
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

9-24-2019 

Using Prior Knowledge for Verification and Elimination of Using Prior Knowledge for Verification and Elimination of 

Stationary and Variable Objects in Real-time Images Stationary and Variable Objects in Real-time Images 

Foram Pravinkumar Patel 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Patel, Foram Pravinkumar, "Using Prior Knowledge for Verification and Elimination of Stationary and 
Variable Objects in Real-time Images" (2019). Electronic Theses and Dissertations. 7831. 
https://scholar.uwindsor.ca/etd/7831 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7831?utm_source=scholar.uwindsor.ca%2Fetd%2F7831&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 
 

Using Prior Knowledge for Verification and Elimination of Stationary 

and Variable Objects in Real-time Images 

by 

 

FORAM PRAVINKUMAR PATEL 

 

 

A THESIS 

 

Submitted to the Faculty of Graduate Studies 

Through Computer Science 

In Partial Fulfilment of the Requirements for 

The Degree of Master of Science at the 

University of Windsor 

 

Windsor, Ontario, Canada 

2019 

 

© 2019 FORAM PRAVINKUMAR PATEL 

 

 

 

 

 

 

  



Using Prior Knowledge for Verification and Elimination of Stationary 

and Variable Objects in Real-time Images 

by 

 

FORAM PRAVINKUMAR PATEL 

 

APPROVED BY: 

 

______________________________________________ 

M. Hlynka  

Department of Mathematics and Statistics  

 

 

 

______________________________________________ 

A. Mukhopadhyay 

School of Computer Science  

 

 

 

______________________________________________ 

X. Yuan, Advisor  

School of Computer Science 

 

                                   

September 24, 2019



 

iii 
 

Declaration of Originality 

I hereby certify that I am the sole author of this thesis and that no part of this 

thesis has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone’s copyright nor violate any proprietary rights. Any ideas, techniques, 

quotations, or any other material from the work of other people included in my 

thesis, published or otherwise, are fully acknowledged in accordance with the 

standard referencing practices. Furthermore, to the extent that I have included 

copyrighted material that surpasses the bounds of fair dealing within the meaning of 

the Canada Copyright Act, I certify that I have obtained a written permission from 

the copyright owner(s) to include such material(s) in my thesis and have included 

copies of such copyright clearances to my appendix.  

I declare that this is a true copy of my thesis, including any final revisions, 

as approved by my thesis committee and the Graduate Studies office and that this 

thesis has not been submitted for a higher degree to any other University or 

Institution. 

  



 

iv 
 

Abstract 

With the evolving technologies in the autonomous vehicle industry, now it has 

become possible for automobile passengers to sit relaxed instead of driving the car. 

Technologies like object detection, object identification, and image segmentation 

have enabled an autonomous car to identify and detect an object on the road in order 

to drive safely. While an autonomous car drives by itself on the road, the types of 

objects surrounding the car can be dynamic (e.g., cars and pedestrians), stationary 

(e.g., buildings and benches), and variable (e.g., trees) depending on if the location 

or shape of an object changes or not. Different from the existing image-based 

approaches to detect and recognize objects in the scene, in this research 3D virtual 

world is employed to verify and eliminate stationary and variable objects to allow 

the autonomous car to focus on dynamic objects that may cause danger to its driving. 

This methodology takes advantage of prior knowledge of stationary and variable 

objects presented in a virtual city and verifies their existence in a real-time scene by 

matching keypoints between the virtual and real objects. In case of a stationary or 

variable object that does not exist in the virtual world due to incomplete pre-existing 

information, this method uses machine learning for object detection. Verified 

objects are then removed from the real-time image with a combined algorithm using 

contour detection and class activation map (CAM), which helps to enhance the 

efficiency and accuracy when recognizing moving objects. 
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Chapter 1: Introduction 

 

1.1 Overview 

With the aid of significant technologies and researches, now the vision of self-

driving car on the road has become a possibility to run on the road. It is not a jaw-

dropping concept as research in this direction has been carried out for years. 

Seemingly within just a few years, autonomous cars have gone from science fiction 

fantasy to road-bound reality [1]. Apart from many automobile giants like Tesla, 

GMC, Uber, and Mercedes-Benz, there are many other technology corporations like 

Google, Apple, IBM, and Intel that have infused billions of dollars in this research 

and development to turn this arduous vision of a fully autonomous car into an 

actuality. Nowadays, self-driving cars are being tested on the road, but they are far 

away from being feasible [2]. The design of such an advanced machine involves 

immense expertise to ensure smooth and safe driving.  

While an autonomous car operates on the road, the knowledge of surroundings that 

consist of various objects mainly differentiated according to the orientations and 

movement should be taken into consideration. When a 3D virtual world is 

constructed with representations of static and variable objects in the real world, it 

helps the autonomous car to be familiar with the surroundings while driving. Darms 

et al. [3] and Hu et al. [4] have described static objects as those that do not move 

during the operation of the car. The list includes buildings and other roadside objects 

like benches, trees, and light pole. Fu, Kun, et al. have used multiple class activation 

map to extract discriminative parts of aircraft of different categories [5]. Verified 

objects are masked out in the real-time images.  

The new method of this thesis makes use of a constructed virtual environment that 

works as prior knowledge to outperform various tasks such as object verification 

and elimination. The existence of the real objects is verified by matching feature 

points of physical objects with virtual objects. These verified objects are abolished 
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using the combined approach of contour detection and class activation map (CAM). 

This research aims to use pre-existing information to verify and eliminate stationary 

and variable objects from real-time scenes to allow an autonomous car to pay 

attention to moving objects like pedestrians and cars in order to drive safely. 

1.2 Google’s Self Driving Car 

Many auto-giants companies like Tesla, Mercedes, Uber, Google, BMW, and Volvo 

have already developed their semi-autonomous cars on the market. Zhao et al. 

explained the key technology of a self-driving car [6]. Despite using exclusive 

hardware, autonomous vehicles are still far from being fully automatic. Google has 

started constructing a self-driving car – waymo almost ten years ago. In 2015, 

Google provided "the world's first fully driverless ride on public roads" to a legally 

blind friend of principal engineer Nathaniel Fairfield [7]. Figure 1 displays the 

Google’s autonomous car. Much tech-savvy hardware is being used to improve 

visibility, to measure the distance to other objects, and to fetch geolocation 

information. Although some of the hardware are expensive, they are necessary as 

these sensors assist in detecting objects for safe driving. The rotating roof-top 

LiDAR is considered as the heart for object detection. The LiDAR is used to 

measure the distance to other objects to build the 3D map in order to see obstacles. 

The bumper-mounted radar is responsible for measuring the distance to vehicles in 

front and behind the car. Rear-mounted aerial receives geolocation information from 

GPS satellites, and ultrasonic sensors attached to one of the rear wheels monitors 

the car’s movement. These devices are necessary for the safe operation of 

autonomous cars. 

 

Figure 1: Google’s Self-Driving Car prototype 
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1.3 Need to Aware of Surroundings 

Situational awareness is the most essential key to safe driving. Drivers should be 

conscious of their location and the surroundings to navigate the car at the desired 

location [128]. The same objective has been applied for an autonomous vehicle to 

function on the road by recognizing objects and obstacles. When an autonomous car 

is running on the road, it must be responsive to the surroundings for safe moving. 

Sensor technologies including GPS provide information about the surrounding 

environment. These sensors gather data to narrate the change in the position and 

orientation of the car. They constantly pass on the information about surroundings 

like the position of pedestrians, and other objects near the car to the system in order 

to navigate smoothly. 

There are mainly three categories of objects a car may come in the contact while 

driving: 

▪ Stationary objects: Those objects that are static at the same location with the 

same pose. (e.g. Buildings, Bench, Street light) 

▪ Variable objects: Those objects that stay stable at the same place, but a pose 

may vary (e.g. trees) 

▪ Dynamic objects: Those object that may change the location and pose (e.g. 

human, animal, car)  

Among all objects, dynamic objects create more danger to a self-driving car. These 

objects need to be detected. Darms et al. [3] and Hu et al. [4] have described dynamic 

objects as those potentially move during the observation periods. Figure 2 shows 

how an autonomous car observes the surroundings while driving with the aid of 

sensors to function safely and smoothly. 
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Figure 2: Google’s Autonomous Car driving on the road 

1.4 Object Detection 

Sensors attached to the car are responsible to estimate distance and steer clear of 

collision with obstacles. The nearby objects are identified using various machine 

learning algorithms of object detection. Druzhkov et al. [8] published a survey of 

deep learning techniques for object detection and image classification. A domain 

shift framework based on image-style level and instance-level algorithm based on 

Faster- RCNN has been used for object detection [9]. Object classification has been 

performed using a fusion of CNN and light detection and ranging (LIDAR) for an 

autonomous vehicle [10]. Figure 3 depicts the object detection task where dynamic 

objects are located and displayed using bounding boxes with the respective class 

label and probability score. The proposed approach detects roadside stationary (e.g. 

buildings, street light) and variable (e.g. trees) objects using Faster-RCNN 

technique. The model has been trained to detect an instance of an object in the real-

time scene. 

 

Figure 3: Dynamic Object Detection 
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1.5 Feature Detection and Selection 

Feature plays a significant role in various image-based applications. It can be 

expounded as a vector to define an object or its accompaniment. Features are specific 

structure in the image such as edges, corners, blobs, and points. Different feature 

detection algorithms are Harris Corner detection, Shi-Tomasi Corner detector and 

Good Feature Track, SIFT, SURF, FAST algorithm for corner detection, BRIEF, 

and ORB. The survey of feature detection algorithm is presented by Li et al. [11]. 

The paper also presents mathematical models of algorithms. Performance 

comparison of various algorithms is presented based on accuracy, speed, scale 

invariance, and rotation invariance. Figure 4 shows the detected corner points using 

Harris corner detection algorithm. The proposed approach detects corner keypoints 

using feature detector and the most relevant feature points are selected using the 

mathematical approach.    

 

Figure 4: Detected features on a chessboard 

1.6 Object Elimination 

A part of a scene can be hidden as they were behind an invisible object using 

masking technologies. Object elimination can be implemented for various tasks like 

background removal, foreground subtraction, object detection, instance 

segmentation. Multiple approaches to perform elimination include contour 

detection, Mask-RCNN, diminished reality. A survey of different diminished reality 

techniques has been published by Mori et al. [12]. Yang et al. [13] introduced a 

contour detection framework using fully convolutional Encoder-Decoder Network 

for object detection and masking. Figure 5 shows the objects that are masked using 
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Mask-RCNN algorithm. The proposed method uses a combined approach of contour 

detection and class activation map for object elimination. 

 

Figure 5: Object Masking using Mask-R-CNN 

This research work is the primary approach for stationary (e.g. buildings, street light, 

benches) and variable (e.g. Trees) object verification and object elimination in real-

time images giving the insights for an autonomous car to navigate smoothly on the 

road. The proposed approach performs verification task by matching interest points 

extracted from a real-world object with a virtual world object. Once the object is 

verified successfully, the removal of static and variable objects in the real-time scene 

is executed via the fusion method of contour detection and Class Activation Map 

(CAM) to achieve more accuracy. 

In this thesis, Chapter 2 entails a review of the previous work done on object 

detection and object elimination for autonomous vehicles. It also caters to the 

criterion techniques for the proposed approach. Chapter 3 describes the proposed 

system of use of prior data for object verification and elimination in the real-time 

scene in depth. Chapter 4 demonstrates a detailed explanation of the proposed 

approach using experimental results and presents comparison with other related 

work. Chapter 5 contains the conclusion of the thesis together with possible future 

work. 
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Chapter 2: Literature Review 

 

This chapter provides a survey of the relevant background of recent works in object 

detection and object elimination using 2D and 3D images. It also covers use of prior 

knowledge to help improving the performance of object verification and object 

elimination. 

2.1 Object Detection  

Object detection is related to computer vision and image processing that locates 

instances of objects of a certain class in still images and videos. Object detection has 

many applications in computer vision area such as face detection, image retrieval, 

and pedestrian recognition. Figure 6 below displays an illustration of object 

detection algorithm to identify roadside objects (e.g. car, traffic light, truck) [14]. 

Zou et al. [15] discussed a survey of object detection in the last 20 years. This survey 

covers milestone detectors in history, detection datasets, metrics, fundamental 

building blocks of the recognition system, speed up techniques, and the recent state 

of the art detection methods. It also reviews some important identification 

applications, such as pedestrian detection, face detection, and text detection, etc., 

and makes an in-deep analysis of their challenges as well as technical improvements 

in recent years. 

 

Figure 6: Object Detection to identify different objects 

Methods of object detection mainly fall into either Machine Learning-based 

approaches or Deep Learning-based approaches.  
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2.1.1 Machine Learning Approach 

In machine learning approaches, it is necessary to first define features using any one 

method listed below. Then classification is performed on the detected features using 

a technique such as Support Vector Machine (SVM), and Random Forest (RF) [69].  

• Viola-Jones Object detection framework based on Haar features 

• Scale-Invariant Feature Transform (SIFT) 

• Histogram of Oriented Gradients (HOG) features 

Erickson et al. [16] published a paper that uses machine learning for medical 

imaging. They have also reviewed different classification such as Naïve Bayes, 

Support Vector Machine, Neural Networks, k-Nearest Neighbours, Deep Learning, 

and Decision Tree to select suitable features. Figure 7 below portrays the workflow 

of general machine learning algorithms. 

 

Figure 7: Machine Learning algorithm workflow 

Lei et al. [17] analyzed the feature selection techniques for object-based 

classification of unmanned aerial vehicle imagery. Their work specifically emphases 

on assessing the effect of feature dimensionality and training the set size using SVM 

and RF classifiers to achieve different feature selection methods, including the filter 

method, wrappers, and embedded methods. Bakhshipour et al. [18] illustrated an 

algorithm for weed detection based on their pattern by applying support vector 

machine and artificial neural network. Their work also involves the use of shape 

features such as Fourier descriptors and moment invariant features. The 

classification has been carried out using SVM and ANN.  
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An approach of Convolutional SVM Network was applied for object detection in 

UAV Imagery [19]. The CSVM network is based on several alternating 

convolutional and reduction layers ended by a linear SVM classification layer. The 

convolutional layers in CSVM rely on a set of linear SVMs as filter banks for feature 

map generation. During the learning phase, the weights of the SVM filters are 

estimated through a forward supervised learning strategy unlike the backpropagation 

algorithm widely used in standard convolutional neural networks (CNNs) [19]. 

Figure 8 below illustrates the architecture of the Convolutional SVM algorithm. 

 

Figure 8: Example of a CSVM network (Image source: Yakoub et al., [19]) 

Wei et al. [20] designed an approach for multi-vehicle detection by combining Haar 

and HOG features. This algorithm makes full use of HOG characteristics and uses 

its good descriptive ability to describe target vehicles whereas Harr features are 

utilized to extract the prospect region of interest (ROI). Moreover, the obtained HOG 

features from the ROI target area can be selected by applying the cascade structured 

AdaBoost classifier features and target area classification. The precise target can be 

further detected by a Support Vector Machine (SVM) [20]. Chee et al. [21] proposed 

an algorithm for Pedestrian detection through the fusion of image gradient and 

magnitude properties extracted using Histogram of Oriented Gradient (HOG) and 

Histogram of Magnitude (HOM) features. 

An automatic method for the recognition of individual oil palm trees using images 

from unmanned aerial vehicles (UAVs) was developed by Wang et al. [22]. First, 

using a support vector machine (SVM) classifier, UAVs images are categorized 

between vegetation and non-vegetation. Then, a feature descriptor based on the 

histogram of oriented gradient (HOG) has been designed for palm trees to extract 
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features for machine learning. Finally, SVM classifier has been trained and 

optimized using the HOG features from positive (i.e., oil palm trees) and negative 

samples (i.e., objects other than oil palm trees) [22]. An approach for object 

detection and classification was published by Rashid et al. [23] that uses a merged 

strategy of deep convolutional neural network and SIFT point features. Firstly, an 

improved saliency method is implemented, and the point features are obtained. 

Then, DCNN features are extracted from two deep CNN models like VGG and 

AlexNet. Thereafter, Reyni entropy-controlled method is executed on DCNN 

pooling and the SIFT point matrix for robust feature selection. Finally, the selected 

robust features are fused in a matrix by a serial approach, that is later fed to ensemble 

classifier for recognition [23]. An analysis of three commonly used strategies, 

Histogram of Oriented Gradients (HOG), Haar-like features and Local Binary 

Pattern (LBP) for object detection is investigated using a public dataset in [26]. 

Figure 9 below demonstrations the result of AdaBoost HOG detector on a test image.  

A novel algorithm on a mobile system that can notify drivers about the possibility 

of collision with pedestrians was developed [24]. The partial Haar transform and 

HOG are fused for pedestrian detection.   

 

Figure 9: AdaBoost HOG detector applied on a test image (Image Source: 

Arunmozhi et al., [24]) 

Prasanna et al. [25] built an approach for human tracking system using joint Haar-

like and HOG features where Haar characteristics are used for the object’s structure 

and the HOG features for the edge. A set of mixed features is developed with these 

two features. Using Online Boosting, feature selection is performed to create a set 
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of robust features. Finally, with the help of SVM classifier, classification is 

executed.  

2.1.2 Deep Learning Approach 

In the Deep Learning Approaches, the algorithms are capable of performing end-to-

end object localization task without defining any features and are based on 

Convolutional Neural Network (CNN) [69]. Deep Learning approaches are as 

follows:  

• Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN) 

• Single Shot MultiBox Detector (SSD) 

• You Only Look Once (YOLO) 

Brunetti et al. [27] published a survey on computer vision and object detection 

methodologies for pedestrian detection and tracking. Panchpor et al. [29] and 

Pouyanfar et al. [31] published a study on various object detection algorithms using 

deep learning. Arnold et al. [28] reviewed a survey on 3D object detection methods 

that utilize sensors and datasets for autonomous driving. 3D object identification 

technique introduces a third dimension that reveals the object’s size and location 

information useful for path planning, collision avoidance, and so on [28]. Liu et al. 

[30] submitted a survey on advanced techniques for generic object detection. 

Sindagiet al. [32] published a survey of the latest approaches of CNN for single 

image-based crowd counting. 

 

Figure 10: Deep Learning Approach Workflow 

Girshick et al. [49] introduced an approach named R-CNN: Regions with CNN 

features for accurate object detection and semantic segmentation. Figure 10 
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illustrates the workflow of deep learning approach. The input to this approach is test 

image that locates the object using bounding boxes. Figure 11 shows the architecture 

of R-CNN.  

 

Figure 11: The architecture of R-CNN (Image source: Girshick et al., [49]) 

The algorithm uses a selective search to extract 2000 regions from the input image 

that are wrapped into a square and fed into CNN to produce 4096-dimensional 

feature vector. The CNN works as a feature extractor and the output dense layer 

consists of the extracted features that are forwarded to SVM classifier to identify the 

presence of an object within the bounding box. The problem with R-CNN is that it 

takes 47 seconds to generate an output. Also, it requires much time for training as 

2000 regions for each image need to be classified.  

Girshick et al. [48] developed an enhanced approach of R-CNN, i.e., Fast R-CNN 

algorithm. Fast R-CNN requires less time to generate an output than simple R-CNN. 

The architecture of Fast R-CNN is shown in Figure 12.  

 

Figure 12: The Architecture of Fast R-CNN (Image source: Girshick et al., [48]) 

According to Fast R-CNN algorithm, the input image is directly fed into CNN to 

produce a convolutional feature map and by using them, the regions of proposals are 
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obtained. Then using ROI pooling layer, all the proposed regions are reshaped into 

a fixed size to be fed into a fully connected layer. The corresponding class label of 

the proposed region and offset value of the bounding box are predicted using soft-

max layer. The Fast R-CNN is faster than R-CNN and the convolution operation is 

performed only once per image and feature map is generated from it. 

Ren et al. [47] built an improved approach of Fast R-CNN called Faster R-CNN. 

Figure 13 depicts the architecture of Faster R-CNN. 

In Faster R-CNN, the input image is supplied to CNN to create a convolutional 

feature map. Instead of using a selective search algorithm, a separate network is used 

to predict the region proposals. The expected region proposals are reshaped into a 

fixed size using ROI layer to classify the image within the proposed region and 

estimate the offset values for the bounding boxes using soft-max layer. 

 

Figure 13: The architecture of Faster R-CNN (Image source: Ren et al., [47]) 

Neumann et al. [44] published a fully annotated dataset including tracking 

information for pedestrian detection and tracking at night. The scene is recorded 

taking advantage of industry-standard camera including different sensors and 

weather conditions. Sheng et al. [46] proposed an approach for vehicle area detection 

and vehicle brand classification using RCNN, Faster R-CNN, AlexNet, ResNet, 

VGGNet, and GoogLeNet. 

Redmon et al. [40] designed YOLO (You Only Look Once) algorithm for object 

detection. Figure 14 shows the illustration of YOLO algorithm. 
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Figure 14: Illustration of YOLO (Image source: Redmon et al., [40]) 

In YOLO, a single neural network predicts the corresponding class probability and 

bounding box. First, the image is split into SxS grid where each grid cell predicts 

only single object, containing m bounding box and for each bounding box, the class 

probability and offset value are evaluated against a pre-set threshold value to locate 

the object. 

Verma et al. [33] illustrated an algorithm with a fusion of monocular camera and a 

2D Lidar for vehicle detection using YOLO. Possatti et al. [34] proposed to integrate 

the power of deep learning-based detection using YOLO with the prior maps utilized 

by car platform IARA (Acronym for Intelligent Autonomous Robotic Automobile) 

to recognize the relevant traffic lights of predefined routes. Mittal et al. [35] 

explained the object detection and classification tasks using YOLO algorithm. Putra 

et al. [36] developed an improved approach of YOLO for human and car recognition. 

Wang et al. [37], Zhang et al. [38], and Zhang et al. [39] used SSD approach for 

object detection. Chowdhury et al. [45] designed Faster R-CNN and SSD approach 

for pedestrian intention detection.  

Židek et al. [41] built a method for object detection using deep learning technique 

trained by 3D virtual models. The CNN model is trained using 2D samples generated 

automatically from the 3D virtual models. Loing et al. [43] designed a methodology 

for localization without using the single real-time image by utilizing only 3D models 

of the robot and object for training the network. Tian et al. [42] built a virtual dataset 
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named ParallelEye. Faster R-CNN and DPM networks are trained via fusing 

ParallelEye virtual dataset with a real-time image dataset for object detection in real-

time view. Figure 15 shows the results of object detection using two different 

models. Top row images are detected using a model purely trained on the real-time 

images whereas bottom row objects are detected using a network, trained using 

combined virtual and real-time scenes. 

 

Figure 15: object detection results (Image source: Tian et al., [42]) 

2.2 Feature Detection and Selection 

In computer vision and image processing, feature plays a vital role that can be 

described as a prominent characteristic of an image. They are benefited to execute 

certain tasks such as feature selection, feature matching, object recognition and so 

on. Features represent the specific structure in the image such as edges, centroid, 

blobs, and points. Berger et al. [72] explained the feature and the actual feature usage 

in the industry.  

Features are identified using detectors from the image. Feature detection is the 

process of finding image features or keypoints of a given type at each pixel that are 

somehow special in the image. Several detectors for features detection are as 

follows: 

• Harris corner detection 

• Shi- Tomasi corner detection algorithm 

• FAST (Features from Accelerated Segment Test) 

• Laplacian of Gaussian 
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Figure 16: Different types of detected features 

Feature extraction is the method of computing a descriptor from the pixel around 

each interest point using feature descriptors such as SURF, HOG, and FREAK. 

Feature starts from an initial set of measured data and builds derived values 

(features) intended to be informative and non-redundant, facilitating the subsequent 

learning and generalization steps, and in some cases leading to better human 

interpretations. Feature extraction is related to dimensionality reduction [76].  

In computer vision, feature selection is expounded as a process for creating the new 

subset of essential features to enhance generalization by reducing overfitting, and 

for dimensionality reduction. Common names for feature selection are variable 

selection, attribute selection, or variable subset selection. Feature selection differs 

to feature extraction by returning the subset of selected features, whereas feature 

extraction defines new features from the function of the original features. Figure 17 

portrays the workflow of the feature selection technique.  

 

Figure 17: Feature Selection workflow 

Feng et al. [73] designed a method for feature detection and matching using Harris 

corner detection algorithm. Making use of Harris corner detection algorithm, 

features are obtained. Rotation invariant Feature Descriptor (RFID) is used to 

represent the feature point information. Wang et al. [50] reviewed the corner 



 

17 

 

detection algorithms proposed in the last four decades. Corner detection algorithms 

can be divided into intensity-based, contour-based, and model-based methods. 

Intensity-based frameworks are based on measuring local intensity variation of the 

image. Contour-based methods identify corners by analyzing the shape of edge 

contour. Model-based algorithms extract corners by fitting the local image into a 

predefined model [50]. Karim et al. [51] presented a study on the comparison of 

feature extraction techniques by combining SURF with FAST and BRISK, followed 

by feature matching. Al-Rawabdeh et al. [53] submitted a review on the performance 

of FAST-9 and FAST-12 as well as the Harris detector in terms of the repeatability 

rate, completeness, and correctness under different threshold values for UAV object 

localization. Hore et al. [55] analyzed the performance of SIFT and SURF feature 

descriptors in different circumstances such as rotational effect, scaling effect, 

illumination effect, and blurring effect to achieve object recognition. Kabir et al. 

[64] presented a comparison of four feature detection methods for the modern and 

old buildings, including Canny edge detection, Hough line transform, Find 

Contours, and Harris Corner. A comparison of four feature detection approaches; 

Harris, SURF, FAST, and FREAK, is published by Ghosh et al. [67] for image 

mosaicing.  

DeTone et al. [52] built a self-supervised approach for training feature detectors and 

descriptors to make them suitable for a large number of multi-view geometry 

problems. Gao et al. [56] developed a novel method utilizing shadows that 

automatically extracts building samples and verifies buildings accurately to enhance 

automation and accuracy. Liu et al. [59] presented an automatic methodology for 

building area extraction from optical high-resolution imagery using the newly 

developed morphological building index (MBI). The new FPGA (Field 

Programmable Gate Array) architecture for reuse of sub-image data was introduced 

in [54]. In the proposed architecture, a remainder-based approach is firstly designed 

for reading the sub-image and a fusion of FAST and BRIEF (Binary Robust 

Independent Elementary Features) descriptors is used for corner detection and 

matching. Karami et al. [65] analyzed the performance of the SIFT matching 
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algorithm against various image distortions such as rotation, scaling, fisheye, and 

motion distortion. 

Zhao et al. [61] built a method to estimate the height of the building using both 

corner points and roofline. Haggui et al. [63] developed an approach using Harris 

corner detector for NUMA manycore recognition. Figure 18 shows the Harris corner 

identification on NUMA manycore.  

 

Figure 18: Harris-Stephens Corner Detection (Image source: Haggui et al., [63])  

Wu et al. [57] proposed and implemented Deep Validation, a novel framework for 

real-world error-inducing corner detection using DNN-based system. A novel 

framework for corner detection and tracking for the real-time scene was presented 

in [58]. Ghandour et al. [60] designed Building Detection with Shadow Verification 

(BDSV) for building localization using the shadow, shape, and color features of 

buildings. Hu et al. [62] illustrated a non-interactive approach based on binary 

feature classification for building area recognition and building contours extraction 

from aerial images.  

Infrared image matching using SUSAN corner detection was introduced in [75]. 

Figure 19 displays the comparative result of the proposed approach in [75] with 

Harris Corner Detection.  

 

Figure 19: Image matching based on different corner detection methods. a Harris 

method, b the method in [75] 
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2.3 Object Verification 

Verification has been implemented primarily for fingerprint, iris, and face matching. 

Chen et al. [78] proposed an approach for unconstrained face verification practicing 

Deep CNN features, trained using the CASIAWebFace dataset and the performance 

was evaluated on both IJB-A and LFW datasets. Figure 20 illustrates the overall 

system architecture of the proposed DNN framework for face verification in [78]. 

 

Figure 20: Overall system overview of DCNN approach (Image source: Chen et 

al., [78]) 

An approach for video-based unconstrained face verification and recognition was 

discussed in [79]. Crosswhite et al. [80] proposed a template adaptation method for 

face verification and identification. Their work also proved that it can be applied to 

existing state-of-art methods for enriched performance. Zhang et al. [82] evaluated 

a method for animal object detection and segmentation from wildlife monitoring 

videos captured by motion-triggered cameras, called camera-traps. First, using 

multilevel graph cut, animal object region proposals are generated in the 

spatiotemporal domain. Then using developed a cross-frame temporal patch 

verification method, these region proposals are determined if they are true animals 

or background patches. 

Hsu et al. [83] developed an architecture for vehicle verification between two 

nonoverlapped views using sparse representation. Karami et al. [66] published a 

survey of image matching technologies- SIFT, SURF, BRIEF, and ORB. Taira et al. 

[84] built a system for indoor object localization that estimates the 6DoF camera 

pose and validates a query image with respect to a 3D indoor map. Yuan et al. [85] 
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proposed an approach for retina verification based on Structural Similarity (SSIM) 

to verify using similarity score. Kavitha et al. [86] designed an approach for a 

secured voting system using face, iris, and fingerprint verification. Qin et al. [87] 

suggested a deep learning-based segmentation methodology for finger-vein 

verification by training CNN to extract the vein patterns from any image regions and 

to estimate the probability of pixels to check if they belong to the vein or the 

background. They also made use of FCN to recover missing finger vein shapes for 

amended performance.  

2.4 Transfer Learning 

In machine learning, transfer learning is a method that makes use of knowledge 

gained while solving one problem to apply it for a different but related problem. For 

instance, knowledge obtained to recognize a cat can be applied for dog recognition. 

Some widely used pre-trained models are: 

• VGG  

• InceptionV3 

• ResNet5 

Figure 21 below illustrates the difference between training the entire model and 

using transfer learning. 

 

Figure 21: Training the entire model Vs Transfer Learning 

The pre-trained models are primarily trained on the large dataset and, for a new 

similar dataset, the pre-trained model weights can be used for extracting the features. 

At the time of applying the pre-trained model on the new dataset, the original 
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classifier of the model has been removed and new classifier has been added to 

perform a defined task and later fine-tuned using any one of the following strategies: 

1. Train the entire model: Use the architecture of the pre-trained model and 

train it according to the dataset from scratch. 

2. Train some layers and leave the others frozen: For the small dataset, freeze 

more layers to prevent overfitting whereas for a large dataset, train more 

layers. 

3. Freeze the convolutional base: The convolutional layer is set in its original 

form and its output is used for the classification task.  

Figure 22 presents these 3 strategies of fine-tuning in a graphical way. 

.  

Figure 22: Three strategies for fine-tuning 

Weiss et al. [97] reviewed the transfer learning methodology and its applications. 

Huh et al. [96] proposed an approach where they used pre-trained CNN features on 

various subsets of the ImageNet dataset and evaluated transfer performance on a 

variety of standard vision tasks. Yuan et al. [91] presented a learning-based 

framework for shadow removal using an online learning strategy and fine-tuned with 

the automatically identified examples in the new videos. Wang et al. [94] developed 

an architecture for ship detection via fusion of single shot multiBox detector (SSD) 

and transfer learning. A system for end-to-end airplane detection in remote sensing 

images using transfer learning approach is presented in [92]. Kapur et al. [90] used 

transfer learning for object detection in real-time video. A deep learning-based 

framework for detection and classification of breast cancer is proposed in [95]. 
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Mohamed et al. [88] presented a work on applications of transfer learning for object 

detection. Yabuki et al. [89] and Singh et al. [93] designed a method for object 

detection using transfer learning based on CNN with feature extractor technique.  

2.5 Class Activation Map (CAM) Generation and Usage 

A Class Activation Map (CAM) is a technique for producing discriminative image 

regions used by CNN to identify defined class in the input image. CAM allows us 

to observe at which image regions CNN is looking and appropriate to a specific 

class. Zhou et al [98] proposed a framework of re-using the trained classifier for 

getting good localization of distinct class, without having bounding box coordinates 

information. Figure 23 presents the generated class activation map for different 

breeds of dog using CNN.  

 

Figure 23: Generated CAM for different breeds of dog using CNN 

CAM delivers certain assurance that the model has correctly learned the distinctive 

features between multiple categories in the form of visualization. Moreover, it 

conveys us to see what features are guiding the model’s decision to classify various 

objects in the input image that are used by the model to make a prediction. 

These means are pursued to generate class activation map: 

1. The pre-trained network is used and most of its weights are freezed 

2. The model is modified and fine-tuned to generate CAM output 

3. Classifier is trained 

4. The last convolutional layer is used to create CAM output 

5. Generated CAM is displayed 
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To generate CAM, the network architecture is limited to have a global average 

pooling layer after the last convolutional layer, followed by the dense layer. To get 

this model structure, the network is modified and fine-tuned to get CAM.  

In detail, the first building block for this layer is a convolutional layer that produces 

an output shape of in terms of batch size, number of filters, width, height. The output 

from the GAP layer is treated by the dense layer and softmax layer to assign a weight 

to each of the categories that set the importance of each the convolutional layer 

output. To generate CAM, output images from the convolutional layer are multiplied 

by their assigned weights and added. By superimposing the class activation map on 

input image allows us to identify the most essential image regions to the specific 

category. 

Kwaśniewska et al. [99] demonstrate a method of face detection from low-resolution 

thermal images and the most relevant area is highlighted. Tang et al. [101] proposed 

a deep discriminative map network for visual tracking. The system utilizes two 

neural networks for positioning and size change estimation. Guo et al. [103] 

developed a methodology to recognize human attributes without the detection of a 

body part and the prior correspondence between body parts and attributes with the 

help of CAM network. Li et al. [105] showed a framework for remote sensing image 

scene classification using CAM. The attention map is generated using a pre-trained 

network as priors for the classification task that are used as an explicit input to end-

to-end training for the first time, aiming to force the network to focus more on the 

most appropriate parts. Li et al. [108] used CAM to localize common objects in an 

input image. Figure 24 displays the result of produced CAM to locate common 

objects. 

 

Figure 24: CCAM applied to localize common objects (Image source: Li et al., 

[108]) 
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Charuchinda et al. [106] introduced a technique to build an image classification 

network using class activation map (CAM) to identify whether each sub-image 

contains the class of interest. The output of the CAM is the filter response where 

pixels with high probability are likely to belong to the class of interest. Vasu et al. 

[107] made use of class activation map to obtain a view of deep network’s perception 

of aerial imagery and identify salient local regions. Moreover, the concept of 

transfer-learning is involved to train the model on a similar dataset. Fu et al. [13] 

applied a methodology of multi-class activation map for recognition of aircraft in 

the remote sensing images.  

Pericherla et al. [100] designed an approach to reduce the L2 distance i.e., Euclidean 

distance between produced adversarial images and the original images using class 

activation map. Selvaraju et al. [102] introduced Grad-CAM model for class 

discriminative localization from any CNN-based network without modification and 

re-training and applied for image classification and captioning. Kumar et al. [104] 

developed a method for visualization and to understand the decisions made by deep 

neural networks (DNNs) for a given specific input.  

2.6 Object Elimination 

Object elimination is the process of masking or deleting an identified or verified 

object from a scene. Masking is a technique of hiding a part or a part of an object as 

if it were behind an invisible object. Object elimination can be implemented for 

various tasks such as foreground extraction, background removal, object detection, 

and instance segmentation. Approaches to implement object masking are as follows: 

1. Contour detection-based masking 

2. Mask-RCNN 

3. Diminished Reality 

The detail of each masking methodology is described in the following subsections.  

2.6.1 Instance Segmentation 

Instance segmentation can be defined as the identification of boundaries of the 

known objects at the detailed pixel. In computer vision, instance segmentation is the 
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problem of detecting and delineating each distinct object of interest appearing in the 

image. Instance segmentation can be achieved by various technologies like contour-

based and Mask R-CNN. Figure 25 depicts the result of instance segmentation in 

the input image. 

 

Figure 25: Example of Instance segmentation 

Lu et al. [109] designed a method for lip segmentation. Lip segmentation is the initial 

step for the lip-reading system. They proposed an active contour model-based lip 

segmentation method that adopts local information. Figure 26 illustrates the result 

of lip segmentation using contour detection. 

 

Figure 26: Segmented results: a. initial contours and local region; b. Final 

evolved contours; c. segmented result (Image source: Lu et al. [109]) 

Tesema et al. [110] introduced a methodology for human segmentation in still 

images using Deep Contour-Aware Network (DCAN) which is a unified multi-task 

deep learning framework combining the complementary object and contour 

information simultaneously for better segmentation performance. Griffiths et al. 

[111] presented an approach to improve public GIS building footprint labels using 

Morphological Geodesic Active Contours (MorphGACs). Van den Brand et al. 
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[112] discussed a method for vehicle detection and segmentation in the context of 

autonomous driving using fully convolutional network for semantic labeling and 

estimating the boundary of each vehicle. CNN provides the area around the contours 

that aids to separate the vehicle instance. Hayder et al. [113] introduced a distance 

transform-based mask representation that allows prediction of instance 

segmentations beyond the limits of initial bounding boxes. Chen et al. [81] 

developed a framework for more accurate detection and segmentation of histology 

images using deep contour-aware network. Yang et al. [13] suggested a deep 

learning approach for contour detection using fully convolutional encoder-decoder 

network. Li et al. [114] presented a novel method to borrow contour knowledge for 

salient object detection. 

Mask R-CNN is widely used for instance segmentation. Mask R-CNN locates each 

pixel of the object in the image instead of the bounding boxes. He et al. [115] 

introduced a novel framework for instance segmentation: Mask R-CNN. Figure 27 

shows the framework of Mask R-CNN.  

 

Figure 27: Mask R-CNN framework for instance segmentation (Image source: He 

et al., [115]) 

When an input image is passed to the network, it gives the object bounding box, 

classes, and masks on the detected object. 

Mask R-CNN contains two stages: Firstly, it generates region proposals where there 

might be an object based on the input image. Secondly, it predicts the class of the 

object, refines the bounding box and applies a mask in the pixel level of the object 

based on the first stage proposal.  
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Novotny et al. [116] developed an approach for segmenting unknown 3D objects in 

real-time depth images using Mask R-CNN, trained on synthetic data. Liu et al. 

[117] suggested an improved version of Mask R-CNN for instance segmentation by 

applying the features from low levels. Yu et al. [118] built a model for fruit detection 

where Mask R-CNN adopts Resnet50 backbone network that is merged with the 

Feature Pyramid Network (FPN) architecture for feature extraction. For each feature 

map, RPN was trained to create region proposals. After generating mask images of 

ripe fruits using Mask R-CNN, a visual localization method for strawberry picking 

points was performed. Johnson at al. [119] demonstrated that Mask R-CNN allows 

highly effective and efficient segmentation of a wide range of microscopy images 

under various conditions and different cells. 

2.6.2 Diminished Reality 

Diminished Reality (DR) is a technique to virtually remove, hide, and see-through 

real objects from the real world. Diminished reality is the conceptual reverse of 

Augmented Reality. AR allows us to augment, add virtual world as desired whereas 

DR allows erasing physical content from the real-world scene. The real-time 

application of diminished reality includes furniture shopping, film studio, city 

planning, and interior designing. Figure 28 demonstrates the perception of DR by 

removing the glasses in an input image. 

 

Figure 28: Concept of Diminished Reality 

Mori et al. [12] published a survey on diminished reality techniques that is beneficial 

for virtually erase, hide an object from the real-time scene. They provided a concept 

of DR technologies and procedures for implementation. DR is performed by 
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executing diminish, seeing through, replace, and inpainting technologies. Figure 29 

illustrates the concept of diminished reality methods.  

Kawai et al. [120] performed diminished reality using inpainting method for 

background geometry removal with fewer constraints than the conventional ones. 

Mori et al. [121] designed an approach for capturing and reproducing the real world 

as desired using diminished reality.  

 

Figure 29: Diminished reality techniques: a. diminish, b. Seeing through, c. 

replacing, d. inpainting (Image source: Mori et al., [12]) 

Siltanen et al. [122] developed a novel framework for interior designing without 

using prior information of textures, via inpainting method. Nakajima et al. [123] 

introduced an approach for deleting an object using diminished reality.  

2.7 Related Work  

The below table 1 highlights correlated work done so far by researchers in the area 

closely related to this thesis, including their contributions and scope of 

improvements. 

Research Paper Contributions Scope of 

Improvement 

Training and Testing 

Object Detectors with 

Virtual Images. Tian, Y., 

Presents an artificial way to 

construct perceived image 

datasets automatically with 

precise annotation and 

Generated virtual 

images can be used 

as prior data for 

object verification 



 

29 

 

Li, X., Wang, K., & Wang, 

F. Y. (2018) 

trained DPM and Faster R-

CNN with real-time images 

and virtual images for object 

detection 

without training any 

object detectors 

A new FPGA architecture 

of FAST and BRIEF 

algorithm for on-board 

corner detection and 

matching. Huang, J., Zhou, 

G., Zhou, X., & Zhang, R. 

(2018) 

FAST and BRISK 

descriptors are combined for 

corner detection and 

matching. 

Corner matching 

between real-time 

image and virtual 

image using the 

proposed algorithm 

is not described. 

Unconstrained face 

verification using deep cnn 

features. Chen, J. C., Patel, 

V. M., & Chellappa, R. 

(2016, March) 

Face verification is 

performed using deep 

convolutional features that is 

trained using IARPA 

dataset.  

 

Training of the 

model is required for 

face verification that 

increases the time. 

Localizing Common 

Objects Using Common 

Component Activation 

Map. Li, W., Jafari, O. H., 

& Rother, C. (2019) 

Designed CCAM model to 

localize common objects in 

an image by treating CAM 

as components to discover 

common elements. 

This approach 

doesn’t perform 

elimination by using 

the most relevant 

part generated by 

CAM. 

Lip segmentation using 

localized active contour 

model with automatic 

initial contour. Lu, Y., & 

Zhou, T. (2018) 

Lip segmentation is 

performed using an active 

contour-based model. 

Requires deep 

learning model to 

train to get contours 

that is time-

consuming. 

Semantic object selection 

and detection for 

Introduced a model for 

diminished reality that 

Training of the 

model for target 
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diminished reality based 

on SLAM with viewpoint 

class. Nakajima, Y., Mori, 

S., & Saito, H. (2017, 

October). 

automatically recognizes the 

region to be removed, 

without generating the 3D 

model of the target object ad 

by utilizing SLAM, 

segmentation, and 

recognition framework. 

 

object detection is 

mandatory. This 

consumes more 

computational 

power. 

Table 1: Related Work 

2.8 Thesis Statement  

2.8.1 Problem Statement 

Literature survey clearly shows the need to detect dynamic objects accurately while 

an autonomous car is driving in order to avoid collisions. According to a literature 

survey, recent technologies use machine learning approaches for dynamic object 

detection and tracking in real-time that results in training the model and requires 

more computational sources. In some cases, the model detects an object that is not 

going to move (e.g. a person in the poster) as a dynamic object and gives bounding 

box as the trained models are image-based. This ends in consuming more power to 

process that exceptional object as a dynamic one. A similar concept applies to a car 

when a reflection of a car falls on the glass building, and object detection algorithm 

treats that reflection as a dynamic object. The methodologies for object elimination 

such as diminished reality, mask R-CNN uses machine learning and requires 

training of the model to detect the object that needs to be removed.  

The proposed approach of object verification and object elimination uses 

constructed 3D virtual world as pre-existing knowledge. The proposed algorithm of 

object verification and removal makes use of virtual world to verify physical 

stationary (e.g. Buildings) and variable (e.g. Trees) in the real-time environment by 

matching keypoints of virtual objects with physical objects without any training. The 

proposed method of elimination uses a fusion of contour detection and class 

activation map (CAM) to remove verified objects in the real-time image. The 
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removal of stationary and variable objects will improve the accuracy and efficiency 

of the dynamic object algorithm. 

2.8.2 Thesis Contribution 

The major contribution of this thesis can be summarized as follows: 

• Constructed 3D virtual model works as prior information for static (e.g. 

Building) and variable (e.g. Trees) object verification and elimination in the 

real-time scene in order to make dynamic objection algorithm efficient and 

accurate.  

• The proposed approach of object verification doesn’t require any machine 

learning algorithm for training. 

• The verified object can be used to geo-locate the self-driving car in a real-

time environment. 

• For the objects having pre-existing data, the proposed fusion approach of 

contour detection and class activation map (CAM) for object elimination 

algorithm can be applied directly without any training. 

• In case of objects without having prior knowledge, the model is trained using 

transfer learning concept to generate CAM to perform object elimination. 

• After applying the object removal algorithm to the real-time image, the 

resulting image will be left with dynamic objects making an autonomous car 

focus only on those objects that cause more danger. This makes the detection 

method work faster. 
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Chapter 3: Proposed Approach 

 

This chapter highlights the proposed approach of stationary (e.g. Buildings, Bench, 

Street light) and variable (e.g. Trees) object verification and elimination with and 

without using prior information. It also includes pre-processing steps such as object 

detection and training the model. This chapter covers the architecture and flowcharts 

of the proposed system including detailed methods to perform them. Moreover, this 

chapter discusses the working of the overall system and linking of static and variable 

object verification and elimination model with other modules. 

3.1 Motivation  

In recent years, significant research has been made in the field of autonomous 

vehicle. Despite these advanced machine learning and computer vision technologies, 

a fully autonomous car is still far from reality. Moreover, semi-autonomous cars 

have been running on the road in the last couple of years for testing that involved 

with some pedestrian fatalities. Recently, Uber and Tesla self-driving car caused two 

deaths of level 3 and level 2 fatalities, that’s why this raised the safety concern [77].  

In the proposed approach, a constructed 3D environment of a real place is used as 

prior knowledge for static (e.g. building) and variable (e.g. trees) object verification 

and removal. 

3.1 Working of the Overall System 

The overall system consists of six modules: 

1. Construction of virtual 3D environment 

2. Rendered images of real-time video 

3. 3D feature and keypoint extraction 

4. Removal of static and variable objects 

5. Dynamic object recognition 

6. Dynamic object detection  

As shown in Figure 30, all these modules are interconnected with each other. 
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Figure 30: Overall system architecture 

In Figure 30, the work shown in the blue-colored box is the contribution of this 

research work. Its connection with all other modules is justified in different colored 

boxes, represented using arrows. 

The description of the overall system architecture is in depicted to Figure 30. The 

overall system primarily deals with the construction of a virtual 3D environment 

using OpenStreetMap data (VGI/crowdsourced) and the façade texture from Google 

street view images. The virtual 3D city model contains stationary objects, such as 

buildings, and some of the variable objects, such as trees. Apart from this, there is a 

separate repository that contains extracted 3D features of rendered images of 

stationary objects, such as buildings. The heatmap of real-time stationary objects is 

generated using prior understanding and stored in the repository. The module 

marked in the red-colored box in Figure 30 displays the real-time video that involves 

image frames are passed as input to the system. The module shown in the yellow-
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colored box is responsible for creating the repository. The virtual models are 

rendered, features are extracted and stored in a repository The module marked in 

blue is the stationary and variable object verification and elimination, where the 

keypoints are first detected in the input image to verify the existence of that object 

in the real world by matching the extracted keypoints of input image (red-colored 

module) with the stored keypoints of the virtual model (yellow-colored box). 

Matching the features of the virtual environment and real-time image confirms the 

location of the car in the real-world that solves the problem of geo-localization of 

the self-driving car. After verifying the physical object, elimination of static and 

variable objects in the input image is carried out that provides more time for the 

identification and prediction of dynamic objects such as human beings or animals 

on the road, as those are the ones that create more danger to the navigation of the 

car. The module marked in pink deals with the object recognition and pose 

estimation of dynamic objects present in the real-time input image, such as cars, and 

pedestrians. Additionally, this module tracks the recognized objects from multiple 

frames of the video and calculates the speed of the dynamic object. This information 

including recognized object and its pose estimation, speed and location are used to 

update dynamic objects into the 3D virtual environment. The module marked in 

green color updates information of the dynamic objects of real-world into the virtual 

environment.  

3.1.1 Working of Individual Modules 

The modules that are directly associated with this thesis work are construction of 3D 

virtual world, 3D interest points extraction and repository creation, dynamic object 

detection. The virtual 3D city model and the real-time video are the input to the 

overall system.  

1. Construction of 3D Virtual World 

Firstly, a virtual city is constructed using open source VGI data such as 2D 

street views and satellite images. 3D structural files are extracted with 3D 

structures of the buildings that are rendered, and the final 3D structure is 

obtained with the geolocation information that is externally mapped on to 
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the model. Textures are mapped onto buildings in the 3D model by extracting 

real-world images and georeferencing them. In this way, a virtual city with 

stationary (e.g. buildings) and variable objects (e.g. trees) is formed. Later 

this virtual city is updated with dynamic objects using real-time recognized 

dynamic object details. The virtual city with 3D static, variable, and dynamic 

object model information present in real-time road scenes is used by the self-

driving car to navigate safely by knowing the surroundings. This module is 

marked using a light blue colored rectangle box in Figure 30. 

2. Keypoint Extraction and Dataset Creation 

Using a constructed 3D virtual environment, the repository is created to 

perform static and variable object verification and elimination in the real-

time input. Initialy, individual 3D models are rendered and interest points 

are extracted. In this research work, interest points refer to the corner points 

of the object. The extracted keypoints are stored in the file that is the input 

for object verification method. The heatmap is generated using structural 

information of the building that is stored in the repository to execute object 

elimination. After performing object elimination of real-time view, the 

resulting image will contain dynamic objects to improve the efficiency and 

accuracy of moving object detection algorithm. The module is presented in 

a yellow-colored box in Figure 30.  

3. Dynamic Object Recognition: 

This module matches features of the dynamic objects in the input image with 

the feature information of 3D object models stored in the repository to find 

a suitable match of 3D model for each of the dynamic objects present in the 

input image. After finding the corresponding 3D model from the repository, 

a voting algorithm is used for the matching purpose, and to estimate the 

confidence score that signifies the assurance of object identification. This 

process improves the confidence of recognition and pose estimation of 

dynamic objects in the input image. This module is shown in the pink-

colored box in Figure 30. 
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3.2 Proposed Methodology for Stationary and Variable Object Verification 

and Object Elimination 

The proposed system applies the use of constructed 3D virtual environment as prior 

information for stationary (e.g. buildings, bench, street light) and variable (e.g. trees) 

objects verification and elimination in the real-time scene. Figure 31 below 

illustrates the architecture of the proposed methodology.  

 

Figure 31: Architecture of the proposed approach 

The proposed system includes two sub-modules that are as follows: 

1. Object Verification 

2. Object Elimination 

3.2.1 Stationary and Variable Object Verification 

Object verification is achieved by matching the interest points of the real-time world 

with the virtual environment. For this research work, stationary objects are 

buildings, bench, street light whereas variable object is tree, those are verified in the 
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real-time scene taken by the camera mounted on the top of an autonomous car. The 

stationary object (building) having prior knowledge is passed to object verification 

module, whereas in case of objects those are not present in the virtual world (bench, 

trees, street light) are sent to elimination module after performing object detection 

task. Figure 32 depicts the architecture of object verification module. 

 

Figure 32: Flowchart of object verification component 

3.2.1.1 Object Detection Module 

Primarily, an object detection model is trained using Faster R-CNN algorithm 

(discussed in section 2.1.2) on the custom dataset to detect buildings, trees and street 

light in an input image. A real-time input image is fed into this trained network that 

gives an output image containing a corresponding class label with its probability of 

belonging to that class as well as bounding box around the detected instance with its 

coordinates. Then, the information of bounding box coordinates is utilised to crop 

that object from the input image. This cropped image is used by other module. 

3.2.1.2 Feature Detection Module 

For detected stationary objects (buildings), corner points define the shape of that 

object. Extreme points are the most relevant interest points that describe the 
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building’s structure more efficiently. As discussed in section 2.2, many corner 

detection algorithms are FAST (Feature from Accelerated Segment Test) detector, 

Harris corner detector, and Shi-Tomasi corner detection. Among them, FAST is 

commonly used as a corner detector because of its speed than the other methods that 

is feasible for real-time scenarios [124].  

In the FAST algorithm, from an input image, pixel P having an intensity Ip is selected 

to be identified as a corner point or not. The appropriate threshold value is t. 16 pixels 

circle is selected around that selected pixel. The pixel P is a corner if there exists a 

set of n (chosen to be 12) contiguous pixels in the circle that are brighter than Ip + t 

or darker than Ip – t. A high-speed test examines only the four pixels at 1, 9, 5 and 

13 (First 1 and 9 are tested if they are too brighter or darker. If so, then checks 5 and 

13). If P is a corner, then at least three of these must be brighter than Ip + t or darker 

than Ip – t. If neither of these is the case, then P cannot be a corner. Figure 33 shows 

pixel P is chosen as a corner. 

 

Figure 33: Pixel P selected as a corner point 

After applying the FAST algorithm to an input image, the corner points are detected 

that are somehow special to define the structure of the building. 

3.2.1.3 Feature Selection Module 

Detected features in the real-time image are not efficient for the verification task 

using virtual image interest points. Feature selection creates a subset of interest 

points from the parent set; comprising of more significant, non-redundant points.  

Extreme points are effective in order to portray the shape of the building. Normally, 

corner points are the points that are far from the centroid of the shape. The same 
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perception has been used here to find the most meaningful corner points of arbitrary 

shape.  

The centroid of a shape is the arithmetic mean (i.e. the weighted average) of all the 

points in a shape [125]. If a shape consists of n distinct points then the centre is, 

C = 
1

𝑛
∑ 𝑥𝑛

𝑖=1 i 

In computer vision and image processing, image moment can be expressed as a 

weighted average of image pixel intensities that is beneficial for finding specific 

properties such as centroid, area, radius, etc. 

Centroid (Cx, Cy) = (
𝑀10

𝑀00
 ,

𝑀01

𝑀00
), where M denotes the Moment 

Once the object centroid is computed, the distance from the centroid to the detected 

keypoints using FAST is calculated using Euclidean Distance. Many distance 

functions are Euclidean, Manhattan, Cosine, Jaccard, etc. are mainly used for 

distance calculation. 

The Euclidean distance between two points x and y is the length of line segment 

connecting them. Euclidean distance can be calculated by,  

d(x,y) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 

The interest points having maximum distance from centre to detected feature points 

are selected using the four-quadrant method. For each quadrant, a stated number 

(i.e., top 8 points) of top extreme points are selected to pass to the other module. In 

this way, the most significant key points are selected for use.  

3.2.1.4 Object Verification Algorithm 

 

Algorithm: Object Verification of Static and Variable Objects 

INPUT: Real-time image 

OUTPUT: Verified object 
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Step 1: Real-time input image is passed to an object detection module for detection 

of            stationary and variable objects  

Step 2: For stationary object having prior information go to step 3, otherwise go to 

step 11 

Step 3: Detect feature points using FAST corner detector 

Step 4: Find the centroid of a detected object 

Step 5: Calculate the Euclidean distance between centroid to all the detected features 

of step 3 

Step 6: Find the top 8 far points from the centroid for each quadrant 

Step 7: Fetch the corresponding virtual rendered image from the repository. If a 

virtual rendered image is not available, go to step 12. 

Step 8: Verify the existence of an object in the real-world by matching the interest 

point between real-time objects and virtual objects 

Step 9: Calculate the confidence score 

Step 10: If verified successfully, perform step 3 to step 9 for the nearest object in 

real-time. For a successful match of neighbouring object, increase the 

confidence score of the primary object and go to step 11. For an unsuccessful 

match, go to step 11. 

Step 11: Pass the verified object to object elimination module 

Step 12: Exit. Check for the next object 

 

3.2.1.5 Object Verification Module 

Object verification is a technique to verify the existence of an object using prior 

knowledge.  The stationary object’s presence is verified by matching the selected 

interest points of the physical environment with the feature points of the virtual 

rendered image using some manually decided threshold value. 

The confidence score is calculated on matched feature points, that is, 

 confidence score = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠
 

For a valid confidence score, the object is considered as successfully verified. 

Following this, the neighbouring object is matched with the appropriate virtual 
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image to improve the confidence score of the verified object. If the neighbour object 

matches positively, the confidence score of the primary verified object is increased.  

The verified object is then passed to the next module, Object elimination for further 

process. 

3.2.2 Stationary and Variable Object Elimination 

Once the static and variable objects are verified successfully, they are fed into an 

object removal module. The object masking is achieved by the fusion approach of 

contour detection and Class Activation Map (CAM). In the proposed system, 

contour detection is performed without using any deep neural network. The attention 

map is generated using either CNN or available prior data of the virtual city model. 

After performing stationary and variable object elimination in the real-time input 

image, the resulting image contains dynamic objects. Figure 34 displays the 

flowchart of the object elimination component. 

 

Figure 34: Flowchart of object elimination component 
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3.2.2.1 Contour Detection Module 

Contours are simple curves joining all the continuous points, having the same color 

or intensity. Contours are useful for various tasks such as shape analysis, object 

detection and recognition [126]. 

For this research, contours are computed from the detected edges. Edges are 

obtained as points those are extrema of the image gradient. Once the edges are found 

using a canny edge detection algorithm [127], contours are formed. Contours define 

the boundary of an object in the image. The pixels within the boundary are 

considered as an object segment. Only contours are not sufficient for an assurance 

of the actual object as it detects some outliers of other objects near to the actual 

object. To address this problem class activation map (CAM) is used.   

3.2.2.2 Generation of Class Activation Map (CAM)  

As discussed in section 2.5, CAM allows us to see at which image regions CNN is 

looking and how relevant to a specific class in the form of visualization. The most 

significant region of an object is highlighted, indicating the higher chances of having 

the classified object’s part in the image. The generated CAM comprises pixel valued 

probability value that can be utilized to set the threshold. For this thesis, stationary 

objects are buildings, bench and street light whereas variable objects are trees.   

There are three different scenarios for generating CAM: 

1. With using prior information of the 3D model 

2. Without using prior knowledge and using a pre-trained model 

3. Without using 3D models of virtual city and by training the model 

In the first scenario, pre-existing data of a static object (i.e., building) is available in 

the virtual city to use. The information of structure is used to generate heatmap 

without training the convolutional neural network. The created heatmap is stored in 

the repository that is used for the masking process.  

In case of a stationary object whose 3D model is not available (i.e., bench), a pre-

trained model is responsible for generating CAM. VGG16 model is trained on the 
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ImageNet dataset to classify 1000 different classes is used to create a visualization 

map for benches. 

In the third scenario, there is neither prior information in the constructed 3D world 

nor a pre-trained model is present to generate an attention map. The convolutional 

neural network is trained to produce an attention map. In machine learning, transfer 

learning is the concept of using the gained knowledge for solving a similar problem 

(as discussed in section 2.4). In transfer learning, there is no need to train the 

convolutional model from scratch. For this research work, the concept of transfer 

learning is used for training the network for producing the visualization map of 

detected objects in the real-time scene. The model is trained using the ImageNet 

dataset that produces attention map of an input image. 

The created Class Activation Map (CAM) shows the most significant pixels of an 

object as highlighted regions. Those pixels are having high chances of belonging to 

the instance. 

3.2.2.3 Object Masking 

After detecting the contour points and class activation map of an object to be 

eliminated, the fusion of both the approaches is applied to mask the object. The pixel 

points that are within the object boundary and having pixel value in the heatmap 

equal or greater the defined threshold are selected and eliminated.  

After removing the stationary and variable objects from the real-time scene, the 

resulting image contains dynamic objects that increase the efficiency of detection 

algorithm.  

3.2.2.4  Object Elimination Algorithm 

 

Algorithm: Object Elimination of Static and Variable Objects 

INPUT: an input image having an object to be masked 

OUTPUT: an output image with the masked object 

Step 1 Perform Contour detection of an input image 
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Step 2: Find the pixels that are within the boundary of an object  

Step 3: An input image is passed to the trained CNN network to generate CAM. For 

an object having prior knowledge, fetch the heatmap from the created 

repository. If not, go to step 6 

Step 4: Obtain the pixels from step 2 and having pixel values in heatmap greater 

than the defined threshold  

Step 5: Eliminate the selected pixels in the input image obtained from step 4 

Step 6: Exit 

 

3.3 Time Complexity of the Proposed Approach 

The time complexity of an algorithm is calculated based on the programmatical 

execution. The proposed algorithm verifies the existence of an object in the real-

time scene by matching interest points of the input images with the virtual rendered 

images of 3D object models stored in the repository. As each keypoints (i) of the 

input image are matched with the keypoints(j) of the virtual model’s rendered image 

as well as the same matching is performed for the nearest object, therefore, the time 

complexity for object verification task is calculated as O (i * j * 2). 

The object elimination module starts with finding the pixels that are within the 

contour boundary (i) and having pixel value greater than a defined threshold (j). 

The time complexity for object removing task is calculated as O (i * j). Table 2 

below shows the time complexity of the proposed algorithm. 

Module Time Complexity Details 

Object Verification O (i * j * 2)  i = number of keypoints in the 

real-time input image 

j = number of keypoints in the 

rendered images 

Object Elimination O (i * j)  i = number of keypoints in the 

real-time input image 

j = number of interest points in 

the rendered images 

Table 2: Time complexity of the proposed algorithm  
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Chapter 4: Implementation and Experiments 

 

The proposed approach was implemented on Windows using the Python 

programming language. During the implementation phase of this research work, 

various Python and OpenCV libraries were used. The list of software and tools used 

is given in the below Table 3. 

4.1 Software Information 

In order to implement the proposed approach, execution was carried out on the 

Alienware 1.5.0 x64-based Desktop, with NVIDIA 8.1.940.0 and Intel 64 ~ 3192 

MHz GPU. Some results are obtained using the Dell laptop with x64-based system 

and Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz processor. 

ITEM DETAILS 

Operating System Windows  

Language Python 3.6.5 

IDE Jupyter Notebook, Anaconda Navigator 

Python Libraries OpenCV, Scikit, Keras, Tensorflow, 

Numpy, Pandas, Matplotlib, SciPy 

Tools 3D Viewer 

Table 3: List of software and tools used 

4.2 Construction of 3D Virtual World 

To employ the proposed approach of object verification and object elimination using 

prior data, the 3D virtual world has been produced using open source/cloud VGI 

data (2D street views and satellite images). This 3D environment comprises 

stationary (e.g. Buildings), and variable (e.g. Trees) objects. Figure 35 and 36 below 

displays an example of a constructed 3D virtual world.  

The execution of the proposed framework is demonstrated using the real-time 

location: King St S at Wills Way to King St S at William St E, Waterloo, ON.  



 

46 

 

The virtual world has been composed for the respective real-time region to be 

utilized as prior knowledge and exploited to perform for various tasks like object 

verification and object elimination of stationary and variable objects in the real-time 

scenes. 

 

Figure 35: Constructed 3D virtual World 

 

Figure 36: Constructed 3D Objects 

4.3 Creation of Repository of Virtual World 

Initially, from the constructed virtual world, 3D objects are rendered. The 3D 

interest points are extracted from rendered images. The rendered images and 

extracted 3D features are stored in the repository that can be further practiced for 

verification and to confirm the existence of that object in the real-time vision. Below 

is the Figure 37 which shows the rendered image of the 3D virtual object and Figure 

38 that illustrates the method of 3D keypoints extraction of the rendered image.  
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Figure 37: Rendered 3D object 

 

Figure 38: Extracted 3D features on rendered images 

4.4 Experiments and Results of Object Detection 

As mentioned in section 3.2.1.1, the model is trained by applying Faster-RCNN 

algorithm to recognize static (e.g. buildings, street light) and variable (e.g. tree) 

objects in the real-time view.  

The model has been trained using the Google OpenImage dataset for buildings, trees, 

and street light detection. From 1000 images of each class, 800 was used for training 

and 200 images for testing the network. The model is trained for 50 epochs with a 

batch size of 1000. The resulting output of the detection algorithm is bounding box 

with coordinates around the object, class label, and probability score. 

These identified objects i.e., bounding boxes are cropped and individually treated to 

execute object verification and object elimination methodologies. 
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4.4.1 Experiments and Results of Object Detection for Buildings 

Figure 39 and Figure 40 depict the implementation result of object detection of 

buildings with bounding box, class label and probability score.  

hsbc_corner_1.JPG 

Elapsed time = 20.260802030563354 

[('Skyscraper', 90.63831567764282), (Street light, 

80.7957112789154), ('Tree', 88.04613947868347)] [(50, 152, 101, 

356), (101, 50, 763, 381), (814, 254, 966, 356)] 

 

 

Figure 39: Detected Skyscraper, Street light, Tree in the real-time image 

scotiabank_corner_2.JPG 

Elapsed time = 18.652015686035156 

[('Skyscraper', 86.19678020477295), ('Tree', 94.59443688392639)] 

[(107, 26, 803, 401), (0, 0, 214, 535)] 

 

Figure 40: Detected Skyscraper, Tree in the real-time image 

4.4.2 Experiments and Results of Object Detection for Tree 

Figure 41 and Figure 42 display the experimental outcome of object detection of 

trees with bounding box, class label and probability value. 

red_oak.jpg 

Elapsed time = 16.516764640808105 
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[('Tree', 95.89992165565491), ('Tree', 88.04725408554077), 

('Tree', 76.72315835952759)] [(0, 0, 265, 321), (227, 170, 340, 

302), (0, 208, 37, 302)] 

 

 

Figure 41: Detection of Tree in the image 

real_canada_street_tree.jpg 

Elapsed time = 17.315558671951294 

[('Tree', 97.35758304595947), ('Tree', 87.55118250846863), 

('Skyscraper', 96.16764783859253)] [(288, 0, 672, 512), (0, 224, 

64, 288), (32, 0, 352, 352)] 

 

 
Figure 42: Detected Trees, Skyscraper in the real-time image 

4.4.3 Experiments and Results of Object Detection for Street light 

Implementation result of static object (e.g. Street light) detection are shown in Figure 

43 and Figure 44. 

street_light_real.jpg 

Elapsed time = 16.90429949760437 

[('Street light', 97.33138084411621), ('Tree', 68.5300409793853

8), ('Tree', 62.40453124046326)] [(138, 0, 249, 608), (0, 581, 5

5, 636), (0, 581, 359, 636)] 
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Figure 43: Street light, Trees detected in the test image 

street_light_trees.jpg 

Elapsed time = 19.07902717590332 

[('Tree', 85.15207767486572), ('Tree', 76.06753706932068), ('Tr

ee', 62.04541325569153), ('Tree', 57.062774896621704), ('Street 

light', 66.56368374824524)] [(0, 358, 921, 921), (0, 0, 307, 40

9), (0, 1024, 102, 1126), (51, 1024, 153, 1075), (460, 102, 614

, 614)] 

 

Figure 44: Street light, Trees detected in the test image 

4.4.4 Experiments and Results of Object Detection for Bench 

For Bench detection, Python library ImageAI [68] and pre-trained model RetinaNet 

[68] is used. Figure 45 shows the result of bench detection in the test images. 
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Figure 45: Bench detected in the test image 

4.5 Experiments and Results of Object Verification 

The implementation results illustrate the outcome of proposed approach of static 

(e.g. Buildings) and variable (e.g. Trees) object verification using prior information 

(described in section 3.2.1). 

4.5.1 Centroid Detection of Real-time Stationary Object 

According to the mentioned algorithm in section 3.2.1, primarily, the centroid of the 

stationary object (e.g. building) is estimated in the real-time cropped image. 

Figure 46: Centroid Calculation 

 

Figure 47: Detected centroid in the real-time image with coordinates 
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4.5.2 Feature Detection Using FAST Corner Detector of Real-Time Object 

Next step is the use of OpenCV FAST feature detection algorithm that detects corner 

points. 

 

Figure 48: Detection of corner points using the FAST algorithm 

 

Figure 49: Detected corner points on real-time image 

4.5.3 Calculation of the Distance of Real-Time Object 

Nextly, the detected corner points’ coordinates are stored in the file. The distance is 

calculated for each interest points from the centroid which is stored in another file 

for further use. 

 

Figure 50: Calculating the distance between keypoints and centroid 

4.5.4 Feature Selection in Real-Time Image 

Using a four-quadrant approach, the top 8 feature points are selected those are far 

from the centroid. This method is applied to each quadrant.  
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Figure 51: Selected top 8 keypoints for top-right (1st quadrant) 

After selecting the top 8 keypoints for each quadrant, they are plotted on the real-

time cropped image as well as stored in the file for further use. 

 

Figure 52: Plotted selected keypoints on the real-time image 

4.5.5 Retrieving the Virtual Image and Keypoints  

The proposed approach of keypoint selection is applied to virtual object feature 

selection. Figure 53 shows the feature selection of the corresponding virtual 

rendered image using the proposed approach.  

 

Figure 53: Plotted selected keypoints on the virtual image 
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4.5.6 Object Verification of Stationary Object Using Prior Knowledge 

As per the proposed approach, verification is carried out with the aid of the virtual 

world and physical objects. Verification is performed by matching selected interest 

points of real-time (Figure 52) with virtual (Figure 53) objects using a threshold 

value. Figure 53 shows the results of the verification. If the confidence score of the 

match is equal or greater than 70%, the object is considered as verified positively.  

 

Figure 54: Object verification result of real-time object 

4.5.7 Increasing the Confidence Score Using Neighbour Object  

After verifying the real-time object successfully with the help of prior knowledge 

and using some threshold value, the neighbouring object is used to increase the 

confidence score of the verified object. The same procedure is applied for the 

verification of neighbouring building. Figure 55 - 58 illustrates the result of 

increasing the probability of verified object using neighbouring building. If the 

neighbouring object is verified successfully, then 0.5 confidence score is added to 

the main verified stationary object’s confidence score.  

 

Figure 55: Selected keypoints of the virtual nearest static object (e.g. building) 
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Figure 56: Selected keypoints of the real-time nearest static object (e.g. building) 

 

Figure 57: Verification result of neighbour stationary object (e.g. building) 

 

Figure 58: Increased confidence score of a verified static object 

4.6 Experiments and Results of Object Elimination 

This section includes the implementation result of the proposed algorithm of static 

(e.g. Buildings, Bench, Street light) and variable (e.g. Tree) object removal 

explained in section 3.2.2.  

4.6.1 Results of Generation of Class Activation Map (CAM) 

According to the proposed technique as described in section 3.2.2, the model is 

trained using Transfer Learning to generate Class Activation Map (CAM) for the 

objects without having prior understanding, i.e., those are not present in the virtual 

world. The model is trained using pre-trained top layers weights of VGG16 that is 

trained on the ImageNet dataset for 1000 different classes. The proposed model is 

trained using 1000 training images of each class (i.e., Tree, Street light) with 32 

batch size. Figure 59 displays the execution output of CAM generation of Trees. The 

result of CAM generation of Street light is shown in Figure 60. 
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Generation of heatmap: 

heatmap = np.mean(conv_layer_output_value, axis=-1) 

heatmap = np.maximum(heatmap, 0) 

heatmap = heatmap/heatmap.max() 

 

 

 

Figure 59: Result of CAM Generation of Tree (left: input image, centre: generated 

heatmap, right: heatmap superimposed on input image) 
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Figure 60: Result of CAM Generation of Street light (left: input image, centre: 

generated heatmap, right: heatmap superimposed on input image) 

For CAM generation of Bench, pre-trained model VGG16 is used that is trained on 

the ImageNet dataset for 1000 various classes. Figure 61 illustrates the result of 

CAM generation of Bench.  

 

 

 

Figure 61: Result of CAM Generation of Street light (left: input image, centre: 

generated heatmap, right: heatmap superimposed on input image) 
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4.6.2 Results of Contour Detection 

As per the described methodology in section 3.2.2.1, contours are detected on real-

time objects using canny edge detection algorithm. Figure 62 depicts the result of 

the contour detection of Trees. 

 

 

Figure 62: Result of Contour Detection of Trees  

The results of contour detection of Street light is shown in Figure 63. 
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Figure 63: Result of Contour Detection of Street light  

Figure 64 displays the result of the contour detection of Bench. 

 

 

Figure 64: Result of Contour Detection of Bench  

The output of contour detection of the building is displayed in the below Figure 65.  
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Figure 65: Result of Contour Detection of Buildings 

4.6.3 Results of Object Elimination Using Combined Approach 

As per the mentioned technique in section 3.3.2.3 for static and variable object 

elimination, combined approach of Class Activation Map (CAM) (Figure 59-61) 

and Contour Detection (Figure 62-65) is used. The points having equal or greater 

value than defined threshold value and within the object boundary are selected and 

masked out in the input image. Figure 66, 67, 68, 69 depict the result of object 

elimination of Tree, Street light, Bench and Buildings, respectively.  

 

Figure 66: Result of Object Elimination of Trees 
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Figure 67: Result of Object Elimination of Street light 

 

Figure 68: Result of Object Elimination of Bench 

 

Figure 69: Result of Object Elimination of Buildings 
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Figure 70 illustrates the final output of the proposed algorithm where static and 

variable objects are masked out and dynamic objects are left in the input image. 

 

 

 

Figure 70: Result of the proposed algorithm 

4.7 Results Comparison and Discussion 

4.7.1 Advantages of the Proposed Approach 

Nair et al. [71] proposed an approach for moving object detection and human pose 

estimation. The proposed method uses trained model RestinaNet [68] for dynamic 

object detection in real-time images. This model detects a human in the poster as 

well as the reflection of a person on the building that is time-consuming as it 

processes that exceptional object as a dynamic object that is not going to move. 

Figure 71 illustrates the person detected in the poster using RetinaNet model [68] in 

the real-time image.  
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Figure 71: Person Detected in the poster using RetinaNet model 

The RetinaNet model [68] also detects the reflection of the car and person as a 

dynamic object that ends in utilizing more time for an object that will remain 

stationary. Figure 72 depicts the outcome of object detection using RetinaNet model 

[68]. The left image shows the detected object class with its probability, bounding 

box coordinates, and execution time of the object detection algorithm on the test 

image without masked objects and the right image depicts the outcome of object 

detection algorithm. The object detection algorithm took 18.6 seconds to run on the 

original real-time image without applying the proposed approach of object 

elimination. 

 

Figure 72: Reflection of car and person on the building detected as a dynamic 

object  

The proposed method in this research uses prior knowledge to verify and remove 

the stationary (e.g. buildings) and variable (e.g. trees) objects in the real-time image. 

After applying the proposed approach for masking the building as illustrated in 

section 4.6.3, the unusual objects are eliminated in the image that allows moving 
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object detection algorithm works accurately and efficiently. Figure 73 illustrates the 

result of moving object detection method after masking. The building is eliminated 

in the image therefore, the car is not detected on the side of the buildings that makes 

the dynamic object detection algorithm to perform efficiently. The execution time 

of the object detection algorithm on the masked image is 15.8 seconds. The 

implementation time of the proposed object elimination method is 548 milliseconds.  

 

Figure 73: Detection of dynamic objects after object elimination 

The proposed approach of object elimination gives a significant result for the 

dynamic object detection algorithm. The removal of stationary and variable objects 

in the real-time image allows the moving object detection method to perform more 

efficiently and accurately. 

4.8 Limitations of the Proposed Approach 

The proposed technique uses a constructed 3D virtual world as prior knowledge to 

verify the existence of static and variable objects in the real-time environment. This 

method of verification and elimination is dependent on the virtual world that can not 

be applied to the objects without having prior information.  

For the objects that are not present in the virtual world, the machine learning 

technique is required for training to generate CAM of that stationary and variable 

object in the physical world. The description of that technique is explained in section 

3.2.2.2 and illustrated in section 4.6.  
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As mentioned in section 4.6.1, the model trained using transfer learning is used to 

produce a Class Activation Map (CAM) for elimination. The trained model is not 

accurate for all types of trees as trees may change their shape according to the 

weather. The proposed trained model to generate Class Activation Map (CAM) is 

not accurate for trees without leaves. Figure 74 shows the result of the generated 

Class Activation Map (CAM) for the tree with no leaves.  

 

Figure 74: Generated CAM for trees without leaves  
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Chapter 5: Conclusion and Future Work 

 

5.1 Conclusion 

With the help of recent machine learning and computer vision techniques, many 

leading automobile companies are stepping towards to build an autonomous car, i.e., 

a car drives by itself without any human inputs. In other words, software on the 

wheels. The several benefits of a driverless car include less traffic, human comfort, 

increased safety, time and space-saving. Despite using modern approaches, it is still 

far away to become fully robotic. However, for the driverless-car to function with 

negligence of accidents, it needs to be aware of surroundings including stationary 

(e.g. buildings, street light, benches), variable (e.g. trees) and dynamic (e.g. 

pedestrians, car) objects. The main objective of the proposed approach is to verify 

and mask the stationary and variable objects in the real-time image using the virtual 

world as prior data. 

The constructed virtual 3D world assists an autonomous car to understand the 

surroundings while moving on the street. Using this information, static and variable 

objects are verified and removed by matching the feature points of the physical 

world with a virtual world. For object removal, the fusion technique of contour 

detection and Class Activation Map (CAM) is used. This allows an autonomous car 

to focus on moving objects that adds a significant danger to drive.  

Section 4.5 and 4.6 illustrates the results of the proposed method of stationary and 

variable object verification and elimination, respectively. The results prove that the 

proposed technique is capable for verifying the existing object in the real-time 

environment by matching the extracted keypoints between the real-time and the 

virtual object using some threshold. The method for object removal uses a combined 

way of contour detection and Class Activation Map (CAM) for accurate results. The 

elimination method of stationary and variable objects reduces the execution time of 

dynamic object detection algorithm as well as improves the efficiency of the 
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algorithm. The saved time can be invested in moving object detection and prediction 

algorithm to work faster and accurately in the real world.  

5.2 Future Work 

However, the proposed approach in this research of stationary and variable object 

verification and removal illustrates reasonable results, there is a room for 

improvement.  

1. The proposed approach of training a model to generate Class Activation Map 

(CAM) for trees can be enhanced by adding various types and shapes of the 

trees according to weather to make it work more efficiently. 

2. The proposed approach for verification and elimination of static and variable 

objects can be applied to verify and remove street light and trees in the real-

time scene if prior information is available in the virtual world to use. 
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