of variables, which we call U, is never observed, i.e., always missing. As such,
the classical measurement error issue can be treated as a special kind of missing
data problem, but with supplemental information in the form of surrogate, which
we call W, and possibly a second measure, which we call T' (Carroll et al. (2006)) .
When we consider the measurement error problem, we are concerned with how the
supplementary information is related to the unobserved covariate.

Because of the prescribed relationship between the two fields, and because miss-
ing data analysis has become increasingly parametric, it is reasonable to consider
likelihood analysis of measurement error models (Carroll et al. (2006)). Likelihood
methods require full statistical models for the distribution of U, sometime condi-
tional on the observed covariates. Because these models describe the structure of
U, they are called structural models. There are lots of concerns about the robust-
ness of estimation and inference based on structural models for unobserved variables.

Fuller (2009) discusses this issue briefly in the classical nonlinear regression problem,
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and basically concludes that the results of structural modeling “may depend heavily
on the form of the U distribution”. In probit regression, Carroll et al. (1984) report
that if one assumes that U is normally distributed, and it really follows a chi-squared
distribution with one degree of freedom, then the effect on the likelihood estimate
is markedly negative. Essentially all research workers in the measurement error field
come to a common conclusion: likelihood methods can be considerably valuable, but
the possible nonrobustness of inference due to model misspecification is a difficult
problem.

The issue of model robustness is strictly limited to measurement error modelling.
It has led to the rise of variety of semiparametric and nonparametric techniques. From
this general point of view, functional modelling may be thought of as a group of semi-
parametric techniques. Functional modelling uses parametric models for the response,

but makes no assumptions about the distribution of the unobserved covariate.

2.4.1 Maximum likelihood methods for measurement error

A likelihood analysis starts with determination of the joint distribution of Y, W given
7, as these are the observed variables. We first consider a simple problem where in
Y, W and U are discrete random variables and there are no other covariates of Z.

We know that
PY =y W=w) =Y PY=yW=uwU=u)

=Y PY =yW=uwU=uPW=uwUU =u).

When W is a surrogate of U under the nondifferential measurement error assump-

tion, it provides no additional information about Y when U is known, which means
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Y is conditionally independent of W given the true covariate U, so that
PY =y, W=w)=> P =ylU=u)P(W =w,U =u). (2.3)

Therefore, we must specify a model for the joint distribution of W and U.

2.4.2 FError models

For additive and multiplicative error models, it is natural to specify the joint distri-
bution of W and U in terms of the conditional distribution of W given U. Using the

result from elementary probability that
PW =w,U=u)=PW =w|U =u)P(U = u). (2.4)
Then (2.3) becomes
PY =y, W=uw)=> PY =ylU=u)PW =wlU =u)P(U=u). (25)

Equation (2.5) has three components: (a) the main model of primary interest;
(b) the error model for W given the true covariates U; (c) the distribution of the
true covariates. Both (a) and (b) are expected. Almost all the methods for the
measurement error process require a main model and an error model. However (c) is
unexpected, in fact a bit disconcerting, because it requires a model for the distribution
of the unobserved U. It is (c) that results in almost all the practical problems of

implementation with maximum likelihood methods.

2.4.3 Berkson model

In the Berkson model, a univariate U is not observed but it is related to a univariate W

by U = W + e, perhaps after a transformation. Usually, e is taken to be independent
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of W and normally distributed with mean zero and variance o2, but more complex

models are possible. When the Berkson model holds, we write
PW =w,U=u)=PU =u|lW =w)P(W = w). (2.6)
Then (2.3) becomes
PY =y W=w)=> PY =ylU=uPU=uW=uw)PW=uw). (27

In equation (2.7), the third component is the distribution of W, and includes no
information about the critical parameter of interest. Thus, we will divide both sides
by P(W = w) to get likelihoods conditional on W. In the general problem, we must
specify the conditional density or mass function of U given W, which we denote by

f(ulw, o). The likelihood function then becomes

f(ylw) = / £ () f (ufw)du (2.8)

In practice, summation or integral with respect to the distribution of U does not
always yield an analytically closed form. Instead, we also can employ the Monte

Carlo EM algorithm to solve this issue.



Chapter 3

Estimation for Zero-Inflated
Beta-Binomial Regression Model

with Missing Response Data

3.1 Introduction

The purpose of this chapter is to develop an estimation procedure for the parameters
of the zero-inflated beta-binomial model with missing values. We consider all three
missing data mechanisms. A weighted expectation maximization algorithm (Demp-
ster et al. (1977)) is developed for the maximum likelihood (ML) estimation of the
parameters involved. Extensive simulations are conducted to study the properties of
the estimates using different measures, such as, average estimates (AE), relative bias
(RB), variance (VAR), mean squared error (MSE) and coverage probability (CP) of
estimates.

The zero-inflated beta-binomial model is introduced in Section 2. In this section

21
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we also develop a procedure for the estimation of the parameters. Results of an
extensive simulation study are reported in Section 3. Some illustrative examples are

given in Section 4 and a discussion leading to some conclusions is given in Section 5.

3.2 The zero-inflated beta-binomial model and es-

timation procedure

3.2.1 The zero-inflated beta-binomial model

For a particular litter ¢, given m;, the number of live foetuses in the litter, y;, the
number of foetuses affected, is a random variable having a beta-binomial distribution

with parameter a and 3, i.e,

my
i) = (") Bl o+ 5w/ Bla ). (3.)
Ifr= alwv and ¢ = a_Jer’ we have
yi—1 mi—y;—1

A @E+re) I -7+r9)
[y 8) = (m) =0 =0 : (3.2)

Yi mil
IT @+re)
r=0
with E(Y;) = mym and Var(Y;) = myw(1 — 7)1 + %} We denote the beta-

binomial distribution as BB(m, ¢). As ¢ — 0 the BB(w, ¢) tends to the binomial ()
distribution and for ¢ = 0 we have Var(Y;) = m;m(1 — ) and the BB(7, ¢) becomes
the binomial (7) distribution.

The zero-inflated beta binomial regression model (Deng and Paul (2005)) can be
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written as
( mi—1
H (14+rp—m)
Wt (1) =0 ity =0,
H (14 r9)
.f(yl|x17 , ¢7 w) = y;fl() mi—yi—1 (33)
(m 4+ ro) H (1—7+rop)
(1-w) (Zl =0 p— r=0 if y; >0,
H (14 r9)
\ r=0

with B(Y;) = (1-w)m,m, and Var(Y;) = (1—w)mi7r(1—7r)%—l—(l—w)wm?ﬁ, where
w is the zero-inflation parameter. We denote this distribution by ZIBB(7, ¢,w).
Inference regarding the parameters of the beta-binomial model and that of the zero-

inflated beta-binomial model has been developed earlier (Dean (1992); Deng and

Paul (2000)).

3.2.2 The estimation procedure

Suppose data from the ZIBB(m, ¢,w) model for the i*" litter are (y;,z;), given the
number m; of litter size, i = 1,...,n, y; represents the response variable and z; rep-
resents a p x 1 vector of covariates with the regression parameter 5 = (8o, 1, - - -, Bp),
such that m = exp(D_7_, Xi;8;)/(1 + exp(d_T_y Xi;fj)). Here fy is the intercept

parameter in which case X;o = 1 for all i.
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3.2.2.1 Estimation of ¢y with no missing data

For complete data the log likelihood, apart from a constant, using the probability

mass function given in equation (3.3), can be written as

mi—1
n H (I+rp—m)
1By, 0, 7Nwi) = [ —log(1 +7) + log [’y + = Iiy=o0y
= I] t+re)
- w10 (3.4)
+ [ Z log(m; + 1) + Z log(1 — m; + 1)
r=0 r=0
mi—1
_ Z log(1 + mﬁ)} I{yi>0}] ,
r=0

where v = w/(1 —w). Note, v transforms the space of w from (0, 1) onto (0, co) which
makes optimization of [ easier (Deng and Paul (2005)). Let ¢ = (8, ¢,7). Then the
maximum likelihood estimates of the parameters i) can be obtained by simultaneously

solving the following estimating equations

mi—l mi—l

_— “ (—;T:g#qus—m))

= i1 Iiy=0)
mi—1 H (1 + T(b - 7T,L'>

[T +re) (7 + ==
= [Ta+re

r=0

yi—1 1 mi—y;—1 1 o
. SIS RSN el
+|:Z7TZ+’I"¢ Z 1—7TZ+7“¢:| {y1>0}] aﬁj )

r=0 r=0

0B,

=1
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m;—1

mi—1 5 H0(1+7’¢—7Tz‘)
< ,H:O (1+r¢)> (7+ nﬁl(l o

r=0

m;—1 m;— m;—1
(zj T « 1+r¢) [0+ ro—m)
j=0

. r=0,1#j r=0 I
mi—1 {yi=0}

m;—1 2 H (1+T¢—7T1)
( [Ja+ rcb)) (7 +
= [T +re)
yi—1 r mi—y;—1 T:(; mi—1 ,
+{Z7ri—l—rgb+ ; 1—7Ti+rgb—;1+r¢}

r=0

o < “ (mi_lj "ﬁl (1+T¢_”i>> nﬁl(lﬂé)

. j=0  r=0,r#j r=0
a-3

=1

and
m;— 1

H(1+7“gb—7ri) .

—(1+y)+ (7+

[]@+re)

r=0

om;

f{yi>0}] =0

m;—1 I{yi:()}] - O’

p p
where — = Xj; exp( E XiiB;)/ (1 +exp( E X;;3;))%. Denote these estimates by 1.
i= =

0B,

The observed information matrix of @E is given by

Z (’M(‘M L (s i, i)

(3.5)

The elements of this matrix are given in appendix 2. Of course, if it is convenient,

these parameters can also be estimated by directly maximizing the log-likelihood

function (3.4). However, in practice, through tests (Deng and Paul (2005)), if it

is found the zero-inflation parameter is insignificant, then data analysis should be

based on the beta-binomial model (3.2). The parameters ; and ¢ can be estimated
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by solving the estimating equations given in appendix 1. The elements of the observed

information matrix corresponding to the model are also given in this appendix.

3.2.2.2 Estimation of the parameters with missing response

Under MCAR, the missingness is unrelated to the data. We can use the complete case
(CC) analysis method which involves deletion of the cases that have missing values.
The main advantage of this method is that it is easy to implement since we can use
standard methods for complete data to compute the estimates. The disadvantage of
the method is that we only use the cases that have complete information which may
result in loss of efficiency of the estimates.

Note that in MAR missingness mechanisms are ignorable, which means that in-
ference can proceed by analyzing the observed data only and without addressing the
model for the missing data mechanism. As such MAR is a special case of MNAR for
analyzing missing data. So, we first develop methods for MNAR in what follows and
then obtain results for MAR by deleting the model for missing data mechanism.

As in Ibrahim et al. (2001) the complete data and missingness can be expressed
as

Yoi if y; is observed,
yi = ’ (3.6)
Ym,i if y; s missing.
and
0 if y; is observed,
T = (3.7)
1 if y; is missing.
We suppose the observed response and missing response have the same distribution

ZIBB(m, ¢,w) and missing data indicator r; as follows

flrilys, iz o) = (pi)" (1 = pi) ' ™", (3.8)
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where p; = P(r; = 1). To connect the distribution of r; to covariates, logistic regres-

sion is employed,

log| Pri = 1) >] = Zla, (3.9)

where Z! includes both missing data and observed data information, « is the vector
of parameters of the missing data process. Let Y be the vector of responses, X be the
covariate vector, Y, be the vector of observed responses, Y,, be the vector of missing
responses, and R be the vector of missing data indicators. Then, the full data density
is given by

Y RIX; 4, ) = FY[X59) f(R]Y, X a) (3.10)

where ¢ = (3, ¢,7), and therefore the observed data density function can be written

as
f(Yo, RIX;9,0) = > f(YIX;9) f(RIY, X; ). (3.11)
Ym
Thus, the observed data log-likehood can be written as
(¢, alY,, R, X) = log Y fY|X;0)f(R]Y, X;a). (3.12)
Y

However, in practice, summation with respect to the distribution of Y,, is not always
straight forward. An easier method is to use the EM algorithm of Dempster et

al. (1977) which is developed below.

First, we write down the complete data log likelihood as

n

B, ¢, 7.0lYR) =3 | ~log(1+7) + loghy + f(0:7:,6.)] [0
- n (3.13)
+log f(yi; i, ¢aw)1{yi>0}:| + Z [riZiToz — log(1 + %' ®)].
i=1
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The E-step provides the conditional expectation of the complete data log-likelihood
with respect to the distribution of Y,, given the observed data and the current esti-
mates of the parameters. Let s be an arbitrary number of iterations during maxi-
mization of the log-likelihood. Then given the observed data ( Y,, X, R) and current
estimates of the parameters 1)) and o® | the conditional expectation of the complete
data log-likelihood I(3, ¢, 7, ) for the i missing response in the (s + 1) iteration

can be written as

Qilt,ap®, ) = B |Li(t, 43 Yo, Y T3, ilYis 0,73 0, al) |

= Z li(¢7a§yo,z’vym,iaxi;Ti)f(ym,i‘ymivxiaTi§w(s)>04(8))‘

ym,i:[)

(3.14)

Suppose k of the n responses are observed and n — k responses are missing. The
responses are independent. Then, the E-step of the EM algorithm in the (s + 1)*

iteration is

k
Q(W @W(s), a(s)) = Z lz(w> ag yo,i7 T, xz)

s, (3.15)
+ Z Z lz(,lvb) a; ym,h T, xz)f(ym,7,|xza T35 w(S)a a(S))a
i=k+1 ym,i:0
where, using Bayes’s theorem,
e qhy(8) e A (8)
f(ym7i|3;i’ i ¢(s)’ a(S)) — m{t(ym,zymu (0 )f(r2|xw Ymyis & ) ’
Z S Ymilzi; @/J(S))f(ﬁ@u Ym,is 04(5)) (3.16)
ym,i:()
so that Q(1), 1), al®)) can be expressed as
k
Q(l/), a|¢(s)7 a(S)) = Z ll(l/)7 Q5 Yo,is Ty xl)
‘ (3.17)

=1 .
+ Z Z wz(;flz‘(%a;ym,z-,n,xi),

i=k-+1 ym, =0
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where

w® = f Wil ¢(s))f(ri|$i7 Ymis Oé(s))
Zyz m; .
D il 0O) f(rilwi, ymoss )

ym,i:()

(3.18)

The M-step maximizes the function (3.13) with each log-likelihood for missing
response being replaced by (m; + 1) weighted log-likelihood, where (m; + 1) is the
number of distinct responses that missing observation ¢ could have with different
probabilities. If convergence is attained, then ¢+ and otV are the maximum
likelihood estimates of the parameters ¢ and « at the (s + 1) iteration. Denote
these by 1/;1 and &.

The variance-covariance matrix of the estimates of the parameters are obtained by
inverting the observed information matrix at convergence (Efron and Hinkley (1978)),
which is

—Q"(¥, alp®, al®)) = Z 81/}% LW, € Yo, T3y iy, @)
(3.19)

- Z Z 7'y1 8¢a¢/ Z(zﬁva;ym,iaxiﬂ“ihﬁl,é{).

i=k+1Ym,i=0
Expressions for the elements of H; regarding to estimates 151 are given in Appendix
3 by replacing the parameters 3, ¢, and v with @/;1( B, &, and 7).
In case of MAR the corresponding results for the estimates of 1, after deleting
the model for the missing data mechanism, are obtained as follows:
The E-step: Given the observed data (X) and current estimates of the parameters
1) the conditional expectation of the complete data log-likelihood I(j3, ¢,~) for the

i missing response in the (s + 1) iteration is

Qi(V[y®) = E[QW; Yo,ilm,i, Ti|Ti; V)
m; (3.20)
= Z li(w;yo,iaym,i7xi)f(ym,i|xi;w(5))a

ym,iZO
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which for all the observations is

k
QW) = (W Yo, x:) Z Z (Y Yom s 1), (3.21)
=1

1= k"‘l‘l Ym, z—o

where

wt® = F Wi i, ). (3.22)

Yi

The M-step maximizes the function (3.4) with each missing response being re-
placed by (m; + 1) weighted observations, where (m; + 1) is the number of distinct
responses that missing observation ¢ could have with different probabilities. If conver-
gence is attained, then %1 is the maximum likelihood estimate of the parameters
¥ at the (s + 1)™ iteration. Denote this by Vo

The observed information matrix of the estimates 1& is

2

—Q" (W[ Z vai" (3 Yois 2ilt)2)
o (3.23)
_lzk;rl y;o i awaw (w7ym zaxz|¢2)

Expressions for the elements of Hy are given in Appendix 3 by replacing the

~

parameters (3, ¢, and v with @Z;g( B, &, and 7).

3.3 Simulation study

A simulation study was conducted to investigate the properties of the estimates in
terms of average estimates (AE), relative bias (RB), variance (VAR), mean squared
error (MSE) and coverage probability (CP) of estimates. The AE, RB, SE, MSE
and CP, for example of 7, are obtained as: AE (7) = %Zé\le g, RB(7)= (AE -

m) /7, VAR(%) = %Zé\leﬁd\r(ﬁq), where var(#,) was obtained from the observed
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information matrix given in (3.19) or (3.23), MSE(7) = %Zé\[ﬂ(ﬁq — m)?%, and
CP(7) = L3N I(fty — Zar/Oar(fy) < m < 7y + Z2+\/Dar(7,)), where N is the
number of samples we simulated.

We use data under four scenarios: (i) data are observed completely, (ii) some
responses are missing completely at random (MCAR), (iii) some responses are missing
at random (MAR), (iv) some responses are missing not at random (MNAR).

Two sets of simulations are conducted. The first is with no covariate and the
second is with a one covariate.

In the case in which there is no covariate, response data are generated from the
zero-inflated beta binomial model (3.3) with m; = 10, 7 = 0.8, ¢ = 0.2 and w = 0.2.

The missing data indicator r; is generated independently by the following model
logit(P(r; = 1)) = g + a1y (3.24)

We set ap = (—3,—2.2, —1.1) which produces about 5%, 10%, 25% missing observa-
tions at the baseline. The baseline missing rate is P(r; = 1)) = exp(ag)/(14+exp(ag)).
The parameter o is set to 0 and 0.1 to indicate different missing data mechanisms
MCAR(MAR) and MNAR respectively (Ibrahim and Lipsitz (1996)).

Note that when there is no covariate, we only have response data y;. Thus from
the missing data indicator model (3.24) we see that the missing data mechanism is
unrelated to the data if @y = 0 indicating that the missingness is MCAR. However,
if ay # 0, the missing data mechanism depends on the unobserved response y; when
¥; is missing, which results in nonignorable missing data mechanism MNAR.

For the case with one covariate we take m; = exp(By + f12:)/(1 + exp(Bo + f124))
with gy = —1, f; = 1. Note that fy is the intercept parameter. The regression

variable z; was generated from N(1,1). For the missing data process, we consider the
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logistic model

logit(P(r; = 1)) = g + i + ay; (3.25)

from which missing data indicators r;’s are independently generated. The value of
ap is set the same as in the case with no covariate. The values of (ay, ay) are set
as (0,0),(0.1,0), (—0.1,0.1) to indicate missing data mechanism MCAR, MAR and
MNAR respectively (Ibrahim and Lipsitz (1996)).

Here also note from model (3.25) that, when a; = 0 and ay = 0, the missing data
do not depend on either the observed covariate x; or the missing response y;, which
results in MCAR. When a7 # 0 and ay = 0, the missingness only depends on the
observed covariate x; resulting in MAR. When a; # 0 and «as # 0, the missingness
depends on the missing response y;, in addition to the observed covariate z; indicating
that we have MNAR. Here, in order to control the missing rate close to the baseline
missing rate, we set small values for a; and as.

For empirical coverage probability we take nominal level o = 0.05.

When there is no covariate, simulation results for complete data, data under
(MCAR and MAR) are given in Table 3.1 to Table 3.3. Simulation results under
MNAR are given in Table 3.4 to Table 3.6. When there is one covariate, the cor-
responding results for complete data (also MCAR), MAR and MNAR are given in
Table 3.7 to Table 3.15 respectively. In each case data were analyzed by the CC,
EM-MCAR (MAR) and the EM-MNAR method.

We first discuss the results in Tables 3.1 to Table 3.6 for the situations in which
there is no covariate.

Results in Table 3.1 to Table 3.3 for complete data indicate that all the parameters
are well estimated irrespective of the sample sizes and at n = 100 the result shows

almost no estimation error. However, the coverage probability falls short of the
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nominal coverage of 95%.

The parameters m and w are well estimated irrespective of percentage missing and
sample size. All of AE, RB, VAR, and MSE show good behavior for all sample sizes
and percentage missing does not seem to have any effect on these. However, the
coverage probability decreases somewhat as percentage missing increases, although
never falls below 92%.

The parameter ¢ shows relatively high RB (as high as 8%) and slightly higher
(3%) VAR and MSE and shorter coverage probability for smaller n (n=30). As the
sample size increases (n=100) all other indices show good properties, although still
conservative in terms of coverage probability, particularly as percentage missing in-
creases (or sample size decreases). Its CP ranges from .88 to .93. Note that difference
in the coverage probability between 25% missing and that for 50% missing is very
small (0.89 for 25% and 0.88 for 50%).

Note that when there is no covariate, increase in percentage missing under MCAR
or MAR has the same effect as reducing the sample size. So, under MCAR and MAR
these results (CC method) should be very similar to those if the EM method is applied
to replace the missing observations. To confirm this we included the results using the
EM method in Table 3.1 to Table 3.3 (and in subsequent tables). The simulation
results obtained by analyzing with EM-MNAR are very similar with those analyzed
under EM-MAR(MCAR). After round off (up) to three decimals, the results are same,
which means the EM MNAR works well under MCAR.

In Table 3.4 to Table 3.6 when there is no covariate, the results show that when
the data are simulated under MNAR but analyzed by the CC method (complete case
analysis method) or the EM-MAR(MACR), it yields considerably larger AE, RB, SE

and MSE and lower coverage probability, even for large sample size. The parameter
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7 shows underestimation, whereas, the other two parameters show overestimation.

The EM-MNAR method, however, shows excellent performance in terms of all
the measures for all three parameter estimates, except that the coverage probability
for the parameter ¢ is shorter (ranges from .87 to .91) in comparison to that from
complete data. However, these coverage probabilities are much closer to the nomi-
nal coverage probability than those using the CC method. All parameters are well
estimated even at 25% baseline missing.

We next discuss the results in Table 3.7 to Table 3.15 for the situations in which
there is one covariate.

Results in Table 3.7 to Table 3.9 show that the parameters [y, f; and w are
well estimated irrespective of percentage missing and sample size. All of AE, RB,
VAR, and MSE show good behavior for all sample sizes and percentage missing does
not seem to have any effect on these. These properties are very similar to those of
m and w given in Table 3.1 to Table 3.3 where there was no covariate. However,
the coverage probability decreases further than those given in Table 1 as percentage
missing increases, although never falls below 90%.

The parameter ¢ shows high RB (as high as 23%) for small sample size(n = 30)
and large missing percentage (50%). However, as the sample size increases (n = 100)
RB decreases to 5%. The behavior of VAR and that of MSE are similar to those in
Table 3.1 to Table 3.3, namely, that these are slightly higher than those for complete
data. As the sample size increases (n=100) all other indices show good properties,
although still conservative in terms of coverage probability, particularly as percentage
missing increases (or sample size decreases). Its CP ranges from .81 to .93. The
difference in the coverage probability between 25% missing and that for 50% missing

is small (0.85 for 25% and 0.81 for 50%).
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Note that the simulation results in Table 3.1 to Table 3.3 and Table 3.7 to Table
3.9 show that for all other parameters except ¢, the properties of the estimates for
50% missing are similar to those for 25% missing. For ¢, only for coverage probability,
some difference is shown. This seems to be the pattern. So, in all other tables we do
not include simulation results for 50% missing.

Similarly, estimates of all the parameters, under MAR and MNAR, results of
which are given in Table 3.10 and Table 3.15, show similar behavior as those in Table
3.4 to Table 3.6 except that it now requires much larger sample sizes.

In summary, Under MCAR, both the EM methods (EM-MCAR(MAR) and EM-
MNAR) and the CC method work well. However, the EM methods are more time
consuming compared to the CC method. The EM MAR(MCAR) method performs
well for missing data under MCAR and MAR, but produces bias under MNAR. The

EM-MNAR performs well under all three missing data mechanisms.

3.4 An Example: Analysis of a mutagenic data set

In this section we analyze a set of mutagenic data. The data obtained from Liining
et al. (1966) involved groups of male mice originating from an inbred CBA strain
mated with groups of female mice originating from same inbred CBA strain. The
experiment was conducted in three groups in which male mice were given 0 R, 300 R
and 600 R respectively and then were mated within the first 7 days after irradiation.

The data are given in Table 3.16, and grouped according to the number of implants
and the number of dead foetuses. We are interested in the dosage effect on the death
rate of the foetuses. The outcome variable is the number of dead foetuses in the litter.

The independent variable is the dosage.
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Our purpose here is to illustrate analysis of zero-inflated beta-binomial data with
missing values in the response variable. However, we first analyze the complete data
using the zero-inflated beta-binomial model (3.3) with m; = exp(8y + fiz:)/(1 +
exp(Bo + (12;)), ©; = treatment; = 0,300,600, where 7; is the proportion of dead
implants, ) represents the intercept parameter and [3; represents the regression pa-
rameter (treatment effect). Since the dosages x; are far apart we standardize as
zi = (x; — %) /s, where T and s are mean and standard deviation of the z; values.

The model then for the zero-inflated beta-binomial proportion becomes m; =
exp(Bo+ P12i)/(1+exp(Bo+ F12:)). The maximum likelihood estimate (mle) of 5y, fi,
¢ and w for the mutagenic data in Table 3.16 are —1.314, 0.702, 0.026, and 1.206%10~°
respectively. It seems that the zero-inflation parameter does not contribute much to
the model. Further evidence of such insignificance of w has been found by testing
Hy : w = 0 using the score test statistic Zg given in Deng and Paul (2005). This
statistic has an asymptotic chi-square distribution with one degree of freedom and
for our data Zg = 1.104 confirming that the zero-inflation parameter is not signifi-
cant. We further test whether the over-dispersion parameter ¢ is significant by using
the score test statistic Z; of Deng and Paul (2005), which also has an asymptotic
chi-square distribution with one degree of freedom. Its value for the data in Table
3.16 is Z7 = 18.589 with a p-value of 9.28 * 10~* indicating significance at 5% level.

Two sets of analyses with missing responses are performed. First, note that the
BB model fits the data set in Table 3.16, but does not contain any missing values.
However, in practice, in Toxicology and mutagenic studies, missingness can occur
in addition to the data being over-dispersed. So, to illustrate our method of an-
alyzing mutagenic or toxicological data in the form of proportions that follow the

BB model, but contain missing responses we generate missingness using the model
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(3.25). Estimates of the parameters fy, 51, and ¢ and their variances using the CC,
EM-MAR (MCAR), and the EM-MNAR methods are given in Tables 3.17(a), 3.17(b)
and 3.17(c) for MCAR, MAR and MNAR respectively.

Results in Table 3.17(a) indicate that percentage missing has a some small effect
on the mle and the estimate of its variance. That is, the mle and the estimate of its
variance remain relatively stable even at 25% missing.

Results in Table 3.17(b) indicate that percentage missing has some effect on the
mle and the estimate of its variance under MAR when analyzed under the CC method.
However, these results remain almost unaffected when the missing data are replaced
by their estimates using the EM-MAR(MCAR) and EM-MNAR method. Results in
Table 3.17(c) indicate that percentage missing has some effect on the mle and the
estimate of its variance under MNAR when analyzed under the CC method and EM-
MAR(MCAR) method. However, these results remain almost unaffected when the
missing data are replaced by their estimates using the EM-MNAR method.

In the second set of analysis, we first generate a new data set from the zero-inflated
over-dispersed beta-binomial model (3.3) using the implantation sizes and treatments
as in Table 6 and the values gy = —1.314, 51 = 0.702, and ¢ = 0.026, obtained as
mles from the data in Table 3.16. The zero-inflation parameter w was set as w = 0.03.
These data are given in Table 3.18. We then test whether both the zero-inflation and
over-dispersion parameters are significant in these data. The mles of 5y, 51, ¢ and w
for these data are —1.307, 0.660, 0.020, and 0.033 respectively. The values of the score
test statistics for testing for over-dispersion and for zero-inflation are Z; = 12.715 and
Zs = 10.601 respectively with p-values of 0.0103 and 0.0241 indicating significance
of the over-dispersion and zero-inflation parameters at 5% level of significance. So,

we proceed with model (3.3) to analyze these data and study the impact of missing
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data. As earlier, for incomplete data, we generate missingness using the model (3.25).
Estimates of the parameters for the new data set and that with missing data under
MCAR, MAR and MNAR and analyzed using the CC, EM-MAR (MCAR), and the
EM-MNAR methods are given in Tables 3.19 (a), 3.19 (b) and 3.19 (c) for respectively.

Results in Table 3.19 (a) under MCAR indicate that, as in Table 3.17(a), percent-
age missing has a small effect on the mle’s and estimates of their variances. Results
in Table 3.19 (b) under MAR, show that percentage missing could have significant
effect on the mles and estimates of their variances of all the parameters when we use
the complete case (CC) method. However, as in Tables 3.17(b), these results remain
almost unaffected when the missing data are replaced by their estimates using the
EM-MAR(MCAR) and EM-MNAR method. Results in Table 3.19 (c) under MNAR,
show that percentage missing could have significant effect on the mles and estimates
of their variances of all the parameters when we use the complete case (CC) method
and EM-MAR(MCAR) method. However, as in Tables 3.17(c), these results remain
almost unaffected when the missing data are replaced by their estimates using the
EM-MNAR method.

A question may arise why do we not analyze the data using a zero-inflated negative
binomial model or a zero-inflated generalized Poisson model as there is over-dispersion
in the data (y=1.51 and s* = 1.74 when we ignore the binomial denominators).
The drawback of these Poisson related models is that the data ignore the binomial
denominators and the conditions, p is small and n large (for example, n > 20 and
p < 0.05) (Hogg et al. (1977)) are generally violated to approximate a binomial (n, p)
distribution by a Poisson (np) distribution. To check this point, we analyzed these
data by using a negative binomial model with over-dispersion parameter ¢, a zero-

inflated Poisson model with zero-inflation parameter w and a zero-inflated negative
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binomial model with over-dispersion parameter ¢ and zero-inflation parameter w.
The maximum likelihood estimates of these parameters in the three models are ¢ =
239 %1078 w =1.12% 1075 and ¢ = 1.19 * 107", w = 3.36 * 10~7 respectively. The
estimates of the over-dispersion and/or the zero-inflation parameters are very close
to zero. This shows that when we analyze the over-dispersed and or zero-inflated
binomial data by an over-dispersed and or a zero-inflated Poisson model, the analysis

may not capture all important features of the data.

3.5 Discussion

We develop estimation procedure for the parameters of a zero-inflated beta-binomial
model in presence of missing responses. We apply a weighted expectation maximiza-
tion algorithm for the maximum likelihood estimation of the parameters. Although
missing data methodologies have been developed extensively in the literature, the cur-
rent development for the estimation of the parameters of ZIBB in presence of missing
responses is new. For completeness we also discuss, in Section 2 and 4, how to deal
with the missing data under a beta-binomial model.

An extensive simulation study and analysis of some illustrative data sets are per-
formed. In both simulations and data analyses, complete data and data with missing
values under MCAR, MAR and MNAR with or without covariates are considered.

The general findings through simulations and data analyses are:

(a) Data without covariates: for complete data and under MCAR and MAR, all
the parameters are well estimated irrespective of the sample sizes and percentage
missing. All of the AE, RB, VAR, and MSE show good behavior. However, all

the parameter estimates show shorter coverage probability, especially for ¢, whose
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coverage probability ranges from 0.91 to 0.93. Under MNAR, the CC method for all
the parameters yields considerably larger AE, RB, SE and MSE and lower coverage
probability, even for large sample size. The EM method shows excellent performance
in terms of all the measures for all three parameter estimates, except that the coverage
probability for the parameter ¢ is shorter (ranges from .87 to .91) in comparison to
that from complete data. However, these coverage probabilities are much closer to
the nominal coverage probability than those using the CC method. All parameters
are well estimated even at 25% baseline missing.
(b) Data with one covariate: Results for complete data are almost the same as those
with no covariate except that to see such good behavior much larger sample sizes are
required. Similarly, estimates of all the parameters, under MAR and MNAR, show
similar behavior as those with no covariates except now require much larger sample
sizes.

Analyses of two data sets, one that fits a beta-binomial model and the other that

fits a zero-inflated beta-binomial model show similar findings.
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Table 3.16: The number of females with 0,1, 2, etc. dead implants when 5-10 zygotes
were implanted after matings during the first 7 days after irradiation of males with 0

(control), 300 R and 600 R.

Dose Dead Implants

(R) Implantations 0 1 2 3 4 5 6 7 Total dead

0 5 30 27 9 5 - - - - 71 16.9
6 86 51 14 4 1 - - - 156 10.1
7 111 73 31 8 1 - - - 224 10.4
8 79 4 23 3 - 1 - 150 8.7
9 32 29 8 1 - - - - 70 7.6
10 5 5 2 - - - - - 12 7.5

300 5 27 41 32 17 4 - - - 121 28.4
6 28 47 59 28 6 1 1 ° 170 27.8
7 31 61 54 20 19 1 _ _ 186 23.8
8 12 32 24 22 8 1 - 99 23.1
9 1 6 9 6 1 1 - 24 23.6
10 1 2 1 - - - - - 4 10.0

600 5 16 32 48 49 15 _ - 160 41.9
6 7 35 45 37 20 9 _ 153 39.3
7 5 22 2r 36 17 9 3 1 120 38.3
8 1 4 12 11 8 T~ 2 45 39.4
9 - - 2 2 2 - 1 . 7 38.1

10 - - - - - . | 1 70.0




3.5 Discussion 57

Table 3.17: Estimates and standard error of the parameters for mutagenic data under

the three missing data mechanism.

(a) MCAR
Method Quantity Complete data 5% missing 10% missing 25% missing
Bo B1 @ Bo B1 [ Bo B1 ¢ Bo B1 @
MLE -1.313 0.702 0.026 -1.329 0.714 0.023 -1.303 0.700 0.027 -1.302  0.687 0.023
CcC

VAR 0.025 0.025 0.007 0.026  0.026 0.007 0.028 0.026 0.007 0.029 0.029 0.008

MLE  -1.313 0702 0.026  -1.327 0.714 0.024  -1.305 0.701 0.027  -1.304 0.691 0.023
EM-MAR(MCAR)
VAR 0025 0.025 0.007 0.024 0.024 0.006 0.027 0.024 0.006 0.028 0.029 0.007

MLE -1.313  0.702 0.026 -1.327 0.714 0.024 -1.305 0.701 0.027 -1.304 0.691 0.023
EM-MNAR
VAR 0.025 0.025 0.007 0.024 0.024 0.006 0.027  0.024 0.006 0.028 0.029 0.007
Method Quantity Complete data 5% missing 10% missing 25% missing
Bo B1 ® Bo B1 @ Bo B1 ® Bo B1 ¢
MLE -1.313 0.702 0.026 -1.300 0.707 0.027 -1.299 0.718 0.030 -1.356  0.635 0.027
cC

VAR 0.025 0.025 0.007 0.027  0.026 0.007 0.028  0.027 0.007 0.030 0.028 0.008

MLE  -1.313 0702 0.026  -1.313 0.704 0.027  -1.317 0711 0.026  -1.322 0.713 0.025
EM-MAR(MCAR)
VAR 0.025 0.025 0.007 0.025 0.025 0.007 0.026 0.025 0.007 0.027 0.026 0.007

MLE -1.313 0.702 0.026 -1.313 0.704 0.027 -1.317 0.711 0.026 -1.322 0.713 0.025

EM-MNAR
VAR 0.025 0.025 0.007 0.025 0.025 0.007 0.026 0.025 0.007 0.027 0.026 0.007

(c) MNAR

Method Quantity Complete data 5% missing 10% missing 25% missing
Bo B1 ® Bo B1 [ Bo B1 é Bo B1 [
MLE -1.313  0.702 0.026 -1.301 0.681 0.041 -1.326  0.644 0.047 -1.500 0.531 0.027
CC

VAR 0.025 0.025 0.007 0.028  0.027 0.008 0.029  0.028 0.008 0.030  0.029 0.008

MLE -1.313  0.702 0.026 -1.302 0.682 0.042 -1.325 0.646 0.045 -1.402 0.537 0.027
EM-MAR(MCAR)
VAR 0.025 0.025 0.007 0.027  0.027 0.008 0.028  0.028 0.008 0.029  0.028 0.008

MLE -1.313 0.702 0.026 -1.301 0.685 0.032 -1.318 0.659 0.039 -1.353  0.592  0.024
EM-MNAR
VAR 0.025 0.025 0.007 0.027  0.026 0.007 0.027  0.027 0.008 0.027  0.025 0.007

CC, complete case analysis.
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Table 3.18: The number of females with 0,1, 2, etc. dead implants when 5-10 zygotes
were implanted after matings during the first 7 days after irradiation of males with 0

(control), 300 R and 600 R (Generated from Table 3.16).

Dose Dead Implants

(R) Implantations 0 1 2 3 4 5 6 7 Total dead

0 5 47 17 7 0 - - - - 71 8.7
6 8 45 22 2 1 1 - - 156 10.6
7 94 76 36 14 4 - - - 224 13.1
8 64 49 27 10 _ - - - 150 11.1
9 31 24 11 1 3 - - - 70 9.7
10 4 5 3 - - - - - 12 9.2

300 5 42 40 28 10 1 - - - 121 21.5
6 48 60 42 13 4 3 - - 170 20.1
7 37 5 50 36 5 2 - - 186 22.6
8 20 25 27 17 8 1 1 . 99 21.8
9 2 6 9 3 - 3 1 . 24 25.0
10 1 - 2 0 1 - - - 4 20.0

600 5 13 36 62 43 4 2 - - 160 39.4
6 13 20 53 43 16 7 1 . 153 39.2
7 6 15 32 26 21 16 4 _ 120 41.1
8 2 6 7 20 7 2 1 . 45 34.4
9 1 0 1 1 2 0 2 7 39.7
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Table 3.19: Estimates and standard error of the parameters for new mutagenic data

under the three missing data mechanism.

(a) MCAR
Complete data 5% missing 10% missing 25% missing
Method Quantity  SBo B1 1) w Bo 51 13 w Bo B£1 93 w Bo B1 ¢ w
MLE -1.307 0.660 0.020 0.033 -1.293 0.661 0.011 0.045 -1.325 0.678 0.024 0.024 -1.316 0.659 0.016 0.029
CC
VAR 0.028 0.024 0.001 0.011 0.031 0.025 0.008 0.012 0.031 0.026 0.008 0.013 0.034 0.029 0.009 0.013
MLE -1.307 0.660 0.020 0.032 -1.294 0.661 0.012 0.044 -1.323 0.678 0.026 0.025 -1.316 0.660 0.016 0.028
EM-MAR(MCAR)
VAR 0.028 0.024 0.001 0.011 0.030 0.024 0.008 0.011 0.031 0.025 0.008 0.012 0.033 0.028 0.009 0.013
MLE -1.307 0.660 0.020 0.032 -1.294 0.661 0.012 0.044 -1.323 0.678 0.026 0.025 -1.316 0.660 0.016 0.028
EM-MNAR
VAR 0.028 0.024 0.001 0.011 0.030 0.024 0.008 0.011 0.031 0.025 0.008 0.012 0.033 0.028 0.009 0.013
(b) MAR
Complete data 5% missing 10% missing 25% missing
Method Quantity B0 f1 ¢ w Bo 1 ¢ w Bo B1 ¢ w Bo B1 ¢ w
MLE -1.307 0.660 0.020 0.033 -1.303 0.654 0.018 0.036 -1.205 0.783 0.024 0.060 -1.083 0.660 0.000 0.103
CC
VAR  0.028 0.024 0.001 0.011 0.030 0.026 0.008 0.012 0.031 0.027 0.008 0.013 0.033 0.029 0.008 0.014
MLE -1.307 0.660 0.020 0.033 -1.304 0.655 0.019 0.034 -1.302 0.650 0.021 0.029 -1.317 0.663 0.022 0.020
EM-MAR(MCAR)
VAR  0.028 0.024 0.001 0.011 0.028 0.025 0.080 0.012 0.030 0.025 0.008 0.012 0.030 0.024 0.008 0.013
MLE -1.307 0.660 0.020 0.033 -1.304 0.655 0.019 0.034 -1.302 0.650 0.021 0.029 -1.317 0.663 0.022 0.020
EM-MNAR
VAR  0.028 0.024 0.001 0.011 0.028 0.025 0.080 0.012 0.030 0.025 0.008 0.012 0.030 0.024 0.008 0.013
(c) MNAR
Complete data 5% missing 10% missing 25% missing
Method Quantity B0 f1 ¢ w Bo P ¢ w Bo B1 ¢ w Bo B1 o] w
MLE -1.307 0.660 0.020 0.033 -1.315 0.661 0.022 0.029 -1.268 0.726 0.018 0.042 -1.317 0.651 0.019 0.038
CC
VAR  0.028 0.024 0.001 0.011 0.031 0.025 0.008 0.012 0.029 0.027 0.008 0.012 0.029 0.027 0.008 0.012
MLE -1.307 0.660 0.020 0.033 -1.314 0.662 0.023 0.029 -1.268 0.727 0.017 0.040 -1.315 0.647 0.020 0.038
EM-MAR(MCAR)
VAR  0.028 0.024 0.001 0.011 0.030 0.025 0.008 0.012 0.029 0.027 0.008 0.012 0.029 0.027 0.008 0.012
MLE -1.307 0.660 0.020 0.033 -1.311 0.662 0.022 0.029 -1.276 0.722 0.020 0.038 -1.312 0.657 0.020 0.035
EM-MNAR
VAR  0.028 0.024 0.001 0.011 0.027 0.026 0.007 0.012 0.029 0.025 0.007 0.011 0.029 0.025 0.007 0.011

CC, complete case analysis.



Chapter 4

Estimation for Zero-Inflated
Beta-Binomial Regression Model
with Covariate Measurement Error

And/or Missing Responses

4.1 Introduction

In chapter 3, we developed estimation procedures for the parameters of a zero-inflated
beta-binomial regression model with missing data. The purpose of this chapter is
to develop inference procedures for the parameters of a zero-inflated beta-binomial
model where information on some of the covariates is recorded with errors and/or
some observations of the binomial responses may be missing. A weighted expecta-
tion maximization algorithm (Dempster et al. (1977)) is developed for the maximum

likelihood (ML) estimation of the parameters involved. Extensive simulations are
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conducted to study the properties of the estimates using different measures, such
as, average estimates (AE), relative bias (RB), variance(VAR), mean squared error
(MSE) and coverage probability (CP) of estimates. Simulations show much superior
properties of the estimates obtained using the weighted expectation maximization
algorithm. Some illustrative examples and a discussion are given.

The zero-inflated beta-binomial model is introduced in Section 2. In this section
we also develop a procedure for the estimation of the parameters. Results of an
extensive simulation study are reported in Section 3. Some illustrative examples are

given in Section 4 and a discussion leading to some conclusions is given in Section 5.

4.2 The zero-inflated beta-binomial model and es-

timation procedure

4.2.1 The zero-inflated beta-binomial model

For a quick introduction to the proposed method it is appropriate to present the
standard form for the ZIBB model. For a particular litter ¢, given m;, the number
of live foetuses in the litter, y;, the number of foetuses affected, is a random variable

having a beta-binomial distribution with parameters o and g, i.e,

my;
i 8) = (") Bl + 8- )/ Bl ) (1)
Ifr= alwv and ¢ = a_Jer7 we have
yi—1 mi—yi—1

o [[x+re) ] @-7+r9)
f(yi;a,ﬁ)=< ) , (42)

Yi m;—1

H (1+79)

r=0
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with E(Y;) = m;m and Var(Y;) = mym(1 — m)[1 + (mliqls)ﬂ‘ We denote the beta-

binomial distribution as BB(m,¢). As ¢ — 0, BB(w, ¢) tends to the binomial ()
distribution and for ¢ = 0 we have Var(Y;) = m;m(1 — ) and the BB(m, ¢) becomes
the binomial (7) distribution.

The zero-inflated beta binomial regression model (Deng and Paul (2005)) can be

written as
( m;—1
ITa+re—m)
w+ (1 —w) T:rgi—1 if y; =0,
H (14 r9)
f(yz|x’ba T, ¢7 w) - y:ﬂ_:l[) mi—yi—1 (43)
(m+re) [ (—7+r¢)
(1—w) (mi r=0 — r=0 if y; > 0,
Yi mi
H (1+71¢)
\ r=0

with E(Y;) = (1 — w)myw, and Var(Y;) = (1 — w)m;w(1 — W)IJ{Tmf + (1 — w)wmin?,
where w is the zero-inflation parameter. We denote this distribution by ZI BB(w, ¢, w)

distribution.

4.2.2 The estimation procedure

Suppose data from the ZIBB(w, ¢, w) model for the " litter are (y;, z;), given the
number m; of litter size, i = 1,...,n, y; represents the response variable and z; rep-
resents a p x 1 vector of covariates with the regression parameter 5 = (8o, 1, - - -, Bp),
such that m; = exp(D_7_, xi;0;)/(1 + exp(D_7_, xi;53;)). Here f is the intercept pa-

rameter in which case z;y = 1 for all 7.
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4.2.2.1 Estimation of ¢ with no covariate measurement error

For data without covariate measurement error, the log likelihood, apart from a

constant, using the probability mass function given in equation (4.3), can be written

as
mi—1
. H (1+7rp—m)
LB, ¢, YNyi) = [ —log(1 + ) + log [7 + ’”:f,)“,l }I{w:U}

= IT @+re)
et S (4.4)

+ [ Z log(m; +r¢) + Z log(1 — m; + r¢)
r=0 r=0

m;—1
— > log(l+ TM f{yz->o}] :

r=0
where v = w/(1 —w). Note, v transforms the space of w from (0, 1) onto (0, co) which
makes optimization of [ easier (Deng and Paul (2005)). Let ¢ = (8, ¢,7). Then the
maximum likelihood estimates of the parameters 1) can be obtained by simultaneously

solving the following estimating equations

m;—1 m;—1

) (- II a+re—m)
aa_ﬁlj _ Z H j=0 r_o,r#jm_l :|I{yi0}
= S H (I+7rp—m)
[T +re) (v e
= [T @+re)

r=0

yi—1 1 m;—y;—1 1 o
— - I, —1 =0
+[ZW1+T¢ Z 1—7TZ+T¢:| {y1>0}] 86] )

r=0 r=0
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m;—1 m;—1 m;—1
o (X0 I1 asro-m) [Ta+ro
ﬂ . Z j=0  r=0,r#j r=0
a¢ - — m;—1
m;—1 2 H (1+T¢_7TZ)
< [Ja+ r¢)> (7 + T::”_l
= [[+re)
m;—1 m;— T;iofl
(Za H 1+r¢) [Ta+re-m)
. Jj=0  r=0,r#j r=0 I
m;—1 {yi:()}
m;—1 2 H (1+T¢—7T1)
( [Ja+ rqb)) (7 + mrl
= [T +re)
yi—1 r mi—y;—1 T:(; mi—1 ,
+{;m—l—rgb+ ; l—m+ro ;1+r¢} {yl>0}] 0
and -
51 n H(1+T¢—7Tl) 1
5= -+ + (7 + mﬁl I{yizo}] =0,
= []@+re)
r=0
a p p .
where % = X exp(z XiiB;)/ (1 + exp(z X,;3;))?. Denote these estimates by 1.
J j= i
The observed information matrix of @E is given by
92
"
—Q" (W, oy Z gy sy ild). (4.5)

The elements of this matrix are given in appendix 2. Of course, if it is convenient,

these parameters can also be estimated by directly maximizing the log-likelihood

function (4.4). However, in practice, through tests (Deng and Paul (2005)), if it is

found that the zero-inflation parameter is insignificant, then data analysis should be

based on the beta-binomial model (4.2). The parameters 3; and ¢ can be estimated by
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solving the estimating equations given in Appendix 1. The elements of the observed

information matrix corresponding to likelihood (4.2) are also given in this appendix.

4.2.2.2 Estimation of the parameters with covariate measurement error

We partition the vector of covariates x; for the ith observation as (u;, z;), the vector
u; is observed only indirectly through the measurement w; and z; is observed without
error. Note that u; and w; are ¢ dimensional while z; is p — ¢ dimensional.

Following Carroll et al. (2006), the measurement error model can be classified into
two general types which are used to relate w; to u;:

1. Error model, which includes classical measurement error model.

w; = T + TuUi + T2 + €. (4.6)

The error term e; is independent of u;, z; and the responses and it is often assumed
that e; has mean zero and it follows a known distribution f(0,3), where ¥ is the
covariance matrix of e;. The intercept 7y is a vector, which can be written as 7y =
(To1, -+ Tog)". The coefficients 7, = (Tu1, -+ Tug)’s 7o = (To1, -+ Tog)?, where 7,;(j =
1,---,q) and T (k=1,--- ,p—¢q) are ¢ x 1 and (p — q) x 1 vectors respectively. If
we set 7o = 0, 7, = 0, and 7, = [, where [, is the ¢ X ¢ dimensional identity matrix,

we have the classical measurement error model.

2. Regression calibration model, which includes the Berkson error model.
U = To + TwW;i + T22; + €, (4.7)

where, 7, = (Tw1, "+ Twq)’ . lf we set 79 = 0, 7, = 0, and 7, = I, we have the Berkson

measurement error model.
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Which of these models should be applied to the analysis of binomial data? See for
example, the data in Table 4.13 in which all individuals in a small group are given
the same dose. However, because of the size of the implants the actual dose will
vary from animal to animal. In this situation the Berkson model is appropriate (see
Carroll et al. (2006, p 27)).

We suppose f(y;|w;, ui, z;) = f(yi|us, z;), which is called nondifferential error mech-
anism (Carroll et al. (2006)). That is, w are statistically independent of y given (u, z).
Now, the true values of the u are not available. So, we treat them as missing data
and obtain maximum likelihood estimates of the parameters involved by using the
EM algorithm (Schafer (1987)).

The likelihood for the complete data with error prone covariates u; and error free

covariate z; is

n

Hf(yi|uiaZz‘;w)f(ui‘wiazi;Tvz)' (4.8)

=1

The log-likelihood for subject 7 is

l; = lng(Z/z’\Um 255 W + logf(ui‘wia 2 T, Z)

mi—1
H (1+7r¢p—m)
= —log(l+~)+log {7 = T:fnfl Iy—oy
IT a+re) (4.9)
yi—1 mi—yiiTO m;—1
+ [ Z log(m; + 1) + Z log(1 —m; +r¢) — Z log(1 + Tqb)} Ity >0y
r=0 r=0 r=0

+log f (uiwi, zi; 7, %),
Denote I' = (¢, 7,%). The E-step requires the calculation of the conditional

expectation of (4.9) with respect to u; given the observed data and current estimates
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of the parameters. We have observed data (y;, w;, z;). The E-Step is given as

Qi(¥, 7, TW) = E [l;|y;, w;, 2;T"]
= [ toaf (i) + logf(wfw,zim. D) (410)
iy, wi, 2 F(t))dui-
Since the above integration has no closed form, we use the Monte Carlo (MC)
version of the EM algorithm given by Wei and Tanner (1990) to solve this integration
problem. To do this, we need to generate a large number M of samples u; from

f(uglyi, 2, wi; T®). We know that

f(ui|yia Wi, Ziy F(t)) X f(yi|uia Zis F(t)>f(ui|wi7 24 F(t))‘ (4'11)

Note u; is a ¢; x 1 vector. If ¢ > 1 we can use the Gibbs sampler in appendix 4 to
convert the multivariate distribution sampling problem f(u;, - -+ , uig|yi, wi, 2;; T®)
to a univariate conditional distribution problem f(u|wia, - - -, Wig, Yi, Wi, 2 ey ...,
f(wigluin, - -+, wigg—1), i, Wi, 2; I'®) first. Then, at the tth iteration, for each subject
1, we interactively generate ugk),k = 1,---, M by Gibbs sampler along with the
rejection sampling method based on (4.11). After that, choose 1) and 7+ 30+
to maximize 2", 1/M M logf (yi|ul®, z; ®) and

S MYY logf(ugk)|wi, z;; 7®, 20 respectively. If convergence is obtained, we
can say D 7D and D are the maximum likelihood estimation of parameters.
Denote this by I' = (xt+D) 7+ 541,

The observed information matrix of the estimates I is

n M
1 02 A
H=-Q"= i Z Z Wli(FQ y%uz(k)’ zi| ). (4.12)
i=1 k=1
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4.2.2.3 Estimation of the parameters with covariate measurement error

and missing information in the responses
As in Ibrahim et al. (2001) the missingness in the reponses can be expressed as

Yoi if y; is observed,
vi= (4.13)
Ym,i if y; is missing.

and

0 if y; is observed,
1 if y; is missing.

We suppose missing data indicator r; follows independent Bernoulli distribution

flrilys, iz o) = (pi)" (1 = pi)' ™", (4.15)

where p; = P(r; = 1). To connect the distribution of r; to covariates the logistic

regression is employed,

7

log| | =Vi'a, (4.16)

where VT includes both missing response data, error prone covariates u; and error
free covariate z; information, where « is the vector of parameters of missing data
process.

The full joint likelihood considering covariate measurement error and missing re-
sponse is

n

H S (Wilwi, zi30) f(rilus, 2i, i @) f(wi|wi, 2537, 5), (4.17)

i=1

where y; is composed of observed part y,, and missing part y,,,. The complete
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data log likelihood contributed from subject ¢ is
li = logf(yilui, zi;v) + log f(rilui, zi, yi; @) + log f (ui|w;, 237, %)
= —log(1+7) +log[y + f(0; 7, ¢, W) Liyi=oy + 10g f (yi: ™, 6, ) gy (4:18)
+r; % Vi — log(1 + %) + log f (u;|w;, 2 7, 5).

Denote I' = (¢, 7,2, ). The E-step provides the conditional expectation of the
complete data log-likelihood with respect to the distribution of y,,,; and u; given the
observed data and the current estimates of the parameters. Let ¢ be an arbitrary num-
ber of iterations during maximization of the log-likelihood. Then given the observed
data (Yo, ws, 2, ;) and current estimates of the parameters '™ the conditional ex-
pectation of the complete data log-likelihood for the i observation in the (s + 1)

iteration can be written as

Qi(F|F(t)) = E [li’yo,i,whzi,ri;rm}
= [ ] [toatr+ ) + 1oty + 0,000 0

+10g f(yi;ﬁi7¢7w)l{yi>0} (419)

+r; % VI — log(1 + €Y' @) + log f (w;|w;, 2 7, E)]

f Ymis ilYosis i Wi, 23 F(t))dym,idui.
For each subject 7, at the tth iteration, the kth (k = 1,2,..., M) sample can be

generated for (yff)l,uik)) though Gibbs sampler along with the rejection sampling

method in appendix 4 based on the following

f(ym,z‘lyo,huiawiaZi;r(t)> O<f(yz'|ui7Zi;F(t)>f(ri|yiaui7Zi;r(t)>> (42 )
.20

f(Uz‘|yz‘,wi,Ziﬂ“i;F(t)) O<f(yi|ui7zi;F(t)))f<ui|wi7Zi§1—‘(t))f(ri|ui7Ziayi;r(t))-
(k) , (k)

After replacing (y;m, u;) with (y;,,,w; ), in the M step, we choose '+ to max-
imize Y ", 1/M Zﬁil Q,. If convergence is obtained, we can say ['**V) is the maxi-

mum likelihood estimate of parameters. Denote this by I' = T(+D),



4.3 Simulation study 70

The observed information matrix of the estimates I is

n M
Y 1 0? -
H=-Q"= —ME;;WMNF)- (4.21)

4.3 Simulation study

A simulation study was conducted to investigate the properties of the estimates
in terms of average of estimates (AE), relative bias (RB), variance (VAR), mean
squared error (MSE) and coverage probability (CP) of estimates. The AE, RB, SE,
MSE and CP, for example of 7, are obtained as: AE () = + Zévzl g, RB(7)=
(AE -7)/m, VAR(7) = % Zé\;l var(w,), where var(m,) was obtained from the ob-
served information matrix given in (4.12) or (4.21), MSE(7) = + Zé\le(ﬁq — )%, and
CP(7) = L3N I(fty — Zar/Oar(fy) < 7 < 7y + Z2+\/Dar(7,)), where N is the

number of samples we simulated.

4.3.1 Covariate measurement errors

For the case with one error prone covariate and one error free covariate we take
T = exp(Bo + Sru; + B22:)/(1 + exp(Bo + Prus + Pa2z;)) with By = —1, B = 1 and
Bo = 2 . Note that [y is the intercept parameter. Error free covariate z; is generated
from N (0, 1).

We use Berkson measurement error model here. The surrogate variable w; is gen-
erated from N(1,1). Then the true covariate can be generated from model u; = w;+e;,
where measurement error es are independent and identically following N (0, 02).

In figure 4.1. we first illustrate the measurement error o effect on the RB of

parameter estimates if we use the observed data (y;, w;, z;) directly without consid-
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ering measurement error. We call this method the Naive method. Take n = 100,
m = 10 and set different degree of measurement error (¢ from 0.1 to 1). 2000 runs
are performed. Apparently, if we ignore the measurement error the RB of parameter
estimates will increase as the measurement error become larger. The measurement
errors not only have an impact on the coefficient 8 of the error prone covariate but
also on all the parameter estimations. When the measurement error increases, the
over-dispersion parameter ¢ is affected a lot.

Now we compare the performance of the parameter of estimation between our
proposed EM method with Naive method under three different degrees of measure-
ment error (0 = 0,0 = 0.5,0 = 0.9) in Table 4.1 to Table 4.3. For empirical coverage
probability we take nominal level o = 0.05.

Results in Table 4.1 to Table 4.3 for ZIBB data without covariate measurement
error show that all the parameters are well estimated irrespective of the sample sizes
and at n = 100 show almost no estimation error. However, the coverage probability
falls short of the nominal coverage of 95%.

When there is a covariate subjected to measurement error, the Naive method
yields considerably larger AE, RB, SE and MSE and lower coverage probability, even
for large sample size. The parameter 7w shows overestimation, whereas, 3y, 51 and (5,
show underestimation. The parameter ¢ shows high RB (as high as 77%) for sample
size(n = 100) and measurement error (o = 0.9).

The MCEM method, however, shows excellent performance in terms of all the
measures for all five parameter estimates, except that the coverage probability for the
parameter ¢ is shorter (ranges from .85 to .90) in comparison to that data without
covariate measurement error. However, these coverage probabilities are much closer

to the nominal coverage probability than those using the Naive method.
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The RB, SE and MSE from Naive method tend to increase and the coverage
probability tends to decrease as the degree of measurement error increases, However
our proposed method shows good behaviors for all the estimates of the parameters

although the measurement error goes up to o = 0.9.

4.3.2 Covariate measurement errors and missing responses

For the case with one error prone covariate and one error free covariate with missing
responses we also take m; = exp(fy + fru; + [22:)/(1 + exp(Bo + Bru; + Paz;)) with
Bo = —1, f1 =1 and B, = 2 . Note that 3 is the intercept parameter. The error free
covariate z; is generated from N(0,1).

We use Berkson measurement error model here. The surrogate variable w; is gen-
erated from N(1,1). Then the true covariate can be generated from model u; = w;+e;,
where measurement errors e.s are independent and identically following N (0, o2).

For the missing data process, we consider the logistic model
logit(P(r; = 1)) = ag + i + any;, (4.22)

from which missing data indicators r;’s are independently generated. The value of ag
is set as 1.1 to make the baseline missing rate about 25%. The values of (aq, ) are
set as (0,0),(0.1,0),(—0.1,0.1) to indicate different missing data mechanisms.

We can see from model (4.22) that, when oy = 0 and ay = 0, the missing data do
not depend on either the error prone covariate x; or the missing response y;, which
results in MCAR. When a7 # 0 and ay = 0, the missingness only depends on the
error prone covariate z; resulting in MAR. When «; # 0 and «as # 0, the missingness
depends on the missing response y;, in addition to the error prone covariate x; indi-

cating that we have MNAR. Here, in order to control the missing rate close to the
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baseline missing rate, we set small values for oy and as.

We compare the performance of parameter of estimation between our proposed
MCEM method with the Naive method which only uses observed data directly with-
out considering covariate measurement error and missing response under different
degree of covariate measurement error (0 = 0.5,0 = 0.9) with three missing data
mechanism in Table 4.4 to Table 4.12. We have discussed the performance of pa-
rameter of estimation for ZIBB model with missing response and without covariate
measurement error (o = 0) in Chapter 3. For empirical coverage probability we take
nominal level & = 0.05 here.

We can see from Table 4.4 to Table 4.12 that the proposed EM method works
better than the Naive method for RB, VAR and MSE. In the presence of missing
responses and covariate measurement error, the performance of the Naive method
is affected remarkably, especially when the missingness probability depends on the
covariate with measurement error and response, while the MCEM method performs

steadily.

4.4 An Example: Analysis of a mutagenic data set

In this section we analyze a set of mutagenic data. The data obtained from Liining
et al. (1966) involved groups of male mice originating from an inbred CBA strain
mated with groups of female mice originating from same inbred CBA strain. The
experiment was conducted in three groups in which male mice were given 0 R, 300 R
and 600 R respectively and then were mated within the first 7 days after irradiation.

The data are given in Table 4.13, and have been grouped according to the number

of implants and the number of dead foetuses. We are interested in the dosage effect on
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the death rate of the foetuses. The outcome variable is the number of dead foetuses
in the litter. The independent variable is the dosage.

Since the data assigned the same exposure dose for each group, but the real
exposure dose is particular to an individual, the exposure dose can be treated as an
error prone covariate u;. We employ the Berkson measurement error model here. We
also control the litter size m; as our error free covariate z;. Then we fit the data using
the zero-inflated beta-binomial model (4.3) with m; = exp(Bo + fru; + B22i)/(1 +
exp(Bo + Bru; + P2z:)), w; = treatment; = 0,300,600. where ; is the proportion
of dead implants, Sy represents the intercept parameter, 8, represents the regression
parameter of treatment effect, and 5 represents the regression parameter of litter size
effect. Since the dosages u; are far apart we standardize as v; = (u; — u)/s, where u
and s are mean and standard deviation of the u; values. The model then for the zero-
inflated beta-binomial proportion becomes m; = exp(fy + S1vi + B22:)/(1 + exp(Bo +
B1v; + B2z;)). The maximum likelihood estimate (mle) of Sy, f1, fa, ¢ and w for the
mutagenic data are reported in Table 4.14. Both Naive and EM analysis methods
suggest a positive dose effect and a negative litter size effect, however the magnitudes
of the effect are very different. The EM method shows more dose effect than that
revealed from the Naive method, but the estimate for liter size effect obtained from
the Naive method is more than that calculated from the EM method. Moreover,
the estimates of over-dispersion parameter ¢ and zero-inflation parameter w from the
Naive method are higher than those obtained from the EM method. The estimate
of the measurement error parameter o is 0.197 and its 95% confidence interval is
(0.191,0.203) which indicates that measurement error exists in the exposure dose
rate.

The data in Table 4.13 does not contain any missing values. However, in prac-
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tice, in Toxicology and mutagenic studies, missingness can occur in addition to the
covariate measurement error. So, to illustrate our method of analyzing mutagenic or
toxicological data in the form of proportions that follow the ZIBB model, but contain
missing responses in addition to covariate measurement error we generate missingness
using the model (4.22). Estimates of the parameters /3y, 31, and ¢ and their variances
are given in Tables 4.15 to Table 4.17 for MCAR, MAR and MNAR respectively. The
estimate of the measurement error parameter o is 0.167, 0.158 and 0.105 for MCAR,
MAR and MNAR respectively and their corresponding 95% confidence intervals are
(0.161,0.204), (0.121,0.189) and (0.102,0.157) which indicate that measurement error

exists in the exposure dose rate with all three missing mutagenic data.

4.5 Discussion

In this chapter, we have developed an estimation procedure for the parameters of a
zero-inflated beta-binomial model in presence of covariate measurement error with
or without missing response. We proposed the EM method to deal with covariate
measurement error and missing response. The simulation studies for different degrees
of covariate measurement error and different missing data mechanisms show that
estimation by using the EM method performs well. Although the measurement error
model and missing data mechanism have been discussed extensively in many articles,
the current development for the estimation of the parameters of ZIBB in presence of
covariate measurement error with missing response is new.

Moreover, we focus on structural modelling here by specifying a normally dis-
tributed covariate measurement error model for ZIBB data. In the measurement

error literature, an alternative method is called functional modelling. Structural mod-
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elling assumes a known distribution for the unobserved covariate U while functional
modelling does not assume any distribution for U which is more robust.
We will develop a functional approach for ZIBB data with covariate measurement

error by using the SIMEX (Carroll et al. (2006)) method in the future.
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Figure 4.1: Effect of different degrees of measurement error o on the RB of estimates

of the parameters under ZIBB model ignoring the covariate measurement error.
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Table 4.13: The number of females with 0,1, 2, etc. dead implants when 5-10 zygotes
were implanted after matings during the first 7 days after irradiation of males with 0

(control), 300 R and 600 R.

Dose Dead Implants

(R) Implantations 0 1 2 3 4 5 6 7 Total dead

0 5 30 27 9 5 - - - - 71 16.9
6 86 51 14 4 1 - - - 156 10.1
7 111 73 31 8 1 - - - 224 10.4
8 79 4 23 3 - 1 - 150 8.7
9 32 29 8 1 - - - - 70 7.6
10 5 5 2 - - - - - 12 7.5

300 5 27 41 32 17 4 - - - 121 28.4
6 28 47 59 28 6 1 1 ° 170 27.8
7 31 61 54 20 19 1 _ _ 186 23.8
8 12 32 24 22 8 1 - 99 23.1
9 1 6 9 6 1 1 - 24 23.6
10 1 2 1 - - - - - 4 10.0

600 5 16 32 48 49 15 _ - 160 41.9
6 7 35 45 37 20 9 _ 153 39.3
7 5 22 2r 36 17 9 3 1 120 38.3
8 1 4 12 11 8 T~ 2 45 39.4
9 - - 2 2 2 - 1 . 7 38.1

10 - - - - - . | 1 70.0
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Table 4.14: Estimates, standard error, variance and confidence interval of the param-

eters for mutagenic data.

Method  Quantity Bo B1 B2 ¢ w
MLE -0.638 0.674 -0.098 0.012 0.011
SE 0.097 0.024 0.013 0.007 0.011
Naive VAR 0.009 0.001 0.000 0.000 0.000

95% LB -0.828 0.627 -0.123 -0.002 -0.011

95% UB  -0.448 0.721 -0.073  0.026 0.033

MLE -0.754  0.731 -0.085  0.010 0.009
SE 0.083  0.021  0.012 0.005 0.010
EM VAR 0.007  0.000  0.000 0.000 0.000

95% LB -0.917 0.690 -0.109 0.000 -0.011

95% UB  -0.591 0.772 -0.061  0.020 0.029

Table 4.15: Estimates, standard error, variance and confidence interval of the param-

eters for mutagenic data under MCAR.

Method  Quantity Bo B1 B2 ¢ w
MLE -0.752  0.682 -0.084 0.017 0.004
SE 0.111 0.027 0.015 0.009 0.013
Naive VAR 0.012 0.001 0.000 0.000 0.000

95% LB -0.970 0.629 -0.113 -0.001 -0.021

95% UB  -0.534 0.735 -0.055 0.035 0.029

MLE -0.816  0.738 -0.080 0.014 0.002
SE 0.102  0.024 0.012 0.007 0.011
EM VAR 0.010  0.001  0.000 0.000 0.000

95% LB -1.016 0.691 -0.104 0.000 -0.020

95% UB  -0.616 0.785 -0.056  0.028 0.024
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Table 4.16:

rameters for mutagenic data under MAR.

Estimates, standard error, variance and confidence interval of the pa-

Method

Naive

EM

Quantity
MLE
SE
VAR
95% LB

95% UB

MLE
SE
VAR
95% LB
95% UB

Bo
-0.690
0.121
0.015
-0.927

-0.453

-0.741
0.115
0.013

-0.966

-0.516

B1
0.676
0.028
0.001
0.621

0.731

0.734
0.021
0.000
0.693
0.775

B2
-0.090
0.017
0.000
-0.123

-0.057

-0.075
0.012
0.000

-0.099

-0.051

0.014
0.008
0.000
-0.002

0.030

0.010
0.006
0.000
0.098

0.122

0.006
0.011
0.000
-0.016

0.028

0.004
0.001
0.000
0.002

0.006

Table 4.17: Estimates, standard error, variance

eters for mutagenic data under MNAR.

and confidence interval of the param-

Method

Naive

EM

Quantity
MLE
SE
VAR
95% LB

95% UB

MLE
SE
VAR
95% LB
95% UB

Bo
-1.111
0.140
0.020
-1.385

-0.837

-0.812
0.140
0.020

-1.086

-0.538

B1
0.982
0.324
0.105
0.347

1.617

0.667
0.324
0.105
0.032

1.302

B2
-0.133
0.072
0.005
-0.274

0.008

-0.072
0.065
0.005

-0.213

0.069

0.005
0.026
0.001
-0.046

0.056

0.020
0.026
0.001
-0.031
0.071

0.124
0.160
0.026
-0.190

0.438

0.004
0.160
0.026
-0.310

0.318




Chapter 5

Summary and Plan for Future

Study

5.1 Summary

We have developed estimation procedures for the parameters of a zero-inflated beta-
binomial model in presence of missing responses with or without covariate measure-
ment error. We have applied a weighted expectation maximization algorithm for the
maximum likelihood estimation of the parameters. Although missing data method-
ologies and measurement error procedure have been discussed extensively in the lit-
erature, the current development for the estimation of the parameters of zero-inflated
beta-binomial model in presence of missing responses with/without covariate mea-
surement error is new.

In chapter 2, we proposed an estimation procedure for the parameters of a zero-
inflated beta-binomial model in presence of missing responses only. The general

findings through simulations and data analyses are:

93
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(a) Data without covariates: For complete data and under MCAR and MAR, all
the parameters are well estimated irrespective of the sample sizes and percentage
missing. All of the AE, RB, VAR, and MSE show good behavior. However, all
the parameter estimates show shorter coverage probability, especially for ¢, whose
coverage probability ranges from 0.91 to 0.93. Under MNAR, the CC method for all
the parameters yields considerably larger AE, RB, SE and MSE and lower coverage
probability, even for large sample size. The EM method shows excellent performance
in terms of all the measures for all three parameter estimates, except that the coverage
probability for the parameter ¢ is shorter (ranges from .87 to .91) in comparison to
that from complete data. However, these coverage probabilities are much closer to
the nominal coverage probability than those using the CC method. All parameters
are well estimated even at 25% baseline missing.

(b) Data with one covariate: Results for complete data are almost the same as those
with no covariate except that to see such good behavior much larger sample sizes are
required. Similarly, estimates of all the parameters, under MAR and MNAR, show
similar behavior as those with no covariates except that it now requires much larger
sample sizes.

In chapter 4, we have developed an estimation procedure for the parameters of a
zero-inflated beta-binomial model in presence of covariate measurement error with or
without missing response. We proposed the EM method for dealing with covariate
measurement error with or without missing response. The simulation studies for
different degrees of covariate measurement error and three missing data mechanisms
show that estimation by using the EM method performs well in terms of the properties
of the estimates using different measures, such as, average estimates (AE), relative

bias (RB), variance(VAR), mean squared error (MSE) and coverage probability (CP)
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of estimates.

5.2 Plan for Future Study: A Random Effects Tran-
sition Model For Longitudinal Binary Data With
Missing Response And Covariate Measurement
Error

In many biomedical studies, such as, the study of drug use, the probability of current
binary response depends on a previous binary response. For example, the probability
of a child having an obesity problem at time ¢;; depends not only on explanatory
variables, but also on the obesity status at time #;;;_;). A transition model is useful
in such situations.

When we are interested in the dynamic features of transition patterns in repeated
measurements, an appropriate longitudinal way is to model the transition probabili-
ties over the study period. Longitudinal designs in bio-medical studies often collect
data on binary repeated measures that indicate the presence or absence of clinical or
biological states. Binary repeated measures can be conveniently modeled by Markov
chains with transition probabilities, for example, the probability of changing from use
to no use of a certain drug (or vice verse) in drug abuse treatment research. This
strategy brings intuitive statistical interpretation to the study of dynamic changes
in response to treatment through time and across subjects. Key targets of inference
include the probability that subjects in a specific condition shift from use to non

use and the probability that subjects maintain non use throughout the trial (Yang et



5.2 Plan for Future Study: A Random Effects Transition Model For Longitudinal
Binary Data With Missing Response And Covariate Measurement Error 96

al. (2007)). For complete longitudinal data, Markov transition models have been stud-
ied by several authors. For example, Korn and Whittemore (1979) model the proba-
bility of occupying the current state using the previous state. Wu and Ware (1979)
assume one binary event (e.g., death) though the covariate information as time passes
before the event. Zeger and Qaqish (1988) discuss a class of Markov regression models
for time-series by using a quasi-likelihood approach. Zeng and Cook (2007) propose
a estimation method based on joint transition models for multivariate longitudinal
binary data using GEE2. For incomplete data, Deltour et al. (1999) use stochastic al-
gorithms for Markov models estimation with intermittent missing data. Albert (2000)
develops a transitional model for longitudinal binary data, subject to nonignorable
missing data and proposes an EM algorithm for parameter estimation. In Albert and
Follmann (2003), an extended version of the Markov transition model was proposed
to handle nonignorable missing values in a binary longitudinal data set.

Measurement error happens when there is a difference between a measured value
of quantity and its true value. For example, measurable values are inconsistent when
repeated measures of a constant attribute or quantity are taken. Errors can also be
introduced by an inaccurate instrument(method) used in the experiment.

Let Y;; be the outcome variable for subject ¢ at the jth time point, X;; =
(Xij1,- -+, Xijp) be the vector of p covariates, i = 1,...,n, and j = 1,...,m;. De-
note Y; = (Y1, ..., Yim,)T and X; = (Xi, ..., Ximm,)T. A transition model for binary

response data is,
logit(P(Yi; = 1|Hy;) = X8 + v(Hyj, o), (5.1)

where H;; = (Y;1,Yis, ..., Yij—1)) and x(.) is a function of previous observations and

the current observation.
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A one-step Markov transition model assumes that y;;(j > 1) is independent of
earlier observations given the previous observation y;;_1). A simple transition model

which assumes a first-order Markov process for the response can be written as
lOth(P(Y;] = 1|HU) = Xwﬁ + Yi(j,l)oz. (52)

To capture the baseline heterogeneity across subjects (Albert and Follmann, 2003) a

random intercept effect can be used

logit(Pu(&)) = logit[P(Y;; = 1|Y;—1y = 0,&)]) = X580 + &

, (5.3)
logit(Pyo(&:)) = logit[P(Yy; = 0|Yi—1) = 1,&)]) = XijB0 + V&
from which we obtain
_ exp(Xy;B01+Ei)
POI(&) T 14exp(Xi;B01+E€i) (5.4>

exp(X;;Bro+vE;)
PlO(&) 1+exp()éijﬁ10+l’§i)

where g1, f19 are regression parameters, and &; is the random effect distributed as
N(0,0?). See Albert and Follmann (2003). The parameter v represents the associa-
tion between Py (&;) and Pio(&;). Note that Py + Poo = 1 = P11 + Pio = 1. To see
the effect of v for some fixed parameters see Figure 3 ( Albert and Follmann (2003)).
Model (5.3) is the random effect transition model (see Albert and Follmann (2003)
and Yang et al. (2007)).

Let 8 = (Bo1, f10). Thus, the model for y;; given x;;, y; j—1, &, and 6 can be written

as

Por’ (&) (1 = Pou (&) ¥ if 1) = 0
fijlzig, 2ij, Yij-1, &, 0) = - (5.5)
Py (&) (1 = Pio(&))%7 if i1y = 1.
Transition models are most appropriate when interest lies in understanding how

changes in the response occur over time and how covariates alter the governing tran-

sition probabilities (see Zeng and Cook (2007)). Models (5.5) can therefore be used
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to analyze complete binary longitudinal data. However, in practice some subjects
may not be available at all time points resulting in missing observations. Data anal-
ysis may be further complicated when measurement error occurs in some covariates.
The purpose of this paper is to develop inference procedures for parameters of the
random effects transition model (5.5) for longitudinal data having missing responses
and covariate measurement error. Four scenarios are considered: (a) no missing data
and no measurement error, (b) no missing data and measurement error (b) missing
data and no measurement error, and (d) missing data and measurement error.

In this paper we only consider the missing response which only incorporates in-
termittent missing with missingness indicators defined in Ibrahim et al. (2001). The

complete data and missingness can be expressed as

Yoi if y; is observed,
Yi = (5.6)
Ym,i if y; is missing.

and

0 if y; is observed,

1 if y; is missing.

We suppose missing data indicator r; follows

Frilyi, zia) = (pa) (1 — i)', (5.8)

where p; = P(r; = 1). To connect the distribution of r; to covariates, logistic regres-
sion is employed,

m} = wy ¢, (5.9)

log[

where w] includes both missing data and observed data information, ¢ is the vector

of parameters of the missing data process.



5.3 Estimation of parameters of model (5.5) having missing observations and
Measurement error 99

Data analysis may be further complicated when measurement error occurs in some

covariates. Following Carroll et al. (2006) we model the error prone covariate x;; as
Tij = Yo + V1lUi; + Yezij + €4,

where wu;; is the observed value for z;;, z; is an error free covariate and e;; is an
error term which follows N(0,4%). We define w = (70,71, 72, ). We have the density

function for z;; as

1 1
flailuig, zij,w) = ——=—=exp{—-5 [z — (Yo + nuij + 722;)]}. (5.10)
vV 2mH2 20

5.3 Estimation of parameters of model (5.5) hav-
ing missing observations and Measurement er-

ror

5.3.1 Estimation of parameters of model (5.5) for complete

data without measurement error

The complete data likelihood with all covariates x;; measured perfectly can be written

as

n

LT T sl i1, 650) f(i50) | - (5.11)

i=1 Lj=1
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The log-likelihood for subject i is

li = Z log f(yij|wij, Yij—150) + mslog f(&;0)
j=1

= Z “yij (i 8o + &) — log[1 + exp(z4; B0 + fi)]][yi,j,lzo

Jj=1

+ [yij(—xz‘jﬁlo — v&;) — log[1 + exp(—x;; 410 — Vfi)ﬂfy,,j_lﬂ}

(5.12)

+mi(—%log27r02 — 2’%'22).
We can consider the random effects as missing data and use EM method here. The
advantages of viewing &, as missing data is that on knowing the ;, all the Y;;’s are
independent because & can model some correlations. In addition, the M step of
the EM algorithm which maximizes with respect to parameters and is similar to a
standard generalized linear model computation with the values of §; treated as known.

The E-step: Given the observed data and current estimates of the parameters , the

conditional expectation of the complete data log-likelihood for the i subject is

QZ(Q, J|9(t)7 U(t)) - E[l7,|y17 e(t)a U(t)]

(5.13)
B /[logf(yilxi,&;e) +logf(&lo)] - f(&ilyi, 2 0™)dE.

The key problem in maximizing (5.13) is the integral over random effects. In some
cases, this integral can have an analytical solution. However, in general, there is no
closed form for it. Then we apply the Monte Carlo EM algorithm here. We need to

sample a large number of &;. since we have

F(&lyi 2090 o< f(yilas, &;0D) f(&; 0D, (5.14)

Adaptive rejection sampling method can be used to produce random draws from the
conditional distribution of f(&]yi, ;). At the tth iteration, for each subject i, we

generate §§k), k=1,---, N, from f(&]yi, 2:;00,0®) and choose 81 and oY to



5.3 Estimation of parameters of model (5.5) having missing observations and
Measurement error 101

maximize Y7 1/N 2V log f (yi|i, &) k), :0) and Y7 1/NYY logf(£ ; 0) respec-

tively. If convergence is obtained, we can say #*t1) and ¢t are the maximum
likelihood estimates of the parameters of model (5.5). Let ¢) = (9(+D), g(t+1),
The variance-covariance matrix of the estimates of the parameters are obtained

by inverting the observed information matrix at convergence, which is

Zl Z(%W (3 922, £10). (5.15)

5.3.2 Estimation of parameters of model (5.5) having missing
observations

The full likelihood for incomplete data and covariates x;; without measurement error
is
LTI T £ @il i &, 0) F (riglews, &) £ (i, 0))- (5.16)

i=1 j=1

Then, the log-likehood for subject i is

li = Z log f (rij|wij, @) + Z fWijl @i i -1, &, 0) + milog f (&, o)

B Z [rij (wij$) — log[1 + exp(wi;¢)]]

; 5.17
+ Z [[yij(%jﬁm +71&) — log[1 + exp(x;; Bo1 + 7151)]} Yij—1=0 ( )
=1

+ [Z/ij(—l'ijﬁw — 72&;) — log[1 + exp(—w; P10 — ’Yzflm Yij1= 1}
& 2)
202 /°

Since response y; has missing values, we use MCEM method again. The E-Step is

Q:(0,0,6|00, 00, $0) = [l.‘y(o) R, X;: 00 5 ¢(t>}
/ / log f (rslws, &) + F(u, 4™ |2, £,,0) (5.18)

Hogf (& o) - ™, &lye, iy 200, 0O ¢®)dy ™ de;
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At the tth iteration, for each subject i, we interactively generate §i(k) and y™®) L =
17 Ty N) from f(yz(m)|l'zv gia y50)7 T3, Q(t)7 U(t)) and f(§1|yla Ty Ly e(t)v O-(t)v ¢(t)) by the

adaptive rejection sampling method. &; is generated based on

f(§1|ylﬂ Ti, T4; e(t)v O-(t)a ¢(t)) X f(yllxu 627 0(1‘,)’ U(t)v ¢(t)f(TZ|ZL'Z, 527 ¢(t))f(€l7 U(t))(519)

Then, choose 00+, o1 ¢t to maximize 327 1/N SN log f(y\”, o™ €W, 21 6),
Yor,1/N Zivzl logf(fi(k); o)and Y 1/N Z]kvz1 log f(r;|€™): w) respectively. If con-

4D and ¢t are the maximum like-

vergence is obtained, we can say ¢+, ol
lihood estimates of parameters of model (5.5) with missing responses. Let 1/3 =

(04D o+ s+ Then the variance-covariance matrix of the estimates of the

parameters can be obtained by (5.15).

5.3.3 Estimation of parameters of model (5.5) for complete

Data with measurement error

Now we partition x; into the error-prone covariate u; which can only be observed
through the value of v;, and error-free covariate z;. We also suppose f(y;|u;, vi, 2z;) =
f(yilui, z;), which is called the non-differential error mechanism (Carroll et al., 2006,
p.36).

The likelihood for the complete data with error prone covariates u; and the error

free covariate z; is

n

H H f(yij|uij7 Zigs Yij—1, &i; 9>f<uij|vij7 Zigy W, 5)f(§z'; U) . (5-20)

i=1 Lj=1
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The log-likelihood for subject i is

li = Z log f (Yijlwiss Yij—1, 2i4, 665 0) + Z log f (wijlvig, 2i5; w, 0) + milog f (&5 0)

=1 j=1
= Z [[?Jz‘j(uz‘jﬁolu + 245 P01z + &) — log[1 + exp(ug; foru + 2ijBo1- + fz)H Iy, . =0
j=1

(5.21)
+ [yij(—uzjﬁmu — zijforz — v&i) — log[l + exp(—uij Brou — 2ij o1 — V&;)H L. =1

—%log(27r52) — #[Uzj — (Yo + v + 7221‘3‘)]2]

2
+m;(—1log2mo? — 2%2 ).
Since both u;; and §; are unobserved, they can be treated as missing values. Then,

we apply MCEM method again. The E-Step is given as
Qi(0,w, 6, 0|0, w® 50 ®) = E[li|yi,vi,zi;e(t),w(t),5(t),a(t)]
= //[logf(yz-\ui,zi,&; 0) + log f (u;|vs, 2w, 0) (5.22)
+logf (& 0)] - fus, &y, viy 250,00, 60, 00 du,dg,,
To use the Monte Carlo method to solve this integration problem, we need to
generate a large number of samples & and u; from f(u;, &y, zi, vi; 00, w®, 60, o®),
Gibbs sampling technique is applied to convert a multivariate distribution sampling

problem to a univariate conditional distribution problem. Based on the following

I (usl &, yi, vs, 23 Q(t)’ w(t)7 5('5)7 U(t)) oc f(yi|us, &, 2 Q('f)7 W(t)7 (5('5)7 U(t))f(ui|viu 2 w('f)7 5(025 23)
F (&g, yiy v, 2300, 0D 60 O o flyilug, &, 2300 ,0® 60 O (&5 0®), '

at the tth iteration, for each subject i, we interactively generate §Z-(k) and u® k =

L---, N, from f(ug|&, yi, v, 25 0D, 0® 6O c®) and f(&lug, yi, vs, 2300, w®, 60, 5 )

by adaptive rejection sampling method. Then, choose 8¢+1) o1 ,(¢+1) and §(t + 1)

to maximize Y7 1/N SV logf(yi]@(k), ugk), 2;0), S /NS logf(gi(k); o) and

>or 1/N Z]kvz1 log f(u;|vs, zi; w) respectively. If convergence is obtained, we can say

U+ oD () and §@+Y | are the maximum likelihood estimates of the parame-

ters of model (5.5) with covariate measurement error. Let ¢) = (A0+D g(+1) (t+1) 5+1)),
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Then the variance-covariance matrix of the estimates of the parameters can be ob-

tained by (5.15).

5.3.4 Estimation of parameters of model (5.5) having missing

observations with measurement error

The full joint likelihood considering covariate measurement error and missing data

process is the product of four conditional distributions as

n

H H Figluigs 2i5, Yig—1, &3 0) f(rig|&is wigy zigy mi 15 &) f (wiglvig, zig; 0, 0) f(&is o) |

i=1 Lj=1
(5.24)

(o

ij

) and missing part y(m). The log likelihood

where y;; is composed of observed part y i

contributed from subject i is
li = Zlo.gf(rij’wij; ) + Z log f (yij|uij, 25, &3 0)
j=1 j=1

+ 250 Log f (wislvig, zi; w, 8) + milog f (&is o)

mg

_ Z [Tij (w;jp) — log[l + exp(wijd))ﬂ

j=1
+ Z [[yij (wij Boru + 2ijBor= + &) — log[1 4 exp(uij Boru + 2ijBo1= + fz)]] Ly, . =0
j=1

+ [%’j(—uijﬂlou — 2ijBo1z — vé;) — log[l + eXp(—uzjﬁmu — 2ijB01z — Vfi)]] [ym,lzl

—%log(27r52) — #[uz‘j — (Y0 +Mviy + 72%')]2]

+m;(—3log2mo? — 25 2).

The E-step of the EM algorithm is to calculate the expected value of the complete

data log-likelihood given the observed data and current parameter estimates. The
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E-Step gives,

Qi(0,w,8,0,|00. w® 50 ¢® Oy = EL1y' r; v, 200, w,68,00, ¢0)]

— /// logf( rz|ylo,yl Ui, 20y i3 @)

‘Hng(yi 7yim)|ui72ia£i; )

+logf(ui|vi7 2y W, 6) + lng(&; U)]

(5.26)

f(y(m)7 U, €i|yz‘(0)7 i, Uy 245 Q(t)’ w(t)v 5(t)7 U(t)a ¢(t))

(2

dy™ du,;dé;.

For each subject i, at the tth iteration, the kth (k = 1,2,..., N) sample can be
generated for (yz(m)(k), ugk), §Z-(k)) by using the same method as the above scenario. For
a given N, Q;(0,w,d,0,¢|0®,w® 6O O ¢®) can be approximated by NL Z]kv; l;,
where [; can be calculated by replacing (y™, u;, &) with (y, (m)(k , 7, ,5 ) In the
M step, we maximize Y ., @; using maximum likelihood to obtain the updated es-
timates. We can say ¢, gt ,+D) - 50+D and ¢+ are the maximum likeli-
hood estimates of the parameters of model (5.5) with missing response and covariate

measurement error. Let ¢ = (00D gD (D) 5+ ¢(s+1)) - Then the variance-

covariance matrix of the estimates of the parameters can be obtained by (5.15).



Appendix

1. The estimating equations and the elements of the
observed Fisher information matrix for data under

the beta-binomial Model

Estimating equations for beta binomial data are as follows.

o K= mEt o,
a_ﬁj:; [Tz;quﬁ_ z; [ —mtro| 05 "
n mi—y;—1 r m;—1 r
Bt Y e S

The elements of the observed information matrix for beta binomial data can be

obtained from the elements of the second derivative matrix for beta binomial data

which are given blow.

87?1- 87Ti
7.

921 n [yi—1 1 mi—y;—1 1
0B;Bs -2 [Z (mi + 76)° p (1—m+7r¢)°

i=1 Lr=0 r=0

yi—1 mi—y;—i 2
1 1 8 v
+ § - § )
—0 7Ti—|—7"(b —0 1 —7Ti+7’(b 6ﬁjﬁs
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07@-
285

82l n yi—1 r m;—y;—1 ,
= -y ——+
03,09 Z [ = (mi + ro)? TZ:(:] (1 —m +7r¢)°

agl n yi—1 7’2 mi—y;—1 2
o5 = Z[‘,Zm‘ > et S

i=1 r=0 =0

2. The Elements of the observed Fisher informa-
tion matrix for data under the zero-inflated over-
dispersion beta-binomial model

Define
By =12 (14 7¢), By = T[2 (1 +r¢ —m), Bs = S0 Ty, (1410 —

m), By = Y i e, (L 4+ 16 — m))), Bs = Y0 G [Ty, (1 + r¢), Bs =

m;—1 m;—1 m;—1 m;—1 m;—1 m;—1
220 2ukmopti LIrZo sy rpe(LH1d = m))s Br =3 052007 3 2o ko B L1 L o (1 F
2_1 N 7,_1 L_l B 1
T¢_Wi)7 B8 :Z;nzo J m[)k;é]kH:"n 0,r7£j,r7ék<1+r¢)7 Al :’7—}_3_?7 A2 = B_l_B?”
_ — - —2B5(B4B1—B2B B1(BgB1—B2B
ABZ%%BEZA:%’AE):%,A@: (B1B1 253)1;‘(81 2Bs)

Then the elements of the observed Fisher information matrix for ZIBB model can be

obtained from the elements of the second derivative matrix for ZIBB model which

AN\? A,
—\ =) +
A, A,

are written as

oL
aﬁjﬁs B

Yi— mi_yi_l

1
Z Z (1—7Ti+7”¢)2

= (mi + rgb r=0

Liy—0y +

I{yi>0} }

o, o, A, e 1 e 1 9x;
1 _ LI N I
98,98, | A, w0 ;m—i—mﬁ z; I —mtro| @ (95,05,
92l { Ay Ay A5] w1, iyt r
=9 |- + =2 | Iyimoy + —+ —
s = et [ Y
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0l; — _é] %
op0y | AT 0py
92, A\ Ag
0?2 = T (A_l) + A_ Tty=oy
y;—1 —yi—1 m;—1
* _Tz:(m—i—r¢ ; 1—7@—1—7“(15) +Z(1
9%l; B _é 7
8¢a’y - A% {yi=0}>
9%l; B 1 B 1 ;
0 (Ta)? AT
T o; 0%,
where — = z;m(1—m;), — = x;sm;(1—1m;), and ———
op, ~ “umll=m). g5 = uml=m). and maag

= .CE”.CEZS’ZTl(l—WJ(l—QWZ)

3. Expressions for the elements of H; and H; from

estimates wAl and ¢A2

Under MNAR the observed information H; has the form

H = —Q" (¢, ™, al?) =

which shows that 1& and & are independent and we only need the first entry — Q7 (¢[¢

in the diagonal matrix to obtain the variance-covariance matrix of ;.

Now, it can be seen that

Z awaw' b

QY ([

where

(s) f(ym,i|xi;

—Q(W[W®) 0

0 — Q5 (alal))

1=k+1 Ym, i=0

V) F(ri]ws, Ymis )

74/1'

ym,iZO

2 S Wmilzs ¥

(S))f(ﬁ’l’i, Ym,i 04(8))

Wyoufﬁm% + Z Z lyz awaw/ z(¢|ym“$z,¢1)

(S))
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and 1;(]y;, 2;; 1) are from the ZIBB model (3.4).

The weights are calculated from model (3.3) and model (3.8). Therefore, the
elements of Q”(¢, a|y®), a(®)) regarding to 1 can be obtained by the expressions for
the elements of the second derivative matrix for ZIBB model.

Under MAR, after deleting the model for the missing data mechanism,

" s 0
Q 1/1|"¢( = Z 81/181/1 Q/J\Z/ou >xsz2 Z Z zyl 8¢8¢ (wlym z,%?/fz)

i=k+1 ym,;=0

where

WS = f(ymilzs, ).

The weights are calculated from the ZIBB model (3.3) and the log-likelihood function
1i(¥|ys, 25;01) is also from the ZIBB model (3.4). Then, the elements of Q" (1)|¢)*))
can be also obtained by the expressions for the elements of the second derivative

matrix for the ZIBB model.

4. Gibbs sampling

Gibbs sampling is the way to convert a multivariate sampling problem into a uni-
variate sampling problem. The point of Gibbs sampling is that given a multivariate
distribution it is simpler to sample from a conditional distribution. Suppose we want

to obtain
xr = (xlf" 7xp) NQ(:Ela'" 71"]3)'

Denote the ith sample by X = (xgi), e ,x,(f)). We begin with some arbitrary set

of initial values ((z\”,- - - ,xl(,o)), at interaction ¢(¢ > 0). We sample the components in
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order, starting from the first component and proceeding with the following sampling

steps to get (x&”l), e ,:Ufﬁl)).
i~y af)
$gi+1) ~ s ($2|$§i+1)’ xéz) . ,:L’;E)Z))
3 i+1 i+1
:L‘;—H) ~ C]p(ftp|l’§ )7 e 7x§)—1))'

Repeat the above step k times. Geman and Geman (1987) proved the Gibbs con-
vergence theorem that (xgi), e ,x,(f)) converges to (zy,---,x,) ~ q(z1,---,x,) as
1 — 00. Because samples from the early iterations are not from the target posterior,
it is common to discard these samples. The discarded iterations are often referred to

as the “burn-in” period.
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