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Abstract 

Sulfur-containing molecules are chemically and functionally versatile compounds, 

exemplified by their diverse roles from enzymatic processes to organic synthesis and drug 

design. With the goal of gaining detailed and deeper insights into the chemistry of such 

species, multi-scale computational modeling techniques we have applied in this work. 

Chapter 1 provides a brief summary of the importance of sulfur, its functionality, and 

reactivity in biological systems including catalytic environments such as enzymes. In 

Chapter 2, an overview of the key features of the common and contemporary 

computational approaches is explained briefly.  

In Chapter 3, systematic benchmark studies are performed to determine reliable and 

accurate structures as well as thermochemical data for a series of bio-relevant polysulfur/ 

selenium-containing compounds. Of the variety of DFT functionals and Pople basis sets 

examined, the ωB97XD/6-311G(2d,p) level of theory is found to generally give the most 

accurate and reliable results. Furthermore, S—S bond lengths are more sensitive to the 

choice of basis set than those containing Se. Comparison of the proton affinities and gas-

phase basicities of thiols and their corresponding persulfide derivatives indicates that 

extending the sulfur chain decreases their values, suggesting that polysulfur species exist 

as deprotonated species in biological systems.  

In Chapter 4, the roles of solvent choice on the possible mechanisms of formation of 

sulfonamides via the reaction of SO2 and N-tosyl hydrazone using DFT-based methods in 

combination with implicit and hybrid implicit/explicit solvation models is examined. The 

results indicate that solvent-solute interactions can play critical roles in such reactions. Of 

the solvents considered, DMSO and piperidine are found to be the most effective (i.e., 

actively involved) facilitating sulfonamide bond formation.  

Applying DFT and conventional ab initio methods, Chapter 5 examines the formation 

of SO2-containing molecules including sulfones, sulfonamides, and sulfamides via the 
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radical-based reaction of SO2 with a systematic series of xiamycin-inspired aromatic C- 

and N-centered radicals. A preference for C–S(O2) vs. N–S(O2) bond formation is observed 

with formation of sulfones being thermodynamically preferred to sulfamides. Also, of the 

DFT functionals used, the M06-2X functional was shown to be most reliable for providing 

optimized geometries and relative energies of the SO2-containing species examined.  

In Chapter 6, the formation of a range of possible HNO-derived post-translational 

modifications of cysteinyl and cysteinyl persulfide was examined using DFT-based 

methods. It is shown that the formation of the initial -X-NHOH (X=S, S-S) containing 

intermediate is independent of the residues position in the peptide while their subsequent 

reaction and final PTM formed is dependent on the residues position. More specifically, 

reaction of HNO with N-terminus or internal residues leads to formation of disulfide or 

sulfonamide (e.g., Cys-SS-Cys or Cys-S(O)-NH2) via rearrangement and nucleophilic 

substitutions, respectively. Meanwhile, Cys-X-NH2 derived from C-terminus peptide leads 

to Cys-X-OH formation through the intermediacy of a 5- or 6-membered cyclic 

intermediates in cystenyl and cystenyl persulfide, respectively. 

In Chapter 7 we examine the active site, substrate binding, and catalytic mechanism of 

the bacterial Ni(II)-dimethylsulfoniopropionate (DMSP) lyase (DddK) enzyme. The 

findings show that two active site tyrosyls (Tyr64 and 122) play significant roles in 

substrate binding, with Tyr64 also acting as a Lewis base to initiate the β-concerted 

elimination reaction to form the dimethyl sulfide product. 

In Chapter 8 we examine, using a multi-scale computational approach, a possible 

disulfidesulfenylamide shuttling mechanism in the active site of DAH7PS enzyme. The 

results imply the key role of the metal ion (Mn(II)) and acidic environment in the potential 

interconversion between these conformations. Our findings infer that the preference of the 

cyclic sulfenylamide conformation to disulfide in the enzyme active site switches to the 

preference of disulfide to cyclic sulfenylamide conformation in the absence of metal ions 

and/or providing an acidic environment. 
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1.1 Introduction 

Sulfur-based functional groups are of great importance to living organisms, biomolecules, 

natural products, drug design and development, as well as many industrial synthetic 

processes. Indeed, the importance of sulfur compounds originates from their unique 

chemistry and impressive capabilities in biochemical extension and other widespread 

applications within industrial and biochemical contexts.1  

In general, sulfur’s electronic configuration, its high polarizability, the availability of d-

orbitals for bonding, and its low oxidation/reduction potential permits sulfur bond 

expansion from divalent compounds to valencies of 4 and 6.2-4 Sulfur can also reach 

oxidation states ranging from -2 to +6, which increases the diversity of sulfur-containing 

functional groups in (bio)chemical systems.2-4 Scheme 1.1 highlights some natural 

products that contain sulfur-based functional groups in their molecular structures.  

Scheme 1.1. Some natural products containing varied sulfur-based functional groups.5-6 

1.2 Biological Sulfur-Containing Compounds  

In biomolecular systems, sulfur has a unique identity in proteins as the constituent of the 

sulfur-containing amino acids cysteine (Cys) and methionine (Met). As the least abundant 

amino acid residue (1–2%), cysteine plays substantial roles in protein stability, protein 
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function regulation, signal transduction, and binding to transition metal ions such as Zn, 

Cu, Fe, and is also involved in enzyme catalysis.7-8 

The presence of the sulfur atom, with its diverse and rich chemistry allows a wide range 

of chemical reactivity that makes cysteine attractive to several post-translational 

modifications (PTMs) in biological systems among other amino acids.2, 8-11 Post-

translational modification is a powerful approach to alter and amplify protein function, 

regulation, and change the proteins’ biological and therapeutic properties.12-14 Today, 

identification of post-translational modification of biomolecules is a rapidly growing field, 

revealing potential for new reactions and applications.2, 12-14 

In general, oxidative post-translational modification of cysteine results in a variety of 

sulfur-containing “chemotypes” and products with different formation pathways, 

functionalities, and physical and chemical reactivities. The most biologically relevant 

cysteine-modified intermediates and products found in vivo are shown in Figure 1.1.  

Figure 1.1. Examples of biologically relevant cysteine functional modification 

intermediates and products.7 

In recent years, S-sulfhydration (-SSH) has gained considerable attention among 

cysteine-derived post-translational modifications. Due to its proposed role in redox 

signaling, cysteine sulfhydration has been suggested as an important modification to form 
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the persulfide bond (Cys-SSH).15-16 As various studies have shown, S-sulfhydration can 

result from H2S-mediated cysteine modification.15-18 Other oxidative cysteine post-

translational modifications (for instance formation of disulfides, sulfenic acids, or 

nitrosothiols) can also undergo further reactions with H2S to form cysteine persulfide. 

Furthermore, recent studies have shown that other reactive sulfur species (RSS) in the form 

of hydrogen persulfide (H2S2) or polysulfides (RSnH, n > 2) can also yield cysteine 

persulfide.19  

Cysteine persulfide has some distinct yet important chemical properties compared to the 

thiol form, such as different SH bond energies and greater stability of the perthiyl radical 

(RSS•) versus the thiyl radical (RS•).20 Notably, cysteine persulfide with a pKa of ~6.5 is a 

stronger acid relative to cysteine with a pKa of ~8.5.21-22 Thus, Cys-SS exists in a 

deprotonated state and behaves as a better nucleophile at physiological pH. However, much 

of the biological chemistry of Cys-SSH remains unknown due to its higher reactivity and 

inherent instability. 

In addition to S-sulfhydration, covalent sulfur-nitrogen bonds (SN) are also found in 

many post-translationally modified cysteine residues (see Figure 1.2). Sulfenylamides 

(sulfenamides) contain an SN bond between divalent sulfur and trivalent nitrogen atoms. 

The most notable instance of a naturally occurring sulfenamide is the cyclic form of 

thiazolidine-3-one obtained from the reaction of cysteine sulfenic acid and the nitrogen 

atom of a neighboring amino acid.23-25 Interestingly, formation of a cyclic sulfenylamide is 

considered a cellular protective mechanism against oxidative stress such as the irreversible 

formation of cysteine sulfinic (Cys-SO2H) and sulfonic acid (Cys-SO3H), both of which 

lead to protein degradation and cell death.4, 23, 26-27 As shown in Figure 1.2, reduction of 

cyclic sulfenylamide through further reaction with biological thiols such as glutathione 

(GSH) reverses the sulfenylamide to the catalytically active form of cysteine.  

Despite the high specificity, functionality and the biological importance of compounds 

that contain SN bonds, they are less abundant in biological systems. This scarcity of 
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SN bonds in biological contexts prompts further study into their occurrence, formation, 

and chemistry. 

Figure 1.2. The protective role of SN bond formation due to oxidative stress in 

biological systems.28  

 

1.3 Catalytic Solvents and Proteins  

Not surprisingly, thousands of (bio)chemical processes take place in the solution phase or 

a liquid environment. The solution phase is defined as a homogenous medium in which 

(bio)chemical reactants encounter, impact, and react with each other through several short- 

and long-range interactions. Pioneering research by Menschutkin on the quaternization of 

triethylamine with iodoethane demonstrated how the reaction rate depends significantly on 

the choice of solvent.29 Today, studies have proven that not only the reaction rate, but also 

many physical and chemical molecular properties, structures, stability, mechanisms, the 

overall kinetics and thermodynamics of the reaction, and most importantly, the 

consequences of the reaction can be remarkably influenced in the solution phase as a result 

of solvent-solute interactions.30  

In addition to many organic solvents with different polarities and ability to act as either 

a hydrogen bond donor or acceptor, proteins are also classified as a powerful environment 

for catalyzing many amazing biomolecular processes. One of the tremendous features of a 

protein environment is the facilitation of biochemical reactions. Enzymes, proteins with 

catalytic properties, are combinations of sequenced amino acids, (in)organic cofactors, 
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metals, and thousands of water molecules. They are capable of accelerating reaction rates 

by lowering the activation barrier.31 During an enzymatic process, reaction rates are 

dramatically increased, occurring in fractions of seconds instead of years under the 

compatible conditions of life (temperature and pressure) without losing their catalytic 

properties, being consumed in the reaction, or changing reaction equilibrium constants. 

This results from highly reactive transition state stabilization, substrate destabilization, 

conformational changes, electrostatic and van der Waals interactions, and expanded H-

bonding networks in the enzyme active sites.32-36 Alternatively, they can alter the reaction 

pathway by catalyzing a lower-energy direction. Therefore, the catalytic behavior of 

proteins makes them a crucial and inseparable part of living organisms in controlling and 

performing processes required for maintaining life. 

 

1.4 Computational Chemistry's Application 

To date, computational chemistry has been established as an invaluable tool to investigate 

several (bio)chemical systems. It is widely used to study, model and simulate chemical 

properties and behavior, functionality, reactivity, and mechanisms of several reactions in 

varied-sized systems; from a single atom to thousands of atoms in biomolecular contexts.37-

39 Computational chemistry has been applied to reveal unknown and novel chemistry in 

recent years, in combination with experiment or even beyond it, where experimental 

chemistry fails to find an answer. A broad range of computational modeling techniques has 

been developed over time, each with its own strengths and shortcomings and each suitable 

for different types of systems.40 For instance, modeling a single bond formation in a 

diatomic system, exploring kinetic and thermodynamic properties in multi-atom systems, 

and elucidating complex enzymatic processes in today's computational world is feasible 

and accessible applying the proper computational techniques.37-39, 41-42  

It should be stated that choosing the best-suited computational method and tool to the 

system of interest to provide reliable and accurate results is still a challenging task for many 
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computational chemists despite substantial progress over the past few decades.43-44 

Therefore, assessing the suitability and compatibility of computational methods is essential 

to achieve meaningful conclusions with high accuracy and reliability. Performing 

systematic benchmark studies is a way to overcome this uncertainty and validate the 

applied methods which then can efficiently be expanded to the larger models of interest.45-

49 Furthermore, referring to the literature is highly recommended to make an informed 

choice of computational approaches. 

In this dissertation, following an assessment study to find the most accurate structural 

and thermochemical data on a number of bio-relevant sulfur-containing compounds, a 

multi-scale computational approach was applied to explore some sulfur-containing 

systems, mostly involving sulfur-nitrogen bond species and persulfide derivatives.  
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2.1 Computational Chemistry 

Beginning with Planck's quantum theory in the 1950s, computational chemistry and 

biochemistry have improved impressively; from a rarity to a powerful partner with 

experimental (bio)chemistry.1 In fact, computational chemistry is a general term, covering 

any use of computation to investigate (bio)chemical systems. Today, the chief interests of 

the (bio)chemist are to design structures and reactions, elucidate the functionality, 

reactivity, mechanism, and importantly, selecting chemical properties through a series of 

rational modifications. The one potent tool which does not involve the study of the 

chemical context in real time and physical matter as such is computational chemistry. It 

uses computers to apply the mathematical equations and theorems of quantum chemistry 

to study (bio)chemical systems, model and simulate molecular behavior and properties, 

and find solutions for challenging experimental problems. Owing to the development of 

the computational software and hardware as well as theoretical chemistry over the past few 

decades, computational chemistry has been expanded to a broad field of chemistry. It 

ranges extensively from (in)organic synthesis, drug design, and pharmaceuticals to the 

study the mechanistic function of macromolecules such as enzymes. Figure 2.1 indicates 

the growth rate of computational chemistry in the 21st century.2  

Over time, numerous computational methods and approaches have been developed. 

Indeed, a variety of methods are now available for systems of differing complexities and 

sizes ranging from a single or a few atoms to thousands of atoms. In general, these methods 

include density functional theory (DFT), molecular mechanics and dynamics (MM and 

MD), quantum mechanics (QM)-cluster and quantum mechanics/molecular mechanics 

(QM/MM). Individual or combination of the methods alongside experimental data enables 

deeper chemical insight into the target.  

In this dissertation, multi-scale computational methods have been applied to study some 

(bio)molecular systems. Many excellent books and publications have discussed these 
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methods and approaches.3-7 Hence, only some of the key features of applied methods and 

central relevant theories in this dissertation are briefly discussed herein. 

Figure 2.1. Number of publications per year; a result of the search on ISI Web of Science 

using the topic of “Computational Chemistry” (accessed on 28th March 2019). 

 

2.2 Molecular Mechanics  

Classical mechanics is one of the common approaches to study molecular constructions. 

The resulting type of method is referred to as molecular mechanics (MM), also known as 

force field methods.3-5 Indeed, molecular mechanics as an empirical-based approach is 

categorized among the simplest and most inexpensive computational methodologies in 

today's computational world. Electronic motions are ignored in mechanics calculation thus, 

the total energy of the system is a function of solely nuclear coordinates, made possible by 

the Born-Oppenheimer approximation.3 Consequently, this method cannot be applied to 

describe bond forming and breaking processes or calculating electronic properties such as 

UV-Vis spectra. In other words, MM methods are only able to describe interactions 

between nuclei, both covalent bonded and non-bonded interactions. In the case of 

covalently bonded interaction, the energy of the system is a description of bond stretching, 
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bond bending, and torsion angle (Figure 2.2). Also, the non-bonded interactions are 

described by both van der Waals and electrostatic interactions. 

Figure 2.2. Representation of the bonded and non-bonded interactions calculated by 

molecular mechanics.  

Thus the total energy of the MM system can be mathematically represented as in 

Equation 2.1. Where the first three terms describe the energy components of bonded 

interactions: bond stretching, bending, and torsion, respectively. The last two terms are 

non-bonded van der Waals and electrostatic contributions which are handled using 

Lennard-Jones potentials and Colomb's law, respectively.  

 

 

As mentioned previously, molecular mechanics is an empirical method and uses 

constant parameters obtained from experimental data, for instance, crystal structures or 

high accuracy ab initio calculations. A set of mathematical expressions and constant 

parameters form a particular force field (FF). Many empirical force fields have been 

developed, each specifically parametrized for particular use in different kinds of systems 

from organic to biomolecular contexts. Developing a proper and accurate force field is still 

a challenging and demanding task, especially for those biochemical systems including 

transition metal ions (e.g., Mn and Mo) with multiple oxidation states and other inorganic 

cofactors.8-11 Thus, to set up molecular mechanics, it is important to know the system of 

UTotal = UStr + UBend + UTors + UvdW + UElec (Equation 2.1) 
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interest and correctly select the best-suited force field. Assisted Model Building with 

Energy Refinement (AMBER)12, Chemistry at Harvard Macromolecular Mechanics 

(CHARMM)13, and Groningen molecular simulation GROMOS14 are the most popular and 

well-adapted force fields in modeling biomolecular macromolecules. It is worth stating that 

observing slight differences between molecular mechanics calculations applying different 

force fields for the same system is not surprising since each atom has its own defined 

parameters and definitions that vary across the force fields. 

 

2.3 Molecular Dynamics (MD) Simulations 

Molecular dynamics is a simulation of the time-dependent behavior of molecular systems 

at atomic resolution.3-5 In fact, molecular dynamics generates serial configurations of 

changes in a system with respect to time. Thus, it can be applied successfully as a 

fundamental and effective tool for modeling and elucidating dynamics of many 

(bio)chemical pathways. It gives deep insight into molecular behaviors and changes over a 

fixed period of time and is particularly useful for biomolecular systems containing tens of 

thousands of atoms. Indeed, MD simulations have been established as a vital technique in 

computational enzymology to investigate behaviors including conformational 

interconversions and protein interactions with ligands, inhibitors, and substrates. Most 

commonly, Newton's second law of motion is used to predict molecular trajectories in 

which the required forces and potential energies are computed via molecular mechanics 

force fields. In fact, similar to MM, molecular dynamics is an empirical-based approach 

where it uses parametrized particular force fields for simulations. To date, many molecular 

modeling software packages have been developed including NAMD15, GROMACS16, 

AMBER17, GROMOS18, and CHARMM19 result of modern simulation algorithms and 

advanced computational software and hardware. Many of the common force fields are 

available within these MD software packages. In this dissertation, molecular dynamics 

simulations have been performed using the NAMD program and the AMBER force field.  



Chapter 2: Computational Methods 
 

18 
 

As mentioned the result of molecular dynamics simulation is molecular trajectory, a 

series of structural changes as a function of time. Analyzing the generated trajectories can 

yield the desired information about the system of interest such when it reaches equilibrium, 

the snapshots should be selected as the initial templates for further QM-cluster and 

QM/MM calculations.  

 

2.4 Quantum Mechanical (QM) Methods 

To date, the two major quantum mechanical methods used to calculate the electronic 

structures of thousands of molecular systems include ab initio (wavefunction-based) and 

density functional theory (DFT). These methods endeavor to provide an approximate 

solution to solve the Schrödinger equation, the heart of quantum chemistry. The field-free 

Hamiltonian of the time-independent, non-relativistic Schrödinger equation of a molecular 

system is fully shown in Equation 2.2.3, 20  

The first two terms are the kinetic energy of NE electrons and NN nuclei, respectively. 

The following three terms correspond to the potential energy of electron-nuclei attraction, 

nuclei-nuclei, and electron-electron repulsions, respectively. MA and ZA are the mass and 

the atomic number of nuclei, respectively. The distance between the two particles is shown 

by r. 

To simplify the complexity of the above Hamiltonian for multi-electron systems some 

approximations can be applied. The Born-Oppenheimer (BO) approximation and orbital 

approximation are the two most common ones. Due to heavier masses and much slower 

movement of nuclei relative to the electrons (~1800 times more massive than electrons), 

nuclei are considered as stationary particles. Therefore, electrons are assumed to be moving 

in a field of fixed nuclei (BO approximation). Further simplification can also be made 

(Equation 2.2) 
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through the orbital approximation, which states electrons move independently of each 

other. In other words, in a multi-electron system, each individual electron has its own one-

electron orbital. More simply, the orbital approximation ignores the Coulombic repulsive 

interactions between electrons, despite their interactions in a real system!3, 20  

 

2.4.1 Ab Initio Based Methods 

Hartree-Fock (HF), the simplest ab initio method, is established based on moving each 

electron in a smeared field generated by the rest of the electrons. By ignoring explicit 

repulsive interactions, this method only takes into account the average effect of Coloumbic 

electron-electron repulsion. Excluding the electron correlation (repulsion) energy in the HF 

method leads to overestimating the total electronic energy of the system and significantly 

affect molecular and electronic properties such as shortening the covalent bonds and/or 

lengthening the electrostatic interactions since there are not enough contributions between 

electrons.  

Figure 2.3 represents the difference between the limiting HF energy and the exact non-

relativistic energy called “correlation energy”. Obviously, the correlation energy is always 

negative with a stabilizing effect.  

Figure 2.3. Schematic representation of correlation energy calculation. 

To account for electron correlation into the computed electronic energy and geometrical 

parameters to overcome the HF limitations, several methods have also been developed 

including correlated ab initio methods.3 One of these methods uses configuration 

interactions (CI method). In this approach, the HF wavefunction is improved by the 

addition of a determined number of excited configurations. The CI calculation with all the 
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possible excitations is called full configuration interaction (FCI) which is the exact solution 

to the Schrödinger equation. The way to limit the FCI and make a practical approach is 

truncation. For instance, CID and CISD are limited to double only and single and double 

excitations, respectively. Although they suffer from size-consistency which makes errors 

unpredictable with larger system size. To overcome the lack of the size-consistency of 

CISD some improved methods were developed such as quadratic configuration interaction 

(QCI). It modifies the size-consistency error by addition of quadratic terms to a linear 

extension of the CID and CISD wavefunction. For instance, QCISD is a contribution of all 

singly- and doubly-excited configurations with some quadruply-excited configurations.  

Despite accurate and reliable results of CI methods compared to HF, these methods are 

extremely computationally expensive and thus unfeasible for large systems such as 

enzymes. Therefore, they can be employed as a benchmark calculation against other 

quantum mechanical methods especially QCISD in small-sized systems (Chapter 3).21-22  

 

2.4.2 Density Functional Theory (DFT)-Based Methods 

To overcome the limitations of the wavefunction-based methods, the tremendous effort of 

Kohn and Pople was awarded with the Nobel Prize in chemistry in 1998 for "developing 

density functional theory (DFT)".23 Indeed, density functional theory with the aim of 

application to large systems, accounts for the electron correlation energy and reduces the 

computational costs. Surprisingly, the results obtained from DFT-based methods can 

compete with those of correlated ab initio methods in both accuracy and specifically 

computational cost.  

The main story behind the success of DFT is that the energy of a multi-electron system 

is a function of the electron density (ρ) instead of the wavefunction.3, 20, 24 Indeed, in DFT 

calculations, molecular and electronic properties of a multi-electron system can be 

determined by electron density. The density function only relies upon three spatial 

coordinates (x, y, and z) for each electron (3N), regardless of the number of electrons. In 
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contrast, wavefunction-based methods depend on 3N spatial and N spin coordinates (4N in 

total). All these dramatically result in a reduction of complexity and computational costs 

and speeding up calculations. For such reasons, DFT functionals are able to be applied 

efficiently in studying large-sized chemical systems. 

Notably, the exact form of the exchange-correlation (XC) energy for density functionals 

is not known and several approximate functionals have been developed over the time. 

Today, a large number of DFT functionals exist which differs in expressing exchange-

correlation functionals. Some only apply parameters based on the fundamental physical 

constants while others use empirical parameters fitted to experimental data and high 

accuracy QM methods. Figure 2.4 outlines the Perdew's ‘Jacob ladder’ of approximations 

for the exchange-correlation energy, which has been classified based on the different level 

of XC approximations as a function of electron density.25 It begins with the Hartree world 

with no exchange-correlation toward the chemical accuracy.  

Figure 2.4. Schematic representation of the Perdew's ‘Jacob ladder’ for 5-generated DFT 

functionals.22 

After the no exchange-correlation Hartree world, the first rung of the Jacob ladder starts 

with the local density approximation (LDA) where the energy is locally dependent only 

upon the electron density.26 It is the simplest, but the least impressive approach to solving 

the exchange-correlation problem since it has a tendency to exaggerate the bond strength 
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and shorten the corresponding bond length. In contrast, generalized gradient approximation 

(GGA) methods remarkably improve over the LDA methods by including the first 

derivative of electron density (gradient of density) and gives more accurate results. There 

are several different parameterizations for the GGA, some from empirical parameters or 

from first principles. The most popular gradient-corrected exchange and correlation 

functionals at the present time include Becke's 1988 functional (B88)27, Perdew and 

Wang's 1991 functional (PW91)28 and Lee-Yang-Parr functional (LYP)29. As well, meta-

generalized gradient approximation (meta-GGA) functionals go beyond the first-order 

density by the inclusion of the kinetic energy density.30 Indeed, in meta-GGA methods the 

exchange-correlation energy relies upon the second derivative of the electron density.  

Moving to higher rungs of the Jacob ladder, Hybrid-GGA functionals calculate a portion 

of the exchange-correlation energy using the HF theory.31 The result of this combination 

method to obtain so-called exact exchange-correlation energy is known as hybrid DFT 

methods.  

Among many developed hybrid functionals in recent years, the B3LYP exchange-

correlation functional is one of the most successful and widely used and is significantly 

responsible for DFT becoming one of the trendiest tools in the computational chemistry 

community.32 Its surprisingly good performance in many chemical applications was a 

turning point for DFT to be accepted as the most common electronic structure method in 

computational chemistry. As shown in Equation 2.3, the B3LYP exchange-correlation 

energy expression is a combination of LDA, GGA functionals and HF exchange 

parameters.29, 31  

Where a=0.1161, b=0.9262, and c=0.8133. 

(Equation 2.3) 
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Although it suffers from some performance challenges.3, 33-34 These issues briefly stem 

from self-interaction error (electron interaction with itself), ignoring non-covalent long-

range interaction, and the inability of hybrid DFT in describing systems containing 

transition metals.  

The newly developed Minnesota density functionals, M06 and its improved version 

M08 classes of functionals, are mostly based on the Hybrid-meta-GGA or meta-GGA 

which have been shown to overcome the aforementioned difficulties.35-37 These highly 

parametrized functionals with kinetic energy dependence also differ in the percentage of 

HF exchange, which makes them the most broadly adopted of recently developed 

functionals in recent years.38 For instance, M06-2X as a hybrid-meta-functional with 54% 

HF exchange performs well for studying main group thermochemistry, non-covalent, long-

range interactions, and kinetics while is not recommended for systems including transition 

metal ions. On the other hand, the local M06-L functional, with no HF exchange 

contribution is the most accurate one for transition metals, inorganic and metalorganic 

chemistry.  

As observed, moving to the higher rungs of Jacob ladder, both accuracy and complexity 

of exchange-correlation components increase considerably to (hopefully) achieve to the 

exact energy. Although one should keep in mind that DFT methods were developed more 

recently than ab initio methods. Thus, there are some critical issues that need careful 

considerations using DFT methods such as weakness in London dispersion forces 

description and incapacity for systematic functional improvement. 

Despite the diversity in available functionals, choosing the best-adapted quantum 

mechanics method is not an easy task. One should consider all chemical aspects and the 

nature of the system of interest to decide the QM-functional. Referring to previous 

literature and conducting a systematic benchmarking study provide an opportunity to make 

the best choice.  
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2.5 Basis Set 

Aside from choosing the QM method, choosing a proper basis set has a critical role in 

achieving robust accuracy. The basis set is defined as the set of the mathematical functions 

to represent the shape of an atomic orbital.3, 20 Indeed, the basis set is a linear combination 

of basis functions to describe the electronic wavefunction in the QM methods. Today, 

Gaussian-type basis functions (GTFs) are by far the most commonly used basis sets due to 

faster and simpler computational calculations. Expectedly, better accuracy in the orbital 

description is attained by applying more basis functions. There are several different ways 

to extend basis sets by including a combination of split-valence, polarized, and diffuse 

functions.  

Split-Valence: Since the valence electrons are involved in most molecular bonding, two or 

more basis functions can be applied to accurately describe the valence atomic orbitals. As 

a result, valence atomic orbitals in molecules can expand and adjust for variable atom size. 

Double-Zeta (DZ), e.g., 6-31G and Triple-Zeta (TZ), e.g., 6-311G include two and three 

basis functions for each valence orbital description, respectively. It is worth mentioning 

that 6 represents the number of Gaussian functions to describe the inner shell orbitals (core 

orbitals). 

Polarized Functions: Such functions allow orbitals to be polarized with the higher orbital 

angular momentum. Thus, it detracts orbitals from their original atomic symmetry and adds 

flexibility within basis sets. p- and d- polarization functions can be applied to the hydrogen 

atom, while d- and f- are common for heavy atoms (all atoms but H atom).  

Diffuse Function: To gain more accurate descriptions of atomic orbitals, especially for 

systems including anions, weak bonds, and long-range interactions, employing diffuse 

functions are important. The (+) sign is a representation of the diffuse functions only on 

heavy atoms, while (++) applies diffuse functions on both heavy and non-heavy atoms.  
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The Pople basis set family is the most widely used with high accuracy in the obtained 

results. The composition of a Pople basis set is shown in Figure 2.5.  

Figure 2.5. Schematic representation of Pople basis sets compositions. 

For instance, the 6-311+G(d,p) basis set is an example of a split-valence triple-zeta basis 

set which includes diffuse functions on only heavy atoms, d-polarized functions on heavy 

atoms, and p-polarized functions on hydrogens atoms. Pople basis sets are the only basis 

set used in this dissertation.  

Like QM methods, choosing the right basis set requires careful consideration of the 

desired system. Performing a basis set assessment (see Chapter 3), referring to the 

literature, and finding a similar system to one’s interest are recommended before choosing 

the basis set. It is worth mentioning both choosing a basis set and QM method are extremely 

important in determining the accuracy of the chemical models and eventually achieving 

more accurate and reliable results. 

 

2.6 Quantum Mechanical (QM)-Cluster Approach 

Quantum Mechanical (QM) calculations have been identified as one of the straightforward 

and successful methods for mechanistic investigations in a broad spectrum of 

(bio)chemical systems, particularly enzymatic studies. In recent years many different 

systems have been explored using these methods and have resulted in valuable insights.39-

44 The QM-cluster only approach mainly focuses on the small, but key area of the reaction 

center or small area surrounding the enzyme active site. Indeed, the small size of the 

selected model permits applying highly accurate QM methods to study the chemical 

reaction. This methodology depends significantly on the system size due to increased 



Chapter 2: Computational Methods 
 

26 
 

computational cost. Large systems cannot be treated quantum mechanically with the most 

accurate computational approaches. 

As a matter of fact, the selection of the QM region has a substantial impact on the 

obtained findings and results. Some basic criteria for selecting the QM-model includes all 

atoms and groups involved in: (1) bond formation and breaking processes, (2) stabilization 

of reactant, transition state, and product complexes, and (3) short- and long-range 

contributions such as electrostatic interactions.7 

The development of faster and cheaper computers in addition to improving DFT 

methods has allowed computational chemists to systematically study systems of larger size. 

Remarkably, it is now possible to study systems containing 250-300 atoms at the QM level 

compared to less than 50 atoms 20 years ago.45 

On the other hand, considering only the small reactive region with these methods and 

ignoring the rest of the system (protein environment in biological systems) has also raised 

some concerns. First, the environment can impose constraints on the different parts of the 

system (e.g., steric hindrance and conformational variations).45-47 Not including it in the 

calculation might result in large artificial movement of the remaining groups in the chosen-

model leading to inaccurate and incorrect descriptions of the (bio)chemical reaction. 

Second, long-range interactions and electrostatic effects from the environment are omitted 

in this approach.45-47 The latter might impact the computed energies. Two simple 

approximations account for the excluded part of the chemical system: a coordinate-locking 

scheme and the polarizable continuum model (PCM).45-47  

To model the steric impact of the environment, certain key atoms, typically those at the 

truncation’s coordinates, are kept locked during the geometry optimizations to prevent 

unrealistic fluctuations. It is worth pointing out that selecting a model that is too small, 

leads to a rigid description of the active site and an artificial strain, contributing to the 

wrong energy surface. On the other hand, a system containing a large number of atoms 

could face the multiple-minima problem which can be simply solved by applying this 
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procedure. Hence in mechanistic studies, it is highly recommended to start with a relatively 

small model and gradually increase the size to reach the optimal-sized QM-cluster model.45, 

48 Systematically increasing the size of the QM-cluster model from smaller to a larger one, 

gives better chemical insight into the group contribution in the studied system.45, 48-49  

To account for electrostatic and long-range interactions, dielectric cavity techniques are 

commonly used. Applying this approximation, the environment is treated as a homogenous 

polarizable medium with different values of dielectric constant (ε).45-47 Despite being 

arbitrary, a dielectric constant of 4 is found to be an acceptable representation for protein 

active site.46, 50 Interestingly, some systematic investigations have shown that solvent 

influences saturate quickly with the size of the model and the choice of the dielectric 

constant become less critical as the size of the cluster starts increasing.46-48, 51 This clearly 

indicates that the approximation works well when a larger model of the active site is 

selected; that is when the polarization effects on the reactive center are taken into account 

explicitly. 

It should be noted that the initial model is typically derived from an X-ray structure or 

a conformer from molecular dynamics. Either way, the robustness and success of QM 

models rely upon the quality of the initial structure. The highest resolution crystal structure 

is usually suggested. As has been computed, at a high resolution of 0.8-1.5 Å the coordinate 

error is on average < 0.1 Å, while a medium resolution between 1.5 to 2.5 Å increases the 

coordinate error to 0.3 Å.52  

In particular, the QM-cluster methodology has been introduced as an extremely valuable 

protocol to elucidate reaction mechanisms. Indeed, a relatively inexpensive computational 

cost provides a suitable opportunity to examine and compare various mechanisms with 

different variables (i.e., solvent, etc.) to validate the most feasible one among a dozen of 

proposed mechanisms. 
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2.7 Solvation Models 

As previously mentioned, electrostatics and long-range interactions are consequences of 

moving from an isolated state (gas phase) to solution. Indeed, physical and chemical 

properties, reactivities of many (bio)chemical systems, and even reaction results are 

potentially impacted by the solution and more specifically solvent molecules. Thousands 

of (bio)chemical reactions, from organic synthesis to enzymatic processes, occur in 

solution and solvent-free reactions remain a challenge for many chemical experiments. 

Therefore, accounting for solvent effects in computational studies is crucial to attaining the 

most reliable results and comprehensive insight into the reaction environment. There are 

two general approaches to consider the solvent effects in quantum chemistry investigations: 

the explicit solvation model and the implicit solvation model, each with its own advantages 

and disadvantages.3, 53-55 

Explicit Solvation Model (Supermolecule Model): This model consists of an aggregation 

of a limited number of solvent molecules and solute (see Figure 2.6). In other words, 

solvent molecules are treated explicitly at the desired level of theory in this model. The 

explicit solvation approach provides detailed information of solvent-solute intermolecular 

interactions and molecular details of each solvent molecule atomistically through modeling 

a more realistic physical picture of the system of interest. In contrast, long-range 

electrostatic interactions cannot be properly modeled by applying this approach. As well, 

adding more solvent molecules to the system might be problematic due to the multiple-

minima problem, additional fluctuation, and increased computational cost. 
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Figure 2.6. Schematic illustration of the explicit solvation model; solute with some solvent 

molecules included in the calculation. 

Implicit Solvation Model (Continuum Model): Without doubt, the implicit solvation 

model is the most common approach in modern computational chemistry. Using this 

protocol, the polarizable continuum model (PCM), the solvent is treated as a polarizable 

continuous medium where it can be characterized by its macroscopic properties. In fact, 

the solute molecule is held in a cavity which is surrounded by the applied continuum. This 

model is by far a more efficient approach to take into account long-range electrostatic 

interactions, though not a good model to treat short-range interactions between solute and 

solvent molecules in an atomistic scale. Computationally, there are a number of implicit 

solvation models which differ in aspects such as size and shape of the solute cavity, solute 

charge distribution, and medium description.  

Integral equation formalism polarizable continuum model (IEFPCM) is the solvation 

model employed in this dissertation. Inspired by the pioneering solvation model of Tomasi 

and coworkers, this model is based on the construction of the solute cavity through a series 

of the interlocking atomic spheres of their respective van der Waals or ionic radii (see 

Figure 2.7).56-57  

As mentioned, one of the main differences between the two solvation models is that 

implicit solvation applies a homogenous medium to treat the solvent implicitly, while the 

explicit solvation model treats the environment atomistically and gives a more realistic 

depiction of the entire system. Hybrid models have been developed to combine the 
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advantages of both models.3, 53 The simplest hybrid model is a simple combination of the 

two models; adding explicit solvent and treating the entire system with an implicit model 

as well. This technique treats the first solvation sphere explicitly to examine intermolecular 

interactions, while the long-range electrostatic ones are treated via a continuum model 

implicitly. 

Figure 2.7. Schematic illustration of Tomasi's PCM solvation model. 

 

2.8 Quantum Mechanics/Molecular Mechanics (QM/MM)  

The pioneering work of Warshel and Levitt in 1976 led to the Nobel Prize in chemistry in 

2013 for the "development of the combined quantum mechanical/molecular mechanical 

(QM/MM) technique".58 Since then, the method has been introduced as one of the most 

efficient and popular means for studying complex (bio)molecular systems.6, 59-61 In the 

QM/MM approach, a region of interest is identified where an electronic structure 

description is required, such as the region in which chemical processes take place. This 

layer is treated quantum mechanically while the environment around it is described using 

a classical molecular mechanics force field (see Figure 2.8).  

In fact, this methodology ensures that the key chemical processes are modeled with 

sufficiently accurate and reliable QM methods while it avoids cumbersome computational 

costs by treating the entire system quantum mechanically.  
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Figure 2.8. Schematic representation of a QM/MM model. The shaded and center regions 

correspond to the MM and QM layers, respectively.  

As mentioned previously, DFT methods are the most preferred level of theory for 

quantum mechanics calculations, while the AMBER force field is commonly used to treat 

the MM region for biological contexts 

QM/MM methodology differs importantly in terms of some features that should be 

considered carefully in studying (bio)chemical systems. These aspects include: (1) 

interaction between the MM and QM regions, (2) computing the total QM/MM potential 

energy, and (3) crossing the covalent bonds between atoms at the QM/MM boundary.4, 7, 

59, 62  

 

2.8.1 QM and MM Interactions 

QM and MM interactions are one of the most critical tasks in the hybrid QM/MM 

methodology which are addressed carefully in calculations. Generally, interactions 

between these two subsystems consist of bonded and non-bonded interactions. Bonded 

interactions include bond stretching, bond bending, and dihedral interactions between two 

layers while non-bonded interactions involve the electrostatic and van der Waals 

contributions. Indeed, a very important feature in QM/MM calculations is the way in which 

electrostatic interactions between QM and MM layers are treated. Considering this type of 
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interaction, three different protocols can be used in QM/MM computations; (1) mechanical 

embedding, (2) electrostatic embedding, and (3) polarizable embedding.  

Mechanical embedding is the simplest and crudest approach to incorporate the MM 

layer influence on the QM/MM calculations in the biological systems. In fact, using the 

mechanical embedding the coupling between two layers is described only at the MM level 

of theory that could be included in the applied forces field. Electrostatic contributions are 

neglected and only the van der Waals interaction between the two layers is accounted for. 

Although this approach is computationally inexpensive, the MM environment cannot 

induce polarization of the electron density in the QM part, which is the main shortcoming 

of mechanical treatment.  

In contrast to mechanical treatment, electrostatic embedding applies a more advanced 

procedure whereby the QM layer is polarized by the MM charge distribution. In this 

formalism, the electrostatic interactions between the two layers are taken into account 

during the electronic wave function computation by the inclusion of a one-electron operator 

in the QM Hamiltonian. This improvement leads to a more difficult implementation and 

increased computational cost but more reliable results, particularly in a polar active site. 

Although not in all cases, the electrostatic formalism might result in an over-polarization 

of the inner region especially close to the covalent junction between the QM and MM parts 

while mechanical embedding does not apply any correction scheme and avoids over-

polarization of the QM layer by the MM.63  

In the polarizable embedding formalism, both QM and MM layers mutually polarize 

each other until self-consistency is obtained in the charge distribution. Thus QM/MM 

computation can be very demanding and cumbersome for large models. Also using a 

polarizable scheme needs an accurate polarizable force field which is still one of the holy 

grails in computational biochemistry.1  
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2.8.2 Computing the Total Potential Energy of the QM/MM 

The hybrid QM/MM potential energy contains three classes of interactions including the 

interaction between atoms in the QM layer and the MM layer, separately and interaction 

of atoms between the two QM and MM layers. The first and second class of interactions is 

relatively easy to compute, while the interaction between the inner and outer layers is a bit 

more challenging to describe. To date, several approaches have been proposed to calculate 

the total potential energy of the QM/MM systems. They can be roughly categorized into 

two main categories: additive and subtractive schemes.59, 62 

Additive QM/MM Scheme: As shown in Figure 2.9, the total QM/MM energy using the 

additive scheme is the sum of the individual energies of the QM and MM parts, plus a 

coupling term between QM and MM regions (EQM/MM, Coupling). 

 

 

 

 

 

Figure 2.9. Schematic representation of an additive coupling within a QM/MM 

methodology in computing total energy.  

Obviously, in the additive scheme, the interaction between two subsystems are treated 

explicitly. Such interactions include both bonded and non-bonded interactions consisting 

of van der Waals and electrostatic interactions. Despite being popular in QM/MM 

implementations, especially in biological systems, the calculation of the QM/MM coupling 

term might be problematic using the electrostatic embedding and/or when link atoms are 

present.  

Subtractive QM/MM Scheme: In the subtractive scheme, the total potential energy of 

QM/MM can be obtained from calculating three different terms including the energy of the 
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entire system by MM, the energy of the inner layer both at the QM and MM levels to 

eliminate the multiple counting (Figure 2.10). The main advantage of such a subtractive 

scheme is that no coupling term between QM and MM regions is required that makes this 

implementation quite straightforward in the calculations. 

Figure 2.10. Schematic representation of a subtractive coupling within a QM/MM 

methodology in computing total energy.  

Due to simplicity and implicit cancellation of the artifacts introduced by the link atoms 

in the subtractive scheme, some methods based on this protocol have been developed by 

Morokuma and coworkers, for instance, IMOMM and IMOMO.64-65 One of the most 

applied subtractive schemes is called “ONIOM”; Own N-layer integrated molecular orbital 

molecular mechanics. This approach can be easily expanded to a combination of multiple 

layers each treated at a different level of theory such as ONIOM (QM:QM:MM) including 

two QM and one MM layers. It is worth noting that the second QM layer (the medium 

region) is treated using a cheaper method such as semiempirical to consider the electronic 

effects on the first QM part. Nowadays the ONIOM scheme is extensively applied in the 

investigation of a variety of biomolecular systems.66-69 

 

2.8.3 QM/MM Boundary Schemes 

One of the main issues in hybrid QM/MM calculations is related to the QM and MM 

boundary, where a covalent bond is disrupted and one or more unpaired electrons in the 

QM calculation results. Two major approaches for dealing with this situation have been 



Chapter 2: Computational Methods 
 

35 
 

proposed: link atoms and localized orbitals.62, 70-71 The link atom approach is the most 

widely used solution in which each free valency is saturated by a so-called link atom. There 

is no limitation on the type of the link atom, though the hydrogen atom is the most common 

in computations. Other types of link groups may be used, for instance, methyl groups or 

pseudohalogens. In principle, each link atom generates three artificial degrees of freedom, 

however, in practice they are kept fixed along with the partitioned bond between QM and 

MM atoms in every step of the calculation. Thus the additional degrees of freedom are 

removed again (Figure 2.11).  

Using the second solution, a doubly-occupied molecular orbital is replaced by the link 

atom. Based on this technique, two methods have been developed and used commonly: the 

localized self-consistent field (LSCF) method and the generalized hybrid orbital (GHO) 

method (Figure 2.11). In the localized self-consistent field method, a set of localized 

orbitals is placed on the QM atom of the broken bond. The hybrid orbital pointing to the 

MM atoms is doubly-occupied and during the self-consistent field (SCF) iteration is kept 

frozen. This is while the other hybrid orbitals are singly-occupied and are optimized along 

with SCF optimization. In contrast, using the GHO approach, a set of localized orbitals is 

located on the MM atom of the broken bond. During the SCF, the doubly-occupied orbital 

pointing to the MM atoms is kept frozen while the singly-occupied orbital pointing to the 

QM atom is optimized. Additional complications of these methods and requirement for 

parametrization in the localized orbital procedure has made the link atom method the most 

accepted protocol to cap the QM atom layer, although no significant changes in results are 

obtained using the localized orbital compared to the link atom method.62 

Despite the significant influence of the QM/MM boundary and the inner and outer 

interactions on the observed results, there is no strict guideline for the region partitioning. 

There are some general rules to have a well-chosen model such as (1) the boundary should 

be set between a non-polar bond (e.g., CC), (2) the boundary should be least 3 bonds 

away from any bond breaking/forming in the QM layer, (3) cutting conjugated or aromatic 
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sections should not be done, and (4) the boundary does not allow any charge transfers and 

hybridization changes between two different layers. 

Figure 2.11. Illustration of different procedures to cap the QM layer.  

 

2.9 Thermodynamic Aspects 

Single Point Energy: As described earlier, larger basis sets generally lead to more accurate 

energies despite the high computational costs. A way to calculate such energies and lower 

the computational cost during the iterative optimization processes is by using larger basis 

sets to perform single point energy calculation on the optimized geometries obtained at a 

lower level of theory, according to Equation 2.4.  
 

 

Where method A and basis set A are the applied level of theory for the single point 

energy calculation and method B and basis set B is used for geometry optimization and 

frequency calculation. Also, some energy corrections such as Gibb's free energy and 

enthalpy energy corrections from frequency calculations can be added to the single point 

energy to calculate the more accurate and reliable thermodynamic properties.  

Potential Energy Surface: Mapping the obtained energies of key species in a chemical 

reaction (e.g., reactant complexes, intermediates, transition structures, and product 

complexes) generates a potential energy surface (PES). In other words, as a result of the 

Method A/Basis Set A // Method B/Basis Set B (Equation 2.4) 
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Born-Oppenheimer approximation, the PES is a function that gives the energy of each 

molecular structure as a function of nuclear position.3 Several mechanistic insights such as 

reaction feasibility, relative energies between molecular structures (e.g., activation energy), 

structures, properties, and the rate-determining step (RDS) can be accurately elucidated via 

analyzing the PESs.72-74  
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3.1 Introduction 

The chalcogens sulfur and selenium have long been known to play key roles in a diverse 

array of important physiological and biological processes including enzymatic 

mechanisms,1-2 signaling,3-5 and mediation and repair of oxidatively-damaged 

biomolecules.6-8 Indeed, in addition to being found within 3 of the 22 proteinogenic amino 

acids; cysteine (Cys), methionine (Met), and selenocysteine (Sec), they are also found in 

many essential metabolites (e.g., thiazole). This is due to their ability to possess a broad 

range of oxidation states as well as bonding environments, and can often undergo reversible 

redox.9 For instance, the most abundant antioxidant in animal cells is glutathione (GSH) 

which can mediate the cellular redox environment through interconversion with its 

oxidized disulfide form, GSSG.10 

Recently, it has increasingly been recognized that Reactive Sulfur Species (RSS) 

comprise a rich and diverse range of physiologically important species (Scheme 3.1).11 

Indeed, hydrogen sulfide is now known to be a ubiquitous essential signaling molecule that 

plays key roles in many physiological and inflammatory processes including blood 

pressure regulation, cell proliferation and apoptosis, insulin signaling, and 

neurotransmission.7, 12-16 However, sulfur can also form strong homonuclear single bonds 

and as a result can react with other sulfur species (for example, in proteins) to form a variety 

of polysulfur-containing RSS.17 

Previously, the presence of per- (HSSH) and polysulfides (e.g., H2Sn n=3-7) in 

biological systems were thought to be experimental artifacts or stores for H2S.18 Now, 

however, they are increasingly proposed or recognized as being biochemically 

important;17, 19-22 for instance, some polysulfides have been shown to possess antibiotic or 

anticancer properties.23-24 More recently, Cysteinyl-tRNA synthetase (CysRS), an ancient 

enzyme with a critical role in gene-encoded protein synthesis, has been shown to also 

catalyze the formation of Cys-derived polysulfides.21 This further underscores the potential 

biologically important activity of peptide-hydropersulfides.25 Meanwhile, Se has been 
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shown to form an Se-S- intermediate in the selenoproteins thioredoxin reductase and 

formate dehydrogenase and plays a central role in the enzyme's activation.26-27 

Unfortunately, due to the high reactivity of RSS, specifically per/polysulfides within 

biological environments, many of their properties and much of their chemistry remains 

unclear or even unknown. 

Scheme 3.1. Several examples of naturally occurring polysulfur species.17, 28 

Computational chemistry has established itself as a key tool for the study of the 

properties and chemistry of biomolecular systems. Several such studies have been 

performed on S- and, to a notably lesser extent, Se- or mixed S/Se-containing per- and 

poly-seleno/sulfides. For example, Brzostowska et al. in part used the B3LYP method to 

examine the intramolecular reactions of the naturally occurring polysulfur-containing 

pentathiepins (such as varacin, Scheme 3.1) that generate S3 and S2 transfer units via a 

tetra- or trisulfide anion, respectively.29 Recently, the high reactivity of several smaller 

hydropersulfides toward alkyl, alkoxy, peroxyl and thiyl radicals was investigated using 

both experimental and computational (CBS-QB3) methods.30 It was concluded that such 

reactions are exothermic by 15-34 kcal mol-1 due to the low RSS–H bond dissociation 

enthalpy and high stability of perthiyl radicals.30 Meanwhile, a computational study has 

used in part dispersion-corrected B3LYP (B3LYP-D3) to examine the role of the chalcogen 
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atoms in the mechanism of glutathione peroxidase 4 which involves formation of a -Se–S- 

species.31 Bachrach et al. used several computational methods including MP2, and B3LYP 

to examine possible mechanisms for nucleophilic attack at the Se in diselenides and 

selenosulfides and concluded that attack at Se is kinetically and thermodynamically 

preferred.32 Using an ONIOM QM/MM approach wherein the DFT method M06-2X was 

used for the QM region, Huang et al. examined S-sulfhydration via a persulfide (RSS-) 

intermediate as catalyzed by mercaptopyruvate sulfurtransferase (MST) and obtained 

reasonable agreement with experiment.33 In all of these studies, smaller basis sets (e.g., 6-

31G(d)) were used to obtain structures upon which they then based their calculations of 

thermochemical properties. The ability of a computational study to reliably and accurately 

provide insights into the structures and properties of any biomolecular system usually 

critically depends on the choice of QM method and basis set. Thus, an essential step 

towards computationally studying RSS is determining appropriate methodologies. 

In this present study, the ability of a range of computational, in particular density 

functional theory (DFT) methods34, to provide reliable and accurate structures and 

thermochemical properties of biologically relevant poly-sulfur/selenium-containing 

compounds has been assessed. More specifically, the DFT methods B3LYP, B3PW91, 

ωB97XD, M06-2X, and M08-HX were applied to a systematic series of biologically 

relevant RXn(H) (X=S/Se, n=1-3, R=CH3, CH2=CH, and cysteine) species. As well as their 

structures, a variety of key thermochemical properties including their X-X (chalcogen-

chalcogen) bond dissociation enthalpies, hydrogen affinities, and gas phase basicities were 

examined and benchmarked. 

 

3.2 Computational Methods 

All calculations were performed using the Gaussian 0935 and Gaussian 1636 suites of 

programs. Optimized geometries for a systematic series of biologically relevant chemical 

models, shown in Scheme 3.2, were obtained using a variety of conventional wavefunction 
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and density functional theory methods applied in conjunction with a range of Pople basis 

sets from 6-31G(d) to 6-311++G(3df,3pd). 

Scheme 3.2. Schematic illustration of the species considered in this study. 

Specifically, the hybrid DFT methods B3LYP and B3PW91, comprised of Becke’s 

three parameter exchange functional37 (B3) in combination with the Lee, Yang, and Parr 

correlation functional38 (LYP) or the Perdew and Wang functional39 (PW91), were 

assessed. B3LYP is commonly applied in the treatment of biomolecular systems while 

B3PW91 has been used previously for systems containing sulfur and selenium.40-41 In 

addition, two meta-GGA functionals were assessed; M06-2X42, a commonly employed 

functional in the study of enzymatic catalysis, and the more recently developed related 

functional M08-HX.43 For this functional, optimized structures were obtained using 

Gaussian 16 whereas all other structures were obtained with Gaussian 09. Furthermore, the 

double-hybrid range-corrected functional ωB97XD44 was also evaluated to further examine 

any effects of dispersion correction on geometric or energetic parameters. Geometries 

optimized at these levels of theory were compared to those obtained using the ab initio 

MP2 (see Appendix A3) and QCISD methods. As DFT methods are the preferred choice 

for biochemical systems due to their computational cost and reliability, the MP2 results are 

only given in Appendix A3.1 for our baseline geometry assessment of CH3SSH/– and 

CH3SeSeH/–. The Minnesota family of functionals (M06-2X and M08HX) are more 

empirical and explicitly contain dispersion correction while B3LYP only contains 3 

empirical paraments and has no explicit correction for dispersion. Likewise, ωB97XD 

contains dispersion corrections. 
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All optimized structures were confirmed to be minima by harmonic vibrational 

frequency calculations performed at the same level of theory. These were also used to 

determine zero-point vibrational energy (ZPVE) and enthalpy corrections for subsequent 

calculations of a range of their thermochemical properties including proton affinities 

(298.15KPAA
– = –ΔH = –(HAH – HA

– – HH
+)), gas-phase basicities (298.15KGPBA

– = –ΔG = –

(–PA – T(SAH – SA
– – SH

+)), and hydrogen affinities (298.15KHAA = –ΔH = –(HAH – HA• – 

HH•)).45-46 In addition, homolytic bond dissociation enthalpies were calculated for 

production of the •SH or •SeH radicals (298.15KBDEAX–XH = ΔH = HAX• + HXH• – HAXXH). 

 

3.3 Results and Discussion 

3.3.1 Structural Assessment of CH3XXH and CH3XX– (X=S, Se) 

We began by using the broadest variety of DFT methods (B3LYP, B3PW91, ωB97XD, 

M06-2X, M08-HX) and range of basis sets (6-31G(d) to 6-311++G(3df,3pd)) used in this 

study to obtain optimized structures for CH3XXH and CH3XX– (X=S, Se). These are the 

smallest homoatomic persulf/selenides considered in this present study. Due to a paucity 

of corresponding experimental data, benchmark optimized structures were obtained at the 

QCISD/6-311+G(2df,p) level of theory. For simplicity, only the key C–X, X–X, and X–H 

(X=S, Se) distances are discussed herein and are summarized in Table 3.1 and MP2 data 

is shown in Appendix A3.1. 

 

3.3.2.1 Method Sensitivity to Basis Set Changes  

All five DFT methods showed similar overall sensitivities to changes in the basis set from 

6-31G(d) to 6-311++G(3df,3pd). For example, the smallest variations were observed for 

the C—X and X—H (X=S, Se) bond distances; for any given method and chemical system 

(be it neutral or anionic) they varied by ≤ 0.020 Å. The only exceptions occurred for the 

C—Se bond in CH3SeSe– when using M06-2X method which varied overall by 0.027 Å, 

and the Se—H bond using MP2 which varied by 0.025 Å (Appendix A3.1). Notably, for 



Chapter 3: Polysulfur/Selenium Assessment 
 

51 
 

any DFT method and chemical system the C—S bond distances showed greater variation 

than that of C—Se bonds. The only exceptions to this trend occurred for the C–X bonds in 

the CH3XX– anions when using the B3LYP or M06-2X methods. However, the converse 

trend was observed for the X–H bonds; optimized Se–H bond lengths are more sensitive 

to basis set choice than S–H bonds (Tables 3.1 and Appendix A3.1). 

For all chemical systems (both neutral and anionic), regardless of the choice of DFT 

method, the largest variations upon changing basis set were observed in their X—X bonds. 

For CH3SSH and CH3SS– it was found that the S—S bond distances varied by 0.032 – 

0.043 and 0.044 – 0.051 Å, respectively. Meanwhile, in the corresponding CH3SeSeH and 

CH3SeSe– species the Se—Se bond distances varied by 0.024 – 0.029 and 0.023 – 0.029 

Å, respectively, except for using MP2 where the variation exceeded the trend for DFT data 

(Appendix A3.1). That is, except for Se—H bonds, those bonds involving sulfur (i.e., C—

X and X—X) in CH3XXH and CH3XX– (X=S, Se) are most sensitive to the choice of basis 

set. 
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Table 3.1. Selected optimized bond lengths in ångström (Å) for CH3XXH and CH3XX– 

(X=S, Se). 

  

  CH3SSH  CH3SS–  CH3SeSeH  CH3SeSe– 
Method Basis set C–S S–S S–H  C–S S–S  C–Se Se-Se Se–H  C–Se Se-Se 
B3LYP 6-31G(d) 1.834 2.091 1.357  1.837 2.117  1.977 2.337 1.495  1.985 2.366 
 6-311G(d) 1.830 2.103 1.357  1.831 2.134  1.979 2.362 1.488  1.987 2.391 
 6-311G(d,p) 1.831 2.105 1.354  1.833 2.134  1.978 2.364 1.478  1.987 2.391 
 6-311+G(d,p) 1.830 2.103 1.354  1.832 2.128  1.978 2.364 1.478  1.987 2.388 
 6-311G(2d,p) 1.830 2.088 1.349  1.831 2.115  1.975 2.366 1.476  1.984 2.395 
 6-311G(df,p) 1.829 2.093 1.354  1.831 2.120  1.973 2.351 1.479  1.981 2.376 
 6-311+G(2df,p) 1.825 2.072 1.351  1.827 2.092  1.971 2.350 1.477  1.979 2.373 
 6-311++G(3df,3pd) 1.820 2.064 1.349  1.822 2.083  1.971 2.351 1.476  1.978 2.373 
               
B3PW91 6-31G(d) 1.821 2.072 1.354  1.824 2.096  1.961 2.315 1.491  1.960 2.336 
 6-311G(d) 1.817 2.081 1.356  1.819 2.110  1.963 2.338 1.486  1.963 2.361 
 6-311G(d,p) 1.818 2.083 1.353  1.820 2.110  1.962 2.340 1.476  1.962 2.360 
 6-311+G(d,p) 1.818 2.083 1.353  1.821 2.105  1.962 2.339 1.476  1.962 2.358 
 6-311G(2d,p) 1.817 2.067 1.349  1.819 2.091  1.959 2.342 1.474  1.959 2.363 
 6-311G(df,p) 1.816 2.072 1.353  1.818 2.097  1.957 2.327 1.477  1.958 2.345 
 6-311+G(2df,p) 1.812 2.053 1.351  1.814 2.071  1.955 2.327 1.475  1.955 2.342 
 6-311++G(3df,3pd) 1.808 2.046 1.349  1.810 2.063  1.955 2.327 1.475  1.955 2.342 
               
ωB97XD 6-31G(d) 1.819 2.070 1.349  1.821 2.095  1.954 2.309 1.486  1.968 2.342 
 6-311G(d) 1.816 2.079 1.350  1.816 2.110  1.957 2.331 1.480  1.971 2.365 
 6-311G(d,p) 1.816 2.081 1.348  1.817 2.110  1.956 2.333 1.470  1.970 2.365 
 6-311+G(d,p) 1.816 2.080 1.348  1.817 2.105  1.956 2.333 1.470  1.970 2.362 
 6-311G(2d,p) 1.816 2.067 1.344  1.816 2.092  1.953 2.334 1.469  1.967 2.369 
 6-311G(df,p) 1.815 2.070 1.348  1.815 2.099  1.951 2.320 1.472  1.965 2.351 
 6-311+G(2df,p) 1.810 2.053 1.346  1.811 2.074  1.950 2.319 1.470  1.963 2.348 
 6-311++G(3df,3pd) 1.806 2.046 1.344  1.807 2.066  1.949 2.320 1.469  1.962 2.347 
               
M06-2X 6-31G(d) 1.819 2.069 1.348  1.819 2.096  1.954 2.306 1.486  1.985 2.366 
 6-311G(d) 1.816 2.078 1.348  1.816 2.110  1.960 2.330 1.480  1.964 2.358 
 6-311G(d,p) 1.817 2.079 1.346  1.817 2.110  1.959 2.331 1.472  1.964 2.358 
 6-311+G(d,p) 1.816 2.089 1.346  1.816 2.105  1.959 2.331 1.472  1.964 2.355 
 6-311G(2d,p) 1.817 2.066 1.342  1.816 2.093  1.956 2.334 1.471  1.961 2.362 
 6-311G(df,p) 1.814 2.068 1.347  1.816 2.097  1.954 2.320 1.473  1.960 2.345 
 6-311+G(2df,p) 1.811 2.052 1.345  1.812 2.073  1.953 2.319 1.472  1.958 2.340 
 6-311++G(3df,3pd) 1.808 2.046 1.342  1.808 2.065  1.953 2.319 1.472  1.958 2.341 
               
M08-HX 6-31G(d) 1.817 2.068 1.350  1.817 2.094  1.955 2.305 1.488  1.958 2.330 
 6-311G(d) 1.816 2.078 1.345  1.815 2.108  1.961 2.327 1.482  1.964 2.352 
 6-311G(d,p) 1.816 2.079 1.348  1.815 2.108  1.960 2.328 1.474  1.963 2.352 
 6-311+G(d,p) 1.816 2.079 1.349  1.815 2.103  1.960 2.328 1.474  1.964 2.348 
 6-311G(2d,p) 1.814 2.067 1.344  1.814 2.093  1.957 2.331 1.473  1.960 2.357 
 6-311G(df,p) 1.814 2.069 1.349  1.814 2.095  1.954 2.318 1.475  1.959 2.341 
 6-311+G(2df,p) 1.809 2.053 1.347  1.810 2.072  1.953 2.317 1.474  1.957 2.335 
 6-311++G(3df,3pd) 1.807 2.047 1.344  1.808 2.063  1.953 2.318 1.472  1.957 2.336 
               
QCISD 6-311+G(2df,p) 1.815 2.065 1.347  1.816 2.088  1.965 2.333 1.474  1.961 2.359 
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3.3.2.2 Effects of Increasing Basis Set Size 

As can be seen in Table 3.1, for all DFT methods considered and for both neutral CH3XXH 

and anionic CH3XX– (X=S, Se), similar trends were generally observed upon increasing 

the basis set from double- to triple-zeta, and then subsequently by inclusion of diffuse and 

polarization functions.  

For instance, increasing the basis set from 6-31G(d) to 6-311++G(3df,3pd) generally 

caused a systematic shortening in the X—H and C—X bonds. Notably, one does not need 

to increase the basis set significantly in order to get reasonable agreement with the 

corresponding values obtained at the QCISD/6-311+G(2df,p) level of theory. In fact, upon 

changing the basis set from 6-31G(d) to 6-311G(d) (i.e., double- to triple-zeta) resulted in 

their lengths differing from the benchmark values by ≤ 0.015 Å. Further increases in basis 

set size by inclusion of diffuse (i.e., 6-311G(d,p) to 6-311+G(d,p)) or f- and/or d-

polarization functions on heavy atoms or hydrogen resulted in only minor individual 

decreases. 

In contrast, modifying the basis set showed quite different trends for the X—X (X=S, 

Se) bonds. For instance, for all methods assessed, improving the basis set from 6-31G(d) 

to 6-311G(d) resulted in an increase in their optimized length for all chemical systems of 

up to 0.025 Å. The only exception occurred for the M06-2X method applied to CH3SeSe– 

for which the Se—Se bond shortened slightly by 0.008 Å. Notably, in CH3SSH and CH3SS– 

the observed ranges of bond lengthening were 0.009 – 0.015 and 0.014 – 0.027 Å 

respectively, with the largest increases observed when using the B3LYP method. That is 

to say, the anionic persulfide is more sensitive to basis set changes than the neutral 

hydropersulfide. In contrast, for CH3SeSeH and CH3SeSe– the observed increases were 

quite similar lying in the range of 0.017 – 0.025 Å (except where noted above). The further 

inclusion of p-functions on hydrogen (i.e., 6-311G(d) to 6-311G(d,p)) or diffuse functions 

on heavy atoms (i.e., 6-311G(d,p) to 6-311+G(d,p)) had negligible effect on the X—X 

bond lengths in both the neutral CH3XXH and anionic CH3XX– (X=S, Se) systems. 
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In general, more significant changes in the X—X lengths were observed upon inclusion 

of either a second set of d- or a set of f-functions on heavy atoms (i.e., 6-311G(d,p) to 6-

311G(2d,p) or 6-311G(df,p)). Specifically, for both these basis set changes the S—S bonds 

in CH3SSH and CH3SS– shortened by 0.010 to 0.017 Å, except for MP2 where the distance 

increases for the 6-311G(2d,p) basis set. In contrast, for the corresponding selenium 

containing systems, the inclusion of a second set of d-functions on heavy atoms marginally 

lengthened Se—Se bonds by ≤ 0.004 Å, while the inclusion of a set of f-functions on heavy 

atoms shortened the Se—Se bonds by 0.010 – 0.017 Å. Combining or adding further 

diffuse and polarization functions by use of the 6-311+G(2df,p) or 6-311++G(3df,3pd) 

basis sets respectively, resulted in all DFT methods except B3LYP giving X—X (X=S, Se) 

bond lengths that were markedly shorter than their corresponding benchmark values. In the 

case of B3LYP (which overestimates the length of these bonds) increasing the basis set to 

6-311+G(2df,p) or 6-311++G(3df,3pd) was in fact required in order to get good agreement 

with the benchmark values. 

Importantly, for all DFT methods that were considered (with the exception of B3LYP), 

the 6-311G(2d,p) and 6-311G(df,p) basis sets gave optimized C—X, X—X, and X—H 

distances for CH3XXH and CH3XX– (X=S) that were in closest general agreement with 

their corresponding benchmark values. Meanwhile, for the corresponding Se analogues, 

the best performing basis sets were generally 6-311G(d), 6-311G(d,p), 6-311+G(d,p), and 

6-311G(2d,p). It is also noted that the M08-HX method does not offer much if any 

improvement over M06-2X. In fact, when Se is in the system, it slightly underestimates 

the bond lengths. As such, subsequent tables showing optimized parameters will only 

include results obtained using the B3PW91, ωB97XD and M06-2X methods in 

combination with the identified preferred basis sets. It should be noted that, for 

completeness, the corresponding values for the other methods are included in the 

Appendix A3. Since MP2 trends were mostly similar to DFT, we do not include results 

obtained with this method. 
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3.3.2 Effect of Conjugation: CH2=CHXXH and CH2=CHXX– (X=S, Se)  

These model systems were examined to gain insights into the influence of conjugation on 

the neutral and anionic persulfide and perselenide groups. Based on the results obtained for 

the CH3XX–/H systems, optimized structures were obtained using only the B3PW91, 

ωB97XD, and M06-2X methods in combination with the 6-311+G(d,p), 6-311G(2d,p), and 

6-311G(df,p) basis sets. The most significant changes were observed in their C—X and 

X—X bonds, hence only these optimized values are shown in Table 3.2. Appendices A3.2 

and A3.3 include the full set of optimized parameters with all DFT functionals and the X—

H bonds. 

Table 3.2. Selected optimized bond lengths (ångström, Å) for CH2=CHXXH and 

CH2=CHXX– (X=S, Se). 

a Had one negligible imaginary frequency. 

In general, upon changing basis sets and methods similar trends were observed as for 

the CH3XX–/H systems, though with some key differences. For instance, for X=S, the 

closest agreement of the optimized bond lengths with the benchmark values was obtained 

for the 6-311G(df,p) and 6-311G(2d,p) basis sets. In contrast, for X=Se the X—X bond is 

more sensitive to the choice of basis set. In particular, for CH2CHSeSe– the best agreement 

with the benchmark values are obtained using the 6-311+G(d,p) or 6-311G(2d,p) basis sets; 

inclusion of f-functions results in too short an Se—Se bond. Meanwhile, for neutral 

  CH2=CHSSH  CH2=CHSS–  CH2=CHSeSeH  CH2=CHSeSe– 
Method Basis set C–S S–S  C–S S–S  C–Se Se-Se  C–Se Se-Se 
B3PW91 6-311+G(d,p) 1.768 2.088  1.745 2.098  1.913 2.347  1.899 2.359 
 6-311G(2d,p) 1.767 2.074  1.747 2.084  1.910 2.350  1.898 2.364 
 6-311G(df,p) 1.768 2.077  1.748 2.090  1.908 2.334  1.894 2.346 
             
ωB97XD 6-311+G(d,p) 1.771 2.084  1.748 2.101  1.913 2.338  1.898 2.357 
 6-311G(2d,p) 1.770 2.072  1.750a 2.088a  1.910 2.339  1.897 2.361 
 6-311G(df,p) 1.770 2.074  1.751 2.096  1.908 2.325  1.895 2.343 
             
M06-2X 6-311+G(d,p) 1.770 2.084  1.747 2.102  1.914 2.337  1.901 2.354 
 6-311G(2d,p) 1.770 2.071  1.751 2.090  1.911 2.340  1.900 2.359 
 6-311G(df,p) 1.770 2.072  1.750 2.095  1.909 2.326  1.897 2.343 
             
QCISD 6-311+G(2df,p) 1.771 2.069  1.750 2.086  1.914 2.329  1.902 2.359 

 



Chapter 3: Polysulfur/Selenium Assessment 
 

56 
 

CH2CHSeSeH it is essential to include f-functions in order to obtain good agreement with 

the corresponding benchmark values. 

Comparison of the optimized bond lengths in CH3XX–/H and CH2CHXX–/H (X=S, Se) 

shows that for all species, at all levels of theory, the optimized C—X distance in 

CH2CHXX–/H is 0.04 – 0.05 Å shorter than in the corresponding CH3XX–/H analogue (cf. 

Table 3.1). This is also observed when structures are optimized at the M06-2X/aug-cc-

pVTZ level of theory (data not shown). In contrast, the X—X bond lengths in CH2CHXX–

/H (X=S, Se) are all within ±0.01 Å of their optimized values in the corresponding CH3XX–

/H analogue. When X=S the X—X bond in the anion is 0.017 Å longer in the conjugated 

species compared to 0.023 Å in the alkyl terminated species. It is noted that this again 

indicates that deprotonation of RXXH (X=S, Se) causes the X—X bond to lengthen, 

although conjugation lessens the bond lengthening upon going to the anion. 

 

3.3.3 Effects of Mixed Sulfur/Selenium: CH3XYH (X=S, Se; Y=Se, S)  

We then considered mixed sulfur/selenide species for which selected optimized parameters 

are given in Table 3.3. Full optimized parameters for all DFT methods and basis sets are 

shown in Appendix A3.4. 

For all four mixed species the optimized lengths of the C—X bond (X=S, Se) are all 

within 0.01 Å of those obtained for their analogous persulfide or perselenide (i.e., CH3XXH 

(X=S, Se)) at the same level of theory (cf. Table 3.1). Thus, similar method and basis set 

trends were also observed and do not require further detailed discussion. However, it 

should be noted that while the X—Y bond lengths in the neutral species CH3SSeH and 

CH3SeSH are close to each other, the bond is consistently predicted to be marginally 

shorter (< 0.01 Å) in CH3SSeH. The changes observed in the CH3X—Y bond length upon 

deprotonation (i.e., CH3XYH to CH3XY–), depends on whether S or Se is the terminal 

atom. When S is the terminal atom, upon deprotonation of the thiol group the Se—S bond 

lengthens marginally by < 0.01 Å. In contrast, when Se is the terminal atom deprotonation 
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causes the S—Se bond to lengthen by ≥ 0.04 Å. The larger impact of deprotonating a 

selenol versus thiol group is also seen in the species shown in Tables 3.1 and 3.2, though 

to a smaller extent. We found that when the sulfur atom is in the middle of the chain, it has 

a larger Mulliken charge compared to selenium (−0.23 vs. −0.13) in the anionic species. 

By comparison, the charge of the terminal chalcogen is the same in both species. Thus, 

repulsive interactions cause the bond length to increase when sulfur is in the center of the 

chain. 

Table 3.3. Selected optimized bond lengths (ångström, Å) for CH3XYH and CH3XY– 

(X=S, Se; Y=Se, S). 

 

3.3.4 Extending a Sulfide: CH3SSSH and CH2CHSSSH 

Polysulfides, but to-date not polyselenides, have been suggested to be potentially 

biochemically important. Thus, for completeness we considered the effect of extending the 

persulfide chain. Specifically, the simplest alkyl and conjugated-containing trisulfides 

CH3SSSH and CH2CHSSSH were examined. The C—S1 bond in all species had very 

similar optimized lengths, for all methods and basis sets used, to those obtained for the 

analogous alkyl persulfides (cf. Table 3.1); the observed shortened C—X bond in the 

conjugated neutral and anionic persulfides (Table 3.2) was not observed in CH2CHSSSH, 

further evidence that it is due to delocalization across the persulf/selenide and conjugated 

R-group. Thus, in Table 3.4 only the optimized lengths of the S—S bonds are given. 

  CH3SSeH  CH3SSe–  CH3SeSH  CH3SeS– 
Method Basis set C–S S–Se  C–S S–Se  C–Se Se-S  C–Se Se-S 
B3PW91 6-311+G(d,p) 1.821 2.214  1.820 2.256  1.959  2.218  1.971 2.221 
 6-311G(2d,p) 1.819 2.204  1.819 2.244  1.957  2.208  1.968 2.220 
 6-311G(df,p) 1.819 2.199  1.819 2.241  1.953  2.204  1.964 2.212 
             
ωB97XD 6-311+G(d,p) 1.820 2.208  1.817 2.252  1.953  2.213  1.962 2.218 
 6-311G(2d,p) 1.818 2.199  1.817 2.242  1.951  2.204  1.959 2.216 
 6-311G(df,p) 1.818 2.195  1.817 2.239  1.948  2.200  1.957 2.209 
             
M06-2X 6-311+G(d,p) 1.819 2.208  1.817 2.250  1.956 2.212  1.964 2.220 
 6-311G(2d,p) 1.817 2.200  1.816 2.239  1.954 2.203  1.960 2.221 
 6-311G(df,p) 1.817 2.194  1.816 2.237  1.951 2.198  1.959 2.212 
             
QCISD 6-311+G(2df,p) 1.819 2.198  1.816 2.239  1.952 2.202  1.961 2.207 
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As can be seen in Table 3.4, the B3PW91 method gives the worst agreement with the 

benchmark values, especially for the deprotonated (anionic) species with errors of up to 

0.07 Å. Furthermore, for any DFT method, the largest errors in the optimized Si—Sj bond 

lengths are observed upon use of the 6-311+G(d,p) basis set. The best agreement is instead 

obtained using the M06-2X and ωB97XD methods, the former performing slightly better 

in conjunction with the 6-311G(2d,p) basis set. Indeed, their errors lie in the ranges of 

0.000 – 0.011 Å and − 0.003 – 0.009 Å, respectively. 

Table 3.4. Selected optimized bond lengths (Å) for RSSSH (R=CH3, CH2=CH). 

Notably, in CH3SSSH and CH2CHSSSH, the CS1—S2 bond is predicted to be shorter 

than the S2—S3H bond by > 0.02 and < 0.01 Å respectively. However, upon deprotonation 

of the terminal thiol group in each, i.e., formation of CH3SSS– and CH2CHSSS–, the CS1—

S2 bond lengthens significantly by ~0.05 Å, from ~2.06 and 2.07 Å in CH3SSSH and 

CH2CHSSSH respectively, to approximately 2.1 and 2.12 Å. In contrast, the S2—S3 bond 

in CH3SSS– and CH2CHSSS– has shortened by 0.01-0.02 Å. Mulliken charges on S1 were 

found to decrease more than they do on S2 upon deprotonation in the benchmark 

calculation, for both alkyl and conjugated polysulfur species. However, the difference 

between the two was small compared to the large charge on S3; it becomes much more 

negative upon deprotonation. This indicates there is some degree of charge delocalization 

along the sulfur chain (Appendix A3.6). 

  CH3SSSH  CH3SSS–  CH2CHSSSH  CH2CHSSS– 
Method Basis set S1–S2 S2–S3  S1–S2 S2–S3  S1–S2 S2–S3  S1–S2 S2–S3 
B3PW91 6-311+G(d,p) 2.069  2.102  2.147 2.067  2.082 2.094  2.170 2.052 
 6-311G(2d,p) 2.057  2.086  2.120 2.058  2.071 2.079  2.136 2.047 
 6-311G(df,p) 2.060  2.091  2.130 2.063  2.073 2.084  2.149 2.050 
             
ωB97XD 6-311+G(d,p) 2.068  2.093  2.124 2.073  2.078 2.086  2.134 2.062 
 6-311G(2d,p) 2.057  2.080  2.105 2.063  2.070 2.074  2.115 2.054 
 6-311G(df,p) 2.059  2.084  2.111 2.070  2.071 2.077  2.123 2.060 
             
M06-2X 6-311+G(d,p) 2.066 2.090  2.121 2.074  2.079 2.083  2.143 2.063 
 6-311G(2d,p) 2.056 2.078  2.103 2.065  2.070 2.071  2.118 2.055 
 6-311G(df,p) 2.057 2.080  2.107 2.069  2.070 2.073  2.123 2.060 
             
QCISD 6-311+G(2df,p) 2.056 2.078  2.096 2.065  2.066 2.073  2.107 2.057 
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3.3.5 Obtaining Reliable and Accurate Thermochemistry for CH3SSH and 

CH2CHSSH  

Two of the most common goals when applying computational methods to the study of 

chemical problems are obtaining reliable and accurate optimized structures and 

thermochemical data. For biochemical or related problems, common reactions often 

require knowledge of proton affinities (PAs), gas phase basicities (GPBs), hydrogen 

affinities (HAs) and bond dissociation enthalpies (BDEs). Furthermore, given the size of 

the systems often encountered there is simultaneously considerable interest in identifying 

a DFT-based approach for calculating such properties. Thus, having assessed the use of 

DFT methods for the accurate optimization of structures, we also assessed the ability of 

the DFT methods B3LYP, B3PW91, ωB97XD, M06-2X, M08-HX, in combination with a 

range of basis sets to provide reliable and accurate biochemically-relevant thermochemical 

data.  

Given the poor performance of B3LYP and minimal improvement of M08-HX over 

M06-2X in obtaining reliable structures, vide supra, here we only report the performance 

of B3PW91, ωB97XD, and M06-2X, unless otherwise noted. Furthermore, we have 

focussed on reporting basis sets that for such systems have been previously used (e.g., 6-

31G(d)), shown herein to be most consistently reliable (i.e., 6-311G(2d,p)), or often used 

for calculating accurate thermochemistry (i.e., 6-311+G(2df,p) and 6-311++G(3df,3pd)). 

The results obtained are summarized in Table 3.5, although the data for all functionals and 

basis sets that were studied are shown in Appendices A3.7 - A3.10. 

The benchmark values were again obtained using the QCISD/6-311+G(2df,p) level of 

theory. The thermochemical values obtained for the conjugated persulfides compared to 

the alkyl persulfides reflects the trends observed structurally. For instance, the BDE(S–S) 

for CH2CHSSH is slightly higher by 5.7 kJ mol–1 than that of CH3SSH, while the PA and 

GPB of CH2CHSS– are 23.6 and 24.4 kJ mol–1 lower, respectively, than those of CH3SS–. 

This is due to delocalization across the persulfide and CH2CH group in CH2CHSSH/–. 
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Meanwhile, the hydrogen affinity of CH2CHSS• is predicted to be only marginally higher 

than that of CH3SS• by 0.8 kJ mol–1. Notably, we did see spin contamination in the QCISD 

calculations with a spin of 0.88. This may be the reason for lower energies calculated by 

QCISD compared to DFT methods where spin contamination was much lower (0.77). 

A DFT-based model was determined to be accurate if it gave values within 10 kJ mol–

1, generally held to be experimental accuracy, of the benchmark values. From Table 3.5 it 

can be seen that not all methods or basis set choices were reliable, nor did all 

thermochemical properties exhibit the same method/basis set requirement. For instance, 

for accurate determination of the BDE(S—S) of both CH3SSH and CH2CHSSH, the best 

performance was observed for B3PW91 and ωB97XD in combination with the 6-31G(d) 

basis set. The former method slightly underestimating compared to the benchmark value 

while the latter overestimated slightly. The M06-2X method only gave an accurate 

BDE(S—S) for CH2CHSSH and again when using the 6-31G(d) basis set. In general, the 

use of basis sets larger than 6-31G(d) gave BDE(S—S) values that are markedly higher (14 

- 36 kJ mol–1) than those obtained at the QCISD/6-311+G(2df,p) level of theory. 

For the PA and GPB of the CH3SS– and CH2CHSS– anions the M06-2X method again 

only gives accurate values when used in combination with the 6-31G(d) basis set. In 

contrast, the B3PW91 and ωB97XD give accurate values for all the basis sets considered. 

However, the triple-zeta basis sets (6-311G(2d,p), 6-311+G(2df,p), and 6-

311++G(3df,3pd)) gave best agreement with calculated values within 5 kJ mol–1 of their 

corresponding benchmark value (see Table 3.5). 
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Table 3.5. Homolytic S−S bond dissociation enthalpy (BDE) of RSSH, proton affinity 

(PA) and gas-phase basicity (GPB) of RSS−, and hydrogen affinity (HA) of RSS• (R=CH3, 

CH2CH). All energies calculated at 298.15K and in kJ mol−1. 

  CH3SSH  CH3SS–  CH3SS• 
Method Basis Set BDE(S—S)  PA GPB  HA 
B3PW91 6-31G(d) 235.4  1455.2 1424.8  274.6 
 6-311G(2d,p) 250.3  1447.7 1417.3  283.8 
 6-311+G(2df,p) 254.7  1445.8 1415.4  279.5 
 6-311++G(3df,3pd) 255.8  1448.7 1418.4  281.6 
        
ωB97XD 6-31G(d) 244.1  1455.0 1425.1  284.0 
 6-311G(2d,p) 258.5  1447.3 1417.5  292.0 
 6-311+G(2df,p) 264.6  1445.5 1415.8  288.0 
 6-311++G(3df,3pd) 265.6  1449.2 1419.6  289.8 
        
M06-2X 6-31G(d) 252.0  1440.0 1411.4  285.4 
 6-311G(2d,p) 264.9  1430.0 1401.6  294.4 
 6-311+G(2df,p) 270.3  1428.5 1400.1  291.0 
 6-311++G(3df,3pd) 272.3  1432.3 1404.2  293.9 
        
QCISD 6-311+G(2df,p) 236.3  1445.4 1415.1  282.7 
        
  CH2CHSSH  CH2CHSS–  CH2CHSS• 
  BDE(S—S)  PA GPB  HA 
B3PW91 6-31G(d) 238.0  1427.6 1396.5  272.8 
 6-311G(2d,p) 253.0  1423.1 1391.5  282.1 
 6-311+G(2df,p) 255.7  1417.7 1386.8  278.4 
 6-311++G(3df,3pd) 256.8  1420.5 1389.7  280.1 
        
ωB97XD 6-31G(d) 244.1  1429.8 1397.3  283.7 
 6-311G(2d,p) 258.5  1422.4a 1395.9a  291.5 
 6-311+G(2df,p) 262.7  1420.2 1382.0  288.3 
 6-311++G(3df,3pd) 263.5  1423.6 1388.7  289.7 
        
M06-2X 6-31G(d) 249.8  1414.5 1381.1  283.7 
 6-311G(2d,p) 263.0  1408.2 1374.4  292.8 
 6-311+G(2df,p) 267.4  1403.4 1366.4  290.2 
 6-311++G(3df,3pd) 269.1  1406.7 1368.1  292.6 
        
QCISD 6-311+G(2df,p) 242.0  1421.8 1390.7  283.5 

a One of the required species for determining this value had one negligible imaginary frequency. 

The calculated values of the hydrogen affinity of CH3SS• and CH2CHSS• follow almost 

the same method and basis set trends and accuracy as that observed for the PA and GPB of 

CH3SS– and CH2CHSS–. Namely, the B3PW91 and ωB97XD methods in conjunction with 

any of the basis sets considered give calculated values within ±10 kJ mol–1. The only 

exception occurs when at the B3PW91/6-31G(d) level of theory for CH2CHSS•, which 
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gives a HA value 10.7 kJ mol–1 lower than the corresponding QCISD/6-311+G(2df,p) 

benchmark value (see Table 3.5). Meanwhile, the M06-2X method is inconsistent; for 

CH3SS• only the 6-31G(d) and 6-311+G(2df,p) basis sets give values within 10 kJ mol–1 of 

the benchmark values while for CH2CHSS• it gives good agreement for all basis sets 

considered herein. 

Several overall trends are suggested in this examination of the performance of the DFT 

methods B3PW91, ωB97XD, and M06-2X, in conjunction with a range of basis sets, for 

the noted important thermochemical properties. In particular, the M06-2X functional is the 

least consistent and usually gives values that differ from the benchmark values by more 

than 10 kJ mol–1. Furthermore, for all DFT functionals the values obtained using the 6-

311+G(2df,p) basis set are within 4 kJ mol–1 of the corresponding values obtained using 

the much larger and more expensive 6-311++G(3df,3pd) basis set. Hence, for the 

remainder of this report, for simplicity, only thermochemical values obtained using the 

B3PW91 and ωB97XD functionals in combination with basis sets no larger than 6-

311+G(2df,p) are discussed, unless otherwise noted (see Appendices A3.7 - A3.10 for the 

complete data sets). 

 

3.3.6 Thermochemistry of Selenium-Containing Species  

As noted above in the structural assessment, for selenium-containing species considered 

herein; that is CH3SeSe•/–/H, CH2CHSeSe•/–/H, CH3SSe•/–/H, and CH3SeS•/–/H, the 

smallest consistently reliable basis set was 6-311+G(d,p), though with exceptions as noted. 

Hence, for these species we have limited our discussion herein to results obtained using 

B3PW91 and ωB97XD in conjunction with the 6-311+G(d,p) and 6-311+G(2df,p) basis 

sets. The results are shown in Table 3.6. 

As for the analogous purely sulfur-containing species (cf. Table 3.5), the calculated 

PA's and GPB's of all species obtained using B3PW91 or ωB97XD with either basis set 

choice give values within 10 kJ mol–1 of the corresponding benchmark values. A similar 
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consistency is observed for the calculated HA's, though with some exceptions. In 

particular, at the ωB97XD/6-311+G(d,p) level of theory the calculated HA's of 

CH2CHSeSe• and CH3SSe• are 11.2 and 12.4 kJ mol–1, respectively, higher than their 

corresponding QCISD/6-311+G(2df,p) values. Again, as seen in Table 3.5, the calculated 

RX—YH BDE's of all species are generally markedly overestimated by 12.7 – 26.3 kJ mol–

1 using either DFT method and basis set. Only three values fall within the desired 10 kJ 

mol–1 error margin and all occur for the mixed chalcogen species; all using the 6-

311+G(d,p) basis set. 

The thermochemical values provided in Tables 3.5 and 3.6 show several key differences 

between persulfides and perselenides and the mixed chalcogens. These are most clearly 

and simply illustrated by examination of the calculated benchmark values. In particular, 

increasing the number of Se atoms in an RX—YH bond reduces its BDE as shown by 

comparing those of CH3SSH (236.3 kJ mol–1), CH3SSeH (218.7 kJ mol–1), CH3SeSH 

(223.2 kJ mol–1), and CH3SeSeH (202.7 kJ mol–1). In addition, a conjugated group adjacent 

to the RX—XH group increases its BDE slightly by 3-6 kJ mol–1. Meanwhile, the HA's are 

reasonably consistent and depend primarily on whether the formal radical terminal is a 

sulfur or selenium. For the former, all values lie within the range 282.7 kJ mol–1 (CH3SS•) 

to 286.1 kJ mol–1 (CH3SeS•), while the latter are notably lower, between 265.9 kJ mol–1 

(CH2CHSeSe•) and 267.3 kJ mol–1 (CH3SeSe• and CH3SSe•). 

Comparison of the PA's and GPB's of these perselenides and mixed per-sulf/selenides 

with their analogous persulfides (cf. Table 3.5), shows several interesting trends. It is noted 

that for simplicity, as the observed trends were the same for all the DFT methods, the values 

discussed here refer to those obtained at the benchmark level of theory. Firstly, 

systematically increasing the occurrence of Se in a per-chalcogenide group decreases their 

PA's and GPB values. For instance, the PA's of CH3SS–, CH3SeS–, CH3SSe–, and CH3SeSe– 

are 1445.4 kJ mol–1, 1438.9 kJ mol–1, 1411.3 kJ mol–1, and 1404.3 kJ mol–1. 

Simultaneously, their GPB values decrease from 1415.1 kJ mol–1, to 1408.6 kJ mol–1 and 
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1381.1 kJ mol–1, to 1374.0 kJ mol–1. In addition, replacing CH3- with CH2CH- decreases 

the PA and GPB values of the pure persulfides and perselenides by 24-25 and 17-18 kJ 

mol–1, respectively. This perhaps reflects a larger delocalization when a conjugated group 

is adjacent and that the effect is less for the selenides. 

Table 3.6. Calculated homolytic Se−Se bond dissociation enthalpies (BDE) of RSeSeH, 

proton affinity (PA) and gas-phase basicities (GPB) of RSeSe−, and Se−H homolytic bond 

dissociation enthalpies (HA) of RSeSe• (R=CH3, CH2CH). All energies in kJ mol−1. 

  CH3SeSeH  CH3SeSe–  CH3SeSe• 
Method Basis Set BDE(Se—Se)  PA GPB  HA 
B3PW91 6-311+G(d,p) 219.2  1409.0 1378.7  270.5 
 6-311+G(2df,p) 222.9  1411.4 1381.1  266.0 
        
ωB97XD 6-311+G(d,p) 218.0  1410.8 1380.7  276.5 
 6-311+G(2df,p) 222.6  1413.3 1383.4  270.7 
        
QCISD 6-311+G(2df,p) 204.1  1404.3 1374.0  267.3 
        
  CH2CHSeSeH  CH2CHSeSe–  CH2CHSeSe• 
  BDE(Se—Se)  PA GPB  HA 
B3PW91 6-311+G(d,p) 222.1  1388.6 1357.4  270.2 
 6-311+G(2df,p) 225.3  1390.7 1359.7  265.4 
        
ωB97XD 6-311+G(d,p) 221.3  1391.4 1359.6  277.1 
 6-311+G(2df,p) 225.3  1393.8 1361.1  271.0 
        
QCISD 6-311+G(2df,p) 208.3  1386.7 1355.7  265.9 
        
  CH3SSeH  CH3SSe–  CH3SSe• 
  BDE(S—Se)  PA GPB  HA 
B3PW91 6-311+G(d,p) 221.7  1413.2 1382.8  273.8 
 6-311+G(2df,p) 233.3  1415.7 1385.5  265.3 
        
ωB97XD 6-311+G(d,p) 219.6  1414.0 1384.2  279.9 
 6-311+G(2df,p) 232.5  1417.2 1387.5  270.9 
        
QCISD 6-311+G(2df,p) 218.7  1411.3 1381.1  267.5 
        
  CH3SeSH  CH3SeS–  CH3SeS• 
  BDE(Se—S)  PA GPB  HA 
B3PW91 6-311+G(d,p) 229.4  1435.0 1404.8  287.1 
 6-311+G(2df,p) 241.6  1441.7 1411.4  283.6 
        
ωB97XD 6-311+G(d,p) 231.4  1435.6 1405.8  295.6 
 6-311+G(2df,p) 245.0  1442.2 1412.4  290.8 
        
QCISD 6-311+G(2df,p) 224.5  1438.9 1408.6  286.1 
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3.3.7 Extending the Persulfides to Trisulfides  

We also examined the effect of extending the persulfide group by an additional sulfur to a 

trisulfide; specifically, we considered key bio-relevant thermochemistry of CH3SSS•/–/H 

and CH2CHSSS•/–/H. Based on the previous trends observed, however, thermochemical 

values were only obtained using the B3PW91 and ωB97XD DFT methods in combination 

with the 6-311+G(2df,p) basis set, and again at the QCISD/6-311+G(2df,p) benchmark 

level of theory. As can be seen in Table 3.7, both DFT methods give thermochemical 

results in generally good agreement with the benchmark values with B3PW91 slightly 

preferred, although the differences in average errors are relatively small. 

Comparison of the calculated benchmark values of the trisulfides with those of the 

corresponding persulfides (cf. Table 3.6) shows that the BDE of RS1S2—S3H (i.e., the 

BDE of the terminal S2—S3 bond), where R=CH3- and CH2CH-, decreases significantly 

by 53.3 and 56.3 kJ mol–1, respectively. Similarly, their calculated PAs and GPBs decrease 

markedly by 31-33 and 18-19 kJ mol–1 for R=CH3- and CH2CH-, respectively. As a result 

of these changes the RSS—SH BDE, and PAs and GPBs of RSSS– all lie within a narrower 

range (≤ 13 kJ mol–1) of each other. This perhaps reflects in part a decrease in the influence 

of the R group on the increasingly removed S—SH bond. In contrast, the hydrogen 

affinities of CH3SSS• and CH2CHSSS• are 6.7 and 11.5 kJ mol–1 higher than that of their 

corresponding persulfide analogues with values of 289.4 and 295.0 kJ mol–1, respectively. 
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Table 3.7. Homolytic RS−SH bond dissociation enthalpy (BDE) of RSSSH, proton affinity 

(PA) and gas-phase basicity (GPB) of RSSS−, and hydrogen affinity (HA) of RSSS• 

(R=CH3, CH2CH). All energies calculated at 298.15K and in kJ mol−1. 

  CH3SSSH  CH3SSS–  CH3SSS• 
Method Basis Set BDE(RSS—SH)  PA GPB  HA 
B3PW91 6-311+G(2df,p) 193.8  1413.9 1382.4  287.9 
        
ωB97XD 6-311+G(2df,p) 200.4  1415.0 1385.1  297.7 
        
QCISD 6-311+G(2df,p) 183.0  1413.9 1384.1  289.4 
        
  CH2CHSSSH  CH2CHSSS–  CH2CHSSS• 
  BDE(RSS—SH)  PA GPB  HA 
B3PW91 6-311+G(2df,p) 192.8  1399.5 1367.0  290.5 
        
ωB97XD 6-311+G(2df,p) 201.0  1403.0 1370.9  302.0 
        
QCISD 6-311+G(2df,p) 185.7  1403.7 1371.2  295.0 

 

3.3.8 Cysteine-Derived Polysulfides: CysSSnH (n=1-3) 

Within biological systems, as noted above, per- and polysulfide derivatives of cysteine play 

important roles. Hence, we also considered the structures and thermochemistry of such 

species using the ωB97XD/6-311G(2d,p) level of theory. This level was selected as it 

emerged in our earlier study as the most able to provide reliable structures and 

thermochemistry for related model systems (see above). Selected parameters of optimized 

structures obtained for CysSSnH (n=0-3) and CysSSn
– (n=0-3) are provided in Table 3.8 and 

representative optimized structures are shown in Figure 3.1, at this level of theory. 

As can be seen, for both the neutral and deprotonated derivatives, the r(C−S) bond 

length decreases slightly upon forming a perthiol/sulfide group, but then gradually 

lengthens, essentially returning to its length in cysteine, as one goes to the corresponding 

trithiol/sulfide and tetrathiol/sulfide derivatives. It is also noted that for both CysSSH and 

CysSS–, the C—S and S—S bond lengths are in close agreement with the corresponding 

values obtained at the same level of theory for CH3SSH (1.816 and 2.067 Å) and CH3SS– 

(1.816 and 2.092 Å), respectively (cf. Table 3.1). In addition, for the neutral polysulfides 
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the S—S bond in the chain that is farthest removed from the alkyl group has the longest 

length, with the S—S bonds being sequentially shorter the closer they are to the alkyl 

group. In contrast, for the corresponding anionic deprotonated series (CysSSn
–, n=0-3), the 

opposite trend is observed; the S—S bond in the chain farthest from the alkyl group is 

shortest, and they get longer the closer they are to the alkyl group. In the latter species this 

trend may reflect a diminishing effect of the negative charge on the terminal sulfur atom 

the further removed the bond. 

Table 3.8. Selected optimized bond lengths (ångström, Å) obtained at the 

ωB97XD/6-311G(2d,p) level of theory for CysSSnH (n=0-3) and CysSSn
– (n=0-3). 

 

 

 

 

 

Figure 3.1. Optimized structures (with C−S and S−S bond length given in ångström (Å)) 

obtained at the ωB97XD/6-311G(2d,p) level of theory for neutral cysteine and its 

polysulfides (CysSSnH, n=1-3) derivatives (top row), and their corresponding anionic 

deprotonated derivatives (CysSSn
–, n=0-3; bottom row). 

Molecule C–S1 S1–S2 S2–S3 S3–S4 
CysSH 1.827    
     
CysS–SH 1.822 2.073   
     
CysS–S–SH 1.825 2.056 2.084  
     
CysS–S–S–SH 1.827 2.060 2.080 2.084 
          
CysS– 1.832    
     
CysS–S– 1.820 2.098   
     
CysS–S–S– 1.829 2.091 2.064  
     
CysS–S–S–S–

 1.833 2.088 2.080 2.061 
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3.3.8.1 Thermochemistry of Cysteine-Derived Polysulfides 

As for the other species considered above, we calculated the RSn—SH homolytic BDE's 

for CysSSnH (n=1-3), the PA's and GPB's of the CysSSn
– (n=0-3) series of derivatives, and 

the hydrogen affinities (HA's) of the CysSSn
• (n=0-3) series of species. However, all values 

were again only obtained using the chosen ωB97XD/6-311G(2d,p) level of theory. The 

results obtained are shown in Figure 3.2A-C.  

The calculated RSn—SH (n=1-3) homolytic bond dissociation enthalpies, that is, the 

BDE of the terminal S—SH bond in the perthiol chain decreases by 33.7 kJ mol–1 from 

248.1 to 214.4, upon going from the perthiol (n=1) to trithiol (n=2). It then decreases a 

further 15.4 kJ mol–1 to 199.0 kJ mol–1 upon increasing to the chain further to the tetrathiol 

(n=3); Figure 3.2A. This trend suggests that while the strength of the terminal S—SH bond 

does weaken as the chain is lengthened, it approaches a limiting value below 199.0 kJ mol–

1, although possibly not too much lower than that. In contrast, as seen in Figure 3.2C, the 

hydrogen affinities of the CysSSn
• (n=0-3) species decrease significantly by 67.8 kJ mol–1 

upon going from a cysteinyl thiyl radical (n=0; 356.5 kJ mol–1) to the perthiyl radical (n=1; 

288.7 kJ mol–1). However, extending the chain further to n=2 or n=3 results in a slight 

increase in the HA's to 298.7 kJ mol–1 and 295.6 kJ mol–1, respectively. This suggests that 

at least for HA's of the polysulfur radicals, they are reasonably constant for the perthiyl and 

beyond. 

Figure 3.2B shows that as the polysulfide chain is extended from the cysteine thiolate 

to CysSSSS– both the calculated PA's and GPB's decrease. However, while there are 

significant decreases of 33.0 (PA) and 35.9 (GPB) kJ mol–1 going from the thiolate (CysS–) 

to perthiolate (CysSS–), this does not appear to continue upon extending the chain further. 

Indeed, extending the chain to CysSSS– results in only comparatively small further decreases 

of 5.8 and 5.9 kJ mol–1 to 1350.5 and 1320.6 kJ mol–1. But, upon extending the chain to 

CysSSSS–, larger decreases in both the PA and GPB are again observed; they decrease by 

27.9 and 25.4 kJ mol–1 to 1322.6 and 1295.2 kJ mol–1. This may in part reflect that in the 
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cysteinyl polysulfide derivatives, weak intramolecular hydrogen bonding was observed in 

some optimized structures between the terminal S– center and the cysteine's amino group. 

This interaction would also help decrease PA and GPB values. It should also be noted that 

comparison of the calculated PA's and GPB's of the cysteine-derived sulfides CysSS– and 

CysSSS– with that of their smaller corresponding analogs CH3SS– (cf. Table 3.5) and 

CH3SSS– (cf. Table 3.7) shows that that those of the former two species are markedly lower 

by 60-90 kJ mol–1. Thus, overall, these results suggest that in biological systems, extending 

the polysulfide chain will increase its likelihood of being deprotonated and that hydrogen 

bonding may help to stabilize such anions. 

Figure 3.2. Calculated (at the ωB97XD/6-311G(2d,p) level of theory) values of (A) RSn—

SH BDE's for CysSSnH (n=1-3), (B) PA's (blue) and GPB's (orange) of CysSSn
– (n=0-3), and 

(C) HA's of CysSSn
• (n=0-3). All energies are in kJ mol–1. 

 

3.4 Conclusions 

The reliability and accuracy of several commonly used DFT functionals (e.g., B3LYP, 

B3PW91, ωB97XD, M06-2X, M08-HX) as well as MP2 was assessed for a systematic 
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series of bio-relevant polysulfur/selenium-containing systems. In particular, optimized 

structures and thermodynamic properties of a range of RXn(H) (X=S, Se, R=CH3, 

CH2=CH, and cysteine, n=1-4) were examined with a variety of Pople basis sets of 

increasing size. We offer the following conclusions from this detailed study: 

1. Evaluation of the bond lengths in CH3XXH/– (X=S, Se, cf. Table 3.1) showed that the 

S—S bond is the most sensitive to changes in basis set. The smallest basis set used (6-

31G(d)) frequently resulted in optimized geometries that were very similar to the 

benchmark given by QCISD/6-311+G(2df,p), although the preferred basis sets were 6-

311G(2d,p) and 6-311G(df,p) due to the higher sensitivity of sulfur to basis set choice.  

2. We also saw that M08-HX did not offer much improvement over M06-2X and in some 

cases was detrimental. The best functionals for geometry optimization were found to 

be B3PW91, ωB97XD and M06-2X.  

3. In the conjugated system CH2CHXXH, the C—X bond length decreases due to more 

delocalized electron density.  

4. In mixed chalcogen species, the location of the chalcogen atom has a significant effect 

on the X—Y bond length. The RSe—S– bond is slightly longer than the RS—Se– bond 

since sulfur takes on more negative charge. Deprotonation of polysulfide species 

increases the C—S bond as well, for the same reason: charge delocalization along a 

sulfur chain.  

5. In the polysulfide species PA, GPB, BDE, and HA all decrease with the increasing 

sulfur chain. The lower PA and GPB values indicate that in a biological system, 

polysulfide chains are more likely to exist as deprotonated rather than neutral species 

compared to the parent thiol or selenol. 

6. To perform reliable thermochemical calculations, the ωB97XD/6-311G(2d,p) level of 

theory was found to give the most accurate results relative to the benchmark and this 

was then used to evaluate the geometry and thermochemistry of the more complex 

cysteine and cysteine per/polysulfide species.  
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4.1 Introduction 

The environment, in particular solution, in which chemical reactants occur and encounter 

each other can play a central role in their reactivity and reaction. This is due to the one or 

more passive or active possible effects it may have on the molecules and their, for example, 

structure, physical and chemical properties including solubility and reactivity, as well as 

the actual mechanisms (including kinetics and thermodynamics) by which they may react.1 

That is, in solution, the solutes behavior is qualified by the solvent through their varied 

types of interactions. 

There have been several studies on the impact and importance of solvent on a variety of 

chemical processes.2-9 For example, Hawker et al. examined nucleophilic aromatic 

substitution reactions and concluded that increasing the presence of ionic liquid solvents 

enhanced the rate of reaction result due to stabilizing interactions between the solvents and 

reaction transition structures.8 In addition, Notash et al. examined the reaction of cadmium 

iodide with selected polymers.9 In particular, they showed that depending on the choice of 

solvent different one-dimensional coordination polymers, including a zigzag chain or 

sinusoidal wave, could be formed.9 Meanwhile, Binh Nguyen et al. showed that the solvent 

choice can influence the stereo and regioselectivity of an acrylic acid derivative formed via 

photodimerization.10 

Of increasing interest, from a broad range of perspectives, are molecular species that 

contain an S—N bond. Indeed, approximately 100 natural products are now known to 

contain such a bond or derivative thereof, e.g., a sulfilimine bond (S=N).11 Of the various 

possible chemical functionalities containing an S–N bond, however, those with a 

sulfonamide (RS(O)2-NR'R") group have been of particular and significant interest. This 

is due in large part to their important roles in biology as well as their broad spectrum 

potential applications from pharmaceutical and medicinal chemistry to organic synthesis.12-

14 Indeed, they have been identified as a leading constituent of drug design and 

development due to their wide array of therapeutic and pharmacological activities (e.g., 
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anti-inflammatory, anticancer, antioxidant, and antitumor), chemical and metabolic 

stability, and properties including polarity and hydrogen bonding capabilities, as well as 

their three-dimensional structures.15-21 For instance, Psammaplin C, Taichunamide D, and 

Altemicidin are naturally occurring products (Scheme 4.1). Psammaplin C has shown 

potent inhibition of a cancer-associated carbonic anhydrase while Altemicidin has 

exhibited potential as an antitumor agent and herbicide. Meanwhile, Sulfamethoxazole and 

Celebrex are therapeutic agents used to treat bacterial infections and inflammation, 

respectively. Thus there is considerable interest in the medicinal and industrial potential of 

sulfonamide-containing natural products or synthetic agents. 

Scheme 4.1. Schematic representative of selected natural and therapeutic sulfonamides 

species.11, 21 

A variety of experimental synthetic pathways are presently known and used for the 

formation of such groups including insertion of SO2 or its derivatives via nucleophilic 

substitution or radical processes to form SN bonds and the RS(O)2-NR'R" 

functionality.22-29 Recently, Tsai et al. described for the first time a novel route for 

sulfonamide formation via the reaction of N-tosyl hydrazone, SO2, and amines under 

metal-free one-pot reaction conditions.30 It was noted that varying the solvent resulted in 

different product yields. Furthermore, three possible mechanisms by which the product 
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might be formed were proposed. Unfortunately, however, how each possible pathway and 

its thermochemistry may be influenced by the choice of solvent remained unclear. 

Computationally, a number of studies have examined the effects of solvent, either by 

implicit and/or explicit consideration, on the properties, chemistry, and reactions for a 

variety of chemical systems.31-40 For example, recently Liu and co-workers investigated 

the reaction of the fluoride anion with ethyl bromide in an ethanol solution.39 Notably, their 

study in part examined the effect of the solvent on the competition between SN2 

substitutions and E2 elimination reactions. While in the gas-phase the E2 pathway was 

preferred, in solution solute-solvent interactions resulted in a preference for the SN2 

nucleophilic displacement mechanism due in part to stabilization of its transition structure. 

In addition, recently the general effects of the polarity of the environment on the double 

proton transfers (DPTs) within the adenine-thymine and guanine-cytosine nucleobase pairs 

were investigated using DFT-based methods.40 It was shown that the polarity of the 

environment itself could significantly impact the feasibility and mechanism of such 

processes. For instance, in solution both base pairs showed a preference for stepwise-DPTs 

while in the gas-phase thermodynamically feasible DPT was only observed for the 

guanine-cytosine base pair and via a concerted-DPT mechanism. 

Developing simple, convenient and efficient synthetic strategies, such as the promising 

green-chemistry approach of one-pot syntheses, requires both an understanding of the 

reactants and target chemical systems, and also the role and effects of the environment and 

its constituents in which they occur. Hence, in the present study, we have applied DFT-

based methods, in combination with a systematic series of chemical models, to investigate 

the potential effects and roles of the general reaction environment as well as that of 

individual solvent molecules on the mechanisms of formation of sulfonamide-containing 

compounds. To help facilitate comparison with experimental data, we have examined their 

formation of sulfonamide via reactions involving N-tosyl hydrazone, SO2, and piperidine 
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as previously described by Tsai et al.30 In particular, we have examined implicit and 

explicit effects of solvent and its constituent molecules on the possible mechanisms. 

 

4.2 Computational Methods 

All calculations were performed using the Gaussian 09 suite of programs.41 Optimized 

geometries optimizations were obtained using the meta-GGA density functional theory 

(DFT) method M06-2X in combination with the 6-31G(d,p) basis set.42 Except for gas-

phase calculations, the polarity of the surrounding solvent environment was included using 

the IEFPCM solvation model. A wide range of solvent dielectric constants (ε), as provided 

in Gaussian 09, were used: 2.37 (toluene), 10.12 (dichloroethane), 35.68 (acetonitrile), 

46.82 (DMSO), and 78.35 (water). It is noted that for gas-phase calculations ε=1. Harmonic 

vibrational frequencies for all optimized geometries were obtained at the same levels of 

theory to ensure structures were indeed optimized and to characterize each as either an 

energy minimum or transition structure. To obtain more reliable and accurate relative 

energies, single-point calculations were performed at the M06-2X/6-311+G(2df,p) level of 

theory on the above optimized structures. As for optimizations and frequency calculations, 

for those single-points which included the polarity of the solvent the IEFPCM method was 

also used. Topological analyses of the electron densities of various complexes and species 

were performed using the AIMALL program.43 It is noted that we chose the N-tosyl 

hydrazone/SO2/piperidine system as our model to examine sulfonamide formation as in the 

experimental study of Tsai et al.30 as it provided the highest yield. 

 

4.3 Results and Discussion  

According to what has been proposed by Tsai et al.30, we have started studying the 

mechanism of sulfonamide formation through the insertion of SO2 into N-tosyl hydrazone 

or the diaza compound generated in situ from the amine-initiated decomposition of the N-

tosyl hydrazone.  
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4.3.1 Reactivity of SO2 toward N-tosyl Hydrazone 

Previously the direct ene reaction (also known as the Alder-ene reaction) of sulfur dioxide 

with alkenes to form β,γ-unsaturated sulfinic acid have been examined.44-46 In the current 

study, we have also investigated the reactivity of SO2 toward hydrazone as a potential 

enophile and ene compounds, respectively under the ene reaction (Scheme 4.2).  

Scheme 4.2. The ene reaction of SO2 and hydrazones. 

4.3.1.1 Implicit Solvent Model 

To elucidate the mechanism for the ene reaction of SO2 with N-tosyl hydrazone, we have 

investigated the possible reaction pathway for the formation of β,γ-unsaturated sulfinic 

acid. Schematic illustration of the obtained optimized structures of the reactant complex 

(RC1), transition structure (TS1), and product complex (PC1) in the medium with a 

dielectric constant of 46.82 (DMSO) using the IEFPCM solvation model are shown in 

Scheme 4.3. As it is obvious, this reaction proceeds through a concerted pathway with the 

simultaneous double-bond migration from CN to NN and 1,5-H shift from N of N-tosyl 

hydrazone to O atom of SO2. The obtained 6-membered cyclic transition structure with the 

activation barrier of 136.1 kJ/mol leads to the formation of a β,γ-unsaturated sulfinic acid 

derivative (PC1) which lies 86.3 kJ/mol higher in energy relative to RC1.  

Scheme 4.3. Schematic illustration of the optimized structures with the selected bond 

lengths in ångstroms (Å) for the reaction of SO2 and N-tosyl hydrazone in DMSO. 
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Considering the influence of the environment on the obtained optimized structures and 

potential energy surface, different solvents with a quite varied dielectric constant of 78.35 

(water), 35.68 (acetonitrile) and 2.37 (toluene) have been also applied implicitly. As 

Figure 4.1 indicates, changing the solvent has no significant effects on the activation 

barrier and reaction energy. The only exception was observed using toluene which raises 

the reaction energy by ~5 kJ/mol relative to other solvents with the higher polarity which 

is in agreement with the obtained reaction energy in the gas phase.  

Figure 4.1. Calculated (electronic energy) activation barriers (difference in energy 

between reactants and transition structure; blue line) and reaction energies (difference in 

energy between reactants and products; green line) for the reaction of SO2 with N-tosyl 

hydrazone in various solvents and in the gas-phase. 

For the electronic energies shown in Figure 4.1, we have also calculated the 

corresponding corrected Gibb’s Free Energy values. The latter values are shown in 

Appendix B4-1. Both the electronic and corrected Gibb’s Free Energies of reactions show 

the same overall trends. In contrast, unlike the essentially unchanging electronic energy 

activation barriers shown in Figure 4.1, the calculated Gibb’s Free Energy activation 

barriers systematically decrease as the dielectric constant of the solvent decreases from that 

of water to the gas-phase. However, this decrease, 4.3 kJ/mol in total, is still relatively 

minor. 
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It is worth mentioning that the geometries of RC1, TS1, and PC1 were not considerably 

different in water, DMSO and acetonitrile, while in toluene and in the gas-phase the newly 

formed CS bond length has increased by ~0.06 to 1.95 Å compared to the changes in 

other solvents. This bond lengthening is consistent with the observation of H-bonding 

between HSOOH and OTs which is not characterized in β,γ-unsaturated sulfinic acid by 

employing the other solvents with higher dielectric constant than toluene. 

To investigate a more real physical picture of the reaction studied and the role of solvent 

molecules and its plausible intermolecular interactions with the reactant and product 

complexes and transition structures, a molecule of the different solvents has been explicitly 

included in the system. Concomitantly, the solvent environment has been implicitly 

modeled to take into account the general polarity. In the following discussion, the solvent 

molecule that has been explicitly included (e.g., DMSO) is referred to as the base. 

 

4.3.1.2 Hybrid Explicit and Implicit Solvent Model 

DMSO-Based System: Scheme 4.4 represents the schematic optimized structures of RC2, 

TS2, and PC2 of β,γ-unsaturated sulfinic acid formation in which one molecule of DMSO 

has been included in the system of interest. Obviously, the presence of explicit DMSO 

causes an H-bond formation between O atom of DMSO and H atom of N-tosyl hydrazone 

along increasing r(NN) bond length by 0.03 to 1.42 Å compared to the implicit solvation 

model. DMSO also impacts on the transition structure by decreasing C…S bond distance 

from 2.37 to 2.29 Å. The QTAIM calculation values of electron density (ρ) and Laplacian 

of the electron density (2ρ) at the bond critical point (BCP) for the C…S interaction are 

0.072 and 0.031 a.u., respectively which compared to the corresponding values obtained 

for the TS1 with calculated electron density (ρ) of 0.060 and Laplacian of the electron 

density (2ρ) of 0.044 a.u. implies the stronger C…S closed-shell interaction. Also, the 

oxygen atom of DMSO forms an H-bond with the transferring proton from N to O atom 

with ρ and 2ρ of 0.014 and 0.049 a.u., respectively at the BCPs.  
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The obtained TS2 leads to the formation of desired sulfinic acid (PC2) in which its 

r(CS) is lengthened by 0.03 to 1.92 Å relative to PC1. The calculated values of ρ and 

2ρ at the BCP for CS interaction are measured by 0.159 and 0.208 a.u., respectively 

which is consistent with the formation of a weaker covalent interaction comparing previous 

solvation model with ρ and 2ρ of 0.171 and 0.258 a.u., respectively (PC1). Nevertheless 

the strong H-bond of HSOOH and ODMSO with ρ and 2ρ of 0.101 and 0.083 contributes β,γ-

unsaturated sulfinic acid’s stability. It is worth mentioning r(SO) has been shortened by 

0.06 to 1.59 Å relative the corresponding bond in the implicit solvation model (PC1). 

All these types of interactions with DMSO result in the formation of β,γ-unsaturated 

sulfinic acid with 38.0 kJ/mol less energy than the previous solely implicit model. 

Although, TS2 lies 5.2 higher in energy relative to the TS1 without the presence of DMSO 

at 141.3 kJ/mol. 

Scheme 4.4. Schematic illustration of the optimized structures with the selected bond 

lengths in ångstroms (Å) for the reaction of SO2 and N-tosyl hydrazone in the DMSO-

based system. 

NH3 Based-System: Considering the effects of the base, a molecule of NH3 as a weak base 

has also been taken into account in the present study. The presence of NH3 in the RC3 

results in H-bond formation between the H atom of N-tosyl hydrazone and the N atom of 

ammonia with decreasing r(NN) bond length to 1.39 Å relative to RC2 in DMSO-based 

system (see Scheme 4.5). In the obtained TS3 two closed-shell interactions between 

NH3N…NHyrzazon and NH3N…SSO2 with measured ρ and 2ρ of 0.008 and 0.029, and 0.009 

and 0.036 a.u., respectively at the BCP are observed. These values lie within the ranges for 
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ρ (0.002-0.035 a.u.) and 2ρ (0.024-0.139 a.u.) previously suggested as a typical H-

bonding.47 In addition, an H-bonding with ρ and 2ρ of 0.014, 0.045 a.u., respectively at 

BCP for NH3H…OTs is characterized in the obtained TS3. Comparing with DMSO-based 

system, r(C…S) has been lengthened by 0.05 Å to 2.34, suggesting a weaker closed-shell 

interaction confirmed by its calculated ρ and 2ρ at its BCP by 0.064 and 0.040 a.u., 

respectively. Obtained TS3 structure with an activation barrier of 133.9 kJ/mol, by ~2 

kJ/mol less than the implicit solvation model and ~7 kJ/mol less than DMSO-based 

systems, results in β,γ-unsaturated sulfinic acid formation which lies 29.9 kJ/mol higher in 

energy relative to RC3. Indeed, formation of two strong H-bonds between TsO…H NH3 and 

SOOHH…NNH3 causes decreasing the energy of the reaction by 56.2 and 18.1 kJ/mol relative 

to the implicit solvation model and DMSO-based reaction. According to the QTAIM 

analysis no significant changes in the strength of the newly formed CS was observed 

comparing to DMSO-based system. 

Scheme 4.5. Schematic illustration of the optimized structures with the selected bond 

lengths in ångstroms (Å) for the reaction of SO2 and N-tosyl hydrazone in the HN3-based 

system. 

Piperidine-Based System: The presence of piperidine as the base has also been 

investigated. Geometrical analysis indicates r(C…S) in the obtained TS4 has been 

lengthened by 0.08 and 0.03 to 2.37 with the respect to the corresponding bond distance in 

DMSO- and NH3-based systems (Scheme 4.6). The QTAIM results also confirm the 

weaker closed-shell interaction for C…S in the TS5. Moreover, strong H-bonding between 

N-Hpiperdine and OTs, some other weak closed-shell interactions including TsO…Cα/Hα, and 
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SO2S…Hα/β of piperidine are characterized in the obtained TS4 structure. With a cost of 

142.3 kJ/mol, transition structure yields the sulfinic acid derivative which stands 97.8 

kJ/mol higher in energy relative to RC4. Despite formation as strong as CS in different 

aforementioned systems, the presence of piperidine increases the energy of the reaction by 

49.5, 67.9 and 11.5 kJ/mol relative to DMSO-, NH3-based systems, and implicit solvation 

model, respectively.  

Scheme 4.6. Schematic illustration of the optimized structures with the selected bond 

lengths in ångstroms (Å) for the reaction of SO2 and N-tosyl hydrazone in the piperidine-

based system. 

Water-Based System: As Scheme 4.7 shows presence of a molecule of water in the system 

of interest causes the formation of two strong hydrogen bonds with the H atom of N-tosyl 

hydrazone and O atom of sulfur dioxide. In the obtained TS5 also a closed-shell interaction 

type between WH…OSO2 with ρ and 2ρ of 0.014 and 0.055 a.u., respectively at BCP has 

been characterized. Both QTAIM calculation and r(C…S) implies such a weaker 

interaction between C and S atom in the TS5 compared to DMSO-based reaction. The 

obtained TS5 with a cost of 149.7 kJ/mol leads to sulfinic acid formation. Although the 

activation barrier and energy of reaction has been increased by 8.4 and 17.8 kJ/mol 

compared to DMSO-based reaction, the strength of newly formed CS has not changed 

noticeably relative to other systems.  
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Scheme 4.7. Schematic illustration of the optimized structures with the selected bond 

lengths in ångstroms (Å) for the reaction of SO2 and N-tosyl hydrazone in the water-based 

system. 

It should be mentioned that based on the calculated ρ and 2ρ at the BCPs resulted from 

QTAIM analysis, both transferring H and O atom of sulfur dioxide (SO2O…H) and 

transferring H and NHydrazone (H…NHydrazone) interactions of all the obtained TS5 are 

characterized as the weak covalent bonds. Although SO2O…H interaction with measured ρ 

of 0.185  0.214 a.u. and 2ρ of 0.452 - 0.753 a.u. should be considered as the stronger 

covalent interaction compared to the H…NHydrazone interaction. 

Figure 4.2 briefly represents the obtained activation barriers and reaction energies of 

the reactivity of SO2 toward N-tosyl hydrazone in the DMSO with a dielectric constant of 

46.82 in the presence of different based-systems. Obviously, presence of base raises the 

activation barrier compared the environment without any bases by 13.6 to 149.7 kJ/mol in 

the water-based reaction which has the lowest proton affinity in DMSO while by increasing 

the proton affinity of employed bases, the activation barrier decreases to 133.9 kJ/mol in 

the NH3-based reaction.  

On the other hand, presence of base lowers the energy of the reaction from 86.3 in the 

environment without any base to 29.9 kJ/mol in NH3-based system. Indeed, decreasing the 

energy of the reaction is consistent with increasing the proton affinities of applied bases. 

The only exception was observed in the piperidine-based system with the highest proton 

affinity. 
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Figure 4.2. Calculated activation barriers (blue line) and reaction energies (green line) for 

the reactivity of SO2 toward N-tosyl hydrazone in the presence of different bases with the 

calculated proton affinity (PA) of each applied base (kJ/mol) in DMSO. 

Expectedly, based on the obtained results from the implicit solvation model, negligible 

changes in geometrical parameters and calculated energies were observed by replacing the 

DMSO with water, as the implicit solvent with the higher dielectric constant of 78.35.  

Effects of a non-polar environment by applying toluene with a dielectric constant of 

2.37 as an implicit solvent, in the presence of water and DMSO as the base, are also 

investigated and shown in Figure 4.3. Clearly, a noticeable change is attributed to 

decreasing the energy of the reaction by 34.9 and 21.1 kJ/mol in DMSO- and water-based 

system respectively, relative to the environment without any bases. Additionally, toluene 

causes decreasing the activation barrier by 9.2 to 140.5 kJ/mol and 1.9 to 139.4 kJ/mol in 

water- and DMSO-based environment, respectively relative to the corresponding reaction 

in implicit DMSO in the presence of water and DMSO, respectively (see Figure 4.2). This 

is while toluene increases the energy of the reaction by 3.9 to 70.0 kJ/mol and 7.9 to 56.2 

kJ/mol relative to the analogous reaction in the implicit DMSO model in the presence of 

water and DMSO, respectively (see Figure 4.2). As it is obvious, employing the base with 

higher proton affinity, has a considerable impact on the decreasing reaction energy with 

slight changes in the activation barrier. It is worth mentioning that the observed energy 

changes from water- to DMSO-based systems in toluene is less than energy changes in 
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DMSO as an implicit solvent; 1.1 vs. 8.4 kJ/mol for the activation barrier and 13.8 vs. 17.8 

kJ/mol for the reaction energy.  
 

Figure 4.3. Calculated activation barriers (blue line) and reaction energies (green line) for 

the reactivity of SO2 toward N-tosyl hydrazone in the presence of water and DMSO as the 

base with the calculated proton affinity (PA) of each applied base (kJ/mol) in toluene. 

To clarify the influence of the applied base, Figure 4.4 indicates the energy changes by 

applying the constant bases including water and DMSO in an environment with a different 

dielectric constant from 2.37 (toluene) and 46.82 (DMSO), to 78.35 (water). Obviously, 

DMSO can be considered as a better base relative to water in proceeding the ene reaction 

between SO2 and N-tosyl hydrazone. It is noteworthy that changing the polarity of 

employed implicit solvent cannot be significantly taken into account especially from 

ε=46.82 (DMSO) to ε=78.35 (water). 
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Figure 4.4. Calculated activation barriers (blue line) and reaction energies (green line) for 

the reactivity of SO2 toward N-tosyl hydrazone in toluene, DMSO, and water with applying 

A) DMSO B) water as the base. 

Alternatively, the influence of applying the same implicit and explicit solvent molecule 

in the reaction of SO2 and N-tosyl hydrazone is shown in Figure 4.5. Expectedly, by 

improving the proton affinity of the employed solvent the reaction energy has been 

remarkedly decreased from 87.3 kJ/mol in DCE to 48.3 kJ/mol in DMSO. However, this 

decreasing is not consistent with the calculated activation barriers and the least one is 

obtained using the acetonitrile by 121.4 kJ/mol.  

Figure 4.5. Calculated activation barriers (blue line) and reaction energies (green line) for 

the reactivity of SO2 toward N-tosyl hydrazone in an environment with the same implicit 

and explicit solvent molecule with the calculated proton affinity (PA) in kJ/mol. 

To form sulfene, which has the potential to undergo further reaction with amines to 

generate sulfonamide, decomposition of β,γ-unsaturated sulfinic acid was also studied. As 
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shown in Scheme 4.8, decomposition reaction proceeds via formation an 8-membered 

cyclic transition structure with a cost of 79.9 kJ/mol to produce sulfene, N2 and TsH which 

lies 103.9 kJ/mol lower in energy relative to the sulfinic acid derivative. It is noteworthy 

that a water molecule contribution in the transition structure through the formation of a 10-

membered cyclic transition structure results in increasing the activation barrier by 8.4 to 

88.3 kJ/mol. 

Scheme 4.8. Decomposition reaction of β,γ-unsaturated sulfinic acid to sulfene. 

The obtained potential energy surface (PES) of β,γ-unsaturated sulfinic acid formation 

(PC1) from the reaction of SO2 and N-tosyl hydrazone (RC1) and its decomposition to 

sulfene, TsH and N2 (PC6) in DMSO is shown in Figure 4.6. Changing the polarity from 

46.82 (DMSO) to 78.35 (water) has an insignificant influence on the obtained geometrical 

parameters and PES (data not shown). 

Figure 4.6. Potential energy surface for the formation of β,γ-unsaturated sulfinic acid and 

its decomposition to sulfene in DMSO.  

 



Chapter 4: Implicit/Explicit Solvent Roles in Sulfonamide Formation 
 

93 
 

4.3.2 Reactivity of SO2 toward Diaza Species 

The diazo species generated in situ from the amine-initiated decomposition of the N-tosyl 

hydrazone can behave as a nucleophile in reaction with SO2. A one-step reaction of sulfene 

formation from the diazo species is shown in Scheme 4.9. The reaction proceeds through 

a simultaneous C…S and C…N bond formation and dissociation, respectively. 

Scheme 4.9. Reactivity of diazo species toward SO2 to form sulfene.  

Solvents with a varied dielectric constant from 78.35 to 2.37 and then gas phase have 

been used to consider their impact on the geometrical parameters and energy values of the 

above reaction. As shown in Figure 4.7, employing solvents with a dielectric constant of 

78.35 (water), 46.82 (DMSO), and 35.66 (acetonitrile), the observed changes in the energy 

values are negligible. Also, geometrical parameters represent insignificant changes using 

these solvents. Although a nonpolar solvent (toluene) and gas-phase increase the activation 

barrier by ~11 and 19 to 58.8 and 67.1 kJ/mol, respectively. The mentioned nonpolar 

environments cause lowering the energy of the reaction by < 7 kJ/mol relative to polar 

solvents.  

Figure 4.7. Calculated activation barriers (blue line) and reaction energies (green line) for 

the reactivity of SO2 toward diaza species in various solvents and in the gas-phase. 
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4.3.3 Reactivity of Sulfene toward Amines 

Sulfene resulted from the aforementioned reactions can undergo further reaction with 

amines to form sulfonamides. Piperidine as the amine with the highest reported yield by 

Tsai et al.30 has been selected in this study for the formation of the desired product.  

According to Scheme 4.10, solvent-unassisted addition reaction proceeds through a 

concerted one-step mechanism of SN bond formation and proton transferring from 

amine (piperidine) to C atom of sulfene to form the sulfonamide.  

Scheme 4.10. Reactivity of sulfene toward piperidine to form sulfonamide. 

Formation a 4-membered cyclic transition structure with a cost of ~126 kJ/mol yields 

sulfonamide with the reaction energy of ~ 115 kJ/mol in an environment with different 

polarity from water to the gas phase (Figure 4.8).  

Figure 4.8. Calculated activation barriers (blue line) and reaction energies (green line) for 

the reactivity of sulfene toward piperidine in various solvents and in the gas-phase  

As expected and shown in Scheme 4.11, explicit solvent molecules potentially affect 

proton transferring from the N atom of piperidine to the C atom of sulfene actively via 

simultaneous accepting and donating proton and formation a 6-membered cyclic transition 

structure (TS7), or passively through H-bonding to the transferring proton (TS8 and TS9).  
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Scheme 4.11. Schematic description of the obtained transition structures with the selected 

bond lengths in ångstroms (Å) of solvent-assisted addition reaction of piperidine to sulfene 

in DMSO with the active role of the water molecule (TS7), the passive role of the water 

molecule (TS8), and the passive role of the DMSO (TS9). 

Based on the obtained potential energy surfaces, water molecule contributes to 

decreasing the activation barrier by 45.4 to 81.1 kJ/mol relative to the solvent-unassisted 

reaction by its active role in the formation of a 6-membered cyclic transition structure 

(TS7). However, due to the higher proton affinity of the N atom in piperidine compared to 

the O atom, water contribution through H-bonding with transferring proton causes 

increasing the activation barrier by 14.8 to 141.3 kJ/mol compared to the solvent-unassisted 

sulfonamide preparation (TS8). Also, the passive role of DMSO contribution toward 

sulfonamide formation has been studied. Similarly, presence of explicit DMSO molecule 

and its H-bonding with transferring proton increases the activation barrier by 10.1 to 136.6 

kJ/mol results from higher proton affinity of piperidine relative to DMSO (TS9). Although 

DMSO with more proton affinity compared to water leads to the formation of a stronger 

H-bond with the transferring proton; 2.26 Å vs. 2.55 Å (see Scheme 4.11). 

Alternatively, the effect of using two equivalents of piperidine acting as both base and 

nucleophile has also been investigated. As Scheme 4.12 indicates the addition reaction 

undergoes through a 2-step mechanism to form sulfonamide. 
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Scheme 4.12. Formation of sulfonamide from the reaction of sulfene and two equivalents 

of piperidine. 

Due to higher proton affinity of piperidine relative to the water and DMSO, the first step 

of the reaction, coincident SN bond formation and proton transferring to the second 

equivalent of piperidine, proceeds via 14.4 kJ/mol (TS10) to produce a deprotonated form 

of the desired sulfonamide (IC1). The second step of the reaction, as the rate-determining 

step, with a cost of 18.7 kJ/mol (TS11) results in sulfonamide which lies 72.9 kJ/mol lower 

in energy with respect to the RC6 (see Figure 4.9). Performing the reaction in a more polar 

environment (ε=78.35) did not impact the structural parameters and PES considerably (data 

not shown). 

Figure 4.9. Potential energy surface for the formation of sulfonamide from sulfene in the 

presence of two equivalents of piperidine in DMSO. 

Figure 4.10 summarizes the resulted energy values of the sulfonamide formation 

through the addition reaction of sulfene and piperidine with/without presence of a base. As 

described, applying bases passively with the lower proton affinity than piperidine cause 

increasing the activation barrier and energy of the reaction (e.g., DMSO), while bases with 

their active roles (e.g., water) are able to decrease the activation barrier noticeably. The 

PC7 

TS10 

RC6 

TS11 

IC1 
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obtained results are strongly consistent with employing two equivalents of piperidine 

acting as both nucleophile and base that causes decreasing the activation barrier by ~7 

times relative to the result obtained applying implicit solvation model to form the desired 

sulfonamide. 

Figure 4.10. Calculated activation barriers (blue line) and reaction energies (green line) 

for the reactivity of sulfene toward piperidine with/without the presence of different bases 

in DMSO. 

 

4.3.4 Alternative Sulfonamide Formation from N-tosyl Hydrazone 

The diaza intermediate from N-tosyl hydrazone decomposition can be potentially 

protonated in the reaction environment with the calculated ΔE= –1133.0 kJ/mol. This 

species is likely able to lose N2 with a low activation barrier of 3.0 kJ/mol to form 

CH3CH+Ph species. On the other hand, the nucleophilic (piperidineSO2) complex, as a 

potential reactive moiety, is able to undergo further reaction with cationic CH3CH+Ph to 

form the desired sulfonamide (ΔE= –241.9 kJ/mol). Although some other products 

resulting from the nucleophilic potential of O, N, and S atoms with calculated NBO charges 

of –1.12, –0.80, and 1.64 respectively, in (piperidineSO2) complex or elimination 

reaction in which (piperidineSO2) complex acts as the base are plausible (Scheme 4.13). 

As shown, two products from nucleophilic addition of S atom in (piperidineSO2) 

complex to CH3CH+Ph (ΔE= –241.9 kJ/mol) and nucleophilic attack of the N atom in 

(piperidineSO2) complex by losing SO2 to CH3CH+Ph (ΔE= –249.5 kJ/mol) are 
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considered as the most thermodynamically preferred products. It should be mentioned 

employing solvent with a higher dielectric constant (ε=78.35) increase the reaction energy 

by ~4 kJ/mol with respect to the to DMSO as an implicit solvent. 

Scheme 4.13. Plausible products of the reaction between (piperidineSO2) complex and 

CH3CH+Ph in DMSO with corresponding formation energy. 

4.4 Conclusions 

Under the impetus to investigate the significance of the reaction environment, solution-

phase and individual solvent molecules and their atomistic impacts on the mechanism of 

sulfonamide formation, two computational solvation models, implicit and hybrid 

implicit/explicit solvation models, have been employed in this study. 

Findings indicate that applying implicit solvents with different dielectric constants and 

various H-bond donor and acceptor capabilities has negligible effects on the transition 

structures obtained under the ene reaction between SO2 and N-tosyl hydrazine to form β,γ-

unsaturated sulfinic acid. Although based on the QTAIM analysis the newly formed CS 

bond is characterized as a bit stronger covalent bond in polar aprotic and protic solvents 

such as water, DMSO, and acetonitrile relative to the implicit nonpolar solvent such as 

toluene which is consistent with increasing the energy of the reaction.  
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On the other hand, results obtained from the hybrid implicit/explicit solvation model 

indicate that applying the base with a greater proton affinity, causes a noticeable decrease 

in energy of the ene reaction. The activation barrier with a slight decrease is less sensitive 

to the presence of the base. Furthermore in such based-systems, using the implicit nonpolar 

solvent e.g., toluene leads to decreasing activation barrier compared to polar implicit 

solvents (DMSO and water), while it slightly increases the reaction energy. Comparing the 

DMSO- and water-based systems in different polar and nonpolar implicit solvents also 

highlights DMSO as a better base than water in the ene reaction. 

Both decompositions of β,γ-unsaturated sulfinic acid and the reactivity of nucleophilic 

diazo species toward SO2 lead to sulfene formation which is almost independent of the 

effects of the applied polar protic and aprotic solvents. Although the results show that 

employing the nonpolar solvent increases the activation barrier of sulfene formation from 

the reaction of SO2 and diazo species consistent with a decrease in the reaction energy.  

Energy values for the S(O2)N bond formation (desired sulfonamide) in the reaction 

of sulfene and amine (piperidine) are not significantly impacted by applying the implicit 

solvation model with different solvents and dielectric constants from 78.35 to 2.37.  

In contrast, applying the hybrid implicit/explicit solvation model indicates that the presence 

of the base with its active contribution in proton transferring from the N atom of amine to 

the C atom of sulfene (e.g., water) has a significant role in decreasing the activation barrier. 

However, considering the passive role of the applied bases with the lower proton affinity 

than amine causes an increase in the activation barrier compared to the corresponding value 

using the implicit solvation model. The obtained results are strongly consistent with 

employing two equivalents of piperidine acting as both nucleophile and base which 

decreases the activation barrier by ~7 times relative to the result obtained applying implicit 

solvation model to form the desired sulfonamide. 
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5.1 Introduction 

Within cells and organisms, sulfur dioxide (SO2) is endogenously biosynthesized via 

oxidation of either reduced sulfur compounds (i.e., archaea and bacteria) or, for example, 

as in humans, sulfur-containing amino acids such as cysteine and homocysteine.1-2 

Importantly, SO2 is now recognized as having diverse and important biological roles within 

cells and organisms. For example, in mammals3 it has been shown to have antioxidant, 

anti-inflammatory, antihypertension activities as well as significant physiological roles in 

cardiac and blood vessel function and regulation.4 Furthermore, in humans it is known as 

the fourth gasotransmitter.5 However, conversely, it is also toxic in large quantities and has 

been implicated as having a role(s) in a number of pathological diseases, in particular, 

cardiovascular and respiratory diseases.6-7 Indeed, as a result SO2 has long been used as a 

preservative and antimicrobial agent in the food and beverage industries.8-9 

Its diverse biological roles are due in part to its electronic structure and properties that 

allow it to act as both a nucleo- and electrophile, as well as also being able to also react via 

radical mechanisms.10 These broad chemical capabilities have also been experimentally 

exploited in, for example, organic and polymer syntheses, and for medical applications 

such as therapeutic drugs.11-18 Indeed, several leading pharmaceuticals with antibacterial, 

antiobesity, antitumor, antimalarial, and anti-neuropathic pain activities possess SO2-

containing groups.16, 19 This is due in large part to the fact that SO2 can be reacted to form 

the versatile sulfone (R3C-SO2-CR3),20-23 sulfonamide (R3C-SO2-NR2) and sulfamide 

(R2N-SO2-NR2) groups. These themselves can be functionalized with a diverse array of R 

groups ranging from simple hydrogen to bulkier and chemically diverse aliphatic, 

heterocyclic, or aromatic groups (Scheme 5.1). As such, they can possess significant 

biological properties and able to interact with, for example, proteins, metal ions or nucleic 

acids.18, 24-29 

Despite their clear synthetic utility and potential, however, only a limited number of 

sulfonyl (-SO2-)-containing natural products have so far been identified.30 Furthermore, 
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while there are several possible mechanisms by which sulfonyl (-SO2-) groups can be 

introduced into various compounds, there has been a long growing interest in radical-

involving mechanisms.31-34 Recently, Baunach et al.35 observed the apparent enzyme-

involved biosynthesis of bulky diaryl sulfonamide and diaryl sulfone antibiotics within the 

gram-positive Streptomyces bacteria of which several are known to produce antibiotics.36 

They proposed that these compounds are formed via a radical-based three-component 

reaction involving SO2 and two equivalents of xiamycin (a pentacyclic 

indolosesquiterpene), and facilitated by the flavoenzyme XiaH.35 More specifically, XiaH 

is thought to catalyze a single-electron oxidation of xiamycin (Xia) to generate a nitrogen-

centered radical cation that then loses a proton to generate the corresponding neutral 

nitrogen-centered radical Xia•(N). It is noted that the actual mechanism of XiaH is itself 

still unclear.37 Two carbon-centered radicals are also possibly formed on the adjacent 

benzyl rings via resonance stabilization. Subsequent reaction of these radicals with SO2 

yields N–SO2 or C–SO2 containing sulfonyl radical species which react further with 

additional xiamycin radicals to ultimately form the observed sulfone and sulfonamide 

products. 

Scheme 5.1. Some examples of biologically active sulfone and sulfonamides.19 

Computationally there have been a number of studies on related-systems that contain 

sulfur dioxide, as well as its reactions, and interactions especially with N-containing 
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compounds such as amines.38-45 For example, Krupa et al. used the conventional correlated 

ab initio method MP2 and the dispersion-corrected hybrid-DFT method B3LYP-D3 to 

examine the interactions and properties of a series of HNCS…SO2 complexes.44 Their 

results indicated that van der Waals forces involving N…OS, N…SO2, S…SO2 could be 

of greater importance for stabilizing some complexes than hydrogen bonds. In addition, a 

study by Sinha et al. examined in part, using the non-dispersion corrected B3LYP, the 

oxidation by SO2 of m-xylene radicals generated via H-abstraction.45 Notably, they 

concluded that SO2 preferentially added to m-xylene radicals via one of its electronegative 

O-center's compared to its S-center. It is also noted that a number of computational studies 

have also examined the chemistry and properties of sulfone, sulfonamide and/or sulfamide 

compounds.46-49 However, to date, few computational studies have examined mechanisms 

for formation of biomolecular sulfonyl radicals and/or SO2-crosslinked species involving 

C- or N-centered radicals. 

In this present study we have applied conventional ab initio and density functional 

theory methods to study select reactions of SO2 with xiamycin-related radicals. More 

specifically, we have examined reactions of SO2 with a systematic series of xiamycin-

inspired aromatic C- and N-centered radicals, in the gas-phase and aqueous solution, to 

form sulfonyl radicals or SO2-crosslinked sulfone, sulfonamide, and sulfamide species. 

This has also been done to provide insights into their structures as well as the effects of 

substituents and environment on the reactions. In addition, they also provide a greater 

understanding of the stability, reactivity, and nature of the •O2SC or •O2SN bonds 

formation. 

 

5.2 Computational Methods  

All calculations were performed using the Gaussian 0950 program. Optimized geometries 

optimizations were obtained using the conventional ab initio electron correlated MP2 

method, the hybrid density functional theory (DFT) method B3LYP, composed of Becke’s 
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three parameters (B3) exchange functional51 in combination with the Lee, Yang, and Parr 

(LYP) correlation functional,52 and the meta-GGA DFT method M06-2X,53 in combination 

with the double-zeta and triple-zeta basis sets 6-31G(d) and 6-311G(d), respectively. The 

empirical D3 dispersion correction by Grimme54 was also used to model the non-covalent 

and dispersion interactions more accurately combined with the B3LYP functional for a 

number of studied models. For all optimized structures the harmonic vibrational 

frequencies were calculated at the same level of theory to characterize and ensure they were 

all energy minima (all frequencies real-valued). To obtain more accurate and reliable 

relative energies, single-point energy calculations were performed on the above optimized 

structures, and using the above methods but in combination with the more extensive 6-

311+G(2df,p) basis set. For calculations in which the effects of the polarity of an aqueous 

solution was also included, the IEFPCM solvation model with a dielectric constant (ε) of 

78.35 was used. For several gas-phase complexes, the basis set superposition error (BSSE) 

using the counterpoise method was determined and their interaction energy corrected.55 

The systematic series of xiamycin-inspired radicals shown in Scheme 5.2, i.e., from an N-

centered pyrrole radical to an N-centered xiamycin radical, were used to examine the effect 

of substituents on the reactions and properties of the resulting sulfonyl-radicals species. 

Scheme 5.2. Schematic initial illustration of the radical species considered in this study. 

5.3 Results and Discussion 

The reactions that were examined in this study were the addition of SO2 to an N-centered 

(un)substituted radical structures as shown in Scheme 5.2.  
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5.3.1 Pyrrolyl 

The highest calculated spin density on the pyrrolyl ring is related to the two C atoms 

adjacent to the N atom with the value of 0.53, while the spin density on the N atom is 

computed 0.17. In following, inserting the SO2 molecule into the pyrrolyl ring through 

the formation of NS(O2) and CS(O2) are discussed (see Scheme 5.2). 

 

5.3.1.1 N–S(O2) Bond Formation  

In the obtained sulfonyl radical species, a product of the reaction between the S atom in 

sulfur dioxide and N atom in pyrrolyl using B3LYP and M06-2X functionals, the highest 

spin density is related to the S atom with the value of 0.33 and 0.38 respectively, which 

comparing them with MP2 represents a better performance of M06-2X. The second and 

third highest calculated spin density in the obtained species after S atom are attributed to 

the O atom of SO2 and N atom of the ring respectively, confirmed by B3LYP, M06-2X, 

and MP2 functionals. 

In addition, SN bond length has been examined using B3LYP and M06-2X/6-31G(d) 

in fully optimized structures which are measured by 1.735 and 1.700 Å, respectively. By 

comparison with MP2, a better performance of M06-2X functional (by 0.012 Å difference) 

than B3LYP (by 0.035 Å difference) in r(SN) is observed. To consider the effect of the 

polar environment, SN bond length has also been examined applying IEFPCM solvation 

model with a dielectric constant (ε) of 78.35. Results represent that r(SN) has been 

shortened only by < 0.006 Å using B3LYP, M06-2X, and MP2. On the other hand, 

improving the valence description from double to triple-zeta, (6-31G(d) to 6-311G(d)), 

does not impact r(SN) significantly. As well, the inclusion of dispersion interaction 

effects via the use of Grimme’s correction (B3LYP-D3) and its effect on the SN bond 

does not indicate a noticeable change comparing to B3LYP. 

Relative sulfonyl radical formation energy has also been computed using B3LYP and 

M06-2X functionals with the value of 10.6 and 37.4 kJ/mol. Comparing these results 
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with MP2 shows B3LYP performs poorly by 36.6 kJ/mol error, while M06-2X displays 

9.8 kJ/mol error. It is worth mentioning that the applying polar environment (ε=78.35) 

increases calculated relative energy by ~15 kJ/mol while increasing the basis set from 6-

31G(d) to 6-311G(d) has no effects on the relative calculated energies in both gas and 

solution phase.  

 

5.3.1.2 C–S(O2) Bond Formation 

Based on the highest observed spin density on the C adjacent N atom in the initial pyrrolyl 

radical, the sulfonyl radical obtained from the reaction between S atom in SO2 and C atom 

in the pyrrolyl ring has also been studied. In the obtained radical sulfonyl species, the 

highest spin density using B3LYP and M06-2X functionals is measured for S atom in the 

-SO2 group by 0.33 and 0.36 respectively, which agreed with computed value using MP2.  

Measured CS bond length using B3LYP and M06-2X in this species is 1.763 and 

1.752 Å respectively, which display an error by 0.025 and 0.036 Å, respectively comparing 

MP2. Also, the observed changes in r(CS) applying the polar environment (ε=78.35) is 

< 0.010 Å. In addition, the larger basis set with triple valence description (6-311G(d)) does 

not impact the CS bond length noticeably.  

Relative formation energy for this sulfonyl radical molecule has been calculated. Using 

B3LYP and comparing the obtained result with MP2 represents 25.5 kJ/mol error to 50.6 

kJ/mol, while this error decreases to 3.8 kJ/mol using M06-2X to 72.3 kJ/mol. Increasing 

the measured relative energy resulted in employing the polar environment is < 5.4 kJ/mol. 

Similarly, no considerable changes were observed with applying the larger basis set of 6-

311G(d) in studying the formation of such sulfonyl radical species.  

As observed, CS(O2) bond formation by 34.9 (in the gas phase) and 46.7 kJ/mol (in 

solvation model) is preferred to NS(O2) bond formation using the M06-2X functional. 
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Since M06-2X shows relatively better performance than B3LYP in calculating the 

formation energy of C/NS(O2), comparing MP2 functional, this functional is applied as 

the more accurate and reliable one in calculating the energy in the current study.  

 

5.3.1.3 Cross-Linking Reactions 

To study the thermodynamically stable products of a radical-based, 3-component reaction 

involving two equivalents of pyrrolyl and one equivalent of sulfur dioxide, the formation 

energy of three possible products of diaryl sulfone, sulfonamide, and sulfamide in both gas 

phase and aqueous solution, using M06-2X functional are outlined in Table 5.1. 

Table 5.1. Calculated formation energy (kJ/mol) of SO2-containing compounds using 

pyrrolyl. 

As it is clear in Table 5.1, formation of diaryl sulfone (A1), a result of cross-linking of 

CS(O2)C is the thermodynamically favored product among sulfonamide (B1) and 

sulfamide (C1) by 14.1 and 37.8 kJ/mol respectively, in the gas phase, which aqueous 

solution increases the values by 24.9 and 59.8 kJ/mol. Due to the highest observed spin 

density of the initial pyrrolyl radical on the C atom adjacent N atom and preference of the 

CS bond formation to SN bond, the formation of diaryl sulfone species as the most 

preferred one among other possible products satisfied our expectation. 
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5.3.2. Indolyl 

The spin density of the indolyl has been calculated using B3LYP functional which 

represents the highest ones on the C(3) and N of pyrrolyl ring with the value of 0.51 and 

0.49, respectively. Conversely, the highest spin density on Ph-ring is related to C(7) with 

the value of 0.13 (see Scheme 5.2).  

 

5.3.2.1 N–S(O2) Bond Formation  

Employing B3LYP and M06-2X functionals, the formation of the sulfonyl radical species 

from the reaction of N atom of indolyl and sulfur dioxide has been examined. Calculated 

spin density using M06-2X indicates that S atom bears the largest spin density of 0.35 

which is in a good agreement with MP2 and followed by two O atoms of sulfur dioxide 

and then N atoms. In addition, comparing the NS(O2) bond lengths using M06-2X and 

MP2 makes a good compromise in both gas and solvation model with the error < 0.008 Å. 

It is while the calculated spin contamination in this such open-shell system, <S2>, using 

MP2 functional is 0.05 larger than expectation value (0.75).  

Furthermore, calculated spin density using B3LYP functional represents quite equal 

spin density distribution (~0.21) among S, and N and C(3) atoms of indolyl, not 

predominantly on the -SO2 group in the gas phase (Figure 5.1). 

Figure 5.1. Spin density map for indole sulfonyl species using (A) B3LYP and (B) M06-

2X functionals, respectively. 
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Furthermore, applying B3LYP functional, the NS(O2) bond length is elongated by 

0.101 Å to 1.815 Å relative to MP2 in the gas phase, while N…S distance in aqueous 

solution is measured by 2.413 Å with the error of 0.705 Å comparing MP2. Improving the 

basis set from 6-31G(d) to 6-311G(d) is also caused S…N to lengthen by 0.018 and 0.006 

Å in gas and solution, respectively compared to B3LYP/6-31G(d). To consider the 

influence of long-range interaction on the r(S…N) in this species, dispersion interaction 

effect using B3LYP-D3 employed which shows shortening S…N distance by 0.006 and 

0.079 Å to 1.809 and 2.334 Å in gas and aqueous media, respectively.  

Due to the observed results related to B3LYP and B3LYP-D3 methods and their 

inefficiency in describing the most accurate geometry, also the observed spin 

contamination applying MP2, the relative formation energy for the corresponding sulfonyl 

radical molecules have been calculated using M06-2X functional, with the value of 35.5 

kJ/mol. IEFPCM solvation model increases the energy by 15.6 to 19.9 kJ/mol. The 

formation energy relative to the corresponding bond formation in our smallest system 

(pyrrolyl) does not represent a significant change (~2 kJ/mol).  

 

5.3.2.2 C–S(O2) Bond Formation  

C(3)S(O2) Formation: Bond formation between C(3), the atom with the highest spin 

density in the indolyl, and S atom has examined. Similar to what observed in pyrrolyl ring, 

SO2 group shows the highest spin distribution, mostly on the S atom. All B3LYP, M06-

2X, and MP2 agree on the obtained results. Using B3LYP and M06-2X functionals, 

r(CS) is measured by 1.764 and 1.749 Å, respectively with the < 0.009 Å error 

comparing MP2 (despite observed spin contamination). The polar environment also causes 

r(CS) to feel shortening by 0.012 Å using M06-2X and B3LYP/6-31G(d) functionals. 

In comparison with pyrrolyl system and CS(O2) formation, the C(3)S(O2) formation 

energy in such model using M06-2X has been raised by 3.5 to 68.8 kJ/mol in gas and 

decreased by 4.6 kJ/mol to 73.5 kJ/mol in solvation model.  
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C(7)S(O2) Formation: C(7)S bond formation in Ph-ring has been also investigated 

(see Scheme 5.2). In the obtained sulfonyl species, r(C(7)S) is measured to be longer by 

approximate 0.028 and 0.036 Å in the gas phase and solvation model, respectively using 

B3LYP and M06-2X functionals comparing to r(C(3)S). In addition, C(7)SO2 

formation energy, using M06-2X has been decreased by 10.5 to 79.3 kJ/mol in the gas 

phase and increased only by 4.4 to 69.1 kJ/mol in aqueous solution relative to C(3)SO2 

bond formation. 

 

5.3.2.3 Cross-Linking Reactions 

Comparing the stability of SO2-containing compounds from a 3-components radical 

reaction of two equivalent of initial indolyl and sulfur dioxide molecules, through the 

formation energy of the most possible products based on the spin density distribution have 

been shown in Table 5.2. 

Table 5.2. Calculated formation energy (kJ/mol) of SO2-containing compounds using 

indolyl. 

As Table 5.2 shows three different diaryl sulfones species (compounds D2-F2) are the 

most thermodynamically stable products than possible diaryl sulfonamides (compounds 

B2-C2) and sulfamide (A2), while sulfamide is least favored formations 

thermodynamically. Interestingly, diaryl sulfone F2, that is the result of cross-linking of 

C(7)S(O2)C(7) is the most preferred one. It is while C(7) on the Ph-ring bears much 

lower spin density relative to C(3) and N of the indolyl despite the preference of 
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C(7)S(O2) formation to NS(O2) and C(3)S(O2). It is worth mentioning that diaryl 

sulfone D2, the result of cross-linking of C(3)S(O2)C(3) in which C(3) shows the 

highest spin density in indolyl species, is 18.0 kJ/mol higher in energy than diaryl sulfone 

F2. Obviously, the aqueous solution increases the computed formation energy from 1.7 (in 

diaryl sulfone E2) to 28.4 kJ/mol (in diaryl sulfamide A2) except for diaryl sulfone D2, 

which is lowered by 10.7 kJ/mol.  

 

5.3.3 Cabazolyl  

Unlike pyrrolyl and indolyl molecules, in carbazolyl, the most spin density is localized on 

the N atom with the value of 0.51 calculated which is ~2.5 times more than observed ones 

on C(1)(3)(6)(8) with the spin density ~0.21 (see Scheme 5.2). 

 

5.3.3.1 N–S(O2) Bond Formation 

NS(O2) bond formation in sulfonyl radical species have been studied using B3LYP, 

B3LYP-D3, and M06-2X functionals. Results using M06-2X show that S atom in this 

species has the highest value of spin density (0.34) and the second and third places are 

related to the two O and N atoms with the value of 0.20 and 0.18, respectively. The r(NS) 

bond in this species is measured 1.723 in the gas phase, which shows an increase of 0.023 

and 0.017 Å comparing to the corresponding bond in the pyrrolyl and indolyl species, 

respectively. The polar environment also increases the r(NS) by 0.005 Å. 

B3LYP functional has also been used to examine this species. The S…N distance is 

measured by 2.654 and 2.542 Å in the gas and solution phases, respectively. It is while the 

observed spin density delocalization value is quite similar to the initial carbazolyl radical 

with no spin density distribution on SO2 species (see Figure 5.2). Additionally, the 

observed spin contamination for this species seems to be larger than the expected value; 

0.78. Use of Grimme’s correction, B3LYP-D3, has shortened the r(S…N) by 0.118 and 

0.110 Å to 2.536 and 2.432 Å in the gas and solvation phases, respectively. 
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Figure 5.2. Spin density map for carbazole sulfonyl species using (A) B3LYP and (B) 

M06-2X functionals, respectively. 

In spite of the most observed spin density on the N atom of carbazolyl species, using 

M06-2X functional, the sulfonyl formation energy using has decreased only by 1.8 kJ/mol 

to 39.2 kJ/mol compared to the corresponding bond formation in pyrrolyl system. 

Although the polar environment increases this energy by 3.4 kJ/mol comparing pyrrolyl 

system to 18.8 kJ/mol. It is worth mentioning that the corrected formation energy with 

BSSE for carbazolyl-(N)…S(O2) complex using B3LYP functional is calculated by 21.6 

kJ/mol. 

 

5.3.3.2 C–S(O2) Bond Formation 

CS bond formation between C(1) and C(3), with the highest spin density after N atom 

in carbazolyl, and S atom of sulfur dioxide have also been examined. In both formed 

sulfonyl species, -SO2 group displays the most spin densities with no spin density 

distribution on the other atoms in carbazole. Using M06-2X and B3LYP functionals, 

C(1)S bond length shows an excellent compromise with r(C(7)S) in the indole 

sulfonyl species. Although C(1)S(O2) bond formation energy has been increased by 7.9 

and 6.0 kJ/mol to 71.4 and 63.1 kJ/mol in the gas and aqueous medium, respectively 

compared to corresponding C(7)S(O2) bond in the indole sulfonyl species. 

In addition, examining the C(3)S(O2) bond formation using B3LYP and M06-2X 

functionals results in the elongation of r(CS) by around 0.011 Å relative to the 
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r(C(1)S). Also, the comparison shows that C(3)S bond formation energy has been 

raised by 5.8 to 65.6 kJ/mol relative to C(1)S bond formation in the gas phase, although 

the polar environment, deceases it to 69.6 kJ/mol.  

Based on the obtained findings in the carbazolyl despite observing the highest spin 

density distribution on the N atom, the formation of NS(O2) formation is not favored 

over CS(O2). 

 

5.3.3.3 Cross-Linking Reactions 

Thermodynamic stability comparison among possible SO2-containing compounds result 

from the radical-based 3-component reaction of carbazolyl and sulfur dioxide are listed in 

Table 5.3. 

As shown, similar to the cross-linking reaction in indolyl and sulfur dioxide species, 

three diaryl sulfones species (compound D3-F3) are the thermodynamically preferred 

products to possible diaryl sulfonamides (compound B3-C3). Not surprisingly among 

obtained diaryl sulfones, the one which is the result of the cross-linking reaction of 

C(1)SO2C(1), diaryl sulfone D3, should be considered as the most thermodynamically 

favored sulfone species by 7.9 and 18.0 kJ/mol relative to diaryl sulfone E3 and F3, 

respectively in the gas phase. It should be mentioned that sulfamide (compound A3), a 

result of the cross-linking reaction of two N-center radical carbazolyl and SO2 is the least 

thermodynamically preferred product, although the N atom in the carbazolyl displays the 

highest value of spin density distribution.  

Employing a polar environment increases the energy of formation from 1.7 (in diaryl 

sulfone E3) to 26.6 kJ/mol (in diaryl sulfamide A3). The only exception occurs for diaryl 

sulfone F3, where the SO2 moiety links two C(3) centers of initial cabazolyl. In this case 

ΔESCRF is lower than ΔEg by 11.5 kJ/mol 
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Table 5.3. Calculated formation energy (kJ/mol) of SO2-containing compounds applying 

carbazolyl.  

 

5.3.3.4 Substitution Effects 

To study the effects of various substitution on the CS(O2) and NS(O2) bond formation, 

and cross-linking reactions, H on -C(3) of carbazolyl species is replaced with a number of 

electrons withdrawing and donating groups (see Scheme 5.2).  

3-Methyl Carbazolyl: As findings show the presence of the -CH3 group on the -C(3) of 

carbazole does not indicate the significant changes in the measured NS(O2), 

C(1)S(O2), C(6)S(O2), and C(8)S(O2) distances relative to the corresponding 

distances in the unsubstituted carbazolyl species. Although it leads to increasing the 

formation energy of NS(O2) by 8.1 to 31.1 kJ/mol using M06-2X functional in the gas 

phase with respect to the analogous bond formation in the carbazolyl species. Additionally, 

-CH3 group results in increasing the CS(O2) formation energy by ~3 kJ/mol relative to 

the corresponding bond formation in the unsubstituted carbazolyl. 

3-Fluoro Carbazolyl: Similarly, inserting the electron-withdrawing group of -F on the -

C(3) of carbazolyl species causes a insignificant changes in the measured NS(O2), 

C(1)S(O2), C(6)S(O2), and C(8)S(O2) distances relative to analogous bonds in the 
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unsubstituted carbazolyl. It is while the energy for the formation of NS(O2) has been 

raised by 11.1 to 28.1 kJ/mol relative to the corresponding bond in the carbazolyl. Also, 

CS(O2) formation experiences an increase of 6.4-11.6 kJ/mol in comparison with 

corresponding unsubstituted carbazolyl. 

3-Amino Carbazolyl: A noticeable influence of -NH2 substitution firstly is observed in the 

spin density distribution on the carbazolyl species comparing -CH3 and -F. The presence 

such an electron-donating group causes lowering the spin density distribution on the N, 

C(6), and C(8) to 0.42, 0.11, and 0.13, respectively.  

In addition, -NH2 leads to significant lengthening of N…S(O2) distance. Applying the 

M06-2X functional, the measured r(N…S(O2)) in the obtained complex result of 3-amino 

carbazolyl and SO2 is 2.413 and 2.042 Å in the gas and aqueous environment, respectively. 

Although these observed distances have been decreased by 0.157 and 0.285 Å relative to 

measured distances applying B3LYP functional in the gas and solution phase, respectively.  

Another considerable impact of -NH2 presence is observed in C(1)S(O2), 

C(6)S(O2), and C(8)S(O2) bond formation in which the formation energy has been 

raised by < ~6 and ~38 kJ/mol in comparison with unsubstituted carbazolyl species in the 

gas phase and aqueous solution, respectively. 

 

5.3.3.5 Cross-Linking Reactions 

Influence of -CH3 and -F substituents on the radical-based 3-component reaction is also 

studied (Table 5.4). Similar to what resulted of the unsubstituted carbazolyl in the cross-

linking reactions, diaryl sulfamide, and sulfones, respectively is considered as the least and 

most favored products thermodynamically. Among obtained sulfone species (compounds 

E4-J4), products result of the cross-linking of C(1)SO2C(8) and C(8)SO2C(8), 

(diaryl sulfone F4 and H4, respectively) are the preferred thermodynamic ones in which 
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both C(1) and C(8) have indicated the highest spin density after N atom in the initial 

substituted carbazole species.  

Obviously, despite electron-withdrawing nature of -F relative to the neutral nature of -

CH3, noticeable changes in the formation energy of SO2-containing compounds derived 

from substituted carbazolyl were not observed (< ~13 kJ/mol).  

Expectedly, applying the polar environment increases the formation of the desired 

compounds. The only exception is observed for diaryl sulfone J4, a result of 

C(6)SO2C(6) cross-linking reaction in which the aqueous medium decreases the 

energy (see Table 5.4).  

As earlier discussed, a result of not observing the covalent bond formation between N 

atom of 3-amino carbazolyl and S atom of sulfur dioxide, the formation of only six possible 

diaryl sulfone species were examined for the cross-linking 3-component reaction derived 

from 3-amino carbazolyl species. As Table 5.4 outlines, expectedly based on the spin 

density distribution on 3-amino carbazolyl, diaryl sulfones F4 and H4, obtained from 

C(1)SO2C(8) and C(8)SO2C(8) cross-linking respectively, are regarded as the 

most thermodynamically stable ones among other products. It should be stated that -NH2 

substitution leads to increasing the formation energy of the related diaryl sulfones via cross-

linking reactions by < ~39 and < ~45 kJ/mol relative to -F and -CH3 substitutions in the 

gas phase. Considerably, the polar environment raises the observed difference though by 

less than ~68 kJ/mol. 

 

5.3.4 Radical Xiamycin 

Spin density distribution on the xiamycin radical species as a bulky alkyl-substituted 

carbazolyl ring has also been examined. Results show that inserting such a bulky alkyl 

substituent in carbazolyl species does not affect the calculated spin density noticeably 

comparing to the initial unsubstituted carbazolyl. 
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Table 5.4. Calculated formation energy (kJ/mol) of SO2-containing compounds from 

substituted carbazolyl.  

 

5.3.4.1 N–S(O2) Bond Formation 

Applying three different functionals including B3LYP, B3LYP-D3, and M06-2X, the 

formation of NS(O2) was examined. Comparing the results with the corresponding 

species in the unsubstituted carbazolyl ring does not display considerable changes in the 

measured r(NS(O2)) using M06-2X; < 0.006 Å in the gas and solution phase. Similarly, 
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it should be noted both B3LYP and B3LYP-D3 functionals lengthen the r(N…S(O2)) 

distance to 2.643 and 2.523 Å, respectively in the gas phase. Although the polar 

environment decreases the distances by 0.127 and 0.117 Å to 2.516 and 2.406 Å, 

respectively. 

One of the effects of the presence of this bulky substituent is observed in calculating 

NS(O2) formation energy. It shows an increase of 20.2 kJ/mol relative to the analogous 

bond formation in unsubstituted carbazolyl system to 19.0 kJ/mol in the gas phase. 

Although employing the polar environment decreases the observed difference to 3.8 

kJ/mol. It's worth mentioning that the corrected formation energy with BSSE for 

(N)…S(O2) complex in this species using B3LYP functional is calculated by 12.6 kJ/mol, 

an increase of 9.0 kJ/mol relative to carbazolyl-N…S(O2) complexes without any 

substituent. 

 

5.3.4.2 C–S(O2) Bond Formation  

Additionally, influence such bulky substitution on the CS(O2) bond formation applying 

two B3LYP and M06-2X functionals were studied. Comparison C(1)S(O2) and 

C(5)S(O2) with corresponding ones in the unsubstituted carbazolyl system shows 

insignificant changes in the measured bond lengths. The only exception is related to the 

r(C(12)S(O2)) which indicates a 0.017 and 0.021 Å bond lengthening using B3LYP and 

M06-2X, respectively comparing the unsubstituted carbazolyl system. Result of the 

observed bond lengthening, the related bond formation energy increases by 8.8 and 10.9 

kJ/mol to 62.6 and 52.2 kJ/mol in the gas and polar environment, respectively.  

 

5.3.4.3 Cross-Linking Reactions 

Plausible products resulted from the cross-linking reaction of radical xiamicin and SO2 are 

listed in Table 5.5. Expectedly, based on the results from previous smaller systems, diaryl 

sulfamide A5 and sulfone F5, a result of the cross-linking of C(1)SO2C(5), are regarded 
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as the least and most thermodynamically stable products, respectively. This finding is in 

good agreement with spin density distribution on the less substituted Ph-ring of radical 

xiamycin.  

Table 5.5. Calculated formation energy (kJ/mol) of SO2-containing compounds from 

xiamycin. 

As expected, applying the polar environment increases the calculated formation energy 

by ~5-17 kJ/mol. But some exceptions are observed in the cross-linking reaction of 

C(1)S(O2)C(5) (sulfone F5), C(5)SO2C(5) (sulfone H5), and 

C(12)S(O2)C(5) (sulfone I5) in which the polar environment decreases the formation 

of energy by ~13-39 kJ/mol.  

Interestingly, diaryl sulfone H5 and I5 are the same ones which were identified as the 

bioproducts of a bacterial synthesis of some sulfa compounds antibiotics by flavoenzyme 

XiaH and sulfur dioxide capturing35 and the other as mentioned is the most 

thermodynamically stable one in the gas phase (compound F5). Also, among three possible 
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diaryl sulfonamides species (compound B5, C5, and D5), diaryl sulfonamide C5 is the most 

thermodynamically feasible one in both gas and polar environment. Surprisingly, this 

compound is the other observed bioproduct of flavoenzyme catalyzed bacterial synthesis. 

 

5.4 Conclusions  

SO2-containing compounds, including sulfones (R3C-SO2-CR3), sulfonamides (R3C-SO2-

NR2), and sulfamides (R2N-SO2-NR2) are known as highly efficient versatile species with 

a wide spectrum of chemical and biological activities and properties. Some DFT and 

conventional ab initio methods have been applied to study the formation of such diaryl 

SO2-containing moieties through a radical-based three-component reaction involving two 

equivalents of a number of small to bulky N-containing heterocyclic compounds and one 

equivalent of sulfur dioxide. Our findings show that CS(O2) bond formation is preferred 

to NS(O2) bond formation which necessarily does not agree with the observed spin 

density distribution in the initial radical N-containing heterocyclic species.  

Preference of CS(O2) to NS(O2) results in the formation of diaryl sulfones (R3C-

SO2-CR3) and diaryl sulfamides (R2N-SO2-NR2) as the most and least thermodynamically 

favored possible SO2-containing compounds in the current study, respectively. 

In addition, the influence of the different substitutions on the formation of the desired 

SO2-containing compounds has been investigated. The results indicate that presence of -

CH3 and -F substitutions as the neutral and electron-withdrawing groups, respectively on 

one of our medium-sized, N-containing heterocyclic radical (carbazolyl) do not 

considerably impact the obtained results compared with the unsubstituted species. 

Although the observed changes with inserting electron-donating group such as -NH2 are 

considerable both structurally and energetically.  

More significantly, the obtained results related to the initial radical xiamycin and 

studying the most thermodynamically preferred SO2-containing compounds are in a good 

agreement with experimentally observed diaryl sulfonamide and sulfones antibiotics which 
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were identified as the bioproducts through a bacterial synthesis of flavoenzyme (XiaH) and 

sulfur dioxide capturing.  

As well, in the current study the ability of some DFT methods and conventional ab initio 

in the formation of SO2-containing compounds of interest were assessed. Based on our 

finding, the M06-2X functional as the meta-GGA functional, among other applied DFT 

methods, B3LYP and B3LYP-D3, performs well in predicting geometrical parameters and 

energies, while B3LYP and B3LYP-D3 tend to overestimate the CS(O2) and NS(O2) 

bond lengths and significantly affect the related structures and formation energies.  

On the other hand, observing the larger spin contamination than expected value using 

ab initio MP2 by increasing the size of the models of interest causes bonds lengthening and 

changes in the energy compared with other functionals.  
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6.1 Introduction 

Post-translational modification (PTM) of proteins (e.g., glycosylation, ubiquitination, 

sumoylation) is important for a variety of physiological processes including, for example, 

signaling and degradation, as well as expanding the chemical functionality of proteins and 

enzymes.1-2 Indeed, it has been estimated that up to two thirds of all proteins expressed in 

eukaryotes are at least temporarily phosphorylated.3-5 As a result, understanding the 

formation of such modifications, their effects, and roles has long been of considerable 

interest.6-7 Within peptides, however, a number of residues such as serinyl, threonyl, and 

tyrosyl are known to more commonly be the target of PTMs, e.g., phosphorylation. 

However, cysteinyl is also known to be able to undergo a range of post-translational 

modifications under oxidative conditions. For example, they can form disulfide bonds, the 

most common covalent crosslink found in proteins, persulfides, sulfonamides and oxidized 

derivatives such as sulfenic acid.8-10  

Recently, it has been shown that cysteine can be modified by reaction with nitroxyl 

(Azanone: HNO). The latter is the protonated one-electron reduced form of nitric oxide 

and is now known to be a potent species in biological systems exhibiting many 

physiological effects including enzyme inhibition and regulation.11-13 In addition, it has 

also shown potential pharmacological significance as a therapeutic agent for a variety of 

disease including heart failure, cancer, alcoholism, and vascular relaxation.13-20 Notably, 

the biological activity of HNO has been postulated to result in large part from its ability to 

modify thiol groups, in particular, that of cysteine.21-23 

It was commonly held that depending on the thiol concentration, the thiols reaction with 

HNO leads to formation of N-hydroxysulfenamide (RSNHOH) which then reacts further 

to produce disulfide (RSSR) and/or sulfinamide (RS(O)NH2) (Scheme 6.1A).24-29 Indeed, 

such induced disulfide or sulfinamide modifications have been observed in several proteins 

including aldehyde dehydrogenase (AlDH), glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), papain, and yeast transcription factor ACE1.17, 30-35 However, it is now known 
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that the reaction of HNO with peptide thiols is influenced by other factors including the 

environment's hydrophobicity/polarity, the thiol's pKa, and nearby acid/base functional 

groups. For example, under standard conditions HNO reacts with thiols with a rate of k = 

3 x 106 M-1s-1.36 However, with the active site thiol GAPDH it reacts at an even higher rate 

of >1 x 109 M-1s-1 due to a nearby histidyl acting as a base to facilitate their reaction.31, 37 

Recently, Keceli et al. experimentally observed that reaction of HNO with C-terminus 

cysteinyl's resulted in the formation of sulfohydroxamic acid RS(O2)NHOH, thiosulfonate 

(RS(O2)SR) and thiosulfinate (RS(O)SR) as well as disulfides and sulfinamide.38 They 

proposed that, as shown in Scheme 6.1B, the availability of the adjacent carboxylate led 

via a cyclic intermediate to sulfenic acid, which then reacts further to give the broader 

range of products. 

Scheme 6.1. Schematic illustration of the reaction and resulting products of HNO with a: 

(A) thiol, and (B) C-terminus cysteinyl thiol. 

There have been several computational investigations on the reactions of HNO with S-

containing compounds.36, 39-42 For instance, Sherman et al. used B3LYP, MP2 and CBS-

QB3 methods, in combination with a polarized continuum (IEFPCM) solvation model to 

examine mechanisms by which HNO may react with a variety of free thiol derivatives.41 

In particular, they concluded that in hydrophobic environments (i.e., low polarity) the 

kinetic production of disulfides was preferred while thiols with electron-withdrawing 

substituents, and in the presence of suitable bases, preferentially and irreversibly formed 
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sulfinamides. However, the reactions examined did not consider the impact of a cysteinyl's 

position in a peptide, or the energetic bio-feasibility of those pathways. More recently, 

Ivanova et al. used several DFT methods to examine the related process of HNO formation 

via S-thiolation involving thiols and S-nitrosothiols (RSNO).42 They concluded that such 

reactions proceed via a zwitterionic intermediate, RSS+(R)N(H)O followed by SN bond 

dissociation to give HNO and the RSSR disulfide. They also noted that the reaction was 

facilitated in an aqueous environment via water-assisted proton shuttling. 

Recently, S-sulfhydration of cysteine residues (i.e., formation of the persulfide 

derivative RSS–/H) has been recognized as important to a variety of physiological 

processes from redox signaling to enzyme regulation and thus consequently is of increasing 

interest.43-45 Due to the inherent instability and high reactivity of such persulfide species, 

their chemical biology is not well-known. However, their lower pKa and greater 

nucleophilicity compared to thiols, has led to the proposal that they may more readily react 

with HNO within biological environments. Unfortunately, to date, there have been few or 

no experimental or computational studies on the reaction of HNO with cysteinyl 

persulfides.  

In this present study, we have used DFT-based methods in combination with a 

systematic series of chemical models to examine the reaction of HNO with the cysteinyl 

and cysteinyl persulfide residues and the effect thereon of their position and/or 

environment in a peptide or protein. More specifically, the reactions of HNO with C- and 

N-terminus, as well as peptide-internal cysteinyl residues, and cysteinyl persulfides have 

been examined. The effect and role of the presence of carboxylic acid (C-terminus) and 

amine (N-terminus) functional groups, and the polarity of the environment have also been 

considered. 
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6.2 Computational Methods 

All calculations were performed using the Gaussian 09 suite of programs.46 Optimized 

geometries were obtained out using the density functional theory (DFT) meta-GGA 

functional M06-2X, in conjunction with the 6-311G(d,p) basis set. This level of theory has 

previously been shown to provide reliable optimized geometries of sulfur-containing 

molecules.47-48 In addition, the polarity of the surrounding environment was included by 

use of the IEFPCM solvation method. Dielectric constants (ε) of 4, 10, and 78.35 were used 

to model a non- or polar protein environment, and an aqueous solution environment 

respectively, and as has been commonly used in computational enzymology studies.49 That 

is, optimized geometries were obtained at the IEFPCM(ε = Y)-M06-2X/6-311G(d,p) level 

of theory. Harmonic vibrational frequencies were calculated at the same level of theory for 

all optimized structures to ensure they were minima or mechanism-relevant first-order 

transition structures. Relative energies were obtained by performing single point 

calculations at the IEFPCM(ε = Y)-M06-2X/6-311+G(2df,p) level of theory on the above 

optimized structures; IEFPCM(ε = Y)-M06-2X/6-311+G(2df,p)// IEFPCM(ε = Y)-M06-

2X/6-311G(d,p). Topological analyses of the densities were performed using the AIMALL 

program.50 To model cysteinyl and cysteinyl persulfide residues in the different possible 

positions in which they may occur within a peptide, without biases that may arise from use 

of a specific X-ray crystal peptide's structure, the structures of the residue shown in Scheme 

6.2 were used. 

Scheme 6.2. Schematic illustration of the chemical models used for the cysteinyl (X = S) 

and cysteinyl persulfide (X = S-S) residues within (internal) and in the C- and N-terminus 

positions, of a peptide. 



Chapter 6: HNO-Derived PTMs of Cysteinyl and Cysteinyl Persulfide 
 

139 
 

6.3 Results and Discussion 

6.3.1 Reaction of HNO and Cysteinyl Residue 

6.3.1.1 N-hydroxysulfenamide Formation 

The expected product of the reaction of HNO and the cysteinyl residue is N-

hydroxysulfenamide intermediate. As shown in Scheme 6.3, the formation of S—N bond 

and transfer of the S—H proton of cysteine to the O atom of HNO are the key processes in 

this reaction.  

Scheme 6.3. Schematic representation of N-hydroxysulfenamide formation. 

 

 

Considering the cysteine residue position and its plausible effects on the reactivity of 

HNO toward S atom of cysteine, this reaction has been studied using three different models 

of cysteine including C-terminus, internal, and N-terminus residues. 

In the aqueous media, explicit water molecules potentially assist proton transferring 

from S to O atom through a 6-membered cyclic transition structure. Figure 6.1 represents 

the obtained optimized reactant complexes, transition structures, and product complexes of 

models of our interest. Obviously, comparison of RC1 and PC1 applying different models 

of cysteine residue does not indicate the considerable changes in the measured r(S—H) 

and r(CysS…NHNO) in the reactant complexes, r(S—N) and r(N—O) in the product 

complexes, respectively. However, the most significant changes are observed in the 

obtained transition structures. 

Comparing the transition structures shows r(S—H) of cysteine residue (from 1.34 Å) is 

significantly lengthened to 1.40 Å in C-terminus, 1.81 Å in internal and 1.91 Å in N-

terminus cysteine residues. The S…N bond distance also has been measured by 1.75 Å in 

C-terminus, 2.43 and 2.48 Å in internal and N-terminus cysteine residues, respectively.  
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Figure 6.1. Optimized reactant complexes (RC1), transition structures (TS1), and product 

complexes (PC1) with selected bond distances in ångstroms (Å) of the water-catalyzed 

reaction of HNO with C-terminus, internal, and N-terminus cysteine residues from up to 

down, respectively. 

Additionally, the molecular graphs for the studied transition structures using QTAIM 

are shown in Figure 6.2. The QTAIM calculated values of electron density (ρ) and 

Laplacian of the electron density (2ρ) at the bond critical point (BCP) for the S…OCOO 

in the obtained transition structure using C-terminus model of cysteine residue are 0.027 

and 0.087 a.u., respectively which indicate the closed-shell interaction type between S and 

O atom of the carboxylate group. Interestingly, these values lie within the ranges for ρ 

(0.002-0.035 a.u.) and 2ρ (0.024-0.139 a.u.) previously suggested as a typical H-

bonding.51-52 It should be mentioned such this closed-shell interaction between S…OCOO 

is replaced with a weaker closed-shelled interaction of S…NNH2
 and S…HNH3+ in the 

internal and N-terminus cysteines, respectively (see Figure 6.2). 
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The calculated parameters of QTAIM analysis related to C-terminus cysteine residue 

reveal that S…NHNO interaction in the obtained transition structure with ρ and 2ρ of 0.200 

and 0.354 a.u., respectively, is characterized as the covalent bond which is consistent with 

the measured distance of 1.75 Å. It is while the QTAIM calculated values of ρ and 2ρ at 

the BCPs of S…NHNO interaction in the transition structures modeled with internal and N-

terminus cysteine residue are 0.051 and 0.086, and 0.045 and 0.085 a.u. respectively.  

It is worth stating that a closed-shell interaction type between HNOO…HCH2 with ρ and 

2ρ value of 0.014 and 0.048, and 0.010 and 0.039 a.u. respectively, at the BCPs is 

observed for internal and N-terminus models of cysteine residue in their obtained transition 

structures in the reaction with HNO. This type of interaction is not characterized in the 

transition structure obtained for the reaction of HNO with C-terminus cysteinyl. 

Figure 6.2. QTAIM molecular graphs of the obtained transition structures of the water-

catalyzed reaction of HNO with C-terminus, internal, and N-terminus cysteine residues 

from left to right, respectively. 

In addition to studying the water-assisted proton transferring mechanism, the unassisted 

proton transferring process from S to OHNO also has been examined. The obtained 4-

membered cyclic transition structures and the related QTAIM molecular graphs are shown 

in Figure 6.3. The calculated values of ρ and 2ρ at the BCP for S and O atom of 

carboxylate in the model of C-terminus cysteine indicates a weaker closed-shell interaction 

with the ρ and 2ρ of 0.014 and 0.051 a.u. respectively, comparing the corresponding one 

in the presence of an explicit water molecule. As Figure 6.3 displays the closed-shelled 

interaction of S…NNH2
 has not been characterized in the obtained transition structure using 
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the internal model of cysteine residue comparison with corresponding water-catalyzed 

reaction.  

Also the values of ρ and 2ρ at the BCP for S and NHNO atom interaction are measured 

by 0.208 and 0.390 a.u. and, 0.178 and 0.417 a.u. for C-terminus and internal cysteine 

residues, respectively which with geometrical analysis indicate the stronger S—N 

interaction relative to analogous interaction in the presence of an explicit solvent molecule. 

It is while for the reaction of the N-terminus model of cysteine residue with HNO, the 

calculated values of ρ and 2ρ at the BCP for S…NNHO interaction are 0.027 and 0.078 a.u. 

respectively, which implies a closed-shell interaction type in the obtained transition state 

relative to the covalent interaction of S…NNHO in the C-terminus and internal cysteine 

residues. 

These findings point towards the preference of S—N bond formation to S—H bond 

breaking in the reaction of C-terminus and internal cysteinyl with HNO in the absence of 

explicit solvent molecules.  

Figure 6.3. Optimized transition structures with selected bond distances in ångstroms (Å) 

and QTAIM molecular graphs of the reaction of HNO with C-terminus, internal, and N-

terminus cysteine residues from left to right, respectively. 
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Considering the influence of the polarity of the environment on the reactivity of HNO 

toward selected models of cysteinyl, the formation of N-hydroxysulfenamide was 

examined in a different environment with a dielectric constant of 78.35, 10, and 4.  

Geometrical parameters of reactants, transitions structures, and product complexes of 

the reaction between HNO and C-terminus and internal cysteine residue in the presence of 

an explicit solvent molecule, are not impacted remarkably in environments with different 

polarities. However, it has been observed that decreasing the polarity from ε=78.35 to ε=10 

has also insignificant effects on the geometrical parameters of obtained complexes of 

water-catalyzed reaction between N-terminus cysteine residue and HNO, applying the 

polarity of 4 causes a conformational change. As shown in Figure 6.4, this observed 

rotation keeps transferring proton away from positively charged NH3 center and assists S—

H proton transferring to O atom of HNO. 

Figure 6.4. Optimized 6-membered cyclic transition structures in ε=78.35 and ε=4 with 

selected bond distances shown in ångstroms (Å) for the water-catalyzed reaction of HNO 

with N-terminus cysteine residue. 

The obtained potential energy surface of N-hydroxysulfenamide formation is displayed 

in Figure 6.5. As it is obvious, the calculated activation barriers of 99.7, 98.3, and 80.2 

kJ/mol are implied to the reaction of N-terminus, internal, and C-terminus cysteine residues 

respectively, in the polar environment with a dielectric constant of 78.35. Comparison with 

the activation barrier of the reaction of HNO and methanethiol (73.5 kJ/mol), the calculated 

activation barriers indicate an increase of by more than ~7 kJ/mol. It is worth mentioning 
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that inclusion of an explicit water and its contribution in proton transferring process from 

S to OHNO atom results in lowering the activation energy by 77.5, 34.2, and 40.5 kJ/mol in 

the transition structures modeled with N-terminus, internal, and C-terminus cysteine 

residues respectively, that states the significant function of the solvent molecule to proceed 

with reaction. 

Furthermore, decreasing the polarity of the solvent from a dielectric constant of 78.35 

to 4 leads to raising the activation barrier by 4.1 and 10.9 kJ/mol using internal and C-

terminus models of cysteine residues, respectively. Also, the reaction energy increases by 

~14 kJ/mol using these two models, concomitant changing the polarity from 78.35 to 4.  

Figure 6.5. Obtained potential energy surface for the formation of N-hydroxysulfenamide. 

The green, black and blue colored surface is for the reactivity of HNO toward N-terminus, 

internal, and C-terminus cysteine residues, respectively. Values in parentheses and 

brackets are calculated in ε=10 and 4, respectively. 

It should be noted that the activation barrier for the reaction of HNO with N-terminus 

cysteine residue is increased by 6.4 from 99.7 to 106.1 kJ/mol by changing a dielectric 

constant from 78.35 to 10. It is while applying a dielectric constant of 4 lowers the 

activation barrier to 96.5 kJ/mol (see Figure 6.4 for the conformational change). 

Nevertheless, the reaction energy is not affected significantly by changing the polarity of 

the environment in this model of cysteine. 
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Based on the previous computational studies, the pKa value of protonated nitrogen atom 

in N- hydroxysulfenamide, ranges from 11.7 to 15.3.41 On the other hand, the low pKa of 

protonated O atom of N-hydroxysulfenamide and its decomposition to water and RS+=NH 

species, strongly suggests that the N-protonated form of N-hydroxysulfenamide to be the 

expected moiety in the solution and physiological conditions.  

 

6.3.1.2 Reactions Resulted of Protonated N-Hydroxysulfenamide Derived from Internal 

Cysteinyl and HNO  

As stated previously, N-hydroxysulfenamide is assumed to yield the sulfinamide via a 

series of rearrangements and the intermediacy of alkyliminosulfonium species (R-S+=NH) 

or disulfide moieties (Scheme 6.4). In both pathways, the N-protonated form of N-

hydroxysulfenamide (Cys-SNH2
+OH) will likely be considered as the intermediate due to 

its high pKa and acting HO and NHOH as the poor leaving groups to form Cys-S=NH+ 

or Cys-S+ species. It should be mentioned that O-protonated form of N-

hydroxysulfenamide (Cys-SNHOH2
+) is not found as a stable species and directly 

decomposes to Cys-S+=NH and water molecule, which is in agreement with the low quasi-

pKa of RSNHOH2
+ species with constrained N—O bond reported by McCulla and 

coworkers.41 All these findings specify N atom as the protonation state of N-

hydroxysulfenamide in the solution. 

Scheme 6.4. Schematic representation of reaction of N-hydroxysulfenamide to form 

sulfinamide and disulfide. 
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Sulfinamide.H+ (Cys-S+(OH)-NH2) Formation: The 1,2-H shift from the N-protonated N-

hydroxysulfenamide to its O atom leads to the formation of Cys-S+=NH species. Acting as 

proton-transfer catalyst, an explicit water molecule of solvent assists mentioned proton 

shift either by H-bonding to the transferring proton and dragging the N—H proton to the 

OH group through a 3-membered cyclic transition structure (TS2a) at a cost of 81.8 kJ/mol 

or by simultaneous accepting and donating proton through a 5-membered cyclic transition 

structure (TS2b) at a cost of 66.3 kJ/mol relative to the RC2 (see Figure 6.6). A considerable 

geometrical change of the 1,2-H shift is shortening the S—N bond length from 1.78 Å in 

the RC2 to 1.72 and 1.51 Å in the TS2a,2b, and Cys-S+=NH species (IC1), respectively. 

Meanwhile, r(N—O) lengthens by 0.03 to 1.42 Å in the TS2a,2b. NBO charge analysis of S 

and N atoms of Cys-S+=NH has also been calculated by 1.20 and 0.72, respectively which 

is attributed to more distribution of electron on the N atom in the Cys-S+=NH species 

relative to reactant complex and obtained transition structures. Both obtained transition 

structures lead to the formation of Cys-S+=NH (IC1a) that lies 22.1 kJ/mol higher in energy 

than RC2.  

Unassisted 1,2-H shift, in the absence of any explicit solvent molecules, also results in 

the desired intermediate through a 3-membered cyclic transition structure (TS2c) with the 

activation barrier of 209.8 kJ/mol. The noticeable geometrical changes compared to the 

water-assisted 1,2-H shift are related to the r(S—N) which decreased by 0.15 to 1.63 Å 

and r(N—O) that increased significantly by 0.37 from 1.39 to 1.76 Å in the TS2c.  

Subsequently, the positively charged S atom in the obtained Cys-S+=NH species is 

likely to undergo a nucleophilic attack by water molecule to yield O-protonated form of 

sulfinamide (see Figure 6.6). This reaction proceeds via a 4-membered cyclic transition 

structure (TS3b), with the simultaneous S—O bond formation and proton transferring to N 

atom which costs 151.4 kJ/mol with respect to the corresponding reactant complex. 

Although the contribution of explicit water and involving in proton transferring process, 

through a 6-membered cyclic transition structure (TS3a) lowers the activation barrier to 
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40.0 kJ/mol. Obtained TS3a results in O-protonated form of sulfinamide (PC2a), that lies 

124.3 kJ/mol lower in energy than RC2. The r(S—N) bond length experiences bond 

increasing from 1.51 in Cys-S+=NH to 1.60 and 1.56 Å in the 4-membered and 6-

membered cyclic transition structures, respectively and then to 1.63 Å in the product 

complex (PC2a). As explained, in the rearrangement of N-protonated N-

hydroxysulfenamide, the formation of Cys-S+=NH should be regarded as the rate-

determining step. 

Figure 6.6. Potential energy surface with optimized structures and selected bond distances 

in ångstroms (Å) for the formation of sulfinamide.H+. The black and blue colored surfaces 

are for the water-catalyzed and uncatalyzed reaction.  

 

Disulfide Formation: Given the high pKa of N-protonated N-hydroxysulfenamide, and 

implausibility of NHOH reacting as the leaving group for the SN2 substitution mechanism, 

reaction of the neutral cysteine residue (Cys-SH) toward Cys-SNH2
+OH for the formation 

of Cys-S—S+(H)-Cys is considered. The calculated values of ΔE and ΔE are 225.6 and 



Chapter 6: HNO-Derived PTMs of Cysteinyl and Cysteinyl Persulfide 
 

148 
 

42.6 kJ/mol, respectively. Although based on the low pKa of CH3-S—S-CH3 reported by 

Sherman et al., in the solution41, the deprotonation of R-SS+(H)-R is likely anticipated to 

form disulfide irreversibly. In this case, the formation of deprotonated Cys-S—S-Cys 

through a 4-membered ring transition structure with simultaneous S—S formation and H 

transfer from S to N atom by the activation barrier of 241.8 kJ/mol forms the neutral 

disulfide which lies 70.0 kJ/mol lower in energy with respect to the reactant complex. On 

the other side, in the solution, the activation barrier for SN2 reaction between a neutral 

nucleophile and positively charged electrophile would be expected to be higher than the 

gas phase. As a result, for the formation of disulfide, the deprotonated cysteine residue 

(Cys-S) and Cys-SNH2
+OH are considered as the potential reactants for the substitution 

reaction to form deprotonated Cys-S—S-Cys by ΔE= 122.0 and ΔE= 132.2 kJ/mol with 

the respect to the Cys-S and Cys-SNH2
+OH complex.  

 

6.3.1.3 Reactions Resulted of Protonated N-Hydroxysulfenamide Derived from C-

terminus Cysteinyl and HNO  

Our computational studies have shown that the presence of C-terminus cysteine residue 

impacts the formation of sulfinamide or disulfide moieties. Interestingly, using C-terminus 

cysteine residue, no optimized geometries of the N-protonated form of N-

hydroxysulfenamide could be located. Instead, a nucleophilic attack to the backside of S 

atom by O atom of carboxylate causes the formation of a cyclic structure, a derivative of 

1,2-oxathiolane, and hydroxylamine by the ΔE= 1155.6 kJ/mol (see Scheme 6.5). This 

cyclic species then can be hydrolyzed to form cysteine sulfenic acid. 
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Scheme 6.5. Schematic illustration of cysteine sulfenic acid formation from N-

hydroxysulfenamide. 

Figure 6.7 represents the mechanism for the hydrolysis of the obtained cyclic 

intermediate to cysteine sulfenic acid. As shown, a 2-step water-catalyzed hydrolysis 

reaction initiates through the nucleophilic attack of hydroxyl water to the electrophilic C 

of the ester and protonation of the ester carbonyl to form a tetrahedral intermediate (IC2) 

with the activation barrier of 120.7 kJ/mol (TS4). The obtained intermediate undergoes a 

further reaction to reveal the cysteine sulfenic acid (PC3) that lies 21.1 kJ/mol lower in 

energy with respect to the RC3.  

Figure 6.7. Potential energy surface of the water-catalyzed sulfenic acid formation with 

optimized structures and selected bond lengths in ångstroms (Å). 
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6.3.2 Reaction of HNO and Cysteinyl Persulfide 

6.3.2.1 Cys-SS-NHOH Formation 

Also, the reactivity of HNO toward the highly nucleophilic terminal sulfur atom in 

cysteinyl persulfide (Cys-SSH) rather than cysteinyl has been investigated in this study. 

Obtained water-assisted 6-membered cyclic transition structures of three different models 

of cysteinyl persulfide including C-terminus, internal and N-terminus cysteinyl persulfide 

with their corresponding QTAIM molecular graphs are displayed in Figure 6.8. 

Figure 6.8. Optimized transition structures with selected bond distances in ångstroms (Å) 

and QTAIM molecular graphs of the water-catalyzed reaction of HNO with C-terminus, 

internal, and N-terminus cysteine persulfide residues. 

Obviously, no significant changes in r(S…H) and r(S…NHNO) in the obtained transition 

structures have been observed for the solvent-catalyzed formation of Cys-SS-NHOH using 

various models of cysteine persulfide. In addition, the calculated QTAIM values of ρ and 

2ρ at the BCPs related to S…NHNO in these models imply the closed-shell interaction type 

between sulfur and nitrogen atoms which should be considered as weaker ones relative to 

the corresponding S…NHNO in cysteines models. 

Also, Figure 6.9 represents the potential energy surface resulting from the reaction of 

various cysteinyl persulfide models and HNO. As displayed, higher nucleophilicity of 
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terminal sulfur of cysteinyl persulfide leads to lowering the activation barrier of Cys-SS-

NH-OH formation in the internal and N-terminus cysteinyl persulfide by 13.7 and 21.9 

kJ/mol, respectively with the respect to the corresponding Cys-S-NHOH formation in 

ε=78.35 (compare Figure 6.9 and 6.5), despite shorter r(S…NHNO) and stronger closed-

shell interaction between S and NHNO atoms in the obtained transition structures for 

cysteinyl species.  

The only exception is observed for the reaction of HNO and C-terminus cysteine 

persulfide residue, in which the activation barrier has been raised by 11.6 to 91.8 kJ/mol 

relative to the analogous cysteine residue. This increase in energy might be attributed to 

the observed contribution of COO function, especially a closed-shell interaction of 

S…OCOO
 in the C-terminus cysteinyl to stabilize the transition structure which is not 

characterized in the transition structure resulted from the reaction of C-terminus cysteinyl 

persulfide and HNO (compare Figure 6.2 and 6.8). Except for the mentioned observation, 

formation of Cys-SS-NH-OH both kinetically and thermodynamically is preferred to 

corresponding Cys-S-NHOH species.  

Figure 6.9. Obtained potential energy surface for the formation of Cys-SS-NH-OH. The 

green, black and blue colored surface is for the reactivity of HNO toward N-terminus, 

internal, and C-terminus cysteinyl persulfide, respectively.  
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6.3.2.2 Reactions Resulted of Cys-SS-NH2
+OH Derived from Internal Cysteinyl Persulfide 

and HNO 

Cys-SS+(OH)-NH2 Formation: Similarly, the formation of Cys-SS+(OH)-NH2, followed 

by N-protonation of Cys-SS-NHOH has been investigated (Scheme 6.6).  

Scheme 6.6. Schematic representation of Cys-SS+(OH)-NH2 formation from Cys-SS-

NH2
+OH. 

As Figure 6.10 indicates a 2-step reaction mechanism of Cys-SS+(OH)-NH2 formation 

initiates with a 1,2-H shift from N to O atom of Cys-SS-NH2
+OH to form Cys-SS+=NH 

species as the intermediate. The solvent-catalyzed reaction proceeds via either a 3-

membered cyclic transition structure (TS7a) in which O atom of H2O forms H-bonding with 

transferring proton or a 5-membered cyclic transition structure (TS7b) with the activation 

barrier of 69.6 and 57.5 kJ/mol, respectively. Both transition structures lead to Cys-

SS+=NH formation (IC3a) that lies 8.0 kJ/mol lower in energy relative to the reactant 

complex (RC5). In comparison with Cys-S+=NH species, the formation of Cys-SS+=NH is 

considered as the more thermodynamically stable intermediate by 30.1 kJ/mol. Shortening 

the r(SN) from 1.81 Å in the reactant complex to 1.72 and 1.51 Å in the obtained 

transition structures and Cys-SS+=NH respectively, is the significant geometrical change 

which is consistent with r(NO) lengthening. 

Water-catalyzed nucleophilic attack of a water molecule to the positively charged S 

atom of the obtained intermediate results in formation of Cys-SS+(OH)-NH2 (PC5a) with 

the activation barrier of 8.8 kJ/mol (TS8a), which shows a decrease of 32.2 kJ/mol relative 

to the corresponding reaction of Cys-S+(OH)-NH2 formation (compare Figure 6.6 and 

6.10). As observed, despite the kinetically favored formation of Cys-SS+(OH)-NH2 over 

Cys-S+(OH)-NH2 species, it is not regarded as the thermodynamic production comparing 



Chapter 6: HNO-Derived PTMs of Cysteinyl and Cysteinyl Persulfide 
 

153 
 

Cys-S+(OH)-NH2 species. Expectedly, the presence of an explicit solvent and its 

contribution toward rearrangement pathway leads to lowering the activation barrier by 

160.6 and 109.1 kJ/mol in TS7b and TS8b, respectively.  

Figure 6.10. Potential energy surface with optimized structures and selected bond 

distances in ångstroms (Å) for the formation of Cys-SS+(OH)-NH2. The black and blue 

colored surface is for a water-assisted and unassisted catalyzed reaction.  

 

6.3.2.3 Reactions Resulted of Cys-SS-NH2
+-OH Derived from C-terminus Cysteinyl 

Persulfide and HNO  

Similarly, N-protonated species of Cys-SS-NHOH leads to the formation of a 6-membered 

cyclic structure and hydroxylamine through a nucleophilic attack of O atom of carboxylate 

group to the backside of S atom with ΔE= 1138.9 kJ/mol (Scheme 6.7). 
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Scheme 6.7. Schematic representation of Cys-SS-OH formation from Cys-SS-NHOH. 

 

 
 

 

The obtained 6-membered cyclic structure is prone to be hydrolyzed under 2-step water-

assisted reaction to yield Cys-SS-OH species (PC6) which lies 59.1 kJ/mol lower in energy 

relative to RC5 with two activation barriers of 90.5 (TS9) and 75.1 (TS10) kJ/mol and 

formation of a tetrahedral intermediate (IC4) (Figure 6.11). Comparing the results with 

cysteine sulfenic acid formation implies kinetic and thermodynamic preference of Cys-SS-

OH to cysteine sulfenic acid formation (Cys-S-OH).  

Figure 6.11. Potential energy surface of the water-catalyzed Cy-SS-OH formation with 

optimized structures and selected bond lengths in ångstroms (Å). 

 

6.3.3 Cys-S-NHOH versus Cys-S-ONH2  

Alternatively, due to higher proton affinity of N atom in HNO relative to O atom, the 

nucleophilicity of S atom in the internal cysteine residue toward O atom in HNO is also 
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studied. Solvent catalyzed S—O bond formation and proton transfer from S to NHNO atom 

proceeds via a 6-membered cyclic transition structure to form Cys-S-ONH2 with the ΔE 

and ΔE of 122.0 and 73.7 kJ/mol, respectively (see Figure 6.12). As results indicate the 

formation of Cys-S-NHOH should be considered as both kinetic and thermodynamic 

products compared to Cys-S-ONH2 formation.  

 

6.3.4 Reactivity of HNO toward Cysteine Sulfenic Acid 

Reactivity of HNO toward the highly active S atom in cysteine sulfenic acid (Cys-S-OH) 

is also investigated. As shown in Figure 6.12, obtained 5-membered cyclic transition 

structure resulted from proton transfer of O—H bond in Cys-S-OH to O atom of HNO with 

activation barrier of 25.8 kJ/mol causes the formation of Cys-S(O)-NHOH species which 

lies 84.8 kJ/mol lower in energy relative to the reactant complex. Obviously, the activation 

barrier for the formation of Cys-S(O)-NHOH, comparing Cys-S-NHOH have been 

decreased dramatically by 72.5 to 25.8 kJ/mol relative to the Cys-NH-OH formation. 

Furthermore, the reactivity of S atom in cysteine sulfenic acid toward the O atom of HNO 

is also studied. Expectedly, the activation barrier of formation Cys-S(O)-ONH2 has been 

considerably lowered by 61.9 from 122.0 to 60.1 kJ/mol comparing Cys-S-ONH2 species 

(Figure 6.12). However, the observed changes in the reaction energy are not as noticeable 

as the activation barrier (< 6.3 kJ/mol).  

Observed results clearly reflect the higher chemical tendency of the oxidized S atom in 

the studied nucleophilic reactions toward O and N atoms in HNO. Although products 

derived from nucleophilic addition of S to N atom of HNO are both kinetically and 

thermodynamically favored over nucleophilic addition of S to O atom of HNO.  
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Figure 6.12. Potential energy surface of reactivity of O and N atoms in HNO toward 

cysteine residue (green colored surface) and cysteine sulfenic acid (blue colored surface) 

with the schematic representation of transition structures.  

Sulfonamide.H+ (Cys-S+(O)(OH)-NH2) Formation: As well, formation of 

sulfonamide.H+ through the arrangement reaction of Cys-S(O)-NH2
+OH, a product 

resulting from the highly observed reactivity of HNO toward cysteine sulfenic acid, was 

investigated. Solvent-assisted 1,2-H shift via either a 3-membered cyclic transition 

structure (ΔE= 83.2 kJ/mol) or a 5-membered cyclic transition structure (ΔE= 72.4 

kJ/mol) results in Cys-S+(O)=NH formation. The obtained intermediate lies 43.7 kJ/mol 

lower in energy than the reactant complex. Despite an observed increase in the activation 

barrier (~6 kJ/mol), the reaction energy for the formation of this species indicates a 

noticeable decrease of 65.8 kJ/mol with respect to the corresponding reduced form (Cys-

S+=NH).  

Similarly, the obtained species later undergoes a nucleophilic attack by one water 

molecule and through the formation of a 6-membered cyclic transition structure with a cost 

of 19.8 kJ/mol relative to reactant complex yields the O-protonated form of sulfonamide 

(Cys-S+(O)(OH)-NH2) with ΔE= 117.5 kJ/mol. It should be noted that despite a 

significant decrease in the second activation barrier (59.8 kJ/mol) relative to the analogous 
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reduced form of cysteine residue, Cys-S+(O)(OH)-NH2 is not considered as the 

thermodynamic product compared to Cys-S+(OH)-NH2 formation.  

Thiosulfinate (Cys-S(O)S-Cys) Formation: SN2 nucleophilic substitution of an anionic 

cysteine (Cys-S) toward highly active species of Cys-S(O)-NH2
+OH leads to formation of 

thiosulfinates (Cys-S—S(O)-Cys) with activation barrier of 62.5 kJ/mol, which in 

comparison with analogous disulfide (Cys-S—S-Cys) indicates a decrease of 59.5 kJ/mol. 

In addition, energy reaction decreases from 132 kJ/mol in disulfide formation to 149.8 

kJ/mol in thiosulfinate formation. In other words, thiosulfinate formation (S—S(O)) 

kinetically and thermodynamically is favored over disulfide (S—S) formation. 

 

6.4 Conclusions 

Due to the biological significance of HNO-derived post-translational modification of 

cysteine-containing peptide, the present study has investigated the reactivity of highly 

reactive HNO toward cysteinyl and cysteinyl persulfide residues located in the different 

position in the amino acid sequence.  

Our findings show that the formation of Cys-X-NHOH (X=S and S-S) as the first 

intermediate in the reaction between the target peptide (cysteinyl and cysteinyl persulfide) 

and HNO is independent of the peptide’s position. However, the potential energy surfaces 

for the formation of this species is affected by the peptide’s location. As observed, N-

terminus and C-terminus cysteinyl require the highest and lowest activation barriers for the 

formation of Cys-S-NHOH, respectively, while the reaction energy represents the inverted 

order.  

Furthermore decreasing the polarity of environment form ε=78.35 to 10 and then 4, 

independent of cysteinyl position increases the activation barrier and formation energies. 

Although the conformational rotation was observed by moving from a polar protein 

environment (ε=10) to a non-polar protein environment (ε=4) in the obtained transition 
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structure for the reaction of N-terminus cysteinyl with HNO. Indeed, this rotational change 

in non-polar protein environment is assumed to facilitate proton transferring process from 

the target N-terminus cysteinyl to HNO which results in a lower activation barrier relative 

to protein with higher polarity environment. 

In addition, comparing the reactivity of cysteinyl and cysteinyl persulfide toward highly 

electrophilic HNO represents the higher tendency of Cys-SSH in the reaction with HNO 

rather than Cys-SH resulted from enhanced nucleophilicity and lower pKa of cysteine 

persulfide. 

Our investigations also show the obtained Cys-X-NHOH (X=S and S-S) intermediate, 

dependence upon the peptide’s position (C-terminus or internal peptide) can undergo more 

modifications. The Cys-X-NH2
+OH intermediate, derived from the internal peptide, 

proceeds through a 2-step rearrangement reaction and forms Cys-X+(OH)-NH2 (X=S and 

S-S), or a nucleophilic substitution reaction and forms Cys-XX-Cys (X=S).  

According to our results, formation of Cys-SS+(OH)-NH2 species despite preferring 

kinetically, is not thermodynamically favored over Cys-S+(OH)-NH2 formation.  

Alternatively, under a nucleophilic attack of excess cysteine residue with a higher 

activation barrier relative to the rearrangement pathway disulfide form.  

On the other hand, Cys-X-NH2
+OH (X=S and S-S) derived from the C-terminus residue, 

leads to formation a 5- or 6-membered cyclic intermediate in cysteinyl and cysteinyl 

persulfide, respectively. Indeed, this cyclic intermediate is a result of a nucleophilic attack 

of O of free carboxylate to S atom. Hydrolysis of these cyclic structures yields Cys-X-OH 

(X=S and S-S) species. Interestingly, the formation of these new oxidized products take 

place independent of reactive oxygen species but the peptide’s position and intermediacy 

of mentioned cyclic structures. As a result, the nature of HNO-derived post-translational 

modification of our target peptides is affected by the position of them in the protein and 

emphasize the significance of local environment on HNO-derived modification.  
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In the present study the reactivity of activated S atom in oxidized cysteine, cysteine 

sulfenic acid, toward electrophilic HNO was also examined. In comparison, the formation 

of Cys-S(O)-NHOH both thermodynamically and kinetically is preferred to Cys-S-NHOH 

formation. 
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7.1 Introduction 

Dimethylsulfoniopropionate (DMSP) is one of the most globally ubiquitous sulfur-

containing compounds.1-3 It is biosynthesized by a range of marine organisms including 

phytoplankton, algae, and corals, as well as some plants. Within such organisms, in 

particular, marine organisms, it is thought to act as an osmolyte, antioxidant, and predator 

deterrent.4-9 In addition, however, it can be used as a sulfur and carbon source in some 

marine organisms being catabolized through either demethylation or cleavage pathways.8, 

10-12 The former, degradation via demethylation, is the most common pathway due in part 

to, for instance, the high abundance of SAR11 bacteria (a plankton).13 It leads to a range 

of products including methylthiol, methyl mercaptopropionate, and acetaldehyde. 

In contrast, in the cleavage pathway DMSP is catalytically degraded by DMSP lyases 

to dimethyl sulfide (DMS) and acrylate. Despite the dominance of alternate demethylation 

pathway, the DMSP cleavage (DMS formation) pathway is of considerable importance 

both biologically and globally. Indeed, DMS is the largest natural source of atmospheric 

sulfur, comparable in quantity to the SO2 formed by coal combustion.14-15 For example, 

DMS has been found to act as a signaling molecule in some marine organisms and 

seabirds.16-19 Meanwhile, DMS plays significant roles in global sulfur and carbon cycling 

as well as climate regulation via its involvement in cloud formation.11, 20-21 It is also noted 

that DMS and acrylate are also industrially important with a broad range of applications.22 

To date, several distinct functional bacterial DMSP lyase metalloenzymes have been 

identified from proteobacteria, fungi, and phytoplankton, including DddD, DddY, DddP, 

DddL, DddQ, and DddW, and Alma1 from algae and corals.8, 11, 21, 23-30 In each, the metal 

ion(s) are thought to be important for the enzymes function. Notably, they exhibit a range 

of metal ion preference both in valency and number of metal ions in the active site: Fe(II) 

or Mn(II) in DddW;10 Zn(II) or Fe(III) in DddQ;23, 25 and Fe(II) in the binuclear iron 

DddP.30-31 Recently, a metalloenzyme DMSP lyase DddK was discovered in SAR11 and 

similarly exhibits promiscuous metal ion binding with a preference for divalent transition 
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metal ions.32 Experimentally, for instance, it has been shown to be able to bind Ni(II), 

Mn(II), Fe(II), Co(II), Zn(II), Cu(II), and Fe(III) within its active site.32 The catalytic rate 

activity of DddK is maximal when Ni(II) is the metal ion ligated in the active site.32 It is 

noted that Ni(II) is generally one of the most plentiful metal ions in ocean waters.33-34 

To date, experimental X-ray crystal structures of two different forms of DddK have been 

determined: a mononuclear Ni-DddK and a dinuclear FeZn-DddK.32 Consequently, they 

exhibit different metal ion active site-coordinations, and DMSP lyase activities.32 For 

example, in FeZn-DddK (PDB ID: 5TG0), similar to that observed in Fe(III)-DddQ and 

Zn(II)-DddQ,23, 25 the Fe(III) coordinates monodentately with each of two histidyls and a 

tyrosyl, and bidentately with a glutamyl, and one water molecule. Meanwhile, the Zn(II) 

coordinates monodentately with three histidyls and a glutamyl residue, and one water 

molecule. As a result, the Fe(III) and Zn(II) have octahedral and trigonal bipyramidal 

geometries, respectively. 

In contrast, in the absence of substrate, the metal ion in Ni-DddK (PDB ID: 5TFZ) 

coordinates in a manner similar to that of the Zn(II) in FeZn-DddK; monodentately with 

three histidyl residues (His56, 58, and 96) and a glutamyl (Glu62), and a water molecule. 

However, it additionally ligates to a tyrosyl (Tyr64) via its deprotonated R-group hydroxyl 

oxygen (Tyr64O–). As a result, the active site Ni(II) has octahedral coordination. Based on 

X-ray crystal structures it has been proposed that the substrate, DMSP, binds bidentately 

to the Ni(II) center, displacing both the metal ion-ligated H2O and Tyr64. Furthermore, the 

now displaced Tyr64 and Tyr122 contribute to substrate binding through interactions 

between their R-group oxygen's and the substrates carboxyl (i.e., subO…OTyr64 and 

subO…OTyr122). The Tyr64O– is then able to function as a Lewis base and abstract a proton 

from the substrate's -CαH2- group, thus breaking CβS bond via a β-elimination 

mechanism, and resulting in formation of DMS and acrylate (Scheme 7.1). 

There have been few computational investigations on the mechanism(s) of DMSP lyase. 

Recently, Wang et al. examined the mechanism of a binuclear iron DddP, RlDddP.31 More 
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specifically, they employed a quantum mechanics (QM)-chemical cluster approach in 

combination with the hybrid DFT method B3LYP, corrected for dispersion, to examine 

catalytic mechanisms for DMSP decomposition by the homodimeric metalloenzyme. They 

concluded that an aspartyl acts as a base to abstract a -CαH2- proton, and that the mechanism 

preferably proceeds via a concerted β-elimination with a barrier of ~17 kcal/mol. To date, 

however, to the best of our knowledge, no computational studies have examined the 

mechanism of a mononuclear DMSP lyases. Thus, unfortunately, despite their industrial, 

environmental, and biological importance a number of key questions remain unclear about 

these important enzymes, in particular, the highly promiscuous metal binding DddK 

enzymes. 

Scheme 7.1. Schematic representation of the proposed Ni-DddK catalysed decomposition 

of DMSP.32 

In this present study, we have used a multi-scale computational approach to investigate 

the mechanism of Ni-DddK. More specifically, molecular dynamics simulation (MD), 

QM-cluster and hybrid quantum mechanics/molecular mechanics (QM/MM) have been 

applied to obtain greater insights into substrate binding, as well as the enzyme mechanism, 

including the roles of the environment and key active site residues. In addition, the effects 

of substituting Ni(II) with Mn(II) on the catalytic mechanism has been examined. 
  



Chapter 7: Bacterial Ni(II)-DMSP Lyase 
 

169 
 

7.2 Computational Methods 

7.2.1 Molecular Dynamics (MD) Simulations  

The Molecular operating environment (MOE) program35 was used to prepare the chemical 

model for MD simulations. The experimental X-ray crystal structure of a Ni(II)-containing 

DddK from SAR11 complexed with diacrylate (PDB ID: 5TFZ32) was used as the initial 

template. Protonation states of all residues were assigned based on the PROPKA 

protonation tool available in MOE. Two different chemical models were prepared: the 

unbound active site (obtained by omitting the diacrylate) and the bound active site 

(obtained by mutation of diacrylate to give DMSP). 

Each enzyme complex was then solvated and surrounded by a water layer 6 Å deep. The 

resulting solvated models were then minimized using the AMBER14:EHT molecular 

mechanics (MM) forcefield. To help ensure the experimentally observed octahedral 

coordination of Ni(II) was maintained during the MD simulations, the ligated residues to 

Ni(II) were kept fixed. That is, in the unbound complex His56, His58, His96, Glu62, Tyr64, 

and the Ni(II)-bound water were held fixed. Meanwhile, in the substrate-bound complex 

the His56, His58, His96, and Glu62 residues were held fixed, as was the bidentately Ni(II)-

ligated substrate (DMSP). All MD simulations were performed using the NAMD 

program.36 The final minimized systems were then submitted for 100 ps equilibrium MD 

simulations in which the temperature as gradually raised from 0 to 300 K at constant 

pressure. These were then followed by 1ns production MD simulations with a time step of 

2 fs under constant pressure and temperature. The conformations generated for each 

complex from the 1 ns MD simulations were then analyzed and clustered according to their 

root mean square deviation (RMSD). A representative structure for each complex was then 

chosen from the most populated cluster to provide a suitable initial chemical model for the 

subsequent QM-cluster and QM/MM calculations (see 7.2.2). 
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7.2.2 QM-Cluster and QM/MM Calculations  

The Gaussian09 software package37 was used for all the QM-cluster and 

ONIOM(QM/MM) calculations. The QM-cluster method is an established approach for 

obtaining insights into enzymatic mechanisms, in particular those of metalloenzymes.38 In 

addition, in a multi-scale approach it is able to help provide additional insights through 

comparison with results obtained from, for example, QM/MM. Hence, we first used the 

QM-cluster method to examine the mechanism of DMSP lyase. The chemical clusters used 

for both the substrate-bound-and unbound active sites included the side chains of all 

residues ligated to the Ni(II) center in the unbound complex. That is, they included His56, 

His58, His96, Glu62, and Tyr64. The side-chain of Tyr122 was also included as was the 

Ni(II)-ligated water in the unbound active site (see Figure 7.1). To maintain the structural 

integrity of the truncated QM-cluster model the Cα center was held fixed at its MD-derived 

position and capped with hydrogens. 

The mechanism was then examined using above chemical cluster models. Optimized 

geometries were obtained using the two meta-GGA functionals M06 (27% HF) and M06L 

(0% HF),39 in combination with the systematic series of basis sets: 6-31G(d), 6-31G(d,p), 

and 6-311G(d,p). This enabled us to assess their abilities to reliably and accurately describe 

the mechanism and consequently provide further support for the results obtained. 

Harmonic vibrational frequencies of each optimized complex were also determined at the 

same level of theory. These were used to ensure and characterize each structure as an 

energy minimum or transition structure and to obtain the Gibbs free energy correction 

(ΔGcorr) for each structure. Relative Gibbs Free energies for each optimized structure were 

obtained using the above DFT methods in combination with the 6-311+G(2df,p) basis set, 

and corrected using the appropriate ΔGcorr. It is noted that the polar protein environment 

was included in all calculations by use of the IEFPCM solvation model with the commonly 

used value for the dielectric constant (ε) of 4.0.38 
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Subsequently, the two-layer ONIOM(QM/MM) method, as implemented in 

Gaussian09, was used to further examine the mechanism of DMSP lyase and the impact of 

the protein environment.40-41 The reactive (QM) regions again included the key residues in 

and near the active site and were similar to the corresponding QM-cluster chemical models. 

This region was described using the M06 and M06L39 methods, in combination with the 

same range of basis sets as for the QM-cluster studies. The remainder of the protein, the 

MM region, was treated using the AMBER96 forcefield42 within the mechanical 

embedding formalism (ME). It should be noted that to ensure the conformational integrity 

of the chosen model, the α-carbon atoms of all residues in the MM layer were kept fixed 

at their initial optimized position. Harmonic vibrational frequencies and Gibbs free energy 

corrections were again obtained at the optimization level of theory. Relative Gibbs free 

energies were obtained by performing single point energy calculations at the 

ONIOM(DFT/6-311+G(2df,p);AMBER96) on the above optimized structures with 

inclusion of the appropriate Gcorr, within both the mechanical (ME) and electrostatic 

embedding (EE) formalisms. 

 

7.3 Results and Discussion  

7.3.1 Ni-DddK Enzyme 

7.3.1.1 QM-Cluster Investigation 

For the mechanistic and geometrical investigation of DMSP decomposition, two 

generated models of unbound and bound active site from MD simulations were optimized 

using the M06/6-31G(d,p), SCRF=(IEFPCM,eps=4) level of theory. It is noted that 

optimized structures were obtained for the Ni(II)-containing unbound and bound active 

sites in both the open-shell singlet and triplet states. For both active site models, the triplet 

state was found to be lower in energy. Hence, only results obtained for the triplet state are 

discussed herein. 
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As shown in Figure 7.1, in the unbound form, Ni(II) is ligated to His56, 58, and 96, 

Glu62 in a monodentate fashion and deprotonated Tyr64. The remaining open coordination 

is occupied with one molecule of water leading to a 6-coordinated metal center with 

octahedral geometry. All coordinated ligands are 2.02-2.33 Å from the nickel center. While 

in the presence of DMSP in the active site, the substrate coordinates to the metal ion via its 

carboxylate end in a bidentate fashion to keep the octahedral geometry and Tyr64 and water 

molecule have no longer coordination to Ni(II). All ligands coordination distance to the 

metal center in the active site model is 1.96-2.27 Å. 

Figure 7.1. Schematic illustration of the optimized structures of the unbound and bound 

active sites using the QM-cluster approach with the selected bond distances in ångstroms 

(Å). 

As observed, the most significant structural changes of the unbound and bound forms 

are related to substrate binding in the active model in which OY64 and Owater in the pre-

active form are replaced with two oxygen atoms of the substrate while other coordination 

distances with Ni(II) center have not changed considerably. 

The “Tyr-switching” mechanism and the detachment of metal-coordinated Tyr were 

previously investigated as a key initial step in the activity of the astacins family 

simultaneously upon substrate binding.43 In a similar fashion, the presence of the DMSP 

results in the removal of deprotonated Tyr64 from the first metal coordination sphere and 
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moving it to the second sphere of metal coordination in the enzyme. Also, Tyr64 separation 

may accommodate steric crowding on substrate binding.  

In this rearrangement, the tyrosinate oxygen atom of Tyr64 is positioned at 2.02 Å from 

Hα of DMSP and HY122 is placed in a 1.67 Å distance from the second oxygen atom of the 

substrate (see Figure 7.1). In other words, both Tyr122 and Tyr64 through a strong 

hydrogen binding stabilize the enzyme-substrate complex in the enzyme active site. 

The pKa values of both Tyr64 and 122 in the resting and active states of the enzyme 

have been calculated using the PROPKA 3.0 program.44 It has been observed that the 

presence of substrate in the active site lowers the pKa of Tyr64 and 122 relative to the 

enzyme with the unbound active site. Also, it is worth mentioning that the pKa of Tyr122 

is slightly more affected by the presence of DMSP which makes it act as a stronger H-

bonding donor to contribute to substrate binding. In addition, higher observed pKa for both 

Tyr64 and 122 comparing other Tyr residues in the enzyme, may refer to their strong 

tendency toward abstracting the proton and being neutral. On the other hand, well-

positioning of deprotonated Tyr64 in the active form, makes it directly behaves as a Lewis 

base to abstract a proton of the Cα atom of DMSP to initiate a β-elimination reaction to 

produce DMS and acrylate. 

Geometrical analysis of the obtained transition structure indicates that the considerable 

structural changes are related to bonds involving breaking and forming: Y64O…Hα, Cα…Hα, 

Cα…Cβ and S…Cβ relative to the active form, not Ni(II)-centered coordination 

(coordination distances in TS1: 1.96-2.24 Å). As shown in Figure 7.2, Hα atom abstraction 

by the tyrosinate oxygen of Tyr64 and CβS bond cleavage is followed by a concerted 

single-step mechanism and subsequently releasing dimethyl sulfide and acrylate. The 

product complex also displays no considerable changes in Ni(II) coordinated ligands 

(coordination distances in PC1: 1.97-2.22 Å). 

The obtained free energy surface for the DMSP lyase is also shown in Figure 7.3A. The 

influence of improving the basis set from 6-31G(d) to 6-31G(d,p) and then to 6-311G(d,p) 



Chapter 7: Bacterial Ni(II)-DMSP Lyase 
 

174 
 

has been studied. As anticipated, by increasing the basis set, free activation energy and free 

energy of reaction are decreased by 3.6 from 22.2 to 18.6 kJ/mol and 7.5 from 68.4 to 

75.9 kJ/mol, respectively. The low activation barrier also reflects that transition structure 

occurs early along with this reaction, as we observe in the TS1 that CαCβ distance has 

been shortened only by 0.04 Å and the r(CβS) has been lengthened by 0.10 Å. 

Figure 7.2. Schematic illustration of the optimized structures of the reactive complex, 

transition structure, and product complex using the QM-cluster approach with selected 

bond distances in ångstroms (Å). 

To assess the ability of the M06L functional with 0% HF contribution, it has also been 

employed to study this concerted β-elimination reaction (see Figure 7.3B). A close 

agreement between the relative free energy obtained using the M06 and M06L functionals 

is observed, specifically applying the largest basis set (6-311G(d,p)). Also, using M06L 

functional the free energy of activation is in a good agreement with the M06 functional 

with a variance of ≤ 5.6 kJ/mol. However, it lowers the free energy of the reaction by 30.2 

kJ/mol employing the smallest size of basis set, 6-31G(d), with respect to the corresponding 

TS1 

PC1 

RC1 
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obtained value using M06 functional. It should be noted that the geometrical parameters 

using these two methods are in a good agreement with a variance of < 0.05 Å. 

Figure 7.3. Free energy surface obtained using the QM-cluster approach; (A) M06 

functional (B) M06L functionals. The green, black, and blue colored surfaces are for the 

6-31G(d), 6-31G(d,p), and 6-311G(d,p) level of optimization, respectively. 

 

7.3.1.2 QM/MM Investigation 

QM/MM optimized structures of the unbound and bound active site models at the 

ONIOM(M06/6-31G(d,p);AMBER96) level of theory with selected distances in ångstroms 

(Å) are shown in Figure 7.4. The main difference between the two models is attributed to 

the Ni(II) geometry and coordination. In the unbound active site, His56, 58, and 96, Glu62 

in a monodentate fashion and deprotonated Tyr64 with one molecule of water are ligated 

to Ni(II) that make the metal form an octahedral geometry in the resting state. Upon 

addition of DMSP to the active site, the metal-bound water and Tyr64 are displaced: 

r(Y64O…Ni: 4.86 Å) and DMSP coordinates in a monodentate fashion by one oxygen atom 

of its end carboxylate group: r(SubO1…Ni: 1.96 Å vs. r(SubO2…Ni) is 2.95 Å, unlike the 

obtained DMSP coordination in the QM-cluster study, in which two oxygen atoms of 

DMSP were ligated to Ni(II). The second carboxylate oxygen is stabilized by Tyr122 as an 

H-bonding donor which is positioned at 1.83 Å from O2
Sub. This DMSP monodentate 

binding fashion via one carboxylate oxygen was also observed in DMSP-bound Fe(III)-

A B 
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DddQ enzyme.25 Moreover, the deprotonated Tyr64, which presence of substrate has 

located it in the catalytic state of enzyme, assists in the substrate binding through an H-

bonding with Hα of the substrate with a distance of 2.36 Å. The hydrophobic resting of 

DMSP is placed in a rather hydrophobic pocket mostly shaped by Leu53, Trp26, and 110. 

All mentioned interactions help the position of DMSP in the enzyme active site. 

It should be noted that the E62O2…Ni distance in the active form has decreased by 0.43 

Å from 3.27 Å in the resting state to 2.84 Å (see Figure 7.4) to form a distorted octahedral 

Ni-centered geometry while other Ni-coordinated ligands are at a distance of 1.96-2.20 Å 

from the metal center. 

Figure 7.4. Schematic representation of the optimized unbound and bound active site 

complexes using the ONIOM(QM/MM) approach, with selected bond distances in 

ångstroms (Å). 

Besides an anionic Tyr64 role in substrate binding, geometrical studies reveal that 

proper positioning of this residue at a distance of 3.11 Å from Cα of DMSP, makes it the 

most likely candidate to act as a Lewis base to initiate the elimination reaction for 

abstracting the Hα from Cα methylene atom of substrate and releasing DMS and acrylate. 

In addition, observing no water molecule in the bound active site of the enzyme shows that 

Tyr64 directly behaves as a Lewis base for abstracting the Hα (see Figure 7.5). 

The DMSP cleavage mechanism proceeds through a concerted transition structure at a 

cost of 28.4 kJ/mol relative to RC2. As shown in Figure 7.5, more specifically, Tyr64 has 



Chapter 7: Bacterial Ni(II)-DMSP Lyase 
 

177 
 

deprotonated the Cα methylene of the substrate such that the Y64O…Hα is now 1.30 Å. 

Concomitantly, CαCβ has only been slightly shortened by 0.10 to 1.49 Å which with the 

low computed free activation energy reflects an early transition structure along this 

reaction. It is worth mentioning that none of our computational investigations prove a 

theory of stepwise mechanism for DMSP decomposition. 

In TS2, the Tyr122 and O2
Sub distance is 1.69 Å which relative to RC2 represents an 

increased tendency of Tyr122 to stabilize DMSP in the transition structure. In addition, 

r(Ni…NH96,58,56), r(Ni…O1
Sub), and r(Ni…O1

E62) are not changed significantly compared 

to RC2. However E62O2…Ni distance is shortened by 0.11 Å to 2.73 Å in TS2. 

Figure 7.5. Schematic drawing of the optimized molecular optimized structures of the 

reactive complex, transition structure, and product complex using the ONIOM(QM/MM) 

approach with selected bond distances in ångstroms (Å). 

This transition structure leads to the formation of DMS and acrylate (PC2) that lies 240.6 

kJ/mol lower in energy than RC2 (see Figure 7.5). The latter, in the active site, is ligated 

TS2 RC2 

PC2 
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to Ni(II) via two carboxylate oxygen atoms with a distance of r(Ni…O1
Acr): 2.12 Å and 

r(Ni…O2
Acr): 2.16 Å. Although in the Fe-DddQ enzyme has been observed that the acrylate 

ligates the Fe(III) center in a monodentate fashion.25 Two Tyr64 and 122 also significantly 

contribute to the acrylate placement in the active site by strong H-binding: (AcrO1…HY64): 

1.79 Å and (AcrO2…HY122): 1.69 Å. The remaining Ni(II) coordination is occupied by 

His56, 58, and 96, and Glu62 in a monodentate fashion with a distance of 2.02-2.18 Å from 

metal center, resulting in a six coordinated-metal site with the octahedral geometry. 

The obtained free energy surfaces for the elimination mechanism using two different 

functionals including M06 and M06L are shown in Figure 7.6. Additionally, the influence 

of increasing the basis set from 6-31G(d) → 6-311G(d,p) on the reaction pathway and 

optimized molecular structures have been studied. Except when applying the M06/6-

311G(d,p) level of theory, improving the basis set has not noticeably impacted the 

calculated free energy of activation and free energy of the reaction. 

Comparing the free activation energy calculated using these two functionals indicates a 

good agreement with an error of ˂  ~3 kJ/mol. Although it is found that the M06L functional 

decreases the free energy of the reaction by ~15 kJ/mol with respect to the M06 functional. 

It is while geometrical parameters of the optimized RC2, TS2, and PC2 from these 

functionals do not differ greatly.  

It is also worth mentioning that there is a good agreement between the free energy of 

activation obtained using the QM-cluster and ONIOM(QM/MM) approaches (compare 

Figure 7.6 and 7.3).  

Considering the electrostatic effects of the protein environment on the inner layer (QM 

region), the electrostatic embedding (EE) has been employed on the single-point energy 

calculation. As outlined in Figure 7.6, the electrostatic environment, regardless of the size 

of the basis set and applied functional, increases the free energy of activation and free 

energy of the reaction by ≤ 20.1 and ≤ 64.6 kJ/mol, respectively relative to the 
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corresponding values obtained using the mechanical embedding. This increase may be due 

to previously noted challenges with QM-region over-polarization.45  

 

 

 

 

 

 

 

Figure 7.6. Calculated free energy surfaces using the ONIOM(QM/MM) approach; (A) 

M06 (B) M06L functionals, respectively. The green, black, and blue colored surfaces are 

for 6-31G(d), 6-31G(d,p), and 6-311G(d,p) level of optimization, respectively. Values in 

parentheses are calculated applying the electrostatic formalism on the single-point energy. 

 

7.3.2 Mn-DddK Enzyme  

Using the QM-cluster approach, the impact of Mn(II) metal ion on the DMSP 

decomposition activity was also studied. It is worth stating that optimized structures were 

obtained for the Mn(II)-containing bound active sites in their doublet, quartet, and sextet 

states. The sextet state was found to be lowest in energy. Hence, only results obtained for 

the sextet state are discussed herein. 

By comparing the obtained optimized Ni(II) and Mn(II)-containing complexes along the 

reaction pathway, the main geometrical difference is observed in the Mn(II)-centered 

coordination in which by entering the DMSP into the enzyme active site, the octahedral 

metal center geometry of the unbound form is restructured into the partial octahedral metal 

center by sharing one coordination between the second carboxylate oxygen of Glu62 and 

one oxygen atom of substrate.  

A B 
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In contrast with the observed geometrical changes, the obtained free energy of activation 

of the studied elimination reaction represents a negligible change (< 1 kJ/mol) comparing 

corresponding values using M06 and M06L functionals in the active site of Ni-DddK 

enzyme (compare Figure 7.7 and 7.3), although the changes in the free energy of reaction 

are slightly considerable (< 11 kJ/mol). 

Figure 7.7. Calculated free energy surfaces using the QM-cluster approach in Mn-DddK 

enzyme. The black and blue colored surfaces are for M06/6-31G(d,p) and M06L/6-

31G(d,p) level of optimization, respectively. 

ONIOM(QM/MM) optimized complexes of reactive complex (RC4), transition 

structure (TS4), and product complex (PC4) at ONIOM(M06/6-31G(d,p);AMBER96) level 

of optimization are shown in Figure 7.8. As presented, in the bound active site of the 

enzyme, Mn(II) is ligated to His56, 58, and 96, and Glu62 in a bidentate fashion via two 

carboxylate oxygen atoms while DMSP is coordinated to the metal center (Mn(II)) in a 

monodentate fashion: (r(SubO1…Mn: 2.03 Å vs. r(SubO2…Mn) is 3.00 Å). Although passing 

the transition structure at a cost of 18.8 kJ/mol and releasing DMS, acrylate is stabilized 

through bidentate coordination to Mn(II) and Glu62 rearranges to monodentate ligation to 

the metal center (see Figure 7.8).  

In comparison with Ni(II)-centered coordination, the free energy of activation 

regardless of functionals applied (M06 and M06L), has been lowered by ≤ 9.6 kJ/mol. It is 
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while considering the electrostatic effect of the MM layer employing the electrostatic 

embedding, the observed changes in the free energy of activation have been decreased to 

~5 kJ/mol (compare Figure 7.8 and 7.6). 

Furthermore, the product complex (PC4) in the active site of Mn-centered coordination 

has been more stabilized with respect to the corresponding one in the active site of Ni-

centered coordination. 

Figure 7.8. QM/MM optimized structures of RC4, TS4, and PC4 with selected bond 

distances in ångstroms (Å) and the relative free energy of TS4 and PC4 with respect to the 

RC4 in Mn-centered coordination. Black and blue colored values are related to M06 and 

M06L functionals, respectively. Values in parentheses are calculated utilizing the 

electrostatic formalism on the single point energy. 

Comparing the obtained results of the decomposition mechanism indicates that the 

catalytic rate of DMSP cleavage in the active site of DddK enzyme in the presence of 

studied transition metal ions decreases in the following order: Mn(II) > Ni(II). The 

18.8 (38.8) 
18.9 (40.9) 

RC4 TS4 

PC4 

0.0 (0.0) 
0.0 (0.0) 

-249.7 (-203.9) 
-256.7 (-211.2) 
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observed order follows the normal rate of the water-exchange reaction on divalent 

transition metal ions in the first hydration layer: Cu(II) > Cr(II) > Zn(II) > Mn(II) > Fe(II) 

> Co(II) > Ni(II) > V(II).46-47  

 

7.4 Conclusion 

In the present study, using computational modeling approaches including QM-cluster and 

(ONIOM)QM/MM, we have investigated the bound and unbound active site and 

mechanism of DMSP lyase in Ni-Dddk enzyme from ubiquitous SAR11 marine bacteria.  

The QM-cluster studies show that Ni(II) is coordinated in an octahedral fashion by three 

histidyls, a glutamyl, tyrosyl residues, and a water molecule which by the introduction of 

the substrate into the enzyme active site, the Ni-bound water and tyrosyl are displaced and 

DMSP binds in a bidentate fashion. Although our findings considering the protein 

environment using the ONIOM(QM/MM) approach indicate that upon addition of DMSP 

to the active site, along with the removal of metal-bound water and tyrosyl, DMSP 

coordinates in a monodentate fashion by one oxygen atom of its end carboxylate group. 

The detachment of the metal-coordinated tyrosyl and its removal from the first 

coordination sphere, makes it directly act as a Lewis base to initiate a concerted pathway 

of β-elimination reaction to release DMS. This “Tyr-switching” mechanism should be 

considered as the initial key process in the DMSP decomposition. 

In spite of observed differences in the metal ion ligations of the binding active site in 

our QM-cluster and (ONIOM)QM/MM methods, a good agreement between the free 

energy of activation using these two methods was observed. 

Furthermore, we have investigated the impact of the presence of Mn(II) on the catalytic 

rate of DMSP cleaving in the DddK enzyme. Comparing the free energy surfaces obtained 

using QM-cluster approach for Ni(II) and Mn(II)-centered coordination reveals an 

excellent agreement between the calculated free energy of activation and free energy of 

reaction, despite observed partial octahedral coordination for Mn(II) centered ion. While 
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employing the ONIOM(QM/MM) method and considering the environmental effects on 

the studied Mn-centered coordination and DMSP lyase, the free energy of activation 

decreases by ~10 kJ/mol relative to Ni(II)-centered coordination. This observed order 

follows the normal rate of the water-exchange reaction on divalent transition metal ions in 

the first hydration sphere: Mn(II) > Ni(II). However, our findings of the catalytic rate of 

DMSP decomposition does not follow the observed experimental order in the catalytic rate 

in the presence of different divalent transition metal ions in the active site of this enzyme. 

It shows the catalytic rate of DMSP lyase might be potentially influenced not only by the 

electronic effects of transition metal ions but also by some other features such as many 

long-range interactions and steric effects of protein environment, as some were observed 

using the QM/MM calculation, that need more detailed and deep investigations.  

However, all of our findings and observation imply the importance of transition divalent 

metal ions acting as the cofactor in the DddK enzyme to facilitate the DMSP cleavage and 

DMS formation. Significantly, the results have broadened our understanding of function 

and structure of the newly-found DddK enzyme in the bacterial DMSP cleavage and DMS 

formation.  

To assess the ability of meta-GGA functionals to describe the studied elimination 

mechanism and examining this metalloenzyme active site, two different functionals 

including M06 and M06L have been also employed in the current study. The results, 

despite the observed close agreement on describing the activation barrier and structural 

parameters, imply a better performance of M06L functional with no HF exchange 

contribution to describe transition metal ion-containing enzymes. 
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8.1 Introduction 

Within cells and organisms many proteins expand or alter their chemical functionality, 

provided via their constituent proteinogenic amino acids, through post-translational 

modifications (PTMs). A vast and diverse array of such modifications have been observed 

in vivo, e.g., oxidation, SUMOylation, phosphorylation.1-4 In addition, they may be 

reversible or irreversible, and are now known to often have physiologically essential roles 

such as cell signaling, and protein localization and regulation.5-7 For example, in 

SUMOylation a small ubiquitin-like modifier (SUMO) peptide is attached to a protein. 

This modification has been identified as being involved in a variety of physiologically 

significant processes including, for example, apoptosis (cell death).8-9 

Whilst in principle any constituent amino acid residue in a protein may be modified, 

certain residues are more amenable to modification. In particular, cysteine residues are a 

key target for PTMs with cystine (disulfide) bonds being the most common covalent cross-

link within proteins.10-11 In addition, however, they are also known to undergo a range of 

covalent and often reversible modifications including nitrosylation, glutathionylation, 

persulfidation, and oxidation and that such resulting PTMs play physiologically important 

roles.12-17 Amongst the plethora of known and possible cysteinyl modifications, there is a 

quickly increasing interest in those containing S—N bonds. This has been spurred on in 

part due to a number of recent discoveries including, for example, sulfilimine cross-links 

in collagen fibers and a recognition of their importance in tissue formation and function.18 

However, the mode of formation and the role of some experimentally observed cysteinyl 

modifications remains unknown or unclear. 

For example, it has been observed that in several proteins (so far to date) the sulfur of a 

cysteinyl residue is able to react with the backbone amide bond nitrogen of its adjacent 

residue to form a cyclic sulfenylamide derivative.19-23 Arguably the first recognized 

example of such a PTM with an identified enzymatically important role was in a Protein 

tyrosine phosphatase 1B (PTP1B).24 It is a member of the large PTP enzyme family of 
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enzymes and which perform, for example, key roles in signaling pathways through tyrosine 

de/phosphorylation.25 The subclass PTP1B in particular is important for insulin and leptin 

signaling.25-28 In the case of PTP1B, the sulfenylamide is thought to be one of the few 

proven mechanisms, experimentally24 and computationally29, by which the active site 

cysteinyl is protected from irreversible oxidative damage.22, 30-31 More specifically, 

oxidation of the active site cysteinyl results in formation of a sulfenic acid (RSOH) 

derivative. Meanwhile, a histidyl and gluatamyl residue form hydrogen bonds with the 

backbone amide carbonyl oxygen and -NH- groups, respectively. As a result, the amide 

bond is able to interconvert between its amide and iminol forms. In the latter form, the 

sulfenic acid's sulfur is able to nucleophilically attack nitrogen and form the sulfenylamide. 

Other computational investigations suggested that the formation of such a species may also 

be facilitated by structural constraints involving the protein backbone.23 Furthermore, in a 

survey of available crystal structures in the Protein DataBank (PDB) at that time, they noted 

that four proteins including PTP1B, appeared to contain a sulfenylamide moiety. 

In particular, as they noted, such a PTM also appears in an X-ray crystal structure (PDB 

ID: 3NUE) of the Mycobacterium tuberculosis metalloenzyme 3-deoxy-d-arabino-

heptulosonate 7-phosphate synthase (DAH7PS) complexed with tryptophan.32 This 

enzyme catalyzes the critical first step in the Shikimate pathway of aromatic amino acid 

biosynthesis; the stereospecific aldol condensation of phosphoenolpyruvate (PEP) with D-

erythrose-4-phosphate (E4P) to give 3-deoxy-D-arabino-heptulosonate-7-phosphate 

(DAH7P).32-35 More specifically, within the active site a Mn(II) ion is ligated in part via an 

active site cysteinyl (Cys87) sulfur, while a second cysteinyl (Cys440) lies spatially close. 

In the X-ray crystal structure, however, Cys87 and Cys440 appear to be involved in two 

distinctly different bonding positions (Figure 8.1). In one conformation, the sulfur of 

Cys440 appears to be covalently bonded to the backbone nitrogen center of the adjacent 

residue Asp441 with an Cy440S—NAsp441 distance of 1.86 Å. Concomitantly, however, the 

sulfur of Cys87 (Cys87S) is positioned 2.03 Å from the Cys440S and 2.82 Å from the active 
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site Mn(II) ion. In contrast, in the second conformation, the Cys440S…NAsp441 distance is 

significantly greater at 3.39 Å; and thus, there is no longer a covalent bond between these 

two centers. Concomitantly, the Cys87S…Mn(II) distance has also increased markedly to 

3.14 Å, suggesting that they are more weakly interacting in this second conformation. 

However, the Cys87S…SCys440 distance remains at 2.03 Å. There are known challenges with 

X-ray crystal structures and their relationship to their in vivo structures such as crystal 

packing effects, the differing environments, etc. The above observations in X-ray crystal 

structure of DAH7PS, however, appear to suggest that two conformations are possible; (i) 

Cys87S is ligated to the Mn(II) ion and Cys440 has formed a cyclic sulfenylamide with 

Asp441 (the cyclic sulfenylamide conformation), and (II) where Cys87 and Cys440 have 

instead formed a disulfide bond with each other and no longer interact with the Mn(II) nor 

make a sulfenylamide (the disulfide conformation). What role such a possible 

conformational switch may also have on the enzyme's activity is unknown. To the best of 

our knowledge such an observed disulfidesulfenylamide switching mechanism would be 

the first such recognized occurrence of this type of shuttling reaction. 

Figure 8.1. Illustration of two different active sites of DAH7P enzyme (PDB ID: 3NUE) 

with cyclic sulfenylamide (on the left) and disulfide bond (on the right) and selected key 

distances in ångstroms (Å). 
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In this present study, we have used a multi-scale computational approach to examine 

the active site of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) from 

Mycobacterium tuberculosis. More specifically, we have complementarily applied 

molecular dynamics (MD) simulations, QM-cluster and quantum mechanics/molecular 

mechanics (QM/MM) approaches to examine the potential interconversion between the 

cyclic sulfenylamide and disulfide conformations. As part of this study, we have 

considered the role of other residues and/or aqueous solution on such a process. 

 

8.2 Computational Methods 

8.2.1 Molecular Dynamics (MD) Simulations  

The Molecular operating environment (MOE) software was used to prepare all chemical 

models for MD simulations.36 The X-ray crystal structure of 3-deoxy-d-arabino-

heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis complexed with 

tryptophan (PDB ID: 3NUE)32 with a resolution of 2.5 Å was as the initial template 

structure. 

Two different chemical models were then prepared for simulations. In one a cyclic 

sulfenylamide involving Cys440 and Asp441 was formed, as observed in the X-ray crystal 

structure, while in the other a disulfide bond was formed involving the spatially adjacent 

sulfurs of Cys87 and Cys440. Protonation states of all residues were assigned based on the 

default PROPKA protonation tool available via MOE. The models were solvated to the 

depth of a 6 Å layer of water around the entire system, and then minimized using the 

AMBER14:EHT force field. It is noted that the applicability of the AMBER forcefield for 

Mn-containing metalloproteins was previously considered by Neves et al.37 Each 

optimized structure was then equilibrated for 100 ps with the temperature being increased 

from 0 to 300 K, at constant pressure. This was followed for each complex by an 

unconstrained 5 ns MD simulations with a time step of 2 fs, under constant pressure and 

temperature, using the NAMD program (default settings).38 
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8.2.2 QM-Cluster and QM/MM Calculations 

To further elucidate the potential disulfide-sulfenylamide exchange mechanism, the QM-

cluster and hybrid ONIOM(QM/MM) approaches were used. For all such studies, 

including optimizations and harmonic vibrational frequencies calculations, the Gaussian09 

software package was used.39 

The QM-cluster approach has been successfully applied to the study of numerous 

enzymatic mechanisms and processes, especially those involving a metal ion.40-42 In the 

present study, it has been used to gain additional insights into the possible exchange 

mechanism. The chemical model used for the QM-cluster studies consisted of the Mn(II) 

ion and at least the side chains of those residues to which it is coordinated, as well as those 

that might participate in the exchange mechanism: Asp441 (entire residue), His369, 

Glu411, Cys87, Cys440 (entire residue), and Tyr436. The rest of the protein environment 

also omitted after capping each residue at its C carbon atoms by addition of hydrogen 

atoms. These carbon atoms were also held fixed in position to ensure the structural integrity 

of the chemical model was maintained. The density functional theory method B3LYP43-44 

was used as it has been shown to perform well for Mn-containing systems.45-48 

Additionally, to assess basis set performance, a systematic series of basis sets including 6-

31G(d), 6-311G(d), 6-31G(d,p), and 6-311G(d,p) were used. Furthermore, to more 

accurately model the effects of non-covalent and dispersion interactions the empirical D3 

dispersion correction by Grimme was also used in combination with the B3LYP/6-311G(d) 

and B3LYP/6-311G(d,p) levels of theory.49 

The hybrid ONIOM(QM/MM) approach was also applied so as to accurately consider 

the influence of the protein environment on the possible exchange mechanism. The whole 

chemical system was divided into two regions (a QM and an MM region) based on their 

contributions to the mechanism. The QM region included the Mn(II) ion and at least the 

side chain groups of the key residues in the enzyme active site to which it is ligated (the 

complete Asp441 residue was included), as well as Cys440, and the side chain of Tyr436. 
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Based on results obtained for the above QM-cluster studies, this QM subsystem was 

described using B3LYP and B3LYP-D3 in conjunction with the 6-31G(d,p) basis set. 

Meanwhile, the remaining part of the protein was placed in the low layer (MM region) and 

treated molecular mechanically using the AMBER96 forcefield. Moreover, in the MM 

layer, the Cα centers were held fixed in position while the rest were free to move during 

optimizations. All the ONIOM(QM/MM) calculations were carried out with the 

mechanical embedding (ME) formalism. 

Several alternate ONIOM(QM/MM) models were also used to examine additional 

aspects that may influence the possible mechanism or the reliability of the results. More 

specifically, a second model was created in which the side chain of Thr438 was included 

in the QM region in order to examine its potential influence on the exchange mechanism. 

For this model, the QM region was described using the B3LYP/6-31G(d,p) method, while 

the rest was again described molecular mechanically using AMBER96. A second alternate 

model was also used to gain further insights into the effects of the surrounding protein 

environment and changes in coordination of the Mn(II) ion. Specifically, the QM-region 

was expanded to include the Mn(II), His369, Glu411, Asp441, Cys87 and 440, Pro442, 

Thr438, Ala439, and Tyr436 and a number of explicit water molecules (6 in total). This 

larger QM-layer was again described using the B3LYP/6-31G(d,p) level of theory, while 

the rest of the chemical complex (the MM-layer) was again described using the AMBER96 

forcefield. Finally, the effect of improving the basis set from 6-31G(d,p) to 6-311G(d,p), 

for the Cys87 and Cys440 sulfur atoms in the QM-region only, was also examined. It is 

noted that all other atoms in the QM-region were described using the 6-31G(d,p) basis set 

as before, and the MM-region was also described as before. 
  



Chapter 8: Disulfide-Sulfenylamide Exchange Mechanism 
 

197 
 

8.3 Results and Discussion 

8.3.1 QM-Cluster Investigation 

To study the exchange mechanism and gain the initial geometrical insight into the metal 

ion center and its ligation, the active site of enzyme involving the cyclic sulfenylamide 

result of thiolate of Cys440 and amide nitrogen of Asp441 has been optimized applying 

B3LYP functional with a wide range of basis sets (see methodology section). Figure 8.2A 

indicates the obtained optimized structure using B3LYP/6-31G(d,p). As shown in the 

active site of the enzyme, Mn(II) is ligated to His369, deprotonated Cys87, Glu411, and 

Asp441 in a monodentate fashion. Geometrical analysis of optimized structures using 

different basis sets has represented an insignificant change in the measured r(C440SND441) 

in the sulfenylamide ring and r(C87S…Mn). The only exception was observed considering 

the dispersion interaction applying 6-311G(d)-D3 in which r(S…Mn) has been lengthened 

by 0.04 Å relative to other applied basis sets. Additionally, in the obtained optimized 

structures using 6-31G(d) and 6-311G(d)-D3, Y436OH has shown a strong H-bond with the 

oxygen atom of C440C=O; r(H…O): 1.78 Å. In contrast, applying other basis sets, this type 

of interaction has been replaced with a weaker H-bond between D441O and Y436OH; 

r(H…O): 2.10-2.20 Å (Figure 8.2A) 

To study the disulfide-sulfenylamide exchange mechanism in the enzyme active site, 

C87SSC440 bond formation was explored through protonating the oxygen atom of cyclic 

sulfenylamide (ΔE= 1368.8 kJ/mol). As Figure 8.2B represents in the obtained optimized 

structure Cys87 has no longer coordination with Mn(II). It forms a disulfide bond with a 

bond length of 2.10 Å with Cys440 (C87SSC440), coincident with the sulfur-nitrogen bond 

(C440SND441) cleavage. 

A result of this switching mechanism, metal ion coordination has been replaced with 

two new ligations; second oxygen atom of the carboxylate group of Glu411 and oxygen 

atom of the amide bond in Asp411. Hence in the obtained active site, His369, Glu411 in a 

bidentate fashion through oxygen atoms of its carboxylate group and Asp411 through one 
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of its oxygen atom of carboxylate and oxygen atom of its amide group are ligated to the 

Mn(II) to form a penta-coordinated metal ion complex.  

Figure 8.2. Schematic representation of optimized structures of the active site (A) and 

protonated oxygen amide in the active site (B) with the selected bond distances shown in 

ångstroms (Å) at the B3LYP/6-31G(d,p) level of theory. 

Considering the influence of Tyr436 in the second sphere of Mn(II) coordination on the 

switching mechanism of disulfide-sulfenylamide and acting as a proton donor, proton 

transferring process from the hydroxyl group of Tyr436 to the oxygen atom of cyclic 

sulfenylamide alongside the SS bond formation was also studied. All the obtained 

optimized structures from this proton transferring and switching mechanism imply the 

cyclic sulfenylamide and neutral Tyr436 preference over disulfide bond formation since 

the Cys87 favors metal ion coordination and proton transferred back to Tyr436.  

With the initially obtained insight into the switching mechanism and with the aim of 

taking the protein environment into account and gaining a deeper understanding of 

disulfide-sulfenylamide exchange mechanism and other influential roles of the local 

biochemical environment, we have expanded the models into the ONIOM(QM/MM) 

calculations. 

 

A B 
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8.3.2 QM/MM Investigation; Small Model of QM Region 

The QM/MM optimized structure of the active site at ONIOM(B3LYP/6-

31G(d,p):AMBER96) level of optimization, with selected distances in ångstroms (Å) is 

shown in Figure 8.3C. As it is obvious, in this optimized structure Mn(II) is ligated to 

Glu411 in a bidentate fashion through both oxygen atoms of its carboxylate group, His396, 

Asp441 in a monodentate fashion and Cys87 leading to a penta-coordinated metal center. 

All coordinated ligands are 1.99-2.59 Å from the Mn(II) center. Thiolate of Cys440 is also 

bonded to the amide nitrogen of Asp441 to form a cyclic sulfenylamide. Obviously 

considering the protein environment has influenced the metal-center coordination 

remarkably compared to the obtained structure from the QM-cluster approach; 5-ligated 

Mn(II) vs. 4-ligated Mn(II) results from bidentate-coordinated Glu411 in the QM/MM 

calculation vs. monodentate-coordinated Glu411 in the QM-cluster approach. 

Additionally, the protein environment has lengthened the r(C87S…Mn) by 0.16 to 2.59 Å. 

Although the change in C440SND441 is less significant; increasing by only 0.05 Å. As well 

the inclusion of dispersion interaction effects via the use of Grimme’s correction (B3LYP-

D3) has negligible effects on the obtained geometrical features, except an H-bonding 

between C440OHY436 which was not observed using B3LYP.  

Taking the protein environment into account, the influence of protonated oxygen atom 

of the sulfenylamide bond on the exchange mechanism has been also studied (ΔE= 1534.3 

kJ/mol). As shown in Figure 8.3D, this protonating process causes Cys87 thiolate to leave 

the metal ion first coordination sphere and form a disulfide bond with Cys440 (C87SSC440) 

which is coincident with C440SND441 bond cleavage. In contrast with obtained results 

from corresponding QM-cluster approach, removing the ligated Cys87 from metal ion 

coordination has not been replaced with any other coordination instead the remained 

ligands make stronger interactions with the metal ion.  

To assess how the Tyr436 might behave differently acting as a proton donor from QM-

cluster approach, its influence on the exchange mechanism also studied applying the 
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ONIOM(QM/MM) method. To this aim, proton transferring process from the hydroxyl 

group of Tyr436 to the oxygen atom of the sulfenylamide bond, simultaneous with 

removing Cys87 thiolate from metal coordination and C87SSC440 bond formation was 

explored. Like the QM-cluster approach, obtained optimized complex reflects the SN 

preference over C87SSC440, which is coincident with the proton transferring back to 

deprotonated Tyr436 and Cys87 thiolate ligation to Mn(II). Although the obtained 

optimized complex is 314.6 kJ/mol lower in energy than the corresponding optimized 

structure from the initial crystal structure, no significant geometrical change in Mn(II) 

coordination was observed, except the strong H-bond between C440O…HY436 with a 

distance of 1.78 Å (compare Figure 8.3C and 8.3E).  

Dispersion interaction effects on this process via Grimme’s correction (B3LYP-D3) 

were also investigated. The results do not show the considerable changes in the obtained 

geometrical parameters relative to the corresponding optimized structures using B3LYP.  

 

8.3.2.1 Mn(II) Influence on the Exchange Mechanism 

To investigate the Mn(II) impact on the exchange mechanism, the enzyme active site has 

also been optimized employing ONIOM(B3LYP/6-31G(d,p):AMBER96) in the absence 

of metal ion. As it is shown in Figure 8.4F, manganese absence in the active site leads to 

C440SND441 bond distance increasing by 0.22 from 1.81 to 2.03 Å. On the other hand, 

r(C87S…SC440) distance indicates a decrease of 0.38 Å from 2.82 to 2.44 Å (compare Figure 

8.3C and 8.4F). It is worth mentioning that considering dispersion interaction effects are 

more obvious in the active site without a metal ion compared to the active site with the 

metal ion. In fact, dispersion interaction causes C440SND441 to be lengthened to 2.38 Å. 

Additionally, the formation of a covalently stronger interaction of C87SSC440 with a bond 

length of 2.20 Å is observed using the Grimme’s correction (B3LYP-D3). 
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Figure 8.3. Schematic illustration of optimized structures of the active site (C) and 

protonated oxygen amide in the active site (D), and a complex result of examining proton 

transferring from Tyr436 to oxygen atom of sulfenylamide bond (E) with the selected 

distances in ångstroms (Å) using ONIOM(B3LYP/6-31G(d,p):AMBER96). 

Furthermore, the influence of Mn(II) absence in the active site on the proton transferring 

process from the hydroxyl group of Tyr436 to the oxygen atom of cyclic sulfenylamide 

and switching mechanism have also been explored. Comparison with corresponding QM-

cluster and QM/MM models with the metal ion in the active site and proton transferring 

process, in which C440SND441 and the neutral Tyr436 are favored over C440SSC87 and 

the deprotonated Tyr436, proton transferring while Mn(II) is absent in the active site results 

in disulfide bond formation (C87SSC440) with a distance of a 2.18 Å (see Figure 8.4G). 

Also, this proton transferring leads to increasing r(C440S…ND411) from 2.03 to 2.51 Å. This 
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obtained optimized structure lies 142.1 kJ/mol lower in energy than the former structure 

without Mn(II). The inclusion of dispersion interaction effects via the Grimme’s correction 

represents a negligible impact on the r(C440S…ND411) and r(C87SSC440) in the obtained 

optimized complex (< 0.02 Å). 

Figure 8.4. Schematic representation of optimized complexes of the active site (F) and the 

result of proton transferred from Tyr to oxygen amide in the active site (G) without metal 

ion with selected distances shown in ångstroms (Å) using ONIOM(B3LYP/6-

31G(d,p):AMBER96). 

 

8.3.2.2 Proton Transferring from Threonine 

To assess the Thr438 contribution, positioned at neighboring cyclic sulfenylamide to the 

exchange mechanism, proton transferring process from the hydroxyl group of the threonine 

side chain to the oxygen atom of cyclic sulfenylamide has also been investigated. Figure 

8.5 represents two obtained optimized complexes of the crystal structure including Thr438 

(Figure 8.5H) and the complex resulting from proton transferring process (Figure 8.5I). 

As shown, this proton shuttling leads to C440SND441 bond cleavage and C87SSC440 bond 

formation (ΔE= 672.3 kJ/mol). Interestingly, this proton transferring is coincident with 

the second proton shuttling from Cys440 nitrogen amide to the side chain oxyanion of 

Thr438; ThrPA= 1338.4 kJ/mol.  
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Figure 8.5. Schematic representation of optimized complexes of the active sites including 

Thr438 (H) and the complex resulted from proton transferring from Thr438 to oxygen 

amide (I) with the selected distances in ångstroms (Å) using ONIOM(B3LYP/6-

31G(d,p):AMBER96). 

As a result of the above observations, presence of hydronium ion (H3O+) as a proton 

donor in this model of QM/MM was also investigated. As Figure 8.6J shows, hydronium 

ion simultaneously causes protonation of oxygen amide and C87SSC440 bond formation. 

It is worth mentioning that high reactivity of hydronium ion and high proton affinity of the 

target system prevent examining the optimized system including the hydronium ion 

separately, but its proton donating process.  

Comparing the Mn-coordination in the two optimized complexes, one a result of 

hydronium ion presence (Figure 8.6J) and the other a result of proton transfer from the 

hydroxyl group of Thr438 to oxygen amide (Complex I), indicates that hydronium ion 

leads to a weaker interaction of WO…Mn and E411O…Mn with a distance of 2.47 and 2.30 

Å, respectively. This is while it causes a stronger non-covalent interaction of C440S…ND411; 

2.27 Å vs. 2.84 Å. However, r(C87SSC440) has not changed considerably in two 

complexes. 

On the other hand, to have a real model of the studied system, hydronium ion was also 

applied to neutralize and stabilize the oxygen amide bond of Ala439 (see Figure 8.6K). 
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Clearly, it causes r(C440S…ND411) to lengthen by 0.19 Å from 2.84 to 3.03 Å (compare 

Figure 8.5I and 8.6K). Although Mn-centered ligations and r(C87SSC440) are not 

impacted, noticeably.  

Figure 8.6. Schematic illustration of the optimized complexes including disulfide result of 

the hydronium ion presence (J), and proton transferring from Thr436 to oxygen amide in 

the presence of hydronium ion (K) with the selected distances in ångstroms (Å) using 

ONIOM(B3LYP/6-31G(d,p):AMBER96). 

Additionally, comparing two above complexes with a disulfide bond indicates a 

significant change in r(C440S…ND411); 2.27 Å vs. 3.03 Å. Also, stronger interactions 

between WO…Mn and E411O…Mn leads the latter complex to lie 625.3 kJ/mol lower in 

energy with respect to the former complex (compare Figure 8.6J and 8.6K).  

 

8.3.3 QM/MM Investigation; Large Model of QM Region 

To gain more accurate and detailed insight into the local environment of enzyme active site 

and metal ion coordination alongside the disulfide-sulfenylamide exchange mechanism, 

the larger model of QM region compared to the previous model including the His369, 

Glu411, Cys87, Asp441, Cys440, Ala439, Pro442, Thr438 and Tyr436 residues with a 

number of explicit water molecules has been chosen to study the mechanism using 

ONIOM(QM/MM).  
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Figure 8.7L shows the optimized enzyme active site with the larger region of QM layer 

in which Glu411 through carboxylate group, His369, Cys87, and Asp441 are coordinated 

to the Mn(II) to form a penta-coordinated metal center. Comparing this model with the 

smaller model of the QM region does not display significant changes in metal coordination 

distances; all ligands are situated at 2.02-2.55 Å from Mn(II) center. Additionally, 

r(C440SND441) in sulfenylamide ring is affected negligibly relative to the smaller model 

(compare Figure 8.7L and 8.3C).  

In the following, the impact of the protonated amide oxygen of cyclic sulfenylamide has 

been investigated. Expectedly, based on the observed results from the QM-cluster approach 

and QM/MM with the smaller model of QM layer, the protonated amide oxygen results in 

removing Cys87 thiolate from metal centered-coordination, C440SND441 bond breaking, 

and eventually disulfide bond (C87SSC440) formation with ΔE= 1752.2 kJ/mol (see 

Figure 8.7M). The larger QM region leads to shortening the measured r(C87SSC440) by 

0.03 to 2.07 Å comparing to the smaller QM region. Although the larger size of QM layer 

decreases the r(S…N) distance in the protonated complex by 0.62 Å from 3.26 Å in the 

model with the smaller size of QM region (Figure 8.3D) to 2.64 Å in a model with the 

larger size of QM region (Figure 8.7M). 

To gain more reliable insight into the Mn(II) centered-coordination in the exchange 

mechanism, a water molecule has been placed in the second sphere of the metal ion in the 

active site which has been located at a distance of 2.64 Å from Mn(II) in the optimized 

complex (see Figure 8.7L). As observed, coincident with removing the cysteine thiolate 

from the metal coordination sphere to form a disulfide bond, a water molecule is replaced 

and ligated to the metal ion with a distance of 2.25 Å from manganese to keep the penta-

ligated metal ion center (see Figure 8.7M). The lower calculated reaction energy (ΔE= 

1752.2 kJ/mol) of disulfide-sulfenylamide exchange mechanism applying the larger QM 

region including water molecule compare to the smaller QM region without water molecule 



Chapter 8: Disulfide-Sulfenylamide Exchange Mechanism 
 

206 
 

in the active site (ΔE= 1534.3 kJ/mol) might imply the significant role of the water 

molecule in the exchange mechanism and Mn(II) coordination.  

It is worth pointing out that improving the basis set applied on the sulfur atom from 6-

31G(d,p) to 6-311G(d,p) results in r(SS) bond lengthening and r(SN) bond shortening 

in the obtained optimized complexes by < 0.02 Å.  

Figure 8.7. Schematic representation of optimized structures of the active site (L) and 

protonated oxygen amide in the active site (M) and a structure result of examining proton 

transferring from Tyr436 to oxygen atom of sulfenylamide bond (N) with the larger model 

of QM region using ONIOM(B3LYP/6-31G(d,p):AMBER96) with the selected distances 

in ångstroms (Å). 

As observed previously, in both QM-cluster and QM/MM with a small model of QM 

region, the C440SND441 and neutral Tyr436 were preferred to C87SSC440 and 
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deprotonated Tyr436. In this model with the larger QM region, with the aim of stabilizing 

the oxyanion of the tyrosinate group through an H-bonding network, a few numbers of 

explicit water molecules were employed and proton transferring process from the hydroxyl 

group of Tyr436 to the oxygen atom of cyclic sulfenylamide, alongside with C440SND441 

breaking and C87SSC440 formation was investigated. Similarly, as shown in Figure 8.7N, 

the obtained optimized structure also favors the neutral Tyr436 and cyclic sulfenylamide 

formation. The obtained optimized complex is 266.7 kJ/mol lower in energy relative to the 

Complex shown in Figure 8.7L. This is while in the optimized latter complex, r(S…Mn) 

has been increased by 0.07 Å from 2.55 to 2.62 Å. This increase is simultaneous with 

r(WO…Mn) noticeable decrease from 2.64 to 2.48 Å (compare Figure 8.7L and 8.7N).  

 

8.3.3.1 Mn(II) Influence on the Exchange Mechanism 

Mn(II) contribution in the C440SND441 and C87SSC440 switching mechanism was also 

examined while it was taken out of the enzyme active site. As represented in Figure 8.8O, 

the larger QM region and Mn(II) absence result in r(SN) distance lengthening from 1.86 

to 2.37 Å. This bond cleavage also leads to SS bond forming, r(SS): 2.17 Å. It is worth 

stating that the applied larger QM region influence both sulfur-nitrogen and sulfur-sulfur 

interaction more considerably relative to the corresponding complex with a smaller model 

of QM region (compare Figure 8.4F and 8.8O); 2.03 vs. 2.37 Å and 2.44 vs. 2.17 Å, the 

measured distances of r(S…N) and r(S…S) using the small and large model of QM region, 

respectively. 

Additionally, in the absence of Mn(II) in the enzyme active site, Tyr436's ability to act 

as a proton donor to the oxygen atom of cyclic sulfenylamide, coincident with SS bond 

formation was also studied. In contrast with the previously studied models (QM-cluster 

and QM/MM) including the metal ion in the active site, SS bond formation is favored 

over SN in the metal ion absence (Figure 8.8P). Comparison with the corresponding 

complex with the smaller QM region indicates that large QM region has affected the S…N 
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interaction more significantly than S…S interaction; a 0.23 Å increase in r(S…N) vs. 0.08 

Å decrease in r(S…S); Compare Figure 8.8P and 8.4G.  

Figure 8.8. Schematic illustration of optimized complexes of the active site (O) and the 

result of proton transferred from Tyr436 to oxygen amide in the active site (P) with the 

larger model of QM region in the absence of metal ion with selected distances shown in 

ångstroms (Å) using ONIOM(B3LYP/6-31G(d,p):AMBER96). 

Furthermore, applying the larger QM region involving a few numbers of explicit water 

molecules and their contribution in the formation of strong H-bonding networks 

simultaneous with proton transferring from Tyr436 to the amide oxygen atom leads to the 

formation of a complex as shown in Figure 8.8P that lies 1011.5 kJ/mol down in energy 

with respect to the represented optimized complex in Figure 8.8O with the neutral Tyr436. 

 

8.3.4 Molecular Dynamics (MD) Simulations 

To evaluate the structural consequences and changes of the enzyme active site and 

understand the C87S…Mn distance, also the enzymatic conformational behavior during the 

exchange mechanism while Cys87 has formed a disulfide bond (C87SSC440) and has been 

removed from Mn(II) first coordination shell, a series of MD simulations has been 
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performed. As mentioned in the computational methodology section, 100 ps equilibration 

simulation was followed by a 5 ns production run to investigate the active site consistency.  

First, the enzyme with the cyclic sulfenylamide species was examined. Figure 8.9 

represents the RMSD of the QM layer including Mn(II), His369, Asp441, Glu411, Cys87 

and 440, and Tyr436 (in total 85 atoms). As shown, the RMSD of the generated structures 

fluctuates with a range of 1.86 ±0.23 Å during a 5 ns simulation. Additionally, the RMSD 

of a larger region of the system including the QM layer residues and their surrounding (a 

total of 793 atoms) was plotted in Figure 8.9. Obviously, the lower fluctuation range (1.48 

±0.15 Å) was observed relative to the previous RMSD indicating the stability of the system.  

As one of the main criteria in molecular dynamics studies, the fluctuation of manganese 

and sulfur distance (C87S…Mn) has been investigated during the simulation. As it is 

obvious (Figure 8.9), this distance approximately fluctuates with a range of 2.46 ±0.05 Å. 

The mean distance also compromises well with obtained distance using quantum 

mechanical methods. 

All these results show that the formation and presence of the sulfenylamide species 

containing C440SND441 and C87S…Mn coordination in the active site of this enzyme is 

feasible despite the longer observed distance of C87S…Mn in the crystal structure (2.82 Å). 
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Figure 8.9. Plot of the calculated RMSD of QM layer and its surrounding (A) and distance 

change between C87S and Mn(II) with respect to the time (B) in a system including cyclic 

sulfenylamide.  

Furthermore, the enzyme stability during the exchange mechanism, while a proton from 

Tyr436 has been transferred to amide oxygen of cyclic sulfenylamide and C440SSC87 has 

been formed, was also studied. The RMSD plot of the QM region (Mn(II), His369, Asp441, 

Glu411, Cys87 and 440, and Tyr436) with a total number of 85 atoms is shown in Figure 

8.10. The generated structures show a fluctuation of 0.97 ± 0.09 Å after equilibrium stage 

(100 ps) during a 5 ns production run. Although a bigger range of fluctuation, 1.82 ± 0.37 

Å, has been observed while a larger region of the system including QM residues and 

neighboring (839 atoms in total) were selected (see Figure 8.10) indicating the less 

stability of the system with the disulfide bond formation.  

A 

B 



Chapter 8: Disulfide-Sulfenylamide Exchange Mechanism 
 

211 
 

Figure 8.10. RMSD of the QM layer and its surrounding in a system including disulfide.  

As previously mentioned and observed in the crystal structure, the second active site in 

the enzyme involves disulfide rather than cyclic sulfenylamide species. The calculated 

RMSDs of this enzyme active site with two different-size models of active site residues 

and their surroundings are presented in Figure 8.11. The calculated RMSD of the active 

site (including 113 atoms) shows a fluctuation of 0.87 ± 0.08 Å while the increasing the 

number of residues in the active site to 733 atoms raises the fluctuation to a range of 1.57 

± 0.24 Å. It is worth stating that the observed fluctuations are less than the corresponding 

ones in the first active site with disulfide (compare Figure 8.10 and 8.11). 

Figure 8.11. Plot of the second active site and its surrounding RMSDs in the enzyme 

including disulfide. 

 

8.4 Conclusion 

Regarding the rarity and importance of the observed cyclic sulfenylamide moiety including 

SN in the active site of DAH7PS enzyme and its capability to be involved in a switching 
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mechanism to form a disulfide (SS), the present study has investigated this manganese 

metalloenzyme active site and the influential environmental factors which have potentially 

impacted this competitive reaction between SS and SN formations applying a multi-

scale computational approach.  

Our initial findings from the QM-cluster only approach present the preference of the 

cyclic sulfenylamide (C440SND441) to disulfide (C87SSC440) in the enzyme active site, 

although applying the acidic environment leads to removing Cys87 from Mn(II)-

coordinated center and preference of disulfide formation.  

With these initial obtained observations, we extended our studies into 

ONIOM(QM/MM) calculations to gain more accurate and reliable findings, while the 

protein environment with its strict and long-range interactions are taken into account.  

Applying the ONIOM(QM/MM) approach with only the key residues in the enzyme 

active site in the QM region (total of 83 atoms) also confirmed the obtained results from 

QM-cluster approach: SN preference to SS in the active site vs. SS preference to 

SN in the acidic environment. The only exception has been observed in the Mn(II) 

coordination center, in which removing the Cys87 from Mn(II)-coordinated center to form 

the disulfide has not been replaced with any ligations, but stronger interactions with the 

remained ligated residues results from the protein environment.  

Influence of the metal ion (Mn(II)) in the exchange mechanism has also been 

investigated. The results imply the significant contribution of the Mn(II) to studied 

competitive reaction. Excluding the metal ion from the enzyme active site leads to 

lengthening the r(SN) distance vs. shortening the r(S…S) comparison with the active 

site including Mn(II) using B3LYP. Notably, applying the empirical D3 dispersion 

correction (B3LYP-D3) confirms the formation of the strong covalent interaction of SS 

in the absence of metal ion: SS preference to SN in the Mn(II)-excluded active site. 
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Also, the absence of metal ion in the enzyme active site causes Tyr436 to act as a proton 

donor and formation of disulfide. It is while the presence of Mn(II) in the enzyme active 

site hinders the Tyr436 to behave as a Lewis acid (confirmed by QM-cluster and QM/MM).  

Furthermore, gaining more accurate and detailed insight into the local surrounding of 

the enzyme active site and metal ion coordination, the ONIOM(QM/MM) study was also 

expanded to the model with a larger size of QM region (in total 127 atoms). Regarding the 

switching disulfide-sulfenylamide mechanism, the obtained results agree with the model 

using the smaller size of the QM layer. However, applying the larger size of the QM region 

causes the stronger interaction of S…N in the acidic environment vs. corresponding 

interaction using the smaller size of the QM region.  

With the aim of the study Tyr436 ability to behave as a Lewis acid while a few numbers 

of explicit water molecules were employed in the QM layer to stabilize the oxyanion of the 

tyrosinate group throughout the expanded H-bonding network (in contrast with the small 

model of QM layer and QM-cluster approach) and SS formation, the results once more 

imply the SN preference to SS and a neutral Tyr436 in the enzyme active site.  

Importantly, coincident with disulfide-sulfenylamide exchange mechanism, Mn(II) 

coordination has also been explored. Comparing the metal ion ligations in both applied 

models of QM layers indicate that Mn(II) is coordinated to Glu411 (through carboxylate 

group), His369, Cys87, and Asp441 to form a penta-coordinated metal center. It is while 

removing the cysteine thiolate (Cys87) from the metal coordination sphere to form a 

disulfide bond, the remaining open coordination is occupied with a water molecule to keep 

the penta-coordinated geometry. 

As well as, taking out the metal ion from the enzyme active site to accurately examine 

the Mn(II) importance in the exchange mechanism indicates the preference of the covalent 

SS to SN formation. The obtained results agree with observed findings applying the 

empirical D3 dispersion correction (B3LYP-D3) with the small size of the QM layer. 

Similarly, it has been observed that the absence of the metal ion in the enzyme active site 
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results in Tyr436 to act as a Lewis acid and finally disulfide formation. Although, applying 

the larger size of the QM region affects S…N interaction more significantly than S…S 

interaction, relative to the corresponding ones using the smaller size of the QM layer.  

Also, in this present study, the contribution of Thr438 positioned at the neighboring 

cyclic sulfenylamide in the switching mechanism and presence of the hydronium ion in the 

enzyme active site have been investigated. All the results indicate providing an acidic 

environment leads Cys87 to remove metal ion coordination to form a disulfide bond which 

is simultaneous with sulfur-nitrogen bond cleavage. 
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9.1 Conclusions 

In this work, multi-scale computational modeling techniques have been applied to explore 

the sulfur chemistry, its structure, functionality, and reactivity in a wide variety of sulfur-

containing systems. 

In chapter 3, the ability of the DFT functionals (B3LYP, B3PW91, ωB97XD, M06-2X, 

and M08-HX) relative to electron correlation methods MP2 and QCISD to produce reliable 

and accurate structures, as well as thermochemical data for sulfur/selenium-containing 

systems, was investigated. Bond lengths, proton affinities (PA), gas phase basicities (GPB), 

chalcogen–chalcogen bond dissociation enthalpies (BDE), and the hydrogen affinities 

(HA) of thiyl/selenyl radicals were evaluated for a range of RXn(H) (X=S, Se, R=CH3, 

CH2CH, and cysteine, n=1–4). The S–S bond length was found to be the most sensitive to 

basis set choice, while the geometry of selenium-containing compounds was less sensitive 

to the basis set. In mixed chalcogens species of sulfur and selenium, the location of the 

sulfur atom affects the S–Se bond length as it can hold more negative charge. PA, GPB, 

BDE, and HA of selenium systems were all lower, indicating more acidity and more 

stability of radicals. Extending the sulfur chain in cysteine results in a decrease of BDE 

and HA, but these plateau at a certain point (199 kJ mol-1 and 295 kJ mol-1), and PA and 

GPB are also decreased relative to the thiol, indicating that the polysulfur species exist as 

thiolates in a biological system. In general, it was found that ωB97XD/6-311G(2d,p) gave 

the most reasonable structures and thermochemistry relative to benchmark calculations.  

In chapter 4, applying two different computational solvation models, implicit and 

hybrid implicit/explicit solvation techniques, the influence of individual solvent molecules, 

solvent-solute interactions, and in general reaction environment and its constituents on the 

mechanism of sulfur-nitrogen bond formation were discussed. To this goal, formation of 

the sulfonamide (RS(O)2-NR'R") as one of the precious and versatile highly functionalized 

sulfur species from N-tosyl hydrazones, amines, and sulfur dioxide in a wide variety of 

solvents with different dielectric constants was studied. Our findings reveal the significant 
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contribution of solvent-solute interactions in the reaction progress. The studied ene reaction 

between the sulfur dioxide and N-tosyl hydrazine toward the β,γ-unsaturated sulfinic acid 

formation shows how the applied explicit solvent molecules with the higher proton affinity 

lead to a noticeable decrease in the reaction energy, while the changes in activation energy 

are less significant. Hence, the study introduces dimethyl sulfide (DMSO) as a suitable 

solvent and base for the mentioned ene reaction. The reactivity of sulfene a result from the 

decomposition of the β,γ-unsaturated sulfinic acid toward amine (piperidine in the present 

study) to form sulfonamide as the desired end product was explored. As results indicate 

the presence of base with its active contribution via formation a 6-cyclic transition structure 

(e.g., water) in proton transferring process from the nitrogen atom of amine to the carbon 

atom of sulfene plays a considerable role in decreasing the activation barrier. However, 

presence of a base with lower proton affinity than amine (e.g., DMSO) causes an increase 

in the activation barrier. Consequently, employing the excess amount of piperidine acting 

as both a nucleophile to form a sulfur-nitrogen bond and a base to assist proton transferring 

process along the addition reaction leads to a notable decrease in the activation barrier (by 

~7 times). 

In chapter 5, we explored the formation of highly efficient SO2-containing molecules 

including sulfones, sulfonamides, and sulfamides via a radical-based reaction from two 

equivalents of a systematic series of xiamycin-inspired aromatic C- and N-centered radicals 

and sulfur dioxide, in the gas-phase and aqueous solution. Using the ab initio MP2 method 

and DFT functionals, the formation of such compounds was extensively discussed. Our 

investigation shows that C–S(O2) bond formation is favoured over N–S(O2) which 

necessarily does not agree with the observed spin density distribution in the initial 

heterocyclic radical species. Consequently, it results in the introduction of sulfones (R3C-

SO2-CR3) and sulfamides (R2N-SO2-NR2) species as the most and least thermodynamically 

preferred SO2-containing molecules in the present studies, respectively. Importantly, the 

observed results of the formation of relevant SO2-containing molecules from radical 



Chapter 9: Conclusions and Future Work 
 

223 
 

xiamycin are in a good agreement with experimentally observed diaryl sulfonamide and 

sulfone antibiotics which were identified as bioproducts through a bacterial synthesis of 

flavoenzyme XiaH and sulfur dioxide capturing. The ability of some DFT functionals 

(B3LYP, B3LYP-D3, and M06-2X) and conventional ab initio methods were assessed in 

this study. The results represent the successful performance of M06-2X as the meta-GGA 

functional in predicting the geometrical parameters and energies in studying relevant SO2-

containing molecules. 

In Chapter 6, using DFT-based methods reactivity of highly electrophilic HNO toward 

cysteinyl and cysteinyl persulfide, as one of the important post-translationally modified 

cysteinyl with enhanced nucleophilicity was investigated. The results indicate that 

formation of Cys-X-NHOH (X=S and S-S), as the first and chief intermediate is 

independent of the peptide’s position in the amino acid chain. Although the potential 

energy surface for the formation of such S–N containing species are potentially affected 

by the peptide’s position and polarity of the biological environment. Significantly, our 

findings show that further modifications of Cys-X-NHOH (X=S and S-S) intermediate 

result in a wide variety of sulfur-containing biomolecules dependence upon the peptide’s 

position which was initially derived from. Cys-X-NH2
+OH (X=S and S-S) derived from 

the internal peptide leads to the formation of Cys-X(O)-NH2 (X=S and S-S ), and Cys-XX-

Cys (X=S) via a rearrangement reaction and a nucleophilic substitution, respectively. It is 

while Cys-X-NH2
+OH (X=S and S-S) derived from the C-terminus peptides potentially 

affected by the presence of carboxylic acid and results in the formation of Cys-X-OH (X=S, 

S-S) through the intermediacy of a 5- or 6-membered cyclic structure in cysteinyl and 

cysteinyl persulfide, respectively and independent of reactive oxygen species (ROS). 

In chapter 7, we used multi-scale computational methods to provide significant insights 

into the detailed understanding of the bacterial Ni-DddK-catalyzed 

dimethylsulfoniopropionate (DMSP) cleavage, as a sulfur-containing compound to form 

dimethyl sulfide (DMS). Applying the QM-cluster only approach and quantum 



Chapter 9: Conclusions and Future Work 
 

224 
 

mechanics/molecular mechanics (QM/MM) techniques, firstly we investigated the bound 

and unbound active sites to gain atomistic explanations of the key Ni-coordinated ligands 

and their contributions in the active site. Our results demonstrate that DMSP binding 

displaces the water and Tyr64 in the active site. The detachment of the Ni-coordinated 

Tyr64 and its removal from the first metal coordination sphere causes it directly to act as a 

Lewis base to initiate the β-concerted elimination mechanism to toward DMSP cleavage. 

In addition, the effects of substituting Ni(II) with Mn(II) on the catalytic cleavage 

mechanism has been examined. Findings imply the importance of transition metal ions 

acting as the cofactor in the Dddk enzyme to facilitate the DMSP lyase and formation of 

DMS. Two different meta-GGA functionals (M06 and M06L) were considered in this in 

this study. Despite the observed close agreement, the M06L functional (0%HF) exchange 

contribution gives a better description of this transition metal ion-containing enzyme.  

In chapter 8, we discussed the first recognized occurrence of disulfidesulfenylamide 

shuttling reaction in the active site of DAH7PS from Mycobacterium tuberculosis. The 

enzyme active site investigation showed that the identified cyclic sulfenylamide result of 

the thiolate Cys440 and amide nitrogen of Asp441 (C440S–ND441) can be potentially 

involved in the switching mechanism to form a disulfide (C87S–SC440). Hence, multi-scale 

computational modeling methods were used to explore such a process. Applying the QM-

cluster approach, the first insight into the switching mechanism was obtained: preference 

of cyclic sulfenylamide to disulfide in the enzyme active site, while Cys87 is ligated to the 

metal center (Mn(II)). Afterward, employing ONIOM(QM/MM) gave a deeper insight into 

the mechanism, influential environmental features, and metal ion coordination in the active 

site. To this goal, we systematically increased the size of the QM layer to find each 

residue’s contribution to the switching mechanism. Our results reveal the key role of 

Mn(II) in the potential interconversion between the cyclic sulfenylamide and disulfide 

conformations; preference of N–S to S–S in the active site while metal ion absence makes 

Tyr436 act as a Lewis acid, removing Cys87 from the metal coordination center, and finally 
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S–S formation. Significantly, the study shows providing an acidic environment leads to the 

preference of disulfide to sulfenylamide in the enzyme active site.  

Everyday many novel highly sulfur-functionalized containing components, 

biomolecules, and natural products, specifically those including S–X (S= S, N, O), are 

biosynthesized, identified, and isolated from a variety of sources with unique potentials 

and properties, and important biological, pharmacological, and physiological functions and 

activities. With the fast-growing number of identified biosystems and biocatalysts being 

evolved in constructions such sulfur-containing species especially those including the 

oxidized sulfur, reactive sulfur species (RSS), polysulfur, and sulfur-nitrogen bond further 

computational elucidations and detailed investigations are critically needed. Unfortunately, 

the chemistry of their occurrence, formation, and functionalities are still challenging in 

experimental chemistry and have lagged behind others. Furthermore, many rare and 

unusual post-translational modifications of sulfur-containing peptides and proteins have 

brought attentions to biosynthesis and biological chemists in recent years. The present 

results provide experimental and computational chemists key insights into potential 

pathways for the synthesis of new sulfur-containing species. Furthermore, we have 

developed and characterized computational methodologies that are comparatively cheap 

yet able to provide reliable and accurate structures and thermochemical values of such 

species. Such knowledge is crucial for future computational studies on these and related 

species. That is, we have provided the essential foundation upon which future related 

computational studies can now build, confident in the accuracy and predictive abilities of 

their results. 

In addition, we have deconstructed and analyzed some of the fundamental factors that 

must be considered when experimentally synthesizing sulfonamides and other species, 

including, the choice of solvent and catalytic base. Our results thus will help experimental 

chemists to now systematically design reaction conditions that can enable the design and 

synthesis of related as well as new sulfur-containing species (e.g., sulfonamides). Coupled 
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with our new insights into the mechanisms of several physiologically key enzymes, this 

will enable the design of new therapeutic drugs and materials. In addition, our proof-of-

concept/principle results regarding the possible interconversion of cystine and 

sulfenylamides in enzymes will now enable researchers to identify such mechanisms in 

other enzymes. In fact, it provides a brand new mechanism for enzyme regulation. As a 

result, it can potentially lead to the development of new therapeutic drugs or even 

bioengineered catalysts. 
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Appendix A3.1. Selected optimized bond lengths in ångström (Å) for CH3XXH and 

CH3XX– (X=S, Se) using MP2. 

 

  

  CH3SSH  CH3SS–  CH3SeSeH  CH3SeSe– 
Method Basis set C–S S–S S–H  C–S S–S  C–Se Se-Se Se–H  C–Se Se-Se 
MP2 6-31G(d) 1.812 2.062 1.346  1.812 2.089  1.962 2.328 1.489  1.965 2.353 
 6-311G(d) 1.808 2.073 1.346  1.807 2.104  1.961 2.348 1.483  1.965 2.374 
 6-311G(d,p) 1.805 2.073 1.338  1.804 2.103  1.957 2.348 1.464  1.961 2.374 
 6-311+G(d,p) 1.805 2.074 1.339  1.805 2.098  1.957 2.348 1.464  1.962 2.371 
 6-311G(2d,p) 1.818 2.082 1.337  1.819 2.107  1.952 2.350 1.464  1.958 2.380 
 6-31G11(df,p) 1.799 2.044 1.341  1.798 2.067  1.947 2.321 1.470  1.952 2.343 
 6-311+G(2df,p) 1.809 2.053 1.345  1.810 2.069  1.948 2.319 1.469  1.954 2.340 
 6-311++G(3df,3pd) 1.802 2.042 1.338  1.802 2.059  1.946 2.322 1.465  1.952 2.341 
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Appendix A3.2. C–S and S–S bond lengths (ångström, Å) for CH2CHSSH and 

CH2CHSS–. 
 

  

  CH2CHSSH  CH2CHSS–  
Method Basis set C–S S–S  C–S S–S–  
B3LYP 6-31G(d) 1.781 2.099  1.764 2.111  
 6-311G(d) 1.779 2.111  1.762 2.131  
 6-311+G(d) 1.778 2.109  1.756 2.124  
 6-311+G(d,p) 1.778 2.110  1.755 2.123  
 6-311G(2d,p) 1.777 2.096  1.759 2.109  
 6-311+G(df,p) 1.776 2.096  1.753 2.109  
 6-311+G(2df,p) 1.771 2.078  1.747 2.081  
 6-311++G(3df,3pd) 1.767 2.069  1.742 2.076  
        
B3PW91 6-31G(d) 1.772 2.078  1.753 2.088  
 6-311G(d) 1.769 2.088  1.751 2.105  
 6-311+G(d) 1.768 2.086  1.745 2.098  
 6-311+G(d,p) 1.768 2.088  1.745 2.098  
 6-311G(2d,p) 1.767 2.074  1.747 2.084  
 6-311+G(df,p) 1.766 2.075  1.743 2.084  
 6-311+G(2df,p) 1.762 2.058  1.737 2.063  
 6-311++G(3df,3pd) 1.758 2.050  1.733 2.054  
        
ωB97XD 6-31G(d) 1.766 2.075  1.755 2.090  
 6-311G(d) 1.762 2.058  1.753 2.108  
 6-311+G(d) 1.758 2.050  1.748 2.102  
 6-311+G(d,p) 1.766 2.075  1.748 2.101  
 6-311G(2d,p) 1.762 2.058  1.750 2.088  
 6-311+G(df,p) 1.769 2.072  1.746 2.088  
 6-311+G(2df,p) 1.764 2.057  1.740 2.069  
 6-311++G(3df,3pd) 1.760 2.049  1.736 2.061  
        
M06-2X 6-31G(d) 1.773 2.075  1.754 2.092  
 6-311G(d) 1.772 2.083  1.752 2.108  
 6-311+G(d) 1.770 2.083  1.747 2.102  
 6-311+G(d,p) 1.770 2.084  1.747 2.102  
 6-311G(2d,p) 1.770 2.071  1.751 2.090  
 6-311+G(df,p) 1.768 2.071  1.744 2.086  
 6-311+G(2df,p) 1.764 2.056  1.739 2.069  
 6-311++G(3df,3pd) 1.761 2.050  1.735 2.061  
        
M08-HX 6-31G(d) 1.773 2.073  1.755 2.091  
 6-311G(d) 1.771 2.082  1.753 2.106  
 6-311+G(d) 1.770 2.080  1.748 2.100  
 6-311+G(d,p) 1.770 2.081  1.747 2.100  
 6-311G(2d,p) 1.769 2.071  1.750 2.090  
 6-311+G(df,p) 1.768 2.070  1.745 2.085  
 6-311+G(2df,p) 1.763 2.055  1.739 2.068  
 6-311++G(3df,3pd) 1.805 2.041  1.736 2.060  
        
QCISD 6-311+G(2df,p) 1.771 2.069  1.750 2.086  
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Appendix A3.3. C–Se and Se–Se bond lengths (ångström, Å) for CH2CHSeSeH and 

CH2CHSeSe–. 
 

  

  CH2CHSeSeH  CH2CHSeSe–  
Method Basis set C–Se Se–Se  C–Se Se–Se–  
B3LYP 6-31G(d) 1.921 2.347  1.908 2.362  
 6-311G(d) 1.927 2.372  1.915 2.388  
 6-311G(d,p) 1.926 2.373  1.914 2.388  
 6-311+G(d,p) 1.926 2.373  1.912 2.386  
 6-311G(2d,p) 1.922 2.375  1.911 2.391  
 6-311G(df,p) 1.921 2.360  1.908 2.373  
 6-311+G(2df,p) 1.919 2.358  1.905 2.371  
 6-311++G(3df,3pd) 1.918 2.359  1.905 2.371  
        
B3PW91 6-31G(d) 1.908 2.324  1.894 2.337  
 6-311G(d) 1.914 2.347  1.902 2.360  
 6-311G(d,p) 1.913 2.347  1.901 2.360  
 6-311+G(d,p) 1.913 2.347  1.899 2.359  
 6-311G(2d,p) 1.910 2.350  1.898 2.364  
 6-311G(df,p) 1.908 2.334  1.894 2.346  
 6-311+G(2df,p) 1.906 2.333  1.892 2.344  
 6-311++G(3df,3pd) 1.906 2.331  1.892 2.344  
        
ωB97XD 6-31G(d) 1.908 2.310  1.892 2.333  
 6-311G(d) 1.914 2.337  1.901 2.358  
 6-311G(d,p) 1.913 2.338  1.900 2.358  
 6-311+G(d,p) 1.913 2.338  1.898 2.357  
 6-311G(2d,p) 1.910 2.339  1.897 2.361  
 6-311G(df,p) 1.908 2.325  1.895 2.343  
 6-311+G(2df,p) 1.906 2.324  1.893 2.341  
 6-311++G(3df,3pd) 1.906 2.325  1.893 2.341  
        
M06-2X 6-31G(d) 1.906 2.313  1.893 2.331  
 6-311G(d) 1.914 2.336  1.903 2.356  
 6-311G(d,p) 1.914 2.337  1.902 2.356  
 6-311+G(d,p) 1.914 2.337  1.901 2.354  
 6-311G(2d,p) 1.911 2.340  1.900 2.359  
 6-311G(df,p) 1.909 2.326  1.897 2.343  
 6-311+G(2df,p) 1.907 2.325  1.895 2.340  
 6-311++G(3df,3pd) 1.907 2.326  1.895 2.341  
        
M08-HX 6-31G(d) 1.910 2.306  1.892 2.326  
 6-311G(d) 1.915 2.332  1.901 2.349  
 6-311G(d,p) 1.915 2.333  1.901 2.349  
 6-311+G(d,p) 1.914 2.333  1.904 2.372  
 6-311G(2d,p) 1.911 2.335  1.897 2.353  
 6-311G(df,p) 1.910 2.320  1.896 2.338  
 6-311+G(2df,p) 1.908 2.321  1.893 2.334  
 6-311++G(3df,3pd) 1.907 2.321  1.893 2.335  
        
QCISD 6-311+G(2df,p) 1.914 2.329  1.902 2.359  
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Appendix A3.4. C–Se, C–S and S–Se bond lengths (ångström, Å) for CH3XYH and 

CH3XY– (X=S, Se; Y=Se, S).  

 

  

  CH3SSeH  CH3SSe–  CH3SeSH  CH3SeS– 
Method Basis set C–S S–Se  C–S S–Se  C–Se Se-S  C–Se Se-S 
B3LYP 6-31G(d) 1.837 2.219  1.836 2.266  1.973 2.226  1.985 2.234 
 6-311G(d) 1.833 2.235  1.832 2.286  1.976 2.240  1.986 2.253 
 6-311G(d,p) 1.834 2.237  1.833 2.286  1.975 2.242  1.986 2.253 
 6-311+G(d,p) 1.834 2.237  1.833 2.281  1.975 2.241  1.988 2.244 
 6-311G(2d,p) 1.832 2.227  1.832 2.270  1.973 2.231  1.983 2.244 
 6-311G(df,p) 1.832 2.221  1.832 2.266  1.969 2.226  1.980 2.236 
 6-311+G(2df,p) 1.826 2.213  1.826 2.250  1.968 2.216  1.981 2.221 
 6-311++G(3df,3pd) 1.822 2.212  1.822 2.248  1.968 2.215  1.980 2.219 
             
B3PW91 6-31G(d) 1.824 2.199  1.823 2.242  1.957 2.205  1.969 2.212 
 6-311G(d) 1.820 2.212  1.820 2.260  1.960 2.217  1.970 2.228 
 6-311G(d,p) 1.821 2.214  1.820 2.260  1.959 2.219  1.970 2.228 
 6-311+G(d,p) 1.821 2.214  1.820 2.256  1.959 2.218  1.971 2.221 
 6-311G(2d,p) 1.819 2.204  1.819 2.244  1.957 2.208  1.968 2.220 
 6-311G(df,p) 1.819 2.199  1.819 2.241  1.953 2.204  1.964 2.212 
 6-311+G(2df,p) 1.814 2.191  1.813 2.226  1.953 2.195  1.965 2.198 
 6-311++G(3df,3pd) 1.810 2.190  1.809 2.224  1.953 2.194  1.964 2.196 
             
ωB97XD 6-31G(d) 1.823 2.194  1.821 2.238  1.951 2.201  1.960 2.209 
 6-311G(d) 1.820 2.207  1.818 2.256  1.947 2.190  1.962 2.224 
 6-311G(d,p) 1.820 2.209  1.818 2.256  1.953 2.213  1.961 2.224 
 6-311+G(d,p) 1.820 2.208  1.817 2.252  1.953 2.213  1.962 2.218 
 6-311G(2d,p) 1.818 2.199  1.817 2.242  1.951 2.204  1.959 2.216 
 6-311G(df,p) 1.818 2.195  1.817 2.239  1.948 2.200  1.957 2.209 
 6-311+G(2df,p) 1.813 2.187  1.811 2.224  1.947 2.191  1.956 2.196 
 6-311++G(3df,3pd) 1.809 2.186  1.807 2.223  1.947 2.190  1.956 2.195 
             
M06-2X 6-31G(d) 1.822 2.193  1.820 2.236  1.950 2.199  1.958 2.210 
 6-311G(d) 1.819 2.207  1.817 2.254  1.957 2.211  1.963 2.228 
 6-311G(d,p) 1.819 2.208  1.818 2.254  1.956 2.212  1.963 2.228 
 6-311+G(d,p) 1.819 2.208  1.817 2.250  1.956 2.212  1.964 2.220 
 6-311G(2d,p) 1.817 2.200  1.816 2.239  1.954 2.203  1.960 2.221 
 6-311G(df,p) 1.817 2.194  1.816 2.237  1.951 2.198  1.959 2.212 
 6-311+G(2df,p) 1.812 2.188  1.811 2.221  1.950 2.190  1.959 2.198 
 6-311++G(3df,3pd) 1.809 2.187  1.808 2.221  1.950 2.190  1.958 2.197 
             
M08-HX 6-31G(d) 1.820 2.194  1.818 2.227  1.951 2.198  1.957 2.218 
 6-311G(d) 1.818 2.207  1.816 2.245  1.957 2.209  1.962 2.232 
 6-311G(d,p) 1.819 2.208  1.816 2.245  1.956 2.210  1.962 2.232 
 6-311+G(d,p) 1.818 2.208  1.816 2.240  1.956 2.210  1.964 2.224 
 6-311G(2d,p) 1.816 2.200  1.814 2.229  1.954 2.201  1.959 2.225 
 6-311G(df,p) 1.817 2.195  1.815 2.228  1.951 2.197  1.958 2.217 
 6-311+G(2df,p) 1.811 2.188  1.809 2.213  1.950 2.190  1.958 2.203 
 6-311++G(3df,3pd) 1.809 2.187  1.807 2.212  1.951 2.189  1.958 2.201 
             
QCISD 6-311+G(2df,p) 1.819 2.198  1.816 2.239  1.952 2.202  1.961 2.207 
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Appendix A3.5. Optimized S–S bond lengths (ångström, Å) for RSSSH/– (R=CH3, 

CH2=CH).  
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Appendix A3.6. Mulliken charges on every S of RSSSH/– (R=CH3, CH2=CH). 

 

 

Appendix A3.7. Homolytic S−S bond dissociation enthalpy (BDE) of RSSH, proton 

affinity (PA) and gas-phase basicity (GPB) of RSS−, and hydrogen affinity (HA) of RSS• 

(R=CH3, CH2CH). All energies calculated at 298.15K and in kJ mol−1. 

 

 
  

 CH3SSSH  CH3SSS– 

Method/Basis Set S1 S2 S3  S1 S2 S3 

QCISD/6-311+G(2df,p) 0.15 0.05 -0.25  -0.05 -0.10 -0.77 

 CH2CHSSSH  CH2CHSSS– 

QCISD/6-311+G(2df,p) -0.01 0.04 -0.20  -0.23 -0.08 -0.74 

 CYS-SSSH  CYS-SSS– 

ωB9XD/6-311G(2d,p) 0.00 -0.03 -0.12  -0.12 -0.13 -0.66 

  CH3SSH CH3SS– CH3SS•  CH2CHSSH CH2CHSS– CH2CHSS• 
Methods Basis set BDE(S—S) PA GPB HA  BDE(S—S) PA GPB HA 
B3LYP 6-31G(d) 224.8 1456.4 1426.1 276.4  228.1 1430.0 1398.6 274.7 

6-311G(2d,p) 235.6 1440.5 1410.1 285.6  239.2 1418.0 1386.0 259.6 
6-311G+(2df,p) 240.3 1437.7 1407.3 281.1  241.9 1411.5 1380.2 280.2 
6-311G++(3df,3pd) 241.6 1440.9 1410.6 283.5  243.2 1414.7 1383.5 282.1 

B3PW91 6-31G(d) 235.4 1455.2 1424.8 274.6  238.0 1427.6 1396.5 272.8 
6-311G(2d,p) 250.3 1447.7 1417.3 283.8  253.0 1423.1 1391.5 254.5 
6-311G+(2df,p) 254.7 1445.8 1415.4 279.5  255.7 1417.7 1386.8 278.4 
6-311G++(3df,3pd) 255.8 1448.7 1418.4 281.6  256.8 1420.5 1389.7 280.1 

ωB97XD 6-31G(d) 244.1 1455.0 1425.1 284.0  244.1 1429.8 1397.3 283.7 
6-311G(2d,p) 258.5 1447.3 1417.5 292.0  258.5 1422.4 1395.5 291.5 
6-311G+(2df,p) 264.6 1445.5 1415.8 288.0  262.7 1420.2 1382.0 288.3 
6-311G++(3df,3pd) 265.6 1449.2 1419.6 289.8  263.5 1423.6 1388.6 289.7 

M06-2X 6-31G(d) 252.0 1440.0 1411.4 285.4  249.8 1414.5 1381.1 283.7 
6-311G(2d,p) 264.9 1430.0 1401.6 294.4  263.0 1408.2 1374.4 292.8 
6-311G+(2df,p) 270.3 1428.5 1400.1 291.0  267.4 1403.4 1366.4 290.2 
6-311G++(3df,3pd) 272.3 1432.3 1404.2 293.9  269.1 1406.7 1368.1 292.6 

M08-HX 6-31G(d) 258.0 1446.1 1414.2 295.4  255.5 1419.6 1387.9 291.6 
6-311G(2d,p) 268.3 1435.5 1405.6 298.2  268.7 1414.3 1382.0 297.1 
6-311G+(2df,p) 273.6 1433.5 1404.3 294.0  274.0 1411.4 1376.4 296.2 
6-311G++(3df,3pd) 275.2 1437.7 1408.6 296.4  272.7 1412.9 1383.4 295.7 

QCISD 6-311G+(2df,p) 236.3 1445.4 1415.1 282.7  242.0 1421.8 1390.7 283.5 
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Appendix A3.8. Homolytic Se−Se bond dissociation enthalpy (BDE) of RSeSeH, proton 

affinity (PA) and gas-phase basicity (GPB) of RSeSe−, and hydrogen affinity (HA) of 

RSeSe• (R=CH3, CH2CH). All energies calculated at 298.15K and in kJ mol−1. 

 

* Poor optimization of anion led to high energy conformation. 

  

 

  CH3SeSeH CH3SeSe– CH3SeSe•  CH2CHSeSeH CH2CHSeSe– CH2CHSeSe• 
Methods Basis set BDE(Se—Se) PA GPB HA  BDE(Se—Se) PA GPB HA 
B3LYP 6-311+G(d,p) 208.0 1401.6 1371.3 272.2  211.5   1382.6 1350.9 272.0 

6-311G(df,p) 212.9 1421.0 1390.7 267.0  193.2 1400.0 1369.1 266.2 
6-311G+(2df,p) 212.0 1404.0 1373.7 267.7  214.9 1384.8 1353.2 267.1 
6-311G++(3df,3pd) 212.7 1404.3 1374.1 268.5  215.4 1385.5 1353.9 268.0 

B3PW91 6-311+G(d,p) 219.2 1409.0 1378.7 270.5  222.1 1388.6 1357.4 270.2 
6-311G(df,p) 223.7 1424.2 1393.8 265.3  204.7 1401.9 1371.0 264.5 
6-311G+(2df,p) 222.9 1411.4 1381.1 266.0  225.3 1390.7 1359.7 265.4 
6-311G++(3df,3pd) 223.6 1411.8 1381.5 266.7  226.6 1392.1 1360.7 266.7 

ωB97XD 6-311+G(d,p) 218.0 1410.8 1380.7 276.5  221.3 1391.4 1359.6 277.1 
6-311G(df,p) 223.7 1426.5 1396.4 270.3  226.2 1405.4 1373.9 270.5 
6-311G+(2df,p) 222.6 1413.3 1383.4 270.7  225.3 1393.8 1361.1 271.0 
6-311G++(3df,3pd) 223.7 1413.6 1383.7 271.4  226.3  1391.9 1366.1 271.8 

M06-2X 6-311+G(d,p) 203.5 1384.2 1353.6 275.3  206.2 1367.6 1335.5 277.3 
6-311G(df,p) 209.0 1397.8 1367.0 271.6  212.0 1377.0 1352.2 273.0 
6-311G+(2df,p) 207.7 1386.0 1355.3 272.2  211.0 1369.0 1336.1 273.6 
6-311G++(3df,3pd) 223.4 1387.4 1356.8 273.4  212.4 1370.5 1337.8 272.3 

M08-HX 6-311+G(d,p) 233.7 1380.0 1349.7 291.4  235.9 * * 291.8 
6-311G(df,p) 237.6 1393.8 1363.4 288.1  240.7 1373.8 1339.7 288.5 
6-311G+(2df,p) 223.4 1381.9 1351.6 288.8  224.9 1362.6 1329.0 288.5 
6-311G++(3df,3pd) 223.4 1383.4 1353.2 289.5  225.7 1362.8 1337.3 290.0 

QCISD 6-311G+(2df,p) 204.1 1404.3 1374.0 267.3  208.3 1386.7 1355.7 265.9 



Appendix A: Polysulfur/Selenium Assessment 
 

235 
 

Appendix A3.9. Homolytic X−Y bond dissociation enthalpy (BDE) of RXYH, proton 

affinity (PA) and gas-phase basicity (GPB) of RXY−, and hydrogen affinity (HA) of RXY• 

(R=CH3, CH2CH; X=S, Se; Y=Se, S). All energies calculated at 298.15K and in kJ mol−1. 

 

 

 

  CH3SSeH CH3SSe– CH3SSe•  CH3SeSH CH3SeS– CH3SeS• 
Methods Basis set BDE(S—Se) PA GPB HA  BDE(Se—S) PA GPB HA 
B3LYP 6-311+G(d,p) 209.8 1405.0 1374.8 275.2  217.3   1427.8 1397.6 289.2 

6-311G(df,p) 215.2 1421.2 1391.0 269.8  223.4 1435.1 1404.8 283.5 
6-311G+(2df,p) 220.7 1407.8 1377.7 267.0  229.0 1434.1 1403.9 285.3 
6-311G++(3df,3pd) 220.7 1408.0 1377.9 267.6  229.1 1437.2 1407.0 288.6 

B3PW91 6-311+G(d,p) 221.7 1413.2 1382.8 273.8  229.4 1435.0 1404.8 287.1 
6-311G(df,p) 227.1 1425.8 1395.7 268.2  235.2 1440.5 1410.1 281.7 
6-311G+(2df,p) 233.3 1415.7 1385.5 265.3  241.6 1441.7 1411.4 283.6 
6-311G++(3df,3pd) 233.2 1415.9 1385.8 265.9  241.5 1444.5 1414.3 286.5 

ωB97XD 6-311+G(d,p) 219.6 1414.0 1384.2 279.9  231.4 1435.6 1405.8 295.6 
6-311G(df,p) 226.1 1427.3 1397.5 273.9  238.5 1440.7 1410.9 289.3 
6-311G+(2df,p) 232.5 1417.2 1387.5 270.9  245.0 1442.2 1412.4 290.8 
6-311G++(3df,3pd) 232.3 1417.6 1388.0 271.6  244.9   1445.2 1415.7 293.6 

M06-2X 6-311+G(d,p) 222.3 1390.1 1359.8 277.7  226.8 1415.5 1384.6 297.8 
6-311G(df,p) 229.2 1400.9 1370.7 268.1  234.5 1420.3 1389.4 294.9 
6-311G+(2df,p) 234.3 1392.1 1362.0 270.5  240.0 1422.3 1391.7 296.3 
6-311G++(3df,3pd) 235.0 1393.2 1363.2 271.9  254.9 1425.7 1395.1 299.5 

M08-HX 6-311+G(d,p) 231.7 1386.7 1357.9 293.8  242.0 1420.6 1390.1 309.5 
6-311G(df,p) 236.8 1397.4 1368.2 288.3  246.5 1426.9 1396.1 306.6 
6-311G+(2df,p) 228.4 1387.9 1359.1 285.2  203.1 1382.7 1260.1 263.3 
6-311G++(3df,3pd) 227.9 1388.9 1359.7 285.8  259.9 1431.8 1401.2 311.8 

QCISD 6-311G+(2df,p) 218.7 1411.3 1381.1 267.5  224.5 1438.9 1408.6 286.1 
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Appendix A3.10. Homolytic S−S bond dissociation enthalpy (BDE) of RSSSH, proton 

affinity (PA) and gas-phase basicity (GPB) of RSSS−, and hydrogen affinity (HA) of RSSS• 

(R=CH3, CH2CH). All energies calculated at 298.15K and in kJ mol−1. 

  
 

 

  

  CH3SSSH CH3SSS– CH3SSS•  CH2CHSSSH CH2CHSSS– CH2CHSSS• 
Methods Basis set BDE(SS—S) PA GPB HA  BDE(SS—S) PA GPB HA 
B3LYP 
 
 

6-31G(d) 167.6 1415.2 1383.7 283.9  166.9 1402.9 1369.7 288.1 
6-311G(2d,p) 178.4 1407.1 1375.6 292.8  177.7 1384.9 1351.4 297.2 
6-311G+(2df,p) 180.4 1406.7 1375.2 289.5  179.7 1392.7 1360.0 292.9 
6-311G++(3df,3pd) 180.1 1410.1 1378.7 291.9  179.0 1396.1 1363.4 294.9 

B3PW91 6-31G(d) 177.9 1413.9 1382.6 282.6  176.8 1427.5 1394.2 287.1 
6-311G(2d,p) 191.5 1413.9 1382.3 290.9  190.5 1401.8 1369.3 293.9 
6-311G+(2df,p) 193.8 1413.9 1382.4 287.9  192.8 1399.5 1367.0 290.5 
6-311G++(3df,3pd) 195.9 1419.4 1387.9 292.3  192.0 1402.4 1370.1 292.2 

ωB97XD 6-31G(d) 184.2 1415.6 1385.2 293.1  185.0 1406.0 1376.3 297.8 
6-311G(2d,p) 197.3 1415.1 1385.0 300.8  198.0 1405.6 1375.1 305.5 
6-311G+(2df,p) 200.4 1415.0 1385.1 297.7  201.0 1403.0 1370.9 302.0 
6-311G++(3df,3pd) 199.6 1418.7 1388.8 299.7  199.4 1406.3 1375.3 303.8 

M06-2X 6-31G(d) 192.6 1398.7 1369.0 292.5  192.7 1389.5 1357.5 297.3 
6-311G(2d,p) 204.7 1395.6 1365.4 300.9  205.2 1387.3 1356.3 306.5 
6-311G+(2df,p) 208.6 1395.7 1365.3 298.4  208.7 1385.4 1356.1 303.2 
6-311G++(3df,3pd) 209.1 1399.2 1368.7 300.9  208.6 1388.6 1358.7 305.7 

M08-HX 6-31G(d) 196.0 1402.8 1376.5 300.8  195.7 1393.8 1362.2 305.8 
6-311G(2d,p) 206.8 1400.7 1371.2 304.5  206.9 1392.9 1361.8 310.1 
6-311G+(2df,p) 209.6 1400.6 1371.4 301.3  209.4 1389.8 1359.3 306.1 
6-311G++(3df,3pd) 209.8 1404.8 1376.2 303.7  208.8 1393.8 1363.8 308.3 

QCISD 6-311G+(2df,p) 183.0 1413.9 1384.1 289.4  185.7 1403.7 1371.2 295.0 
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Appendix B4.11. Calculated Gibbs’s Free Energy activation barriers (difference in energy 

between reactants and transition structure; blue line) and Gibbs’s Free Energis of reactions 

(difference in energy between reactants and products; green line) for the reaction of SO2 

with N-tosyl hydrazone in various solvents and in the gas-phase. It is noted that the solvents 

are shown in order of decreasing dielectric constant. 
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