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Abstract

Discrete, binary data with over-dispersion and zero-inflation can arise in toxicology

and other similar fields. In studies where the litter is an experimental unit, there is a

“litter effect” which means that the litter mates respond more alike than animals from

other litters. In experimental data, foetuses in the same litter have similar responses

to the treatment. The probability of “success” may not remain constant throughout

the litters. In regression analysis of such data another problem that may arise in

practice is that some responses may be missing or/and some covariates may have

measurement error. In this dissertation we develop an estimation procedure for the

parameters of a zero-inflated over-dispersed binomial model in the presence of miss-

ing responses without/with considering covariate measurement errors. A weighted

expectation maximization algorithm is used for the maximum likelihood (ML) esti-

mation of the parameters involved. Extensive simulations are conducted to study the

properties of the estimates in terms of average estimates (AE), relative bias (RB),

variance (VAR), mean squared error (MSE) and coverage probability (CP) of esti-

mates. Simulations show much superior properties of the estimates obtained using

the weighted expectation maximization algorithm. Some illustrative examples and a

discussion are given.
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Chapter 1

Introduction

Discrete data in the form of proportions can arise in toxicology (Kleinman (1973);

Weil (1970)) and other similar fields (Crowder (1978); Donovan et al. (1994); Gibson

and Austin (1996); Otake and Prentice (1984)). In studies where the litter is an

experimental unit, there is a “litter effect” which means that the littermates respond

more alike than animals from other litters. In experimental data, foetuses in the same

litter have similar responses to the treatment. The probability of “success” may not

remain constant throughout the litters. This effect of litter is known as “heritability of

a dichotomous trait” (Elston (1977)) or intra-litter or intra-class correlation. A num-

ber of parametric (Skellam (1948); Haseman and Kupper (1979); Altham (1978)) and

semi-parametric models (McCullagh (1983); Nelder and Pregibon (1987); Godambe

and Thompson (1989)) have been used to analyse this kind of data in the form of

proportions. A popular parametric model is the two parameter beta-binomial model,

proposed originally by Williams (1975) and later applied by Paul (1982) assuming that

the binomial parameter varies between litters. A second problem for discrete data in

the form of proportions is that the zero count occurs more often than can be accom-

1



1.0 Introduction 2

modated by a binomial model or a beta-binomial model (Johnson et al. (2005)), So,

a zero-inflated beta-binomial model might be more appropriate for these data (Deng

and Paul (2005)).

A further complication that can arise in practical experimental data analytic situ-

ations is that some of the binomial or beta-binomial responses might be missing. A lot

of work has been done for the estimation of the parameters for normally distributed

data (Little and Rubin (2014); Rubin (1977)) and data that follow generalized lin-

ear models with missing data (Ibrahim et al. (2005)). Ibrahim (1990) proposes the

method of weights for parameter estimation in incomplete data in a generalized lin-

ear model where the missing data has a range. Ibrahim and Lipsitz (1996) use the

same method to estimate regression coefficients in a binomial regression model when

the nonresponse is nonignorable. Troxel et al. (1997) consider a weighted estimating

equation to analyse data with nonignorable missing response. Wang (1999) suggests

modified estimating functions to analyse the binary outcome potentially observed

at successive time points. Ibrahim et al. (2001) discuss the maximum likelihood

estimation method in a generalized linear mixed model when the nonresponse is non-

ignorable. Stubbendick and Ibrahim (2003) use the maximum likelihood method for

nonignorable missing response and covariates in a random effects model. More re-

cently, Mian and Paul (2016) develop procedures for the estimation of the parameters

of a zero-inflated negative binomial model with missing values.

Additional complications can arise in practical experimental data analytic situa-

tions when one or more of the covariates is measured with error. Measurement error

can happen when there is a difference between a measured value of a quantity and its

true value. When covariates are measured with errors, the usual regression estimates

by using the observed value of covariates, are biased (Stefanski and Carroll (1985)).
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Covariate measurement error has been considered to be an important subject in

many application areas. For example, in the field of medicine and epidemiology, indi-

vidual exposure to certain radiation or blood pressure of participants are recorded and

the influence on disease is investigated. In the mutagenic study (Lüning et al. (1966)),

all individuals in a small group are given the same dose. However, because of the size

of the animals the actual dose will vary from animal to animal. In the Framingham

study (Kannel et al. (1986)), it is impossible to measure long-term systolic blood

pressure. As a substitute, the blood pressure observed during a clinic visit is avail-

able. The reason that the long-term blood pressure and single-visit blood pressure

differ is that blood pressure has major daily, as well as seasonal, variation (Carroll

et al. (2006)).

Many studies about measurement error models have focused primarily on lin-

ear models. Adcock (1878) deals with estimation in models of univariate regression

including measurement errors in variables. Gleser (1981) considers a multivariate

regression model with measurement error in variables. Interest in generalized non-

linear models is also popular. Prentice (1982) proposes an estimation method in

Cox’s failure time regression model when the regression vector is subject to mea-

surement error. Wolter and Fuller (1982) present an estimation procedure for the

coefficients of a nonlinear functional relation, where observations are subject to mea-

surement error. Carroll et al. (1984) consider binary regression models when some

of the predictors are measured with error. Stefanski and Carroll (1985) introduce

a bias-adjusted estimator and two estimators appropriate for normally distributed

measurement errors for a logistic regression model when covariates are subject to

measurement error. Schafer (1987) develops the EM algorithm to obtain estimators

of regression coefficients for generalized linear models with canonical link when nor-
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mally distributed covariates are masked by normally distributed measurement errors.

Burr (1988) considers the Berkson case of the errors in variables in a binary regression

model. Generalized linear models with covariate measurement error can be estimated

by maximum likelihood using gllamm, a program that fits a large class of multilevel

latent variable models (Rabe-Hesketh et al. (2004)).

The purpose of this dissertation is to develop inference procedures for the param-

eters of a zero-inflated beta-binomial regression model where information on some

of the covariates are recorded with errors and/or some observations of the binomial

responses may be missing. A weighted expectation maximization algorithm (Demp-

ster et al. (1977)) is developed for the maximum likelihood (ML) estimation of the

parameters involved.

1.1 Organization of the dissertation

In Chapter 2, we review some literature related to zero inflated over dispersed binary

data, missing values issues and the measurement error process. In Chapter 3, we

develop an estimation procedure for the parameters of a zero-inflated beta-binomial

regression model in presence of missing values in the response variable. Results of

a simulation study with an illustrative example and discussion leading to some con-

clusions is given. Chapter 4 shows the estimation procedure for the parameters of

a zero-inflated beta-binomial regression model in presence of measurement error in

covariates without/with missing responses. Results of a simulation study with an

illustrative example and a discussion leading to some conclusions is given.

A plan for future study is given in Chapter 5. There is repetition in the chapters

because the chapters are intended for publication.



Chapter 2

Preliminaries and Literature

Review

2.1 Zero-inflated beta-binomial distribution

2.1.1 Binomial data model and beta-binomial Distribution

Suppose Z be a m-dimensional vector of Bernoulli-distributed outcomes, with success

probability p. Assuming the elements in Z to be independent given p, then Y =∑m
j=1 Zj, conditionally on p has a binomial distribution with parameters n and success

probability p. We have

P (Y = y|p) =

(
m

y

)
py(1− p)m−y y = 0, · · · ,m.

The beta-binomial model (Skellam (1948); Kleinman (1973)) assumes the param-

eter p(0 < p < 1) to be sampled from a beta distribution with parameters α and β,

i.e., the density of p is

f(p|α, β) =
pα−1(1− p)β−1

B(α, β)
,

5
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where B(α, β) denotes the beta function. The marginal density of Y is then given by

f(y|α, β) =

∫ (
m

y

)
py(1− p)m−yf(p|α, β)dp

=

(
m

y

)
B(y + α,m− y + β)

B(α, β)

=

(
m

y

)
Γ(y + α)Γ(m+ β − y)Γ(α + β)

Γ(m+ α + β)Γ(α)Γ(β)
.

(2.1)

This is called the beta-binomial distribution with parameters α and β. It can be

easily shown that

E(Y ) = m

(
α

α + β

)
V ar(Y ) = m

(
α

α + β

)(
m+ α + β

1 + α + β

)
.

If π = α
α+β

and φ = 1
α+β

, then

E(Y ) = mπ V ar(Y ) = mπ(1− π)

[
1 +

(m− 1)φ

1 + φ

]
= mπ(1− π)σ2,

where σ2 = 1 + (m−1)φ
1+φ

. Because α > 0, β > 0 and φ ≥ 0, we have σ2 ≥ 1 and

V ar(Y ) ≥ mπ(1 − π). When φ → 0, the beta-binomial distribution BB(π, φ) tends

to the binomial(π) distribution.

2.1.2 Zero-inflated beta-binomial model

When we use the beta-binomial model to analyze over dispersion discrete data, some-

times more zeros are observed than expected. These data can be analyzed as a zero

inflated beta-binomial model with probability density function given by

f(y|xi;α, β, ω) =

 ω + (1− ω)f(0|α, β) if y = 0,

(1− ω)f(y|α, β) if y > 0,

where ω is zero-inflated parameter and f(y|α, β) is defined by (2.1).
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if π = α
α+β

and φ = 1
α+β

, then

f(y|x; π, φ, ω) =



ω + (1− ω)

m−1∏
r=0

(1 + rφ− π)

m−1∏
r=0

(1 + rφ)

if y = 0,

(1− ω)

(
m

y

)y−1∏
r=0

(π + rφ)

m−y−1∏
r=0

(1− π + rφ)

m−1∏
r=0

(1 + rφ)

if y > 0,

with E(Y ) = (1 − ω)mπ, and V ar(Y ) = (1 − ω)mπ(1 − π)1+mφ
1+φ

+ (1 − ω)ωm2π2,

where ω is the zero-inflation parameter. We denote this distribution by ZIBB(π, φ, ω)

distribution. Inference regarding the parameters of the beta-binomial model and that

of the zero-inflated beta-binomial model has been developed earlier (Dean (1992);

Deng and Paul (2000)).

2.2 Missing data issue

Missing data make the parameter estimation and inference much more complicated

because almost all standard statistical methods are developed based on complete

information for all the variables included in the analysis. Absent observations on some

variables may make the parameter estimates biased by using the observed information

only.

2.2.1 Missing data mechanism

The missing data mechanism is characterized by the relationship between the miss-

ingness and the values of the the variables in the data set. Three kinds of missing

data mechanism can be identified (Rubin (1977)), which is very useful in practice.
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(1). Missing completely at random (MCAR): Suppose variable Y has some missing

values. We will say that these values are MCAR if the probability of missing data on

Y is unrelated to the value of Y itself or to the values of any other variable in the data

set. For example, We want to assess the relationship between the value of people’s

houses and income . The MCAR assumption would be satisfied if people who did not

report their income were unrelated to their house value and income.

(2). Missing at random (MAR)-a weaker assumption than MCAR: The probabil-

ity of missing data on Y does not depend on the value of Y after controlling for other

variables in the analysis (say X). Formally: P (Y missing|Y,X) = P (Y missing|X)

(Allison (2001)). For example: The MAR assumption would be satisfied if the proba-

bility of missing data on income depends on a house value, but is unrelated to income

given the house value.

(3). Missing not at random (MNAR): Missing values do depend on the value

of unobserved data, perhaps in addition to the observed data, For example: the

probability of missing data on income varies according to the house value and income.

The MCAR and MAR mechanisms are ignorable, which means the inference can

be done by analyzing the observed data only and without addressing the model of

missing data mechanism. In that sense, MNAR is nonignorable. In the nonignorable

case, methods that do not model the missing data mechanism are subject to bias.

Thus, the missing data mechanism must be modelled to get good estimates of the

parameters of interest.
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2.2.2 Methods for handling missing data

2.2.2.1 Conventional methods

(1). Complete case analysis: If a case has missing data for one of the variables, then

simply delete that case from the analysis. It is usually the default in statistical pack-

ages (Briggs et al. (2003)). Advantages: It can be easily used and is most popular

with any kind of statistical analysis and no special computational methods are re-

quired. Limitations: It can exclude a large fraction of the original sample. It works

well when the data are missing completely at random (MCAR), which rarely happens

in reality (Nakai and Ke (2011)).

(2). Imputation methods: Substitute each missing value for a reasonable guess, and

then carry out the analysis as if there were no missing values. The main imputation

techniques are:

(a). Marginal mean imputation: Compute the mean of X using the non-missing

values and use it to impute missing values of X.

(b). Conditional mean imputation: Suppose we are estimating a regression model

with multiple independent variables. One of them, X, has missing values. We select

those cases with complete information and regress X on all the other independent

variables. Then, we use the estimated equation to predict X for those cases it is

missing.

(c). Hot deck imputation: Replace values from “similar” responding units.

Limitations of imputation techniques in general: They lead to an underestimation

of standard errors and, thus, overestimation of test statistics. The main reason is that

the imputed values are completely determined by a model applied to the observed

data, in other words, they contain no error (Allison (2001)).
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2.2.2.2 Advanced methods

(1). Multiple Imputation (MI): The imputed values are draws from a distribution,

so they contain some variation. It replaces each missing item with two or more

acceptable values, representing a distribution of possibilities (Allison (2001)). The

idea of multiple imputation for missing data was first proposed by Rubin (1977).

MI is a simulation-based procedure. Its purpose is not to replace the individual

missing values as close as possible to the true ones, but to handle missing data to

achieve valid statistical inference (Schafer (1997)).

Limitation of MI method: The condition for the multiple imputation for missing

data is that the data should be missing at random (MAR).

(2). The Expectation-maximization (EM) algorithm: It is based on an expectation

step and a maximization step, which are repeated several times until the change of

estimated parameter reaches a preset threshold. Maximum likelihood estimates are

obtained.

The EM algorithm is a general iterative method of maximum likelihood estimation

for incomplete data. The essential idea behind the EM algorithm is to calculate the

maximum likelihood estimates for the incomplete data problem by using the complete

data likelihood instead of the observed likelihood because the observed likelihood

might be complicated or numerically infeasible to maximise (Dempster et al. (1977)).

Let yobs be the observed data, ymis be the missing data, R be the missing data

indicator, η be the parameters which include the main model parameters and missing

data model parameters, and L(η) be the complete likelihood of the data. In the E

step, at (t + 1)st interaction we compute Q(η|η(t)) = E(L(η|yobs, R; η(t)). In the M

step, we obtain η(t+1) = maxQ(η|η(t)).
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Note that the E step does not always have a closed form. For discrete missing

data, we usually apply EM by weighting as following.

Q(η|η(t)) = E(L(η|yobs, R; η(t))

=
∑

y∈Sy lnf(y,R, η)× p(ymis = y|yobs, R; η(t)),
(2.2)

where Sy is the support of y and p(ymis = y|yobs, R; η(t)) is called weight. We can

denote it as w(t). Then (2.2) can be written as

Q(η|η(t)) =
∑

y∈Sy lnf(y,R, η)× w(t).

If the missing data come from a continuous variable, we can employ Monte Carlo

(MC) method.

2.2.3 Monte Carlo methods

Monte Carlo methods solve the integration problem by sampling and averages. They

are a form of stochastic integration used to approximate expectations by invoking the

law of large numbers. Suppose we have x ∼ f(x) and we want to compute the mean

of g(x). We can write

µ = E(g(x)) =

∫
g(x)f(x)dx.

Then the estimate of µ is

µ̂mc =
1

m

m∑
i=1

g(x∗i ),

where x∗1, · · · , x∗i are generated from f(x) and µ̂mc is a Monte Carlo estimate of µ. By

the Law of Large Numbers, we have µ̂mc converges to µ with probability 1 as m→∞.

With this property, if we have an identical and independent sample x∗1, · · · , x∗i , we

can approximate the expectation of any function with respect to x. Therefore, the

integration problem becomes how to get a good sample.
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Usually the target distribution f(x) is very complicated and hard to directly

sample. We introduce two kinds of common sampling techniques here.

• Importance sampling: We sample from a simpler proposal distribution h(x)

instead of f(x) and define the weight function as w(x) = f(x)
h(x)

. Then we have

µ = E(g(x)) =

∫
g(x)f(x)dx =

∫
g(x)w(x)h(x)dx

and

µ̂mc =
1

m

m∑
i=1

g(x∗i )w(x∗i )

• Rejection sampling:

Suppose we want to sample from the density f(x) as shown above. Under most

circumstances, it is difficult to sample directly from f(x) if f(x) has a compli-

cated form, for example, multiplication of a few density functions. Rejection

sampling is a general method for sampling points independently from a density

f(x). In rejection sampling, we can sample in this way:

1. Sample xi from h(x);

2. Sample u from the uniform distribution U(0,1);
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3. Accept the sample xi if it satisfied that u < f(xi)/(Mh(xi)); otherwise reject

it and return to step 1;

4. Repeat the draws xi from h(x) until a value is accepted.

M is a constant, finite bound on the likelihood ratio f(x)/h(x), satisfying 1 <

M < ∞. In other words, M must satisfy f(x) 6 Mh(x) for all values of x.

The main problem with this process is that many samples will get rejected in

high-dimensional spaces.

2.2.4 Modelling with missing data

There exist three ways to factor the joint distribution of the complete data and

missingness indicators: outcome dependent factorization, pattern-dependent factor-

ization, and parameter-dependent factorization.

For the ith observation, suppose θ is the parameter for main model f(yi|xi), while

α is the parameter for missingness indicator model f(ri|yi, xi). The three correspond-

ing models available for incomplete data analysis are:

• Selection Model, which factors the joint distribution into a marginal distribution

for yi and a conditional distribution of ri given yi, i.e.,

f(yi, ri | xi, θ, α) = f(yi | xi, θ)f(ri | yi, xi, α),

where f(ri | yi, xi, α) can be interpreted as self-selection of the ith subject into

a specific missingness group.

• Pattern-Mixture Model, which is a pattern-dependent model, and assumes that

distribution of repeated measures varies with the missingness patterns and that
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the joint distribution is factored as

f(yi, ri | xi, θ, α) = f(yi | ri, xi, θ)f(ri | xi, α).

• Shared-Parameter Model. We assume that yi and ri are conditionally indepen-

dent of each other, given a group of parameters ξi,

f(yi, ri | xi, θ, α) =

∫
f(yi | ξi, xi, θ)f(ri | ξi, xi, α)f(ξi)d(ξi).

Shared parameters ξi affect both yi and ri, thus can be either observable vari-

ables (e.g., gender) or latent variables (e.g., random-effects or latent scores).

2.3 Measurement error process

Measurement error in covariates has three effects (Carroll et al. (2006)):

• It causes bias in parameter estimation for statistical models.

• It leads to a loss of power, sometimes profound, for detecting interesting rela-

tionship among variables.

• It masks the features of the data, making graphical model analysis difficult.

In this study we will focus on the first problem. We partition the p dimension vector

of covariates xi for the ith observation as (ui, zi), where the vector ui is observed only

indirectly through the measurement wi and zi is observed without error. Note that

ui and wi are q dimensional while zi is p− q dimensional. The main characteristic of

a measurement error issue is that we can observe a variable wi which is related to ui

and the variable ui cannot be observed. The parameters in the model relating yi and

(zi, xi) cannot be estimated directly by fitting yi to (zi, wi). The goal of parameter



2.3 Measurement error process 15

estimation with covariate measurement error is to obtain nearly unbiased estimates

of parameters. Substituting wi for xi, but making no adjustments in the usual fitting

methods for this substitution will lead to estimates that are biased, sometimes very

seriously.

2.3.1 Function and structural modelling

(1). Functional modelling: When the unobserved true values are unknown constants

(fixed), in which no distribution can be assumed, then the measurement error model

is said to be in its functional form.

(2). Structural modelling: When the unobserved true values are identically and

independently distributed random variables with mean µ and variance σ2, the mea-

surement error model is said to be in the structural form.

In this study, we focus on structural measurement error modeling.

2.3.2 Measurement error models

Following Carroll et al. (2006), the measurement error model can be classified into

two general types which are used to relate wi to ui:

1. Error model, which includes the classical measurement error model.

wi = τ0 + τuui + τzzi + ei.

The error term ei is independent of ui, zi and the responses and it is often assumed that

ei has mean zero and it follows a known distribution f(0,Σ), where Σ is the covariance

matrix of ei. The intercept τ0 is a vector, which can be written as τ0 = (τ01, · · · τ0q)
T .

The coefficients τu = (τu1, · · · τuq)T , τz = (τz1, · · · τzq)T , where τuj(j = 1, · · · , q) and
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τzk(k = 1, · · · , p− q) are q × 1 and (p− q)× 1 vectors respectively. If we set τ0 = 0,

τz = 0, and τu = Iq, where Iq is the q × q dimensional identity matrix, we have the

classical measurement error model.

2. Regression calibration model, which includes the Berkson error model.

ui = τ0 + τwwi + τzzi + ei,

where, τw = (τw1, · · · τwq)T . If we set τ0 = 0, τz = 0, and τw = Iq, we have the Berkson

measurement error model.

2.3.3 Differential and nondifferential Error

Nondifferential measurement error occurs when W has no information about Y given

U and Z, which means the measurement error is nondifferential if the distribution

of Y given (U,Z,W ) depends only on (U,Z), in the other words, Y is condition-

ally independent of W given the true covariates. For example, we are interested in

the long term systolic blood pressure, but we can only measure the blood pressure

on a single day. In this situation, a single day’s blood pressure value includes no

information given by true long term blood pressure. Therefore, that measurement

error is nondifferential. Measurement error is differential otherwise. It may happen

in case-control studies. For example, in a nutrition study, the outcome is cancer and

the true predictor is long term diet before diagnosis, but the reported diet is obtained

only after diagnosis. People who develops breast cancer may change their diet, so the

reported diet after diagnosis is clearly still related to the cancer outcome.

Under nondifferential measurement error, one can typically estimate parameters

in models for responses given the true covariates even though the true covariates are

not observed. However, with differential measurement error, one must observe the
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true covariate on some observations (Carroll et al. (2006)). In this study, we focus on

nondifferential measurement error models.

2.4 Measurement error models and missing data

The typical explanation for the missing data problem (Little and Rubin (2014)) is

that values of some of the variables may not be observed for all observations. For

example, a variable may be observed for 75% of the study, but unobserved for the

other 25%. Most of the techniques for analyzing missing data (multiple imputation,

data augmentation, etc.) have been based on likelihood (Bayesian) methods.

The classical measurement error problem discussed above is one in which one

set of variables, which we call U , is never observed, i.e., always missing. As such,

the classical measurement error issue can be treated as a special kind of missing

data problem, but with supplemental information in the form of surrogate, which

we call W , and possibly a second measure, which we call T (Carroll et al. (2006)) .

When we consider the measurement error problem, we are concerned with how the

supplementary information is related to the unobserved covariate.

Because of the prescribed relationship between the two fields, and because miss-

ing data analysis has become increasingly parametric, it is reasonable to consider

likelihood analysis of measurement error models (Carroll et al. (2006)). Likelihood

methods require full statistical models for the distribution of U , sometime condi-

tional on the observed covariates. Because these models describe the structure of

U , they are called structural models. There are lots of concerns about the robust-

ness of estimation and inference based on structural models for unobserved variables.

Fuller (2009) discusses this issue briefly in the classical nonlinear regression problem,
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and basically concludes that the results of structural modeling “may depend heavily

on the form of the U distribution”. In probit regression, Carroll et al. (1984) report

that if one assumes that U is normally distributed, and it really follows a chi-squared

distribution with one degree of freedom, then the effect on the likelihood estimate

is markedly negative. Essentially all research workers in the measurement error field

come to a common conclusion: likelihood methods can be considerably valuable, but

the possible nonrobustness of inference due to model misspecification is a difficult

problem.

The issue of model robustness is strictly limited to measurement error modelling.

It has led to the rise of variety of semiparametric and nonparametric techniques. From

this general point of view, functional modelling may be thought of as a group of semi-

parametric techniques. Functional modelling uses parametric models for the response,

but makes no assumptions about the distribution of the unobserved covariate.

2.4.1 Maximum likelihood methods for measurement error

A likelihood analysis starts with determination of the joint distribution of Y , W given

Z, as these are the observed variables. We first consider a simple problem where in

Y , W and U are discrete random variables and there are no other covariates of Z.

We know that

P (Y = y,W = w) =
∑
u

P (Y = y,W = w,U = u)

=
∑
u

P (Y = y|W = w,U = u)P (W = w,U = u).

When W is a surrogate of U under the nondifferential measurement error assump-

tion, it provides no additional information about Y when U is known, which means
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Y is conditionally independent of W given the true covariate U , so that

P (Y = y,W = w) =
∑
u

P (Y = y|U = u)P (W = w,U = u). (2.3)

Therefore, we must specify a model for the joint distribution of W and U .

2.4.2 Error models

For additive and multiplicative error models, it is natural to specify the joint distri-

bution of W and U in terms of the conditional distribution of W given U . Using the

result from elementary probability that

P (W = w,U = u) = P (W = w|U = u)P (U = u). (2.4)

Then (2.3) becomes

P (Y = y,W = w) =
∑
u

P (Y = y|U = u)P (W = w|U = u)P (U = u). (2.5)

Equation (2.5) has three components: (a) the main model of primary interest;

(b) the error model for W given the true covariates U ; (c) the distribution of the

true covariates. Both (a) and (b) are expected. Almost all the methods for the

measurement error process require a main model and an error model. However (c) is

unexpected, in fact a bit disconcerting, because it requires a model for the distribution

of the unobserved U . It is (c) that results in almost all the practical problems of

implementation with maximum likelihood methods.

2.4.3 Berkson model

In the Berkson model, a univariate U is not observed but it is related to a univariateW

by U = W + e, perhaps after a transformation. Usually, e is taken to be independent
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of W and normally distributed with mean zero and variance σ2, but more complex

models are possible. When the Berkson model holds, we write

P (W = w,U = u) = P (U = u|W = w)P (W = w). (2.6)

Then (2.3) becomes

P (Y = y,W = w) =
∑
u

P (Y = y|U = u)P (U = u|W = w)P (W = w). (2.7)

In equation (2.7), the third component is the distribution of W, and includes no

information about the critical parameter of interest. Thus, we will divide both sides

by P (W = w) to get likelihoods conditional on W . In the general problem, we must

specify the conditional density or mass function of U given W , which we denote by

f(u|w, σ). The likelihood function then becomes

f(y|w) =

∫
f(y|u)f(u|w)du. (2.8)

In practice, summation or integral with respect to the distribution of U does not

always yield an analytically closed form. Instead, we also can employ the Monte

Carlo EM algorithm to solve this issue.



Chapter 3

Estimation for Zero-Inflated

Beta-Binomial Regression Model

with Missing Response Data

3.1 Introduction

The purpose of this chapter is to develop an estimation procedure for the parameters

of the zero-inflated beta-binomial model with missing values. We consider all three

missing data mechanisms. A weighted expectation maximization algorithm (Demp-

ster et al. (1977)) is developed for the maximum likelihood (ML) estimation of the

parameters involved. Extensive simulations are conducted to study the properties of

the estimates using different measures, such as, average estimates (AE), relative bias

(RB), variance (VAR), mean squared error (MSE) and coverage probability (CP) of

estimates.

The zero-inflated beta-binomial model is introduced in Section 2. In this section

21



3.2 The zero-inflated beta-binomial model and estimation procedure 22

we also develop a procedure for the estimation of the parameters. Results of an

extensive simulation study are reported in Section 3. Some illustrative examples are

given in Section 4 and a discussion leading to some conclusions is given in Section 5.

3.2 The zero-inflated beta-binomial model and es-

timation procedure

3.2.1 The zero-inflated beta-binomial model

For a particular litter i, given mi, the number of live foetuses in the litter, yi, the

number of foetuses affected, is a random variable having a beta-binomial distribution

with parameter α and β, i.e,

f(yi;α, β) =

(
mi

yi

)
B(α + yi,mi + β − yi)/B(α, β). (3.1)

If π = α
α+β

, and φ = 1
α+β

, we have

f(yi;α, β) =

(
mi

yi

)yi−1∏
r=0

(π + rφ)

mi−yi−1∏
r=0

(1− π + rφ)

mi−1∏
r=0

(1 + rφ)

, (3.2)

with E(Yi) = miπ and V ar(Yi) = miπ(1 − π)
[
1 + (mi−1)φ

1+φ

]
. We denote the beta-

binomial distribution as BB(π, φ). As φ→ 0 the BB(π, φ) tends to the binomial (π)

distribution and for φ = 0 we have V ar(Yi) = miπ(1− π) and the BB(π, φ) becomes

the binomial (π) distribution.

The zero-inflated beta binomial regression model (Deng and Paul (2005)) can be
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written as

f(yi|xi; π, φ, ω) =



ω + (1− ω)

mi−1∏
r=0

(1 + rφ− π)

mi−1∏
r=0

(1 + rφ)

if yi = 0,

(1− ω)

(
mi

yi

)yi−1∏
r=0

(π + rφ)

mi−yi−1∏
r=0

(1− π + rφ)

mi−1∏
r=0

(1 + rφ)

if yi > 0,

(3.3)

with E(Yi) = (1−ω)miπ, and V ar(Yi) = (1−ω)miπ(1−π)1+miφ
1+φ

+(1−ω)ωm2
iπ

2, where

ω is the zero-inflation parameter. We denote this distribution by ZIBB(π, φ, ω).

Inference regarding the parameters of the beta-binomial model and that of the zero-

inflated beta-binomial model has been developed earlier (Dean (1992); Deng and

Paul (2000)).

3.2.2 The estimation procedure

Suppose data from the ZIBB(π, φ, ω) model for the ith litter are (yi, xi), given the

number mi of litter size, i = 1, . . . , n, yi represents the response variable and xi rep-

resents a p×1 vector of covariates with the regression parameter β = (β0, β1, . . . , βp),

such that πi = exp(
∑p

j=0Xijβj)/(1 + exp(
∑p

j=0Xijβj)). Here β0 is the intercept

parameter in which case Xi0 = 1 for all i.
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3.2.2.1 Estimation of ψ with no missing data

For complete data the log likelihood, apart from a constant, using the probability

mass function given in equation (3.3), can be written as

l(βj, φ, γ|yi) =
n∑
i=1

[
− log(1 + γ) + log

[
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

]
I{yi=0}

+
[ yi−1∑
r=0

log(πi + rφ) +

mi−yi−1∑
r=0

log(1− πi + rφ)

−
mi−1∑
r=0

log(1 + rφ)
]
I{yi>0}

]
,

(3.4)

where γ = ω/(1−ω). Note, γ transforms the space of ω from (0, 1) onto (0,∞) which

makes optimization of l easier (Deng and Paul (2005)). Let ψ = (β, φ, γ). Then the

maximum likelihood estimates of the parameters ψ can be obtained by simultaneously

solving the following estimating equations

∂l

∂βj
=

n∑
i=1

[[ (
−

mi−1∑
j=0

mi−1∏
r=0,r 6=j

(1 + rφ− πi)
)

mi−1∏
r=0

(1 + rφ)

(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)
]
I{yi=0}

+

[ yi−1∑
r=0

1

πi + rφ
−

mi−yi−1∑
r=0

1

1− πi + rφ

]
I{yi>0}

]
∂πi
∂βj

= 0,
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∂l

∂φ
=

n∑
i=1

[[ (mi−1∑
j=0

j

mi−1∏
r=0,r 6=j

(1 + rφ− πi)
)mi−1∏

r=0

(1 + rφ)

(mi−1∏
r=0

(1 + rφ)

)2(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)

−

(mi−1∑
j=0

j

mi−1∏
r=0,r 6=j

(1 + rφ)

)mi−1∏
r=0

(1 + rφ− πi)

(mi−1∏
r=0

(1 + rφ)

)2(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)
]
I{yi=0}

+

[ yi−1∑
r=0

r

πi + rφ
+

mi−yi−1∑
r=0

r

1− πi + rφ
−

mi−1∑
r=0

r

1 + rφ

]
I{yi>0}

]
= 0

and

∂l

∂γ
=

n∑
i=1

[
− (1 + γ)−1 +

(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)−1

I{yi=0}

]
= 0,

where
∂πi
∂βj

= Xij exp(

p∑
j=0

Xijβj)/(1 + exp(

p∑
j=0

Xijβj))
2. Denote these estimates by ψ̂.

The observed information matrix of ψ̂ is given by

H0 = −
n∑
i=1

∂2

∂ψ∂ψ′
li(ψ; yi, xi|ψ̂). (3.5)

The elements of this matrix are given in appendix 2. Of course, if it is convenient,

these parameters can also be estimated by directly maximizing the log-likelihood

function (3.4). However, in practice, through tests (Deng and Paul (2005)), if it

is found the zero-inflation parameter is insignificant, then data analysis should be

based on the beta-binomial model (3.2). The parameters βj and φ can be estimated
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by solving the estimating equations given in appendix 1. The elements of the observed

information matrix corresponding to the model are also given in this appendix.

3.2.2.2 Estimation of the parameters with missing response

Under MCAR, the missingness is unrelated to the data. We can use the complete case

(CC) analysis method which involves deletion of the cases that have missing values.

The main advantage of this method is that it is easy to implement since we can use

standard methods for complete data to compute the estimates. The disadvantage of

the method is that we only use the cases that have complete information which may

result in loss of efficiency of the estimates.

Note that in MAR missingness mechanisms are ignorable, which means that in-

ference can proceed by analyzing the observed data only and without addressing the

model for the missing data mechanism. As such MAR is a special case of MNAR for

analyzing missing data. So, we first develop methods for MNAR in what follows and

then obtain results for MAR by deleting the model for missing data mechanism.

As in Ibrahim et al. (2001) the complete data and missingness can be expressed

as

yi =

 yo,i if yi is observed,

ym,i if yi is missing.
(3.6)

and

ri =

 0 if yi is observed,

1 if yi is missing.
(3.7)

We suppose the observed response and missing response have the same distribution

ZIBB(π, φ, ω) and missing data indicator ri as follows

f(ri|yi, xi;α) = (pi)
ri(1− pi)1−ri , (3.8)
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where pi = P (ri = 1). To connect the distribution of ri to covariates, logistic regres-

sion is employed,

log
[ P (ri = 1)

1− P (ri = 1)

]
= ZT

i α, (3.9)

where ZT
i includes both missing data and observed data information, α is the vector

of parameters of the missing data process. Let Y be the vector of responses, X be the

covariate vector, Yo be the vector of observed responses, Ym be the vector of missing

responses, and R be the vector of missing data indicators. Then, the full data density

is given by

f(Y,R|X;ψ, α) = f(Y |X;ψ)f(R|Y,X;α) (3.10)

where ψ = (β, φ, γ), and therefore the observed data density function can be written

as

f(Yo, R|X;ψ, α) =
∑
Ym

f(Y |X;ψ)f(R|Y,X;α). (3.11)

Thus, the observed data log-likehood can be written as

l(ψ, α|Yo, R,X) = log
∑
Ym

f(Y |X;ψ)f(R|Y,X;α). (3.12)

However, in practice, summation with respect to the distribution of Ym is not always

straight forward. An easier method is to use the EM algorithm of Dempster et

al. (1977) which is developed below.

First, we write down the complete data log likelihood as

l(β, φ, γ, α|Y,R) =
n∑
i=1

[
− log(1 + γ) + log[γ + f(0;πi, φ, ω)]I{yi=0}

+ log f(yi; πi, φ, ω)I{yi>0}

]
+

n∑
i=1

[
riZ

T
i α− log(1 + eZ

T
i α)
]
.

(3.13)
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The E-step provides the conditional expectation of the complete data log-likelihood

with respect to the distribution of Ym given the observed data and the current esti-

mates of the parameters. Let s be an arbitrary number of iterations during maxi-

mization of the log-likelihood. Then given the observed data ( Yo, X, R) and current

estimates of the parameters ψ(s) and α(s) , the conditional expectation of the complete

data log-likelihood l(β, φ, γ, α) for the ith missing response in the (s + 1)th iteration

can be written as

Qi(ψ, α|ψ(s), α(s)) = E
[
li(ψ, α; yo,i, ym,i, xi, ri|yo,i, xi, ri;ψ(s), α(s))

]
=

mi∑
ym,i=0

li(ψ, α; yo,i, ym,i, xi, ri)f(ym,i|yo,i, xi, ri;ψ(s), α(s)).
(3.14)

Suppose k of the n responses are observed and n− k responses are missing. The

responses are independent. Then, the E-step of the EM algorithm in the (s + 1)th

iteration is

Q(ψ, α|ψ(s), α(s)) =
k∑
i=1

li(ψ, α; yo,i, ri, xi)

+
n∑

i=k+1

mi∑
ym,i=0

li(ψ, α; ym,i, ri, xi)f(ym,i|xi, ri;ψ(s), α(s)),

(3.15)

where, using Bayes’s theorem,

f(ym,i|xi, ri;ψ(s), α(s)) =
f(ym,i|xi;ψ(s))f(ri|xi, ym,i;α(s))

mi∑
ym,i=0

f(ym,i|xi;ψ(s))f(ri|xi, ym,i;α(s))

,
(3.16)

so that Q(ψ, α|ψ(s), α(s)) can be expressed as

Q(ψ, α|ψ(s), α(s)) =
k∑
i=1

li(ψ, α; yo,i, ri, xi)

+
n∑

i=k+1

mi∑
ym,i=0

w
(s)
iyi
li(ψ, α; ym,i, ri, xi),

(3.17)
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where

w
(s)
iyi

=
f(ym,i|xi;ψ(s))f(ri|xi, ym,i;α(s))

mi∑
ym,i=0

f(ym,i|xi;ψ(s))f(ri|xi, ym,i;α(s))

. (3.18)

The M-step maximizes the function (3.13) with each log-likelihood for missing

response being replaced by (mi + 1) weighted log-likelihood, where (mi + 1) is the

number of distinct responses that missing observation i could have with different

probabilities. If convergence is attained, then ψ(s+1) and α(s+1) are the maximum

likelihood estimates of the parameters ψ and α at the (s + 1)th iteration. Denote

these by ψ̂1 and α̂.

The variance-covariance matrix of the estimates of the parameters are obtained by

inverting the observed information matrix at convergence (Efron and Hinkley (1978)),

which is

H1 = −Q′′(ψ, α|ψ(s), α(s)) = −
k∑
i=1

∂2

∂ψ∂ψ′
li(ψ, α; yo,i, xi, ri|ψ̂1, α̂)

−
n∑

i=k+1

mi∑
ym,i=0

w
(s)
iyi

∂2

∂ψ∂ψ′
li(ψ, α; ym,i, xi, ri|ψ̂1, α̂).

(3.19)

Expressions for the elements of H1 regarding to estimates ψ̂1 are given in Appendix

3 by replacing the parameters β, φ, and γ with ψ̂1( β̂, φ̂, and γ̂).

In case of MAR the corresponding results for the estimates of ψ, after deleting

the model for the missing data mechanism, are obtained as follows:

The E-step: Given the observed data (X) and current estimates of the parameters

ψ(s), the conditional expectation of the complete data log-likelihood l(β, φ, γ) for the

ith missing response in the (s+ 1)th iteration is

Qi(ψ|ψ(s)) = E
[
li(ψ; yo,iym,i, xi|xi;ψ(s))

]
=

mi∑
ym,i=0

li(ψ; yo,i, ym,i, xi)f(ym,i|xi;ψ(s)),
(3.20)
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which for all the observations is

Q(ψ|ψ(s)) =
k∑
i=1

li(ψ; yo,i, xi) +
n∑

i=k+1

mi∑
ym,i=0

w
(s)
iyi
li(ψ; ym,i, xi), (3.21)

where

w
(s)
iyi

= f(ym,i|xi, ψ(s)). (3.22)

The M-step maximizes the function (3.4) with each missing response being re-

placed by (mi + 1) weighted observations, where (mi + 1) is the number of distinct

responses that missing observation i could have with different probabilities. If conver-

gence is attained, then ψ(s+1) is the maximum likelihood estimate of the parameters

ψ at the (s+ 1)th iteration. Denote this by ψ̂2.

The observed information matrix of the estimates ψ̂ is

H2 = −Q′′(ψ|ψ(s)) = −
k∑
i=1

∂2

∂ψ∂ψ′
li(ψ; yo,i, xi|ψ̂2)

−
n∑

i=k+1

mi∑
ym,i=0

w
(s)
iyi

∂2

∂ψ∂ψ′
li(ψ; ym,i, xi|ψ̂2)

(3.23)

Expressions for the elements of H2 are given in Appendix 3 by replacing the

parameters β, φ, and γ with ψ̂2( β̂, φ̂, and γ̂).

3.3 Simulation study

A simulation study was conducted to investigate the properties of the estimates in

terms of average estimates (AE), relative bias (RB), variance (VAR), mean squared

error (MSE) and coverage probability (CP) of estimates. The AE, RB, SE, MSE

and CP, for example of π̂, are obtained as: AE (π̂) = 1
N

∑N
q=1 π̂q, RB(π̂)= (AE -

π)/π, VAR(π̂) = 1
N

∑N
q=1 v̂ar(π̂q), where v̂ar(π̂q) was obtained from the observed
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information matrix given in (3.19) or (3.23), MSE(π̂) = 1
N

∑N
q=1(π̂q − π)2, and

CP(π̂) = 1
N

∑N
q=1 I(π̂q − Zα

2

√
v̂ar(π̂q) < π < π̂q + Zα

2

√
v̂ar(π̂q)), where N is the

number of samples we simulated.

We use data under four scenarios: (i) data are observed completely, (ii) some

responses are missing completely at random (MCAR), (iii) some responses are missing

at random (MAR), (iv) some responses are missing not at random (MNAR).

Two sets of simulations are conducted. The first is with no covariate and the

second is with a one covariate.

In the case in which there is no covariate, response data are generated from the

zero-inflated beta binomial model (3.3) with mi = 10, π = 0.8, φ = 0.2 and ω = 0.2.

The missing data indicator ri is generated independently by the following model

logit(P (ri = 1)) = α0 + α1yi. (3.24)

We set α0 = (−3,−2.2,−1.1) which produces about 5%, 10%, 25% missing observa-

tions at the baseline. The baseline missing rate is P (ri = 1)) = exp(α0)/(1+exp(α0)).

The parameter α1 is set to 0 and 0.1 to indicate different missing data mechanisms

MCAR(MAR) and MNAR respectively (Ibrahim and Lipsitz (1996)).

Note that when there is no covariate, we only have response data yi. Thus from

the missing data indicator model (3.24) we see that the missing data mechanism is

unrelated to the data if α1 = 0 indicating that the missingness is MCAR. However,

if α1 6= 0, the missing data mechanism depends on the unobserved response yi when

yi is missing, which results in nonignorable missing data mechanism MNAR.

For the case with one covariate we take πi = exp(β0 + β1xi)/(1 + exp(β0 + β1xi))

with β0 = −1, β1 = 1. Note that β0 is the intercept parameter. The regression

variable xi was generated from N(1, 1). For the missing data process, we consider the
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logistic model

logit(P (ri = 1)) = α0 + α1xi + α2yi (3.25)

from which missing data indicators ri’s are independently generated. The value of

α0 is set the same as in the case with no covariate. The values of (α1, α2) are set

as (0, 0), (0.1, 0), (−0.1, 0.1) to indicate missing data mechanism MCAR, MAR and

MNAR respectively (Ibrahim and Lipsitz (1996)).

Here also note from model (3.25) that, when α1 = 0 and α2 = 0, the missing data

do not depend on either the observed covariate xi or the missing response yi, which

results in MCAR. When α1 6= 0 and α2 = 0, the missingness only depends on the

observed covariate xi resulting in MAR. When α1 6= 0 and α2 6= 0, the missingness

depends on the missing response yi, in addition to the observed covariate xi indicating

that we have MNAR. Here, in order to control the missing rate close to the baseline

missing rate, we set small values for α1 and α2.

For empirical coverage probability we take nominal level α = 0.05.

When there is no covariate, simulation results for complete data, data under

(MCAR and MAR) are given in Table 3.1 to Table 3.3. Simulation results under

MNAR are given in Table 3.4 to Table 3.6. When there is one covariate, the cor-

responding results for complete data (also MCAR), MAR and MNAR are given in

Table 3.7 to Table 3.15 respectively. In each case data were analyzed by the CC,

EM-MCAR (MAR) and the EM-MNAR method.

We first discuss the results in Tables 3.1 to Table 3.6 for the situations in which

there is no covariate.

Results in Table 3.1 to Table 3.3 for complete data indicate that all the parameters

are well estimated irrespective of the sample sizes and at n = 100 the result shows

almost no estimation error. However, the coverage probability falls short of the
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nominal coverage of 95%.

The parameters π and ω are well estimated irrespective of percentage missing and

sample size. All of AE, RB, VAR, and MSE show good behavior for all sample sizes

and percentage missing does not seem to have any effect on these. However, the

coverage probability decreases somewhat as percentage missing increases, although

never falls below 92%.

The parameter φ shows relatively high RB (as high as 8%) and slightly higher

(3%) VAR and MSE and shorter coverage probability for smaller n (n=30). As the

sample size increases (n=100) all other indices show good properties, although still

conservative in terms of coverage probability, particularly as percentage missing in-

creases (or sample size decreases). Its CP ranges from .88 to .93. Note that difference

in the coverage probability between 25% missing and that for 50% missing is very

small (0.89 for 25% and 0.88 for 50%).

Note that when there is no covariate, increase in percentage missing under MCAR

or MAR has the same effect as reducing the sample size. So, under MCAR and MAR

these results (CC method) should be very similar to those if the EM method is applied

to replace the missing observations. To confirm this we included the results using the

EM method in Table 3.1 to Table 3.3 (and in subsequent tables). The simulation

results obtained by analyzing with EM-MNAR are very similar with those analyzed

under EM-MAR(MCAR). After round off (up) to three decimals, the results are same,

which means the EM MNAR works well under MCAR.

In Table 3.4 to Table 3.6 when there is no covariate, the results show that when

the data are simulated under MNAR but analyzed by the CC method (complete case

analysis method) or the EM-MAR(MACR), it yields considerably larger AE, RB, SE

and MSE and lower coverage probability, even for large sample size. The parameter
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π shows underestimation, whereas, the other two parameters show overestimation.

The EM-MNAR method, however, shows excellent performance in terms of all

the measures for all three parameter estimates, except that the coverage probability

for the parameter φ is shorter (ranges from .87 to .91) in comparison to that from

complete data. However, these coverage probabilities are much closer to the nomi-

nal coverage probability than those using the CC method. All parameters are well

estimated even at 25% baseline missing.

We next discuss the results in Table 3.7 to Table 3.15 for the situations in which

there is one covariate.

Results in Table 3.7 to Table 3.9 show that the parameters β0, β1 and ω are

well estimated irrespective of percentage missing and sample size. All of AE, RB,

VAR, and MSE show good behavior for all sample sizes and percentage missing does

not seem to have any effect on these. These properties are very similar to those of

π and ω given in Table 3.1 to Table 3.3 where there was no covariate. However,

the coverage probability decreases further than those given in Table 1 as percentage

missing increases, although never falls below 90%.

The parameter φ shows high RB (as high as 23%) for small sample size(n = 30)

and large missing percentage (50%). However, as the sample size increases (n = 100)

RB decreases to 5%. The behavior of VAR and that of MSE are similar to those in

Table 3.1 to Table 3.3, namely, that these are slightly higher than those for complete

data. As the sample size increases (n=100) all other indices show good properties,

although still conservative in terms of coverage probability, particularly as percentage

missing increases (or sample size decreases). Its CP ranges from .81 to .93. The

difference in the coverage probability between 25% missing and that for 50% missing

is small (0.85 for 25% and 0.81 for 50%).
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Note that the simulation results in Table 3.1 to Table 3.3 and Table 3.7 to Table

3.9 show that for all other parameters except φ, the properties of the estimates for

50% missing are similar to those for 25% missing. For φ, only for coverage probability,

some difference is shown. This seems to be the pattern. So, in all other tables we do

not include simulation results for 50% missing.

Similarly, estimates of all the parameters, under MAR and MNAR, results of

which are given in Table 3.10 and Table 3.15, show similar behavior as those in Table

3.4 to Table 3.6 except that it now requires much larger sample sizes.

In summary, Under MCAR, both the EM methods (EM-MCAR(MAR) and EM-

MNAR) and the CC method work well. However, the EM methods are more time

consuming compared to the CC method. The EM MAR(MCAR) method performs

well for missing data under MCAR and MAR, but produces bias under MNAR. The

EM-MNAR performs well under all three missing data mechanisms.

3.4 An Example: Analysis of a mutagenic data set

In this section we analyze a set of mutagenic data. The data obtained from Lüning

et al. (1966) involved groups of male mice originating from an inbred CBA strain

mated with groups of female mice originating from same inbred CBA strain. The

experiment was conducted in three groups in which male mice were given 0 R, 300 R

and 600 R respectively and then were mated within the first 7 days after irradiation.

The data are given in Table 3.16, and grouped according to the number of implants

and the number of dead foetuses. We are interested in the dosage effect on the death

rate of the foetuses. The outcome variable is the number of dead foetuses in the litter.

The independent variable is the dosage.
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Our purpose here is to illustrate analysis of zero-inflated beta-binomial data with

missing values in the response variable. However, we first analyze the complete data

using the zero-inflated beta-binomial model (3.3) with πi = exp(β0 + β1xi)/(1 +

exp(β0 + β1xi)), xi = treatmenti = 0, 300, 600, where πi is the proportion of dead

implants, β0 represents the intercept parameter and β1 represents the regression pa-

rameter (treatment effect). Since the dosages xi are far apart we standardize as

zi = (xi − x̄)/s, where x̄ and s are mean and standard deviation of the xi values.

The model then for the zero-inflated beta-binomial proportion becomes πi =

exp(β0 +β1zi)/(1+exp(β0 +β1zi)). The maximum likelihood estimate (mle) of β0, β1,

φ and ω for the mutagenic data in Table 3.16 are −1.314, 0.702, 0.026, and 1.206∗10−6

respectively. It seems that the zero-inflation parameter does not contribute much to

the model. Further evidence of such insignificance of ω has been found by testing

H0 : ω = 0 using the score test statistic Z8 given in Deng and Paul (2005). This

statistic has an asymptotic chi-square distribution with one degree of freedom and

for our data Z8 = 1.104 confirming that the zero-inflation parameter is not signifi-

cant. We further test whether the over-dispersion parameter φ is significant by using

the score test statistic Z7 of Deng and Paul (2005), which also has an asymptotic

chi-square distribution with one degree of freedom. Its value for the data in Table

3.16 is Z7 = 18.589 with a p-value of 9.28 ∗ 10−4 indicating significance at 5% level.

Two sets of analyses with missing responses are performed. First, note that the

BB model fits the data set in Table 3.16, but does not contain any missing values.

However, in practice, in Toxicology and mutagenic studies, missingness can occur

in addition to the data being over-dispersed. So, to illustrate our method of an-

alyzing mutagenic or toxicological data in the form of proportions that follow the

BB model, but contain missing responses we generate missingness using the model
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(3.25). Estimates of the parameters β0, β1, and φ and their variances using the CC,

EM-MAR (MCAR), and the EM-MNAR methods are given in Tables 3.17(a), 3.17(b)

and 3.17(c) for MCAR, MAR and MNAR respectively.

Results in Table 3.17(a) indicate that percentage missing has a some small effect

on the mle and the estimate of its variance. That is, the mle and the estimate of its

variance remain relatively stable even at 25% missing.

Results in Table 3.17(b) indicate that percentage missing has some effect on the

mle and the estimate of its variance under MAR when analyzed under the CC method.

However, these results remain almost unaffected when the missing data are replaced

by their estimates using the EM-MAR(MCAR) and EM-MNAR method. Results in

Table 3.17(c) indicate that percentage missing has some effect on the mle and the

estimate of its variance under MNAR when analyzed under the CC method and EM-

MAR(MCAR) method. However, these results remain almost unaffected when the

missing data are replaced by their estimates using the EM-MNAR method.

In the second set of analysis, we first generate a new data set from the zero-inflated

over-dispersed beta-binomial model (3.3) using the implantation sizes and treatments

as in Table 6 and the values β0 = −1.314, β1 = 0.702, and φ = 0.026, obtained as

mles from the data in Table 3.16. The zero-inflation parameter ω was set as ω = 0.03.

These data are given in Table 3.18. We then test whether both the zero-inflation and

over-dispersion parameters are significant in these data. The mles of β0, β1, φ and ω

for these data are −1.307, 0.660, 0.020, and 0.033 respectively. The values of the score

test statistics for testing for over-dispersion and for zero-inflation are Z7 = 12.715 and

Z8 = 10.601 respectively with p-values of 0.0103 and 0.0241 indicating significance

of the over-dispersion and zero-inflation parameters at 5% level of significance. So,

we proceed with model (3.3) to analyze these data and study the impact of missing
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data. As earlier, for incomplete data, we generate missingness using the model (3.25).

Estimates of the parameters for the new data set and that with missing data under

MCAR, MAR and MNAR and analyzed using the CC, EM-MAR (MCAR), and the

EM-MNAR methods are given in Tables 3.19 (a), 3.19 (b) and 3.19 (c) for respectively.

Results in Table 3.19 (a) under MCAR indicate that, as in Table 3.17(a), percent-

age missing has a small effect on the mle’s and estimates of their variances. Results

in Table 3.19 (b) under MAR, show that percentage missing could have significant

effect on the mles and estimates of their variances of all the parameters when we use

the complete case (CC) method. However, as in Tables 3.17(b), these results remain

almost unaffected when the missing data are replaced by their estimates using the

EM-MAR(MCAR) and EM-MNAR method. Results in Table 3.19 (c) under MNAR,

show that percentage missing could have significant effect on the mles and estimates

of their variances of all the parameters when we use the complete case (CC) method

and EM-MAR(MCAR) method. However, as in Tables 3.17(c), these results remain

almost unaffected when the missing data are replaced by their estimates using the

EM-MNAR method.

A question may arise why do we not analyze the data using a zero-inflated negative

binomial model or a zero-inflated generalized Poisson model as there is over-dispersion

in the data (ȳ=1.51 and s2 = 1.74 when we ignore the binomial denominators).

The drawback of these Poisson related models is that the data ignore the binomial

denominators and the conditions, p is small and n large (for example, n ≥ 20 and

p ≤ 0.05) (Hogg et al. (1977)) are generally violated to approximate a binomial (n, p)

distribution by a Poisson (np) distribution. To check this point, we analyzed these

data by using a negative binomial model with over-dispersion parameter c, a zero-

inflated Poisson model with zero-inflation parameter ω and a zero-inflated negative
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binomial model with over-dispersion parameter c and zero-inflation parameter ω.

The maximum likelihood estimates of these parameters in the three models are c =

2.39 ∗ 10−8, ω = 1.12 ∗ 10−5, and c = 1.19 ∗ 10−7, ω = 3.36 ∗ 10−7 respectively. The

estimates of the over-dispersion and/or the zero-inflation parameters are very close

to zero. This shows that when we analyze the over-dispersed and or zero-inflated

binomial data by an over-dispersed and or a zero-inflated Poisson model, the analysis

may not capture all important features of the data.

3.5 Discussion

We develop estimation procedure for the parameters of a zero-inflated beta-binomial

model in presence of missing responses. We apply a weighted expectation maximiza-

tion algorithm for the maximum likelihood estimation of the parameters. Although

missing data methodologies have been developed extensively in the literature, the cur-

rent development for the estimation of the parameters of ZIBB in presence of missing

responses is new. For completeness we also discuss, in Section 2 and 4, how to deal

with the missing data under a beta-binomial model.

An extensive simulation study and analysis of some illustrative data sets are per-

formed. In both simulations and data analyses, complete data and data with missing

values under MCAR, MAR and MNAR with or without covariates are considered.

The general findings through simulations and data analyses are:

(a) Data without covariates: for complete data and under MCAR and MAR, all

the parameters are well estimated irrespective of the sample sizes and percentage

missing. All of the AE, RB, VAR, and MSE show good behavior. However, all

the parameter estimates show shorter coverage probability, especially for φ, whose
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coverage probability ranges from 0.91 to 0.93. Under MNAR, the CC method for all

the parameters yields considerably larger AE, RB, SE and MSE and lower coverage

probability, even for large sample size. The EM method shows excellent performance

in terms of all the measures for all three parameter estimates, except that the coverage

probability for the parameter φ is shorter (ranges from .87 to .91) in comparison to

that from complete data. However, these coverage probabilities are much closer to

the nominal coverage probability than those using the CC method. All parameters

are well estimated even at 25% baseline missing.

(b) Data with one covariate: Results for complete data are almost the same as those

with no covariate except that to see such good behavior much larger sample sizes are

required. Similarly, estimates of all the parameters, under MAR and MNAR, show

similar behavior as those with no covariates except now require much larger sample

sizes.

Analyses of two data sets, one that fits a beta-binomial model and the other that

fits a zero-inflated beta-binomial model show similar findings.
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Table 3.16: The number of females with 0, 1, 2, etc. dead implants when 5-10 zygotes

were implanted after matings during the first 7 days after irradiation of males with 0

(control), 300 R and 600 R.

Dose Dead Implants

(R) Implantations 0 1 2 3 4 5 6 7 Total dead

0 5 30 27 9 5 71 16.9

6 86 51 14 4 1 156 10.1

7 111 73 31 8 1 224 10.4

8 79 44 23 3 1 150 8.7

9 32 29 8 1 70 7.6

10 5 5 2 12 7.5

300 5 27 41 32 17 4 121 28.4

6 28 47 59 28 6 1 1 170 27.8

7 31 61 54 20 19 1 186 23.8

8 12 32 24 22 8 1 99 23.1

9 1 6 9 6 1 1 24 23.6

10 1 2 1 4 10.0

600 5 16 32 48 49 15 160 41.9

6 7 35 45 37 20 9 153 39.3

7 5 22 27 36 17 9 3 1 120 38.3

8 1 4 12 11 8 7 2 45 39.4

9 2 2 2 1 7 38.1

10 1 1 70.0
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Table 3.17: Estimates and standard error of the parameters for mutagenic data under

the three missing data mechanism.

(a) MCAR

Method Quantity Complete data 5% missing 10% missing 25% missing

β0 β1 φ β0 β1 φ β0 β1 φ β0 β1 φ

CC
MLE -1.313 0.702 0.026 -1.329 0.714 0.023 -1.303 0.700 0.027 -1.302 0.687 0.023

VAR 0.025 0.025 0.007 0.026 0.026 0.007 0.028 0.026 0.007 0.029 0.029 0.008

EM-MAR(MCAR)
MLE -1.313 0.702 0.026 -1.327 0.714 0.024 -1.305 0.701 0.027 -1.304 0.691 0.023

VAR 0.025 0.025 0.007 0.024 0.024 0.006 0.027 0.024 0.006 0.028 0.029 0.007

EM-MNAR
MLE -1.313 0.702 0.026 -1.327 0.714 0.024 -1.305 0.701 0.027 -1.304 0.691 0.023

VAR 0.025 0.025 0.007 0.024 0.024 0.006 0.027 0.024 0.006 0.028 0.029 0.007

(b) MAR

Method Quantity Complete data 5% missing 10% missing 25% missing

β0 β1 φ β0 β1 φ β0 β1 φ β0 β1 φ

CC
MLE -1.313 0.702 0.026 -1.300 0.707 0.027 -1.299 0.718 0.030 -1.356 0.635 0.027

VAR 0.025 0.025 0.007 0.027 0.026 0.007 0.028 0.027 0.007 0.030 0.028 0.008

EM-MAR(MCAR)
MLE -1.313 0.702 0.026 -1.313 0.704 0.027 -1.317 0.711 0.026 -1.322 0.713 0.025

VAR 0.025 0.025 0.007 0.025 0.025 0.007 0.026 0.025 0.007 0.027 0.026 0.007

EM-MNAR
MLE -1.313 0.702 0.026 -1.313 0.704 0.027 -1.317 0.711 0.026 -1.322 0.713 0.025

VAR 0.025 0.025 0.007 0.025 0.025 0.007 0.026 0.025 0.007 0.027 0.026 0.007

(c) MNAR

Method Quantity Complete data 5% missing 10% missing 25% missing

β0 β1 φ β0 β1 φ β0 β1 φ β0 β1 φ

CC
MLE -1.313 0.702 0.026 -1.301 0.681 0.041 -1.326 0.644 0.047 -1.500 0.531 0.027

VAR 0.025 0.025 0.007 0.028 0.027 0.008 0.029 0.028 0.008 0.030 0.029 0.008

EM-MAR(MCAR)
MLE -1.313 0.702 0.026 -1.302 0.682 0.042 -1.325 0.646 0.045 -1.402 0.537 0.027

VAR 0.025 0.025 0.007 0.027 0.027 0.008 0.028 0.028 0.008 0.029 0.028 0.008

EM-MNAR
MLE -1.313 0.702 0.026 -1.301 0.685 0.032 -1.318 0.659 0.039 -1.353 0.592 0.024

VAR 0.025 0.025 0.007 0.027 0.026 0.007 0.027 0.027 0.008 0.027 0.025 0.007

CC, complete case analysis.
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Table 3.18: The number of females with 0, 1, 2, etc. dead implants when 5-10 zygotes

were implanted after matings during the first 7 days after irradiation of males with 0

(control), 300 R and 600 R (Generated from Table 3.16).

Dose Dead Implants

(R) Implantations 0 1 2 3 4 5 6 7 Total dead

0 5 47 17 7 0 71 8.7

6 86 45 22 2 1 1 156 10.6

7 94 76 36 14 4 224 13.1

8 64 49 27 10 150 11.1

9 31 24 11 1 3 70 9.7

10 4 5 3 12 9.2

300 5 42 40 28 10 1 121 21.5

6 48 60 42 13 4 3 170 20.1

7 37 56 50 36 5 2 186 22.6

8 20 25 27 17 8 1 1 99 21.8

9 2 6 9 3 3 1 24 25.0

10 1 2 0 1 4 20.0

600 5 13 36 62 43 4 2 160 39.4

6 13 20 53 43 16 7 1 153 39.2

7 6 15 32 26 21 16 4 120 41.1

8 2 6 7 20 7 2 1 45 34.4

9 1 0 1 1 2 0 2 7 39.7

10 1 1 0
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Table 3.19: Estimates and standard error of the parameters for new mutagenic data

under the three missing data mechanism.

(a) MCAR

Complete data 5% missing 10% missing 25% missing

Method Quantity β0 β1 φ ω β0 β1 φ ω β0 β1 φ ω β0 β1 φ ω

CC
MLE -1.307 0.660 0.020 0.033 -1.293 0.661 0.011 0.045 -1.325 0.678 0.024 0.024 -1.316 0.659 0.016 0.029

VAR 0.028 0.024 0.001 0.011 0.031 0.025 0.008 0.012 0.031 0.026 0.008 0.013 0.034 0.029 0.009 0.013

EM-MAR(MCAR)
MLE -1.307 0.660 0.020 0.032 -1.294 0.661 0.012 0.044 -1.323 0.678 0.026 0.025 -1.316 0.660 0.016 0.028

VAR 0.028 0.024 0.001 0.011 0.030 0.024 0.008 0.011 0.031 0.025 0.008 0.012 0.033 0.028 0.009 0.013

EM-MNAR
MLE -1.307 0.660 0.020 0.032 -1.294 0.661 0.012 0.044 -1.323 0.678 0.026 0.025 -1.316 0.660 0.016 0.028

VAR 0.028 0.024 0.001 0.011 0.030 0.024 0.008 0.011 0.031 0.025 0.008 0.012 0.033 0.028 0.009 0.013

(b) MAR

Complete data 5% missing 10% missing 25% missing

Method Quantity β0 β1 φ ω β0 β1 φ ω β0 β1 φ ω β0 β1 φ ω

CC
MLE -1.307 0.660 0.020 0.033 -1.303 0.654 0.018 0.036 -1.205 0.783 0.024 0.060 -1.083 0.660 0.000 0.103

VAR 0.028 0.024 0.001 0.011 0.030 0.026 0.008 0.012 0.031 0.027 0.008 0.013 0.033 0.029 0.008 0.014

EM-MAR(MCAR)
MLE -1.307 0.660 0.020 0.033 -1.304 0.655 0.019 0.034 -1.302 0.650 0.021 0.029 -1.317 0.663 0.022 0.020

VAR 0.028 0.024 0.001 0.011 0.028 0.025 0.080 0.012 0.030 0.025 0.008 0.012 0.030 0.024 0.008 0.013

EM-MNAR
MLE -1.307 0.660 0.020 0.033 -1.304 0.655 0.019 0.034 -1.302 0.650 0.021 0.029 -1.317 0.663 0.022 0.020

VAR 0.028 0.024 0.001 0.011 0.028 0.025 0.080 0.012 0.030 0.025 0.008 0.012 0.030 0.024 0.008 0.013

(c) MNAR

Complete data 5% missing 10% missing 25% missing

Method Quantity β0 β1 φ ω β0 β1 φ ω β0 β1 φ ω β0 β1 φ ω

CC
MLE -1.307 0.660 0.020 0.033 -1.315 0.661 0.022 0.029 -1.268 0.726 0.018 0.042 -1.317 0.651 0.019 0.038

VAR 0.028 0.024 0.001 0.011 0.031 0.025 0.008 0.012 0.029 0.027 0.008 0.012 0.029 0.027 0.008 0.012

EM-MAR(MCAR)
MLE -1.307 0.660 0.020 0.033 -1.314 0.662 0.023 0.029 -1.268 0.727 0.017 0.040 -1.315 0.647 0.020 0.038

VAR 0.028 0.024 0.001 0.011 0.030 0.025 0.008 0.012 0.029 0.027 0.008 0.012 0.029 0.027 0.008 0.012

EM-MNAR
MLE -1.307 0.660 0.020 0.033 -1.311 0.662 0.022 0.029 -1.276 0.722 0.020 0.038 -1.312 0.657 0.020 0.035

VAR 0.028 0.024 0.001 0.011 0.027 0.026 0.007 0.012 0.029 0.025 0.007 0.011 0.029 0.025 0.007 0.011

CC, complete case analysis.



Chapter 4

Estimation for Zero-Inflated

Beta-Binomial Regression Model

with Covariate Measurement Error

And/or Missing Responses

4.1 Introduction

In chapter 3, we developed estimation procedures for the parameters of a zero-inflated

beta-binomial regression model with missing data. The purpose of this chapter is

to develop inference procedures for the parameters of a zero-inflated beta-binomial

model where information on some of the covariates is recorded with errors and/or

some observations of the binomial responses may be missing. A weighted expecta-

tion maximization algorithm (Dempster et al. (1977)) is developed for the maximum

likelihood (ML) estimation of the parameters involved. Extensive simulations are

60
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conducted to study the properties of the estimates using different measures, such

as, average estimates (AE), relative bias (RB), variance(VAR), mean squared error

(MSE) and coverage probability (CP) of estimates. Simulations show much superior

properties of the estimates obtained using the weighted expectation maximization

algorithm. Some illustrative examples and a discussion are given.

The zero-inflated beta-binomial model is introduced in Section 2. In this section

we also develop a procedure for the estimation of the parameters. Results of an

extensive simulation study are reported in Section 3. Some illustrative examples are

given in Section 4 and a discussion leading to some conclusions is given in Section 5.

4.2 The zero-inflated beta-binomial model and es-

timation procedure

4.2.1 The zero-inflated beta-binomial model

For a quick introduction to the proposed method it is appropriate to present the

standard form for the ZIBB model. For a particular litter i, given mi, the number

of live foetuses in the litter, yi, the number of foetuses affected, is a random variable

having a beta-binomial distribution with parameters α and β, i.e,

f(yi;α, β) =

(
mi

yi

)
B(α + yi,mi + β − yi)/B(α, β). (4.1)

If π = α
α+β

, and φ = 1
α+β

, we have

f(yi;α, β) =

(
mi

yi

)yi−1∏
r=0

(π + rφ)

mi−yi−1∏
r=0

(1− π + rφ)

mi−1∏
r=0

(1 + rφ)

, (4.2)
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with E(Yi) = miπ and V ar(Yi) = miπ(1 − π)
[
1 + (mi−1)φ

1+φ

]
. We denote the beta-

binomial distribution as BB(π, φ). As φ → 0, BB(π, φ) tends to the binomial (π)

distribution and for φ = 0 we have V ar(Yi) = miπ(1− π) and the BB(π, φ) becomes

the binomial (π) distribution.

The zero-inflated beta binomial regression model (Deng and Paul (2005)) can be

written as

f(yi|xi; π, φ, ω) =



ω + (1− ω)

mi−1∏
r=0

(1 + rφ− π)

mi−1∏
r=0

(1 + rφ)

if yi = 0,

(1− ω)

(
mi

yi

)yi−1∏
r=0

(π + rφ)

mi−yi−1∏
r=0

(1− π + rφ)

mi−1∏
r=0

(1 + rφ)

if yi > 0,

(4.3)

with E(Yi) = (1 − ω)miπ, and V ar(Yi) = (1 − ω)miπ(1 − π)1+miφ
1+φ

+ (1 − ω)ωm2
iπ

2,

where ω is the zero-inflation parameter. We denote this distribution by ZIBB(π, φ, ω)

distribution.

4.2.2 The estimation procedure

Suppose data from the ZIBB(π, φ, ω) model for the ith litter are (yi, xi), given the

number mi of litter size, i = 1, . . . , n, yi represents the response variable and xi rep-

resents a p×1 vector of covariates with the regression parameter β = (β0, β1, . . . , βp),

such that πi = exp(
∑p

j=0 xijβj)/(1 + exp(
∑p

j=0 xijβj)). Here β0 is the intercept pa-

rameter in which case xi0 = 1 for all i.
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4.2.2.1 Estimation of ψ with no covariate measurement error

For data without covariate measurement error, the log likelihood, apart from a

constant, using the probability mass function given in equation (4.3), can be written

as

l(βj, φ, γ|yi) =
n∑
i=1

[
− log(1 + γ) + log

[
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

]
I{yi=0}

+
[ yi−1∑
r=0

log(πi + rφ) +

mi−yi−1∑
r=0

log(1− πi + rφ)

−
mi−1∑
r=0

log(1 + rφ)
]
I{yi>0}

]
,

(4.4)

where γ = ω/(1−ω). Note, γ transforms the space of ω from (0, 1) onto (0,∞) which

makes optimization of l easier (Deng and Paul (2005)). Let ψ = (β, φ, γ). Then the

maximum likelihood estimates of the parameters ψ can be obtained by simultaneously

solving the following estimating equations

∂l

∂βj
=

n∑
i=1

[[ (
−

mi−1∑
j=0

mi−1∏
r=0,r 6=j

(1 + rφ− πi)
)

mi−1∏
r=0

(1 + rφ)

(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)
]
I{yi=0}

+

[ yi−1∑
r=0

1

πi + rφ
−

mi−yi−1∑
r=0

1

1− πi + rφ

]
I{yi>0}

]
∂πi
∂βj

= 0,
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∂l

∂φ
=

n∑
i=1

[[ (mi−1∑
j=0

j

mi−1∏
r=0,r 6=j

(1 + rφ− πi)
)mi−1∏

r=0

(1 + rφ)

(mi−1∏
r=0

(1 + rφ)

)2(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)

−

(mi−1∑
j=0

j

mi−1∏
r=0,r 6=j

(1 + rφ)

)mi−1∏
r=0

(1 + rφ− πi)

(mi−1∏
r=0

(1 + rφ)

)2(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)
]
I{yi=0}

+

[ yi−1∑
r=0

r

πi + rφ
+

mi−yi−1∑
r=0

r

1− πi + rφ
−

mi−1∑
r=0

r

1 + rφ

]
I{yi>0}

]
= 0

and

∂l

∂γ
=

n∑
i=1

[
− (1 + γ)−1 +

(
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

)−1

I{yi=0}

]
= 0,

where
∂πi
∂βj

= Xij exp(

p∑
j=0

Xijβj)/(1 + exp(

p∑
j=0

Xijβj))
2. Denote these estimates by ψ̂.

The observed information matrix of ψ̂ is given by

H0 = −Q′′(ψ, α|ψ(s)) = −
n∑
i=1

∂2

∂ψ∂ψ′
li(ψ; yi, xi|ψ̂). (4.5)

The elements of this matrix are given in appendix 2. Of course, if it is convenient,

these parameters can also be estimated by directly maximizing the log-likelihood

function (4.4). However, in practice, through tests (Deng and Paul (2005)), if it is

found that the zero-inflation parameter is insignificant, then data analysis should be

based on the beta-binomial model (4.2). The parameters βj and φ can be estimated by
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solving the estimating equations given in Appendix 1. The elements of the observed

information matrix corresponding to likelihood (4.2) are also given in this appendix.

4.2.2.2 Estimation of the parameters with covariate measurement error

We partition the vector of covariates xi for the ith observation as (ui, zi), the vector

ui is observed only indirectly through the measurement wi and zi is observed without

error. Note that ui and wi are q dimensional while zi is p− q dimensional.

Following Carroll et al. (2006), the measurement error model can be classified into

two general types which are used to relate wi to ui:

1. Error model, which includes classical measurement error model.

wi = τ0 + τuui + τzzi + ei. (4.6)

The error term ei is independent of ui, zi and the responses and it is often assumed

that ei has mean zero and it follows a known distribution f(0,Σ), where Σ is the

covariance matrix of ei. The intercept τ0 is a vector, which can be written as τ0 =

(τ01, · · · τ0q)
T . The coefficients τu = (τu1, · · · τuq)T , τz = (τz1, · · · τzq)T , where τuj(j =

1, · · · , q) and τzk(k = 1, · · · , p − q) are q × 1 and (p − q) × 1 vectors respectively. If

we set τ0 = 0, τz = 0, and τu = Iq, where Iq is the q× q dimensional identity matrix,

we have the classical measurement error model.

2. Regression calibration model, which includes the Berkson error model.

ui = τ0 + τwwi + τzzi + ei, (4.7)

where, τw = (τw1, · · · τwq)T . If we set τ0 = 0, τz = 0, and τw = Iq, we have the Berkson

measurement error model.
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Which of these models should be applied to the analysis of binomial data? See for

example, the data in Table 4.13 in which all individuals in a small group are given

the same dose. However, because of the size of the implants the actual dose will

vary from animal to animal. In this situation the Berkson model is appropriate (see

Carroll et al. (2006, p 27)).

We suppose f(yi|wi, ui, zi) = f(yi|ui, zi), which is called nondifferential error mech-

anism (Carroll et al. (2006)). That is, w are statistically independent of y given (u, z).

Now, the true values of the u are not available. So, we treat them as missing data

and obtain maximum likelihood estimates of the parameters involved by using the

EM algorithm (Schafer (1987)).

The likelihood for the complete data with error prone covariates ui and error free

covariate zi is

n∏
i=1

f(yi|ui, zi;ψ)f(ui|wi, zi; τ,Σ). (4.8)

The log-likelihood for subject i is

li = logf(yi|ui, zi;ψ) + logf(ui|wi, zi; τ,Σ)

= − log(1 + γ) + log

[
γ +

mi−1∏
r=0

(1 + rφ− πi)

mi−1∏
r=0

(1 + rφ)

]
I{yi=0}

+
[ yi−1∑
r=0

log(πi + rφ) +

mi−yi−1∑
r=0

log(1− πi + rφ)−
mi−1∑
r=0

log(1 + rφ)
]
I{yi>0}

+logf(ui|wi, zi; τ,Σ).

(4.9)

Denote Γ = (ψ, τ,Σ). The E-step requires the calculation of the conditional

expectation of (4.9) with respect to ui given the observed data and current estimates
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of the parameters. We have observed data (yi, wi, zi). The E-Step is given as

Qi(ψ, τ,Σ|Γ(t)) = E
[
li|yi, wi, zi; Γ(t)

]
=

∫
[logf(yi|ui, zi;ψ) + logf(ui|wi, zi; τ,Σ)]

·f(ui|yi, wi, zi; Γ(t))dui.

(4.10)

Since the above integration has no closed form, we use the Monte Carlo (MC)

version of the EM algorithm given by Wei and Tanner (1990) to solve this integration

problem. To do this, we need to generate a large number M of samples ui from

f(ui|yi, zi, wi; Γ(t)). We know that

f(ui|yi, wi, zi; Γ(t)) ∝ f(yi|ui, zi; Γ(t))f(ui|wi, zi; Γ(t)). (4.11)

Note ui is a qi × 1 vector. If q > 1 we can use the Gibbs sampler in appendix 4 to

convert the multivariate distribution sampling problem f(ui1, · · · , uiq|yi, wi, zi; Γ(t))

to a univariate conditional distribution problem f(ui1|ui2, · · · , uiq, yi, wi, zi; Γ(t)), · · · ,

f(uiq|ui1, · · · , ui(q−1), yi, wi, zi; Γ(t)) first. Then, at the tth iteration, for each subject

i, we interactively generate u
(k)
i , k = 1, · · · ,M by Gibbs sampler along with the

rejection sampling method based on (4.11). After that, choose ψ(t+1) and τ (t+1),Σ(t+1)

to maximize
∑n

i=1 1/M
∑M

k=1 logf(yi|u(k)
i , zi;ψ

(t)) and∑n
i=1 1/M

∑M
k=1 logf(u

(k)
i |wi, zi; τ (t),Σ(t)) respectively. If convergence is obtained, we

can say ψ(t+1), τ (t+1) and Σ(t+1) are the maximum likelihood estimation of parameters.

Denote this by Γ̂ = (ψ(t+1), τ (t+1),Σ(t+1)).

The observed information matrix of the estimates Γ̂ is

H = −Q′′ = − 1

M

n∑
i=1

M∑
k=1

∂2

∂Γ∂Γ′
li(Γ; yi, u

(k)
i , zi|Γ̂). (4.12)
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4.2.2.3 Estimation of the parameters with covariate measurement error

and missing information in the responses

As in Ibrahim et al. (2001) the missingness in the reponses can be expressed as

yi =

 yo,i if yi is observed,

ym,i if yi is missing.
(4.13)

and

ri =

 0 if yi is observed,

1 if yi is missing.
(4.14)

We suppose missing data indicator ri follows independent Bernoulli distribution

f(ri|yi, xi;α) = (pi)
ri(1− pi)1−ri , (4.15)

where pi = P (ri = 1). To connect the distribution of ri to covariates the logistic

regression is employed,

log
[ P (ri = 1)

1− P (ri = 1)

]
= V T

i α, (4.16)

where V T
i includes both missing response data, error prone covariates ui and error

free covariate zi information, where α is the vector of parameters of missing data

process.

The full joint likelihood considering covariate measurement error and missing re-

sponse is
n∏
i=1

f(yi|ui, zi;ψ)f(ri|ui, zi, yi;α)f(ui|wi, zi; τ,Σ), (4.17)

where yi is composed of observed part yo,i and missing part ym,i. The complete
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data log likelihood contributed from subject i is

li = logf(yi|ui, zi;ψ) + logf(ri|ui, zi, yi;α) + logf(ui|wi, zi; τ,Σ)

= − log(1 + γ) + log[γ + f(0; πi, φ, ω)]I{yi=0} + log f(yi; πi, φ, ω)I{yi>0}

+ri ∗ V T
i α− log(1 + eV

T
i α) + logf(ui|wi, zi; τ,Σ).

(4.18)

Denote Γ = (ψ, τ,Σ, α). The E-step provides the conditional expectation of the

complete data log-likelihood with respect to the distribution of ym,i and ui given the

observed data and the current estimates of the parameters. Let t be an arbitrary num-

ber of iterations during maximization of the log-likelihood. Then given the observed

data (yo,i, wi, zi, ri) and current estimates of the parameters Γ(t), the conditional ex-

pectation of the complete data log-likelihood for the ith observation in the (s + 1)th

iteration can be written as

Qi(Γ|Γ(t)) = E
[
li|yo,i, wi, zi, ri; Γ(t)

]
=

∫ ∫ [
log(1 + γ) + log[γ + f(0;πi, φ, ω)]I{yi=0}

+ log f(yi; πi, φ, ω)I{yi>0}

+ri ∗ V T
i α− log(1 + eV

T
i α) + logf(ui|wi, zi; τ,Σ)

]
·f(ym,i, ui|yo,i, ri, wi, zi; Γ(t))dym,idui.

(4.19)

For each subject i, at the tth iteration, the kth (k = 1, 2, ...,M) sample can be

generated for (y
(k)
m,i, u

(k)
i ) though Gibbs sampler along with the rejection sampling

method in appendix 4 based on the following

f(ym,i|yo,i, ui, wi, zi; Γ(t)) ∝ f(yi|ui, zi; Γ(t))f(ri|yi, ui, zi; Γ(t)),

f(ui|yi, wi, zi, ri; Γ(t)) ∝ f(yi|ui, zi; Γ(t)))f(ui|wi, zi; Γ(t))f(ri|ui, zi, yi; Γ(t)).
(4.20)

After replacing (yi,m, ui) with (y
(k)
i,m, u

(k)
i ), in the M step, we choose Γ(t+1) to max-

imize
∑n

i=1 1/M
∑M

k=1Qi. If convergence is obtained, we can say Γ(t+1) is the maxi-

mum likelihood estimate of parameters. Denote this by Γ̂ = Γ(t+1).
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The observed information matrix of the estimates Γ̂ is

H = −Q′′ = − 1

M

n∑
i=1

M∑
k=1

∂2

∂Γ∂Γ′
li(Γ|Γ̂). (4.21)

4.3 Simulation study

A simulation study was conducted to investigate the properties of the estimates

in terms of average of estimates (AE), relative bias (RB), variance (VAR), mean

squared error (MSE) and coverage probability (CP) of estimates. The AE, RB, SE,

MSE and CP, for example of π̂, are obtained as: AE (π̂) = 1
N

∑N
q=1 π̂q, RB(π̂)=

(AE -π)/π, VAR(π̂) = 1
N

∑N
q=1 v̂ar(π̂q), where v̂ar(π̂q) was obtained from the ob-

served information matrix given in (4.12) or (4.21), MSE(π̂) = 1
N

∑N
q=1(π̂q−π)2, and

CP(π̂) = 1
N

∑N
q=1 I(π̂q − Zα

2

√
v̂ar(π̂q) < π < π̂q + Zα

2

√
v̂ar(π̂q)), where N is the

number of samples we simulated.

4.3.1 Covariate measurement errors

For the case with one error prone covariate and one error free covariate we take

πi = exp(β0 + β1ui + β2zi)/(1 + exp(β0 + β1ui + β2zi)) with β0 = −1, β1 = 1 and

β2 = 2 . Note that β0 is the intercept parameter. Error free covariate zi is generated

from N(0, 1).

We use Berkson measurement error model here. The surrogate variable wi is gen-

erated fromN(1, 1). Then the true covariate can be generated from model ui = wi+ei,

where measurement error e′is are independent and identically following N(0, σ2).

In figure 4.1. we first illustrate the measurement error σ effect on the RB of

parameter estimates if we use the observed data (yi, wi, zi) directly without consid-
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ering measurement error. We call this method the Naive method. Take n = 100,

m = 10 and set different degree of measurement error (σ from 0.1 to 1). 2000 runs

are performed. Apparently, if we ignore the measurement error the RB of parameter

estimates will increase as the measurement error become larger. The measurement

errors not only have an impact on the coefficient β of the error prone covariate but

also on all the parameter estimations. When the measurement error increases, the

over-dispersion parameter φ is affected a lot.

Now we compare the performance of the parameter of estimation between our

proposed EM method with Naive method under three different degrees of measure-

ment error (σ = 0, σ = 0.5, σ = 0.9) in Table 4.1 to Table 4.3. For empirical coverage

probability we take nominal level α = 0.05.

Results in Table 4.1 to Table 4.3 for ZIBB data without covariate measurement

error show that all the parameters are well estimated irrespective of the sample sizes

and at n = 100 show almost no estimation error. However, the coverage probability

falls short of the nominal coverage of 95%.

When there is a covariate subjected to measurement error, the Naive method

yields considerably larger AE, RB, SE and MSE and lower coverage probability, even

for large sample size. The parameter π shows overestimation, whereas, β0, β1 and β2

show underestimation. The parameter φ shows high RB (as high as 77%) for sample

size(n = 100) and measurement error (σ = 0.9).

The MCEM method, however, shows excellent performance in terms of all the

measures for all five parameter estimates, except that the coverage probability for the

parameter φ is shorter (ranges from .85 to .90) in comparison to that data without

covariate measurement error. However, these coverage probabilities are much closer

to the nominal coverage probability than those using the Naive method.
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The RB, SE and MSE from Naive method tend to increase and the coverage

probability tends to decrease as the degree of measurement error increases, However

our proposed method shows good behaviors for all the estimates of the parameters

although the measurement error goes up to σ = 0.9.

4.3.2 Covariate measurement errors and missing responses

For the case with one error prone covariate and one error free covariate with missing

responses we also take πi = exp(β0 + β1ui + β2zi)/(1 + exp(β0 + β1ui + β2zi)) with

β0 = −1, β1 = 1 and β2 = 2 . Note that β0 is the intercept parameter. The error free

covariate zi is generated from N(0, 1).

We use Berkson measurement error model here. The surrogate variable wi is gen-

erated fromN(1, 1). Then the true covariate can be generated from model ui = wi+ei,

where measurement errors e′is are independent and identically following N(0, σ2).

For the missing data process, we consider the logistic model

logit(P (ri = 1)) = α0 + α1xi + α2yi, (4.22)

from which missing data indicators ri’s are independently generated. The value of α0

is set as 1.1 to make the baseline missing rate about 25%. The values of (α1, α2) are

set as (0, 0), (0.1, 0), (−0.1, 0.1) to indicate different missing data mechanisms.

We can see from model (4.22) that, when α1 = 0 and α2 = 0, the missing data do

not depend on either the error prone covariate xi or the missing response yi, which

results in MCAR. When α1 6= 0 and α2 = 0, the missingness only depends on the

error prone covariate xi resulting in MAR. When α1 6= 0 and α2 6= 0, the missingness

depends on the missing response yi, in addition to the error prone covariate xi indi-

cating that we have MNAR. Here, in order to control the missing rate close to the
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baseline missing rate, we set small values for α1 and α2.

We compare the performance of parameter of estimation between our proposed

MCEM method with the Naive method which only uses observed data directly with-

out considering covariate measurement error and missing response under different

degree of covariate measurement error (σ = 0.5, σ = 0.9) with three missing data

mechanism in Table 4.4 to Table 4.12. We have discussed the performance of pa-

rameter of estimation for ZIBB model with missing response and without covariate

measurement error (σ = 0) in Chapter 3. For empirical coverage probability we take

nominal level α = 0.05 here.

We can see from Table 4.4 to Table 4.12 that the proposed EM method works

better than the Naive method for RB, VAR and MSE. In the presence of missing

responses and covariate measurement error, the performance of the Naive method

is affected remarkably, especially when the missingness probability depends on the

covariate with measurement error and response, while the MCEM method performs

steadily.

4.4 An Example: Analysis of a mutagenic data set

In this section we analyze a set of mutagenic data. The data obtained from Lüning

et al. (1966) involved groups of male mice originating from an inbred CBA strain

mated with groups of female mice originating from same inbred CBA strain. The

experiment was conducted in three groups in which male mice were given 0 R, 300 R

and 600 R respectively and then were mated within the first 7 days after irradiation.

The data are given in Table 4.13, and have been grouped according to the number

of implants and the number of dead foetuses. We are interested in the dosage effect on
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the death rate of the foetuses. The outcome variable is the number of dead foetuses

in the litter. The independent variable is the dosage.

Since the data assigned the same exposure dose for each group, but the real

exposure dose is particular to an individual, the exposure dose can be treated as an

error prone covariate ui. We employ the Berkson measurement error model here. We

also control the litter size mi as our error free covariate zi. Then we fit the data using

the zero-inflated beta-binomial model (4.3) with πi = exp(β0 + β1ui + β2zi)/(1 +

exp(β0 + β1ui + β2zi)), ui = treatmenti = 0, 300, 600. where πi is the proportion

of dead implants, β0 represents the intercept parameter, β1 represents the regression

parameter of treatment effect, and β2 represents the regression parameter of litter size

effect. Since the dosages ui are far apart we standardize as vi = (ui − ū)/s, where ū

and s are mean and standard deviation of the ui values. The model then for the zero-

inflated beta-binomial proportion becomes πi = exp(β0 + β1vi + β2zi)/(1 + exp(β0 +

β1vi + β2zi)). The maximum likelihood estimate (mle) of β0, β1, β2, φ and ω for the

mutagenic data are reported in Table 4.14. Both Naive and EM analysis methods

suggest a positive dose effect and a negative litter size effect, however the magnitudes

of the effect are very different. The EM method shows more dose effect than that

revealed from the Naive method, but the estimate for liter size effect obtained from

the Naive method is more than that calculated from the EM method. Moreover,

the estimates of over-dispersion parameter φ and zero-inflation parameter ω from the

Naive method are higher than those obtained from the EM method. The estimate

of the measurement error parameter σ is 0.197 and its 95% confidence interval is

(0.191, 0.203) which indicates that measurement error exists in the exposure dose

rate.

The data in Table 4.13 does not contain any missing values. However, in prac-
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tice, in Toxicology and mutagenic studies, missingness can occur in addition to the

covariate measurement error. So, to illustrate our method of analyzing mutagenic or

toxicological data in the form of proportions that follow the ZIBB model, but contain

missing responses in addition to covariate measurement error we generate missingness

using the model (4.22). Estimates of the parameters β0, β1, and φ and their variances

are given in Tables 4.15 to Table 4.17 for MCAR, MAR and MNAR respectively. The

estimate of the measurement error parameter σ is 0.167, 0.158 and 0.105 for MCAR,

MAR and MNAR respectively and their corresponding 95% confidence intervals are

(0.161, 0.204), (0.121, 0.189) and (0.102, 0.157) which indicate that measurement error

exists in the exposure dose rate with all three missing mutagenic data.

4.5 Discussion

In this chapter, we have developed an estimation procedure for the parameters of a

zero-inflated beta-binomial model in presence of covariate measurement error with

or without missing response. We proposed the EM method to deal with covariate

measurement error and missing response. The simulation studies for different degrees

of covariate measurement error and different missing data mechanisms show that

estimation by using the EM method performs well. Although the measurement error

model and missing data mechanism have been discussed extensively in many articles,

the current development for the estimation of the parameters of ZIBB in presence of

covariate measurement error with missing response is new.

Moreover, we focus on structural modelling here by specifying a normally dis-

tributed covariate measurement error model for ZIBB data. In the measurement

error literature, an alternative method is called functional modelling. Structural mod-
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elling assumes a known distribution for the unobserved covariate U while functional

modelling does not assume any distribution for U which is more robust.

We will develop a functional approach for ZIBB data with covariate measurement

error by using the SIMEX (Carroll et al. (2006)) method in the future.
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Figure 4.1: Effect of different degrees of measurement error σ on the RB of estimates

of the parameters under ZIBB model ignoring the covariate measurement error.
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Table 4.13: The number of females with 0, 1, 2, etc. dead implants when 5-10 zygotes

were implanted after matings during the first 7 days after irradiation of males with 0

(control), 300 R and 600 R.

Dose Dead Implants

(R) Implantations 0 1 2 3 4 5 6 7 Total dead

0 5 30 27 9 5 71 16.9

6 86 51 14 4 1 156 10.1

7 111 73 31 8 1 224 10.4

8 79 44 23 3 1 150 8.7

9 32 29 8 1 70 7.6

10 5 5 2 12 7.5

300 5 27 41 32 17 4 121 28.4

6 28 47 59 28 6 1 1 170 27.8

7 31 61 54 20 19 1 186 23.8

8 12 32 24 22 8 1 99 23.1

9 1 6 9 6 1 1 24 23.6

10 1 2 1 4 10.0

600 5 16 32 48 49 15 160 41.9

6 7 35 45 37 20 9 153 39.3

7 5 22 27 36 17 9 3 1 120 38.3

8 1 4 12 11 8 7 2 45 39.4

9 2 2 2 1 7 38.1

10 1 1 70.0
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Table 4.14: Estimates, standard error, variance and confidence interval of the param-

eters for mutagenic data.

Method Quantity β0 β1 β2 φ ω

Naive

MLE -0.638 0.674 -0.098 0.012 0.011

SE 0.097 0.024 0.013 0.007 0.011

VAR 0.009 0.001 0.000 0.000 0.000

95% LB -0.828 0.627 -0.123 -0.002 -0.011

95% UB -0.448 0.721 -0.073 0.026 0.033

EM

MLE -0.754 0.731 -0.085 0.010 0.009

SE 0.083 0.021 0.012 0.005 0.010

VAR 0.007 0.000 0.000 0.000 0.000

95% LB -0.917 0.690 -0.109 0.000 -0.011

95% UB -0.591 0.772 -0.061 0.020 0.029

Table 4.15: Estimates, standard error, variance and confidence interval of the param-

eters for mutagenic data under MCAR.

Method Quantity β0 β1 β2 φ ω

Naive

MLE -0.752 0.682 -0.084 0.017 0.004

SE 0.111 0.027 0.015 0.009 0.013

VAR 0.012 0.001 0.000 0.000 0.000

95% LB -0.970 0.629 -0.113 -0.001 -0.021

95% UB -0.534 0.735 -0.055 0.035 0.029

EM

MLE -0.816 0.738 -0.080 0.014 0.002

SE 0.102 0.024 0.012 0.007 0.011

VAR 0.010 0.001 0.000 0.000 0.000

95% LB -1.016 0.691 -0.104 0.000 -0.020

95% UB -0.616 0.785 -0.056 0.028 0.024
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Table 4.16: Estimates, standard error, variance and confidence interval of the pa-

rameters for mutagenic data under MAR.

Method Quantity β0 β1 β2 φ ω

Naive

MLE -0.690 0.676 -0.090 0.014 0.006

SE 0.121 0.028 0.017 0.008 0.011

VAR 0.015 0.001 0.000 0.000 0.000

95% LB -0.927 0.621 -0.123 -0.002 -0.016

95% UB -0.453 0.731 -0.057 0.030 0.028

EM

MLE -0.741 0.734 -0.075 0.010 0.004

SE 0.115 0.021 0.012 0.006 0.001

VAR 0.013 0.000 0.000 0.000 0.000

95% LB -0.966 0.693 -0.099 0.098 0.002

95% UB -0.516 0.775 -0.051 0.122 0.006

Table 4.17: Estimates, standard error, variance and confidence interval of the param-

eters for mutagenic data under MNAR.

Method Quantity β0 β1 β2 φ ω

Naive

MLE -1.111 0.982 -0.133 0.005 0.124

SE 0.140 0.324 0.072 0.026 0.160

VAR 0.020 0.105 0.005 0.001 0.026

95% LB -1.385 0.347 -0.274 -0.046 -0.190

95% UB -0.837 1.617 0.008 0.056 0.438

EM

MLE -0.812 0.667 -0.072 0.020 0.004

SE 0.140 0.324 0.065 0.026 0.160

VAR 0.020 0.105 0.005 0.001 0.026

95% LB -1.086 0.032 -0.213 -0.031 -0.310

95% UB -0.538 1.302 0.069 0.071 0.318



Chapter 5

Summary and Plan for Future

Study

5.1 Summary

We have developed estimation procedures for the parameters of a zero-inflated beta-

binomial model in presence of missing responses with or without covariate measure-

ment error. We have applied a weighted expectation maximization algorithm for the

maximum likelihood estimation of the parameters. Although missing data method-

ologies and measurement error procedure have been discussed extensively in the lit-

erature, the current development for the estimation of the parameters of zero-inflated

beta-binomial model in presence of missing responses with/without covariate mea-

surement error is new.

In chapter 2, we proposed an estimation procedure for the parameters of a zero-

inflated beta-binomial model in presence of missing responses only. The general

findings through simulations and data analyses are:

93
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(a) Data without covariates: For complete data and under MCAR and MAR, all

the parameters are well estimated irrespective of the sample sizes and percentage

missing. All of the AE, RB, VAR, and MSE show good behavior. However, all

the parameter estimates show shorter coverage probability, especially for φ, whose

coverage probability ranges from 0.91 to 0.93. Under MNAR, the CC method for all

the parameters yields considerably larger AE, RB, SE and MSE and lower coverage

probability, even for large sample size. The EM method shows excellent performance

in terms of all the measures for all three parameter estimates, except that the coverage

probability for the parameter φ is shorter (ranges from .87 to .91) in comparison to

that from complete data. However, these coverage probabilities are much closer to

the nominal coverage probability than those using the CC method. All parameters

are well estimated even at 25% baseline missing.

(b) Data with one covariate: Results for complete data are almost the same as those

with no covariate except that to see such good behavior much larger sample sizes are

required. Similarly, estimates of all the parameters, under MAR and MNAR, show

similar behavior as those with no covariates except that it now requires much larger

sample sizes.

In chapter 4, we have developed an estimation procedure for the parameters of a

zero-inflated beta-binomial model in presence of covariate measurement error with or

without missing response. We proposed the EM method for dealing with covariate

measurement error with or without missing response. The simulation studies for

different degrees of covariate measurement error and three missing data mechanisms

show that estimation by using the EM method performs well in terms of the properties

of the estimates using different measures, such as, average estimates (AE), relative

bias (RB), variance(VAR), mean squared error (MSE) and coverage probability (CP)
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of estimates.

5.2 Plan for Future Study: A Random Effects Tran-

sition Model For Longitudinal Binary Data With

Missing Response And Covariate Measurement

Error

In many biomedical studies, such as, the study of drug use, the probability of current

binary response depends on a previous binary response. For example, the probability

of a child having an obesity problem at time tij depends not only on explanatory

variables, but also on the obesity status at time ti(j−1). A transition model is useful

in such situations.

When we are interested in the dynamic features of transition patterns in repeated

measurements, an appropriate longitudinal way is to model the transition probabili-

ties over the study period. Longitudinal designs in bio-medical studies often collect

data on binary repeated measures that indicate the presence or absence of clinical or

biological states. Binary repeated measures can be conveniently modeled by Markov

chains with transition probabilities, for example, the probability of changing from use

to no use of a certain drug (or vice verse) in drug abuse treatment research. This

strategy brings intuitive statistical interpretation to the study of dynamic changes

in response to treatment through time and across subjects. Key targets of inference

include the probability that subjects in a specific condition shift from use to non

use and the probability that subjects maintain non use throughout the trial (Yang et
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al. (2007)). For complete longitudinal data, Markov transition models have been stud-

ied by several authors. For example, Korn and Whittemore (1979) model the proba-

bility of occupying the current state using the previous state. Wu and Ware (1979)

assume one binary event (e.g., death) though the covariate information as time passes

before the event. Zeger and Qaqish (1988) discuss a class of Markov regression models

for time-series by using a quasi-likelihood approach. Zeng and Cook (2007) propose

a estimation method based on joint transition models for multivariate longitudinal

binary data using GEE2. For incomplete data, Deltour et al. (1999) use stochastic al-

gorithms for Markov models estimation with intermittent missing data. Albert (2000)

develops a transitional model for longitudinal binary data, subject to nonignorable

missing data and proposes an EM algorithm for parameter estimation. In Albert and

Follmann (2003), an extended version of the Markov transition model was proposed

to handle nonignorable missing values in a binary longitudinal data set.

Measurement error happens when there is a difference between a measured value

of quantity and its true value. For example, measurable values are inconsistent when

repeated measures of a constant attribute or quantity are taken. Errors can also be

introduced by an inaccurate instrument(method) used in the experiment.

Let Yij be the outcome variable for subject i at the jth time point, Xij =

(Xij1, · · · , Xijp) be the vector of p covariates, i = 1, ..., n, and j = 1, ...,mi. De-

note Yi = (Yi1, ..., Yimi)
T and Xi = (Xi1, ..., Ximi)

T . A transition model for binary

response data is,

logit(P (Yij = 1|Hij) = Xijβ + κ(Hij, α), (5.1)

where Hij = (Yi1, Yi2, ..., Yi(j−1)) and κ(.) is a function of previous observations and

the current observation.
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A one-step Markov transition model assumes that yij(j > 1) is independent of

earlier observations given the previous observation yi(j−1). A simple transition model

which assumes a first-order Markov process for the response can be written as

logit(P (Yij = 1|Hij) = Xijβ + Yi(j−1)α. (5.2)

To capture the baseline heterogeneity across subjects (Albert and Follmann, 2003) a

random intercept effect can be used

logit(P01(ξi)) = logit[P (Yij = 1|Yi(j−1) = 0, ξi)]) = Xijβ01 + ξi

logit(P10(ξi)) = logit[P (Yij = 0|Yi(j−1) = 1, ξi)]) = Xijβ10 + νξi

 , (5.3)

from which we obtain

P01(ξi) =
exp(Xijβ01+ξi)

1+exp(Xijβ01+ξi)

P10(ξi) =
exp(Xijβ10+νξi)

1+exp(Xijβ10+νξi)

 , (5.4)

where β01, β10 are regression parameters, and ξi is the random effect distributed as

N(0, σ2). See Albert and Follmann (2003). The parameter ν represents the associa-

tion between P01(ξi) and P10(ξi). Note that P01 + P00 = 1 = P11 + P10 = 1. To see

the effect of ν for some fixed parameters see Figure 3 ( Albert and Follmann (2003)).

Model (5.3) is the random effect transition model (see Albert and Follmann (2003)

and Yang et al. (2007)).

Let θ = (β01, β10). Thus, the model for yij given xij, yi,j−1, ξi, and θ can be written

as

f(yij|xij, zij, yi,j−1, ξi, θ) =

 P
yij
01 (ξi)(1− P01(ξi))

1−yij if yi(j−1) = 0

P
1−yij
10 (ξi)(1− P10(ξi))

yij if yi(j−1) = 1.
(5.5)

Transition models are most appropriate when interest lies in understanding how

changes in the response occur over time and how covariates alter the governing tran-

sition probabilities (see Zeng and Cook (2007)). Models (5.5) can therefore be used
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to analyze complete binary longitudinal data. However, in practice some subjects

may not be available at all time points resulting in missing observations. Data anal-

ysis may be further complicated when measurement error occurs in some covariates.

The purpose of this paper is to develop inference procedures for parameters of the

random effects transition model (5.5) for longitudinal data having missing responses

and covariate measurement error. Four scenarios are considered: (a) no missing data

and no measurement error, (b) no missing data and measurement error (b) missing

data and no measurement error, and (d) missing data and measurement error.

In this paper we only consider the missing response which only incorporates in-

termittent missing with missingness indicators defined in Ibrahim et al. (2001). The

complete data and missingness can be expressed as

yi =

 yo,i if yi is observed,

ym,i if yi is missing.
(5.6)

and

ri =

 0 if yi is observed,

1 if yi is missing.
(5.7)

We suppose missing data indicator ri follows

f(ri|yi, xi;α) = (pi)
ri(1− pi)1−ri , (5.8)

where pi = P (ri = 1). To connect the distribution of ri to covariates, logistic regres-

sion is employed,

log
[ P (ri = 1)

1− P (ri = 1)

]
= wTi φ, (5.9)

where wTi includes both missing data and observed data information, φ is the vector

of parameters of the missing data process.
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Data analysis may be further complicated when measurement error occurs in some

covariates. Following Carroll et al. (2006) we model the error prone covariate xij as

xij = γ0 + γ1uij + γ2zij + eij,

where uij is the observed value for xij, zij is an error free covariate and eij is an

error term which follows N(0, δ2). We define ω = (γ0, γ1, γ2, ). We have the density

function for xij as

f(xij|uij, zij, ω) =
1√

2πδ2
exp{− 1

2δ2
[xij − (γ0 + γ1uij + γ2zij)]

2}. (5.10)

5.3 Estimation of parameters of model (5.5) hav-

ing missing observations and Measurement er-

ror

5.3.1 Estimation of parameters of model (5.5) for complete

data without measurement error

The complete data likelihood with all covariates xij measured perfectly can be written

as

n∏
i=1

[
mi∏
j=1

f(yij|xij, yi,j−1, ξi; θ)f(ξi;σ)

]
. (5.11)
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The log-likelihood for subject i is

li =

mi∑
j=1

logf(yij|xij, yi,j−1; θ) +milogf(ξi;σ)

=

mi∑
j=1

[[
yij(xijβ01 + ξi)− log[1 + exp(xijβ01 + ξi)]

]
Iyi,j−1=0

+
[
yij(−xijβ10 − νξi)− log[1 + exp(−xijβ10 − νξi)]

]
Iyi,j−1=1

]
+mi(−1

2
log2πσ2 − ξi

2σ2

2
).

(5.12)

We can consider the random effects as missing data and use EM method here. The

advantages of viewing ξi as missing data is that on knowing the ξi, all the Yij’s are

independent because ξi can model some correlations. In addition, the M step of

the EM algorithm which maximizes with respect to parameters and is similar to a

standard generalized linear model computation with the values of ξi treated as known.

The E-step: Given the observed data and current estimates of the parameters , the

conditional expectation of the complete data log-likelihood for the ith subject is

Qi(θ, σ|θ(t), σ(t)) = E[li|yi; θ(t), σ(t)]

=

∫
[logf(yi|xi, ξi; θ) + logf(ξi|σ)] · f(ξi|yi, xi;σ(t))dξi.

(5.13)

The key problem in maximizing (5.13) is the integral over random effects. In some

cases, this integral can have an analytical solution. However, in general, there is no

closed form for it. Then we apply the Monte Carlo EM algorithm here. We need to

sample a large number of ξi. since we have

f(ξi|yi, xi; θ(t);σ(t)) ∝ f(yi|xi, ξi; θ(t))f(ξi;σ
(t)), (5.14)

Adaptive rejection sampling method can be used to produce random draws from the

conditional distribution of f(ξi|yi, xi). At the tth iteration, for each subject i, we

generate ξ
(k)
i , k = 1, · · · , N , from f(ξi|yi, xi; θ(t), σ(t)) and choose θ(t+1) and σ(t+1) to
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maximize
∑n

i=1 1/N
∑N

k=1 logf(yi|xi, ξ(k)
i ; θ) and

∑n
i=1 1/N

∑N
k=1 logf(ξ

(k)
i ;σ) respec-

tively. If convergence is obtained, we can say θ(t+1) and σ(t+1) are the maximum

likelihood estimates of the parameters of model (5.5). Let ψ̂ = (θ(t+1), σ(t+1)).

The variance-covariance matrix of the estimates of the parameters are obtained

by inverting the observed information matrix at convergence, which is

H = −
n∑
i=1

1

N

N∑
k=1

∂2

∂ψ∂ψ′
li(ψ; yi, xi, ξ

(k)
i |ψ̂). (5.15)

5.3.2 Estimation of parameters of model (5.5) having missing

observations

The full likelihood for incomplete data and covariates xij without measurement error

is

n∏
i=1

[

mi∏
j=1

f(yij|xij, yi,j−1, ξi, θ)f(rij|wij, φ)f(ξi, σ)]. (5.16)

Then, the log-likehood for subject i is

li =

mi∑
j=1

logf(rij|wij, φ) +

mi∑
j=1

f(yij|xij, yi,j−1, ξi, θ) +milogf(ξi, σ)

=

mi∑
j=1

[
rij(wijφ)− log[1 + exp(wijφ)]

]
+

mi∑
j=1

[[
yij(xijβ01 + γ1ξi)− log[1 + exp(xijβ01 + γ1ξi)]

]
Iyi,j−1=0

+
[
yij(−xijβ10 − γ2ξi)− log[1 + exp(−xijβ10 − γ2ξi)]

]
Iyi,j−1=1

]
+mi(−1

2
log2πσ2 − ξi

2σ2

2
).

(5.17)

Since response yi has missing values, we use MCEM method again. The E-Step is

Qi(θ, σ, φ|θ(t), σ(t), φ(t)) = E
[
li|Y (o)

i , Ri, Xi; θ
(t), σ(t), φ(t)

]
=

∫ ∫
[logf(ri|wi, φ) + f(y

(o)
i , y

(m)
i |xi, ξi, θ)

+logf(ξi;σ)] · f(y
(m)
i , ξi|yoi , ri, xi; θ(t), σ(t), φ(t))dy

(m)
i dξi,

(5.18)
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At the tth iteration, for each subject i, we interactively generate ξ
(k)
i and y(m)(k), k =

1, · · · , N , from f(y
(m)
i |xi, ξi, y

(o)
i , ri; θ

(t), σ(t)) and f(ξi|yi, ri, xi; θ(t), σ(t), φ(t)) by the

adaptive rejection sampling method. ξi is generated based on

f(ξi|yi, ri, xi; θ(t), σ(t), φ(t)) ∝ f(yi|xi, ξi; θ(t), σ(t), φ(t)f(ri|xi, ξi;φ(t))f(ξi;σ
(t)).(5.19)

Then, choose θ(t+1), σ(t+1), φ(t+1) to maximize
∑n

i=1 1/N
∑N

k=1 logf(y
(o)
i , y

(m)
i |ξ

(k)
i , xi; θ),∑n

i=1 1/N
∑N

k=1 logf(ξ
(k)
i ;σ) and

∑n
i=1 1/N

∑N
k=1 logf(ri|ξ(k);ω) respectively. If con-

vergence is obtained, we can say θ(t+1), σ(t+1), and φ(t+1) are the maximum like-

lihood estimates of parameters of model (5.5) with missing responses. Let ψ̂ =

(θ(t+1), σ(t+1), φ(t+1)). Then the variance-covariance matrix of the estimates of the

parameters can be obtained by (5.15).

5.3.3 Estimation of parameters of model (5.5) for complete

Data with measurement error

Now we partition xi into the error-prone covariate ui which can only be observed

through the value of vi, and error-free covariate zi. We also suppose f(yi|ui, vi, zi) =

f(yi|ui, zi), which is called the non-differential error mechanism (Carroll et al., 2006,

p.36).

The likelihood for the complete data with error prone covariates ui and the error

free covariate zi is

n∏
i=1

[
mi∏
j=1

f(yij|uij, zij, yi,j−1, ξi; θ)f(uij|vij, zij;ω, δ)f(ξi;σ)

]
. (5.20)
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The log-likelihood for subject i is

li =

mi∑
j=1

logf(yij|uij, yi,j−1, zij, ξi; θ) +

mi∑
j=1

logf(uij|vij, zij;ω, δ) +milogf(ξi;σ)

=

mi∑
j=1

[[
yij(uijβ01u + zijβ01z + ξi)− log[1 + exp(uijβ01u + zijβ01z + ξi)]

]
Iyi,j−1=0

+
[
yij(−uijβ10u − zijβ01z − νξi)− log[1 + exp(−uijβ10u − zijβ01z − νξi)]

]
Iyi,j−1=1

−1
2
log(2πδ2)− 1

2δ2
[uij − (γ0 + γ1vij + γ2zij)]

2
]

+mi(−1
2
log2πσ2 − ξi

2σ2

2
).

(5.21)

Since both uij and ξi are unobserved, they can be treated as missing values. Then,

we apply MCEM method again. The E-Step is given as

Qi(θ, ω, δ, σ|θ(t), ω(t), δ(t), σ(t)) = E[li|yi, vi, zi; θ(t), ω(t), δ(t), σ(t)]

=

∫ ∫
[logf(yi|ui, zi, ξi; θ) + logf(ui|vi, zi;ω, δ)

+logf(ξi;σ)] · f(ui, ξi|yi, vi, zi; θ(t), ω(t), δ(t), σ(t))duidξi,

(5.22)

To use the Monte Carlo method to solve this integration problem, we need to

generate a large number of samples ξi and ui from f(ui, ξi|yi, zi, vi; θ(t), ω(t), δ(t), σ(t)).

Gibbs sampling technique is applied to convert a multivariate distribution sampling

problem to a univariate conditional distribution problem. Based on the following

f(ui|ξi, yi, vi, zi; θ(t), ω(t), δ(t), σ(t)) ∝ f(yi|ui, ξi, zi; θ(t), ω(t), δ(t), σ(t))f(ui|vi, zi;ω(t), δ(t))

f(ξi|ui, yi, vi, zi; θ(t), ω(t), δ(t), σ(t)) ∝ f(yi|ui, ξi, zi; θ(t), ω(t), δ(t), σ(t))f(ξi;σ
(t)),

(5.23)

at the tth iteration, for each subject i, we interactively generate ξ
(k)
i and u(k), k =

1, · · · , N , from f(ui|ξi, yi, vi, zi; θ(t), ω(t), δ(t), σ(t)) and f(ξi|ui, yi, vi, zi; θ(t), ω(t), δ(t), σ(t))

by adaptive rejection sampling method. Then, choose θ(t+1), σ(t+1), ω(t+1) and δ(t+ 1)

to maximize
∑n

i=1 1/N
∑N

k=1 logf(yi|ξ(k)
i , u

(k)
i , zi; θ),

∑n
i=1 1/N

∑N
k=1 logf(ξ

(k)
i ;σ) and∑n

i=1 1/N
∑N

k=1 logf(ui|vi, zi;ω) respectively. If convergence is obtained, we can say

θ(t+1), σ(t+1), ω(t+1) and δ(t+1), are the maximum likelihood estimates of the parame-

ters of model (5.5) with covariate measurement error. Let ψ̂ = (θ(t+1), σ(t+1), ω(t+1), δ(t+1)).
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Then the variance-covariance matrix of the estimates of the parameters can be ob-

tained by (5.15).

5.3.4 Estimation of parameters of model (5.5) having missing

observations with measurement error

The full joint likelihood considering covariate measurement error and missing data

process is the product of four conditional distributions as

n∏
i=1

[
mi∏
j=1

f(yij|uij, zij, yi,j−1, ξi; θ)f(rij|ξi, uij, zij, ri,j−1;φ)f(uij|vij, zij;ω, δ)f(ξi;σ)

]
,

(5.24)

where yij is composed of observed part y
(o)
ij and missing part y

(m)
ij . The log likelihood

contributed from subject i is

li =

mi∑
j=1

logf(rij|wij;φ) +

mi∑
j=1

logf(yij|uij, zij, ξi; θ)

+
∑mi

j=1 logf(uij|vij, zij;ω, δ) +milogf(ξi;σ)

=

mi∑
j=1

[
rij(wijφ)− log[1 + exp(wijφ)]

]
+

mi∑
j=1

[[
yij(uijβ01u + zijβ01z + ξi)− log[1 + exp(uijβ01u + zijβ01z + ξi)]

]
Iyi,j−1=0

+
[
yij(−uijβ10u − zijβ01z − νξi)− log[1 + exp(−uijβ10u − zijβ01z − νξi)]

]
Iyi,j−1=1

−1
2
log(2πδ2)− 1

2δ2
[uij − (γ0 + γ1vij + γ2zij)]

2
]

+mi(−1
2
log2πσ2 − ξi

2σ2

2
).

(5.25)

The E-step of the EM algorithm is to calculate the expected value of the complete

data log-likelihood given the observed data and current parameter estimates. The
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E-Step gives,

Qi(θ, ω, δ, σ, φ|θ(t), ω(t), δ(t), σ(t), φ(t)) = E[li|y(o)
i , ri, vi, zi; θ

(t), ω, δ, σ(t), φ(t)]

=

∫ ∫ ∫
[(logf(ri|y(o)

i , y
(m)
i , ui, zi, ξi;φ)

+logf(y
(o)
i , y

(m)
i |ui, zi, ξi; θ)

+logf(ui|vi, zi;ω, δ) + logf(ξi;σ)]

·f(y
(m)
i , ui, ξi|y(o)

i , ri, vi, zi; θ
(t), ω(t), δ(t), σ(t), φ(t))

dy
(m)
i duidξi.

(5.26)

For each subject i, at the tth iteration, the kth (k = 1, 2, ..., N) sample can be

generated for (y
(m)(k)
i , u

(k)
i , ξ

(k)
i ) by using the same method as the above scenario. For

a given N , Qi(θ, ω, δ, σ, φ|θ(t), ω(t), δ(t), σ(t), φ(t)) can be approximated by 1
Ni

∑Nt
k=1 li,

where li can be calculated by replacing (y(m), ui, ξi) with (y
(m)(k)
i , u

(k)
i , ξ

(k)
i ). In the

M step, we maximize
∑n

i=1Qi using maximum likelihood to obtain the updated es-

timates. We can say θ(t+1), σ(t+1), ω(t+1), δ(t+1) and φ(s+1) are the maximum likeli-

hood estimates of the parameters of model (5.5) with missing response and covariate

measurement error. Let ψ̂ = (θ(t+1), σ(t+1), ω(t+1), δ(t+1), φ(s+1)). Then the variance-

covariance matrix of the estimates of the parameters can be obtained by (5.15).



Appendix

1. The estimating equations and the elements of the

observed Fisher information matrix for data under

the beta-binomial Model

Estimating equations for beta binomial data are as follows.

∂l

∂βj
=

n∑
i=1

[
yi−1∑
r=0

1

πi + rφ
−

mi−yi−1∑
r=0

1

1− πi + rφ

]
∂πi
∂βj

= 0,

∂l

∂φ
=

n∑
i=1

[
yi−1∑
r=0

r

πi + rφ
+

mi−yi−1∑
r=0

r

1− πi + rφ
−

mi−1∑
r=0

r

1 + rφ

]
= 0.

The elements of the observed information matrix for beta binomial data can be

obtained from the elements of the second derivative matrix for beta binomial data

which are given blow.

∂2l

∂βjβs
= −

n∑
i=1

[
yi−1∑
r=0

1

(πi + rφ)2 +

mi−yi−1∑
r=0

1

(1− πi + rφ)2

][
∂πi
∂βj

∂πi
∂βs

]

+

[
yi−1∑
r=0

1

πi + rφ
−

mi−yi−i∑
r=0

1

1− πi + rφ

]
∂2πi
∂βjβs

,
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∂2l

∂βj∂φ
=

n∑
i=0

[
−

yi−1∑
r=0

r

(πi + rφ)2 +

mi−yi−1∑
r=0

r

(1− πi + rφ)2

]
∂πi
∂βj

,

∂2l

∂φ2
=

n∑
i=1

[
−

yi−1∑
r=0

r2

(πi + rφ)2
−

mi−yi−1∑
r=0

r2

(1− πi + rφ)2
+

mi−1∑
r=0

r2

(1 + rφ)2

]
.

2. The Elements of the observed Fisher informa-

tion matrix for data under the zero-inflated over-

dispersion beta-binomial model

Define

B1 =
∏mi−1

r=0 (1 + rφ), B2 =
∏mi−1

r=0 (1 + rφ − πi), B3 =
∑mi−1

j=0

∏mi−1
r=0,r 6=j(1 + rφ −

πi), B4 =
∑mi−1

j=0 j
∏mi−1

r=0,r 6=j(1 + rφ − πi))), B5 =
∑mi−1

j=0 j
∏mi−1

r=0,r 6=j(1 + rφ), B6 =∑mi−1
j=0

∑mi−1
k=0,k 6=j

∏mi−1
r=0,r 6=j,r 6=k(1 + rφ− πi)), B7 =

∑mi−1
j=0

∑mi−1
k=0,k 6=j k

∏mi−1
r=m,r 6=k,r 6=j(1 +

rφ− πi), B8 =
∑mi−1

j=0 j
∑mi−1

k=0,k 6=j k
∏mi−1

r=0,r 6=j,r 6=k(1 + rφ), A1 = γ + B2

B1
, A2 = 1

B1
−B3,

A3 = B4B1−B2B5

B2
1

, A4 = B6

B1
, A5 = −B7B1−B3B5

B2
1

, A6 = −2B5(B4B1−B2B5)+B1(B8B1−B2B8)

B3
1

.

Then the elements of the observed Fisher information matrix for ZIBB model can be

obtained from the elements of the second derivative matrix for ZIBB model which

are written as

∂2li
∂βjβs

=

{[
−
(
A2

A1

)2

+
A4

A1

]
I{yi=0} +

[
−

yi−1∑
r=0

1

(πi + rφ)2 −
mi−yi−1∑
r=0

1

(1− πi + rφ)2

]
I{yi>0}

}
∂πi
∂βj

∂πi
∂βs

+

{
A2

A1

I{yi=0} +

[
yi−1∑
r=0

1

πi + rφ
−

mi−yi−i∑
r=0

1

1− πi + rφ

]
I{yi>0}

}
∂2πi
∂βj∂βs

,

∂2l

∂βj∂φ
=

{[
−A2A3

A2
1

+
A5

A1

]
I{yi=0} +

[
−

yi−1∑
r=0

r

(πi + rφ)2 +

mi−yi−1∑
r=0

r

(1− πi + rφ)2

]
I{yi>0}

}
∂πi
∂βj

,



Appendix 108

∂2li
∂βj∂γ

=

[
−A2

A2
1

I{yi=0}

]
∂πi
∂βj

,

∂2li
∂φ2

=

[
−
(
A3

A1

)2

+
A6

A1

]
I{yi=0}

+

[
−

yi−1∑
r=0

r2

(πi + rφ)2
−

mi−yi−1∑
r=0

r2

(1− πi + rφ)2
+

mi−1∑
r=0

r2

(1 + rφ)2

]
I{yi>0},

∂2li
∂φ∂γ

=

(
−A3

A2
1

)
I{yi=0},

∂2li
∂γ2

=
1

(1 + γ)2
− 1

A2
1

I{yi=0},

where
∂πi
∂βj

= xijπi(1−πi),
∂πi
∂βs

= xisπi(1−πi), and
∂2πi
∂βj∂βs

= xijxisπi(1−πi)(1−2πi).

3. Expressions for the elements of H1 and H2 from

estimates ψ̂1 and ψ̂2

Under MNAR the observed information H1 has the form

H1 = −Q′′(ψ, α|ψ(s), α(s)) =

−Q′′1(ψ|ψ(s)) 0

0 −Q′′2(α|α(s))

 ,
which shows that ψ̂ and α̂ are independent and we only need the first entry−Q′′1(ψ|ψ(s))

in the diagonal matrix to obtain the variance-covariance matrix of ψ̂1.

Now, it can be seen that

Q′′1(ψ|ψ(s)) =
k∑
i=1

∂2

∂ψ∂ψ′
li(ψ|yo,i, xi; ψ̂1) +

n∑
i=k+1

mi∑
ym,i=0

w
(s)
iyi

∂2

∂ψ∂ψ′
li(ψ|ym,i, xi; ψ̂1),

where

w
(s)
iyi

=
f(ym,i|xi;ψ(s))f(ri|xi, ym,i;α(s))

mi∑
ym,i=0

f(ym,i|xi;ψ(s))f(ri|xi, ym,i;α(s))
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and li(ψ|yi, xi; ψ̂1) are from the ZIBB model (3.4).

The weights are calculated from model (3.3) and model (3.8). Therefore, the

elements of Q′′(ψ, α|ψ(s), α(s)) regarding to ψ can be obtained by the expressions for

the elements of the second derivative matrix for ZIBB model.

Under MAR, after deleting the model for the missing data mechanism,

H2 = −Q′′(ψ|ψ(s)) = −
k∑
i=1

∂2

∂ψ∂ψ′
li(ψ|yo,i, , xi; ψ̂2)−

n∑
i=k+1

mi∑
ym,i=0

w
(s)
iyi

∂2

∂ψ∂ψ′
li(ψ|ym,i, xi; ψ̂2),

where

w
(s)
iyi

= f(ym,i|xi, ψ(s)).

The weights are calculated from the ZIBB model (3.3) and the log-likelihood function

li(ψ|yi, xi; ψ̂1) is also from the ZIBB model (3.4). Then, the elements of Q′′(ψ|ψ(s))

can be also obtained by the expressions for the elements of the second derivative

matrix for the ZIBB model.

4. Gibbs sampling

Gibbs sampling is the way to convert a multivariate sampling problem into a uni-

variate sampling problem. The point of Gibbs sampling is that given a multivariate

distribution it is simpler to sample from a conditional distribution. Suppose we want

to obtain

x = (x1, · · · , xp) ∼ q(x1, · · · , xp).

Denote the ith sample by X(i) = (x
(i)
1 , · · · , x

(i)
p ). We begin with some arbitrary set

of initial values ((x
(0)
1 , · · · , x(0)

p ), at interaction i(i ≥ 0). We sample the components in
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order, starting from the first component and proceeding with the following sampling

steps to get (x
(i+1)
1 , · · · , x(i+1)

p ).

x
(i+1)
1 ∼ q1(x1|x(i)

2 , · · · , x(i)
p )

x
(i+1)
2 ∼ q2(x2|x(i+1)

1 , x
(i)
3 · · · , x(i)

p )

...

x(i+1)
p ∼ qp(xp|x(i+1)

1 , · · · , x(i+1)
p−1 ).

Repeat the above step k times. Geman and Geman (1987) proved the Gibbs con-

vergence theorem that (x
(i)
1 , · · · , x

(i)
p ) converges to (x1, · · · , xp) ∼ q(x1, · · · , xp) as

i→∞. Because samples from the early iterations are not from the target posterior,

it is common to discard these samples. The discarded iterations are often referred to

as the “burn-in” period.
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