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ABSTRACT 

Digital filters are an important part of digital signal processing systems. 
Digital filters are divided into finite impulse response (FIR) digital filters and infinite 
impulse response (IIR) digital filters according to the length of their impulse 
responses. An FIR digital filter is easier to implement than an IIR digital filter 
because of its linear phase and stability properties. In terms of the stability of an IIR 
digital filter, the poles generated in the denominator are subject to stability 
constraints. In addition, a digital filter can be categorized as one-dimensional or 
multi-dimensional digital filters according to the dimensions of the signal to be 
processed.  However, for the design of IIR digital filters, traditional design methods 
have the disadvantages of easy to fall into a local optimum and slow convergence.  

The Teaching-Learning-Based optimization (TLBO) algorithm has been 
proven beneficial in a wide range of engineering applications. To this end, this 
dissertation focusses on using TLBO and its improved algorithms to design five 
types of digital filters, which include linear phase FIR digital filters, multiobjective 
general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) 
linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among 
them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D 
nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to 
optimize; multiobjective general FIR digital filters use multiobjective non-
dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital 
filters use MOTLBO with Euclidean distance to optimize. The design results of the 
five types of filter designs are compared to those obtained by other state-of-the-art 
design methods. In this dissertation, two major improvements are proposed to 
enhance the performance of the standard TLBO algorithm. The first improvement is 
to apply a gradient-based learning to replace the TLBO learner phase to reduce 
approximation error(s) and CPU time without sacrificing design accuracy for linear 
phase FIR digital filter design. The second improvement is to incorporate Manhattan 
distance to simplify the procedure of the multiobjective non-dominated TLBO 
(MOTLBO) algorithm for general FIR digital filter design. The design results 
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obtained by the two improvements have demonstrated their efficiency and 
effectiveness.  
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CHAPTER 1  
Introduction 

Signal processing utilizes a variety of analog filters and digital filters. One 
characteristic of analog signals is time-continuity, so the independent variable of a 
one-dimensional analog signal is time. Through time sampling and magnitude 
discretization, the one-dimensional analog signal will be converted into a one-
dimensional discrete digital signal.  Whereas, a digital filter is a system consisting 
of digital multipliers, adders, and delay units. The function of a digital filter is to 
perform arithmetic processing on an input discrete signal to achieve the purpose of 
changing the signal spectrum. Therefore, designing a digital filter involves 
generating a transfer function that conforms a given set of specifications. In terms 
of hardware cost, digital filters may be more expensive than an equivalent analog 
filter. But from an implementation perspective, analog filters are usually built with 
analog components such as capacitors and inductors, where digital filters can be 
implemented by software or digital components. It is troublesome to replace any 
capacitor or inductor when the analog filter parameters are changed. Moreover, 
digital filters have four key advantages over analog filters [1]-[9]:  
            1. Digital filters are less sensitive to the external environment and have 
higher reliability with respect to time and temperature, unlike analog filters. 

2. Digital filters enable functions such as accurate linear phase and multi-
rate processing that are not possible with analog filters.  

3. Digital filters can achieve arbitrary processing precision as long as the 
word length is increased.  

4. Digital filters are more flexible and can store signals at the same time. 
1.1 FIR and IIR digital filters 

It is relatively easy to understand and calculate digital filters; however, to 
meet practical problems and challenges, numerous studies have explored their 
analysis [10]-[15] and realization [16]-[23]. The design of digital filters is a 
deceptively complex topic. In general, there are two major types of digital filters: 
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finite impulse response (FIR) and infinite impulse response (IIR) digital filters. Both 
have advantages and insufficiencies. 

FIR filters have six key advantages over IIR filters [2]: 
1.  The transfer function of an FIR filter contains only zeros. An FIR filter with 

symmetric coefficients is guaranteed to provide a linear phase response, 
which can be critical in some applications.  

2. Feedback is not necessary. This means that any rounding errors are not 
cumulative. This makes implementation simpler. 

3. FIR filters are inherently stable since the output is a sum of a finite number 
of products of filter coefficients and input values. 

4. FIR filters can easily be designed to be linear phase by making its filter 
coefficients symmetric. 

5. FIR filters can implement linear-phase filtering. This means that the filters 
have no nonlinear phase shift across the frequency band. The lack of 
phase/delay distortion can be a critical advantage of FIR filters over IIR and 
analog filters in certain systems, such as digital data modems. 

6. FIR filters can be used to correct frequency-response errors in a loudspeaker 
to a finer degree of precision than using IIR filters. 

1.1.1 FIR Filters 
FIR filter design can be categorized with two types: linear phase FIR filter 

design [24]-[28] and non-linear phase (general) FIR filter design [29]-[34]. 
According to the filter length M and the symmetry of impulse responses, there are 
four types of linear phase FIR filters [1], [5]:  

1. Type I Filters  
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Type I FIR filters, featured by odd M value and even symmetry, are fairly 
universal and most versatile, but they cannot be used whenever a 90 degrees phase 
shift is necessary, as is the case in differentiators and Hilbert transformers. 

2. Type II Filters  
Type II FIR filters, featured by even M value and even symmetry and would 

normally not suitable for highpass or bandstop filters because their frequency 
response is always 0 at ߱ =  In addition, they cannot be used for applications .ߨ
where a 90° phase shift is necessary. 

3. Type III Filters  
Type III FIR filters utilize odd M value and odd symmetry and cannot be 

used for standard frequency filters because, in these cases, the 90° phase shift is 
usually undesirable. The frequency response is always 0 at ߱ = 0 and ߱ =  They .ߨ
can be used for designing differentiators and Hilbert transformers. 

4. Type IV Filters  
Type IV FIR filters, featured by even M value and odd symmetry, cannot be 

used for some standard frequency-selective filters for the same reasons that type III 
filters cannot be used. They are well suited for differentiators and Hilbert 
transformers, and their magnitude approximations are usually better than type III 
filters because their magnitude errors are smaller. This is due to the fact that their 
frequency response is always 0 at ߱ = 0. 

In some applications an integer group delay is desirable. In these cases, type 
I or type III filters are preferred. On the other hand, for general FIR digital filters, 
their coefficients are not symmetrical, and their frequency responses are arbitrary. 
General FIR digital filters are not exactly linear phase but can be used to 
approximate linear phase. In this case, the impulse response will not be exactly 
symmetric. The minimum phase FIR filters are not appropriate for this problem as 
there is no phase approximation at all. FIR digital filters with nonlinear phase 
responses are useful in applications in which linear phase is not a requirement. 
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With the use of symmetric or asymmetric coefficients, FIR filters are 
guaranteed to be of linear phase. An FIR digital filter is always stable due to the 
absence of a denominator in its transfer function. The group delay of a linear phase 
FIR filter with M length is (M-1)/2, which is constant for all frequencies. This filter 
can always be designed as linear phase no matter its impulse responses are 
symmetrical or anti-symmetrical. Linear phase means that all frequency components 
of the input signal experience the same delay such that there are no phase distortion. 
For example, assuming an input signal is located within the passband of a lowpass 
FIR filter, and the corresponding output signal will be approximately equal to the 
input signal delayed by the group delay of the filter, which is just a shifted version 
of the input signal. Nevertheless, there is no linear phase response in a general FIR 
filter because the group delay is a function of frequency, the details of which will be 
clearer in the later chapters. The success of designing general FIR filters depends 
greatly on the method that is used to design their filter coefficients. In general, 
designing a general FIR filter to meet a set of given specification requires more 
computational time and a higher implementation cost. 
1.1.2 IIR Filters  

IIR filters are the most efficient type of digital filters with respect to 
implementing digital signal processing (DSP).  IIR digital filters are more 
advantageous than FIR filters because of their implementation efficiency, which is 
necessary to meet specifications related to passband ripple and stopband attenuation. 
IIR digital filters can be designed [35]-[52] to meet the same specifications with a 
lower order than that of FIR digital filters. This is especially useful for 
implementation using a small signal processor, in which the number of calculations 
per time step is less than that of a FIR filter. This results in a savings of 
computational time. 

IIR filters can be realized in direct-form and cascade-form [1]-[9]. A direct-
form filter has a simple structure in which the filter coefficients are obtained directly 
from the designed coefficients of the transfer function. A cascade-form filter 
expresses each of its numerator and the denominator transfer functions as a product 
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of lower-order polynomials. Thus, a cascade-form digital filter can be realized as a 
cascade of low-order filter sections.  

The transfer function of a direct-form IIR filter can be expressed as follows: 

(ݖ)ܪ = ஻(௭)
஺(௭) = ∑ ௕೘௭ష೘ಾ೘సబ

ଵା∑ ௔೙௭ష೙೙ಿసబ                                   (1.1) 

x[n] y[n]b[0]

b[1]

b[2]

-a[1]

-a[2]

-a[N] b[M]

Z-1  Gain

Z-1  

Z-1  

Z-1  

Z-1  

Z-1  

 
Fig.1.1 Structure of direct-form I IIR digital filter 
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Fig. 1.2 Structure of direct-form II IIR digital filter 
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The transfer function of a cascade-form IIR filter can be expressed as 
follows: 

(ݖ)ܪ = ܾ଴ ∏ ஻೙(௭)
஺೙(௭)

ಿ
మ௡ୀଵ = ܾ଴ ∏ (ଵା௕భ೙௭షభା௕మ೙௭షమ)

(ଵା௔భ೙௭షభା௔మ೙௭షమ)
ಿ
మ௡ୀଵ               (1.2) 
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Fig. 1.3 Structure of a cascade-form IIR digital filter (3rd order) 

Digital filters can be designed for different applications such as lowpass, 
highpass, bandpass, bandstop, delay equalizer, digital differentiator, digital 
integrator and digital Hilbert transformer. In the following chapters, different digital 
filter designs are described. 
1.2 Two dimensional digital filters 

Digital filter can be divided into one-dimensional (1-D), two-dimensional 
(2-D), or multi-dimensional (m-D) digital filters according to the dimensions of a 
signal to be processed. The signal processed by a one-dimensional digital filter can 
be a sequence of sampled values of a time function. A signal processed by a 2-D or 
m-D digital filter is a sequence of two or more variables. For example, a 2-D discrete 
image consists of sampled values on a 2-D plane. 2-D digital filters are widely used 
in image processing, sonar signal processing, radar signal processing, geophysical 
signal processing, and others. With the rapid increase in the amount of data to be 
processed by modern electronic devices, efficient and accurate design of various 
types of 2-D and multi-dimensional FIR digital filters [55]-[66] and IIR digital filters 
[67]-[78] is of great importance in the field of multi-dimensional digital signal 
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processing research. Unlike a 1-D digital filter design which only involves a 1-D 
frequency function approximation, a 2-D digital filter design is essentially a 2-D 
frequency function approximation problem. The 2-D frequency function 
approximation theory is less developed than the 1-D frequency function 
approximation theory. Thus, some effective 1-D digital filter design methods cannot 
be extended to design a 2-D digital filter. In general, 2-D digital filter design 
problems are significantly more complicated than that of 1-D digital filter design 
problems. 

Design of 2-D nonlinear-phase FIR filters [64]-[66] has attracted the 
attention of researchers because of their relatively lower group delay which is more 
desirable for some applications than the corresponding 2-D linear phase FIR filters 
[55]-[61]. On the other hand, the benefit of 2-D linear phase FIR filters is that they 
are both stable and linear phase, and this allows them to find applications in digital 
image processing to preserve phase linearity. In general, the transfer function of a 
2-D FIR digital filter cannot be decomposed, which means that the transfer function 
cannot usually be expressed in identical modules suitable for design and 
implementation. Thus, the design problem becomes more challenging. To address 
this challenge, [62] describes minimax and least squared method of the separable 2-
D linear phase FIR filter using an iterative alternating optimization technique. In 
[56], a matrix-based algorithm was used for constrained least-squares (CLS) and 
minimax (MM) designs of quadrantally symmetric 2-D FIR filters, both of which 
can be formulated as an optimization problem or converted into a sequence of 
subproblems with a positive-definite quadratic cost and a finite number of linear 
constraints expressed in terms of the filter’s coefficient matrix.. In [56], design 
examples of 2-D linear phase FIR filters include magnitude responses of 
rectangular-shape, circular-shape, and diamond-shape. Because it characterized a 
simple problem formulation, [60] used an accelerated artificial bee colony algorithm 
which belongs to a class of meta-heuristic algorithms to design a 2-D linear-phase 
FIR filter. In [60], three shapes in 2-D linear phase FIR filters’ magnitude responses: 
circular, diamond and elliptic are designed. Likewise, the proposed transfer function 
in [59] is a closed-form function of 2-D linear phase FIR lowpass filters with 
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maximally flat passband and stopband. In this context, changing filter order or 
flatness degree can generate various passband shapes. Additional references selected 
for digital filter realization and design are given in [148]-[205].  
1.3 Optimization algorithms 

Traditionally, numerical optimization has been the standard optimization 
tool [79]. In recent years, evolutionary algorithms [80] have emerged as an 
increasing popular optimization tool. The development of the latter was started 
around 1975, in which genetic algorithm (GA) [81] was proposed. The emergence 
and success of genetic algorithm have greatly encouraged the enthusiasm of 
researchers to develop nature inspired optimization algorithms. After years of 
development, a large number of evolutionary algorithms [80] have been developed, 
including genetic algorithm, ant colony optimization (ACO) algorithm, differential 
evolution (DE) algorithm, and particle swarm optimization (PSO) algorithm. Thus 
far, evolutionary algorithms have been used in a wide range of areas including 
machine learning, process control, economic forecasting, and engineering 
forecasting. The unprecedented success of evolutionary algorithms has attracted 
great interest from scientists in the fields of mathematics, physics, computer science, 
social sciences, economics, and engineering.   

Swarm intelligence algorithms [82] identify questions by learning from 
certain life phenomena or natural phenomena. This kind of algorithm contains the 
characteristics of self-organization, self-learning, and self-adaptation of natural life 
phenomena. In the operation process, the solution space is self-organized by the 
obtained calculation information. In the search process, the population evolves 
according to the value of the fitness function set in advance by using the survival of 
the fittest. Consequently, the algorithm has certain intelligence. Due to the 
advantages of the swarm intelligence algorithms, when applying the swarm 
intelligence algorithm to solve a problem, it is not necessary to describe the solution 
problem in advance. As a result, efficient solving is possible for some complex 
problems.  

Swarm intelligence algorithms complete the calculation by setting the 
corresponding evolution mechanism for population, while the individuals in the 
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population have a certain independence, and they may or may not exchange 
information, and their evolution mode depends entirely on their own situation. 
Therefore, for swarm intelligence algorithms, an individual is encapsulated in a 
complete and essential parallel mechanism. If a distributed multiprocessor is used to 
complete the process of a swarm intelligence algorithm, the algorithm can be set 
with multiple populations and each individual of the populations can be placed in 
different processors for evolution. Moreover, certain information exchanges can be 
completed during the iteration information, though the exchange is not necessary. 
After the iteration is completed, the survival of the fittest is performed according to 
the fitness value. Therefore, the implicit nature of the group intelligence algorithms 
can make full use of the multi-processor mechanism to achieve parallel 
programming and improve an algorithm's ability to solve problems. Thus, it is more 
suitable for the background of the rapid development of distributed computing 
technologies, such as cloud computing. 

Swarm intelligence algorithms [83] are widely used to solve problems with 
high computational complexity, rather than trying all the options one by one, which 
will take a lot of time. They are used extensively in the field of artificial intelligence. 
For instance, the principles behind GA are borrowed from nature itself. They are the 
principles of heredity and variation. Genetics are the ability of organisms to pass on 
their biological and evolutionary characteristics to their offspring. Because of this 
ability, all creatures can leave their species characteristics to their offspring. The 
genetic variation of the organisms guarantees the genetic diversity of the population, 
and the variation is random because nature cannot know in advance which features 
are most suitable in the future due to variations on factors such as climate change, 
food increase/decrease, or the emergence of competitive species. Mutations cause 
new traits in the organism to survive and leave behind in new, changing habitats. 

Swarm intelligence algorithms usually come from the intelligent 
collaborative evolution of certain life or other things in nature. The simulation uses 
some evolutionary mechanisms to guide the population to search for the solution 
space. Because this kind of algorithms lacks strict mathematical theory support, the 
problematic solution space uses repeated the iterative probabilistic search. As a 
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result, swarm intelligence algorithms will have problems such as premature or low 
solution precision. Therefore, in many cases, the barriers to solve the problem are 
that swarm intelligence algorithms only obtain an approximate solution to the best 
solution.  

Swarm intelligence falls under more recent evolutionary algorithms which 
include differential evolution, particle swarm optimization, ant colony optimization, 
artificial bee colony algorithm, teaching and learning based optimization, and others. 
Classic evolutionary algorithms include genetic algorithms, genetic programming, 
and others.  
1.4 Motivations of the dissertation 

This dissertation concentrates on digital filter design, including FIR digital 
filter and IIR digital filter designs. The optimization method uses evolutionary 
algorithms. After experimentations and comparisons with other heuristic algorithms 
such as ACO, PSO, and GA, the TLBO algorithm has shown to be superior in terms 
of better minimization performance and faster convergence. Designing digital filters 
using TLBO algorithm is a new topic. Therefore, this dissertation adopts TLBO 
algorithm for FIR and IIR filter design.  

However, when designing more complex digital filters using the TLBO, 
there are limitations. Therefore, improved methods are to be developed to enhance 
the efficiency of the TLBO algorithm. In particular, a gradient-based learning phase 
is proposed to replace the original learning phase to expand the search capability for 
digital filter design.  
1.5 Organization of the dissertation 

The organization of this dissertation is as follows: In Chapter 2, the literature 
review of swarm intelligence algorithms is presented in Sections 2.1 and 2.2. The 
details of TLBO algorithm and the proposed improved TLBO algorithm are 
explained from Sections 2.3 to 2.4. In Chapter 3, linear phase FIR filter design using 
TLBO and the improved TLBO algorithm are described. In Chapter 4, the 
multiobjective general FIR filter design using non-dominated multiobjective TLBO 
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with crowding distance is presented. In addition, a novel multiobjective TLBO is 
proposed to design general FIR filters. In Chapter 5, another multiobjective is 
presented to design IIR digital filter. In Chapter 6, two-dimensional linear phase FIR 
filter design is introduced. In Chapter 7, two-dimensional nonlinear phase FIR filter 
using TLBO algorithm is described. In Chapter 8, future works and conclusions are 
presented. 
1.6 Main contributions 

In this dissertation, both FIR and IIR digital filter designs under least squares 
(LS) and minimax (MM) criteria are designed using the standard TLBO and 
improved algorithms. Main contributions are summarized as follows: 

1. Using the standard TLBO and improved algorithms, five types of digital 
filters: linear phase FIR digital filters, multiobjective general FIR digital filters, 
multiobjective IIR digital filters, two-dimensional linear phase FIR filters, and two-
dimensional general FIR filters are designed using minimax and least squares 
approximations. In general, the least squares algorithm, the Parks-McClellan 
algorithm, the multiobjective particle swarm optimization (MOPSO) algorithm, and 
others are selected for comparisons. Design results indicate improved performance 
can be obtained. 

2. A gradient-based TLBO is developed for linear phase FIR digital filter 
design. Design results indicate that the gradient-based TLBO can obtain similar 
optimal solutions but faster convergence when compared to those of the standard 
TLBO. 

3. A non-dominated MOTLBO with crowding distance is formed by 
combining the standard TLBO algorithm with non-dominated set and crowding 
distance. Filter design results have shown that the non-dominated MOTLBO with 
crowding distance can achieve faster convergence than the MOPSO in 
multiobjective digital filter design. 

4. A gradient-based MOTLBO with Manhattan distance is formed by 
replacing the student learning phase of the standard TLBO by a gradient learning 
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phase. Filter design results have shown that the gradient-based MOTLBO with 
Manhattan distance can achieve improvements when compared to MOPSO in least 
squares general FIR filter design. 
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CHAPTER 2  
Teaching-learning-based Optimization and Improved Algorithms 

2.1 Review of swarm intelligence algorithms 
Inspired by social insect behaviors, researchers have developed a series of 

new solutions to traditional problems through the simulation of social insects. These 
studies are examples of swarm intelligence research. Swarm refers to a group of 
subjects that can communicate directly or indirectly by changing the local 
environment, who can collaborate to solve distribution problems. The so-called 
swarm intelligence refers to the characteristics of intelligent behaviors through the 
cooperation of non-intelligent entities. Swarm intelligence provides the foundation 
for finding solutions to complex distributed problems without centralized control 
and without providing a global model. 

The optimal solution of the swarm intelligence algorithms is the process of 
generating new solutions by successive iterations and evolutions of corresponding 
rules from random initial solutions. In swarm intelligence algorithms, the set of 
multiple solutions is called population, which is denoted as P(t), where P represents 
the size of the population (population size), and t represents the iteration.  ܿଵ(ݐ), 
ܿଶ(ݐ) , …, ܿ௉(ݐ)  represents the individual solutions in the population. A new 
individual in the population (offspring) is usually produced by its parents. This kind 
of mating combination is called the evolutionary model. The iterative process of 
evolutionary computation can be summarized into three basic segments: social 
collaboration, self-adaptation and competitive evolution. In the process of social 
collaboration, individuals exchange information and learn from each other. 
Individuals in the population continuously adjust their own state to adapt to the 
environment through active or passive means in the self-adaptation progress. 
Competing with each other means that individuals with better status in the 
population will have a greater chance of survival and enter the sub-population, 
which is the update strategy of the population [83]-[85].  
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In social collaboration, some individuals will be selected for information 
exchange and mutual learning through the corresponding selection mechanisms. The 
information involves four elements: (1) the method of individual selection, (2) the 
size of the individual, (3) the generation mechanism of the new experimental 
individual, and (4) the usage of the historical information of the population. 

Self-adaptation mechanism refers to the individual's continuous adjustment 
of its status through active or passive mechanisms to adapt to the living environment 
in which it lives. Individuals adjust their state through global and local searches. The 
global search guarantees the individual's ability to explore new solutions in a wider 
range, which can more effectively ensure the diversity of the population and avoid 
premature convergence. The local search is opposite that it helps an individual to 
converge to the local best more easily. However, it is more effective to improve the 
quality of individuals by shortening the convergence of the algorithm. The self-
adaptation of individuals in a population is usually used to balance the two search 
mechanisms. Through the above two processes, a new experimental individual can 
be generated. 

Swarm intelligence algorithms select individuals from P parents and m 
temporary sub-species into the next-generation population through a competitive 
mechanism. In most swarm intelligence algorithms, the size of the population is 
generally fixed. The individual replacement strategy is divided into the whole 
generation replacement strategy, r(P, m), and the partial replacement strategy, 
r(P+m). The former refers to the P parents is completely replaced by the m child 
generation individuals, and the latter means that only some of the P parent 
individuals are replaced. In order to save elite individuals, the elite retention strategy 
will be selected. This means that the outstanding individuals in the parent individuals 
are not replaced and will enter the next generation of individuals directly. 

Once the initial population within the solution space is input, the swarm 
intelligence algorithm framework can create an output for the best individual, 
represented by  ܿ௕௘௦௧(ݐ). The steps in between are described in the following, which 
has nine steps: 
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1. Initialize parameters such as population size and number of iterations. 
2. Randomly initialize the population in the solution space. 
3. While the termination condition is not met, do loop. 
4. Calculate the fitness value of each individual of P(t). 
5. Select some individuals for social collaborative operations. 
6. Execute self-adaptation. 
7. Compute competing operations to create a new generation of populations. 
8. End while. 
9. Output the final solution. 

Through the above calculation framework, swarm intelligence algorithms 
apply the three operations (social collaboration, self-adaptation, and competitive 
evolution) to the individuals in the population. Every individual is approached the 
optimal solution to achieve the purpose of optimization. 

PSO [86] and ACO [87] algorithms are two of the most important members 
of the swarm intelligence algorithm family. The basic idea is to simulate the 
behavior of natural biological groups to construct a stochastic optimization 
algorithm. The difference is that the particle swarm algorithm simulates the bird 
group behavior, while the ant colony algorithm simulates the ant foraging principle. 
These two are beneficial in this context as they are compatible with the similarities 
that they share, but they also complement each other due to their differences.  

PSO and ACO algorithms share seven critical similarities. Firstly, both of 
them are within a class of uncertain algorithms. Uncertainty embodies the biological 
mechanisms of natural organisms and is superior to deterministic algorithms in 
solving certain problems. The uncertainty of the bionic optimization algorithm is 
accompanied by its randomness. The main steps contain random factors, so there is 
great uncertainty in the occurrence of events in the iterative process of the algorithm. 
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In addition, both of them are within a class of probabilistic global optimization 
algorithms. The advantage of the non-deterministic algorithms is that they have 
more chances to solve the global optimal solution. Likewise, neither is dependent 
on the strict mathematical nature of the optimization problem itself. The 
optimization process does not rely on the mathematical nature of the optimization 
problem itself, such as continuity, conductivity, and the mathematical description of 
the objective function and constraints. Both are bionic optimization algorithms 
based on multiple agents. Each agent in bionic optimization algorithms cooperates 
with each other to better adapt to the environment and demonstrates the ability to 
interact with the environment. Moreover, the two algorithms are intrinsic 
parallelism. The essential parallelism of the bionic optimization algorithm is 
manifested in two aspects: the inherent and intrinsic parallelism of the bionic 
optimization calculation. This enables bionic optimization algorithms to complete 
of their overall goal, which is highlighted in the movement of multiple agents' 
individual behaviors. Finally, both algorithms have self-organization and evolution. 
With memory function, all particles retain the knowledge of the solution. Thus, in 
an uncertain complex environment, bionic optimization algorithms can continuously 
improve the individual adaptability of the algorithm through self-learning. 

However, PSO and ACO algorithms differ with respect to their mechanisms. 
Firstly, PSO algorithm is a heuristic algorithm with a fairly simple principle. 
Compared with other bionic algorithms, it requires less code and parameters. PSO 
algorithm shares information through the best advantages currently searched, which 
is largely a single item information sharing mechanism. PSO algorithm is less 
affected by the dimension of the problem being solved. The mathematical basis of 
particle swarm optimization is relatively weak, and there is still a lack of profound 
and universal theoretical analysis. In the study of convergence analysis, it is 
necessary to further transform deterministic to random. In contrast, ACO algorithm 
uses a positive feedback mechanism, which is one of the most significant features 
of other bionic algorithms. An individual in the ant colony algorithm can only 
perceive local information and cannot directly use global information. Basic ACO 
algorithm generally requires longer search times and is prone to stagnation. The 
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convergence performance of the ant colony algorithm is sensitive to the setting of 
initialization parameters. In addition, ACO algorithm has a more mature 
convergence analysis method and can estimate the convergence speed. 

As an important branch of science, swarm intelligence algorithms have been 
widely recognized, rapidly promoted and applied in many engineering fields, such 
as system control, artificial intelligence, pattern recognition, production scheduling, 
and computer engineering. In view of complexity, constraint, nonlinearity, multi-
pole and difficult modeling of practical engineering problems, swarm intelligence 
algorithms are a major research target, and many researchers have sought to create 
an algorithm suitable for large-scale parallel and intelligent features. Since the 
1980s, some novel optimization algorithms have been developed by simulating or 
revealing certain natural phenomena or processes. These algorithms include 
artificial neural networks, chaos, genetic algorithms, evolutionary programming, 
simulated annealing, tabu search, and hybrid optimization strategies. Collectively 
the novel algorithms provide new ideas and means for solving complex problems 
through the inclusion of mathematics, physics, biological evolution, artificial 
intelligence, neuroscience and statistical mechanics. For simple-function 
optimization problems, classical algorithms are more efficient and can obtain the 
exact optimal solution of the function. However, for complex-functions and 
combinatorial optimization problems with nonlinear and multi-extreme 
characteristics, classical algorithms are often unable to obtain exact optimal 
solutions. The unique advantages and mechanisms of these algorithms allow them 
to be successfully applied in many fields, thereby attracting the attention of 
researchers and resulting in a research boom in this field.  
2.2 Literature review of TLBO algorithm 

Teaching-learning-based optimization (TLBO) algorithm, which only 
requires common controlling parameters, population size, and a number of 
generations was proposed in 2011 [88]-[93]. The parameter regulations are required 
under different conditions, which brings a certain limitation. More specifically, 
artificial bee colony algorithm (ABC) [94]-[98] involves the number of employed 
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foragers, scouters, followers, and limits. The performance of harmony search (HS) 
[99]-[101] is dependent on memory consideration rate, pitch adjusting rate, and 
bandwidth (bw). Likewise, cuckoo search algorithm (CSA) [102]-[104] requires 
switching probability, step size scaling factor and Levy index. In comparison, TLBO 
algorithm is independent of algorithm-specific control parameters. Since TLBO 
algorithm was proposed, TLBO algorithm has attracted attention from researchers 
because of its parameter-free characteristic. In [105], TLBO algorithm was applied 
by manufacturing industries to solve assembly sequence problems. The TLBO 
algorithm was also used to design screen primer problems [106]. In [107], TLBO 
was used to solve optimal coordination of directional over-current relays problems. 
Moreover, the application of TLBO for flow shop scheduling was described in 
[108]-[111]. In [112], TLBO was applied to power system scheduling. Moreover, 
binary TLBO algorithm was used to assist for designing plasmonic nanoparticles 
[113]. 

However, when compared to other population-based algorithms, TLBO 
algorithm is limited by its searching ability. In [114], a novel teacher learning phase 
was used to enhance the global search ability for synthesis of thinned concentric 
circular antenna arrays. In [115], one more learning step was added to TLBO 
algorithm for dynamic economic/environmental dispatch considering multiple plug-
in electric vehicle loads. In addition, reference [116] modified the teaching factor 
and number of teachers to increase the exploration ability to solve an environmental 
problem. In [117], a modified local search was applied to parameter estimation of 
nonlinear chaotic system. Reference [118] modified both teaching phase and 
learning phase to solve a multiobjective problem. In [119], a hybrid TLBO-PSO was 
used to achieve a faster convergence and avoid being trapped into local optima. 
Besides, [120] combined PSO and TLBO algorithms to form an effective algorithm 
for multiobjective optimization. Similarly, in [121], modified TLBO was combined 
with double DE for solving an optimal reactive power dispatch problem and 
comparing to eight other evolutionary algorithms, and the results indicate that the 
resulting algorithm is more efficient to balance global search and achieve faster 
convergence than others. In [122], TLBO algorithm with elite strategy was applied 
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to natural PCR-RFLP primer design for SNP genotyping and shown to have a more 
effective search ability as compared to PSO and GA. Similarity, [123] adopted an 
improved TLBO with elite strategy for parameters identification of PEM fuel cell 
and solar cell models. In [124], a modified TLBO algorithm with multiple teachers 
and adaptive teaching factor was applied to multiobjective optimization of heat 
exchangers, five groups results had demonstrated that the modified TLBO can 
reduce the cost as compared to GA. In another study, Rao et al. also proposed 
another modification at the same year that included changes in the learner phase In 
[125], a modified TLBO was used to solve unconstrained optimization problems, 
which outperformed ABC and two modified ABC algorithms. In [126], a novel 
TLBO algorithm with a modified teacher phase was applied to energy-efficient 
scheduling in hybrid flow shop which performed better than GA and IGSA for at 
least 20 test instances and consumed less computational time. In [127], an adaptive 
weight was used in the teacher phase for space trusses design problem and when 
compared to other evolutionary algorithms, both accuracy and time-cost are 
improved. In [128], a ring-neighborhood topology is selected to update the marks in 
teacher phase and a mutation step is added at the end of learner phase for ANN 
applications. In [129], experience information and differential mutation were 
incorporated into TLBO for improved global optimization. In [130], fuzzy-based 
TLBO was proposed to minimize the total energy losses in power system, results 
indicate improved performance as compared to TLBO and other optimization 
techniques. Besides, in [131], TLBO with a fuzzy grouping learning strategy in 
which fuzzy K-means is used to create K centers, each of which acts as the mean of 
its corresponding group to enhance the performance of TLBO algorithm. To this 
end, In [132], a Gaussian bare-bones TLBO (GBTLBO) algorithm, with its modified 
version (MGBTLBO) were proposed for the optimal reactive power dispatch 
(ORPD) problem with discrete and continuous control variables in the standard 
IEEE power systems for reduction in power transmission loss.  In [133], combines 
TLBO was combined with DE to design least squares linear phase FIR filters. 
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2.3 Teaching-learning-based optimization 
    In TLBO algorithm, a population is composed of ܲ learners, and different 

design variables (or filter coefficients) are viewed as S different subjects attached to 
the learners. All the scores of a learner (or a solution) ࢉ௣(ݐ) (for ݌ = 1, 2, ⋯ , ܲ) is 
evaluated collectively by the value of its objective (or error) function ݁ൣࢉ௣(ݐ)൧ in an 
optimization problem. Within a population, the best solution is assumed to be 
offered and maintained by the teacher. The operations of the TLBO are divided into 
two phases, the teacher phase and the learner phase. In TLBO, a global search is 
applied to explore the starting point and then the starting point is perturbed in a local 
search space iteratively to arrive at an optimal solution.  

1. Teacher phase 
     This phase is a process that a teacher teaches knowledge to the learners 

and improves the mean results of the class. ܯ௦(ݐ) is the mean result of the learners 
in a particular subject s in the tth iteration.  

݉௦(ݐ) = ଵ
௉ ∑ ௉௣ୀଵ(ݐ)௣,௦ࢉ                                          (2.1) 

As the teacher is the most knowledgeable people and has the best result over 
all subject, let ࢉ௕௘௦௧(ݐ)  represent the teacher. Learners get knowledge from the 
teacher and the quality of the teacher decides the mean result, so the difference 
݂݅ܦ ௦݂(ݐ) between the result of the teacher and mean result the of the learners in each 
subject is expressed as 

݂݅ܦ    ௦݂(ݐ) = ݀݊ܽݎ × (ܿ௕௘௦௧,௦(ݐ) −  (2.2)                        ((ݐ)௙݉௦ݐ
where ܿ௕௘௦௧,௦(ݐ) is the value of the teacher in subject s. ݐ௙  is the teaching factor 
which decides the value of mean to be changed, and rand is a random number in the 
range [0,1]. The value of  ݐ௙  can be either 1 or 2. The value of ݐ௙   is decided 
randomly as, 

௙ݐ = 1]݀݊ݑ݋ݎ +  (2.3)                                          [݀݊ܽݎ
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where ݐ௙ is not a parameter of the TLBO algorithm. The value of ݐ௙ is not given as 
an input to the algorithm and its value is randomly decided by the algorithm using 
Eq. (2.3). 

Then each learner has a potential updated counterpart and therefore 
௣,௦ᇱࢉ   (ݐ) = (ݐ)௣,௦ࢉ + ݂݅ܦ ௦݂(ݐ)                                    (2.4) 

where ࢉ௣ᇱ  .in subject s (ݐ)௣ࢉ is the updated value of (ݐ)
The algorithm accepts ࢉ௣ᇱ (ݐ)  only if it gives a better value of objective 

function otherwise keeps the previous solution such that 

(ݐ)௣ࢉ = ቊ ௣ᇱࢉ (ݐ)
௣ᇱࢉൣ݁ ݂݅    (ݐ)௣ࢉ  ൧(ݐ) < ൧(ݐ)௣ࢉൣ݁

௣ᇱࢉൣ݁ ݂݅ ൧(ݐ) ≥  ൧                   (2.5)(ݐ)௣ࢉൣ݁

All the accepted scores at the end of the teacher phase are maintained and 
these values become the input to the learner phase. 

2. Learner phase 
Students not only can get knowledge from the teacher but also can improve 

their individuals through interaction among themselves. In this step two students are 
randomly selected namely ܣ and ࢉ ) ܤ஺(ݐ) ≠  among the entire class. After ((ݐ)஻ࢉ 
sharing or exchanging their knowledge, the new results are gained as: 

஺ᇱࢉ (ݐ) = (ݐ)஺ࢉ  + ݀݊ܽݎ × ൫ ࢉ஺(ݐ) − [(ݐ)஺ࢉ]݁  ݂݅  ,൯(ݐ)஻ࢉ  <  (2.6)     [(ݐ)஻ࢉ]݁ 
஺ᇱࢉ (ݐ) = (ݐ)஺ࢉ  + ݀݊ܽݎ × ൫ (ݐ) ࡮ࢉ − [(ݐ)஺ࢉ]݁  ݂݅  ,൯(ݐ)஺ࢉ  >  (2.7)    [(ݐ)஻ࢉ]݁ 

The algorithm accepts ࢉ஺ᇱ ݌ for) (ݐ) = 1, 2, ⋯ , ܲ) only if it gives a better 
value of objective function otherwise it keeps the previous solution such that 

(ݐ)஺ࢉ = ൜ࢉ஺ᇱ (ݐ)
஺ᇱࢉ]݁ ݂݅    (ݐ)஺ࢉ  [(ݐ) < [(ݐ)஺ࢉ]݁

஺ᇱࢉ]݁ ݂݅ [(ݐ) ≥  (2.8)                     [(ݐ)஺ࢉ]݁
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2.4 Gradient-based TLBO Algorithm 
Based on analysis of previous TLBO design results, TLBO algorithm has a 

limitation on search ability. In order to enhance the search capability, a new phase, 
gradient-based phase, is proposed to improve the convergence speed and accuracy of 
the TLBO algorithm. The gradient descent method is a traditional method of 
optimization, and the gradient represents the sharpest changing trend of a function at 
a given point. In fact, the gradient descent method is used to numerically search for 
local minimum or maximum values. It is an efficient, high-speed and reliable method 
in practical applications.  

In the gradient-based TLBO, a global search is applied to explore the starting 
point and then the starting point is perturbed in a local search space iteratively to 
arrive at an optimal solution. Moreover, a parameter—step size—is added into the 
gradient-based phase. A proper control parameter can improve robustness. 

There is a flowchart Fig. 2.1 for the improved TLBO algorithm. To this end, 
the gradient-based TLBO algorithm is proposed in this section. 
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YesNo
Update by (2.12) Keep 

Calculate a new score          with  its gradient 
by (2.13) 

Is          better 
than          ?

YesNo
Update by (2.14) Keep 

Is          better 
than          ?

Keep the elite Score 
(teacher            )

Calculate the mean of each design variable  Ms  and 
the new scores          using (2.9) to (2.11) 

Initialize the population (learners), design 
variables (coefficients c) and termination criterion

Is the termination 
criteria satisfied? 

Stop
Yes No

 
 Fig. 2.1 Flowchart of gradient-based TLBO algorithm 

In the gradient-based TLBO algorithm, a population is composed of ܲ 
learners, and different design variables (or filter coefficients) are viewed as S 
different subjects attached to the learners. All the scores of a learner (or a solution) 
݌ for) (ݐ)௣ࢉ = 1, 2, ⋯ , ܲ) is evaluated collectively by the value of its objective (or 
error) function  ݁ൣࢉ௣(ݐ)൧ in an optimization problem. 
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Within a population, the best solution is assumed to be offered and 
maintained by a teacher. The operations of the gradient-based TLBO is divided into 
two phases, the teacher phase and the gradient-based learning phase. In the gradient-
based TLBO, a search is applied to explore the starting point and then the starting 
point is perturbed in a local search space iteratively to arrive at an optimal solution. 

1. Teacher phase 
This phase is a process that a teacher teaches knowledge to the learners and 

improves the mean results of the class. ݉௦(ݐ) (for ݏ = 1, 2, ⋯ , ܵ) is the mean 
result of the learners in a specific subject s in the tth iteration, which is same as the 
teacher phase in the original TLBO algorithm. As the teacher is the most knowledge 
people and has the best result on that subject, let ࢉ௕௘௦௧(ݐ) represent the teacher. 
Learners get knowledge from the teacher and the quality of the teacher decides the 
mean result, so the difference ݂݅ܦ ௦݂(ݐ) between the teacher and mean result of the 
learners in each subject is expressed as 

݂݅ܦ         ௦݂(ݐ) = ݀݊ܽݎ ∗ (ݐ)௕௘௦௧,௦ࢉ) −  (2.9)                         ( (ݐ)௙݉௦ݐ
where ݐ௙ is the teaching factor which decides the value of mean to be changed, and 
 .௙ can be either 1 or 2ݐ  is a random number in the range [0,1]. The value of ݀݊ܽݎ
The value of ݐ௙  is decided randomly as, 

௙ݐ = 1]݀݊ݑ݋ݎ +             (2.10)                                     [݀݊ܽݎ
 ிܶ is not a parameter of the TLBO algorithm. The value of ிܶ is not given 

as an input to the algorithm and its value is randomly decided by the algorithm using 
Eq. (2.10). 

݂݅ܦ ௦݂(ݐ)is added to current score of learners in different subjects to generate 
new learners: 

௣,௦ᇱࢉ  (ݐ) = (ݐ)௣,௦ࢉ + ݂݅ܦ ௦݂(ݐ)                                  (2.11) 
where ࢉ௣ᇱ  .in subject s (ݐ)௣ࢉ is the updated value of (ݐ)
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The algorithm accepts ࢉ௣ᇱ (ݐ)  only if it gives a better value of objective 
function otherwise it keeps the previous solution such that 

(ݐ)௣ࢉ = ቊ ௣ᇱࢉ (ݐ)
௣ᇱࢉൣ݁ ݂݅    (ݐ)௣ࢉ  ൧(ݐ) < ൧(ݐ)௣ࢉൣ݁

௣ᇱࢉൣ݁ ݂݅ ൧(ݐ) ≥  ൧                  (2.12)(ݐ)௣ࢉൣ݁

All the accepted scores at the end of the teacher phase are maintained and 
these values become the input to the learner phase. 

2. Gradient-based learning phase 
The learner phase is not efficient due to the random selection approach in 

original TLBO algorithm. For this reason, a gradient-based phase is proposed to 
speed up the global search, which leads to (3.17) 

(ݐ)௣ᇱᇱࢉ = (ݐ)௣ࢉ − ߤ డ௘ൣࢉ೛(௧)൧
డࢉ೛(௧)                                  (2.13) 

where ߤ stands for the step size. 
To obtain the optimal result the score vector ࢉ௣(ݐ) is selected through (2.14) 

(ݐ)௣ࢉ = ቊࢉ௣ᇱᇱ(ݐ)
൧(ݐ)௣ᇱᇱࢉൣ݁ ݂݅    (ݐ)௣ࢉ  < ൧(ݐ)௣ࢉൣ݁

൧(ݐ)௣ᇱᇱࢉൣ݁ ݂݅ ≥  ൧                       (2.14)(ݐ)௣ࢉൣ݁

After applying this new phase to the proposed algorithm, the performance 
could be enhanced, which is reflected in the convergence. At the end of each 
iteration, if the value of error function of the best learner is smaller than the one of 
the global best learner, the subject score vector of the teacher is delivered to the next 
iteration. 
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CHAPTER 3  

Linear phase FIR filter design  

Digital Hilbert transformers have many applications in the field of digital 
signal processing, for instance, latency analysis in neuro-physiological signals 
[134]; psychoacoustic design of bizarre stimuli [135]; communication problems of 
speech data compression [136]; multi-channel acoustic echo cancellation of 
regularization of convergence [137]; and auditory prostheses in signal processing 
[138]. Digital Hilbert transformer design can be formulated as a Type 3 and Type 4 
linear phase FIR digital filter optimization problem. Both Type 3 and Type 4 linear 
phase FIR filters are characterized by odd symmetry. In this Chapter, a gradient-
based TLBO algorithm is proposed to improve the performance of the standard 
TLBO algorithm.  Least squares and minimax designs are used to minimize error 
function, several design examples of Type 3 and Type 4 Hilbert transformers using 
the standard TLBO algorithm and the gradient-based TLBO algorithm are presented. 
Design results are compared to those obtained by the least squares minimization and 
the Parks-McClellan algorithm [24]. 

In this Chapter, Section 3.1 describes the formulation of Hilbert transformer 
design problem and objective functions; Section 3.2 presents the design examples 
and results; Section 3.2.1 shows the Type 3 bandpass HT designs; Section 3.2.2 
describes Type 4 highpass HT designs; Section 3.2.3 provides a comparison with 
least squares algorithm and minimax algorithm; and Section 3.3 gives conclusions. 
3.1 Problem formulation 
3.1.1 Type 3 Linear Phase FIR Digital Filters 

The causal transfer function of an M odd and odd symmetry FIR digital filter 
can be expressed [1] as 

(ݖ)ܪ = ቊ∑ ℎ(݊)ିݖ௡ൣ1 − ൧ಾషయ[ெି(ଶ௡ାଵ)]ିݖ
మ௡ୀ଴ ቋ + ଵ

ଶ ℎ ቀெିଵ
ଶ ቁ ಾషభିݖ

మ [1 −  ଴]     (3.1)ݖ
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where ℎ(݊) for ݊ = 0 to (ܯ − 1)/2 represent the unique set of impulse responses. 
According to the M odd and odd symmetrical features of the Type 3 linear 

phase Hilbert transformer, the coefficient vector h is given by 
ܐ = [ℎ(0), ℎ(1), ℎ(2), ⋯ , ℎ(݊), ⋯ , ℎ(ܯ − 2), ℎ(ܯ − 1)]              (3.2) 

ℎ(݊) = −ℎ(ܯ − 1 − ݊)    for 0,1,2,3, ⋯ , ቀெିଷ
ଶ ቁ                     (3.3) 

The frequency response can be evaluated by substituting ݖ = ݁௝ఠ் into (3.1) 
as 

(߱)ܪ = ݆݁ି௝ቀಾషభ
మ ቁఠ் ∑ 2ℎ(݊) sin ቂቀெିଵ

ଶ − ݊ቁ ߱ܶቃ(ಾషయ)
మ௡ୀ଴                   (3.4) 

The N (=M-1)th-order Type 3 linear phase digital Hilbert transformer can be 
represented by 

(߱)ܪ = ݆݁ି௝ಿ
మ ఠ்܋)ܣ, ߱)                                        (3.5) 

where 
,ࢉ)ܣ (ݓ = ்܋  (3.6)                                           (߱)ܖܑܛ

܋       = ൤ܿଵ, ܿଶ, ܿଷ, … , ܿቀಾషయ
మ ቁ൨்                                     (3.7) 

                                      = 2 ൤ℎ ൬ܯ − 1
2 − 1൰ , ⋯ , ℎ(2), ℎ(1), ℎ(0)൨

்
 

ܿ଴ = ℎ ቀெିଵ
ଶ ቁ = 0                                                  (3.8) 

(߱)ܖܑܛ = ቂsin(߱ܶ) sin(2߱ܶ) ⋯  sin ቀே
ଶ ߱ܶቁቃ்             (3.9) 

 
From (3.4), the term j corresponds to ݁௝గ/ଶ, the group delay response of the 

even Nth-order Type 3 linear phase FIR filter is 
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߬(߱) = − డఏ(ఠ)
డఠ் = − డቂିቀಿ

మ ቁఠ்ାഏ
మቃ

డఠ் = ே
ଶ                             (3.10) 

3.1.2 Type 4 Linear Phase FIR Digital Filters 
The transfer function of a causal M even and odd symmetry linear FIR digital 

filter [1] is given by 

(ݖ)ܪ = ∑ ℎ(݊)ିݖ௡ൣ1 − ൧ಾషమ[ெି(ଶ௡ାଵ)]ିݖ
మ௡ୀ଴                    (3.11) 

The Type 4 linear phase digital Hilbert transformer is ܯ(= ܰ + 1) even and 
odd symmetry such that its ܯ impulse responses can be expressed as  

ܐ = [ℎ(0), ℎ(1), ℎ(2), … , ℎ(݊), … , ℎ(ܯ − 2), ℎ(ܯ − 1)]            (3.12) 

ℎ(݊) = −ℎ(ܯ − 1 − ݊)  for  ݊ = 0,1, 2, 3, … , ቀெ
ଶ − 1ቁ               (3.13) 

The frequency response of a Type 4 linear phase digital Hilbert transformer 
can be evaluated by substituting ݖ = ݁௝ఠ் into (3.11) as 

(߱)ܪ = ݆݁ି௝ಾషభ
మ ఠ் ∑ 2ℎ(݊) sin ቀெିଵ

ଶ − ݊ቁ ߱ܶಾషమ
మ௡ୀ଴ = ݆݁ି௝ಾషభ

మ ఠ்܋)ܣ, ߱)   (3.14) 

where 
,ࢉ)ܣ (ݓ = ்܋  (3.15)                                           (߱)ܖܑܛ

܋ = ൤ܿ଴, ܿଵ, ܿଶ, ܿଷ, … , ܿቀಾషభ
మ ቁ൨் = 2 ቂℎ ቀெ

ଶ − 1ቁ , ⋯ , ℎ(2), ℎ(1), ℎ(0)ቃ் (3.16) 

(߱)ܖܑܛ = ቂsin(ఠ்
ଶ ) sin ቀଷఠ்

ଶ ቁ ⋯  sin ቀெିଵ
ଶ ߱ܶቁቃ்             (3.17) 

From (3.14), the term j corresponds to ݁௝గ/ଶ, the group delay response of the 
odd Nth-order Type 4 linear phase digital Hilbert transform is 

߬(߱) = − డఏ(ఠ)
డఠ் = − డቂିቀಿ

మ ቁఠ்ାഏ
మቃ

డఠ் = ே
ଶ                              (3.18) 
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3.1.3 Hilbert Transformer 
The ideal frequency response of a digital Hilbert transformer is denoted as 

(3.19) in [80 
(߱)ௗܪ = −݆݁ି௝ఛఠ for 0 ≤ ߱ ≤  (3.19)                            ߨ

where the parameter ߬ denotes the group delay. The frequency response ܪௗ(ݓ) is 
related to the desired amplitude response ܣௗ(ݓ௜) by 

(߱)ௗܪ = ݆݁ି௝ఛఠܣௗ(߱) = ݆݁ି௝ఛఠ(−1)
for 0 ≤ ߱ ≤ ߨ                          (3.20) 

According to (3.20), the ideal amplitude response of the digital Hilbert 
transformer is defined by 

(߱)ௗܣ = −1 for 0 ≤ ߱ ≤  (3.21)                              ߨ
3.1.4 Objective Functions 
3.1.4.1 Minimax design 

The optimization problem for Type 3 and Type 4 Hilbert transformer is to 
search for an optimal coefficient vector ܋ that minimizes the weighted minimax 
(MM) objective function ݁(܋) with respect to ܋ as defined [1] by 

min܋ (܋)݁ = min܋ [∑ ܹ(߱௜)|܋)ܪ, (௜ݓ − ௗ(߱௜)|௣ூ௜ୀଵܪ ]ଵ/௣
for  ߱௜ ∈ ௢ܨ

       (3.22) 

where ܨ௢ is the optimization frequency grid; and ݌ is even. 
For simplicity, the amplitude response is considered, the weighted minimax 

function ݁(܋) is expressed by 
min܋ (܋)݁ = min܋ [∑ ܹ(߱௜)|܋)ܣ, (௜ݓ − ௗ(߱௜)|௣ூ௜ୀଵܣ ]ଵ/௣

for  ߱௜ ∈ ௢ܨ
                (3.23) 

3.1.4.2 Least squares design 
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The optimization problem both for Type 3 and Type 4 Hilbert transformer is 
to search for an optimal coefficient vector ܋ that minimizes the weighted least square 
(LS) objective function ݁(܋) with respect to ܋ as defined [1] by 

min܋ (܋)݁ = min܋ [∑ ܹ(߱௜)|܋)ܣ, ߱௜) − ௗ(߱௜)|ଶூ௜ୀଵܣ ]
for  ߱௜ ∈ ௢ܨ

                   (3.24) 

3.2 Designs and Results 
In this chapter, Type 3 linear phase FIR bandpass digital Hilbert transformers 

of orders N=14, 26, 38 and 50 and Type 4 linear phase FIR highpass digital Hilbert 
transformers [1] of orders N=13, 25, 37 and 49 are designed using the standard 
TLBO algorithm for MM design, as well as the standard TLBO algorithm and the 
gradient-based TLBO algorithm for LS design.  

The initialization of filter coefficients is obtained by adding ±random values 
to the filter coefficient values obtained by the Matlab function firpm.m for MM 
designs and by the Matlab function firls.m for LS designs to ensure all the 
coefficients are within the bound limits. 
3.2.1 Type 3 bandpass HT MM designs 

The MM errors obtained by the Matlab function firpm.m and the standard 
TLBO, and maximum iteration numbers and CPU time in seconds of different Type3 
linear phase Hilbert transformer designs are listed in Table 3.1. The obtained MM 
errors indicate that all the standard TLBO designs are better than those of the 
firpm.m designs. The passband frequency grid and the passband frequency points 
for optimization and evaluation are listed in Table 3.2. In Table 3.2, the passband 
transition width decreases as the filter order increases. The corresponding peak MM 
error, peak error frequency and the number of iterations required for convergence of 
each design are listed in Table 3.3 and Table 3.4. In Tables 3.3 and Table 3.4, the 
TLBO designs are compared to the MM designs using the Matlab functions firpm.m. 
The amplitude response, impulse response of Type 3 and Type 4 Hilbert transform 
designs are shown in Fig. 3.1 to Fig. 3.8, respectively. 
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Table 3.1 FIR Filter and TLBO (Gradient-based TLBO) Parameters (Key: LP-FIR 
3: Type 3 FIR Hilbert transformer) 

Symbol Description Value 
ܹ(߱௜) Frequency weights for 0 ≤ ߱௜ ≤  1 ߨ

ܿ௞[௎] Upper bound of filter coefficients 0.94 
ܿ௞[௎] Lower bound of filter coefficients -0.94 

ܲ Gradient-based TLBO population size 14 26         38 50 
ܰ Order of LP-FIR3 filter 14 26 38 50 
ܵ Number of distinct coefficients of LP-FIR3 filter 7 13 19 25 
߬ Group delay of LP-FIR3 filter 7 13 19 25 

 
Table 3.2 Frequency Grid and Desired Amplitude Response 

 N Frequency Grid ܣௗ(߱௜) 

Optimization 
14 [0.10:0.005:0.90] [21:181] 
26 [0.08:0.005:0.92] [17:185] 
38 [0.06:0.005:0.94] [13:189] 
50 [0.04:0.005:0.96] [9:173] 

Evaluation 
14 [0.10:0.001:0.90] [101:901] 
26 [0.08:0.001:0.92] [81:921] 
38 [0.06:0.001:0.94] [61:941] 
50 [0.04:0.001:0.96] [41:961] 

 
Table 3.3 Hilbert transformer minimax errors (Keys: ܶ: Type; BP: Bandpass; HP: 
Highpass; ܰ: Filter order; ܣ: Algorithm; 1: firpm.m; 2: TLBO; CPU: Time in sec) 

  Minimax error Iteration CPU ܣ ܰ ܶ

3 
BP 

14 1 0.063859638428037 - 0.11 
2 0.048437168979108 2,500 1.14 

26 1 0.056149417077486 - 0.10 
2 0.014541694349349 7,500 6.86 

38 1 0.050680262166871 - 0.14 
2 0.010494629986522 7,500 9.57 

50 1 0.057868729255083 - 0.11 
2 0.017519610534098 2,000,000 3576.12 
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Table 3.4 Hilbert transformer minimax peak error (Keys: ܶ: Type; BP: Bandpass; 
ܰ: filter order; MM: Minimax; ܣ: Algorithm; 1: firpm.m; 2: TLBO;  ܮ: Peak error 

frequency; C: Converged iteration number) 
 ܥ ܮ Peak MM error ܣ ܰ ܶ

3 
BP 

14 1 0.062508534703398 0.282 - 
2 0.047738450350362 0.147 226 

26 1 0.055209896344805 0.814 - 
2 0.014405922412530 0.101 1,679 

38 1 0.049964067125621 0.494 - 
2 0.010421858229430 0.893 1,668 

50 1 0.057192424608021 0.743 - 
2 0.017715320356500 0.520 1,826,795 

 
 

 Fig. 3.1 Hilbert transformer minimax design for Type 3 N =14 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.2 Convergence curve of minimax error for Hilbert transformer design for 
Type 3 N =14 (a) Interval 1, (b) Interval 2 

 
Fig. 3.3 Hilbert transformer minimax design for Type 3 N =26 (a) Amplitude 

response, (b) Impulse response, (c) Passband amplitude response 
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Fig. 3.4 Convergence curve of minimax error for Hilbert transformer design for 

Type 3 N =26 (a) Interval 1, (b) Interval 2 

 
Fig. 3.5 Hilbert transformer minimax design for Type 3 N =38 (a) Amplitude 

response, (b) Impulse response, (c) Passband amplitude response 
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Fig. 3.6 Convergence curve of minimax error for Hilbert transformer design for 

Type 3 N =38 (a) Interval 1, (b) Interval 2 
 

 Fig. 3.7 Hilbert transformer minimax design for Type 3 N =50 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.8 Convergence curve of minimax error for Hilbert transformer design for 
Type 3 N =50 (a) Interval 1, (b) Interval 2 

3.2.2 Type 4 highpass HT MM designs 
The MM errors obtained by the Matlab function firpm.m and the standard 

TLBO, and maximum iteration numbers and CPU time in seconds of different Type 
4 linear phase Hilbert transformer designs are listed in Table 3.5. The obtained MM 
errors indicate that all the standard TLBO designs are better than those of the 
firpm.m designs. The passband frequency grid and the passband frequency points 
for optimization and evaluation are listed in Table 3.6. In Table 3.6, the passband 
transition width decreases as the filter order increases. The corresponding peak MM 
error, peak error frequency and the number of iterations required for convergence of 
each design are listed in Table 3.7 and Table 3.8. In Tables 3.7 and Table 3.8, the 
TLBO designs are compared to the MM designs using the Matlab functions firpm.m. 
The amplitude response, impulse response of Type 3 and Type 4 Hilbert transform 
designs are shown in Fig. 3.9 to Fig. 3.16, respectively. 
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Table 3.5 FIR Filter and TLBO (Gradient-based TLBO) Parameters (Key: LP-FIR 
4: Type 4 Hilbert transformer) 

Symbol Description Value 
Frequency weights for 0 (௜ݓ)ܹ ≤ ௜ݓ ≤  1 ߨ

ܿ௞[௎] Upper bound of filter coefficients 0.95 
ܿ௞[௎] Lower bound of filter coefficients -0.95 

ܲ Gradient-based TLBO population size 13 25         37 49 
ܰ Order of LP-FIR4 filter 13 25 37 49 
ܵ Number of distinct coefficients of  

LP-FIR4 filter 7 13 19 25 
߬ Group delay of LP-FIR4 filter 6.5 12.5 18.5 24.5 

 
Table 3.6 Frequency Grid and Desired Amplitude Response 

 N Frequency Grid ܣௗ(߱௜) 

Optimization 
13 [0.10:0.005:1] [21:201] 
25 [0.08:0.005:1] [17:201] 
37 [0.06:0.005:1] [13:201] 
49 [0.04:0.005:1] [9:201] 

Evaluation 
13 [0.10:0.001:1] [101:1001] 
25 [0.08:0.001:1] [81:1001] 
37 [0.06:0.001:1] [61:1001] 
49 [0.04:0.001:1] [41:1001] 

 
Table 3.7 Hilbert transformer minimax errors (Keys: ܶ: Type; HP: Highpass; ܰ: 

Filter order; ܣ: Algorithm; 1: firpm.m; 2: TLBO; CPU: Time in sec) 
  Minimax error Iteration CPU ܣ ܰ ܶ

4 
HP 

13 1 0.063040414548992 - 0.08 
2 0.062675998771068 25,000 11.38 

25 1 0.017736735997146 - 0.08 
2 0.017593020576835 75,000 77.21 

37 1 0.012085967205373 - - 
2 0.012039653786367 100,000 138.81 

49 1 0.019316280983026 - 0.08 
2 0.018912632578120 1,000,000 1919.82  
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Table 3.8 Hilbert transformer minimax peak error (Keys: ܶ: Type; HP: Highpass; 
ܰ: filter orders; MM: Minimax; ܣ: Algorithm; 1: firpm.m; 2: TLBO;  ܮ: Peak error 

frequency; C: Converged iteration number) 
 C ܮ Peak MM error ܣ ܰ ܶ

4 
HP 

13 1 0.061784018811740 0.273 - 
2 0.062108754071569 0.100 24,194 

25 1 0.017421661549390 0.608 - 
2 0.017582610593351 0.103 73,691 

37 1 0.011822832074982 0.947 - 
2 0.011928934257905 0.076 35,075 

49 1 0.018939292915125 0.392 - 
2 0.019591494065284 0.520 500,798 

 

 Fig. 3.9. Hilbert transformer minimax design for Type 4 N =13 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.10. Convergence curve of minimax error for Hilbert transformer design for 
Type 4 N =13 (a) Interval 1, (b) Interval 2 

 

 Fig. 3.11. Hilbert transformer minimax design for Type 4 N =25 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.12. Convergence curve of minimax error for Hilbert transformer design for 
Type 4 N =25 (a) Interval 1, (b) Interval 2 

 

 Fig. 3.13. Hilbert transformer minimax design for Type 4 N =37 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.14. Convergence curve of minimax error for Hilbert transformer design for 
Type 4 N =37 (a) Interval 1, (b) Interval 2 

 

 Fig. 3.15. Hilbert transformer minimax design for Type 4 N =49 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.16. Convergence curve of minimax error for Hilbert transformer design for 
Type 4 N =49 (a) Interval 1, (b) Interval 2 

3.2.3 Type 3 bandpass HT LS designs 
Specifications of Type 3 Hilbert transformers and standard TLBO and 

gradient-based TLBO algorithm parameters are listed in Table 3.1. The passband 
frequency grid and the passband frequency points for optimization and evaluation 
are listed in Table 3.2. The parameter ߤ  in gradient-based TLBO algorithm is 
assumed as ߤ = 0.0001. 

Table 3.9 to Table 3.16 show the Hilbert transformer design results and the 
corresponding coefficients obtained in term of least square error using gradient-
TLBO algorithm as compared to those obtained using original TLBO algorithm, 
using the least-squares error minimization (by Matlab function firls.m). 

The amplitude response, impulse response, and passband amplitude error of 
Type 3 Hilbert transformer design with four different orders using gradient-based 
TLBO algorithm are shown in Fig. 3.17 to Fig. 3.24, respectively. 
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Table 3.9 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
1 0.093043692045098 0.102273605696324 - - 0.06 
2 0.095997154035938 0.098726468477840 2,500 468 0.49 
3 0.092586981295538 0.098726467261742 2,500 390 0.43 

 
 

 Fig. 3.17 Hilbert transformer least squares design for Type 3 N =14 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.18 Convergence curve of least squares error for Hilbert transformer design 
for Type 3 N =14 (a) Interval 1, (b) Interval 2 

Table 3.10 Filter Coefficients of T3-N14 
h(n) Gradient-based TLBO TLBO 

h(0)= -h(14) -0.0347055755819885 -0.0347055751541252 
h(1)=- h(13) -2.52487407105958e-17 0 
h(2)=- h(12) -0.0815794956241600 -0.0815794953886600 
h(3)=- h(11) -1.03809875839792e-17 0 
h(4)=- h(10) -0.182284596152073 -0.182284596151148 
h(5)=- h(9) -3.08439395381962e-17 0 
h(6)=- h(8) -0.626206770896815 -0.626206770813803 

h(7) 0 0 
 

 
Table 3.11 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
1 0.036463095254589 0.102391692050880 - - 0.17 
2 0.008196731534691 0.033488078957269 7,500 4,687 2.68 
3 0.008196731534693 0.033488078483567 7,500 837 2.46 
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 Fig. 3.19 Hilbert transformer least squares design for Type 3 N =26 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 

 Fig. 3.20 Convergence curve of least squares error for Hilbert transformer design 
for Type 3 N =26 (a) Interval 1, (b) Interval 2 
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Table 3.12 Filter Coefficients of T3-N26 
h(n) Gradient-based TLBO TLBO 

h(0)=- h(26) -0.00867093444496660 -0.0149075046314589 
h(1)=- h(25) -3.98393803867777e-17 0 
h(2)=- h(24) -0.0188226413444431 -0.0221003319022681 
h(3)=- h(23) 4.05272966562784e-17 0 
h(4)=- h(22) -0.0349233812103061 -0.0382588890671321 
h(5)=- h(21) 3.06294633179801e-17 0 
h(6)=- h(20) -0.0604148311493852 -0.0634815690527765 
h(7)=- h(19) -4.02145384689133e-17 0 
h(8)=- h(18) -0.103957352277172 -0.106428569979422 
h(9)=- h(17) 3.26122188437851e-17 0 

h(10)=- h(16) -0.197525091829811 -0.199130267448950 
h(11)=- h(15) -2.67957736667951e-17 0 
h(12)=- h(14) -0.631611719387810 -0.632164551201469 

h(13) 0 0 
 

Table 3.13 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
1 0.027305696418579 0.097961888212676 - - 0.12 
2 0.003931412924729 0.024318361430496 7,500 5929 3.59 
3 0.003931412924729 0.019158132394615 7,500 2670 3.24 
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  Fig. 3.21 Hilbert transformer least squares design for Type 3 N =38 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 

 Fig. 3.22 Convergence curve of least squares error for Hilbert transformer design 
for Type 3 N =38 (a) Interval 1, (b) Interval 2 
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Table 3.14 Filter Coefficients of T3-N38 
h(n) Gradient-based TLBO TLBO 

h(0)=- h(38) -0.00450585755598610 -0.00450585748798801 
h(1)=- h(37) 4.13688861912307e-17 0 
h(2)=- h(36) -0.00856492884089291 -0.00856492831333441 
h(3)=- h(35) -5.93130524467890e-17 0 
h(4)=- h(34) -0.0143789514946784 -0.0143789512381007 
h(5)=- h(33) 3.01510883009364e-17 0 
h(6)=- h(32) -0.0224934579235578 -0.0224934578425080 
h(7)=- h(31) -8.53718991076579e-17 0 
h(8)=- h(30) -0.0337684442056097 -0.0337684439185709 
h(9)=- h(29) 2.69287412908123e-17 0 

h(10)=- h(28) -0.0497662949224837 -0.0497662944214584 
h(11)=- h(27) 2.73830646514252e-17 0 
h(12)=- h(26) -0.0738148198933766 -0.0738148196770647 
h(13)=- h(25) 2.72737448153388e-20 0 
h(14)=- h(24) -0.114627434532271 -0.114627433951268 
h(15)=- h(23) -2.79759347161554e-17 0 
h(16)=- h(22) -0.204398651095386 -0.204398650749998 
h(17)=- h(21) -2.91387265880787e-17 0 
h(18)=- h(20) -0.633984845554837 -0.633984845369711 

h(19) 0 0 
 

Table 3.15 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
1 0.023120387104181 0.023120387104181 - - 0.05 
2 0.009157825241546 0.039736025210419 7,500 2470 5.41 
3 0.009157825241546 0.039736021619859 7,500 700 4.58 
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Fig. 3.23 Hilbert transformer least squares design for Type 3 N =50 (a) Amplitude 

response, (b) Impulse response, (c) Passband amplitude response 

 Fig. 3.24 Convergence curve of least squares error for Hilbert transformer design 
for Type 3 N =50 (a) Interval 1, (b) Interval 2 
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Table 3.16 Filter Coefficients of T3-N50 
h(n) Gradient-based TLBO TLBO 

h(0)=- h(50) -0.00467224664444162 -0.0122793439331088 
h(1)=- h(49) -3.68833667708071e-17 0 
h(2)=- h(48) -0.00719048289834964 -0.00904980596848222 
h(3)=- h(47) 3.45272071110195e-17 0 
h(4)=- h(46) -0.0103889936231642 -0.0162921829702269 
h(5)=- h(45) -5.83034034438175e-17 0 
h(6)=- h(44) -0.0144102265177017 -0.0212247897342324 
h(7)=- h(43) 2.72281252917441e-17 0 
h(8)=- h(42) -0.0194528570298624 -0.0275282902044841 
h(9)=- h(41) -5.76370969694656e-17 0 

h(10)=- h(40) -0.0258132394574186 -0.0355726851840625 
h(11)=- h(39) 2.84064784387112e-17 0 
h(12)=- h(38) -0.0339656443354446 -0.0461444174658750 
h(13)=- h(37) -8.82086725356694e-17 0 
h(14)=- h(36) -0.0447303936105520 -0.0608727869149715 
h(15)=- h(35) 5.35730798834895e-17 0 
h(16)=- h(34) -0.0596662421867969 -0.0831233942211755 
h(17)=- h(33) 3.11386297920183e-17 0 
h(18)=- h(32) -0.0821350755208761 -0.121666743609350 
h(19) =- h(31) -3.00830867228597e-17 0 
h(20) =- h(30) -0.120920705644299 -0.121666743609350 
h(21) =- h(29) -2.42816047387683e-17 0 
h(22) =- h(28) -0.208320020984180 -0.208793935251685 
h(23) =- h(27) -2.83929234851383e-17 0 
h(24) =- h(26) -0.635316748130881 -0.635481047083814 

h(25)  0 0 
 

 3.2.4 Type 4 highpass HT LS designs 
Specifications of Type 4 Hilbert transforms and TLBO and gradient-based 

TLBO algorithm parameters are listed in Table 3.5 and Table 3.6, respectively. The 
passband frequency grid and the passband frequency points for optimization and 
evaluation are listed in Table 3.6. The parameter ߤ  in gradient-based TLBO 
algorithm is assumed as ߤ = 0.0001. 

Table 3.17 to Table 3.24 show the Hilbert transform design results and the 
corresponding coefficients obtained in term of least square error value using 
gradient-based TLBO algorithm as compared to those obtained using original TLBO 



 

51  

algorithm, using the least-squares error minimization (by Matlab function firls.m). 
The amplitude response, impulse response, and passband amplitude error of 

Type 4 Hilbert transform design with four different orders using gradient-based 
TLBO algorithm are shown in Fig. 3.25 to Fig. 3.32, respectively. 

Table 3.17 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
1 0.108848444093498  0.146237503043823 - - 0.05 
2 0.108445670945980 0.140880599458578 2,500 2,214 0.46 
3 0.108445670945980 0.140880598427550 2,500 680 0.45 

 
 

  Fig. 3.25 Hilbert transformer least squares design for Type 4 N =13 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 
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 Fig. 3.26 Convergence curve of least squares error for Hilbert transformer design 
for Type 4 N =13 (a) Interval 1, (b) Interval 2 

 Table 3.18 Filter Coefficients of T4-N13 
h(n) Gradient-based TLBO TLBO 

h(0)= -h(13) -0.0190400492050795 -0.0190400489310466 
h(1)=- h(12) -0.0307955992939464 -0.0307955991972672 
h(2)=- h(11) -0.0472028004062931 -0.0472028008777906 
h(3)=- h(10) -0.0718441850018401 -0.0718441848823209 
h(4)=- h(9) -0.113143404277388 -0.113143403689404 
h(5)=- h(8) -0.203556672258847 -0.203556671903639 
h(6)=- h(7) -0.633657560003241 -0.633657560271522 

 
Table 3.19 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
1 0.007971674013970 0.051359397816245 - - 0.04 
2 0.007804483323906 0.045368423275444 7,500 5,202 2.81 
3 0.007804483323906 0.045368420843728 7,500 1,574 2.81 
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 Fig. 3.27 Hilbert transformer least squares design for Type 4 N =25 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 

 
Fig. 3.28 Convergence curve of least squares error for Hilbert transformer design 

for Type 4 N =25 (a) Interval 1, (b) Interval 2 
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Table 3.20 Filter Coefficients of T4-N25 
h(n) Gradient-based TLBO TLBO 

h(0)=- h(25) -0.00437952304179973 -0.0122980929236367 
h(1)=- h(24) -0.00686037729448305 -0.00904381464791903 
h(2)=- h(23) -0.00999993496025033 -0.0122426754499805 
h(3)=- h(22) -0.0140054064699285 -0.0162608223821338 
h(4)=- h(21) -0.0190153298905472 -0.0212495504218741 
h(5)=- h(20) -0.0253896604417872 -0.0275285113366878 
h(6)=- h(19) -0.0335411714171256 -0.0355431569734051 
h(7)=- h(18) -0.0443522913754090 -0.0461481794228097 
h(8)=- h(17) -0.0593187294597909 -0.0608712487872964 
h(9)=- h(16) -0.0818629560815587 -0.0831114792422225 

h(10)=- h(15) -0.120704321447705 -0.121631210481234 
h(11)=- h(14) -0.208199065312663 -0.208758262686165 
h(12)=- h(13) -0.635265462243589 -0.635459351922514 

 
Table 3.21 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
Alg Least squares error LS peak error Iter C CPU 

1 0.003275047559394 0.037777852172935 - - 0.06 
2 0.003122479864504 0.030691063670993 7,500 7,109 3.75 
3 0.003122479864504 0.030691059673572 7,500 920 3.45 
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  Fig. 3.29 Hilbert transformer least squares design for Type 4 N =37 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 

 Fig. 3.30 Convergence curve of least squares error for Hilbert transformer design 
for Type 4 N =37 (a) Interval 1, (b) Interval 2 
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Table 3.22 Filter Coefficients of T4-N37 
h(n) Gradient-based TLBO TLBO 

h(0)=- h(37) -0.00223931071519717 -0.00223931047119015 
h(1)=- h(36) -0.00323026238054813 -0.00223931047119015 
h(2)=- h(35) -0.00441445800880022 -0.00441445788697314 
h(3)=- h(34) -0.00585338843626972 -0.00585338841827510 
h(4)=- h(33) -0.00754796779298459 -0.00754796761993759 
h(5)=- h(32) -0.00957236193091621 -0.00957236155267608 
h(6)=- h(31) -0.0119457839694081 -0.0119457837828658 
h(7)=- h(30) -0.0147693206882151 -0.0147693204815458 
h(8)=- h(29) -0.0181026287868733 -0.0181026284637478 
h(9)=- h(28) -0.0221091152517117 -0.0221091148266532 

h(10)=- h(27) -0.0269475642916262 -0.0269475641247959 
h(11)=- h(26) -0.0329455524178297 -0.0329455524795749 
h(12)=- h(25) -0.0405482758784443 -0.0405482757645655 
h(13)=- h(24) -0.0506182539862791 -0.0506182536229811 
h(14)=- h(23) -0.0646959018253678 -0.0646959016339860 
h(15)=- h(22) -0.0861953934994939 -0.0861953933571656 
h(16)=- h(21) -0.123891271924348 -0.123891271910270 
h(17)=- h(20) -0.210140426969042 -0.210140426812869 
h(18)=- h(19) -0.635923368401816 -0.635923368427021 

 
Table 3.23 Hilbert transformer LS Design Results (A: algorithm; 1: firls.m; 2: 
TLBO algorithm; 3: gradient-based TLBO algorithm; Iter: Iteration; LS: Least 

square algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
1 0.006575264794247 0.058523578652831 - - 0.04 
2 0.006163099412912 0.046388369100268 7,500 1,870 5.49 
3 0.006163099412912 0.046388362539238 7,500 679 5.34 
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 Fig. 3.31 Hilbert transformer least squares design for Type 4 N =49 (a) Amplitude 
response, (b) Impulse response, (c) Passband amplitude response 

 Fig. 3.32 Convergence curve of least squares error for Hilbert transformer design 
for Type 4 N =49 (a) Interval 1, (b) Interval 2 
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Table 3.24 Filter Coefficients of T4-N49 
h(n) Gradient-based TLBO TLBO 

h(0)=- h(49) -0.00235759102200656 -0.0109691636335392 
h(1)=- h(48) -0.00298856980510919 -0.00409689702658207 
h(2)=- h(47) -0.00368365844424425 -0.00476575923951288 
h(3)=- h(46) -0.00448738217280165 -0.00556873883748923 
h(4)=- h(45) -0.00537176740365309 -0.00647457302683714 
h(5)=- h(44) -0.00638394717357022 -0.00748127226699699 
h(6)=- h(43) -0.00749933316901716 -0.00854060640351370 
h(7)=- h(42) -0.00876949717307407 -0.00983665569997877 
h(8)=- h(41) -0.0101757221761658 -0.0112212247847178 
h(9)=- h(40) -0.0117774282414077 -0.0127999429185273 

h(10)=- h(39) -0.0135665325670962 -0.0145663079755267 
h(11)=- h(38) -0.0156170782320765 -0.0165809679086858 
h(12)=- h(37) -0.0179414551933409 -0.0188811149051089 
h(13)=- h(36) -0.0206429844276568 -0.0215227556049619 
h(14)=- h(35) -0.0237769952924307 -0.0246115552392823 
h(15)=- h(34) -0.0275117144630903 -0.0282784808051461 
h(16)=- h(33) -0.0320042190918667 -0.0327095164958862 
h(17)=- h(32) -0.0375895084596627 -0.0382158408582262 
h(18)=- h(31) -0.0447136035802478 -0.0452653174399299 
h(19) =- h(30) -0.0542488552092505 -0.0547169434296792 
h(20) =- h(29) -0.0677387367629846 -0.0681275086221576 
h(21) =- h(28) -0.0886092649221661 -0.0889084862920638 
h(22) =- h(27) -0.125639786925093 -0.125858282370807 
h(23) =- h(26) -0.211200479707128 -0.211327437275774 
h(24) =- h(25) -0.636277768819045 -0.636324442471481 

 
 3.2.5 Comparison with references [143] 

In [143], the author provides an order-30 FIR bandpass Hilbert transformer 
design. In this part, the same parameters are selected as [143] shown in Table 3.25 
and Table 3.26.  Table 3.27 describes the comparisons of least square error with 
TLBO and gradient-based TLBO algorithm. The amplitude response, impulse 
response, and error convergence are shown in Fig. 3.33 to Fig. 3.35.  
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Table 3.25 FIR Filter Parameters (Key: LP-FIR 3: type 3 Hilbert transformer) 
Symbol Description Type 3 
ܹ(߱௜) Frequency weights for 0 ≤ ௜ݓ ≤  1 ߨ

ܿ௞[௎] Upper bound of filter coefficients 0.94 
ܿ௞[௎] Lower bound of filter coefficients -0.94 

ܲ Population size 30 
N Order of filter 30 
ܵ Number of distinct coefficients 15 
߬ Group delay of LP-FIR3 filter 15 

 
Table 3.26 Passband frequency grid and points for optimization and evaluation 

 N Frequency Grid ܣௗ(߱௜) 
Optimization 30 [0.08:0.005:0.92] [17, 185] 
Peak error evaluation 30 [0.08:0.001:0.92] [81, 921] 

 
Table 3.27 Least squares errors of 30th-order linear phase FIR Hilbert transformer 

design (Keys: ܶ: Type; BP: Bandpass; A: Algorithm; 1: firls.m; 2: TLBO; 3: 
Gradient-based TLBO; CPU: Time in sec; Iter: Iteration; LS: Least squares 

algorithm; C: Converged iteration number; CPU: Time in sec) 
A Least squares error LS peak error Iter C CPU 
Ref. 
[143] 0.083875775860366 0.995453860868507 - - - 
1 0.032201865888951 0.091401172598384 - - 0.06 
2 0.002684004032368 0.019158136245702 7,500 5,290 3.22 
3 0.002684004032368 0.019158132394615 7,500 1,953 2.64 
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Fig. 3.33 Hilbert transformer least squares design for Type 3 N =30 (a) Amplitude 

response, (b) Impulse response, (c) Passband amplitude response 
 

 
Fig. 3.34 Passband amplitude error of Hilbert transformer design using gradient-

based TLBO for Type 3 N =30 
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Fig. 3.35 Convergence curve of least squares error for Hilbert transformer design 

for Type 3 N =30 (a) Interval 1, (b) Interval 2 
 

Table 3.28 Filter Coefficients of T3-N30 
h(n) Gradient-based TLBO TLBO 

h(0)=- h(30) -0.00520062366889396 -0.00520062315968292 
h(1)=- h(29) 3.12232286574276e-17 0 
h(2)=- h(28) -0.0117620171476612 -0.0117620163537757 
h(3)=- h(27) -5.63450496057750e-17 0 
h(4)=- h(26) -0.0222304423011025 -0.0222304414053637 
h(5)=- h(25) 5.64178206761915e-17 0 
h(6)=- h(24) -0.0383550775954851 -0.0383550771086034 
h(7)=- h(23) 3.14087089604126e-17 0 
h(8)=- h(22) -0.0635439096171635 -0.0635439090967275 
h(9)=- h(21) -2.69749304463702e-17 0 

h(10)=- h(20) -0.106466209215744 -0.106466208379068 
h(11)=- h(19) -1.09007965007902e-17 0 
h(12)=- h(18) -0.199148337246562 -0.199148336838218 
h(13)=- h(17) -2.88206099566837e-17 0 
h(14)=- h(16) -0.632173338685553 -0.632173338552925 

h(15) 0 0 
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3.3 Analysis 
The MM design results in Sections 3.2.1 and 3.2.2 reveals that the standard 

TLBO achieves smaller MM errors and MM peak errors than the Matlab functions 
firpm.m. Although the TLBO algorithm requires longer time, the Hilbert 
transformer designed by TLBO can reach lower errors. The number of convergence 
iterations is usually less than the maximum number of iterations.  

Moreover, the LS design results listed in Section 3.2.3 and 3.2.4 indicate that 
both standard TLBO algorithm and gradient-based TLBO algorithm can obtain 
smaller LS errors than those of the LS algorithm. The LS errors of gradient-based 
TLBO algorithm are the same as those of TLBO algorithm. However, their CPU 
time is longer than that of the LS algorithm. In general, gradient-based TLBO 
algorithm requires less CPU time than that of the standard TLBO algorithm. From 
Fig. 3.18, 3.20, 3.22, 3.24, 3.26, 3.28, 3.30 and 3.32, in the beginning 20 iterations, 
the LS errors of the gradient-based TLBO algorithm decreases faster than that of the 
standard TLBO, and converges faster than that of the standard TLBO, especially for 
high orders. All the peak LS errors using gradient-based TLBO are slightly smaller 
than those that of the standard TLBO. Moreover, the converged iteration numbers 
of both algorithms are within the maximum iteration numbers.  

In addition, the LS design is compared to that of [143]. The LS errors 
obtained by the gradient-based TLBO and the standard TLBO algorithm are 
approximately 1/40 of [143], and the peak LS error using the gradient-based TLBO 
and the standard TLBO is 1/10 smaller than that of [143]. The LS peak error with 
the gradient-based TLBO is slightly smaller than that with the standard TLBO. The 
maximum LS error is around 0.013 as shown in Fig. 2 of [143], while that of the 
gradient-based TLBO is about 0.01 as shown in Fig. 3.34. However, the gradient-
based TLBO only requires 1/3 of the converged iteration number of the standard 
TLBO algorithm, and the CPU time consumed is 20% less than that of TLBO. 
3.4 Conclusions 

 In terms of minimax design of type 3 and type 4 FIR Hilbert transformers, 
the minimax errors and the peak minimax errors obtained by the standard TLBO 
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algorithm are much better than the results obtained by the Matlab function firpm.m. 
In terms of least squares design of type 3 and type 4 FIR Hilbert transformers, both 
the gradient-based TLBO and the standard TLBO algorithms are capable of 
achieving the smaller least square errors than the least squares algorithm using the 
Matlab function firls.m. The gradient-based TLBO can result in lower LS peak 
errors, reduce CPU time and faster convergence in LS designs. In Section 3.2.5, 
when compared to the type 3 Hilbert transformer designs in [143] and the standard 
TLBO, the gradient-based TLBO can obtain better and slightly better performances 
respectively. 

In fact, the gradient-based TLBO is an efficient method as compared to the 
standard TLBO algorithm for designing linear phase FIR digital filters. Moreover, 
replacing the standard learning phase with the gradient descent optimization can 
speed up the search ability for faster convergence. However, a tuning parameter is 
required in the gradient-based learning phase. All the designs were carried out on an 
Intel Core i7-4810MQ, 2.8 GHz (3.8 G Hz turbo) with 16GB RAM laptop computer. 
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CHAPTER 4  

General FIR Digital Filter Design using Multiobjective TLBO algorithm 

Multiobjective optimization (also known as multi-objective programming, 
vector optimization, multi-criteria optimization, multi-objective optimization or 
Pareto optimization) is an area of multiobjective decision making, which involves 
the optimization of multi-objective functions and multi-objective optimization 
problems. Multi-objective optimization has been applied to many areas including 
engineering, science, economics, and logistics. When there are trade-offs between 
two or more conflicting goals, optimal decisions need to be taken. Multiobjective 
particle swarm optimization (MOPSO) [139]-[142] is a population-based algorithm 
that uses non-dominated sets to preserve solutions that satisfy requirements. 
Compared to other swarm intelligence algorithms, Particle Swarm Optimization 
(PSO) replaces a single search space with global optimal particles for optimization; 
it uses particle velocity and one-way mutation operations, unlike other swarm 
intelligence algorithms that use omnidirectional variation.  

In this chapter, the multiobjective approach is adopted and combined with 
TLBO to compose MOTLBO for least-pth design of general FIR lowpass, highpass 
and bandpass filters. Two objective functions, the least-pth minimax magnitude 
error and the least-pth group delay error, are considered and design results are given. 

The organization of this chapter: Section 4.1 lists the equations of general 
FIR digital filters and how they can be used to formulate least squares and minimax 
objective functions. The details of the MOPSO algorithm are listed in Section 4.2, 
which is to be used as a comparison algorithm. Section 4.3 describes the non-
dominated MOTLBO with crowding distance. The proposed gradient-based 
MOTLBO is described in Section 4.4. The minimax design examples using MOPSO 
and MOTLBO are given in Section 4.5. In addition, Section 4.6 presents the 
gradient-based MOTLBO with Manhattan distance and its design results and 
comparison with the non-dominated MOTLBO. 
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4.1 General FIR digital filter design 
4.1.1 General FIR digital filters 

The transfer function of an Nth-order general FIR filter [80] consists of (ܰ +
1) impulse responses which can be expressed as 

(ݖ)ܪ = ∑ ௡ିݖ(݊)ܿ = ே௡ୀ଴(ݖ)ࢠ்ࢉ                              (4.1)  
The distinct coefficient vector ܋ is described as 

܋ = [ܿ଴, ܿଵ, ܿଶ, ܿଷ, … , ܿே]்                                   (4.2) 
The frequency response (ݓ)ܪ of a general FIR filter can be evaluated by 

substituting ݖ = ݁௝ఠ௧ into (4.1) 
(߱)ܪ             =  ∑ ܿ௡ିݖ௡ே௡ୀ଴ |௭ୀ௘ೕഘ೅ = ∑ ܿ௡݁ି௝ఠ௡்ே௡ୀ଴  

= ∑ ܿ௡ cos ݊߱ܶ − ݆ ∑ ܿ௡ sin ݊߱ܶே௡ୀ଴ே௡ୀ଴ =  ௝ఏ(ఠ) (4.3)݁(߱)ܣ
where the magnitude response ܣ(߱) is equal to 

(߱)ܣ = ሼ[∑ ܿ௡ cos ݊߱ܶே௡ୀ଴ ]ଶ + [∑ ܿ௡ sin ݊߱ܶே௡ୀ଴ ]ଶሽଵ ଶൗ          (4.4) 
The phase response ߠ(߱) is equal to 

(߱)ߠ = −tanିଵ ቂ∑ ௖೙ ୱ୧୬ ௡ఠ்೙ಿసబ
∑ ௖೙ ୡ୭ୱ ௡ఠ்೙ಿసబ ቃ                               (4.5) 

The group delay ߬(߱) of a general FIR filter is given by 

߬(߱) = − డఏ(ఠ)
డఠ் = ଵ

ଵା௖మ
డ௖

డఠ்                                    (4.6) 

where 

c = ∑ ௖೙ ୱ୧୬ ௡ఠ்೙ಿసబ
∑ ௖೙ ୡ୭ୱ ௡ఠ்೙ಿసబ                                               (4.7) 
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డ௖
డఠ் = ൣ∑ ௖೙ ୡ୭ୱ ௡ఠ்೙ಿసబ ൧ൣ∑ ௡௖೙ ୡ୭ୱ ௡ఠ்೙ಿసబ ൧

ൣ∑ ௖೙ ୡ୭ୱ ௡ఠ்೙ಿసబ ൧మ + ൣ∑ ௖೙ ୱ୧୬ ௡ఠ்೙ಿసబ ൧ൣ∑ ௡௖೙ ୱ୧୬ ௡ఠ்೙ಿసబ ൧
ൣ∑ ௖೙ ୡ୭ୱ ೙ಿసబࢀ࣓࢔ ൧మ    (4.8) 

4.1.2 Objective Functions 
4.1.2.1 LS error 

The optimization problem is to search for an optimal coefficient vector ܋ that 
minimizes the least squares objective function ݁(܋) with respect to ܋ as defined [80] 
by 

min܋ (܋)݁ = min܋ [∑ ܹ(߱௜)|܋)ܪ, ߱௜) − ௗ(߱௜)|ଶூ௜ୀଵܪ ]
for  ߱௜ ∈ ௢ܨ

                     (4.9) 

where ܨ௢ is the optimization frequency grid.  
For simplicity, the amplitude response is to be optimized in the least squares 

objective function ݁௔௠௣(܋) which can be expressed by 
min܋ ݁௔௠௣(܋) = min܋ [∑ ܹ(߱௜)|܋)ܣ, ߱௜) − ௗ(߱௜)|ଶூ௜ୀଵܣ ]

for  ߱௜ ∈ ௢ܨ
               (4.10) 

where ܣௗ(߱௜) = 1  in passband and ܣௗ(߱௜) = 0  in stopband. ܨ௢  denotes the 
frequency grid for optimization. 

Similarly, the objective function of the least squares group delay error 
݁௚ௗ(܋) in the passband can be expressed by 

         min܋ ݁௚ௗ(܋) = min܋ [∑ ܹ(߱௜)|߬(܋, ߱௜) − ߬ௗ(߱௜)|ଶூ௜ୀଵ ]
for  ߱௜ ∈ ௢௣ܨ

        (4.11) 

where ߬ௗ(߱) is the ideal group delay. ܨ௢௣ denotes the frequency grid in passband 
for optimization. 

The goal of the optimization problems for designing general FIR digital 
lowpass, highpass, bandpass and bandstop filters is to find an optimal coefficient 
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vector ܋  which minimizes the objective functions ݁௠௔௚(܋)  and ݁௚ௗ(܋) 
simultaneously. 
4.1.2.2 Minimax error 

The optimization problem is to search for an optimal coefficient vector ܋ that 
minimizes the minimax objective function ݁(܋) with respect to ܋ as defined in [80] 
by 

min܋ (܋)݁ = min܋ [∑ ܹ(߱௜)|܋)ܪ, ߱௜) − ௗ(߱௜)|௣௣ூ௜ୀଵܪ ]ଵ/௣௣
for  ߱௜ ∈ ௢ܨ

        (4.9) 

where ܨ௢ is the frequency grid for optimization.  
For simplicity, the amplitude response is to be optimized in the minimax 

objective function ݁௔௠௣(܋) which is expressed by 
min܋ ݁௔௠௣(܋) = min܋ [∑ ܹ(߱௜)|܋)ܣ, ߱௜) − ௗ(߱௜)|௣௣ூ௜ୀଵܣ ]ଵ/௣௣

for  ߱௜ ∈ ௢ܨ
      (4.10) 

where ܣௗ(߱௜) = 1 in passband and ܣௗ(߱௜) = 0 in stopband. 
Similarly, the objective function of the minimax group delay error ݁௚ௗ(܋) 

among the passband can be calculated by 

         min܋ ݁௚ௗ(܋) = min܋ [∑ ܹ(߱௜)|߬(܋, ߱௜) − ߬ௗ(߱௜)|௣௣ூ௜ୀଵ ]ଵ/௣௣
for  ߱௜ ∈ ௢௣ܨ

        (4.11) 

where ߬ௗ(߱) is the ideal group delay. ܨ௢௣ denotes the frequency grid in passband 
for optimization. 

The goal of the optimization problems for designing general FIR digital 
lowpass, highpass, bandpass and bandstop filters is to find an optimal coefficient 
vector ܋  which minimizes the objective functions ݁௠௔௚(܋)  and ݁௚ௗ(܋) 
simultaneously. 



 

68  

4.2 MOPSO Algorithm 
4.2.1 Basic Concepts 

Definition 1 (Pareto Dominance): A vector ݑሬԦ = ,ଵݑ) ,ଶݑ … ,  ௞) is said toݑ
dominate ݒԦ = ,ଵݒ) ,ଶݒ … , ሬԦݑ ௞) (denoted byݒ ≼  is partially less ݑ Ԧ) if and only ifݒ
than ݒ, i.e., ∀௜∈ ሼ1, … , ݇ሽ, ݑ௜ ≤ ௜ݒ ∧ ∃௜∈ ሼ1, … , ݇ሽ: ݑ௜ ≤  .௜ݒ

Definition 2 (Pareto Optimal Set): For a given MOP Ԧ݂(ݔ), the Pareto optimal 
set (࣪∗)is defined as  

࣪∗ ∶= ൛ݔ ∈ Ωห¬∃ݔᇱ ∈ Ω Ԧ݂(ݔᇱ) ≼ Ԧ݂(ݔ)ൟ                      (4.18) 

            Definition 3 (Pareto Front): For a given MOP Ԧ݂(ݔ) and Pareto optimal set 
(࣪∗), the Pareto front (࣪ℱ∗)is defined as 

           ࣪ℱ∗ ∶= ൛ݑሬԦ = Ԧ݂ = ( ଵ݂(ݔ), … , ௞݂(ݔ))หݔ ∈ ࣪∗ൟ                  (4.19) 
In the general case, it is impossible to find an analytical expression of the 

line or surface that contains these points. The normal procedure to generate the 
Pareto front is to compute the feasible points Ω and their corresponding ݂(Ω). When 
there are a sufficient number of these, it is then possible to determine the non-
dominated points and to produce the Pareto front. 
4.2.2 MOPSO 

In order to apply the PSO [142] strategy for solving multi-objective 
optimization problems, it is obvious that the original scheme has to be modified. 
Instead, in multi-objective optimization, we aim to find a set of different solutions 
(the so-called Pareto optimal set). In general, when solving a multi-objective 
problem, the steps of MOPSO [139] are shown as follows: 

Step 1. Initialize the population POP, the speed of each particle velocity and 
the repository REP; 

Step 2. Evaluate each of the particles in POP; 
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Step 3. Store the positions of the particles that represent non-dominated 
vectors in REP; 

Step 4. Generate hypercubes of the search space explored so far, and locate 
the particles using these hypercubes as a coordinate system where each particle’s 
coordinates are defined according to the values of its objective functions.  

Step 5. Initialize the memory of each particle (this memory serves as a guide 
to travel through the search space. This memory is also stored in the repository): 
PBESTS=POP 

Step 6. Do iterations: 
Compute the speed of each particle: 

݅]ܮܧܸ + 1] = ܹ × [݅]ܮܧܸ + ଵܥ × [݅]ܵܶܵܧܤܲ) −  ܱܲܲ[݅]) 
ଶܥ+ × [ℎ]ܲܧܴ) − ܱܲܲ[݅]                                        (4.20) 

where the inertia weight ܹ takes a value of 0.4; and ܥଵ and ܥଶ are random numbers 
in the range [0 1]; ܲܵܶܵܧܤ is the best position that the particle has had; ܴܲܧ[ℎ] is 
a value that is taken from the repository; the index ℎ is selected in the following 
way: those hypercubes containing more than one particle are assigned a fitness equal 
to the result of dividing any number more than 1 (we used the same number of the 
size of population in our experiments) by the number of particles that they contain. 
This aims to decrease the fitness of those hypercubes that contain more particles and 
it can be seen as a form of fitness sharing. Then, we apply roulette-wheel selection 
using these fitness values to select the hypercube from which we will take the 
corresponding particle. Once the hypercube has been selected, we select randomly 
a particle within such hypercube. ܱܲܲ[݅] is the current value of the particle ݅.  

Compute the new positions of the particles by adding the speed produced 
from the previous step  

   ܱܲܲ[݅] = ܱܲܲ[݅] +  (4.21)                                [݅]ܮܧܸ
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1. Maintain the particles within the search space in case they go beyond 
their boundaries (avoid generating solutions that do not lie on valid search space). 
When a decision variable exceeds its boundaries, then do two things: 1) the decision 
variable takes the value of its corresponding boundary (either the lower or the upper 
boundary) and 2) its velocity is multiplied by (-1) so that it searches in the opposite 
direction.  

2. Evaluate each of the particles in ܱܲܲ.  
3. Update the contents of ܴܲܧ  together with the geographical 

representation of the particles within the hypercubes. This update consists of 
inserting all the currently non-dominated locations into the repository. Any 
dominated locations from the repository are eliminated in the process. Since the size 
of the repository is limited, whenever it gets full, we apply a secondary criterion for 
retention: those particles located in less populated areas of objective space are given 
priority over those lying in highly populated regions.  

4. When the current position of the particle is better than the position 
contained in its memory, the particle’s position is updated using 

[݅]ܵܶܵܧܤܲ = ܱܲܲ[݅]                                          (4.22) 
The criterion to decide what position from memory should be retained is 

simply to apply Pareto dominance (i.e., if the current position is dominated by the 
position in memory, then the position in memory is kept; otherwise, the current 
position replaces the one in memory; if neither of them is dominated by the other, 
then we select one of them randomly). 

5. If not end of iteration, go to step 6, if finish, end iteration. 
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Pseudocode of MOPSO 
Begin  
Initialize swarm 
Initialize leaders in an external archive 
Quality (leaders) 
G=0 
While g<gmax 
          For each particle 
                 Select position 
                 Mutation 
                 Evaluation 
                         Update pbest 
            Endfor 
            Update leaders in the external archive 
            Quality (leaders) 
            g++ 
     Endwhile 
Report results in the external archive 
End 

4.3 MOTLBO algorithm based on non-dominated solutions 
A description of TLBO can be found in Chapter 2. In MOTLBO, each learner 

has ݉ objectives to be minimized and the computational steps are listed below: 
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Step 1: Initialization of all the parameters. In MOTLBO algorithm, a 
population is composed of ܲ  learners, and different design variables (or filter 
coefficients) are viewed as S different subjects attached to the learners. All the scores 
of a learner ࢉ௣(ݐ) (for ݌ = 1, 2, ⋯ , ܲ) are evaluated collectively by its objective 
function values ݁ଵൣࢉ௣(ݐ)൧, ݁ଶൣࢉ௣(ݐ)൧, …, ݁௠ൣࢉ௣(ݐ)൧ (m is the number of objective 
functions) in an optimization problem. Among the entire class, the best learner is 
viewed as the teacher ࢉ௕௘௦௧(ݐ) who teaches knowledge to the learners and improves 
the mean results of the class. 

Step 2: The MO optimization algorithm searches for the best non-dominated 
solution. Instead, multi-objective optimization usually constructs a Pareto optimal 
set (also called non-dominated solution set). The non-dominated solution set of a 
problem with multiple objectives does not consist of a single solution. Such set of 
teachers is usually stored in a repository (REP), which contains the non-dominated 
solutions found so far. In a non-dominated set, each non-dominated solution 
corresponds to the output of ݉ objective values. For example, if ݉=2,  ݁௔௠௣ൣࢉ௣(ݐ)൧ 
and ݁௚ௗൣࢉ௣(ݐ)൧. The crowding distance [144] is selected to be the method to choose 
top solutions for a non-dominated set. Extreme solutions are those with the largest 
values of objective function while others are denoted as intermediate solutions. The 
crowding distance ݀ of each extreme solution is assigned with an infinite value. On 
the other hand, ݀  for each intermediate solution is determined by the absolute 
distance of its two neighboring solutions. The solution with the minimum crowding 
distance is considered as the best solution ࢉ௕௘௦௧(ݐ). 

minࢉ ݀ = ห݁௠௔௚൫܋௥௘௣ାଵ) − ݁௠௔௚(܋௥௘௣ିଵ൯ห + ห݁௚ௗ(܋௥௘௣ାଵ) − ݁௚ௗ(܋௥௘௣ିଵ)ห          
(4.23) 

where rep stands for the index of a solution in the repository from 1 to REP. And 
when ݌݁ݎ = 1 and ݌݁ݎ =   .the crowding distance ݀ is infinite ,ܲܧܴ

Moreover, the initialization of population is expressed as 
(ݐ)௣,௦ࢉ = ݀݊ܽݎ × ( ௦ܷ − ݏ ௦)     (forܮ = 1, 2, ⋯ , ܵ)              (4.24) 
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where ௦ܷ is the upper bound of the filter coefficient for subject ݏ and ܮ௦ is the lower 
bound. 

Step 3: Teacher phase:  
In non-dominated MOTLBO, each non-dominated solution corresponds to a 

pair of output values from two objective values. The one with the smallest crowding 
distance ݀ is selected as the teacher in MOTLBO. This phase is a process that a 
teacher teaches a class of learners to improve their mean score ݉௦(ݐ) in each subject 
s during iteration ݐ.  

݉௦(ݐ) = ଵ
௉ ∑ ௉௣ୀଵ(ݐ)௣ࢉ                                        (4.25) 

݉௦(ݐ) is the mean result of the learners in a specific subject s in the tth 
iteration. As the teacher is the most knowledge people and has the best result on that 
subject. Learners get knowledge from the teacher and the quality of the teacher 
decides the mean results, so the difference ݂݅ܦ ௦݂(ݐ) between the result of the teacher 
and mean result of the learners in each subject is expressed as 

݂݅ܦ         ௦݂(ݐ) = ݀݊ܽݎ ∗ (ݐ)௕௘௦௧,௦ࢉ) −  (4.26)                   ( (ݐ)௙݉௦ݐ
where ݐ௙ is the teaching factor which decides the value of mean to be changed, and 
 .௙ can be either 1 or 2ݐ  is the random number in the range [0,1]. The value of ݀݊ܽݎ
The value of ݐ௙  is decided randomly as 

௙ݐ = 1]݀݊ݑ݋ݎ +  (4.27)                                    [݀݊ܽݎ
݂݅ܦ ௦݂(ݐ) is added to current score of learners in different subjects to generate 

new learners: 
௣,௦ᇱࢉ                       (ݐ) = (ݐ)௣,௦ࢉ + ݂݅ܦ ௦݂(ݐ)                              (4.28) 

where ࢉ௣ᇱ  .(ݐ)௣ࢉ is an updated learner of (ݐ)
A selection operator decides the acceptance of an updated mark  ࢉ௣,௦ᇱ  or  (ݐ)

an existing mark ࢉ௣,௦(ݐ): If  ࢉ௣,௦ᇱ (ݐ)  dominates ࢉ௣,௦(ݐ) ௣,௦ᇱࢉ  , (ݐ)  is added into the 
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population and ࢉ௣,௦(ݐ) is abandoned. If  ࢉ௣,௦ᇱ  then one ,(ݐ)௣,௦ࢉ is Pareto equal to (ݐ)
of them would be chosen randomly. Otherwise, no update is applied to ࢉ௣,௦(ݐ). 

Step 4: Learner phase: 
Two random learners namely ܣ and ࢉ ܤ஺(ݐ) ≠   are selected from the (ݐ)஻ࢉ 

entire class, then a judgement is needed: If ࢉ஺(ݐ) dominates ࢉ஻(ݐ), ࢉ஺(ݐ) is updated 
using (4.29); if ࢉ஻(ݐ) dominates ࢉ஺(ݐ), ࢉ஺(ݐ) is updated using (4.30). If ࢉ஺(ݐ) is 
Pareto-equal to ࢉ஻(ݐ), (4.29) and (4.30) have the same probability to be selected to 
be adopted for update. 

(ݐ)஺ᇱᇱࢉ = (ݐ)஺ࢉ  + ݀݊ܽݎ × ൫ ࢉ஺(ݐ) −  ൯                     (4.29)(ݐ)஻ࢉ 
(ݐ)஺ᇱᇱࢉ = (ݐ)஺ࢉ  + ݀݊ܽݎ × ൫ (ݐ) ࡮ࢉ −  ൯                    (4.30)(ݐ)஺ࢉ 

The algorithm accepts ࢉ௣ᇱᇱ(ݐ) (p=1,…,P) only if it gives a better value of 
objective function otherwise it keeps the previous solution such that 

(ݐ)௣ࢉ = ቊࢉ௣ᇱᇱ(ݐ)
൧(ݐ)௣ᇱᇱࢉ௔௠௣ൣ݁ ݂݅    (ݐ)௣ࢉ  < ݁௔௠௣ൣࢉ௣(ݐ)൧

݂݅ ݁௔௠௣ൣࢉ௣ᇱᇱ(ݐ)൧ ≥ ݁௔௠௣ൣࢉ௣(ݐ)൧               (4.31) 

Step 5：Continue to Step 2 until the maximum number of iterations is 
reached. If all iterations completed, stop. 
4.4 Gradient-based MOTLBO Algorithm 

In the gradient-based MOTLBO algorithm, assume there are two objectives, 
݁௔௠௣ൣࢉ௣(ݐ)൧ and ݁௚ௗൣࢉ௣(ݐ)൧, which are required to be optimized simultaneously. 
The Manhattan distance incorporates gradient-based MOTLBO algorithm to 
approach the optimal equilibration and select a unique optimal solution.  

The current ideal points (ݐ)࢒ࢇࢋࢊ࢏  of the two objective functions can be 
expressed by  

(ݐ)࢒ࢇࢋࢊ࢏ = ൣ݈݅݀݁ܽ௔௠௣௠௜௡ ,(ݐ) ݈݅݀݁ܽ௚ௗ௠௜௡(ݐ)൧                   (4.32) 
where  
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൞݈݅݀݁ܽ௔௠௣௠௜௡ (ݐ) = min ൜ ݉݅݊௣ୀଵ୲୭௉ ݁௔௠௣ൣࢉ௣(ݐ)൧ , ݈݅݀݁ܽ௔௠௣௠௜௡ ݐ) − 1)ൠ
݈݅݀݁ܽ௚ௗ௠௜௡(ݐ) = min ൜ min௣ୀଵ୲୭௉ ݁௚ௗൣࢉ௣(ݐ)൧, ݈݅݀݁ܽ௚ௗ௠௜௡(ݐ − 1)ൠ     (4.33) 

During the current iteration, (ݐ)࢒ࢇࢋࢊ࢏ is a pair of numeric values updated 
iteratively by any new-found minimum values of ݁௔௠௣[(ݐ)ࢉ]  and ݁௚ௗ[(ݐ)ࢉ] . 
However, (0)࢒ࢇࢋࢊ࢏ should be initialized by a pair of positive infinite values. 

The Manhattan distance between the two objective functions and their ideal 
points is defined by  

(ݐ)݀ = ห݁௔௠௣[(ݐ)ࢉ] − ݈݅݀݁ܽ௔௠௣௠௜௡ ห(ݐ) + ห݁௚ௗ[(ݐ)ࢉ] − ݈݅݀݁ܽ௚ௗ௠௜௡(ݐ)ห  (4.34) 
Therefore, the Manhattan distance can be used to formulate a joint objective 

function as 
[(ݐ)ࢉ]݁ =  (4.35)                                               (ݐ)݀

The operations of the gradient-based MOTLBO is divided into two phases, 
the teacher phase and the gradient-based phase. The detailed steps are described in 
the following: 

1. Teacher phase (same as Section 2.4 from Eqs. (2.9) to (2.12)) 
 

2. Gradient-based learning phase 
The learner phase is not efficient enough due to random selection approach 

in the original TLBO algorithm. For this reason, a gradient-based phase to speed up 
the search is formulated as 

(ݐ)௣ᇱᇱࢉ = (ݐ)௣ࢉ − ߤ × డ௘ൣࢉ೛(௧)൧
డࢉ೛(௧)                                   (4.36) 

According to the Limit Theory [206], the partial derivation of an objective function 
against a solution can be approximated by 

డ௘ൣࢉ೛(௧)൧
డ௖೛,ೞ(௧) = lim∆௖→଴

௘ൣࢉ೛(௧)ା∆ࢉ൧ି௘ൣࢉ೛(௧)൧
ఋ                             (4.37) 
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൜∆ ௝ܿ = ߜ ݆ = ݏ
∆ ௝ܿ = 0 ݆ ≠  (4.38)                                       ݏ

where ߤ stands for the step size. ܿ௣,௦(ݐ) (for ݏ = 1, 2, ⋯ , ܵ) is the score of p learner 
in a specific subject s. ߜ is a very small increment. 

To obtain the optimal result, the learner ࢉ௣(ݐ) is selected by 

(ݐ)௣ࢉ = ቊࢉ௣ᇱᇱ(ݐ)
൧(ݐ)௣ᇱᇱࢉൣ݁ ݂݅    (ݐ)௣ࢉ  < ൧(ݐ)௣ࢉൣ݁

൧(ݐ)௣ᇱᇱࢉൣ݁ ݂݅ ≥  ൧                        (4.39)(ݐ)௣ࢉൣ݁

At the end of each iteration, if the joint error function value of the best learner 
is smaller than that of the teacher, the teacher is replaced by the best learner. 

3. Elitist replacement 
To avoid duplicate solutions, any duplicate solution within a population is 

replaced by 
(ݐ)௣ࢉ = (ݐ)௕௘௦௧ࢉ + )݀݊ܽݎ ௦ܷ −  ௦)                               (4.40)ܮ

For a faster convergence, an elite mechanism is included in the gradient-based 
MOTLBO algorithm. At the end of each iteration, the worst learner is replaced by 
the ࢉ௕௘௦௧(ݐ). 
4.5 General FIR digital filter design examples  

In this section, the population size of all designs is 24 the same as the filter 
order. During the optimization process, 201 and 1001 frequency points are used for 
calculating peak magnitude and group delay errors of general FIR lowpass (LP), 
highpass (HP), bandpass (BP) and bandstop (BS) filters. The corresponding 
parameters are listed in Tables 4.1 to 4.3 for two examples in Section 4.5.1 and 4.5.2. 
Table 4.1 shows the parameters of general FIR filter design and the MO algorithms. 
Table 4.2 lists the lower and upper bounds of filter coefficients. All the initial filter 
coefficients are randomly generated between the lower and upper bounds and a 
maximum of 5,000,000 iterations is used for each least squares optimization design. 
The cutoff frequencies of different filters are listed in Table 4.3. 
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Table 4.1 General FIR filter and MO parameters 
Symbol Description Value 
ܹ(߱௜) Frequency weights for 0 ≤ ߱௜ ≤  1 ߨ

 th-order 128݌ Least ݌݌
ܲ Population size 24 

REP Number of repository 25 
 

Table 4.2 General FIR filter coefficient lower and upper limits 
Symbol Lower limit Upper limit 
LP -0.095492965855137 0.45 
HP -0.471586444919843 0.675 
BP -0.333461973118477 0.375 
BS -0.183685705580247 1.275 

 
Table 4.3 Cutoff frequencies (LP: Lowpass; HP: Highpass; BP: Bandpass; BS: 

Bandstop; PB: Passband; SB: Stopband; Gd: Group delay) 
 PB_1 SB_1 PB_2 SB_2 Gd 
LP 0.3 π 0.4 π - - 10 
HP 0.55 π 0.45 π - - 10 
BP 0.35 π 0.25 π 0.6 π 0.7 π 10 
BS 0.3 π 0.4 π 0.65 π 0.55 π 10 

 
4.5.1 Minimax design using non-dominated MOTLBO 

In this section, minimax LP, HP, BP and BS filters of order N=24 and group 
delay=10 are designed using non-dominated MOTLBO with crowding distance.  
MOPSO with non-dominated selection and crowding distance is adopted for 
comparison. Magnitude errors and group delay errors form the two objectives. A 
maximum of 500,000 iterations is used for each of the minimax filter design 
problems.  

Tables 4.4 summarizes the minimax magnitude errors and group delay errors 
of the LP, HP, BP and BS general FIR filters obtained by the non-dominated 
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MOTLBO and the MOPSO. In addition, the peak passband and stopband magnitude 
errors and peak group delay errors are listed in Tables 4.5 and 4.6. The magnitude 
response, group delay, impulse response, and passband and stopband errors of LP, 
HP, BP and BS general FIR filter design results are shown in Figs. 1 to 14, 
respectively. 

Table 4.4 General FIR filter minimax errors (Alg: 1. MOTLBO; 2: MOPSO; 
MM_mag: Minimax magnitude error; MM_gd: Minimax group delay error; CPU: 

Time in sec) 
 Alg MM_mag MM_gd CPU 
LP 1 0.051595993269366 0.022106423454150 3,472 

2 0.286879169754300 0.127985819390463 7,507 
HP 1 0.059132967245666 0.033338187094149 3,562 

2 0.546975870769137 1.02964026741799 5,349 
BP 1 0.062515715877254 0.025908371119439 7,805 

2 0.475582031018334 0.630372035638652 5,379 
BS 1 0.086730527282005 0.097147985900193 47,034 

2 0.293244261014239 1.774471424988321 7,425 
 
Table 4.5 General FIR filter minimax peak errors (Alg: 1. MOTLBO; 2: MOPSO; 

PB: passband; Gd: Group delay) 
 Alg Peak PB 1 error Peak Gd error 
LP 1 0.050626348035382 0.021715013424096 

2 0.277311764528364 0.126951332248135 
HP 1 0.057369111479355 0.033191488714319 

2 0.530321346844630 1.006905686764069 
BP 1 0.061190723685223 0.025589300457492 

2 0.463250139769333 0.619926487815061 
BS 1 0.084044222113074 0.095921756102353 

2 0.285545315559481 1.730652966475295 
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Table 4.6 General FIR filter minimax peak errors (Alg: 1. MOTLBO; 2: MOPSO; 
PB: passband; SB: stopband) 

 Alg Peak SB 1 error Peak SB 2 (for BP)/ 
PB 2 (for BS) error 

LP 1 0.050266946168661 - 
2 0.279423454354376 - 

HP 1 0.058224796835638 - 
2 0.531280509994558 - 

BP 1 0.059902840101656 0.060400018311995 
2 0.459582445772840 0.463037787995851 

BS 1 0.085021564089306 0.085095000530041 
2 0.286864126013092 0.272406694529927 

 

 
Fig. 4.1 G-FIR LP filter MM design for ܰ = 24 and group delay=10 (a) 

Magnitude response, (b) Passband magnitude error, (c) Magnitude response in dB, 
(d) Stopband magnitude error 
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Fig. 4.2 G-FIR LP filter MM design for ܰ = 24 and group delay=10 (a) Group 

delay, (b) Passband group delay, (c) Impulse response 

 
Fig. 4.3 G-FIR HP filter MM design for ܰ = 24 and group delay=10 (a) 

Magnitude response, (b) Passband magnitude error, (c) Magnitude response in dB, 
(d) Stopband magnitude error 
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Fig. 4.4 G-FIR HP filter MM design for ܰ = 24 and group delay=10 (a) Group 

delay, (b) Passband group delay, (c) Impulse response 

 
Fig. 4.5 G-FIR BP filter MM design for ܰ = 24 and group delay=10 (a) 

Magnitude response, (b) Passband magnitude error, (c) Stopband_1 magnitude 
error, (d) Stopband_2 magnitude error 
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Fig. 4.6 G-FIR BP filter MM design for ܰ = 24 and group delay=10 (a) 

Magnitude response in dB, (b) Group delay, (c) Impulse response 

 Fig. 4.7 G-FIR BS filter MM design for ܰ = 24 and group delay=10 (a) 
Magnitude response, (b) Passband_1 magnitude error, (c) Passband_2 magnitude 

error, (d) Stopband magnitude error 
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 Fig. 4.8 G-FIR BS filter MM design for ܰ = 24 and group delay=10 (a) 
Magnitude response in dB, (b) Passband_1 group delay, (c) Impulse response, (d) 

Passband_2 group delay 
In this section, least-pth minimax design of general FIR filters using the non-

dominated MOTLBO with crowding distance has been presented. As compared to 
the non-dominated MOPSO with crowding distance, the results in Tables 4.4 to 4.6 
indicate that the MOTLBO can obtain smaller magnitude and group delay minimax 
errors as well as passband and stopband peak errors. Moreover, except BS filter 
design, the MOTLBO requires less CPU time than the MOPSO. 
4.5.2 Least squares design with gradient-based MOTLBO 

In this section, LP, HP, BP and BS filters of order N=24 and group delay=10 
are designed using the gradient-based MOTLBO with Manhattan distance, the non-
dominated MOTLBO with crowding distance, and the non-dominated MOPSO with 
crowding distance. Magnitude error and group delay error are selected to be the two 
objectives. The parameters of FIR filters and the parameters for this MO optimization 
problem are listed in Tables 4.1 to 4.3. 

The population size of all designs is set to be 24 which is the same as the 
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order. Optimization frequency points are 201 and 1001 frequency points are used for 
calculating peak magnitude and group delay errors of LP, HP and BP filters. The 
initialization is random selected between the two boundaries as listed in Table 4.2, 
respectively. A maximum of 5,000,000 iterations is used for each design. The 
parameter ߤ for the gradient-based MOTLBO algorithm is taken as ߤ = 0.0001. 

Tables 4.7 to 4.16 summarize the LP, HP and BP general FIR filter design 
results and the filter coefficients obtained by the three MO algorithms. The 
magnitude response, group delay, impulse response, and passband and stopband 
errors of LP, HP and BP general FIR filters results are shown in Figs. 4.9 to 4.11, 
respectively. 

Table 4.7 Least squares errors of general lowpass FIR filter (Alg: 1. Gradient-
based TLBO; 2: MOTLBO; 3: MOPSO; LS_mag: Least squares magnitude error; 

LS_gd: Least squares group delay error; CPU: Time in sec) 
Alg LS_mag LS_gd CPU 

1 0.339986772891189 0.003339806954644 37,496 
2 0.341240087075854 0.065774675197247 17,597 
3 0.355283043410460 0.046855035402898 87,115 

 
Table 4.8 General lowpass FIR filter least squares peak errors (Alg: 1: gradient-
based MOTLBO; 2: MOTLBO; 3: MOPSO; PB: passband; Gd: Group delay) 
Alg Peak PB error Peak SB error Peak Gd error 

1 0.098923060961945 0.105709664581663 0.008468220489736 
2 0.096561668409053 0.109941543296126 0.055469679919591 
3 0.083446268186972 0.118340306220507 0.049339320031688 
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 Fig. 4.9 G-FIR LP filter LS design for ܰ = 24 and group delay=10 (a) Magnitude 
response, (b) Passband magnitude error, (c) Magnitude response in dB, (d) 
Stopband magnitude error, (e) Impulse response, (f) Passband group delay 

Table 4.9 Gradient-based MOTLBO LS coefficients of LP 
h(n) Gradient-based MOTLBO 
h(0) -0.0188481016121670 
h(1) -0.0118487854225372 
h(2) 0.0158723221659257 
h(3) 0.0352676896020524 
h(4) 0.0147029130415978 
h(5) -0.0393185504337924 
h(6) -0.0705052053953384 
h(7) -0.0167344424963207 
h(8) 0.126306294307527 
h(9) 0.283095036294402 
h(10) 0.350678013750484 
h(11) 0.281812506353807 
h(12) 0.125337968066907 
h(13) -0.0161373613406683 
h(14) -0.0690048560923351 
h(15) -0.0387810623326952 
h(16) 0.0134547627378284 
h(17) 0.0336351340055623 
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h(18) 0.0160923704146386 
h(19) -0.00936139156938863 
h(20) -0.0166430128929620 
h(21) -0.00692678468109317 
h(22) 0.00284759132966295 
h(23) 0.00260800086687530 
h(24) -0.00196545274506152 

 
Table 4.10 General FIR highpass filter least squares errors (Alg: 1. Gradient-based 
TLBO; 2: MOTLBO;3: MOPSO; LS_mag: Least squares magnitude error; LS_gd: 

Least squares group delay error; CPU: Time in sec) 
Alg LS_mag LS_gd CPU 

1 0.506943634650731 0.009410451539491 40,240 
2 0.527710094389086 0.255725430656471 30,197 
3 0.984043985459745 0.559220788314725 41,096 

 
Table 4.11 General highpass FIR filter least sqaures peak errors (Alg: 1: gradient-

based MOTLBO; 2: MOTLBO; 3: MOPSO; PB: passband; Gd: Group delay) 
Alg Peak PB 1 error Peak SB 1 error Peak Gd error 

1 0.116101931533324 0.124568608616491 0.012601347881148 
2 0.118433961627229 0.110767537720580 0.074760162080670 
3 0.187417661664103 0.055000986489871 0.105304936636333 
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Fig. 4.10 G-FIR HP filter LS design for ܰ = 24 and group delay=10 (a) 

Magnitude response, (b) Passband magnitude error, (c) Magnitude response in dB, 
(d) Stopband magnitude error, (e) Impulse response, (f) Passband group delay 

Table 4.12 Gradient-based MOTLBO LS coefficients of HP 
h(n) Gradient-based MOTLBO 
h(0) -0.00438110784052637 
h(1) -0.0228802627004948 
h(2) 0.00188262754246727 
h(3) 0.0353357739742804 
h(4) -0.00147844609826433 
h(5) -0.0563715910294968 

h(6) 0.00118192482713300 
h(7) 0.102090050567776 
h(8) -0.00104422073547493 
h(9) -0.317538718160422 
h(10) 0.500816620502163 
h(11) -0.315517067858937 
h(12) -0.000560381060992884 
h(13) 0.0999374101747395 
h(14) 0.000327323766010231 
h(15) -0.0541738214748310 
h(16) -3.88694886111156e-05 
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h(17) 0.0330149902970949 
h(18) -0.000699483434070693 
h(19) -0.0202715491837200 
h(20) 0.00297047095131086 
h(21) 0.00642388117827076 
h(22) 0.00144005141526301 
h(23) -0.00171242512335909 
h(24) -0.00134063685217593 

 
Table 4.13 General bandpass FIR filter least squares errors (Alg: 1. Gradient-based 
TLBO; 2: MOTLBO;3: MOPSO; LS_mag: Least squares magnitude error; LS_gd: 

Least squares group delay error; CPU: Time in sec) 
Alg LS_mag LS_gd CPU 
1 0.568618874845898 0.006468893497583 35,085 
2 0.611472805674160 0.262731869483094 32,888 
3 0.637558405690025 0.011288715005017 43,047 

 
Table 4.14 General bandpass FIR filter least squares peak errors (Alg: 1: gradient-

based MOTLBO; 2: MOTLBO; 3: MOPSO; PB: passband; Gd: Group delay) 
Alg Peak PB 1 error Peak Gd error 
1 0.128964004999802 0.008167557928356 
2 0.113264581394086 0.069866156083149 
3 0.130050320858247 0.010250159973689 

 
Table 4.15 General bandpass FIR filter least squares peak errors (Alg: 1: gradient-
based MOTLBO; 2: MOTLBO; 3: MOPSO; SB 1: stopband_1; SB 2: stopband_2) 

Alg Peak SB 1 error Peak SB 2 
1 0.083322943973746 0.089636249424859 
2 0.094886110144657 0.084331875384215 
3 0.062102596182494 0.048499256055548 
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Fig. 4.11 G-FIR BP filter LS design for ܰ = 24 and group delay=10 (a) 

Magnitude response, (b) Passband magnitude error, (c) Impulse response, (d) 
Stopband_1 magnitude error, (e) Passband group delay, (f) Stopband_2 magnitude 

error 
Table 4.16 Gradient-based MOTLBO LS coefficients of BP 

h(n) Gradient-based MOTLBO 
h(0) 0.0210235413525887 
h(1) -0.0271409833248832 
h(2) -0.0458457394805605 
h(3) 0.0210197889992720 
h(4) 0.00963309559035452 
h(5) 0.0154934169535717 
h(6) 0.117556803076730 
h(7) -0.0406706135119709 
h(8) -0.275039366719336 
h(9) 0.0188703749159843 
h(10) 0.345518029699649 
h(11) 0.0282575824729041 
h(12) -0.271182646205469 
h(13) -0.0456211529293038 
h(14) 0.114933829923214 
h(15) 0.0165236492458097 
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h(16) 0.00778011174843973 
h(17) 0.0203001430554704 
h(18) -0.0425075483492738 
h(19) -0.0257264511402188 
h(20) 0.0219455058532533 
h(21) 0.00694683966166235 
h(22) -0.00159483088879241 
h(23) 0.00385599418795169 
h(24) -0.00109377549934151 

 
4.6 Analysis  

Section 4.5.1 describes the minimax design using the non-dominated 
MOTLBO (with crowding distance), and the results in Table 4.4 reveal that non-
dominated MOTLBO algorithm (with crowding distance) can obtain much smaller 
minimax magnitude errors and minimax group delay errors. In addition, the required 
CPU time is approximately 1/2 of that of (non-dominated) MOPSO (with crowding 
distance) for lowpass and highpass designs. However, the non-dominated MOTLBO 
takes more time than the MOPSO for the designs of bandpass and bandstop filters. 
The peak passband and stopband magnitude errors, and the peak group delay errors 
are listed in Tables 4.5 and 4.6. All the peak errors of the non-dominated MOTLBO 
are less than those of the MOPSO. 

Section 4.5.2 describes the least squares design using the gradient-based 
MOTLBO (with Manhattan distance) whose effectiveness is demonstrated in 
comparison to other methods. From Tables 4.7, 4.10 and 4.13, the non-dominated 
MOTLBO (with crowding distance) can achieve smaller LS magnitude error 
compared to the (non-dominated) MOPSO (with crowding distance), while the 
obtained LS group delay errors are usually larger than those of the MOPSO. In order 
to solve this problem, the gradient-based MOTLBO is adopted to design these filter 
examples. Based on the same parameter settings, the least squares magnitude errors 
of the LP, HP and BP filter designs obtained by the gradient-based MOTLBO are 
mostly slightly smaller than those obtained by the non-dominated MOTLBO and the 
MOPSO. On the contrast, the passband LS group delay errors obtained by the 
gradient-based MOTLBO are much less than those of the other two designs. From 
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Tables 4.8, 4.11 and 4.14, the least squares peak passband and stopband errors are 
similar for the gradient-based MOTLBO and the non-dominated MOTLBO, and the 
least squares peak group delay errors of the gradient-based MOTLBO are around 
1/7 of the non-dominated MOTLBO. It has been shown that by replacing the original 
learning phase with the gradient descent optimization can speed up the search ability 
to reach smaller errors. However, the CPU time of the gradient-based MOTLBO 
takes longer time to optimize, which is between the non-dominated MOTLBO and 
the MOPSO. In conclusion, the error results of the gradient-based MOTLBO has 
verified that the gradient-based learning phase is successful. However, a tuning of 
the algorithm-specific parameter is required by the gradient-based learning phase 
and experiments reveal that proper control parameter settings can make the gradient-
based MOTLBO more efficient.   
4.7 Conclusions 

In terms of general FIR filter MM designs, the non-dominated MOTLBO 
(with crowding distance) algorithm can achieve much smaller MM magnitude errors 
and MM group delay errors than the (non-dominated) MOPSO (with crowding 
distance). In terms of general FIR filter least squares designs, the gradient-based 
MOTLBO algorithm (with Manhattan distance) and the non-dominated MOTLBO 
(with crowding distance) can obtain similar LS peak magnitude errors and LS peak 
group delay errors. The non-dominated MOTLBO cannot reach the respective 
optimal levels of magnitude and group delay errors simultaneously, although its 
CPU time cost is the smallest among the three algorithms. The gradient-based 
MOTLBO algorithm can achieve the smallest LS magnitude error and LS group 
delay error and requires less CPU time than the MOPSO. All the designs are carried 
out on an Intel Core i7-4810MQ, 2.8 GHz (3.8 G Hz turbo) with 16GB RAM laptop 
computer. 
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CHAPTER 5  

IIR Digital Filter Design Using Multiobjective TLBO Algorithm 

A multiobjective optimization algorithm can be used to design IIR digital 
filters involving two or more objective functions.  In [51]-[52], a non-dominated LS-
MOEA was applied to IIR filter design, in which the magnitude error, phase error, 
and filter order formed three objectives. The results obtained were compared to 
NSGA-II. In [53], a MOCSO-DE combining cat swarm optimization (CSO) 
algorithm and differential evolution (DE) algorithm was used to design IIR filters.  

There are many other design applications of multiobjective optimization 
algorithm. In [145], a MOTLBO algorithm was applied to solve a carbon footprint 
environmental problem by modifying the teacher phase of the TLBO to avoid being 
trapped into a local optimization. This algorithm was based on a non-dominated set 
and applied crowding distance to select the best solution from a non-dominated set. 
In [124], a MOTLBO algorithm was used to solve two objective functions consisting 
of the maximization of heat exchanger efficiency and the minimization of total cost 
of the exchanger. The designing results were compared to the results obtained using 
GA to show its efficiency. In [146], a non-dominated MOTLBO was applied to locate 
automatic voltage regulators in distribution systems. The results showed that the 
accuracy obtained was better than those using GA and PSO. In [147], a discrete 
MOTLBO with decomposition was proposed to solve the problem of community 
detection of complex networks.  

Many multiobjective algorithms use non-dominated methods, which requires 
more computational time and takes up more computer memories. In this chapter, a 
Euclidean-distance-based approach developed in [29], [46] is combined with 
MOTLBO to form a Euclidean-distance-based MOTLBO [47] to design cascade-
form IIR filters. Section 5.1 introduces the IIR filter design problem; Section 5.2 
explains the Euclidean-distance-based MOTLBO; Section 5.3 shows some filter 
examples and results; and Section 5.4 gives conclusions. 
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5.1 IIR Filter Design Problem  
5.1.1 IIR digital filter 

In general, the cascade-form transfer function of an even N-order cascade 
IIR digital filter [80] can be expressed as 

(ݖ)ܪ = ܾ଴ ∏ ஻೙(௭)
஺೙(௭)

ே ଶൗ
௡ୀଵ = ܾ଴ ∏ (ଵା௕భ೙௭షభା௕మ೙௭షమ)

(ଵା௔భ೙௭షభା௔మ೙௭షమ)
ே ଶൗ
௡ୀଵ                (5.1) 

In (5.1), ܾ௜௡  and ܽ௜௡  for ݅ = 1,2  and ݊ = 1 to ܰ 2⁄   are real-valued 
coefficients, and ܾ଴  is a scaling constant. The corresponding coefficient vector c 
consists of (2N+1) distinct coefficients to be optimized as 

܋ = ൣܾଵଵ ܾଶଵ ܽଵଵ ܽଶଵ ⋯ ܾଵ,ே ଶ⁄  ܾଶ,ே ଶ⁄  ܽଵ,ே ଶ⁄  ܽଶ,ே ଶ⁄  ܾ଴൧்          (5.2) 
Substituting ݖ = ݁௝ఠ  into (5.1), the frequency response of the Nth-order 

cascade IIR digital filter can be expressed as  
(ݓ)ܪ = ௭ୀ௘ೕഘ೅|(ݖ)ܪ =  ௝ఏ(௪)                      (5.3)݁|(ݓ)ܪ|

5.1.2 Stability constraints  
For a second-order IIR filter, the stability triangle offers a set of necessary 

and sufficient conditions to ensure stability [80] given by 
−2 < ܽଵ௡ < 2                                                (5.4) 
−1 < ܽଶ௡ < 1                                                (5.5) 
ܽଶ௡ > |ܽଵ௡| − 1                                              (5.6) 

Stability constraints are to be applied for coefficient update during 
optimization.  
5.1.3 Objective function 

The relationship between the maximum passband ripple ܣ௣ (in dB) and its 
corresponding peak error of magnitude response in passband ߜ௣ is 



 

94  

௣ߜ = ଵ଴ಲ೛/మబିଵ
ଵ଴ಲ೛/మబାଵ                                                (5.7) 

Similarly, the relationship between the minimum stopband attenuation ܣ௦ (in 
dB) and its corresponding peak error of magnitude response in stopband ߜ௦ is 

௦ߜ = 10ି஺ೞ/ଶ଴                                               (5.8) 
The peak-error function of magnitude response in passband ݁௠௔௚,௣(܋) can be 

expressed by 
݁௠௔௚,௣(܋) = max܋ ห|܋)ܪ, ߱௜)| − ௗ(߱௜)หܪ

for  ߱௜ ∈ Ω௉                        (5.9) 

where ܪௗ(߱௜) = 1 in passband; and Ω௉ denotes a union of frequencies of interest 
in passband. 

The objective function of magnitude response in passband subject to a given 
constraint can be expressed as 

ଵ݂(ࢉ) = ߮൫݁௠௔௚,௣(܋) −  ௣଴൯                        (5.10)ߜ
where ߜ௣଴ is the specified peak error constraint of magnitude response in passband; 
and ߮(ݔ) is a sectional-continuous function that 

(ݔ)߮ = ቄ0ݔ      ݔ ≤ ݔ0 > 0                                    (5.11) 

Similarly, the peak-error function of magnitude response in stopband 
݁௠௔௚,௦(܋) is described by 

݁௠௔௚,௦(܋) = max܋ ห|܋)ܪ, ߱௜)| − ௗ(߱௜)หܪ
for  ߱௜ ∈ Ωௌ                  (5.12) 

where ܪௗ(߱௜) = 0 in stopband; and Ωௌ denotes a union of frequencies of interest in 
stopband. 
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The objective function of magnitude response in stopband subject to a given 
constraint is derived as  

ଶ݂(ࢉ) = ߮൫݁௠௔௚,௦(܋) −  ௦଴൯                              (5.13)ߜ
where ߜ௦଴ is the specified peak error constraint of magnitude response in stopband. 

To prevent the magnitude response in the transition band from exceeding its 
required maximum value, a magnitude limitation for transition band can be applied 
such that 

,܋)ܪ ߱௜) ≤ 1      for  ߱௜ ∈ Ω்                             (5.14) 
where Ω் is the union of frequencies in transition band. 

In other words, (5.14) can be transformed into an inequality constraint that 
(ࢉ)݃ = max௖ ,܋)ܪ) ߱௜) − 1) ≤ 0      for  ߱௜ ∈ Ω்                   (5.15) 

The objective function of magnitude response in transition band subject to a 
given constraint can be expressed as 

ଷ݂(ࢉ) = ߮൫݃(ࢉ)൯ = ߮ ቀmax௖ ,܋)ܪ) ߱௜) − 1)ቁ                      (5.16) 

The peak-error function of the group delay response in passband ݁௚ௗ(܋) can 
be expressed by 

݁௚ௗ(܋) = max܋ ,܋)߬| ߱௜) − ߬ௗ(߱௜)|
for  ߱௜ ∈ Ω௉

                           (5.17) 

where ߬ௗ(߱) is the ideal group delay. 
The objective function of group delay response in passband subject to a given 

constraint is described as 

ସ݂(ࢉ) = ߮൫݁௚ௗ(܋) −  ௚ௗ൯                                 (5.18)ߜ
where ߜ௚ௗ is the required peak error of group delay in passband. 
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The maximum group delay deviation ܳ is used for evaluating the obtained 
group delay response in passband as 

ܳ = ଵ଴଴(ఛ೘ೌೣିఛ೘೔೙)
(ఛ೘ೌೣାఛ೘೔೙)                                           (5.19) 

where ߬௠௔௫ and ߬௠௜௡ are respectively the maximum and minimum values of group 
delay in passband. 

The design goal is to minimize ଵ݂(ࢉ), ଶ݂(ࢉ), ଷ݂(ࢉ)and ସ݂(ࢉ) simultaneously 
of an IIR digital filter. The coefficient vector ܋ contains all the filter coefficients that 
need to be optimized. 
5.2 Euclidean-Distance-Based MOTLBO  

Details of the original TLBO algorithm can be found in Section 2.3. The 
Euclidean-Distance-Based MOTLBO follows all the steps in the original algorithm. 

Besides, for this four-objective minimization problem, all the objective 
functions can be represented as an Euclidean spatial point corresponding to a 
solution c in an Euclidean Space ࡿସ as 

(܋)܎ = [ ଵ݂(܋), ଶ݂(܋), ଷ݂(܋), ସ݂(܋) ]                         (5.20) 
The current ideal spatial point (ݐ)ࢠ obtained at the current iteration t can be 

represented by 
(t)ܢ = ,ଵ௠௜௡(t)ݖൣ ,ଶ௠௜௡(t)ݖ ,ଷ௠௜௡(t)ݖ  ସ௠௜௡(t)൧                    (5.21)ݖ

where  
௠௠௜௡(t)ݖ = minൣmin ௠݂(ࢉ), ݐ)௠௠௜௡ݖ − 1)൧                      (5.22) 

where ݖ௠௠௜௡(ݐ)  (for ݉ = 1 to 4)  represents the minimum value of ௠݂(܋) that has 
ever reached from the first iteration to the current iteration. 
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The Euclidean distance between the overall ideal point z and the Euclidean 
spatial point (܋)܎ in the Euclidean Space ࡿସ defined in (5.20) is used to compare the 
qualities of obtained solutions as 

݀൫ࢠ, ൯(܋)ࢌ = ඥ∑ [ ௠݂(ࢉ) − ௠]ଶସ௠ୀଵݖ                             (5.23) 
Within a population, the one with the smallest Euclidean distance is selected 

as the teacher. The optimization procedure is terminated when the value of Euclidean 
distance of the teacher reaches zero. 
5.3 Filter Examples and Results 

In this section, a cascade-form IIR lowpass filter of order N=10 and a 
highpass filter of order N=14 are designed using the Euclidean-distance-based 
MOTLBO algorithm. Filter coefficients are initialized randomly subjected to the 
stability constraints. Maximum passband and stopband magnitude errors and 
maximum passband group delay error are simultaneously minimized. The lowpass 
and highpass filter specifications are listed in Table 5.1. 201 frequency points are 
used for optimization and 1001 frequency points are used for calculating peak 
magnitude errors and peak group delay error for each of the lowpass and highpass 
filters. The power p is chosen as 128 in the least-p objective functions. A magnitude 
constraint of 1 is applied to the transition-band for both filter designs. The design 
results of the lowpass and highpass filters are respectively compared to the 6A-2 and 
7A-2 designs in [54]. Tables 5.2 and 5.3 summarize the lowpass and highpass filter 
design results taken from the best solution obtained by the Euclidean-distance-based 
MOTLBO and those of the design methods in [54]. The peak magnitude and group 
delay responses and ripples/attenuations (in dB) of the designed lowpass and 
highpass filters are shown in Fig. 5.1 to Fig. 5.3 respectively. Fig. 5.2 and Fig. 5.4 
show the convergence curves. The time taken are 3695 and 5628 CPU seconds for 
designing respectively lowpass (order 10) and highpass (order 14) IIR filters on an 
Intel Core i7-4810MQ, 2.8 GHz (3.8 GHz turbo) with 16GB RAM laptop computer. 
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Table 5.1 IIR Digital Filter Specifications 
Parameters Lowpass Highpass 
Order 10 14 
Passband edge, rad/s 0.4ߨ0.525 ߨ 
Stopband edge, rad/s 0.56 ߨ 0.475 ߨ 
Iterations 1,000,000 1,000,000 

 
Table 5.2 Lowpass Filter Design Results (PB: passband; SB: stopband; Gd: group 

delay) 
 MOTLBO Design 6A-2 [54]  
Peak PB error 0.011867126987405 0.011870695865662 
Peak SB error 0.003162049628274 0.003162390333019 
Max PB ripple, dB 0.206162788909873 0.206224795410127 
Min SB attenuation, dB 50.00062636222914 49.99969052480010 
Peak Gd error 0.015566495490468 0.015596828111102 
ܳ 0.157877569359126 0.159006931670001 

 
Table 5.3 Highpass Filter Design Results (PB: passband; SB: stopband; Gd: group 

delay) 
 MOTLBO Design 7A-2 [54]  
Peak PB error 0.028309884202968 0.028632207868323 
Peak SB error 0.028183675882967 0.028212572955863 
Max PB ripple, dB 0.491924505361867 0.497528383486763 
Min SB attenuation, dB 31.00004728515969 30.99114609711360 
Peak Gd error 0.217511682074813 0.217684985592550 
ܳ 1.708661979958310 1.713816165208324 
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Table 5.4 Bandpass Filter Design Results (PB: passband; SB: stopband; Gd: group 
delay) 

 MOTLBO Design 3A-2 [54]  
Peak PB error 0.058434315423512 0.059398878295131 
Peak SB error 0.008543769439622 0.008544696148768 
Max PB ripple, dB 1.016265788108064 1.033080328785178 
Min SB attenuation, dB 41.36700959875172 41.36606752547557 
Peak Gd error 0.000322820870707 0.000322978540844 
ܳ 0.001260688379388 0.001264277871753 

 

 
Fig. 5.1 Magnitude and group delay responses of designed lowpass filter 
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Fig. 5.2 Convergence curve of designed lowpass filter 

 
Fig. 5.3 Magnitude and group delay responses of designed highpass filter 
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Fig. 5.4 Convergence curve of designed highpass filter 

 
Fig. 5.5 Magnitude and group delay responses of designed bandpass filter 
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Fig. 5.6 Convergence curve of designed bandpass filter 

5.4 Analysis 
 As compared to the-state-of-the-art design method [54], the results in Tables 

5.2 to 5.4 indicate that the Euclidean-distance-based MOTLBO can obtain slightly 
smaller passband and stopband peak magnitude errors and passband peak group delay 
error in the lowpass, highpass and bandpass filter examples. As IIR filters require 
stability control, the design optimization takes longer time than FIR filters and the 
results are also difficult to obtain. Moreover, the transition band requires a constraint 
to ensure the quality of passband and stopband magnitude response errors. Three 
examples among the LP, HP and BP filter designs in [54] are selected for 
comparisons, the results reveal that the Euclidean-distance-based MOTLBO can 
optimize IIR digital filters to achieve slightly smaller magnitude and group delay 
errors. Figs. 5.2, 5.4 and 5.6 show that all the three filter designs can converge within 
the maximum iteration. 
5.5 Conclusions 

In this chapter, peak-error design of cascade IIR filters using Euclidean-
distance-based MOTLBO has been presented. The design results reveal that the 
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Euclidean-distance-based MOTLBO is suitable for designing IIR filters. The state-
of-the-art method [54] has designed ten IIR filters, and this chapter picks up three 
different types of IIR filters for comparison. The three comparisons demonstrate 
TLBO can achieve slightly smaller errors.  All the selected LP, HP and BP IIR filters 
have been optimized by Euclidean-distance-based MOTLBO with improved results. 
All the designs were carried out on an Intel Core i7-4810MQ, 2.8 GHz (3.8 G Hz 
turbo) with 16GB RAM laptop computer. 
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CHAPTER 6  
2-Dimensional Linear Phase FIR Digital Filter Design using TLBO Algorithm 

With the advancement of technologies, the applications of two-dimensional 
(2-D) digital filters are expanding, and the design of two-dimensional digital filters 
remains an important research problem. Although the design problem of two-
dimensional FIR filters has made progress in the past few decades, there are 
problems remain to be solved. Under the precondition that the maximum 
approximation errors in the passband and the stopband cannot exceed a given value, 
minimizing the filter size has been a challenging task in 2-D digital filter design. 
Two-dimensional linear phase finite impulse response (2-D FIR) filters [80], [55]-
[61] are stable and have applications in digital image processing. The magnitude 
responses of 2-D linear phase FIR filters can be classified as rectangular, circular 
and diamond-shape.  In [56], the coefficient matrix of the filter is utilized for 
constrained least-squares and minimax designs of quadrantally symmetric 2-D 
linear-phase FIR filters. In [60], an accelerated artificial bee colony algorithm which 
belongs to a class of metaheuristic algorithms is applied to 2-D linear-phase FIR 
filter design. Its filter examples include 2-D linear phase FIR filters of circular, 
diamond, and elliptic shapes in magnitude responses. In [59], a 2-D linear phase FIR 
lowpass filter with maximum flat passband and stopband is given. The proposed 
transfer function is expressed in closed form and various passband shapes can be 
created by changing the filter order or flatness degree. Two common methods for 
digital filter design formulation are weighted-least-squares (WLS) method [64] and 
minimax (MM) method [65]. 

In this chapter, CLS method, WLS method and MM method are applied to 
design 2-D linear phase FIR lowpass filters using the elitist TLBO algorithm. 
Section 6.1 introduces the basics and mathematic equations for 2-D linear phase FIR 
filter design. The optimization frequency points and two design examples are listed 
and described in Section 6.2. The result analysis is explained in Section 6.3. 
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6.1 2-D Linear Phase FIR Filter Design Problem 
6.1.1 Digital filter transfer function 

The causal transfer function of the ( ଵܰ − 1, ଶܰ − 1)th-order 2-D FIR digital 
filter is given by 

,ଵݖ)ܪ (ଶݖ = ∑ ∑ ܿ(ேమିଵ௡మୀ଴ேభିଵ௡భୀ଴ ݊ଵ, ݊ଶ)ݖଵି ௡భݖଶି ௡మ                       (6.1) 
From (6.1), the zero-phase transfer function of a ( ଵܰ − 1, ଶܰ − 1)th-order 2-

D FIR digital filter can be expressed as 
,ଵݖ)ܪ (ଶݖ = ∑ ∑ ܿ(ே೎మ௡మୀିே೎మ

ே೎భ௡భୀିே೎భ ݊ଵ, ݊ଶ)ݖଵି ௡భݖଶି ௡మ                  (6.2) 

௖ܰଵ = ( ଵܰ − 1) 2⁄ ; ௖ܰଶ = ( ଶܰ − 1) 2⁄                             (6.3) 
The zero-phase transfer function of a 2-D linear phase octagonal symmetric 

FIR digital filter [80] is given by 
,ଵ߱)ܪ ߱ଶ) = ݁ି௝ே೎௪భ݁ି௝ே೎௪మܣ(߱ଵ, ߱ଶ)                          (6.4)                      

where 
,ଵ߱)ܣ ߱ଶ) = ∑ ∑ ܿ(݇ଵ, ݇ଶ)ெ೎௞భୀ௞మାଵ ሼcos(݇ଵ߱ଵ) cos(݇ଶ߱ଶ) +ெ೎ିଵ௞మୀ଴

cos(݇ଶ߱ଵ) cos(݇ଵ߱ଶ)ሽ + ∑ ܿ(݇, ݇) cos(݇߱ଵ) cos(݇߱ଶ)ெ೎௞ୀ଴                      (6.5) 
For octagonal symmetry, the coefficients of the zero-phase and the causal 

transfer functions [80] are related by  
ܿ(0, 0) = ܿ( ௖ܰଵ, ௖ܰଶ)                                           (6.6) 

ܿ(0, ݇ଶ) = 2ܿ( ௖ܰଵ, ௖ܰଶ − ݇ଶ) for 1 ≤ ݇ଶ ≤ ௖ܰଶ                    (6.7) 
ܿ(݇ଵ, 0) = 2ܿ( ௖ܰଵ − ݇ଵ, ௖ܰଶ) for 1 ≤ ݇ଵ ≤ ௖ܰଵ                    (6.8) 

ܿ(݇ଵ, ݇ଶ) = 4ܿ( ௖ܰଵ − ݇ଵ, ௖ܰଶ − ݇ଶ)   for 1 ≤ ݇ଵ ≤ ௖ܰଵ, 1 ≤ ݇ଶ ≤ ௖ܰଶ       (6.9) 
ܿ(݇ଵ, ݇ଶ) = ܿ(݇ଶ, ݇ଵ)                                            (6.10) 
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௖ܰଵ = ௖ܰଶ                                                    (6.11) 
6.1.2 Objective function 

For circularly symmetric 2-D filter design, all the discrete frequency points 
of interest on the (߱ଵ, ߱ଶ) -plane can be expressed in terms of its radius ݀ =
ඥ(߱ଵଶ + ߱ଶଶ) and angle ߠ as  

,ଵ߱)݌ ߱ଶ) = ඥ(߱ଵଶ + ߱ଶଶ)∠ߠ        for 0 ≤ ߠ ≤ 45°                 (6.12) 
For the case of a 2-dimensional linear phase circularly symmetric lowpass 

FIR digital filter, the desired magnitude response is given by 

,ௗ(߱ଵܣ| ߱ଶ)| =
ەۖ
۔
1ۓۖ for 0 ≤ ට߱ଵଶ + ߱ଶଶ ≤ ߱௣

0 for ቊ߱௦ ≤ ට߱ଵଶ + ߱ଶଶ ≤ ቋߨ2√ ∩ ሼ|߱ଵ| ≤ ሽߨ ∩ ሼ|߱ଶ| ≤ ሽߨ
 

    (6.13)                                   
The weighted least-squares objective function of magnitude response error 

is defined as 

(ࢉ)݁ = ∑ ଵܹଶห|ࢉ)ܣ, ߱ଵ, ߱ଶ)| − ,ௗ(߱ଵܣ| ߱ଶ)|หଶ(ఠభ,ఠమ)∈ஐ಺            (6.14) 
where Ωூ denotes a union of frequency points of interest in passband and stopband; 
and ଵܹଶ denotes the frequency weight at (߱ଵ, ߱ଶ).  

The minimax objective function of magnitude response error is defined by  
(ࢉ)݁ = max(ఠభ,ఠమ)∈ஐ಺

ห|ࢉ)ܣ, ߱ଵ௜ , ߱ଶ௜)| − ௗ(߱ଵ௜ܣ| , ߱ଶ௜)|ห                 (6.15) 

6.2 Design examples 
In this section, two 2-D octagonal symmetric FIR lowpass filters are designed 

using the TLBO algorithm with an elitist replacement [207]. The elitist replacement 
is applied by replacing the worst learner in the population by the teacher solution and 
with added mutations on one or more randomly selected dimensions for each 
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duplicated solution before proceeding to the next generation. The passband and 
stopband cutoff frequencies of each of the 2-D FIR filters are listed in Table 6.1 and 
Table 6.4 respectively. The 2-D FIR filter examples in size of 27x27, 35x35, 39x39 
and 43x43 are designed using the minimax formulation. The initial filter coefficients 
of each of the filters can be obtained by Parks-McClellan algorithm (firpm.m in 
Matlab) after 2-D transformation [57] (ftrans2.m in Matlab). The discrete frequency 
points of interest on the (߱ଵ, ߱ଶ)-plane are all located within the 0 to 45-degree 
sector divided into 30 equal sub-sectors, each angle of which is 1.5 degree. Along 
the full length of each of these 31 dividing radius from 0 to √2ߨ, there are 41 
uniformly spaced frequency points in the range of [0, ߨ] (or 0<= ݀  and (ߨ => 
17 uniformly spaced frequency points in the range of (ߨ2√ ,ߨ) (or ߨ2√ => ݀ > ߨ) 
for all the filter designs. For lowpass filter optimization, one additional passband 
arc-grid at  ݀ = ඥ߱ଵଶ + ߱ଶଶ = ߱௣ − గ

ଶ(ସଵିଵ) and one additional stopband arc-grid at  
݀ = ඥ߱ଵଶ + ߱ଶଶ = ߱௦ + గ

ଶ(ସଵିଵ) are inserted. In so doing, there are a total of 41+2 
frequency points on each dividing radius in the range of [0, ߨ] (or 0<= ݀ <= ߨ). 
Evaluation is performed within the 0 to 45-degree sector divided into 60 equal sub-
sectors, each angle of which is 0.75 degree. Along the full length of each of these 
31 dividing radius from 0 to √2ߨ, there are 81(=41+40) uniformly spaced frequency 
points in the range of [0, ߨ] (or 0<= ߱ <= ߨ) and 34 (=17*2) uniformly spaced 
frequency points in the range of (ߨ , ߨ or) (ߨ2√   < ߱  for all the filter (ߨ2√ => 
designs. However, those frequency points outside the entire frequency band 0 ≤
,ଵݓ ଶݓ ≤ ߨ  and inside the transition band are to be excluded. Meanwhile, the 
frequency grid of optimization and evaluation in [80] is a rectangular grid, which 
has exactly 5N×5N frequency points in first quadrant.  
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Fig. 6.1 Discrete frequency grid points for designing 2-D circularly symmetric 

digital filters (Blue stands for passband; Yellow stands for stopband) 
Two filter examples and their maximum magnitude errors (MME) obtained 

by the elitist TLBO are listed in Table 6.2 and Table 6.5 respectively. The maximum 
magnitude errors in passband and stopband of the filter examples are listed in Table 
6.3 for example 1 and Table 6.6 for example 2. Tables 6.4 and 6.7 list the numbers 
of iterations and CPU time (in seconds) of the two designs using an Intel Core i7-
4810MQ, 2.8 GHz (3.8 GHz turbo) with 16GB RAM laptop computer. The 
magnitude responses in dB and the error convergence curves of the two designed 
filters are plotted in Fig. 6.2 to 6.8 and Fig. 6.9 to 6.13 respectively. 

ܧܯܯ = max [݁(ࢉ)]                                         (6.16) 
6.2.1 Example 1 

In this section, 2-D linear phase FIR lowpass filters are designed using the 
elitist TLBO algorithm. The cutoff frequency specifications of the 2-D linear phase 
FIR filters are listed in Table 6.1. The 27x27th-order FIR filter is designed using the 
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WLS problem formulation and the 35x35th-order FIR filter is designed using the 
minimax formulation. All the WLS frequency weights are set to 1. 

Table 6.1 Cutoff Frequencies of 2-D FIR Lowpass Filters 
Filter order Passband Stopband 
 ߨ0.55 ߨ0.40 27×27
 ߨ0.55 ߨ0.40 35×35

 
Table 6.2 2-D FIR Lowpass Filter Design Results 

Specification Algorithm MME 
ଵܰ=27, ଶܰ=27 

 ߬ଵ = ߬ଶ = 13 
TLBO 0.011742 (WLS) 
Example 2 [61]  0.013784 (WLS) 

ଵܰ= ଶܰ=35 
߬ଵ = ߬ଶ = 17 

TLBO 2.62e-06 (CLS) 
Example 3 [56]  3.91e-04 (CLS) 

 
Table 6.3 Computational Requirements 

Filter order Iteration CPU time (sec) 
ଵܰ= ଶܰ=27 10,000 8.81169e+02 
ଵܰ= ଶܰ=35 400,000 3.8279e+04 
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Fig. 6.2 Magnitude response of 27×27 2-D linear phase circularly symmetric FIR 

lowpass filter designed by TLBO 

 
Fig. 6.3 Magnitude response in dB of 27×27 2-D linear phase circularly symmetric 

FIR lowpass filter designed by TLBO 
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Fig. 6.4 The 1st quadrant magnitude response in dB of 27×27 2-D linear phase 

circularly symmetric FIR lowpass filter designed by TLBO 

 
Fig.6.5 WLS error convergence curve of 27×27 2-D linear phase circularly 

symmetric FIR lowpass filter designed by TLBO 
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Fig. 6.6 Magnitude response of 35×35 2-D circularly symmetric FIR lowpass filter 

designed by TLBO 

 
Fig. 6.7 Magnitude response in dB of 35×35 2-D circularly symmetric FIR 

lowpass filter designed by TLBO 
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Fig. 6.8 WLS error convergence of 35×35 2-D circularly symmetric FIR lowpass 

filter designed by TLBO 
6.2.2 Example 2 

In this section, 2-D linear phase FIR lowpass filters are designed using the 
elitist TLBO algorithm. The cutoff frequency specifications of the 2-D linear phase 
FIR filters are listed in Table 6.4. The 39x39th-order and 43x43th-order FIR filter 
are designed using the MM problem formulation.  

Table 6.4 Cutoff Frequencies of 2-D FIR Lowpass Filters 
Example Specification Passband Stopband 
Ex. 3 [61]  ଵܰ= ଶܰ=39 

߬ଵ = ߬ଶ =  ߨ0.50 ߨ0.40 19
Ex. 3 [61]  ଵܰ= ଶܰ=43 

߬ଵ = ߬ଶ =  ߨ0.50 ߨ0.40 21
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Table 6.5 2-D FIR Lowpass Filter Design Results 

Filter size Algorithm Design MME 
39×39 TLBO MM 0.006290 

Example 3 [61]  MM 0.010284  
43×43 TLBO MM 0.004571 

Example 3 [61]  MM 0.007418 
 

Table 6.6 2-D FIR Lowpass Filter Design Results Using TLBO 
Filter size Design MME (Passband) MME (Stopband) 
39×39 MM 0.006232 0.006290 
43×43 MM 0.004554 0.004571 

 
Table 6.7 TLBO Computational Requirements 

Filter size Iteration CPU time (sec) 
39×39 66,988 3.9856e+03 
43×43 61,068 8.9636e+03 
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Fig. 6.9 Magnitude response of 39×39 2-D circularly symmetric FIR lowpass filter 

designed by TLBO 

 
Fig. 6.10 Magnitude response in dB of 39×39 2-D circularly symmetric FIR 

lowpass filter designed by TLBO 
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Fig. 6.11 Error convergence curve of 39×39 2-D circularly symmetric FIR 

lowpass filter designed by TLBO 

 
Fig. 6.12 Magnitude response of 43×43 2-D circularly symmetric FIR lowpass 

filter designed by TLBO 
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Fig. 6.13 Magnitude response in dB of 43×43 2-D circularly symmetric FIR 

lowpass filter designed by TLBO 

 
Fig. 6.14 Error convergence of 43×43 2-D circularly symmetric FIR lowpass filter 

designed by TLBO 
6.3 Analysis 

The two filter examples in this chapter use the elitist TLBO algorithm to 
design 2-D circularly symmetric FIR lowpass digital filters. The first example uses 
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the WLS and CLS approaches, respectively, and are compared to two state-of-the-
art methods. The MME results in Table 6.2 reveal that the elitist TLBO algorithm 
can achieve smaller maximum magnitude errors (MMEs) than those obtained in [56] 
and [61]. For filter order 27×27, the MME is close to the result in [61]. However, 
for filter order 35×35, the MME is around 1/70 of that obtained in [56]. Our CPU 
time is listed in Table 6.3. Fig. 6.5 plots the convergence curve of the 27x27 filter, 
which shows that the optimization converged around 5,500 iterations but within the 
specified maximum number of iterations. On the other hand, the convergence curve 
of the 35x35 filter still slowly decreases after the maximum number of iterations is 
reached, but the MME value is already less than the criterion, as shown in Fig. 6.8. 
The two different filter orders demonstrate the elitist TLBO algorithm can achieve 
smaller MME with CLS and WLS approach. 

In Example 2, a minimax design of two higher-order 2-D circularly 
symmetric FIR lowpass digital filters obtained by the elitist TLBO algorithm is 
presented. The MME values obtained are approximately 3/5 of those obtained in 
[61] as shown in Table 6.5. Table 6.6 shows the passband and stopband MME values 
of the elitist TLBO. By increasing the filter size from 39x39 to 43x43, the obtained 
MME values in passband and stopband are reduced. Table 6.7 lists the CPU time for 
the elitist TLBO. Figs. 6.11 and 6.14 give the error convergence plots of the 39x39 
and 43x43 filters. The two convergence curves are still slowly declining even their 
MME values obtained are already smaller than those obtained in [61]. 

Therefore, those four designs indicate that the elitist TLBO algorithm is 
effective and can achieve smaller magnitude errors comparable to those obtained by 
the design methods [56] and [61]. 
6.4 Conclusions 

In this chapter, CLS, WLS, and minimax designs of 2-D circularly 
symmetric FIR lowpass digital filters using the elitist TLBO algorithm have been 
presented. The CLS, WLS, and MM design results show that the elitist TLBO 
algorithm exhibits good performance in 2-D linear phase FIR filter designs. From 
the two examples, the optimization using the elitist TLBO can obtain much smaller 
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MME values compared to the two state-of-the-art methods in [56] and [61]. Design 
results obtained by the elitist TLBO show that the error convergence curves of the 
two filters each with 2 different filter sizes drop rapidly at the beginning and then 
decline slowly and competitive MME values can be obtained within the maximum 
number of iterations. All the filter designs were carried out on an Intel Core i7-
4810MQ, 2.8 GHz (3.8 G Hz turbo) with 16GB RAM laptop computer. 
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CHAPTER 7  

Two-Dimensional Nonlinear Phase FIR filters Design 

2-D (two-dimensional) nonlinear phase FIR filters [62]-[66] have attracted 
attention because their lower group delay is more desirable in some applications as 
compared to 2-D linear phase FIR filters [55]-[61]. Under normal conditions, the 
transfer function of a 2-D FIR digital filter cannot be decomposed. In [62], an 
iterative alternating optimization technique for optimally designing the separable 2D 
FIR filter in the mini-max sense and the least-square sense was proposed. In [63], a 
fast matrix-based algorithm was developed for the elliptic-error and phase-error 
constrained least-squares designs of 2-D nonlinear phase FIR filters with arbitrarily 
specified frequency responses.  Due to a matrix-based algorithm, the filter’s 
coefficient matrix can be solved directly and faster than that of a vector-based 
algorithm. Two filter examples including a 2-D circularly symmetric FIR lowpass 
filter and a 2-D FIR fan filter were used to demonstrate the design method. The 
minimax criterion minimizes the maximum approximation error for a given size, 
equivalently achieving the goal of minimizing the size when given a maximum 
approximation error. In the two-dimensional case, as the alternating theorem has not 
been established and the optimal solution of the minimax approximation is not 
unique, the algorithm has met some convergence problems. On the other hand, the 
weighted least squares criterion is another approach for 2-D FIR filter design. The 
least squares solution can be improved with a proper weight function. However, this 
least squares algorithm also has some convergence problems, especially in 2-D 
nonlinear phase FIR filter designs. 

In this chapter, the WLS method is applied to design 2-D nonlinear phase 
FIR digital filters using TLBO algorithm. Section 7.1 describes the equations of 2-
D nonlinear phase FIR digital filters. In Section 7.2, four examples are designed 
using TLBO and compared to a state-of-the-art method. Section 7.3 provides the 
experiment analysis and conclusions. 
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7.1 2-D Nonlinear Phase FIR Filter Design Problem 
7.1.1 2-D FIR digital filter 

The transfer function of a 2-dimensional nonlinear phase FIR digital filter 
[80] can be expressed as 

,ଵݖ)ܪ (ଶݖ = ∑ ∑ ܿ(݊ଵ ଵܶ, ݊ଶ ଶܶ)ݖଵି௡భݖଶି௡మேమିଵ௡మୀ଴ேభିଵ௡భୀ଴             (7.1) 
The coefficients ℎ(݊ଵ, ݊ଶ)  for ݊ଵ ≥ 0  and ݊ଶ ≥ 0  represent the impulse 

response values of the 2-dimensional FIR digital filter. 
The frequency response of the 2-dimensional FIR digital filter can be 

evaluated by substituting ݖ௜ = ݁௝ఠ೔்೔ for ݅ = 1, 2 into its digital transfer function in 
(7.1) as 

,ଵ߱)ܪ ߱ଶ) = ෍ ෍ ܿ(݊ଵ, ݊ଶ)݁ି௝(௡భఠభ భ்ା௡మఠమ మ்)ேమିଵ
௡మୀ଴

ேభିଵ
௡భୀ଴  

       = ,ଵ߱)ܪ| ߱ଶ)|݁௝ఏ(ఠభ,ఠమ)                                                   (7.2) 
In (7.2), the magnitude response ܪ(߱ଵ, ߱ଶ) is equal to   

,ଵ߱)ܪ ߱ଶ) = ቐ ൣ∑ ∑ ܿ(݊ଵ, ݊ଶ) ଵ߱ଵ݊)ݏ݋ܿ ଵܶ + ݊ଶ߱ଶ ଶܶ)ேమିଵ௡మୀ଴ேభିଵ௡భୀ଴ ൧ଶ

+ൣ∑ ∑ ܿ(݊ଵ, ݊ଶ)݊݅ݏ (݊ଵ߱ଵ ଵܶ + ݊ଶ߱ଶ ଶܶ)ேమିଵ௡మୀ଴ேభିଵ௡భୀ଴ ൧ଶቑ
ଵ/ଶ 

 

(7.3) 
7.1.2 Objective function 

The desired frequency response of a 2-dimensional nonlinear phase 
circularly symmetric lowpass FIR digital filter is defined by 

,ௗ(߱ଵܪ ߱ଶ) = ൝݁ି௝(ఛభఠభାఛమఠమ) for 0 ≤ ඥ߱ଵଶ + ߱ଶଶ ≤ ߱௣
0                          for ߱௦ ≤ ඥ߱ଵଶ + ߱ଶଶ ≤  (7.4)                  ߨ

where ߬ଵ  and ߬ଶ  are the desired passband group delays along the ߱ଵ  and ߱ଶ 
directions. 
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The WLS objective function of frequency response error is defined as 
(ࢉ)݁ = ∑ ଵܹଶ|ࢉ)ܪ, ߱ଵ௜ , ߱ଶ௜) − ௗ(߱ଵ௜ܪ , ߱ଶ௜)|ଶ(ఠభ,ఠమ)ఢஐ಺                (7.5) 

where  Ωூ  denotes a union of frequencies points of interest in passband and 
stopband; ଵܹଶ denotes the frequency weight at a frequency point (߱ଵ, ߱ଶ).  
7.2 Filter Design Examples 

In this section, 2-D nonlinear phase FIR lowpass filters are designed using an 
elitist TLBO algorithm [207]. The elitist replacement is applied by replacing the 
worst learner in the population by the teacher solution and with added mutations on 
one or more randomly selected dimensions for each duplicated solution before 
proceeding to the next generation. The cutoff frequency specifications of the 2-
dimensional nonlinear phase FIR filters are listed in Table 7.1 and plotted in Fig. 7.1, 
where the green areas denote the area of frequency points of interest for optimization. 
For optimization, the size of the frequency grid is taken as ܫ × ܫ with ܬ = ܬ = 8ܰ for 
0 ≤ ߱ଵ௜ , ߱ଶ௝ ≤  .The initial coefficients of each filter design are set randomly .ߨ

The filter examples and the mean squared complex error (MSCE) results 
obtained using TLBO and by the Example 1 of [63] are listed in Table 7.2. Table 
7.3 lists the numbers of iterations and CPU time (in seconds) of the four filter designs 
using an Intel Core i7-4810MQ, 2.8 GHz (3.8 GHz turbo) with 16GB RAM laptop 
computer. The magnitude responses in dB and the error convergence curves of the 
four designed filters are shown in Fig. 7.2 to Fig. 7.13 respectively. 

ܧܥܵܯ = ൣ∑ ݁௣(ࢉ)ଶஐು + ∑ ݁௦(ࢉ)ଶஐೄ ൧/ ௖ܰ௢௨௡௧                    (7.6) 
where  Ω௉  denotes a union of frequencies points of interest in passband; and Ωௌ 
denotes a union of frequencies points of interest in stopband. ݁௣(ࢉ) and ݁௦(ࢉ) are 
the WLS objective function of frequency response error in passband and stopband, 
respectively. ௖ܰ௢௨௡௧ is the number of points for evaluation. 
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Table 7.1 Cutoff Frequencies of 2-D Nonlinear Phase FIR Lowpass Filters 
Cutoff frequencies 
Passband 0.40࣊ 
Stopband 0.60࣊ 

 

              
Fig. 7.1 Cutoff frequencies of 2-D nonlinear phase FIR lowpass filters 

Table 7.2 2-D Nonlinear Phase FIR Lowpass Filter Design Results 
Specifications Algorithm MSCE 

ଵܰ=13, ଶܰ=13  
߬ଵ = ߬ଶ = 5 

TLBO 3.6123e-04 
Design Example 1 
[63]  4.7362e-04 

ଵܰ=15, ଶܰ=15  
߬ଵ = ߬ଶ = 6 

TLBO 2.5682e-04 
Design Example 1 
[63]  3.9803e-04 

ଵܰ=21, ଶܰ=21 
߬ଵ = ߬ଶ = 9 

TLBO 4.5820e-05 
Design Example 1 
[63]  3.0317e-04 

ଵܰ=31, ଶܰ=31 
߬ଵ = ߬ଶ = 13.5 

TLBO 3.4669e-06 
Design Example 1 
[63]  1.5069e-04 
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Table 7.3 Number of Iterations and CPU Time of TLBO 
Filter orders Iterations CPU Time (s) 

ଵܰ= ଶܰ=13 500,000 3.8956e+03 
ଵܰ= ଶܰ=15 1,000,000 1.3544e+04 
ଵܰ= ଶܰ=21 500,000 6.3681e+03 
ଵܰ= ଶܰ=31 200,000 1.7904e+05 

 

 
Fig. 7.2 Magnitude response of 13×13 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.3 Magnitude response in dB of 13×13 2-D nonlinear phase FIR lowpass 

filter design by TLBO 

 
Fig. 7.4 Passband group delay of 13×13 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.5 WLS error convergence curve of 13×13 2-D nonlinear phase FIR lowpass 

filter design by TLBO 

 
Fig. 7.6 Magnitude response of 15×15 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.7 Magnitude response in dB of 15×15 2-D nonlinear phase FIR lowpass 

filter design by MOTLBO 

 
Fig. 7.8 Passband group delay of 15×15 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.9 WLS error convergence of 15×15 2-D nonlinear phase FIR lowpass filter 

design by TLBO 

 
Fig. 7.10 Magnitude response of 21×21 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.11 Magnitude response in dB of 21×21 2-D nonlinear phase FIR lowpass 
filter design by TLBO 

 
Fig. 7.12 Passband group delay of 21×21 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.13 WLS error convergence of 21×21 2-D nonlinear phase FIR lowpass filter 
design by TLBO 

 

 
Fig. 7.14 Magnitude response of 31×31 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.15 Magnitude response in dB of 31×31 2-D nonlinear phase FIR lowpass 

filter design by MOTLBO 

 
Fig. 7.16 Passband group delay of 31×31 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
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Fig. 7.17 WLS error convergence of 31×31 2-D nonlinear phase FIR lowpass filter 

design by TLBO 
7.3 Analysis 

In this chapter, four designs of the WLS design of 2-D nonlinear phase FIR 
digital filters using the TLBO algorithm are presented. Mean squared complex errors 
(MSCEs) are selected as the evaluation criteria. The design examples consisting of 
four different filter orders of 2-D nonlinear phase lowpass FIR filter and their design 
results are compared to those obtained by the-state-of-the-art method in [63] as 
shown in Table 7.2. The design results obtained by TLBO in terms of MSCEs are 
about 7/10 and 8/10 of those in [63] for filter orders of 13 × 13 and 15 × 15 
respectively; and about 1/7 and 1/43 of those in [63] for filter orders of 21x21 and 
31x31 respectively7.4.  

The maximum number of iterations for filter orders of 13×13 and 21×21 are 
500,000 iterations, filter order of 15×15 is 1,000,000 iterations, while for filter order 
of 31 × 31 is 200,000 iterations. Figs. 7.4, 7.7, 7.10 and 7.13 show the error 
convergence of the four filter designs, each of them decreases fast at the beginning 
and then declines slowly. Although the error convergence curves of the four filter 
designs are still slowly declining after the maximum number of iterations, all the 
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obtained MSCE values have already met their design criteria and are smaller than 
those of [63].  
7.4 Conclusions 

In this chapter, the WLS design of 2-D nonlinear phase FIR digital filters 
using the elitist TLBO algorithm has been presented. The 2-D nonlinear phase FIR 
filters are more complex than 2-D linear phase FIR filters because more coefficients 
are needed to be optimized. However, the elitist TLBO can obtain smaller errors 
than those obtained by the state-of-the-art method in [63], especially for higher-
order filter designs. All four filter designs are capable of reaching the desired errors 
within the maximum number of iterations. All the filter designs were carried out on 
an Intel Core i7-4810MQ, 2.8 GHz (3.8 G Hz turbo) with 16GB RAM laptop 
computer. 
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CHAPTER 8  

Conclusions and Future Study 

8.1 Conclusions 
In this dissertation, TLBO and improved algorithms have been presented and 

used to design five different types of digital filters.   
Chapter 3 has presented least squares and minimax designs of linear phase 

FIR Hilbert transformer using the standard TLBO algorithm and the gradient-based 
TLBO algorithm. The results indicated that the gradient-based TLBO is a more 
efficient method as compared to the standard TLBO algorithm. Though both 
algorithms can obtain very close LS and MM errors, the gradient-based TLBO 
algorithm can achieve slightly lower peak LS and MM errors and requires less CPU 
time for optimization. Similar results are obtained when compared to a state-of-the-
art method in [143]. A tuning of the learning rate parameter is required for the 
gradient-based learning phase. Experiments reveal that an appropriate choice of the 
learning rate parameter could make the gradient-based TLBO algorithm more 
efficient. 

In the first part of Chapter 4, minimax design of general FIR filters using the 
non-dominated MOTLBO (with crowding distance) has been presented. As 
compared to the (non-dominated) MOPSO (with crowding distance), the design 
results indicate that the non-dominated MOTLBO can obtain smaller magnitude and 
group delay minimax errors as well as smaller passband and stopband peak errors. 
Except for BS filter design, the non-dominated MOTLBO usually requires less CPU 
time than the MOPSO. The second part of Chapter 4 has presented the use of the 
gradient-based MOTLBO (with Manhattan distance) for least squares design of 
general FIR filters. The design results are compared to those obtained by the non-
dominated MOTLBO (with crowding distance) and the (non-dominated) MOPSO 
(with crowding distance). The comparison has shown that the gradient-based 
MOTLBO with Manhattan distance exhibits the best performance in nearly all least 
squares errors and peak errors. For the non-dominated MOTLBO and the MOPSO, 



 

135  

the comparison has shown that the non-dominated MOTLBO performs better than 
the MOPSO in all least squares magnitude errors, and in least squares group delay 
error and peak group delay errors for highpass filter design; and there is a mixed 
performance in least squares peak magnitude errors.  

Chapter 5 has presented the Euclidean-distance-based MOTLBO to design 
cascade IIR filters by minimizing passband and stopband peak magnitude errors, and 
passband peak group delay error, subject to transition band magnitude constraint. A 
comparison to the design results of the lowpass, highpass, and bandpass filter 
examples of the state-of-the-art design method in [54] indicated that the Euclidean-
distance-based MOTLBO can obtain slightly smaller passband and stopband peak 
errors and the passband group delay peak error.  

Chapter 6 has presented the constraint least squares (CLS), weighted least 
squares (WLS), and minimax (MM) designs of 2-D circularly symmetric FIR 
lowpass digital filters using the elitist TLBO algorithm. A 45° discrete frequency 
grid is used for optimization. The obtained WLS, and MM designs are compared to 
those obtained by [63] and the obtained CLS design is compared to that of [56] (both 
of [63] and [56] are the state-of-the-art design methods) to demonstrate that the 
elitist TLBO algorithm can obtain lower maximum magnitude errors (MME) in 2-
D linear phase FIR filter design. 

Chapter 7 has presented the use of the elitist TLBO algorithm to design 2-D 
nonlinear phase FIR digital filters with WLS approximation. A 2-D nonlinear phase 
lowpass FIR filter example of four different filter orders are designed and compared 
to those obtained by a state-of-the-art design method [63] with results indicating that 
lower mean squared complex errors (MSCEs) can be obtained by the elitist TLBO 
algorithm. 
8.2 Future works 

A few topics worthy for future research are briefly described as follows: 
Study on faster convergence speed on multiobjective design problems. This 

dissertation has presented TLBO and its improved algorithms for single and 
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multiobjective digital filter design problems. In general, it is desirable to further 
reduce the required CPU time especially when applied to complex multiobjective 
design problems. 

Study on improved performance on complex design problems. The proposed 
gradient-based algorithm has achieved good results in optimizing linear phase FIR 
filters and nonlinear phase FIR filters. A future study could be on its performance 
improvements when applied to more complex design problems.  

This dissertation has mainly described the application of TLBO and its 
improved algorithms for digital filter design. There are other evolutionary 
algorithms, their effectiveness for digital filter design is a topic worthy of further 
research.
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