
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

9-17-2019

Performance of Buckets versus Min-Heap in the A* Search Performance of Buckets versus Min-Heap in the A* Search

Algorithm Algorithm

Sheeba Mohanraj
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Mohanraj, Sheeba, "Performance of Buckets versus Min-Heap in the A* Search Algorithm" (2019).
Electronic Theses and Dissertations. 7823.
https://scholar.uwindsor.ca/etd/7823

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7823?utm_source=scholar.uwindsor.ca%2Fetd%2F7823&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Performance of Buckets versus Min-Heap
in the A* Search Algorithm

By

Sheeba Mohanraj

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2019

c©2019 Sheeba Mohanraj

Performance of Buckets versus Min-Heap in the A* Search Algorithm

by

Sheeba Mohanraj

APPROVED BY:

M. Hlynka

Department of Mathematics & Statistics

X. Yuan

School of Computer Science

S. Goodwin, Advisor

School of Computer Science

September 17, 2019

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

Pathfinding is the search for the least cost route between two points on a map.

Given a map with a start node and a goal node, the pathfinding algorithm begins from

the start node and searches through the map exploring its neighbours until it finds

a path to the goal node. A* is the most popular pathfinding algorithm which uses

heuristics for finding the least cost path from the start node to the goal node. The

A* algorithm uses two parameters g cost(the actual cost of reaching the current node

from the start node) and the h cost(the estimated cost of reaching the goal node from

the current node). F cost is the sum of the g cost and the h cost. At each iteration,

the A* algorithm chooses the node with the lowest f cost from the open list to be

expanded. This node will be removed from the open list and added to the closed

list. This process is repeated until reaching the final node. The A* algorithm for

pathfinding is affected by its data structures, particularly by the frequent insertions

and deletions in the open list. Min-Heap is the commonly used data structure for

implementing the open list for A* algorithm, which takes O(log n) for insertion and

deletion. Since this is very expensive, we explored the idea of implementing the

open list with Buckets, which was initially introduced for improving the performance

of Dijkstra’s algorithm. We found that the bucket data structure produces better

results as it takes O(1) for inserting a node into the open list and O(bucketsize) for

deletion. We compared the performance of both the algorithm under various factors

to determine which was performing better.

IV

AKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Dr.Goodwin for

being patient with me and helping me to come up with the ideas for my thesis. Thanks

to his plenty of guidance and encouragement, I had a great time in researching the

field of pathfinding. It is my great pleasure to get an opportunity to be his student

and work with him.

I would also like to thank my committee members Dr.Hlynka and Dr.Yuan for

taking their time to review my thesis and for attending my thesis proposal and defense.

Thanks to their valuable suggestions and guidance for improving this thesis.

Finally, I would like to thank my family and friends for their support and encour-

agement over the years.

V

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

AKNOWLEDGEMENTS V

LIST OF TABLES VIII

LIST OF FIGURES IX

1 Introduction 1
1.1 Problem Statement . 1
1.2 Thesis Motivation . 2
1.3 Thesis Contribution . 3
1.4 Thesis Organization . 4

2 Background and Literature Review 5
2.1 Graph Representations . 5

2.1.1 Waypoints . 5
2.1.2 Navigation Mesh . 6
2.1.3 Grids . 7

2.2 Heuristics . 8
2.2.1 Manhattan Distance . 8
2.2.2 Euclidean Distance . 9
2.2.3 Octile Distance . 10

2.3 A* algorithm . 11
2.4 Properties of A* Algorithm . 13

2.4.1 Optimality . 13
2.4.2 Admissibility . 13
2.4.3 Consistency . 14

2.5 A* Operations . 15
2.5.1 Open List . 15
2.5.2 Closed List . 16

2.6 Data Structures . 16
2.6.1 Array . 16
2.6.2 Hash Table . 17
2.6.3 Min-Heap . 17
2.6.4 Multilevel Buckets . 18

2.7 Summary . 19

VI

3 Min-Heap and Buckets 21
3.1 Motivation . 21
3.2 Min-Heap . 25

3.2.1 Operations of Min-Heap . 26
3.3 Buckets . 31
3.4 Summary . 36

4 Experiments and Results 38
4.1 Implementation Specifications . 38
4.2 Experimental Setup . 39

4.2.1 Search Parameters . 40
4.3 Performance Evaluation . 41

4.3.1 Time . 41
4.3.2 Number of Nodes Expanded 42
4.3.3 Path Length . 42
4.3.4 Number of Operations . 43
4.3.5 Number of Buckets . 44

4.4 Results and Analysis . 45
4.4.1 Runtime . 46
4.4.2 Number of Operations . 53
4.4.3 Memory . 58

4.5 Summary . 62

5 Conclusion 64

6 Future Work 66

REFERENCES 67

VITA AUCTORIS 70

VII

LIST OF TABLES

1 Time Complexity Comparison of Different Data Structures 19

2 Runtime Comparison of 40x40 Map With Different Obstacle Density 51

3 Runtime Comparison of 200x200 Map With Different Obstacle Density 51

4 Runtime Comparison of 512x512 Map With Different Obstacle Density 53

5 Number of Operations of 280x280 Map With Different Obstacle Density 56

6 Number of Operations of 512x512 Map With Different Obstacle Density 58

VIII

LIST OF FIGURES

1 Waypoints . 6

2 Navigation Mesh . 6

3 Square Grid . 7

4 Manhattan Distance . 8

5 Euclidean Distance . 9

6 Octile Distance . 10

7 Consistency Diagram . 14

8 An example for pathfinding using A* algorithm 22

9 An example for pathfinding using A* algorithm 23

10 An example for pathfinding using A* algorithm 23

11 An example for pathfinding using A* algorithm 24

12 Example of Min-Heap data structure 26

13 Example of Min-Heap data structure 27

14 Example of Min-Heap data structure 28

15 Example of Min-Heap data structure 29

16 Example of Min-Heap data structure 29

17 Example of Min-Heap data structure 30

18 Example of Bucket data structure . 32

19 Example of Bucket data structure . 33

20 Example of Bucket data structure . 34

21 Example of Bucket data structure . 35

22 Map Size 512x512 . 39

23 Runtime for 512x512 size map . 41

24 Path length of the data structures . 43

25 Runtime of Map Sizes from 40x40 to 300x300 46

26 Runtime of Map Sizes from 360x360 to 560x560 47

IX

27 Runtime of Map Size: 40x40 with Obstacles: 5% to 40% 48

28 Runtime of Map Size: 200x200 with Obstacles: 5% to 40% 49

29 Runtime of Map Sizes: 40x40 to 560x560 50

30 Runtime of Map Size: 512x512 with different Obstacle Density 52

31 Number of Operations of Map Sizes: 40x40 to 300x300 54

32 Number of Operations of Map Sizes: 360x360 to 560x560 55

33 Number of Operations of Map Sizes: 40x40 to 560x560 56

34 Number of Operations of Map Size: 512x512 with Obstacles 57

35 Memory required for Map Size: 40x40 to 300x300 59

36 Memory required for Map Sizes: 360x360 to 560x560 60

37 Memory required for Map Size: 512x512 with different Obstacle Density 61

38 Memory required for Map Size: 512x512 with different Obstacle Density 62

X

CHAPTER 1

Introduction

1.1 Problem Statement

In any computer controlled game, the most basic requirement of an agent is to be

able to successfully navigate through the game environment. The agents in the video

games use the search technique, called pathfinding, to find the least cost route be-

tween any two points in the environment. The agent can be a single person, a vehicle,

or a combat unit in the genre of action game, simulator or a role-playing game. Real-

time strategy games often have characters sent on missions from their current location

to a predetermined or player determined destination. The pathfinding problems in-

clude transit planning, telephone traffic routing, maze navigation and robot path

planning[23]. If there are no additional constraints on the solution other than the

primary task of finding the least cost path, there are very simple search algorithms

that will always find the best path, if there exists one. Although these algorithms can

find the least cost path, they are often suboptimal solutions in terms of the resources

required for performing its operations.

The problem of pathfinding in commercial computer games has to be solved in

real-time, often under constraints of limited memory and CPU resources[24][2]. Early

solutions to the problem of pathfinding in computer games, such as depth first search,

iterative deepening, breadth first search, Dijkstra’s algorithm, best first search, A*

algorithm, and iterative deepening A*, were soon overwhelmed by the sheer exponen-

tial growth in the complexity of the game. More efficient solutions are required so as

1

1. INTRODUCTION

to be able to solve pathfinding problems on a more complex environment with lim-

ited time and resources. Therefore, in this thesis, we are researching on the optimal

solution for pathfinding problem on the basis of time and memory[9]

1.2 Thesis Motivation

For solving pathfinding problems, a universal problem-solving mechanism, search, is

used in artificial intelligence. Search algorithms are categorized into two types; in-

formed search and uninformed search. In the uninformed search strategy, also known

as blind search, searching is performed without having any knowledge about the goal

state[11]. Hence, the agent ends up searching all the possible paths in the search

space until reaching the goal state. This leads to over usage of memory and time for

finding the final path. Breadth-first search, Depth-first search and Iterative deepen-

ing search are some of the uninformed search strategies. To improve the efficiency of

the search, the knowledge about the estimated distance(heuristic function) from the

current state to the goal state was introduced. By adding the g cost, which is the

cost of the path from the start node to the current node, and the h cost, which is the

estimated cheapest cost from the current node to the goal node, we get the f cost that

determines which node is to be expanded. Best-first search(greedy search), Dijkstra’s

algorithm, Iterative Deepening A* search and A* search are the well-known informed

search strategies[20].

A* search is one of the best and popular technique used in pathfinding and graph

traversals. The A* algorithm has been modified into different versions by the re-

searchers to provide better performance. Among the various researches done in im-

proving the efficiency of A*, the number of operations performed for inserting and

deleting the nodes from the open and the closed lists have been the main focus, as

the cost of the A* algorithm is based on the operations done in these lists.

The motivation of this thesis is to reduce the cost of frequent insertion and deletion

2

1. INTRODUCTION

of nodes in the open and the closed lists. There are so many data structures to test

and compare results for implementing the open list in A* search. Min-Heap is the

commonly used data structure for implementing the open list. We have used the

bucket data structure for reducing the time taken for the overall operations in the

open list. In addition, the cost of the path is reduced by calculating the heuristics

using Octile distance which allows the agent to travel in 8 directions in the game

environment compared to Manhattan distance. As in the Manhattan distance, if it

takes two steps(horizontal and vertical movement) to reach the goal it can be replaced

by one step(diagonal movement) using Octile distance.

1.3 Thesis Contribution

The A* algorithm maintains two lists: open list and closed list, which requires cer-

tain operations to find the optimal path. The amount of time and memory required

for maintaining the open list and the closed list determines the performance of the

algorithm. These two lists can be created using various data structures, in which,

Min-Heap is one of the popular data structure used for performing operations in the

open list. However, it takes O(log n) for insertion and deletion as it has to perform

bubble-up and bubble-down for sorting the list. The insertion operation occurs ev-

ery time the neighbour nodes are added to the open list, and the deletion operation

occurs every time the node with the lowest f cost is deleted from the open list.

Another data structure that we used for implementing the open list and the closed

list for the A* search, is the bucket data structure. Buckets performs the insertion

operation with O(1) in the best case scenario and O(bucketsize) for the deletion

operation. However, the bucket data structure was introduced for improving the

Dijkstra’s algorithm and not many researchers have worked on using it for the A*

algorithm. The performances of both the data structures were compared and analyzed

based on various factors to determine which was performing better and under what

conditions. We expect buckets to outperform min-heap if the size of the buckets can

3

1. INTRODUCTION

be kept close to O(log n). This is due to there being 8 times as many insertions as

deletions when eight-directions moves are allowed.

1.4 Thesis Organization

This thesis is organized into 6 chapters. The first chapter covers the introduction to

the concept of pathfinding, and gives a brief explanation about the problem state-

ment, the motivation for this thesis and the thesis contribution. The second chapter

is about the background research and literature review. It discusses about the various

graph representations, methods for calculating the heuristic function, and the concept

of A* algorithm and its operations. It also explains some important data structures

used for implementing open list and the closed list. The third chapter introduces the

data structures used in this thesis for implementing A* and various factors considered

in producing better results. The fourth chapter gives the outline of the experiments

conducted, its results and the analysis. In this chapter we compare the results of

both the data structures used for the implementation. The fifth chapter provides the

summary of our analysis and concludes our work and the sixth chapter proposes the

future work which can be done to extend our thesis.

4

CHAPTER 2

Background and Literature Review

2.1 Graph Representations

Search spaces of pathfinding problems are commonly represented as graphs, where

states associated with the search space are represented by graph nodes, and the tran-

sition between states is captures by graph edges[10]. The architecture we choose for

a game will help us determine the features that the game can support easily, and the

features that will require significant effort to be implemented. It is important to know

that, for most games, all feasible path planning architectures are abstractions of the

space through which characters can walk in the game. This is because the physics

that used to simulate the world are not directly used as the path planning represen-

tation. So, in some sense, much of the debate here is related to what representation

most closely matches the underlying physics of the game world. Some of the common

representations of the maps are Grids, Navigation meshes and waypoints[22].

2.1.1 Waypoints

Waypoints are a set of points that refer to the coordinates in the physical space.

They were being widely used before the popularity of the navigation meshes grew.

Waypoints are often used for pathfinding as they can be specific to each path or be

a part of the game map. In real-time strategy games, the players can manually add

the path specific waypoints. The shortest paths between each pair of waypoints can

be pre-computed if the waypoints were small.

5

2. BACKGROUND AND LITERATURE REVIEW

The disadvantage of waypoints is that, the lack of walkabe edges in the graph

can affect the quality of the path. On the other hand, too many walkable edges will

impact storage and planning complexity[5].

Fig. 1: Waypoints

2.1.2 Navigation Mesh

Navigation Mesh, or Navmesh, is a three-dimensional object in the game world which

covers every space where entities can move around. It represents the world using con-

vex polygons with which it is easier to correctly perform smoothing both before and

during movement. In a two-dimensional environment, navmesh covers the unblocked

area of a map with a minimal set of convex polygons[3].

Fig. 2: Navigation Mesh

6

2. BACKGROUND AND LITERATURE REVIEW

Path planning on navigation meshes is usually fast, as the representation of the

world is fairly coarse. But this does not impact path quality as characters are free

to walk at any angle. Although navmesh can represent large space with just few

polygons, the time required to implement a navmesh is significant. Unlike waypoints

where change can be made easily if known ahead of time, in navmesh, changes can

be difficult or expensive to implement[6].

2.1.3 Grids

A grid is composed of vertices or points that are connected by edges to represent

a graph. It represents a world via an array of blocked(non-traversable) and un-

blocked(traversable) cells. Some of its implementations can include slope, terrain

type or other meta-information which is useful for planning[21]. The terrain costs in

grids are easy to dynamically update and the localization of grids is easy. However,

the grids are memory intensive in large worlds.

Fig. 3: Square Grid

Grids are easy to implement and can be easily modified. Some of the common

grid types are square, triangular and hexagonal. Square grids are the simplest and

the most popular grid graphs used for computer game developments. We have also

used square grids to run our experiments as it is easy to implement and produces

better results.

7

2. BACKGROUND AND LITERATURE REVIEW

2.2 Heuristics

In uninformed search strategies such as Breadth First Search, Depth First Search and

Iterative Deepening Search, they do not take the distance to the goal into account.

They perform search operations without having any information about reaching the

goal state until they stumbled upon one[19]. The heuristic function provides an

informed way to guess which neighbour of a node will lead to a goal. It is an estimate

of the cost of the optimal(cheapest cost) path from node n to the goal node. The

performance of heuristic search is commonly measured by the number of performed

node expansions. Some of the commonly used functions for calculating heuristics are

Manhattan distance, Euclidean distance and Octile distance.

2.2.1 Manhattan Distance

Manhattan distance is often used to calculate the heuristic function for grid-based

maps. The movement is restricted to only 4 directions(vertical and horizontal).

Fig. 4: Manhattan Distance

The Manhattan distance could be the best choice when the agent is only allowed

to move in 4 directions. It is calculated by taking the sum of the X and Y distances

to the destination.

8

2. BACKGROUND AND LITERATURE REVIEW

h(n) = |x1− x2|+ |y1− y2| (1)

Manhattan distance provides a good estimate of the time to reach the destination on

an open map. However, if the shortest path to the destination is circuitous, then the

Manhattan distance becomes a poor estimate.

2.2.2 Euclidean Distance

The Euclidean distance is the straight-line distance between two points in the search

space. Since the cost is calculated based on the direct movement by the agent from

the starting point to the goal point, Euclidean distance produces accurate results in

case of no obstacles. As Euclidean distance is shorter than Manhattan distance or

the Diagonal(Octile) distance, we will get shorter paths.

h(n) =
√
|x1− x2|+ |y1− y2| (2)

Fig. 5: Euclidean Distance

9

2. BACKGROUND AND LITERATURE REVIEW

2.2.3 Octile Distance

Octile distance is the extension of Manhattan distance that allows diagonal movements[1].

It is commonly used in grid-based maps.

Fig. 6: Octile Distance

The Octile distance is calculated using the following formula,

h(n) = max((x1-x2), (y1-y2)) + (
√

2− 1) ∗min((x1− x2), (y1− y2))

For our experiments, we used 1.4 as the value of the square root of 2, as it is the

the commonly used value for experiments.

Octile distance gives a shorter path compared to the Manhattan distance as two

step costs(horizontal and vertical movement) in Manhattan distance can be replaced

by one step cost(diagonal movement) in Octile distance. For our research, we have

used Octile distance for calculating the heuristic function on grid-based maps. We

fixed the movement cost for horizontal and vertical movement to be 10 and the move-

ment cost for diagonal movement to be 14.

10

2. BACKGROUND AND LITERATURE REVIEW

2.3 A* algorithm

A* is a greedy search algorithm that can be used to find solutions to many prob-

lems with pathfinding being one of them. It is the most popular and widely used AI

pathfinding informed search algorithm[14]. In a square grid having many obstacles

with a given starting node and a goal node, A* finds all the possible paths to reach

the goal node. This is done based on certain functions such as g(n), h(n) and f(n).

In a given graph G(V,E), where V refers to the vertices and E refers to the edges,

the search begins from the start node and reaches a node n on its way towards the

goal node. The movement cost to move from the start node to the node n gives us

11

2. BACKGROUND AND LITERATURE REVIEW

the g cost, represented by g(n) and the estimated movement cost to move from the

node n to the goal node gives us the h cost, represented by h(n). The sum of the

two movement costs g(n) and h(n) gives us the total cost f(n). Based on the f cost,

the node which is to be expanded next is chosen. In the A* search, two lists are

maintained: the open list and the closed list. The open list stores the nodes that are

to be expanded and the closed list stores the nodes that have already been expanded.

In Algorithm 1, the search begins by adding the start node to the open list. The

total cost f(n) is calculated by the following formula,

f(n) = g(n) + h(n)

The nodes adjacent to the start node are added to the open list, and the node with

the lowest f cost is selected from the open list to be expanded next. The expanded

node is then removed from the open list and added to the closed list. While the open

list is not empty, the next node with the lowest f cost is selected. If the current node

was the goal node, the process terminates and back-traces the path from the goal

node to the start node. If the current node was not the goal node, it is removed

from the open list and added to the closed list. Then all the possible neighbours of

the current node is checked if it is present in the closed list and the open list. If the

neighbour nodes are not present in either of the lists, it is then added to the open list

and the process continues.

On the other hand, if the neighbour node is present in the open list, then the f

value of the neighbour will be calculated and compared to the node(duplicated node)

already in the open list. If the neighbour’s f value is lesser than the duplicated node

in the open list, the duplicated node will be replaced by the neighbour node in the

open list. However, if the f value of the neighbour node is greater than the duplicate

node, the neighbour node will be discarded. This process is repeated until the goal

node is reached. A* algorithm is always said to find the optimal path if one exists.

The different data structures used for the open list also determines the memory and

12

2. BACKGROUND AND LITERATURE REVIEW

the time efficiency of the algorithm. In this thesis, we have analyzed the different

usages of the data structures and how it has impacted on the results.

2.4 Properties of A* Algorithm

2.4.1 Optimality

There are several search algorithms for solving the problem of pathfinding, but not

all the algorithms guarantee finding the least cost path from the start node to the

goal node. A* search algorithm always finds all the possible least cost paths from

the start node to the goal node. This path is called an Optimal path. If A* returns

a solution, that solution is guaranteed to be optimal(least cost) if all the cost esti-

mates(heuristics) are optimistic[15]. Among all the optimal algorithms that begins

from the start node and uses the same heuristic h, A* expands the minimal number

of paths[7].

2.4.2 Admissibility

A search heuristic h(n) is an estimate of the cost of the optimal path from the node

n to the goal node. A* is optimal if h(n) is an admissible heuristic, that is, provided

that h(n) never overestimates the cost to reach the goal[8][26]. Admissible heuristics

are by nature optimistic because it assumes the cost of solving the problem is less

than it actually is. Since g(n) is the exact cost to reach n, it is clear that f(n) never

overestimates the true cost of a solution through n. The heuristic function h(n) is

admissible if for every node n,

h(n)<=h*(n)

Straight-line distance is an example of an admissible heuristic because the shortest

path between any two points is a straight line, so the straight-line distance cannot be

an overestimate.

13

2. BACKGROUND AND LITERATURE REVIEW

2.4.3 Consistency

A heuristic function h(n) is consistent if for every node n and every successor n’

generated by an action a[18],

h(n) <= c(n,a,n’) + h(n’)

Fig. 7: Consistency Diagram

This is a form of triangle inequality, which depicts that each side of a triangle cannot

be longer than the sum of the other two sides. This implies that f(n) never decreases

along a path from the root. Considering f* to be the cost of the optimal solution

path. A* expands all nodes n with f(n) <f*, and may expand some nodes right on

the goal contour before selecting a goal node. The optimality of the A* algorithm

can be proved by the following theorems.

Theorem 1 If the heuristic is consistent, f value along any path is non-decreasing[7].

Based on Theorem 1, the heuristic is consistent when the f values of the expanded

nodes by the A* algorithm are never decreasing. This theorem also indicates that

the A* algorithm will not revisit(no need to check for the duplicates) the nodes that

14

2. BACKGROUND AND LITERATURE REVIEW

have already been visited and added to the closed list.

Theorem 2 If the heuristic is admissible and consistent, A* could find an optimal

path[7].

The heuristic is said to be admissible when only those nodes whose f values are

less(or equal) to the optimal cost path C*, that is, f(n) is less than or equal to C*

are expanded. Based on both the theorems, we can prove that our implementation

of A* is admissible and consistent, so it provides us an optimal solution.

2.5 A* Operations

The A* algorithm maintains two lists for performing its operations. One is the open

list and the other is the closed list. The open list keeps track of those nodes that need

to be examined, while the closed list keeps track of those nodes that have already been

examined. The open list performs operations such as, insertion, deletion, contains

and update. For each iteration, the node with the lowest f-cost is removed from the

open list(deletion), and the presence of their neighbour nodes are checked in the open

list before adding them(contains). Then those neighbour nodes are added to the open

list(insertion). After inserting the nodes to the open list, they are sorted based on

the f-cost(update). In this thesis, we focus on how these operations impact on the

performance of the A* algorithm.

2.5.1 Open List

Initially, the open list contains only the start node, whereas the closed list is empty.

After expanding the start node, it is removed from the open list and added to the

closed list. Later the adjacent nodes of the start node are added to the open list and

the nodes with the lowest f cost is selected from the open list, and it is expanded.

After expanding, the current node is added to the closed list that maintains the list

of nodes that have already been visited, and the neighbours of the current node is

15

2. BACKGROUND AND LITERATURE REVIEW

added to the open list. This process is done repeatedly in the main loop until the

current node is the same as the goal node.

The performance of the algorithm mainly depends on the number of insertions,

deletions, contains and update done in the open list. As the data structures have a

major impact on the time complexity of the algorithm, in our research, we have used

difference data structures: Min-Heap and Buckets for the implementation of the open

and closed list.

2.5.2 Closed List

Comparing to the open list, the closed list does not perform as many operations. The

nodes which are expanded are added to the closed list to make sure that those nodes

do not have to be expanded again by the agent. Before every insertion of the node

in the open list, the closed list is checked for the presence of that node in it. Since

the closed list does not perform much operations, it does not necessarily impact the

performance of the algorithm.

2.6 Data Structures

In this chapter, we discuss about the various data structures used for the imple-

mentation of open and closed list. Among the various data structures, some of the

commonly known ones are the array(sorted and unsorted), hash table, Min-Heap and

buckets. The time and memory required for performing the operations of the open list

determines the efficiency of the A* algorithm. In this thesis, we have used Min-Heap

and bucket data structure for the implementation.

2.6.1 Array

The open list can be implemented using array in two ways, sorted and unsorted. In

the unsorted array, the number of operations required for inserting a node into an

16

2. BACKGROUND AND LITERATURE REVIEW

array takes O(1) as it is stored in the last location in the array. For the deletion of

the node, it takes O(n) as it has to scan the unsorted array to find the node to be

deleted. It takes O(n) for the checking the presence of the node in the open list and

updating it, as it has to scan through the array to find the node.

In the sorted array, the number of operations required for inserting a node in the

array takes O(n) as it has to sort the array every time a node is added. However, for

the deletion of the node, it only takes O(1) because the array is already sorted and

the location of the node with the lowest f-cost will be at the end of the array. When

we use binary search for checking whether the node is in the array, we require O(log

n) operations. If the node is already in the open list, it takes O(log n) to find the

node and O(n) to update the node in the list.

2.6.2 Hash Table

In the hash table, the values are stored as index which is a key/value pair. However,

in case the keys are larger, we have to convert the large keys into smaller keys by

using hash functions. By using the key, we can access the element in O(1) time.

Hence insertion of a node will take O(n). Hash tables become quite inefficient when

there are collisions; when two keys are hashed to the same slot(index). Due to this

collision, the scanning of the array list for the node consumes more time and leads to

O(n) operations for removing the node from the array [16].

2.6.3 Min-Heap

Min-Heap is the most commonly used data structure for the implementation of the

open list. It is a complete binary tree in which the value of the parent node is always

smaller than or equal to its children node[17]. This data structure allows us to per-

form the insertion and deletion in logarithmic time. Min heap is mostly implemented

using array. For inserting and removing a node from the array, we perform two oper-

ations, up-heap(bubble up) and down-heap(bubble down).

17

2. BACKGROUND AND LITERATURE REVIEW

For inserting a node to the heap, the new node should be placed at the last posi-

tion just beyond the rightmost node at the bottom level of the tree or as the leftmost

position of a new level, if the bottom level is already full. After inserting it at the

last position, the value of the new node is compared to the value of its parent node to

verify if its value is larger than the parent node. If not, the positions will be swapped.

This insertion process takes O(log n).

For removing a node from the heap, we delete the node at the first position(root)

of the tree and replace the position with the node at the left position at the bottom-

most level. After replacing, we compare the value of the node with its children node

to check if the value is smaller than its children. If not, we the positions will be

swapped. Hence, the deletion of the node from the heap takes O(log n).

For checking if the open list contains the node, it takes O(n) as it has to scan

through the entire tree. If the node is already in the open list, it takes O(n) to find

it and O(log n) to update its value in the open list.

2.6.4 Multilevel Buckets

A bucket is a list of nodes whose labels fall within a given range. In a multilevel

bucket, the lowest bucket level is 0 and the highest bucket level is k-1[13]. When

using the bucket for the implementation of open list, if each node is inserted into

a separate bucket it only takes O(1) operation for insertion of the node. Whereas

removing the node from the bucket depends on the size of the bucket. In this case,

if n number of nodes are entered in each bucket, it takes O(1) to remove the node at

the lowest bucket level. Although, scanning through the buckets to find the node still

takes O(n) to go through the entire tree. In this thesis, we have discussed about the

various possibilities of performing the insertion and deletion operations in the bucket,

and have compared it with Min-Heap data structure.

18

2. BACKGROUND AND LITERATURE REVIEW

2.7 Summary

From the above discussions about the various data structures that can be used for

the implementation of the open list, it is difficult to narrow down to one specific data

structure that would perform well in all the four operations of the open list and the

closed list. Each data structure has its own pros and cons in every operation of the

open list.

Data Structure Insert Delete Contains Update

Unsorted Array O(1) O(n) O(n) O(n)

Sorted Array O(n) O(1) O(log n) O(n)+O(log n)

Hash Table O(1) O(n) O(1) O(1)

Buckets O(1) O(k) or O(n/k) O(n) O(n) or O(n)+O(n/k)

Min-Heap O(log n) O(log n) O(n) O(n)+O(log n)

Table 1: Time Complexity Comparison of Different Data Structures

In the above table, when we look at the sorted and unsorted array, the insertion

operations takes only O(1) in the unsorted array as it is easier to insert a node in an

unsorted list whereas it takes O(n) in the sorted array since the array list is sorted

every time an element is inserted into the array. However, the deletion operation

takes O(n) in the unsorted array and O(1) in the sorted array since in the sorted

list, it is easier to locate the element compared to the unsorted list where we need to

compare the value of each element to find the lowest valued node.

For the insert operation, among the five data structures we have compared, sorted

array is the highest with O(n) operations for performing the insert. When looking

at the hash table, the insertion of the node in the list seems to take O(n) under the

worst-case scenario, which is still lesser than the Min-Heap. But the hash table still

has its own disadvantages when it encounters collision. The Min-Heap data structure

19

2. BACKGROUND AND LITERATURE REVIEW

seems to take more time to perform insertion and deletion compared to the sorted

array, unsorted array and the hash table, which is O(log n).

The bucket data structure seems to be performing better than the Min-Heap in

certain cases, though the size of the buckets and the number of nodes determine the

time complexity of the bucket data structure. In this thesis, we discuss in details

about the differences in the time complexity of using the buckets and Min-Heap for

the implementation of the open list.

20

CHAPTER 3

Min-Heap and Buckets

3.1 Motivation

Based on our research, we came to know that there are various ways in which pathfind-

ing problems can be solved. Different algorithms have been proposed and many

improvements have been made to them to optimize the path and reduce the time

and space complexities. Some of the popular search algorithms such as Dijkstra’s

algorithm and A* algorithm have also been modified to serve this purpose. For our

research, we focused on improving the performance of the A* search algorithm. When

it comes to A* algorithm, the use of heuristics have made a noticeable improvement

in finding optimal(lowest cost) paths. Among the commonly used methods for cal-

culating the heuristic function, in our research, we have used Octile distance which

gives a shorter path compared to Manhattan distance, as the Octile distance allows

the movement of the agent in 8 possible directions(north, south, east, west, northeast,

northwest, southeast and southwest), whereas Manhattan distance allows only 4-way

movement(east, west, north and south). For our experiment, we have assigned the

step cost of diagonal movement to be 14 and the step cost of horizontal and vertical

movement to be 10.

Many of the researches done for improving the A* algorithm have focused on open

list as it takes up too much resources for performing its operations(insert, delete,

contains and update). As we discussed in the previous chapter, there are many data

structures introduced for improving the efficiency of the open list. Though every data

21

3. MIN-HEAP AND BUCKETS

structure has its own advantages and disadvantages, our focus is on Min-Heap and

buckets. In the following example, we have taken a square grid with a start node and

a goal node.

Fig. 8: An example for pathfinding using A* algorithm

In Fig 8, the white nodes represent the traversable(unblocked) nodes and the black

nodes represent the block/obstacle in the grid. Initially, we begin our search from the

start node that is marked as S in Fig 8. The start node is first added to the open list,

and the closed list will be empty. After expanding the start node, the neighbours of

the start node are added to the open list if they are not already in the open list, and

the start node is added to the closed list as shown in Fig 9. The blue nodes represent

the neighbour(adjacent) nodes which are added to the open list. Among the nodes

added to the open list, the node with the lowest f cost is selected for expansion.

In the below example, the node with the lowest f value(14) is selected for expan-

sion. Before adding this current node to the closed list, we verify if the closed list

already contains the current node. If it contains the current node and if the f cost

of the current node is smaller than the duplicate node in the list, the value will get

updated. If not, the node will get added to the closed list.

22

3. MIN-HEAP AND BUCKETS

Fig. 9: An example for pathfinding using A* algorithm

As shown in Fig 10, after the node with f value 14 is selected to be expanded, the

f values of its adjacent nodes are calculated and added to the open list if they are not

already in the open list or the closed list. From the existing nodes in the open list,

the node with the smallest f value is again selected for the next expansion.

Fig. 10: An example for pathfinding using A* algorithm

23

3. MIN-HEAP AND BUCKETS

This process is continued until the current node is the same as the goal node.

Once the current node is the same as the goal node, we return the final optimal(least

cost) path found. There are possibility of situations where the obstacles are higher in

a map that no path can be found from the start node to the goal node. As we move

closer to the goal node, the f cost is increased but the h cost(which is an estimated

cost of reaching the goal node from the current node) is decreased.

In Fig 10, the green nodes represent the optimal(least cost) path found from the

start node to the goal node. As the agent moves towards the goal, the g cost of the

nodes increases while the h cost decreases with becoming zero at the goal node as

seen in Fig 11. It can also be seen that there are some nodes which are not expanded

in the grid. Since the A* algorithm always chooses the nodes with the lowest f value,

the nodes whose f values are much higher will be ignored; it means those paths are

longer and costlier to travel.

Fig. 11: An example for pathfinding using A* algorithm

So, there is no need for the agent to visit all the nodes in the grid to find the short-

est(least cost) path. This is one of the advantages of using A* algorithm for pathfind-

ing. The efficiency of the algorithm is determined by finding the optimal(least cost)

24

3. MIN-HEAP AND BUCKETS

path using the A* algorithm that requires a large number of insertions and deletions

from the open list and the closed list. For this purpose, a data structure which can

reduce the number of operations required for the insertion and deletion has to be

used. This motivated us to use the commonly used Min-Heap data structure for A*

algorithm and compare it with the Bucket data structure which was mainly intro-

duced for the Dijkstra’s algorithm.

When we insert a new node into the open list using the Min-Heap data structure,

the node gets added to the last position at the bottom-level of the tree and is then

compared with its parent; this process is called up-heap. Likewise, for removing a

node from the open list, we perform the down-heap operation where the leaf node

is moved to the first position(root) and the node in the root position(node with the

lowest f cost) is removed. From this it is clear that the insertion and the deletion

operations performed in the open list takes O(log n) using Min-Heap. This led us to

consider the bucket data structure where the insertion might take O(1) in the best-

case scenario and O(k) for deletion, where k is the size of the bucket. We compared

the performance of both the data structures by measuring it based on various factors

such as runtime, memory, number of operations and the number of buckets.

3.2 Min-Heap

Min-Heap, as we discussed in the previous chapter, is one of the popular data struc-

tures used for implementing the open and closed list. Although the closed list performs

only insert and contains operations compared to open list which performs insert, re-

move, contains and update. A Min-Heap is a binary tree in which each node in the

tree is smaller than its children. Each node in the tree has an index for identifying its

location in the tree. We have stored the nodes of the heap in ArrayLists so that when

we test our algorithm in larger maps, the elements can be added to the ArrayList as it

does not require a fixed size to be declared when creating an object. In the following

we discuss in detail about how the operations are formed by the Min-Heap.

25

3. MIN-HEAP AND BUCKETS

3.2.1 Operations of Min-Heap

The four main operations of the open list such as: Insertion, Deletion, Contains and

Update, and the two operations of closed list such as Insertion and Contains, can be

performed using the Min-Heap data structure.

In Fig 12, we have taken an array of 6 elements which will be built into a Min-

Heap. The elements in the array are stored in an unsorted manner. Each node has an

array index to identify its position. The array index starts from location 0. The first

element of the array, 2, is added to the first location of the Min-Heap. When adding

the second element of the array to the heap, the second node(child node) is compared

to the first node(parent). Since 5 is greater than 2, it is added to the second location

in the heap. Likewise, other elements are added to the heap. Every time a node is

added/removed from the heap, we check if the value of the current node is greater

than its parent node.

Fig. 12: Example of Min-Heap data structure

26

3. MIN-HEAP AND BUCKETS

If not, we perform the up-heap operation for insertion and down-heap operation

for deletion. In the following we explain in detail how the operations are performed

based on Min-Heap data structure.

Insertion:

When inserting a node into the open list, according to the Min-Heap data struc-

ture, the new node is added to the position p just beyond the rightmost node at the

bottom level of the tree or as the leftmost position of a new level, if the bottom level

is already full. Every time a new node is added to the last position of the tree, its

f cost is compared to the f cost of its parent. Min-Heap is a complete binary tree,

where the parent node should always be smaller than its children nodes. When the

condition is not satisfied, the position of the parent node gets switched with its child

node. This swapping is continued until the condition is met.

Fig. 13: Example of Min-Heap data structure

Fig 13 shows the example of insertion operation performed in the Min-Heap.

When adding the new element 12 to the heap, it is added to the last position of the

heap and its value is compared to the parent node. If it is lesser than the parent

27

3. MIN-HEAP AND BUCKETS

node, the positions of both the nodes will be swapped. In the above example, since

the child(12) is greater than its parent(7), the position of the nodes will remain the

same. If the child node was smaller than the parent node, the child node’s position

would have been swapped with the parent node and the current child node will again

be compared with its parent node. This takes O(log n) operations for inserting the

new node to the end of the heap as a leaf node and comparing its value to its parent

node and swapping positions until it satisfies the condition of the binary tree.

Deletion:

When deleting a node from the heap, the leaf node at the last position p at the

rightmost position at the bottom-most level of the tree is removed. To preserve the

entry from the last position p, we add it to the root r of the tree. The value of

the current node added to the root of the tree is compared to the value of its child

node. If the value of the current node is greater than the child node, the positions

of both the nodes get swapped. This process is continued until the tree satisfies the

conditions of the binary tree.

Fig. 14: Example of Min-Heap data structure

In Fig 14, the first element of the tree which has the smallest value is removed

28

3. MIN-HEAP AND BUCKETS

from the tree and the first position is replaced with the element 12 from the last

bottom-most position of the tree.

Fig. 15: Example of Min-Heap data structure

After replacing, the down-heap operation is performed where the parent node is

compared to the child node to check if the parent node is lesser than its child node

as shown in Fig 15 and Fig 16. This is continued until the heap satisfies the condition.

Fig. 16: Example of Min-Heap data structure

29

3. MIN-HEAP AND BUCKETS

Based on the down-heap operation, the check is performed for verifying the values

of the parent node and the child node. In Fig 15, since the value of the node in the

first position, 12, is greater than its child node, which is 5, their positions get swapped

in the tree. Then the current node, 12, is again compared with its child nodes whose

values are 8 and 10. Since it is greater than the child node, the positions get swapped

again until we get a binary tree.

The deletion operation takes O(log n) operations to remove a node from the tree

as it has to remove the first node of the tree and replace its position with the node

from the bottom-most level of the tree, and compare the values of the nodes with its

child nodes and perform swapping wherever necessary.

Fig. 17: Example of Min-Heap data structure

Contains:

The contains operation is performed for checking the existence of the current node in

the open or the closed list. This way the duplicate entry of the node in the list can

be prevented. When the contains operation is performed in the heap, before inserting

the node into the heap, we check if the node is already present in the heap. This

30

3. MIN-HEAP AND BUCKETS

is done by comparing the node to the already existing nodes in the heap with the

help of some attributes like a pointer to its predecessor or a specific location of the

node in the map. If the node is not present, we then add the node to the heap. This

operation takes O(n) as it has to check the entire tree from top or from bottom to

locate the node we are searching for.

Update:

In the update operation, we check the heap for the existence of the node in the

data structure and update its value if its value is smaller than the existing value.

We search for the node in the heap(contains) and replace the node with the updated

new value which is lesser than the current value. That is, we perform the contains

operation for finding the current node in the tree and when the node is found, we

compare the value of the current node with the already existing node. If the value of

the current node is lower than the value of the already existing node(duplicate) node,

we replace or update the node with its new lowest value.

This operation is expensive compared to the other operations of the open list, as

it involves searching for the node in the entire tree(contains) and then updating the

value of the node with its new lowest value found. The contains operation takes O(n)

and updating its value takes O(log n).

3.3 Buckets

The bucket data structure is quite different from the Min-Heap in the way the nodes

are stored in the open list. Buckets are sets arranged in a sorted manner. It stores all

the nodes whose values fall within a certain range[25]. We maintain different buckets

with different ranges. Each node is added to the bucket depending on the range the

value of the node comes under.

31

3. MIN-HEAP AND BUCKETS

As an example, we have taken an unsorted array of 8 elements which are as-

sumed to be the f values of the nodes we come across while searching for the final

optimal(least cost) path based on the A* search algorithm using the bucket data

structure. As shown in Fig 16, we have an unsorted array of 8 elements(0-7) which

will be added to the buckets. For these 8 elements we have taken 5 buckets with each

bucket holding values of different ranges.

Suppose, the first bucket will store values between 0 and 10, second bucket will

store the values between 11 and 20 and so on. The bucket size keeps growing based

on the number of values present within the chosen range for each bucket. Like the

Min-Heap data structure, the four operations(insert, delete, contains and update) of

the open list are also performed using buckets. In the following, we discuss in detail

about the four operations.

Fig. 18: Example of Bucket data structure

32

3. MIN-HEAP AND BUCKETS

Insertion:

As we know, the operation of insertion is to insert a new node which has the possi-

bility to be expanded, into the open list. We created different buckets for storing the

nodes, with each bucket holding a certain range of values it allows the nodes to be

inserted. Arraylists were created for storing the nodes in the buckets as it does not

require a fixed size to be declared when creating an object. Every time a node is to

be inserted into a bucket, we calculated the position of the bucket where the node

should be inserted based on the bucket interval.

Fig. 19: Example of Bucket data structure

The insertion of the node in the bucket is quite straightforward compared to Min-

Heap, as in the Min-heap we have to perform the bubble up(swapping) by comparing

the value of the nodes with its child node. So, it takes O(log n) operations for insert-

ing a node into a heap. The first element of the 29 is added to the bucket 3 as shown

in the Fig 19. Followed by the second element 25 in bucket 3, since each bucket holds

the range of 10.

33

3. MIN-HEAP AND BUCKETS

Fig. 20: Example of Bucket data structure

As shown in Fig 18, we have an unsorted array of 8 elements. We created 5 buck-

ets for storing these 8 elements. The first bucket stores the values between 0 and

10, the second bucket stores values between 11 and 20 and so on. The first element

of the array, 29, is added to the third bucket as it falls between the range 21-30, as

shown in Fig 20. Likewise, the second element of the bucket, 25, is added to the third

bucket which holds the range 21-30. Since the insertion of the node into the open list

is straight forward(no swapping is required) by buckets, it only takes O(1) operations

for inserting a new node into the bucket.

The nodes can also be stored separately in buckets with one node in each bucket.

But storing the nodes this way would require a larger number of buckets when deal-

ing with large sized maps. Instead, we can set a range of values based on the f values

of the nodes to store the nodes falling under the range. Either way, the insertion in

the bucket takes less operations compared to the Min-Heap.

Deletion:

When deleting the node from the bucket, the node with the lowest f value is se-

lected and removed from the open list and added to the closed list. When we insert

34

3. MIN-HEAP AND BUCKETS

the node into the open list, it takes O(1) operations as we do not have to perform the

bubble-up process like in Min-Heap for sorting the list. Whereas, when removing the

node from the list, we need to scan through the array to find the node with the lowest

f value if the bucket has more than one value stored in it. This operation takes O(k),

where k is the size of the bucket. This k depends on the number of nodes added to

the bucket and the number of buckets used.

However, the operations required for deletion of the node from the open list in

buckets is still cheaper than the Min-Heap, where it requires O(log n). For example,

in Fig 20, the nodes in the buckets are not sorted. So when deleting the least cost

node from the bucket, we need to scan the array to find the node as shown in Fig 20.

In the third bucket, there are 3 nodes: 29, 25 and 21. Among the 3 nodes, 21 will be

removed as it is the least cost. For removing 21 from the list, it will take O(3) as the

bucket size is 3.

Fig. 21: Example of Bucket data structure

Contains:

For the contains operation, before adding the node to the bucket, we need to check

if the node is already existing in the open list or the closed list. For this, we need

to search the list of all the buckets by comparing the name of the node with the

existing nodes. When the node is located, we return the index of the node in the

list. Sometimes, when we perform the Contains operation for finding the node, it

might already exist in the list but with a different value than the current value. In

this case, if the value is greater than the current value, it will be ignored. If not, the

35

3. MIN-HEAP AND BUCKETS

update operation will be performed for updating the value. This Contains operation

takes O(n) to scan through the buckets to find the node. The number of operations

required for performing this Contains operation is O(n) for both the data structures,

Min-Heap and Buckets.

This bucket data structure was mainly introduced for solving the problems of Di-

jkstra’s algorithm which does not perform the contains operations as it is performed

in A* algorithm.

Update:

Update operation is performed for updating the f value of the already existing node

in the bucket. Initially, we need to locate the node in the buckets for which we are

updating the value. The existence of the node in the bucket is first checked by per-

forming the contains operation and getting the position of the node in the bucket.

After finding the node, we compare the f values of the current node to the already

existing node(duplicate). If the value of the current node is lesser than the value of

the existing node, its value will get replaced.

This shows that the updating of the node in the bucket requires performing the

scanning(contains) first and then replacing the values of the node in the bucket. For

the scanning of nodes in the bucket, it requires O(n) operations and then replacing

the value of the node in the bucket takes O(log n), since after the value of the node

is updated, the nodes in the bucket have to be sorted based on the new lowest value.

3.4 Summary

Based on our analysis, it is clear that implementing the open list for A* algorithm

using the buckets produces better results comparing to the the Min-Heap data struc-

ture. Both the insertion and deletion operation takes only O(1) when performed

36

3. MIN-HEAP AND BUCKETS

using the buckets as it saves all the time that the Min-Heap takes in bubble-up and

bubble-down process of sorting the tree every time a node is inserted or deleted from

the tree. However, the contains and the update operations takes the same amount of

time in both Min-Heap as well as the buckets. Since we have calculated the heuristics

based on Octile distance, the agent was able to move in 8 directions, which made

the algorithm perform better with finding a more optimal solution. With this, we

can theoretically prove that the bucket data structure provides more efficient results

compared to the Min-Heap and the unsorted array.

37

CHAPTER 4

Experiments and Results

4.1 Implementation Specifications

The implementation and testing of our project was done using Java and Eclipse IDE.

The main goal of our thesis is to compare the different data structures for imple-

menting the open list in the A* algorithm. We began by setting the start node and

the goal node in a random map with obstacles, where the agent has to find the least

cost path from the start node to the goal node. Among the several search algorithms

for pathfinding, we chose to perform our research on the A* algorithm which is the

most popular informed search algorithm. This algorithm maintains two lists, open

list and the closed list. The operations performed in these two lists determines the

performance of the algorithm.

Min-Heap and buckets were the two data structures we used for implementing the

open list in the A* algorithm. For both the data structures, we used Arraylist for

creating the open list. Although the bucket data structure was mainly introduced for

Dijkstra’s algorithm and it produced good results, not much research was done using

the buckets for A* algorithm, this led us to implement A* algorithm using buckets.

For producing fair results, we tested both the data structures on the same random

game maps with the same number of obstacles, and we also varied the start and the

goal node in the map based on the obstacles. We used the Eclipse IDE to display the

map and the optimal path found through our experiment.

38

4. EXPERIMENTS AND RESULTS

4.2 Experimental Setup

For our thesis, we performed our implementations on squared-grid maps as it pro-

duces better results. In our environment, the agent is allowed to move in 8 di-

rections(horizontal, vertical and diagonal). The movement cost for horizontal and

vertical movement is 10, and the diagonal movement cost is 14. The heuristics were

calculated using the Octile distance.

Fig. 22: Map Size 512x512

We ran our experiments on the maps of commercial games whose sizes ranged

from 40x40, 80x80, 120x120 and 512x512. Some of the popular games were, Dragon

Age: Origin, Baldur’s Gate II and Warcraft III. The map sizes of Baldur’s Gate

II and Warcraft III are usually 512x512. Fig 22 is one of the results obtained by

running our experiment in one of a real-time game of map size 512x512. We also set

different percentages of obstacles in our maps for testing the performance of the data

structures. In setting percentage of obstacles, we did not consider the distribution

or clustering of obstacles. In hindsight, we think this might have been an interesting

39

4. EXPERIMENTS AND RESULTS

parameter to vary.

4.2.1 Search Parameters

Before running our experiments, we first need to determine the different map sizes we

are going to be using to run our tests. Secondly, we need to determine the percentage

of obstacles in the maps. We have used maps of sizes ranging between 40x40 and

560x560. Through our experiments, we found that when the percentage of obstacles

goes above 40 percent, the chances of finding a path from the start node to the goal

node reduces. Hence, we varied the obstacle percentages between 0% to 40% in our

maps. In our system, we have made the start node and the goal to be manually

changed and varied obstacle densities for every map. Since we are going to be com-

paring the performance of different data structures for implementing the open list of

the A* search, there are certain factors we need to consider. Min-Heap and buck-

ets are the two data structures we are going to be comparing and running our tests on.

The parameters we need to consider when comparing the performance of two data

structures can be the different sizes of maps, the percentage of obstacles in the map,

the number of operations each data structure takes for performing insert, delete, con-

tains and update, the time taken to find the least cost path, the number of nodes

expanded for finding the least cost path, the memory required for the open list and

the closed list etc. Additionally, we have made it possible in our system to change

the number of buckets used for storing the nodes in the open list. This is one of the

important parameters to consider when calculating the operations required for inser-

tion and deletion of nodes using bucket data structure. Based on these parameters,

we ran our tests in different data structures separately.

After running the tests with one data structure, we used the same parameters for

the other data structure to be getting a fair result. Based on the results, we can de-

termine which data structure performs better under which conditions for performing

the operations of the open list and the closed list of the A* search.

40

4. EXPERIMENTS AND RESULTS

4.3 Performance Evaluation

For comparing the different data structures based on certain parameters, we gathered

the results of the time taken to run the algorithm using different data structures, the

number of nodes expanded and added to the closed list, the length of the path found

from the start node to the goal node, the number of operations performed by the

open list and the closed list and the memory required for storing the lists(maximum

size of the open list and the closed list).

4.3.1 Time

Time is evaluated based on the duration taken to complete the process of finding the

least cost path beginning from the start node to the end of reaching the final node

and returning the optimal(least cost) path found. Determining the time taken to find

the path shows the efficiency of the search algorithm. As we have implemented our

algorithm in Java, the execution time may have some variations each time we run the

program.

Fig. 23: Runtime for 512x512 size map

41

4. EXPERIMENTS AND RESULTS

The java performance may get affected by the applications running in the back-

ground, as well as by the VM(Virtual Machine) driven by the JIT(Just In Time)

optimizer, garbage collection, thread scheduler, etc[12]. To get a precise execution

time we have to shut down all the other processes running in the background and run

our program a couple of times. We ran our program with the same parameters for

about 30 times to get an average execution time. As shown in Fig 23, the execution

time reduced from 1800ms and maintained between 1500ms and 1600ms after running

the program for more than 10 times. We tested this with the same parameters for

different data structures, and for both the data structures the execution time was

higher for the first 5 times we ran the program and then maintained the average

runtime for the remaining times.

4.3.2 Number of Nodes Expanded

As we have implemented the A* algorithm using different data structures, we have

considered the different parameters to look at when determining the performance of

the data structures. Keeping track of the number of nodes expanded is one of the

factors to be considered, as the A* algorithm will always choose the best node with

the lowest f value in the open list. Based on the efficiency of the data structures, the

number of nodes expanded may vary and it may affect the number of operations it

takes. However, since we use the A* algorithm, we do not require to check the number

of nodes in the final path, as the number of nodes in the final path will always be

the same. We have used the same parameters for both the data structures and kept

track of the number of nodes in the open list and the closed list.

4.3.3 Path Length

The path length refers to the number of nodes we have expanded along the final path

we found from the start node to the goal node. This path does not change for different

data structures we use for implementing the open list in the A* algorithm as along

as we perform it on the same map, as the heuristics we use satisfies the properties

42

4. EXPERIMENTS AND RESULTS

of consistency and admissibility. Although this parameter seem to be not quite re-

quired to evaluate the data structures, it will still be useful for verifying the results

produced. As the nodes in the final path will be the same for both the data structures.

Fig. 24: Path length of the data structures

Since the path does not change for different data structures, we can verify after

running the program if both the data structures have produced the same path. This

way the path length can be considered as a necessary parameter for performance

evaluation.

4.3.4 Number of Operations

For evaluating the performance of the A* algorithm using different data structures,

we keep track of different parameters like the time, number of nodes expanded, mem-

ory required and the path length. However, we also need to keep track of the number

of times the operations(insert, delete, contains and update) of the open list are called

during the process of finding the least cost path. Insert, delete, contains and update

are the operations carried out by the open list. Each operation varies in the number

of times it is being called based on the f values of the nodes.

43

4. EXPERIMENTS AND RESULTS

In the Min-Heap data structure, the insert operation of the open list takes O(log

n) times as the node is inserted at the last position of the bottom-most level of the

tree and it has to perform bubble-up operation to satisfy the condition of the binary

tree: the parent node should always be smaller than the child nodes. Similarly, the

delete operation takes O(log n) for deleting the node with the lowest f value in the

open list as it performs the bubble down process. As for the contains, we compare the

current node with the nodes in the open list to avoid duplicate node to be inserted

into the open list. This takes O(n) operations for checking the entire tree to locate

the node we are searching for. The update operation is called O(n) for checking the

entire tree for the node and O(log n) for updating the f value of the node if found.

For the bucket data structure, the insertion of node into the open list is quite

straight-forward as it does not have to perform bubble-up as in Min-Heap. Therefore

it takes O(1) for performing insertion in the buckets. However, deletion of the node

from the open list takes O(k) operations, where k is the size of the bucket . The size

of the buckets are not fixed as it depends on the number of buckets used and the

f values of the nodes. For insertion, we insert the nodes into an unsorted arraylist,

whereas, for deleting in order to remove the node with the lowest f value, we scan

through the list to remove the node with the lowest f value at the head of the list

since the A* algorithm performs the deletion of node from the open list by first in

first out(FIFO) method. However, the number of operations required for deleting the

node from the open list by buckets is still lesser than Min-Heap where it takes O(log

n).

4.3.5 Number of Buckets

Another factor to be considered for the performance evaluation is the number of

buckets used for performing the operations of the open list. In our system, we made

it possible to manually change the number of buckets we used for storing the nodes.

By running the program with different number of buckets, we found that the number

of operations does not change based on the number of buckets used. When we look

44

4. EXPERIMENTS AND RESULTS

at the insertion of the nodes into the open list, the nodes are inserted into the bucket

in unsorted manner. Even if we increase or reduce the number of buckets used, it

will still take only O(1) operations for inserting the node. On the other hand, for

deletion, the number of operations may vary based on the number of buckets used

as the size of the bucket increases based on the total number of nodes added to the

bucket.

The performance of the bucket can be measured by varying the size of the bucket(k).

Based on the map sizes and the obstacle density, varying the size of the bucket might

be useful in finding the optimal size of the bucket, which might improve its perfor-

mance.

4.4 Results and Analysis

For measuring the performance of the data structures, we ran our tests in maps of

different sizes and varied the percentage of obstacles in every map. The sizes of the

maps that we generated are ranging from 40x40 to 560x560. The start node and the

goal node was chosen randomly in each map and we set the start and the goal node

as far as possible, and maintained the same start node and the goal node for every

test we ran in different maps with different obstacle percentages to be fair. Since the

distance between the start and goal node has major impact on the time taken and the

number of operations. We compared the results of the two data structures, Min-heap

and Bucket, with the same map specifications.

While running our tests, we noted that the time taken for finding the path varied

every time we ran the test with the same specification due to the applications running

on the background and the Virtual Machine operations[12]. However, when the size

of the map grew bigger, the differences between the time were more clear so we took

the average time after running the tests for 5 times. For our experiments, we varied

the percentage of obstacles in the maps between 0 percent and 40 percent. When

the obstacle percentage increased above 40 percent, the chances of finding a shortest

45

4. EXPERIMENTS AND RESULTS

path became harder. The results of the tests were compared based on the number of

operations, runtime, memory usage and the obstacle density.

4.4.1 Runtime

Fig. 25: Runtime of Map Sizes from 40x40 to 300x300

The performance of the data structures can be measured based on several methods

such as, runtime, number of operations and the memory required for the open list

and the closed list.

46

4. EXPERIMENTS AND RESULTS

For calculating the runtime, we ran the tests on the maps that we generated by

varying the percentage of obstacles in it. The runtime was calculated based on the

duration taken to find the least cost path from the beginning of the start node to the

end of reaching the final node and returning the least cost path that was found. The

tests were performed on both the data structures with the same specifications(start

node, goal node, obstacle percentage and map size).

Fig. 26: Runtime of Map Sizes from 360x360 to 560x560

The time taken for finding the least cost path was lesser majority of times when

using Bucket data structure compared to the Min-Heap as shown in Fig 25 and Fig

26. However, the bucket data structure consumed more time than min-heap when we

ran the test on a 80x80 map. This might be due to the applications running on the

background which might have affected the java performance[12]. Since in every other

map the bucket data structure took lesser time than the min-heap. We found that,

this was the case when the size of the map was smaller and the difference of runtime

between the data structures will be shorter. So we shutdown all the applications,

47

4. EXPERIMENTS AND RESULTS

changed the start node and the goal node with 0% obstacles, and ran our tests a

couple of times again to verify if this was the reason.

As we increased the size of the map in our test environment, the time taken for

finding the least cost path also increased. We added the length of the final path

which was found since it was useful in determining the correctness of the results pro-

duced by the two data structures, as the A* search algorithm finds the least cost

path irrespective of the data structure used for creating the open and closed lists.

For example, the path length of the least cost path for the map 520x520 in Fig 25 is

381 for both the data structures.

Fig. 27: Runtime of Map Size: 40x40 with Obstacles: 5% to 40%

After running the tests on the maps we generated without the obstacles, we chose

maps: 40x40 and 200x200 to run tests with varying obstacle percentages of 5% to

40%. When we increased the percentage of obstacles in the map, the length of the

final path also increased and it became difficult finding a least cost path when the ob-

48

4. EXPERIMENTS AND RESULTS

stacle percentage went above 50%. When we increased the percentage of the obstacle

to 40%, the min-heap data structure took the maximum time for the 40x40 map. As

the path length increased, the runtime also got longer.

We noticed that in almost all the cases, the bucket data structure performed bet-

ter than the min-heap. It was also noted that the differences in runtime between

the data structures were smaller in the 40x40 map with 5% to 30% obstacles, but it

increased only when the obstacle percentage increased to 40%.

Fig. 28: Runtime of Map Size: 200x200 with Obstacles: 5% to 40%

The length of the path was the same for the 200x200 map with 5% obstacle and

10% obstacle. In the above Fig 28, the runtime went upto 20,800 when the obstacle

percentage was over 40% in 200x200 map size. Since the map size was bigger and we

set the start node as the goal node as far apart as possible, larger number of nodes

would have been expanded to find the least cost path.

49

4. EXPERIMENTS AND RESULTS

As shown in Fig 28, the number of operations taken to find the least cost path in a

200x200 map with 0% obstacles is approximately 85000. This number was increased

when the obstacle percentage was 40% and hence took longer runtime. When running

the tests on larger maps, we found that the difference in the runtime between the two

data structures was huge as the map size was bigger, and the bucket data structure

was performin much better compared to min-heap.

Fig. 29: Runtime of Map Sizes: 40x40 to 560x560

As we can see in the above graph, Fig 29, the runtime of the algorithm increases

along with the increase in the map size. This is due to the greater distance between

the start node and the goal node, so the agent has to travel through larger number of

nodes to find the optimal(least cost) path in the map. It is clear from the graph that

the difference in the runtime between the two data structures were between 1000 and

2000. After running the tests on maps with 0% obstacle, we increased the obstacle

density for 40x40 and 200x200 size maps and compared the time taken by the Min-

Heap and Buckets.

50

4. EXPERIMENTS AND RESULTS

Similar tests were run for 512x512 map with obstacle percentage ranging between

5% to 40%. The time taken for finding the least cost path was varying based on

the map structure and the obstacle density. When we look at Fig 29, the runtime

for map with 15% and 20% obstacle density was higher than when there was 25%

obstacle density, this is due to the selection of the start node and the goal node, and

the obstacles in between them.

Obstacle Percentage Heap Runtime(ms) Bucket Runtime(ms) Path Length

5% 105 92 38

10% 125 120 54

30% 238 235 66

40% 398 345 72

Table 2: Runtime Comparison of 40x40 Map With Different Obstacle Density

When the obstacle density was 15%, there might have been much obstacles in the

path towards the goal node but not the surrounding places, so the algorithm might

have to look for traversal nodes which might have taken longer time for calculating

and finding the least cost path.

Obstacle Percentage Min-Heap Runtime(ms) Bucket Runtime(ms) Path Length

5% 17970 16063 166

10% 18348 17320 166

30% 19728 18521 145

40% 20891 20211 251

Table 3: Runtime Comparison of 200x200 Map With Different Obstacle Density

In conclusion of the runtime parameter for measuring the performance of the data

51

4. EXPERIMENTS AND RESULTS

structures, we can say that the time taken for finding the optimal(least cost) path

was much higher when the obstacle density was increased to 40% and the path length

was also higher compared to the other maps. However, in every test, it was clear that

the Min-Heap was taking more time in finding the least cost path compared to the

Buckets. This might be the result of the number of operations being performed by

the Min-Heap, which are lesser when using Buckets.

Fig. 30: Runtime of Map Size: 512x512 with different Obstacle Density

Table 2 and Table 3 shows the runtime comparison of the 40x40 and 200x200 maps

with different obstacle density. The path length count was helpful in verifying the

correctness of the data structures. Table 4 shows the result of running the 512x512

map with varying obstacle density between 5% to 40%. Even though in certain maps

the runtime difference between the two data structures were not huge, Buckets still

took lesser time compared to Min-Heap.

52

4. EXPERIMENTS AND RESULTS

Obstacle Percentage Min-Heap Runtime(ms) Bucket Runtime(ms) Path Length

10% 309566 297595 234

15% 583756 529474 243

20% 606026 400064 256

25% 439189 431343 238

30% 499060 347583 240

35% 662399 628840 260

40% 980071 912960 300

Table 4: Runtime Comparison of 512x512 Map With Different Obstacle Density

4.4.2 Number of Operations

Since calculating the runtime alone was not sufficient to come to a conclusion of which

data structure was performing better, it is also required to measure the performance

of the data structures based on the various factors which could affect the execution of

the runtime[12]. We calculated the number of operations taken by the data structures

for performing the operations of the open list. We counted the number of operations

of the open list: insert, delete, contains and update, and totalled it to get the total

number of operations performed by each data structure.

For the Min-Heap, each time a node is inserted into the open list, it has to go

through up-heap process, and for removing the node from the open list, it has to go

through down-heap process, where the value of the parent node is constantly com-

pared with the value of the child node to satisfy the conditions of the Min-Heap data

structure as discussed in Chapter 3. Due to this, the number of operations will be

more in the Min-Heap.

53

4. EXPERIMENTS AND RESULTS

Fig. 31: Number of Operations of Map Sizes: 40x40 to 300x300

Each swap operation performed in the up-heap process is counted as one oper-

ation. Same as the up-heap, each swap operation performed in the down-heap is

considered as one operation. As for the contains, every time a node is compared with

other nodes in the open list to check for the existence of the current node is counted

as one operation. Similarly, in the bucket data structure, for insertion, every time a

node is inserted into the open list is considered to be one operation and every time

a node is deleted from a bucket is counted as one operation. However, in Min-Heap,

every time a node is inserted into the list, the value of the node is compared to its

54

4. EXPERIMENTS AND RESULTS

parent node to check if the parent node is smaller than the child node. This process

involves more than one number of swapping. Therefore, for each insertion or deletion,

there might be multiple number of swapping performed.

Fig. 32: Number of Operations of Map Sizes: 360x360 to 560x560

Based on the Fig 31 and Fig 32, we found that the difference between the data

structures in terms of the number of operations performed is quite large. The bucket

data structure has taken a considerably lesser number of operations for insert, delete,

contains and update compared to the min-heap. This might be due to the lesser

swapping needed in the bucket when compared to min-heap where every time a node

is inserted or deleted, it has to compare its values with the parent node to satisfy the

conditions of the min-heap where the parent node should always be smaller than the

child nodes.

55

4. EXPERIMENTS AND RESULTS

Obstacle Percentage Min-Heap Operations Bucket Operations Path Length

5% 377591 205683 163

10% 376155 239907 156

30% 401502 325608 175

40% 402834 347826 178

Table 5: Number of Operations of 280x280 Map With Different Obstacle Density

When conducting these tests, we found that the number of operations for Con-

tains was almost the same in both the data structures, buckets and min-heap. This is

because, in the Contains operation, the existence of the current node in the open list

or the closed is checked by comparing it to each node present in the open list and the

closed list. Table 5 shows the number of operations taken by the Min-Heap and the

Buckets in a 200x200 map with different obstacle density ranging between 5% to 40%.

Fig. 33: Number of Operations of Map Sizes: 40x40 to 560x560

56

4. EXPERIMENTS AND RESULTS

The same operations(insert, delete, contains and update) are performed using

both Min-Heap as well as Buckets. Therefore, the major difference in the total num-

ber of operations taken by the data structures is due to the number of insertion and

the number of deletions performed. The insertion in the buckets is straight forward,

whereas in the min-heap it has to perform the swapping(upheap for insertion and

down heap for deletion). However, for the deletion, the buckets are scanned in order

to find the node with the lowest f cost in the open list. Therefore, the total number

of operations are also higher in the min-heap compared to the buckets.

In Fig 33, it is clear that the number of operations taken by the Min-Heap grew

larger as the size of the map grew larger. Whereas, with the Buckets, the number of

operations did not take such drastic changes. The total number of operations(insert,

delete, contains and update) taken by the two data structures are shown in Table 6

along with the length of the final path for different density of obstacles in the map.

Fig. 34: Number of Operations of Map Size: 512x512 with Obstacles

After adding the obstacles to the 512x512 map, the difference in the number of

57

4. EXPERIMENTS AND RESULTS

operations taken between the data structures were smaller compared to the Fig 34,

where when the map size was 520x520 and 560x560, the difference was huge. The de-

tailed number of operations taken by each data structures is shown in Table 6. From

the table and the graphs, we can see that the Bucket data structure was using lesser

number of operations for performing the operations of the open list and the closed

list compared to the Min-Heap. We verified this by running our test in different map

sizes with different obstacle densities. We set the same start node and goal node for

both the data structures.

Obstacle Percentage Min-Heap Operations Bucket Operations Path Length

10% 482204 427879 234

15% 518670 502438 243

20% 696802 618670 256

25% 627879 602246 238

30% 505968 460863 240

35% 627879 599030 260

40% 771274 734268 300

Table 6: Number of Operations of 512x512 Map With Different Obstacle Density

4.4.3 Memory

The performance of the data structures can also be determined by the maximum size

of the open list and the closed list required by the Min-Heap and the Buckets. To

calculate the memory requirement, we ran our tests in different map sizes: 40x40 to

560x560 without any obstacles and with varying the percentage of obstacle density

between 5% and 40%. From the tests, we found that the maximum size of the open

list and the closed list were almost the same for Min-Heap and the Buckets when

there were no obstacles in the map.

58

4. EXPERIMENTS AND RESULTS

As shown in Fig 35, the size of the open list is the same for Min-Heap and Buckets,

though it is lesser than the size of the closed list. There was a difference of one or

two in the open list and the closed list between both the data structures, but it can

be ignored as it was very small. This is due to the fact that both the data struc-

tures followed the Last In First Out(LIFO) rule where the redundant nodes were not

traversed[4]. In majority of the cases, the size of the open list was smaller than the

size of the closed list. However, there were times when the size of the open list was

almost the same as the size of the closed list.

Fig. 35: Memory required for Map Size: 40x40 to 300x300

59

4. EXPERIMENTS AND RESULTS

As the size of the map grew bigger, the maximum size of the open list and the

closed list also got bigger as the distance between the start node and the goal node

would be larger so it has to expand more nodes, which is, adding more nodes to the

open list and the closed list.We verified the results by checking the length of the final

path found by the Min-Heap and the Buckets.

Fig. 36: Memory required for Map Sizes: 360x360 to 560x560

When we refer the Fig 35 and Fig 36, we can clearly see the difference in sizes

of the open list and the closed list. Depending on the length of the path found, the

difference between the lists became larger. Since we calculated the maximum size of

the open list and the closed list without obstacles, there was not any difference in the

lists between the two data structures, that is, the size of the list was the same in the

Min-Heap and the Bucket. However, when we ran the tests by adding obstacles in the

maps, we noticed that the Min-Heap data structure required more memory compared

to the Buckets, which means that the Min-Heap expanded more nodes compared to

the Buckets. This was already proved when we ran the tests for the number of oper-

60

4. EXPERIMENTS AND RESULTS

ations performed by each data structure.

The differences in the memory requirement of the data structures were not high

when we ran our tests on smaller sized maps, as the number of nodes expanded would

be less. So, we ran the tests on larger maps like 480x480 and 560x560, as shown in

Fig 36, in which the differences between the memory requirement of the open list and

the closed list was larger. Sometimes the differences in the memory requirement for

the open list and the closed list were almost the same or close enough depending on

the optimal(least cost) path which was chosen.

Fig. 37: Memory required for Map Size: 512x512 with different Obstacle Density

Since the difference between the memory requirements of the data structures:

Min-Heap and Buckets was almost the same in the maps without obstacles, we chose

512x512 map with varying range of obstacles to check for the difference in require-

ment of memory. In the above graph, Fig 37, the memory requirement for both the

data structures are almost the same for the open list. The difference was not huge

between the data structures irrespective of the percentage of the obstacle density in

each map.

61

4. EXPERIMENTS AND RESULTS

However, in the closed list, when the obstacle percentage was 10%, 20% and 35%,

the difference in the memory requirement between the data structures were larger.

Fig. 38: Memory required for Map Size: 512x512 with different Obstacle Density

The memory requirement of the closed list was considerably lesser when the ob-

stacle percentage was 25%. Whereas, when we increased the obstacle density to 30%

and 40%, the memory requirement of the closed list became much higher. This can

be due to the different paths to traverse when finding the optimal(least cost) path.

That is, since the percentage of obstacles became higher, it got more difficult to find

the optimal(least cost) path, so the agent has to traverse through redundant nodes

to find the final path.

4.5 Summary

Based on our analysis of using different maps with different sizes and obstacle per-

centages, we came to the conclusion that the performance of the A* algorithm can be

improved by using the Buckets for creating the open list and the closed list, compared

62

4. EXPERIMENTS AND RESULTS

to the other data structures such as the Min-Heap. We measured the performance of

the data structures: Min-Heap and Buckets based on the runtime taken to find the

optimal(lowest cost) path, the number of operations(insert, delete, contains and up-

date) performed by each data structure and the memory requirement(maximum size

of the open list and the closed list). In almost all the cases, the Bucket data structure

produced better results than the Min-Heap. The differences were more prominent

when we tested them on larger maps with obstacles. There were times when the

Buckets performed larger number of operations but still it was still not larger than

the Min-Heap.

63

CHAPTER 5

Conclusion

In this thesis, among the several search algorithms introduced for pathfinding, we fo-

cused on improving the performance of the A* search algorithm. While we explored

the different ways for improving the performance of the A* algorithm, we found that

the A* algorithm for pathfinding was affected by the data structures used for im-

plementing the open lists. The commonly used data structure for implementing the

open list is the Min-Heap. The insertion and deletion operations in Min-Heap takes

O(log n) times to insert nodes into the open list and O(log n) times to delete the

nodes from the open list as it has to perform bubble-up and bubble-down process for

satisfying the conditions of the binary tree.

To improve the performance of the A* algorithm by reducing the number of oper-

ations performed by the open list, we proposed the use of buckets for implementing

the open list. Firstly, we calculated the heuristics using Octile distance which allows

the agent to move in 8 directions. This produced better heuristics compared to the

Manhattan distance where the movement is restricted to 4 directions. The bucket

data structure was mainly introduced for improving the performance of the Dijk-

stra’s algorithm. Although buckets have been considered for implementing the A*

algorithm, we could not find any research papers regarding it. Therefore, we imple-

mented the A* algorithm using the bucket data structure to improve the performance

of the algorithm. Buckets takes O(1) for inserting the nodes into the bucket in an

unsorted array, and it takes O(n) for deleting the node with lowest f value from the

bucket since it has to search the bucket by comparing the nodes values to find the

64

5. CONCLUSION

node with lowest value. However, the contains operation takes O(n) for both the data

structures. We considered the various factors for evaluating the performance of the

data structures such as time, number of nodes expanded, number of buckets used,

path length and the number of operations. Based on these factors we compared the

results to find which data structure was performing better with A*.

In our experiments, we differed the sizes of maps and the percentage of obstacles

in the map and found that the possibility of finding a path from the start node to

the goal node becomes harder when we increase the percentage of obstacles above 40

percent. The path found using the Min-Heap and buckets were also the same under

the same parameters used, but the number of nodes expanded by the buckets was one

lesser than the Min-Heap. We ran our tests a number of times to find the average

execution time of finding the path from the beginning of the search till finding the

final node and returning the path.

In conclusion, our approach of using buckets for implementing the open list in

A* algorithm performs better in terms of operations and runtime. Although the

branching factor of the tree may change the overall performance of the data structures,

the buckets still performs a little better compared to the Min-Heap.

65

CHAPTER 6

Future Work

For our thesis, we found better heuristics by allowing the agent to move in 8 directions

by setting the horizontal and vetical cost as 10 and the diagonal cost as 14. Addition-

ally, for improving the performance of the A* algorithm in terms of the operations

performed in the open list, we used the bucket data structure. Although the buckets

produced better results compared to the Min-Heap, the number of operations taken

for deleting the node from the open list can grow significantly high for larger maps.

In this case, the overall performance of the data structure may get affected and may

lead to Min-Heap outperforming the buckets.

As for the future work, more research can be done in bringing up a solution to

reduce the number of operations for deletion of nodes from the open list using buckets.

66

REFERENCES

[1] Yngvi Björnsson and Kári Halldórsson. Improved heuristics for optimal path-

finding on game maps. AIIDE, 6:9–14, 2006.

[2] Adi Botea, Bruno Bouzy, Michael Buro, Christian Bauckhage, and Dana Nau.

Pathfinding in games. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[3] Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical

path-finding. Journal of game development, 1(1):7–28, 2004.

[4] Qing Cao. Exploiting problem structure in pathfinding. 2018.

[5] Xiao Cui and Hao Shi. A*-based pathfinding in modern computer games. IJC-

SNS, 11(1):125, 2011.

[6] Xiao Cui and Hao Shi. An overview of pathfinding in navigation mesh. IJCSNS,

12(12):48–51, 2012.

[7] Rina Dechter and Judea Pearl. The optimality of a* revisited. In AAAI, pages

95–99, 1983.

[8] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the

optimality of a. Journal of the ACM (JACM), 32(3):505–536, 1985.

[9] Samuel Erdtman and Johan Fylling. Pathfinding with hard constraints: Mobile

systems and real time strategy games combined, 2008.

[10] Ariel Felner, Roni Stern, Asaph Ben-Yair, Sarit Kraus, and Nathan Netanyahu.

67

REFERENCES

Pha*: finding the shortest path with a* in an unknown physical environment.

Journal of Artificial Intelligence Research, 21:631–670, 2004.

[11] George HL Fletcher, Hardik A Sheth, and Katy Börner. Unstructured peer-to-

peer networks: Topological properties and search performance. In International

Workshop on Agents and P2P Computing, pages 14–27. Springer, 2004.

[12] Andy Georges, Lieven Eeckhout, and Dries Buytaert. Java performance evalua-

tion through rigorous replay compilation. In ACM Sigplan Notices, volume 43,

pages 367–384. ACM, 2008.

[13] Andrew V Goldberg and Craig Silverstein. Implementations of dijkstras algo-

rithm based on multi-level buckets. In Network optimization, pages 292–327.

Springer, 1997.

[14] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE transactions on Systems

Science and Cybernetics, 4(2):100–107, 1968.

[15] Patrik Haslum, Blai Bonet, Héctor Geffner, et al. New admissible heuristics for

domain-independent planning. In AAAI, volume 5, pages 9–13, 2005.

[16] Ward Douglas Maurer and Theodore Gyle Lewis. Hash table methods. ACM

Computing Surveys (CSUR), 7(1):5–19, 1975.

[17] Colin JH McDiarmid and Bruce A. Reed. Building heaps fast. Journal of algo-

rithms, 10(3):352–365, 1989.

[18] Masoud Nosrati, Ronak Karimi, and Hojat Allah Hasanvand. Investigation of

the*(star) search algorithms: Characteristics, methods and approaches. World

Applied Programming, 2(4):251–256, 2012.

[19] David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of

computational agents. Cambridge University Press, 2010.

68

REFERENCES

[20] Li-Yen Shue and Reza Zamani. An admissible heuristic search algorithm. In

International Symposium on Methodologies for Intelligent Systems, pages 69–75.

Springer, 1993.

[21] Nathan R Sturtevant. Benchmarks for grid-based pathfinding. IEEE Transac-

tions on Computational Intelligence and AI in Games, 4(2):144–148, 2012.

[22] Nathan R Sturtevant. Choosing a search space representation. Game AI Pro:

Collected Wisdom of Game AI Professionals, 1:253–258, 2013.

[23] Anders Strand-Holm Vinther, Magnus Strand-Holm Vinther, and Peyman Af-

shani. Pathfinding in two-dimensional worlds. no. June, 2015.

[24] Ko-Hsin Cindy Wang, Adi Botea, et al. Fast and memory-efficient multi-agent

pathfinding. In ICAPS, pages 380–387, 2008.

[25] F Benjamin Zhan. Three fastest shortest path algorithms on real road networks:

Data structures and procedures. Journal of geographic information and decision

analysis, 1(1):69–82, 1997.

[26] Zhifu Zhang, Nathan R Sturtevant, Robert Holte, Jonathan Schaeffer, and Ariel

Felner. A* search with inconsistent heuristics. In Twenty-First International

Joint Conference on Artificial Intelligence, 2009.

69

VITA AUCTORIS

NAME: Sheeba Mohanraj

PLACE OF BIRTH: Chennai, India

YEAR OF BIRTH: 1994

EDUCATION: Anna University, B.E Computer Science and Engineer-
ing, Chennai, India, 2015

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2019

70

	Performance of Buckets versus Min-Heap in the A* Search Algorithm
	Recommended Citation

	tmp.1573682764.pdf.9mZDI

