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Abstract 
In this thesis we present an Agent-Based Modelling Tool (ABMT) for use in the investigation of 

the impact that operational level changes have on diagnostic imaging scheduling and patient wait times. 

This tool represents a novel application of agent-based modelling in the outpatient scheduling / 

simulation fields. The ABMT is a decision support tool with a user friendly graphical user interface that is 

capable of modelling a wide array of outpatient scheduling scenarios. The tool was verified and 

validated using data and expertise from Hotel Dieu Grace Hospital, Windsor, Ontario, Canada. The ABMT 

represents a technological advancement in the modelling of multi-server, multi-priority class customer 

queueing systems with deterministic service times and uneven distribution of server up-time. 
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1. Introduction 
Canada's publicly funded healthcare system is dynamic. The system, composed of 10 provincial 

and 3 territorial plans, has evolved into its current state over the past forty years. The goal of the system 

however remains unchanged; providing universal coverage for medically necessary healthcare services 

on the basis of need rather than the ability to pay. In recent years stress on the system has been 

increasing due to factors such as the high cost of new medical technology and the aging of the baby 

boom generation (Ministry of Health, 2005). In years to come this stress will only continue to increase as 

the number of senior citizens in Canada continues to climb. The percentage of the total population that 

were senior citizens in 2005 was 13%, however by 2036 that number is expected to nearly double to 

24.5% (Turcotte & Schellenberg, 2006). Combined with the fact that seniors historically have consumed 

44% (Canadian Institute for Health Information, 2008) of the healthcare spending of provinces and 

territories it's plain to see that Canadian healthcare system is headed into a period that will tax its 

resources to a new level. 

One area where resources are already spread thinly is diagnostic imaging. This area is concerned 

with the use of MRI (Magnetic Resonance Imaging), CT or CAT Scans (Computed Axial Tomography), 

Ultrasounds and X-Rays. In 2004 there were on average 4.9 MRI machines and 10.2 CT Scanners for 

every million Canadians; by 2007 those numbers had risen to 6.8 and 12.8, respectively (Canadian 

Institute for Health Information, 2004) (Canadian Institute for Health Services, 2007). However, between 

2006 and 2007 the demand for MRI and CT scans increased by 42.9% and 27.9%, respectively. 

Compounding this issue is the fact that diagnostic imaging resources are not evenly distributed across 

the country, for example by the end of 2006 there were 10.2 CT scanners per million people in Ontario 

but 21.6 per million people in Newfoundland and Labrador (Canadian Institute for Health Information, 

2007). As a result of the increasing demand for and uneven distribution of diagnostic imaging equipment 

wait times for diagnostic imaging scans have become a concern in Canada. To that end the government 

of Ontario has begun an initiative to track wait times in areas throughout the province 

(http://www.health.gov.on.ca). The Ministry of Health has also established target wait times for patients 

of different acuity (sickness) levels which are used to assess healthcare providers' wait time 

performance. 

At present, in many areas of Canada, the demand for diagnostic imaging services outstrips the 

ability of public healthcare to provide these services. As a result, requests for services can go unmet, 

except in emergency cases, until weeks after the request has been made resulting in lengthy queues. 

1 
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The 'Wait Time' targets established by the government of Ontario represent the maximum period a 

particular class of patients can wait for service before their health will suffer. At present there are 4 

categories of patient acuity; class 1 patients are the sickest and require immediate attention (within 1 

day) whereas class 4 patients are less critical and can often be elective requiring attention within 28 

days. 

The focus of this study will be 'Wait Time' as described by provincial government of Ontario's 

guidelines. However, from a queueing theory perspective this is not the actual wait time, but can be 

more accurately described as access time. The key difference being that this thesis will examine the days 

between the request for service and the day of service and will not consider the time that a patient may 

wait for service on the day that he or she is scheduled as a result of interruptions in the pre-established 

schedule. Essentially, the thesis will ignore the fact that a patient may have to wait as long as the waiting 

occurs on the day that the patient is scheduled to be scanned. It should be noted that in many works 

the terms access time and wait time are used interchangeably, we will assume them to both mean the 

number of whole days a patient waits between requesting and undergoing service. 

Based on these factors it is plain to see that diagnostic imaging service providers will need a 

means to effectively manage resources, allocate funds and control their processes if they are to cope 

with the increasing demand of the Canadian population for their services to be delivered in a timely 

manner. 

1.1 Problem Description 

It was the recognition of the reality facing a diagnostic imaging department that lead to the 

conception of this thesis. The research team, which consisted of Dr. Richard Caron, Dr. Walid Abdul-

Kader and Mr. Brendan Eagen, was invited by Mr. Neil McEvoy, former CEO of Hotel Dieu Grace Hospital 

(HDGH), Windsor, Ontario, Canada, to study his hospital's diagnostic imaging department and its 

scheduling system. As a trained industrial engineer Mr. McEvoy was keenly aware of the benefits of 

simulation and requested that the team pursue an agent-based solution to the problem. His vision was 

that a tool be created for him and his staff that would assist them in the evaluation of the effects of 

operational level changes to their current system. Mr. McEvoy suggested the use of NetLogo™, a zero 

cost software used by researchers interested in agent-based modelling. These directives motivated this 

thesis. 

2 



1.2 Thesis Statement 
Our thesis is that agent-based modelling can provide a technological tool for use by hospital decision 

makers to evaluate the effects that operational level changes will have on their diagnostic imaging 

system with specific interest in the impact the changes will have on patient scheduling and wait time. 

1.3 Objectives 

With the above thesis statement in mind the objectives of this thesis are to create an agent-

based simulation tool with an easy to understand graphical user interface (GUI) that would allow 

hospital decision makers to assess the impact of potential operational level changes to the diagnostic 

imaging department on the department's schedule of patients. Additionally this thesis will expand 

knowledge of the use of agent-based modelling in the outpatient scheduling field. The tool is a decision 

support tool, not a model of any one specific diagnostic imaging department, and allows users to modify 

input parameters according to the scheduling system that they wish to model. 

1.4 Research Methodology 

The research methodology is implicit in the following overview of the thesis layout. Though enumerated, 

many of the outlined activities were carried out in parallel. 

1. Preliminary Research 

a. Review of literature - An exhaustive literature review was performed and the results 

provided insight into the proposed research's place in the fields of healthcare 

simulation/scheduling and agent-based modelling. In the case of HDGH scheduling is 

taken to mean the assignment of a patient to a specific appointment slot on a particular 

CT scanner. Additionally, the literature review helped to establish the parameters that 

would be used in the construction of the simulation model. 

b. Consultation with healthcare professionals - Consultation with practicing medical 

professionals and healthcare administrators helped to establish the user interface 

requirements of the model as well as providing insight into what internal and external 

factors affect the scheduling process. 

2. Design and development-The model was developed in the NetLogo™ simulation package using 

the parameters established in the Preliminary Research phase. In order to use the NetLogo™ 

simulation package it was necessary to learn the unique programming language that is used to 

3 



control it. Learning this programming language required several months of study and resulted in 

the development of a prototype simulation model designed to simulate scheduling of a single 

server. Once the programming language had been mastered, the prototype model was 

expanded to accommodate multi-server scenarios. 

3. Verification and Validation - The model was presented to medical professionals and healthcare 

administrators to verify that the diagnostic imaging scheduling process was accurately 

represented in the model. Historical data was collected from the sponsoring hospital, HDGH, 

and used to validate the simulation results. 

4. Discussion - The overall effectiveness of the simulation tool was assessed and observations 

were made and documented regarding the applicability of agent-based simulation to scheduling 

in healthcare. 

5. Dissemination - The simulation tool will be shared with Canadian medical professionals, 

healthcare administrators and healthcare researchers. 

4 



2. Review of Literature 
This review of literature assists in the determination of what methodology should be used to 

approach the topic of this thesis and also to determine the thesis' place in published literature. The 

researchers will first consider the macro level problem of what solution method they wish to use. The 

end result of this thesis will be a decision support tool that is transportable between diagnostic imaging 

scheduling systems, as this decision support system will be required to support a system that is 

relatively complex and also relies heavily on historical data thus a simulation-based decision support 

system appears appropriate. Examples of simulation successfully being applied in healthcare include the 

work of (McClean & Millard, 1995), (Everett, 2002) and (Aktas, Ulengin, & Sahin, 2007) who have all 

effectively applied simulation-based decision support in healthcare. Everett gives perhaps the best 

justification for choosing simulation as a decision support tool. He states that the complex web of 

stakeholder objectives in healthcare all but precludes the existence of an "optimal" solution to a 

problem. Instead he suggests that it is the system modeller's job to enable informed debate among 

stakeholders. To that end, he continues, the development of a simulation model for decision support is 

an excellent means by which to encourage communication between stakeholders and the modeller so 

as to accurately capture the true nature of the system. Simulation also, through use of a graphical user 

interface, allows the stakeholders without technical backgrounds to contribute to the development and 

assume ownership and commitment to the model. It should be noted that simulation was not the only 

option considered for modelling the diagnostic imaging scheduling system. Queueing theory / analytical 

options were initially considered but the complex nature of the system combined with the need for 

flexibility across a wide array of scenarios lead us to disregard these approaches. 

2.1 Queueing Theory 

Based on preliminary consultations with HDGH diagnostic imaging staff we determined that the 

system can most readily be compared to a queueing system in which multiple servers work in parallel to 

serve a single queue of customers with weighted priority on a first come first serve basis and that have 

deterministic service times. Figure 1 depicts a single-stage queueing system with multiple servers in 

parallel serving a single queue in much the same way as CT scanners service patients at HDGH. 

5 
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Figure 1 - Single Stage, Multi-Server Queueing System 

Although discounted as a solution to this particular problem, queueing theory still provides a 

useful means by which to describe the situation under consideration. 

In order to understand queueing theory notation and its ability to describe the current problem 

one must be familiar with the basic components of a queue and the way in which it functions. A brief 

overview of queueing as well as the importance of the exponential distribution is provided by (Winston, 

2004). A queue is essentially a waiting line in which customers wait to receive service from a server. 

Queueing theory helps one to describe and understand the relationships between customers, queues 

and servers. 

Customers, be they people, automobiles, manufacturing equipment, etc. require 'service' of 

some sort. For example, people are serviced at a bank or in a grocery store, cars are serviced by a 

mechanic and a broken welding robot is serviced by a technician. In these cases the number of 

customers often exceeds the number of servers, that is, the number of people requiring banking 

services exceeds the number of bank tellers for example. In situations such as there queues form. The 

order in which customers in a queue are serviced by the servers is known as the queue discipline. The 

most common queue discipline is First Come First Serve but others exist such as Last Come First Serve 

and Service In Random Order. 

Understanding how customers come to be in the queue is another important aspect of queueing 

theory. Customers 'arrive' in the system; this is known as the arrival process and is the input for the 



system. The rate at which customers arrive is known as the 'arrival rate' and in general can be modelled 

by a mathematical distribution, the most common of which is the exponential distribution. 

Exponential distributions are used to model interarrival times because of their no-memory 

property. That is, 

P(A>t + h nA >t) e-^
t+K> .. 

P(A>t + h\A>t) = p { A ^ t ) >-=——= e-*=PiA>h) 

"The no-memory property of the exponential distribution is important, because it implies that if we 

want to know the probability distribution of the time until the next arrival, then it does not matter how 

long it has been since the last arrival." (Winston, 2004) 

Other factors also affect the arrival process such as whether or not more than one customer can arrive 

in the system at a time and also the total number of customers that the system services. 

Modelling the time required for a customer to receive service is also a key element of queueing 

theory. The Erlang distribution is commonly used to model services times, however, other distributions 

are also common. In some cases, when the same actions are repeated for every customer, the service 

time will always be the same. In these situations the service time is said to be deterministic. 

In order to summarize all of the information required to describe a queue Kendal developed a 

standard notation (Kendall, 1951). Known as the Kendall notation, this method describes queues based 

on 6 characteristics. 

1) The arrival process 

2) Service times 

3) # of parallel servers 

4) Queue discipline 

5) Max. # of customers in the system 

6) Size of the population 

Standard abbreviations were assigned to each characteristic, for example, M denotes an exponential 

distribution and D denotes a deterministic process. 
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Thus, 

M / D / 2 / FCFS / «=> /oo 

denotes a queueing system whose customers arrive based on an exponential distribution of interarrival 

times which are served by two servers at a deterministic rate in a first come first serve manner. The 

customers come from an infinite supply and are unlimited in the number that can occupy the system. 

While a model of the imaging department at HDGH as an M/D/2/FCFS/00/00 queue might 

provide insight, it would fail to capture complexities such as multiple patient classes that cause a 

violation of the FCFS queue discipline; and scanner downtime so that the servers are not continuously 

available. This reasoning leads us to the conclusion that simulation would be a better modelling 

technique. 

2.2 Simulation 

Simulation is the imitation of the operation of a real-world process or system over time (Banks et al, 

2005). Simulation can provide a means by which to forecast the future of the diagnostic imaging 

schedule based on those past known events. The benefits of simulation are many fold as presented by 

(Shannon, 1992): 

• Simulation can be used to explore new policies, operating procedures, decision rules, organizational structures, 

information flows, etc. without disrupting the ongoing operations. 

• New hardware designs, physical layouts, software programs, transportation systems, etc. can be tested before 

committing resources to their implementation. 

• Hypothesis about how or why certain phenomena occur can be tested for feasibility. 

• Simulation allows us to control time. - Time can be easily compressed, expanded etc. allowing us to quickly look at 

long time horizons or to slow down a phenomenon for study. 

• Simulation can allow us to gain insight into which variables are most important to performance and how these 

variables interact. 

• Simulation allows us to identify bottlenecks in material, information and product flows. 

• The knowledge gained about a system while designing a simulation study may prove to be invaluable to 

understanding how the system really operates as opposed to how everyone thinks it operates. 

• Through simulation we can experiment with new situations about which we have limited knowledge and experience 

so as to prepare for what may happen. Simulation's great strength is its ability to let us explore "what if" questions. 



Shannon's first point holds significant weight in the case of this thesis. It is not feasible or safe to 

interrupt the current diagnostic imaging scheduling process as doing so may adversely affect the health 

of the patients relying on the system. Many forms of simulation also have the added benefit of providing 

the modeller with a visual representation of the system which can be useful when presenting the model 

to those whose knowledge of the system or simulation is lacking (Banks et al, 2005). 

2.2.1 Simulation Paradigm 

The simulation field is composed of many different approaches or paradigms. A system can be 

modelled in many different ways ranging from simulations performed by hand to complex multi-

scenario simulations that require more computing power than the average desktop PC has to offer. For 

ease of calculation and timeliness this study focused on computer simulation. For the purpose of this 

investigation we considered 3 central simulation paradigms; discrete-event simulation, agent-based 

simulation and system dynamics simulation. 

Discrete-event simulation can be described in terms of its components; entities, resources, 

control elements and operations (Schriber & Brunner, 1997). Entities interact with system resources 

based on the rules established by control elements to perform operations. 

Agent-based simulation functions somewhat differently than discrete-event simulation. In 

agent-based simulation agents are the primary focus. Agents are independent decision makers in a 

system that react dynamically based on their characteristics and surroundings in a simulated 

environment (Macal & North, 2007). Agent-based simulation is then the evolution of the behaviour of 

the agents and their environment over time. 

System dynamics simulation functions in a significantly different manner than discrete-event 

simulation or agent-based simulation. System dynamics is primarily concerned with an aggregate level 

of detail. It is not focused on individual entities or agents but aggregate behaviour of groups. It 

functions by considering aggregate 'stocks' and their flow within a system based on feedback loops 

(Coyle, 1996). 

In Figure 2 (Borshchev & Filippov, 2004) provide a useful frame of reference for the simulation 

paradigms considered. Figure 2 shows a comparison of the three paradigms with respect to their 

appropriateness at various levels of abstraction. Borshchev and Filippov show that discrete-event 

simulation is most appropriate at low to mid levels of abstraction in part due to its focus on individual 

entities. At the opposite end of the spectrum they show that system dynamics simulation is best suited 
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for modelling system with a high level of abstraction. In contrast to discrete-event and system dynamics, 

agent-based simulation can be used across all levels of abstraction with the capability to model 

operational level detail but also present high level trends accurately (Borshchev & Filippov, 2004). Based 

on this information it appears safe to conclude that regardless of the level of abstraction that modelling 

a diagnostic imaging scheduling process requires, agent-based simulation would be an acceptable tool. 

High Abstraction 
Less Details 
Macro Level 

Strategic Level 

Middle 
Abstraction 

Medium Details 
Meso Level 

Tactical Level 

Low Abstraction 
More Details 

Micro Level 
Operational 

Level 

ireqates. Global Causal Dependencies, Feedback Dynamics. 

"Discrete 
Event" (DE) 

- Entities (passive 
objj sets) 
Flowcharts and/or 
transport 
networks 
Resources 

Agent Based 
(AB) 

• Active objects 
• Individual 

behavior rules 
• Direct or indirect 

interaction 
• Environment 

models 

Mainlv discrete •+ 

System Dynamics (SD) 
• Levels (aggregates) 
• Stock-and-Flow diagrams 
• Feedback loops 

Dynamic Systems (DS) 
• Physical state variables 
« Block diagrams and/or 

algebraic-differential equations 

• Mainlv continuous 
Individual objects, exact sizes, distances, velocities, timings, 

Figure 2 - Approaches (Paradigms) in simulation modelling on abstraction level scale 

The decision to use agent-based simulation was influenced in part also by Mr. McEvoy who felt that 

this modelling technique might be especially applicable to diagnostic imaging scheduling and 

recommended a free simulation software package, NetLogo™, to use in the modelling process. 

Additionally, a preliminary review of literature revealed that using agent-based simulation to model an 

outpatient scheduling system would be relatively novel. In support of this approach were (Macal & 

North, 2007) who identify the appropriate time to use agent-based simulation with the following 

criteria: 

When there is a natural representation as agents 

When there are decisions and behaviours that can be defined discretely (with boundaries) 

When it is important that agents adapt and change their behaviours 

When it is important that agents learn and engage in dynamic strategic behaviours 

When it is important that agents have dynamic relationships with other agents, and agent relationships form and 

dissolve 



• When it is important that agents form organizations, and adaptation and learning are important at the organization 

level 

• When it is important that agents have a spatial component to their behaviours and interactions 

• When the past is no predictor of the future 

• When scaling-up to arbitrary levels is important 

• When process structural change needs to be a result of the model, rather than a model input 

The diagnostic scheduling process meets the above criteria and so it was determined that agent-based 

simulation would be an acceptable method to model the process. In the case of outpatient scheduling, 

requests for appointments are considered agents and the schedule, represented on a 2 dimensional 

plane (Time of the Day x Day in the planning horizon), is considered the environment. 

2.2.2 Agent-Based Simulation 

Agent-based simulation has a history in many fields including economics, mathematics, biology, 

engineering, sociology and psychology (Axelrod, 2005). The application of agent-based simulation to 

healthcare is a relatively novel but expanding field. However, much of that expansion is focused on 

modelling the transmission of infectious diseases, such as the work of (Triola & Holzman, 2003) who 

modelled the transmission of nosocomial diseases in intensive care units or (Teweldemedhin, Marwala, 

& Mueller, 2004) who study the transmission of HIV. 

2.2.3 Simulation in Healthcare 

Although there is a limited amount of research that has employed agent-based simulation in 

healthcare settings, there is a significant amount of research in healthcare using other forms of 

simulation. This should not be taken to mean that agent-based simulation does not have a place in 

healthcare; just that it is a relatively unexplored application. Although somewhat dated (Jun, Jacobson, 

& Swisher, 1999) survey over one hundred publications which employ simulation in healthcare. The uses 

of simulation they present are diverse including (but certainly not limited to) patient routing and flow 

schemes (Garcia et al, 1995) (McGuire, 1994) (Blake, Carter, & Richardson, 1996) and bed sizing and 

planning (Butler, Karwan, & Sweigart, 1992) (Lowery, 1992) (Dumas, 1985). 

Of particular interest to this thesis were those publications focused on patient scheduling, 

including the work of (Bailey, 1952) who contributed some of the earliest work in outpatient scheduling. 

Outpatients are those patients who need to stay in the hospital overnight after visiting during the day. 

Bailey, looking at outpatients, counterbalanced patient wait times with physician utilization, developing 

heuristic techniques for use in batch scheduling. Although pre-dating computer simulation, Bailey's work 
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helped pave the way for the application of a scientific approach to the study of outpatient scheduling. 

(Smith, Schroer, & Shannon, 1979) continue in a similar vein with their work that considers maximizing 

patients seen by a physician during a 3 hour session, while minimizing patient waiting time and 

determining the required number of nurses and examination rooms needed. 

2.3 Outpatient Scheduling and Simulation 

For a more current look at simulation focused specifically on outpatient scheduling we turn to 

(Cayirli & Veral, 2003) who survey outpatient scheduling and (Westeneng, 2007) who distils their work. 

Westeneng presents a useful condensed version of Cayirli & Veral's outpatient scheduling survey as part 

of his thesis on the evaluation of alternative appointment systems. His thesis shares commonalities with 

this one but differs in its goals and approach. While this thesis focuses on a standard simulation tool for 

outpatient scheduling in diagnostic imaging Westeneng focused on developing an optimal scheduling 

procedure for a single ear, nose and throat clinic. 

Westeneng presents Cayirli & Veral's work in two tables (See Tables 1 and 2). Table 1 captures 

each works' input parameters; those parameters that are beyond the control of the simulator. These 

parameters could also be called outside forces or factors as they act on their respective systems from 

the outside, relatively uncontrolled by the system stakeholders (Note: Not all of the material referenced 

by Westeneg could be located, however the table has been reproduced as it appears in his thesis). Table 

2 presents the control factors and mechanisms imposed on each system. These are the variables of the 

system that are available for manipulation by the simulator or the system stakeholder. 

Westeneng's work served as a start point for establishing those internal and external 

parameters that effect the operation of a diagnostic imaging scheduling system. While some parameters 

are not applicable in the case of diagnostic imaging, others served to develop a deeper understanding of 

the system when considered with the assistance of healthcare professionals and hospital decision 

makers. 
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Input Parameters: 
Service Time 
Distribution 

Patient 
Punctuality 

(mean, st.dev) 

No-Shows (p = 
no-show 

probability) 

Walk-Ins (regular 
and emergency) 

Doctors' Lateness 
Doctors' 

Interruption 
Level 

Articles: 

(Westeneng, 2007) 

(Bailey, 1952) 

(Blanco White & Pike) 

(Cayirli, Veral, & 
Rosen, 2004) 

(Cayirli, Veral, & 
Rosen, 2006) 

(Chen & Robinson, 
2005) 

(Clague, Reed, 
Barlow, Rada, Clarke, 

& Edwards, 1997) 

(Denton & Gupta, 
2003) 

(Fetter & Thompson, 
1966) 

(Fries & Marathe, 
1981) 

(Harper & Gamlin, 
2003) 

(Ho, Lau, & Li, 1995) 

(Hutzschenreuter, 
2004) 

(Kaandorp & Koole, 
2007) 

(Klassen & Rohleder, 
1996) 

(Klassen & Rohleder, 
2004) 

(Lehaney, Clarke, & 
Paul, 1999) 

(Liu & Liu, 1998) 

(Robinson & Chen, 
2003) 

(Rohleder & Klassen, 
2000) 

(Vanden Bosch, Dietz, 
& Simeoni, 1999) 

(Vissers & Wijngaard, 
1979) 

(Welch & Bailey, 
1952) 

Gamma 

Gamma 

Gamma 

Lognormal 

Lognormal 

Randomly 

Randomly 

Uniform, 
Gamma and 

Normal 

Empirically 
collected 

Negative, 
Exponential 

Not specified 

Uniform, 
exponential 
Triangular, 

Gamma 

Exponential 

Lognormal 

Lognormal 

Not specified 

Uniform, 
exponential, 

Weibull 
Generalized 

Lambda 

Lognormal 

Erlang 

General 

Gamma 

N(-13, 17) 

Punctual 

Gamma, mu=0 

N (-15, 25) 

N(0,25) and N 
(-15,25) 

Unpunctual, 
mu=0 

Punctual 

Punctual 

Late allowed to 
max. 5 min. 

Punctual 

Unpunctual 
(mean 8.3 min 
early, SD=14.7 

min) 

Punctual 

Unpunctual, 
(-10, 10) 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

In system 
earliness 

Punctual 

p = 0.05 

p = 0 

p = 0, 0.09 and 
0.19 

p = 0and0.15 

p = 0and0.15 

p = 0 

p = 0, .2, .3 

p = 0 

p=[0.04-0.22] 
with mean 0.14 

p = 0 

p > 0(not 
specified) 

p=0, 0.10, 0.20 

p=0.10 

p = 0,0.1, 0.25, 
0.5 

p = 0.05 

p = 0.05 

p = 0 

p = 0, 0.10, 0.20 

p = 0 

p = 0.05 

p = 0 

Included by 
adjusting 

service times 

p = 0 

Emergency only 

None 

None 

0 to 15%, also 
regular 

0 to 15%, also 
regular 

None 

None 

None 

7 to 58% with mean 
38% 

None 

Urgent 

None 

None 

None 

Max 2 emergencies 
per session 

10 % of patients 

None 

None 

None 

Max. 2 emergencies 
per session 

None 

Included by 
adjusting service 

times 

None 

Late N(5,15) minutes 

Punctual 

0,5, 10,15 or 20 min. 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

0,30 or 60 min 

Punctual 

Unpunctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Uniform over [0,6] 
min. late 

Punctual 

Punctual 

Punctual 

In system earliness 

Punctual 

yes (DICT) 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

yes 

None 

None 

None 

None 

None 

None 

Table 1 - Westeneng's Input Parameters from Outpatient Scheduling Survey 
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Building on Westeneng's work Table 3 (split onto 3 separate pages) combines Westeneng's key 

parameters and cited works with that of this thesis. This combined table also compares the work of the 

thesis (labelled as ABMT) with that of other published articles. 

Input Parameters: 
Service Time 
Distribution 

Patient 
Punctuality 

(mean, st.dev) 

No-Shows (p = no-
show probability) 

Walk-Ins (regular 
and emergency) 

Articles: 
Westeneng (2007) 

Bailey (1952) 

Blanco White & Pike (1964) 

Cayirli, Veral & Rosen (2004) 

Cayirli, Veral & Rosen (2006) 

Chen & Robinson (2005) 

Clagueetal. (1997) 

Denton & Gupta (2003) 

Fetter & Thompson (1966) 

Fries & Marathe (1981) 

Harper SGamlin (2003) 

Ho, Lau & Li (1995) 

Hutzschenreuter (2004) 

Kaandorp & Koole (2007) 

Klassen & Rohleder (1996) 

Klassen & Rohleder (2004) 

Lehancy, Clarke & Paul (1999) 

Liu & Liu (1998) 

Robinson & Chen (2003) 

Rohleder & Klassen (2000) 

Rohleder & Klassen (2002) 

Vanden Bosch, Dietz & Simeoni 
(1999) 

Vissers & Wijngaard (1979) 

Welch & Bailey (1952) 

ABMT 

Gamma 

Gamma 

Gamma 

Lognormal 

Lognormal 

Randomly 

Randomly 

Uniform, Gamma and 
Normal 

Empirically collected 

Negative, Exponential 

Not specified 

Uniform, exponential 

Triangular, Gamma 

Exponential 

Lognormal 

Lognormal 

Not specified 

Uniform, exponential, 
Weibull 

Generalized Lambda 

Lognormal 

Lognormal 

Erlang 

General 

Gamma 

Deterministic 

N(-13, 17) 

Punctual 

Gamma, mu=0 

N (-15, 25) 

N(0,25)andN 
(-15,25) 

Unpunctual, mu=0 

Punctual 

Punctual 

Late allowed to max. 
5 min. 

Punctual 

Unpunctual (mean 
8.3 min early, 
SD=14.7 min) 

Punctual 

Unpunctual, (-10,10) 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

In system earliness 

Punctual 

Punctual 

p = 0.05 

p = 0 

p = 0,0.09 and 0.19 

p = 0and0.15 

p = 0and0.15 

p = 0 

p = 0, .2, .3 

p = 0 

p=[0.04-0.22] with mean 
0.14 

p = 0 

p > 0 (not specified) 

p=0, 0.10, 0.20 

p=0.10 

p = 0, 0.1, 0.25, 0.5 

p = 0.05 

p = 0.05 

p = 0 

p = 0, 0.10, 0.20 

p = 0 

p = 0.05 

p = 0.05 

p = 0 

Included by adjusting 
service times 

p = 0 

p = 0 

Emergency only 

None 

None 

Oto 15%, also regular 

Oto 15%, also regular 

None 

None 

None 

7 to 58% with mean 
38% 

None 

Urgent 

None 

None 

None 

Max 2 emergencies per 
session 

10 % of patients 

None 

None 

None 

Max. 2 emergencies per 
session 

Max. 2 emergencies per 
session 

None 

Included by adjusting 
service times 

None 

Variable Rate 
Table 3 - Comparison of ABMT to published works 
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Input Parameters: 
Doctors' 
Lateness 

Methodology # of Servers 
Patient 

Classification 

Articles: 

Westeneng (2007) 

Bailey (1952) 

Blanco White & Pike (1964) 

Cayirli, Veral & Rosen (2004) 

Cayirli, Veral & Rosen (2006) 

Chen & Robinson (2005) 

Clagueetal. (1997) 

Denton & Gupta (2003) 

Fetter & Thompson (1966) 

Fries & Marathe (1981) 

Harper &Gamlin (2003) 

Ho, Lau & Li (1995) 

Hutzschenreuter (2004) 

Kaandorp & Koole (2007) 

Klassen & Rohleder (1996) 

Klassen & Rohleder (2004) 

Lehancy, Clarke & Paul (1999) 

Liu & Liu (1998) 

Robinson & Chen (2003) 

Rohleder & Klassen (2000) 

Rohleder & Klassen (2002) 

Vanden Bosch, Dietz & Simeoni 
(1999) 

Vissers & Wijngaard (1979) 

Welch & Bailey (1952) 

ABMT 

Late N{5,15) minutes 

Punctual 

0, 5, 10,15 or 20 min. 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

0,30 or 60 min 

Punctual 

Un punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Punctual 

Uniform over [0,6] 
min. late 

Punctual 

Punctual 

Punctual 

Punctual 

In system earliness 

Punctual 

Punctual Servers 

Simulation 

Simulation 

Simulation 

Simulation 

Simulation 

Analytical 

Simulation 

Analytical 

Simulation 

Analytical 

Simulation 

Simulation 

Simulation 

Analytical 

Simulation 

Simulation 

Soft-Simulation 

Simulation 

Analytical 

Simulation 

Simulation 

Analytical 

Simulation 

Simulation 

Simulation 

10 

1 

1 

1 

1 

1 

3 

1 

3 

1 

22 

1 

1 

1 

1 

1 

3 

2 

1 

1 

1 

1 

1 

1 

l t o l O 

Yes, 3 

No 

Yes, 2 

Yes, 2 

Yes,2 

No 

Yes, 2 

Yes, Expected 
Service Time 

Yes, 2 

No 

Yes, 5 

No 

Yes, Mean&SD 

No 

Yes, 2 

Yes, 2 

No 

No 

No 

Yes, 2 

Yes, 3 

No 

No 

No 

Yes, 4 

Table 3 Continued - Comparison of ABMT to published works 
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Input Parameters: 
Adjustments 
based on pt. 

class 
Scope Queue Discipline 

Performance 
Measures 

PW=Patients_Wait 

SI=Server_ldle 

SO=Server Overt ime 

Articles: 

Westeneng (2007) 

Bailey (1952) 

Blanco W h i t e & Pike (1964) 

Cayirli, Veral & Rosen (2004) 

Cayirli, Veral & Rosen (2006) 

Chen & Robinson (2005) 

C laguee ta l . (1997) 

Denton & Gupta (2003) 

Fetter & Thompson (1966) 

Fries & Marathe (1981) 

Harper S G a m l i n (2003) 

Ho, Lau & Li (1995) 

Hutzschenreuter (2004) 

Kaandorp & Koole (2007) 

K lassen&Rohleder (1996) 

Klassen & Rohleder (2004) 

Lehancy, Clarke & Paul (1999) 

Liu & Liu (1998) 

Robinson & Chen (2003) 

Rohleder & Klassen (2000) 

Rohleder & Klassen (2002) 

Vanden Bosch, Dietz & Simeoni 

(1999) 

Vissers & Wijngaard (1979) 

Welch & Bailey (1952) 

ABMT 

Interval & Sequencing 

N/A 

Appo in tment System 

Sequence & 

Appo in tment Interval 

Sequence & 

Appo in tment Interval 

N/A 

Interval 

Interval 

Service Times & 

Sequencing 

IN/A 

Block Size & Interval 

Length 

N/A 

Sequencing & Intervals 

N/A 

Sequence 

Sequence 

N/A 

IN/A 

N/A 

Sequence 

Sequence 

N/A 

N/A 

N/A 

Yes 

Rolling Planning 

Horizon 

One Session 

One Session 

One Session 

One Session 

One Session 

One Session 

One Session 

One Session 

Mul t ip le Sessions 

Ten Sessions 

One Session 

One Session 

One Session 

One Session 

10 Day Rolling 

Horizon 

One Session 

One Session 

One Session 

One Session 

Rolling Planning 

Horizon 

One Session 

One Session 

One Session 

Rolling Planning 

Horizon 

FAFS 

FCFS 

FCFS 

FCFS 

FAFS 

FAFS 

Shortest Queue 

FCFS 

FCFS 

FCFS 

FCFS 

FCFS 

FCFS 

FCFS 

FCFS for regular 

FCFS for regular 

FCFS 

FCFS 

FCFS 

FCFS for Regular 

FCFS for Regular 

FCFS 

FCFS 

FCFS 

FCFS for regular 

PW SO SI ut i l izat ion, 

work load 

PW SO SI queue 

length 

PW SI patients w i th in 

30 min 

PW SO SI,'fairness' 

PW SI SO 

PWSI 

PWSI 

PW SI SO cost 

PWSI 

patients/session 

PW SI SO 

PW 

PWSI 

PW uti l ization 

PW SI SO 

PW SI min./max. 

urgent cases 

PW SI SO uti l ization 

access t ime 

PW 

SI f low 

PWSI 

PW SI min. /max. 

urgent cases 

PW SI ut i l izat ion, 

access t ime 

PWSO 

PWSI 

PW SI SO queue 

length 

Access Time, % of 

patients on target, 

avg. wa i t t ime by class 

Table 3 Continued - Comparison of ABMT to published works 
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2.4 Literature Review Conclusions 

The literature review has established: 

That simulation is an acceptable means by which to create a decision support system, especially 

in those cases where the system is complex and has many stakeholders. 

The pros and cons of simulation and where it is most applicable 

That simulation in healthcare is a widely accepted practice and has the capability to yield 

positive verifiable and validated results. 

That agent-based simulation is appropriate for the level of abstraction required to model a 

diagnostic imaging scheduling system. 

That outpatient scheduling has been studied via simulation before but not through agent-based 

modelling. 

That when modelling outpatient scheduling there are a standard set of parameters that must be 

considered. 

That there is no established standard decision support tool for the scheduling of diagnostic 

imaging services. 

It is based on these facts that we chose to build a decision support tool using agent-based 

simulation to assess the impact of operational level changes to a diagnostic imaging scheduling system. 
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3. Agent-Based Modelling Tool (ABMT) 
This chapter describes the Agent-Based Modelling Tool (ABMT) built using NetLogo™ a programmable 

modelling environment well suited to complex dynamic systems. In 3.1 we introduce the ABMT 

Environment and in 3.2 the Patients. In 3.3 we describe the Scheduling Discipline. We end the chapter 

with a presentation of the User Interface. 

3,1 ABMT Environment 

NetLogo™ uses two different types of agents, 'patches' and 'turtles'. Patches are stationary and 

the collection of patches form the environment in which the turtles exist and move. In Figure 3 we see 

the agents used in the ABMT. Squares are patches and triangles are turtles. The colours green, blue, 

yellow and brown represent the different patient priority classes. Red, black and grey represent times 

that are not currently or cannot be used for scheduling a patient. 

Current Time 
Available appointment Updater 
during operating hours 

Available appointment 
not Airing operating 
hours 

Prebooked 
Time 

Class 1 
Patient 

Scheduled 
appointment 
for Class 1 

Patient 

Prebooked 
Time 

for Class 1 
Patient 

Class 2 
Patient 

Scheduled 
appointment 
for Class 2 

Patient 

Prebooked 
Time 

for Class 2 
Patient 

Class 3 
Patient 

Scheduled 
appointment 
for Class 3 

Patient 

Prebooked 
Time 

for Class 3 
Patient 

Class 4 
Patient 

Scheduled 
appointment 
for Class 4 

Patient 

Prebooked 
Time 

for Class 4 
Patient 

Figure 3 - Patches and Turtle 

The planning horizon is composed entirely of patches arranged to form a grid (See Figure 4). 

When configured for a single server each column represents a single day and each row a specific time of 

day. The number of days in the horizon is adjustable, but the number of appointment blocks in a day 

(red and black combined) is not. At current there are 96 blocks (patches) per day (column), each 

representing a 15 minute time block. Red patches are appointments that are available for scheduling 

and black patches are periods when patients cannot be booked. The number of operating hours per day 

(red patches) is controlled by the 'Scheduled-Hours-per-day' input box. Figure 4 depicts an empty 

planning horizon with 2.5 available hours per day. 



Columns represent days in the planning horizon. 

Rows 
represent 
15 minute 
time 
intervals. 

0:00 
0:15-0:30 
0:30-0:45 
0:45 -1:00 
1:00-1:15 
1:15-1:30 
1:30-1:45 
1:45-2:00 

.2:00.^15 
2:15-2:30 
2:30 - 2:45 
2 :45-3: 

3:00-3:15 
3:15-3:30 
3:30 

3:45 

4:00-

3:45 

4:00 

4:15 

Example: The patch bordered in 
black represents an available 
appointment on the 9th day of the 
planning horizon between 0:30 
and 0:45. 

Red patches indicate 
available appointment 
slots within regular 
operating hours. 

Black patches indicate 
available time slots 
during non-operating 
hours. These slots are 
used to meet 
emergency demand. 

Figure 4 - Layout of Simulation Environment 

For multi-server scenarios each column represents a specific server on a specific day. Figure 5 depicts a 

multi-server scenario with 3 servers and 2.5 hours of scheduled time per day. 

Server 1 

Servei 2 

Server 3 

f.m 

;Rows 
represent 
15 minute 
time 
intervals. 

QiPJL: 
0:15 -
0:30-
0:45-
1:00 -
1:15-
1:30 -
1:45-
2:00 • 
2:15-
.2:30..: 
2:45-
3:00-
3:15-

Columns represent days by server in the planning horizon. 

V 

3:30 
3:45 
4:00 

-3:45 
-4:00 
-4:15 

Example: The patch bordered in 
black represents an available 
appointment on the 3rd day of the 
planning horrizon between 0:30 
and 0:45 on server number 3. 

Red patches indicate 
available appointment 
slots within regular 
operating hours. 

Black patches indicate 
available time slots 
during non-operating 
hours. These slots are 
used to meet 
emergency demand. 

Figure 5 - Multi-Server Layout 



Prebooked times are appointment slots set aside from the standard first come first serve 

scheduling process. These prebooked times are used in many cases to meet demand for patients who 

cannot wait for diagnostic imaging services. For example, many patients admitted to the hospital 

require service from the diagnostic imaging department during their stay. It is inefficient and hazardous 

to force them to wait for an appointment like a non-admitted patient might. To that end appointments 

are set aside each day to meet the potential demand for diagnostic imaging services from admitted 

patients. Figure 6 depicts an example of a planning horizon with prebooked time. Figure 7 shows 4 of 

the prebooked time controls. 

The Ii(jht blue patches indicate time 
that has been prebooked on the 
second clay of the week for class 2 
patients. 

Figure 6 - Prebooked Time 

i f o f f W M W V - P ' e b o o k e d Day of the week 1 
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Figure 7 - Prebooked Time Control 



3.2 Patients 

Requests for patient service, also known simply as patients, are the driving force of the ABMT. 

The following subsections describe the different types of patients, the method with which they come to 

be in the system, and their interactions with each other and the simulation environment. 

Patients, represented by turtles, come in 4 priority classes. These four classes are 

representations of the patient priority class 1 through 4 used in Canadian hospitals; each patient 

requesting service from the diagnostic imaging department is assigned a prior level by their physician. 

Class 1 patients require immediate attention while class 2, 3 and 4 patients are to be scheduled if 

possible within 2,10 and 28 days respectively based on ministry of health guidelines. 

Requests for patient service are received or 'arrive' according to probability distributions. The 

distributions govern the inter-arrival time between patients of the same class. The distributions 

available in NetLogo™ to describe the arrival rate are normal, exponential and Poisson. The user selects 

the distribution that most accurately describes their system from a drop down menu as seen below. 

Seen below in Figure 8 are the controls for the arrival rates of all 4 patient priority classes, example 

means and standard deviations can be seen in the input boxes. In this example we can see that Class 1 

patients have a mean interarrival time of 500 minutes, thus Class 1 patients' arrivals are normally 

distributed with a mean of 500 minutes. 

Arrival Distributions 

Probability-Patlent-Class-l-Arrival 

Normal V 

Patient-Class-1 -Mean- Arrival-Rate 

JSOD 
I 

Patient-Class-1-StD 

0 

ProbabIity-Parjent-Class-2-Arrival 

formal V] 

Patient-Class- 2-Mean-Arrival-R at 

| 25 

Patient-Class- 2-StD 

IS 

I :—: 1 

probability-Parjent-Class-3-Arrival 

Normal 7 j 

Patient-Class-3-Mean-Arrival-Rate 

10 

Patient-Class-3-StD 

5 

Probability-Paflent-Class-4-Arrival 

[Normal V j 

Exponential flean-Arrival-Rate 

Poisson 

Patient-Class-4-StD 

15 

Figure 8 - Arrival Distribution Control 

The ABMT uses a deterministic service time of 15 minutes per patient. The assumption is made 

that all scans can be completed within 15 minutes and subsequent scans do not begin until 15 minutes 

has elapsed since the preceding scan started. This may not always be the reality but because the focus 

of this study is on access time not wait time and the resulting difference is considered negligible. In 

those instances where the scheduled length of the scan is 30 minutes, one patch is blocked off as 



prebooked for 'None.' That is to say that one of the patches, representing 15 minutes, is made 

unavailable for scheduling to account for the time lost to the 30 minute appointment. 

3.3 Scheduling Discipline 

Scheduling operates on a first come first serve basis with the exception of emergency patients 

and prebooked time. After a patient arrives in the system based on an arrival rate, the scheduling 

operation searches for an available appointment slot (red patch or appropriate prebooked time) by 

moving the patient down its current column patch by patch. If a patch is booked (not red or the 

appropriate prebooked time colour) the patient moves on to the next patch (the one directly below it). 

This continues until one of two things happens; if the patient comes to the end of scheduled time for a 

day it is moved to the top of the next column (next day) and it continues its search or alternatively if the 

patient finds an available appointment its search stops. Once the patient finds an available appointment 

it changes the colour of the free appointment patch to its patient priority class colour (blue patients 

make blue patches, brown patients make brown patches etc.). In this way patients are assigned to 

appointment slots. When scheduling reaches the end of the planning horizon it resumes at the 

beginning. This process is depicted below in Figure 9. 

CO CO 

Q Q 
0:00-0:15 
0:15-0:30 
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1:45-2:00 
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D
ay
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3:45 
4:00 
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Figure 9 - Scheduling Process: Single Server 
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Example: Pictured above and adjacent is 

an example of patient scheduling for a 

single server. Section A shows the route 

the patient will take in search of an 

appointment (I then II then III). Section B 

shows us that it is a class 4 patient, as 

indicated by the brown triangle. Section 

C shows us the final result of the search 

and the subsequent appointment. 

Figure 9 Continued - Scheduling Process: Single Server 

Scheduling of patients occurs in much the same way for multiple servers as it does for a single server. 

The primary difference is that the scheduling operation attempts to schedule patients on each server at 

the earliest possible t ime before moving on to a later t ime. Figure 10 depicts scheduling in a multi-server 

scenario. 
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Example: Pictured adjacent is an example of 

patient scheduling in a multi-server scenario. 

In this case there are 3 servers and the 

planning horizon is 4 days long. The 

scheduling operation begins searching for an 

available appointment slot at the beginning 

of day 2 on the first server (furthest to the 

left in the horizon). This appointment is 

booked so the search continues by 

considering the availability of the 2n server 

during that same period. The 2n server is 

also unavailable so the search continues 

with the 3r server. Because this server is 

also unavailable and there are no more 

servers the search begins again in the next 

time period (0:15 - 0:30) with the I s server. 

The search continues in this way until an 

available appointment is found. 

Figure 10 - Scheduling Process: Multi-Server 
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Class 1 patients require immediate attention; they pre-empt other patients, bumping them from 

their currently scheduled slot to the subsequent appointment slot. Bumping is the only action that takes 

precedence over prebooked time and the only action that can result in overtime for the hospital staff. 

The bumping process can be seen below in Figure 11. After the bump, all patients are moved forward in 

the same day. So, while the patient waits more time for service while in the clinic, it does not affect wait 

time as defined. 
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Figure 11 - Bumping: Before and After 

The simulator works by scheduling patients in future appointment slots relative to a constantly 

updated 'current time'. Because the simulator uses a static number of days in its planning horizon it is 

necessary to reuse days (columns) to prevent the horizon from becoming full. Once scheduling reaches 

the end of the horizon (the far right column) it continues at the beginning of the horizon (the far left 

column). 

Beginning from the first appointment slot on the first day of the horizon the current time 

'updater' moves from appointment slot to subsequent appointment slot on each tick of the system. 

When the updater moves to an appointment it clears the patch of any previous appointments, returning 

the patch to its original (unscheduled) colour (red, black, or grey). In this way appointment slots are 

cleared for future appointments allowing for a stable queue of scheduled appointments to be simulated 

indefinitely. Additionally, the updater is used in the scheduling process to determine where the 

scheduling operation should begin its search for appointments. For example, patients are never 

scheduled on the day that they request an appointment (except emergencies), so the earliest a patient 

can be scheduled is the current day (as determined by the updater) plus one. 



3.4 User Interface 

3.4.1 Setup & Go 

These controls update the main display area with the currently inputted prebooked times and initiate 

the simulation. Setup also clears the graphical outputs of the model as well as the average wait times 

and percentage of patients who exceed guidelines. 

3.4.2 Data Recording 

NetLogo™ allows the user to export data from simulations to external files. The ABMT has been 

configured to export the patient class and wait time data for each patient that is scheduled to a 

Microsoft Excel file. The GUI controls allow the user to choose whether or not they wish to record data, 

delete existing data or close the file the data is being recorded to. 

3.4.3 Random Fill 

The ABMT was designed to assist hospital decision makers in assessing changes to scheduling in 

diagnostic imaging systems. In order to accurately capture the current state of an existing system it is 

necessary to also simulate the existing queue of patients. The random fill functionality fills the planning 

horizon with class 4 patients up to a specified number of days. For example, if the user wished to model 

a system that at present has a 4 week wait time they would select a random fill of 28 days so that 

scheduling of patients would begin on the 29th day. 

3.4.4 Simulation Run Time 

The 'Days_to_run' input controls the duration of the simulation. The user enters the number of 

simulated days they wish the model to run for and the ABMT halts operation after that number of 

simulated days have passed. 

3.4.5 Number of Servers 
This control allows the user to select the number of servers that will be used in the system. 

3.4.6 Scheduled Hours per Day 
This input determines the division between available appointments during operating hours (red patches) 

and available appoints during non-operating hours (black patches). 

3.4.7 Information Display 

The simulator's graphical user interface has been designed to give the user as much relevant data as 

possible regarding the progress of a simulated model. At present there are several output figures, 

graphics and charts to help the user make an initial analysis of the model being simulated. 
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Model behaviour can be seen in the main display window where scheduling takes place; this display 

window offers insight into how patients are interacting with the schedule and the nature of the 

appointment usage; the planning horizon is displayed here. 

Adjacent to the main display window are plots of patient wait times broken down by priority class. The 

plots operate by recording the time between arrival and services for each patient that enters the 

system. Additionally, in order to keep the plots chronologically synchronous they are updated on every 

system tick regardless of whether or not a patient of the type they are tracking is created. 

The simulator also displays the percentage of patients who have exceeded their recommended wait 

time by class. This number is updated on every patient arrival. Additionally, the simulator tracks and 

displays the average wait for each patient type. 

Figure 12 shows the ABMT's main display, the average wait time for each class, the percentage 

of each class that exceeds their wait time targets as well as the output plot windows for class 2, 3 and 4 

patients. 
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N/A 

Class 3 - Avg. Wait 
N/A 

Class 4 - % Over 
N/A 

Class 4 - Avg. Wait 
N/A 

Wait Time for Class 2 Patients 

0 
0 

20 

W
a

ite
d
 

D
ay

s 

0 
0 

Time 

Wait Time for Class 3 Patients 

Time 

90 

90 

Figure 12 - Information Display 



Configuring the ABMT to model a specific case is a relatively simple process but it does require the 

user to have pertinent historical data in order to establish a basis for comparison. In order for the ABMT 

to give the most accurate results the user should have access to or an approximation of the following 

data: 

The current number of days a patient served strictly on a FCFC basis can expect to wait (In most 

Canadian hospitals this information is available online) 

The number of servers the system uses 

The number of hours the system is operation per day 

The arrival rate of each class of patients 

Which times are prebooked and what classes they are prebooked for 

With this data available the user is able to establish a model of the current system so that the effects of 

changes to the system can be gauged by comparison. 



4. Case Study: Hotel Dieu Grace Hospital 
To test the applicability of the ABMT and to assess its accuracy, historical data was used to 

model a recent change in the diagnostic imaging department of HDGH. In November 2007 an additional 

CT scanner was added to HDGH's diagnostic imaging department, bringing the total to two. The 

diagnostic imaging department provided access to historical scheduling data for the CT scanners as well 

as information regarding the scheduling process. For the ABMT to have successfully modelled the effects 

of the change it needed to predict the change in wait time trends for CT scans. 

4.1 Scheduling Process 

Scheduling of CT scans is the responsibility of a single CT booking clerk. The clerk receives 

requests for scans via telephone and fax throughout the day from both physicians' offices and patients 

themselves. The clerk takes the requests and books an appointment in the schedule. The clerk is also 

responsible for the confirmation of appointments as the scheduled scan date approaches. 

4.2 ABMT Parameters 

In order to model the scheduling process of the diagnostic imaging department at HDGH several key 

parameters needed to be determined. These parameters were: 

• Arrival Rate of Class 1 Patients 

• Arrival Rate of Class 2 Patients 

• Arrival Rate of Class 3 Patients 

• Arrival Rate of Class 4 Patients 

• Operating hours 

• # of operational scanners 

• Prebooked periods 

4.2.1 Arrival Rates 

Ideally arrival rates and patterns (for requests for appointments) would be determined by fitting 

the number of arrivals per day and their arrival times to a mathematical distribution. Unfortunately 

HDGH does not record at what time during the day a request for service is made. They do however 

record how many requests were made per day. The assumption was made that the patient arrivals 

are governed by an exponential distribution, (Winston, 2004) cites (Devardo, 2003) in support of this 

decision, and a mean interarrival time value was calculated using the daily arrival totals. Values for 

each class can be seen in the next chapter. 
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4.2.2 Operating Hours & Number of Scanners 

The CT scan unit at HDGH is operational for 13.25 hours per day with the exception of weekends 

during which it is only available for emergencies and inpatients in need of urgent scans. HDGH has 2 

CT scanners, one having been added to the facility only a year ago. 

4.2.3 Prebooked Periods 

HDGH prebooks a significant number of appointment slots for class 2 priority patients. Of the 67 

appointments available per day across both CT scanners, 13 are prebooked for class 2 patients; this 

represents nearly 20% of the total number of scans performed during a regular day. The class 2 

patients that use these prebooked periods are typically inpatients but can also be lower acuity 

patients from the emergency room. 

4.3 Acquired Data 

Data was provided from HDGH's database of scheduling records. In years past data was only 

retained for 6 months after which point it was deleted. However, as a result of an increased interest in 

tracking performance, data has been retained from as far back as April 2007. The records used in this 

study were collected during the period of April 2007 to May 2009 by HDGH. It should be noted that data 

entry in the diagnostic imaging department of HDGH is a manual process. As such it is only as accurate 

as the person responsible for its entry. This is a limitation of the current data collection policy and 

procedure at the hospital. 

The data that was used consisted of 17,689 medical records. Each record contained the following 

pertinent patient data: 

Medical Record Number 

Date that the request for service was made (scheduled) 

Date that the scan was performed 

The priority class of the patient 

The wait / access time for each record was calculated by subtracting the date on which the appointment 

was scheduled from the date on which the scan was performed. Of the total data collected 

approximately 5% was unusable due to record keeping errors (failure to enter date of scheduling 

request) or difficulty in calculation (Microsoft Excel has difficulty accounting for leap years). 

Figures 13 & 14 depict the arrival rate of requests and the average wait time for patients on a month by 

month, class by class basis. 
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Comparison of Service Requests by Month and 
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Figure 13 - Comparison of Service Request by Month and Class 

Comparison of Wait Times by Month and Class 

Figure 14 - Comparison of Wait Times by Month and Class 

Figure 15 provides another comparison of the differences in volume between the patient cl 
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Figure 15 - Requests for Service by Class - April 07 to May 09 



5. Verification and Validation 
The verification and validation process has been described as one of the most important and 

difficult tasks in modelling (Banks et al, 2005). This chapter will describe the verification and validation 

process for the ABMT using data from HDGH. 

Verification is described as building the model correctly, while validation ensures that the 

correct model is built. Verification asks: Is the model implemented correctly in the simulation software? 

And are the input parameters and logical structure of the model represented correctly? (Banks et al, 

2005) In the case of the ABMT verification was achieved through modular development. Each of the 

ABMT's functionalities were created in different modules or sub segments of code; essentially each of 

the functions operate independently. This allowed for each function to be tested individually verifying 

that it was in fact behaving in the manner that the programmer intended. To ensure robustness each 

function was tested to its extremes; maximum and minimum arrival rates, extensive prebooked times 

etc. Additionally, the ABMT was constructed iteratively by a single programmer; this ensured that new 

work on the model was always based on previous work that had been verified to be correct. 

Validation, according to Banks et al, attempts to confirm that a model is an accurate 

representation of a real system. This is accomplished in two ways; through consultation with those 

knowledgeable about the system being modelled and also through comparison of simulated and 

historical data. The ABMT was validated with the assistance of the CT scheduling clerk and historical 

data provided from HDGH. Ideally, the ABMT would be verified and validated using data from several 

different hospitals; unfortunately data was only available to the researchers from HDGH. 

5.1 Simulation Parameters 

In order to test the ABMT's ability to detect changing trends in the wait time it was configured 

to model a shift from a single server scenario to a dual server scenario. HDGH added a second CT 

scanner to their operation in November 2008, prior to that they had accumulated approximately 6 

weeks of backlogged appointments. 

To model this scenario a random fill value of 42 was used to fill the first 6 weeks of the schedule 

with booked appointments. Consultation with the CT scheduling clerk provided the information 

necessary to build a schedule that incorporated the prebooked time used at HDGH, see Figure 16 below. 
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Figure 16 - HDGH Prebooked Schedule 

The following parameters were used in the HDGH model and were derived from historical data and 

discussion with HDGH personnel: 

Class 1 Patient Interarrival Time: 

Class 2 Patient Interarrival Time: 

Class 3 Patient Interarrival Time: 

Class 4 Patient Interarrival Time: 

Scheduled Hours per Day: 

Number of Servers: 

mean of 1440 min 

mean of 480 min 

mean of 240 min 

mean of 84 min 

13.25 

2 

As previously mentioned, exponential distributions were used to model the arrival rates. This was 

necessary because HDGH does not record the time at which a request for service is made; they only 

record the day that the request was made. The above means were used as the exponential parameters. 

The ABMT was used to simulate 17 months of scheduling beginning at the point when the 

second CT scanner was added at HDGH to a point in the future when the system had reached a steady 

state. This point was determined by observing the output plots in the GUI. The simulation was run 25 

times with nearly identical results each time. Each run took approximately 50 minutes. Figures 17-19 

depict standard results for each of the patient classes from the simulation runs. 
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5.2 Discussion of Simulated vs. Historical Data 

HDGH was a case study that served to highlight both the ABMT's strengths and weaknesses. The 

data that was available to validate the ABMT represented a time period during which the system 

transitioned from a one CT scanner unit to a two CT scanner unit, effectively doubling its capacity. This 

would appear to be an ideal situation in which to test the ability of the ABMT to predict the effect of the 

change on the scheduled patient queue. The ABMT was able to predict the decline in wait times 

however, it did not accurately predict the rate at which wait times would decrease. The reason for the 

discrepancy was unclear until the CT booking clerk at HDGH was consulted. She brought to light what 

was clear from the arrival data; that the number of requests for scans, especially amongst low priority 

patients, had increased dramatically after the addition of the second CT scanner. Her reasoning was that 

as physicians became aware that the wait time for a scan had decreased significantly they began to 

order scans for patients they may not have historically order them for. Additionally, it was the 

scheduler's suspicion that physicians were now also diverting patients from other area hospitals due to 

shorter wait times at HDGH and superior service. Finally, inpatients from other area hospitals were 

being transferred to HDGH to undergo scans and then being returned to their originating hospital. 

This trend can clearly be seen when comparing the arrival rate of class 4 patients over time as the wait 

time for those patients decreased. Figure 20 shows the decreasing wait times for class 4 patients, while 

figure 21 shows the substantial increase in requests for scans for class 4 patients. 
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6. Discussion 
The ABMT succeeded in achieving its primary objectives which were to provide hospital decision 

makers with insight into the effects that operational level changes would have to their systems via a 

graphical user interface. The ABMT was able to predict the new trend of decreasing wait times for 

patients at HDGH; information that would have been valuable to decision makers prior to the addition of 

the second server. The ABMT was not able however to accurately predict that rate at which wait times 

would decrease. While this may represent a weakness of the ABMT it does not represent a failure. The 

ABMT was designed to simulate the impact of changes to the system, not to the system's environment. 

It was not within the scope of the design to model the impact changes might have on the local network 

of CT scanners and their queues nor the psychological impact reduced wait times would have on the 

tendency of physicians to order CT scans. A potential extension of the ABMT may be to allow the user to 

dynamically increase or decrease the arrival rates based on the current wait times. 

The ABMT usefulness lies in its ability to explore 'what-if scenarios and provide insight into how 

changes might affect the wait time of patients. Questions one might consider using the ABMT to explore 

include: 

How will increasing or decreasing the number of servers impact the wait time for patients? 

How will extending or decreasing the number of operational hours per day impact the wait time 

of patients? 

What will be the impact on the schedule of increasing or decreasing the available prebooked 

times for each patient class? 

At what volume of patients will wait times begin to rise to unreasonable levels? 

Where should funds be invested to have the greatest impact on wait time? Increasing operating 

hours or adding servers? 

What impact will increasing the number of prebooked appointments for class W have on the 

wait times for classes X, Y and Z? 

Essentially the number of scenarios that the ABMT can explore is limitless however it is most useful in 

the hands of a system expert who can use it to explore those scenarios that could potentially be of the 

most benefit to patients. 

The decision to use simulation in the creation of the decision support tool appears to have been 

an acceptable choice. The user friendliness and customizability of the user interface and the simulation 

parameters proved invaluable in the presentation of the ABMT to hospital decision makers and helped 

to garner support for the project. The value of using agent-based modelling to create the decision 
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support tool is debatable. NetLogo's™ two dimensional main display, which was used to show the 

schedule in the ABMT, was both a help and a hindrance. The main display was useful in that it provided 

users with real time insight into how the schedule was developing but using it to accurately describe a 

date, time and server proved unwieldy. Controlling the positioning of agents as they searched each 

column for available appointment slots was cumbersome as even slight variation in heading would 

result in agents assuming illogical appointment slots. Finally, the dynamic nature of the planning 

horizon made all positioning of agents and patches relative to the current date; keeping track of the 

current date and updating available appointment slots and prebooked time proved computationally 

intensive resulting in increasing slowdowns as the current time approached the end of the horizon. As a 

scheduling simulation tool NetLogo™ proved to be acceptable however the interaction between agents 

and agents and their environment, the core of agent-based modelling, were not used to their full 

potential by this application. 
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7. Conclusions and Future Work 
This thesis resulted in the creation of an agent-based simulation tool with an easy to understand 

graphical user interface (GUI) that will allow hospital decision makers to assess the impact of potential 

operational level changes to the diagnostic imaging department on the department's schedule of 

patients. Additionally, this thesis served to expand the knowledge of the agent-based modelling in 

outpatient scheduling field. 

The ABMT proved capable of detecting trends in patient wait times in a case study of HDGH's CT 

scanning unit and in the future could be used by the hospital to study its other diagnostic imaging 

services. While accomplishing its objective of providing hospital decision makers with a tool to assess 

the impact of internal changes the ABMT could be expanded, as a future endeavour, to consider the 

effect the changes might have on other diagnostic imaging providers in the local area. A tool modelling a 

network of diagnostic imaging centres in a given Local Health Integration Network (LHIN) may prove 

invaluable to decision makers responsible for the administration of services to hundreds of thousands of 

patients each year. 

The ABMT has already been used to determine the point at which HDGH can expect wait times 

to begin increasing given the current trend in class 4 patient volume. The exploration of this question 

required minimal effort because of the flexibility of the ABMT; evaluating the effects of different patient 

volumes required only slight modification of the arrival rate of class 4 patients. In the future (if data 

becomes available from other area hospitals) it would be a worth while investigation to examine 

whether or not the addition of a second CT scanner at HDGH significantly impacted the wait times at 

other area hospitals. This would be a relatively simple task using the ABMT; one would only need to 

configure the ABMT to model another area hospital (approx. 15 minutes of setup) using data collected 

before the addition of the second CT scanner at HDGH. A difference between the simulated and 

historical data at hospitals not undergoing major changes to their diagnostic imaging departments could 

be in part attributed to the changes at HDGH. This information would be useful in determining the 

impact of adding a CT scanner to the LHIN as a whole. 

The ABMT is a novel application of agent-based modelling to outpatient scheduling. The 

development of the ABMT served to highlight some of the challenges of using a tool designed for 

dynamic, evolutionary behaviour in an environment based on the precise coordination of thousands of 

individuals. While outpatient scheduling may not have taken full advantage of the ability of agents to 

interact with one another, a model of a schedule developed by patients (as opposed to one organized by 
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a single human clerk) may prove useful in understanding the preferences of patients and assist in the 

allocation of resources to better serve them. 

The ABMT has already generated interest from researchers in fields outside of diagnostic 

imaging. Researchers in the field of radiation therapy have expressed interest in the ABMT has a 

potential scheduling modelling tool as radiation therapy and diagnostic imaging services share many 

similar scheduling traits. 

Working with healthcare professionals to develop the ABMT provided unique insight into the 

complex nature of healthcare systems. The shift in patient arrival rates as explained by the CT 

scheduling clerk brought to light the reality that healthcare is unlike any other industry and that the 

application of industrial engineering techniques here will require an understanding of the healthcare 

system as a whole, not just isolated elements. To that end this thesis will be used as a basis for a peer-

reviewed journal article so that the knowledge gained here can be shared with other industrial 

engineering practitioners in healthcare to help to develop the whole system knowledge required to 

make a meaningful impact in the lives of healthcare professionals and patients. 
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Appendix I: NetLogo™ Code for ABUT 
tttftrtttttttti " " O L U D H L V M n l M D L L J - " iiiimmmimmmmmmmmimimmmmimtnitnmmimmimmmmm 

ffTttt?tttfttiitrttrftritft??Hftttntiniffrutrttuttuittttt*tt}untiittniiintttttttnttif?i?ttittutt}iitiiiiii}iititTttn 

globals [n countl count2 count3 count4 countlover count2over count3over count4over class2total 
class3total class4total MS D G F B 
bump_counter_l bump_counter_2 bump_counter_3 Arrival_Rate_Counter_l Arrival_Rate_Counter_2 
Arrival_Rate_Counter_3 Arrival_Rate_Counter_4 
Normal_Holder_l Exponential_Holder_l Poisson_Holder_l Normal_Holder_2 Exponential_Holder_2 
Poisson_Holder_2 Normal_Holder_3 Exponential_Holder_3 Poisson_Holder_3 
Normal_Holder_4 Exponential_Holder_4 Poisson_Holder_4 tick_counter] 

;; Globals are variables passed throughout the program 
breed [class-1-patients patient-1] ;;;green 
breed [class-2-patients patient-2] ;;;blue 
breed [class-3-patients patient-3] ;;;yellow 
breed [class-4-patients patient-4] ;;;brown 
breed [updaters update-1] ;;;cyan 
;; Breeds used to call patients by group 

trtiTittttniiiiiiitifTintiTtfiitiftiiiiirTTtfitriitittfttinitftnfttiiiuntitDtfffnutnttimufttjmiittmuiiiuiuiti 

nitfniuiiiiiiiiiuntiiittiiititiiiiiiiitffniititififitinittiiitiiiiititiiiiiftiiiititmmtmmimiimmmmmmi 

minimum ~ ^^- ' * - ' " ~ m mttfrnmimmm imm mm mnmnm mmm mtmmtmt mm m llHTttltHttltUtt 

> 1111 > i> ti n iiittit n n > in n > in i u 11 nitti IJ i nit n n 111 it IIITI tn tijfiitiiti 11 JI i n n nfttni iiiitm mmmmmtmmm 

;; Setup clears all data from previous runs and initializes all variables, 
to setup 
clear-all 
setup-patches 
create-time-updater 

set count l0 
set count2 0 
set count3 0 
set count4 0 
setcountlover0 
setcount2over0 
set count3over 0 
set count4over 0 
set class2total 0 
set class3total 0 
set class4total 0 
set BO 
set Arrival_Rate_Counter_l 0 
set Arrival_Rate_Counter_2 0 
set Arrival_Rate_Counter_3 0 
set Arrival Rate Counter 4 0 



if Record [file-open "output_data.xls"] 
carefully [file-print date-and-time] 
[print "Please close output file"] 

if Daily_Prebooked ;; Checks to see if the Daily_Prebooked switch is on and blocks off time accordingly, 
[ask patches 
[ if pycor <= Daily_Prebook_Start * -4 and pycor >= Daily_Prebook_End * -4 [ set pcolor grey ] ] 

] 

if Weekly_Prebooked ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

if else repeat_daily_l 

if pycor <= Weekly_Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4 
and pxcor = Servers_Booked_l + n - 1 

[if Weekly_Prebooked_l_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_l_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_l_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_l_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4 

and pxcor = (n + Servers_booked_l - 1 + (Day_of_the_week -1) * (number_of_servers)) 
[if Weekly_Prebooked_l_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_l_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_l_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_l_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 

] 
] 

if Weekly_Prebooked_2 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 
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while [n <= max-pxcor] 

[ 

ifelse repeat_daily_2 

[ 
if pycor <= Weekly_Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4 

and pxcor = Servers_Booked_2 + n - 1 
[if Weekly_Prebooked_2_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

if pycor <= Weekly_Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4 
and pxcor = (n + Servers_booked_2 - 1 + (Day_of_the_week_2 -1) * (number_of_servers)) 

[if Weekly_Prebooked_2_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_3 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 

if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_3 

[ 
if pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4 

and pxcor = Servers_Booked_3 + n - 1 
[if Weekly_Prebooked_3_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_3_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_3_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 
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if pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4 
and pxcor = (n + Seirvers_booked_3 - 1 + (Day_of_the_week_3 -1) * (number_of_servers)) 

[if Weekly_Prebooked_3_Class = "None" [set pcolor grey] 
if Weekly_Prebookedi_3_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebookedl_3_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_4 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_4 

[ 
if pycor <= Weekly_Prelbook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4 

and pxcor = Servers_Booked_4 + n - 1 
[if Weekly_Prebooked_4_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_4_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_4_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_4_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4 

and pxcor = (n + Servers_booked_4 - 1 + (Day_of_the_week_4 -1) * (number_of_servers)) 
[if Weekly_Prebooked_4_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_4_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_4_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_4_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
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if Weekly_Prebooked_5 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_5 

[ 
if pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4 

and pxcor = Servers_Booked_5 + n - 1 
[if Weekly_Prebooked_5_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_5_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_5_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_5_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4 

and pxcor = (n + Servers_booked_5 - 1 + (Day_of_the_week_5 -1) * (number_of_servers)) 
[if Weekly_Prebooked_5_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_5_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_5_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_5_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_6 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_6 

[ 
if pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly_Prebook_End_6 * -4 

and pxcor = Servers_Booked_6 + n - 1 
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[if Weekly_Prebooked_6_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_6_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_6_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_6_Class = "Class 4" [set pcolor 37] ] 

set n n + Number_of_servers 

] 

[ 
if pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly_Prebook_End_6 * -4 

and pxcor = (n + Servers_booked_6 - 1 + (Day_of_the_week_6 -1) * (number_of_servers)) 
[if Weekly_Prebooked_6_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_6_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_6_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_6_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_7 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_7 

[ 
if pycor <= Weekly_Prebook_Start_7 * -4 and pycor >= Weekly_Prebook_End_7 * -4 

and pxcor = Servers_Booked_7 + n - 1 
[if Weekly_Prebooked_7_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_7_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_7_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start_7 * -4 and pycor >= Weekly_Prebook_End_7 * -4 

and pxcor = (n + Servers_booked_7 - 1 + (Day_of_the_week_7 -1) * (number_of_servers)) 
[if Weekly_Prebooked_7_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_7_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_7_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ] 
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set n n + number_of_servers * 7 

] 

] 

if Weekly_Prebooked_8 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_8 

if pycor <= Weekly_Prebook_Start_8 * -4 and pycor >= Weekly_Prebook_End_8 * -4 
and pxcor = Servers_Booked_8 + n - 1 

[if Weekly_Prebooked_8_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_8_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_8_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_8_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start_8 * -4 and pycor >= Weekly_Prebook_End_8 * -4 

and pxcor = (n + Servers_booked_8 - 1 + (Day_of_the_week_8 -1) * (number_of_servers)) 
[if Weekly_Prebooked_8_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_8_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_8_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_8_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_9 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 
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ifelse repeat_daily_9 

if pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly_Prebook_End_9 * -4 
and pxcor = Servers_Booked_9 + n - 1 

[if Weekly_Prebooked_9_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_9_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_9_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_9_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

if pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly_Prebook_End_9 * -4 
and pxcor = (n + Servers_booked_9 - 1 + (Day_of_the_week_9 -1) * (number_of_servers)) 

[if Weekly_Prebooked_9_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_9_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_9_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_9_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_10 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 
[ask patches ;; This loops asks patches to check if they are between the prebook start and end 

if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_10 

[ 
if pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10 * -4 

and pxcor = Servers_Booked_10 + n - 1 
[if Weekly_Prebooked_10_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_10_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_10_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

if pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10 * -4 
and pxcor = (n + Servers_booked_10 - 1 + (Day_of_the_week_10 -1) * (number_of_servers)) 



[if Weekly_Prebooked_10_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_10_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_10_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_ll ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_ll 

[ 
if pycor <= Weekly_Prebook_Start_ll * -4 and pycor >= Weekly_Prebook_End_ll * -4 

and pxcor = Servers_Booked_ll + n - 1 
[if Weekly_Prebooked_ll_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_ll_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_ll_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_ll_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

if pycor <= Weekly_Prebook_Start_ll * -4 and pycor >= Weekly_Prebook_End_ll * -4 
and pxcor = (n + Servers_booked_ll - 1 + (Day_of_the_week_ll -1) * (number_of_servers)) 

[if Weekly_Prebooked_ll_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_ll_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_ll_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_ll_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_12 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 
[set n 0 
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while [n <= max-pxcor] 

ifelse repeat_daily_12 

[ 
if pycor <= Weekly_Prebook_Start_12 * -4 and pycor >= Weekly_Prebook_End_12 * -4 

and pxcor = Servers_Booked_12 + n - 1 
[if Weekly_Prebooked_12_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_12_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_12_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

if pycor <= Weekly_Prebook_Start_12 * -4 and pycor >= Weekly_Prebook_End_12 * -4 
and pxcor = (n + Servers_booked_12 - 1 + (Day_of_the_week_12 -1) * (number_of_servers)) 

[if Weekly_Prebooked_12_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_12_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_12_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_13 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 
[ask patches ;; This loops asks patches to check if they are between the prebook start and end 

if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_13 

[ 
if pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly_Prebook_End_13 * -4 

and pxcor = Servers_Booked_13 + n - 1 
[if Weekly_Prebooked_13_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_13_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_13_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 



if pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly_Prebook_End_13 * -4 
and pxcor = (n + Servers_booked_13 - 1 + (Day_of_the_week_13 -1) * (number_of_servers)) 

[if Weekly_Prebooked_13_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_13_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_13_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 

if Weekly_Prebooked_14 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 
[set n 0 
while [n <= max-pxcor] 

ifelse repeat_daily_14 

[ 
if pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4 

and pxcor = Servers_Booked_14 + n - 1 
[if Weekly_Prebooked_14_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_14_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_14_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

if pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4 
and pxcor = (n + Servers_booked_14 - 1 + (Day_of_the_week_14 -1) * (number_of_servers)) 

[if Weekly_Prebooked_14_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_14_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_14_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_15 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 
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[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question, 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_15 

if pycor <= Weekly_Prebook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4 
and pxcor = Servers_Booked_15 + n - 1 

[if Weekly_Prebooked_15_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_15_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_15_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

[ 
if pycor <= Weekly_Prebook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4 

and pxcor = (n + Servers_booked_15 - 1 + (Day_of_the_week_15 -1) * (number_of_servers)) 
[if Weekly_Prebooked_15_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_15_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_15_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_16 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_16 

if pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4 
and pxcor = Servers_Booked_16 + n - 1 

[if Weekly_Prebooked_16_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_16_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_16_Class = "Class 4" [set pcolor 37] ] 
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set n n + Number_of_servers 

] 

[ 
if pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4 

and pxcor = (n + Servers_booked_16 - 1 + (Day_of_the_week_16 -1) * (number_of_servers)) 
[if Weekly_Prebooked_16_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_16_Class = "Class 3" [set pcolor 47] 
if Weekiy_Prebooked_16_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 
if Weekly_Prebooked_17 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 

accordingly. 
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 

if they are on the day of the week in question. 
[set n 0 
while [n <= max-pxcor] 

ifelse repeat_daily_17 

[ 
if pycor <= Weekly_Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4 

and pxcor = Servers_Booked_17 + n - 1 
[if Weekly_Prebooked_17_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_17_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_17_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_17_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

[ 
if pycor <= Weekly_Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4 

and pxcor = (n + Servers_booked_17 - 1 + (Day_of_the_week_17 -1) * (number_of_servers)) 
[if Weekly_Prebooked_17_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_17_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_17_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_17_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 
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if Weekly_Prebooked_18 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_18 

[ 
if pycor <= Weekly_Prebook_Start_18 * -4 and pycor >= Weekly_Prebook_End_18 * -4 

and pxcor = Servers_Booked_18 + n - 1 
[if Weekly_Prebooked_18_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_18_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_18_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_18_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start_18 * -4 and pycor >= Weekly_Prebook_End_18 * -4 

and pxcor = (n + Servers_booked_18 - 1 + (Day_of_the_week_18 -1) * (number_of_servers)) 
[if Weekly_Prebooked_18_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_18_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_18_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_18_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 
if Weekly_Prebooked_19 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 

accordingly. 
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 

if they are on the day of the week in question, 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_19 

[ 
if pycor <= Weekly_Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4 

and pxcor = Servers_Booked_19 + n - 1 
[if Weekly_Prebooked_19_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_19_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_19_Class = "Class 3" [set pcolor 47] 
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if Weekly_Prebooked_19_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

if pycor <= Weekly_Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4 
and pxcor = (n + Servers_booked_19 - 1 + (Day_of_the_week_19 -1) * (number_of_servers)) 

[if Weekly_Prebooked_19_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_19_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_19_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_19_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 
if Weekly_Prebooked_20 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 

accordingly. 
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 

if they are on the day of the week in question, 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_20 

[ 
if pycor <= Weekly_Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4 

and pxcor = Servers_Booked_20 + n - 1 
[if Weekly_Prebooked_20_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_20_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_20_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_20_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

if pycor <= Weekly_Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4 
and pxcor = (n + Servers_booked_20 - 1 + (Day_of_the_week_20 -1) * (number_of_servers)) 

[if Weekly_Prebooked_20_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_20_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_20_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_20_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 
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if Weekly_Prebooked_21 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_21 

if pycor <= Weekly_Prebook_Start_21 * -4 and pycor >= Weekly_Prebook_End_21 * -4 
and pxcor = Servers_Booked_21 + n - 1 

[if Weekly_Prebooked_21_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_21_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_21_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_21_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

if pycor <= Weekly_Prebook_Start_21 * -4 and pycor >= Weekly_Prebook_End_21 * -4 
and pxcor = (n + Servers_booked_21 - 1 + (Day_of_the_week_21 -1) * (number_of_servers)) 

[if Weekly_Prebooked_21_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_21_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_21_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_21_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_22 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_22 

[ 
if pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4 

and pxcor = Servers_Booked_22 + n - 1 
[if Weekly_Prebooked_22_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_22_Class = "Class 2" [set pcolor 107] 
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if Weekly_Prebooked_22_Class = "Class 3" [set pcolor47] 
if Weekly_Prebooked_22_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

[ 
if pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4 

and pxcor = (n + Servers_booked_22 - 1 + (Day_of_the_week_22 -1) * (number_of_servers)) 
[if Weekly_Prebooked_22_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_22_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_22_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_22_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_23 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 

if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_23 

[ 
if pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4 

and pxcor = Servers_Booked_23 + n - 1 
[if Weekly_Prebooked_23_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_23_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_23_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_23_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

if pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4 
and pxcor = (n + Servers_booked_23 - 1 + (Day_of_the_week_23 -1) * (number_of_servers)) 

[if Weekly_Prebooked_23_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_23_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_23_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_23_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
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] 
] 

if Weekly_Prebooked_24 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_24 

[ 
if pycor <= Weekly_Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4 

and pxcor = Servers_Booked_24 + n - 1 
[if Weekly_Prebooked_24_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_24_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_24_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_24_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

if pycor <= Weekly_Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4 
and pxcor = (n + Servers_booked_24 - 1 + (Day_of_the_week_24 -1) * (number_of_servers)) 

[if Weekly_Prebooked_24_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_24_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_24_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_24_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_25 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 

[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_25 

[ 
if pycor <= Weekly_Prebook_Start_25 * -4 and pycor >= Weekly_Prebook_End_25 * -4 
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and pxcor = Servers_Booked_25 + n - 1 
[if Weekly_Prebooked_25_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_25_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_25_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_25_Class = "Class 4" [set pcolor 37] ] 

set n n + Number_of_servers 

] 

[ 
if pycor <= Weekly_Prebook_Start_25 * -4 and pycor >= Weekly_Prebook_End_25 * -4 

and pxcor = (n + Servers_booked_25 - 1 + (Day_of_the_week_25 -1) * (number_of_servers)) 
[if Weekly_Prebooked_25_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_25_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_25_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_25_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
] 

if Weekly_Prebooked_26 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end a 
if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_26 

[ 
if pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4 

and pxcor = Servers_Booked_26 + n - 1 
[if Weekly_Prebooked_26_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_26_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_26_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_26_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 

] 

if pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4 
and pxcor = (n + Servers_booked_26 - 1 + (Day_of_the_week_26 -1) * (number_of_servers)) 

[if Weekly_Prebooked_26_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_26_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_26_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_26_Class = "Class 4" [set pcolor 37] ] 



set n n + number_of_servers * 7 

] 
] 

] 
] 

if Weekly_Prebooked_27 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_27 

[ 
if pycor <= Weekly_Prebook_Start_27 * -4 and pycor >= Weekly_Prebook_End_27 * -4 

and pxcor = Servers_Booked_27 + n - 1 
[if Weekly_Prebooked_27_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_27_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_27_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_27_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start_27 * -4 and pycor >= Weekly_Prebook_End_27 * -4 

and pxcor = (n + Servers_booked_27 - 1 + (Day_of_the_week_27 -1) * (number_of_servers)) 
[if Weekly_Prebooked_27_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_27_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_27_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_27_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 

] 
] 

] 
] 

if Weekly_Prebooked_28 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_28 
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if pycor <= Weekly_Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4 
and pxcor = Servers_Booked_28 + n - 1 

[if Weekly_Prebooked_28_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_28_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_28_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_28_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

if pycor <= Weekly_Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4 
and pxcor = (n + Servers_booked_28 - 1 + (Day_of_the_week_28 -1) * (number_of_servers)) 

[if Weekly_Prebooked_28_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_28_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_28_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_28_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 
] 

] 
] 
1 

if Weekly_Prebooked_29 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 
[set n 0 

while [n <= max-pxcor] 

[ 

ifelse repeat_daily_29 

if pycor <= Weekly_Prebook_Start_29 * -4 and pycor >= Weekiy_Prebook_End_29 * -4 
and pxcor = Servers_Booked_29 + n - 1 

[if Weekly_Prebooked_29_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_29_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_29_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_29_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

if pycor <= Weekly_Prebook_Start_29 * -4 and pycor >= Weekly_Prebook_End_29 * -4 
and pxcor = (n + Servers_booked_29 - 1 + (Day_of_the_week_29 -1) * (number_of_servers)) 

[if Weekly_Prebooked_29_Class = "None" [set pcolorgrey] 
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if Weekly_Prebooked_29_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_29_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_29_Class = "Class 4" [set pcolor 37] ] 
set n n + number_of_servers * 7 

] 
] 

] 
] 

if Weekly_Prebooked_30 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time 
accordingly. 

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and 
if they are on the day of the week in question. 
[set n 0 
while [n <= max-pxcor] 

ifelse repeat_daily_30 

if pycor <= Weekly_Prebook_Start_30 * -4 and pycor >= Weekly_Prebook_End_30 * -4 
and pxcor = Servers_Booked_30 + n - 1 

[if Weekly_Prebooked_30_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_30_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_30_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_30_Class = "Class 4" [set pcolor 37] ] 
set n n + Number_of_servers 
] 

[ 
if pycor <= Weekly_Prebook_Start_30 * -4 and pycor >= Weekly_Prebook_End_30 * -4 

and pxcor = (n + Servers_booked_3fJ - 1 + (Day_of_the_week_30 -1) * (number_of_servers)) 
[if Weekly_Prebooked_30_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_30_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_30_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_30_Class = "Class 4" [set pcolor 37] ] 
set n n + number of servers * 7 

] 
] 
] 

end 
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;; This block asks patches to assume a colour based on whether or not they represent time that is 
bookable. 
to setup-patches 
ask patches[ 
ifelse pycor >= (Scheduled-Hours-per-day) * -4 
[set pcolor red] 
[ set pcolor black] 

] 
end 
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to random_fill 

ask patches 

[ 
if pcolor = red or pcolor = 37 or pcolor = 47 and pxcor <= number_of_random_fill_days 
n u m b e r_of_se rve rs 

[set pcolor brown] 

] 
end 
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;; This block initiates the simultor. The code used is based on the technique that has been selected. 
;; For detailed explaination of each called function see below, 
to go 

if Scheduling_Technique = 1 
[create-patient-class-1 
create-patient-class-2 
create-patient-class-3 
create-patient-class-4 
schedule-class-1 
set Arrival Rate Counter 1 Arrival Rate Counter 1-15 



set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 -15 
set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 -15 
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 -15 ] 

if Scheduling_Technique = 2 ; Disabled, future work will be continued here. 
[ 

] 
current-time-update 
set Arrival_Rate_Counter_l Arrival_Rate_Counter_l -15 
tick 
set tick_counter tick_counter + 1 
if tick_counter = 96 * Days_to_run 
[ stop] 

end 
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;; This block creates class one patients based on a probability which is evaluated on every tick of the 
system. 
;; The patients are created directly at the updater as they are emergency patients. 

to create-patient-class-1 

while [Arrival_Rate_Counter_l <= 0] 

[ 
if Probability-Patient-Class-1-Arrival = "Normal" and Patient-Class-1-Mean-Arrival-Rate > 0 

[set Normal_Holder_l random-normal Patient-Class-1-Mean-Arrival-Rate Patient-Class-1-StD 
set Arrival_Rate_Counter_l Arrival_Rate_Counter_l + Normal_Holder_l 
create-class-1-patients 1 [set color green set size 1.5 move-to update-1 b set countl countl + 1 ] 

] 

if Probability-Patient-Class-1-Arrival = "Exponential" and Patient-Class-1-Mean-Arrival-Rate > 0 

[set Exponential_Holder_l random-Exponential Patient-Class-1-Mean-Arrival-Rate 
set Arrival_Rate_Counter_l Arrival_Rate_Counter_l + Exponential_Holder_l 
create-class-1-patients 1 [set color green set size 1.5 move-to update-1 b set countl countl + 1 ] 
] 

if Probability-Patient-Class-1-Arrival = "Poisson" and Patient-Class-1-Mean-Arrival-Rate > 0 
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[set Poisson_Holder_l random-Poisson Patient-Class-1-Mean-Arrival-Rate 
set Arrival_Rate_Counter_l Arrival_Rate_Counter_l + Poisson_Holder_l 
create-class-1-patients 1 [set color green set size 1.5 move-to update-1 b set countl countl + 1 

] 

if Patient-Class-1-Mean-Arrival-Rate = 0 
[ set Arrival_Rate_Counter_l Arrival_Rate_Counter_l + 15] 

;;This block of code allows this patient class to bump existing appointments to one slot later than the 
one they currently occupy, 
ask patches 

[ 
if any? class-l-patients[ 

if pxcor = [pxcor] of update-1 b and pycor < [pycor] of update-1 b 
[ set pcolor [pcolor] of patch-at-heading-and-distance 0 1 ] 

set b b + 1 
if b > IMumber_of_Servers - 1 [set b 0] 

] 

end 
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;; This block creates class two patients based on a probability which is evaluated on every tick of the 
system. 
;; The patients are created and moved to the day that follows the day that the updater is currently 
processing, (ie. Tomorrow) 
to create-patient-class-2 

while [Arrival_Rate_Counter_2 <= 0] 

[ 
if Probability-Patient-Class-2-Arrival = "Normal" and Patient-Class-2-Mean-Arrival-Rate > 0 

[set Normal_Holder_2 random-normal Patient-Class-2-Mean-Arrival-Rate Patient-Class-2-StD 
set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + Normal_Holder_2 
create-class-2-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count2 count2 + 1 ] 
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if Probability-Patient-Class-2-Arrival = "Exponential" and Patient-Class-2-Mean-Arrival-Rate > 0 

[set Exponential_Holder_2 random-Exponential Patient-Class-2-Mean-Arrival-Rate 
set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + Exponential_Holder_2 
create-class-2-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count2 count2 + 1 ] 
] 

if Probability-Patient-Class-2-Arrival = "Poisson" and Patient-Class-2-Mean-Arrival-Rate > 0 

[set Poisson_Holder_2 random-Poisson Patient-Class-2-Mean-Arrival-Rate 
set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + Poisson_Holder_2 
create-class-2-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count2 count2 + 1 ] 

] 
if Patient-Class-2-Mean-Arrival-Rate = 0 
[ set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + 15] 

ask class-2-patients 

[ 
facexy 99999999999999999999999999999 max-pycor/2 
set D l 
while [xcor <= max-pxcor] 
[ 
ifelse (pcolor = green) or (pcolor = black)or (pcolor = blue)or (pcolor = yellow)or (pcolor = brown) or 

(pcolor = grey)or (pcolor = 37) or (pcolor = 47) ;;; If the patch is occupied 
;; Cut out xcor = ([xcor] of update-1 (number_of_Servers -1)+ D * Number_of_Servers) and from 

below 
[ifelse ycor = (Scheduled-Hours-per-day) * -4 - 1 ;;;; If it is the end of the day 

[setxy [xcor] of update-1 (number_of_servers -1) + D * number_of_servers + 1 0 if pcolor = red or 
pcolor = 107 [if xcor > [xcor + 2 * Number_of_Servers] of update-1 (Number_of_Servers -1) [set 
count2over count2over + 1 ]set pcolor blue update-plot-class2 die set D l]set D D + 1] 

[ if xcor = ([xcor] of update-1 (Number_of_Servers -1) + D * Number_of_Servers) or xcor + max-
pxcor - ([xcor]of update-1 (number_of_servers -1) + D * Number_of_Servers) = -1 

;; AA IF you are at the last server or 
[ setxy ([xcor] of update-1 (Number_of_Servers -1)+ D * Number_of_Servers -

Number_of_servers) + 1 ycor - 1 if pcolor = red or pcolor = 107[if xcor > [xcor + 2 * Number_of_Servers] 
of update-1 (Number_of_Servers -1) [set count2over count2over + 1 ]set pcolor blue update-plot-class2 
die set D 1]] if number_of_Servers > 1 [ forward 1]] ] 

[if xcor > [xcor + 2 * Number_of_Servers] of update-1 (Number_of_Servers -1) [set count2over 
count2over + 1 ]set pcolor blue update-plot-class2 die set D 1] 
] 
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] 
] 

if Arrival_Rate_Counter_2 > 0 
;; This block advances the plot pen for patient class two without making a mark. This is done if no class 
two patients arrive during a given period. 
[set-current-plot "Wait Time for Class 2 Patients" 
set-current-plot-pen "Class 2" 
plot-pen-up 
plot 1] 

end 
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;; This block creates class three patients based on a probability which is evaluated on every tick of the 
system. 
;; The patients are created and moved to the day that follows the day that the updater is currently 
processing, (ie. Tomorrow) 
to create-patient-class-3 

while [Arrival_Rate_Counter_3 <= 0] 

[ 
if Probability-Patient-Class-3-Arrival = "Normal" and Patient-Class-3-Mean-Arrival-Rate > 0 

[set Normal_Holder_3 random-normal Patient-Class-3-Mean-Arrival-Rate Patient-Class-3-StD 
set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 + Normal_Holder_3 
create-class-3-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count3 count3 + 1 ] 
] 

if Probability-Patient-Class-3-Arrival = "Exponential" and Patient-Class-3-Mean-Arrival-Rate > 0 

[set Exponential_Holder_3 random-Exponential Patient-Class-3-Mean-Arrival-Rate 
set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 + Exponential_Holder_3 
create-class-3-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count3 count3 + 1 ] 
] 

if Probability-Patient-Class-3-Arrival = "Poisson" and Patient-Class-3-Mean-Arrival-Rate > 0 

[set Poisson_Holder_3 random-Poisson Patient-Class-3-Mean-Arrival-Rate 
set Arrival Rate Counter 3 Arrival Rate Counter 3 + Poisson Holder 3 



create-class-3-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 
xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 10 ] set count3 count3 + 1 ] 

] 
if Patient-Class-3-Mean-Arrival-Rate = 0 
[ set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 + 15] 

ask class-3-patients 
[ 
facexy 99999999999999999999999999999 max-pycor/2 
setG 1 
while [xcor <= max-pxcor] 
[ 
ifelse (pcolor = green) or (pcolor = black)or (pcolor = blue)or (pcolor = yellow)or (pcolor = brown) or 

(pcolor = grey)or (pcolor = 37) or (pcolor = 107) ;;; If the patch is occupied 
;; Cut out xcor = ([xcor] of update-1 (number_of_Servers -1)+ D * Number_of_Servers) and from 

below 
[ifelse ycor = (Schedul'ed-Hours-per-day) * -4 - 1 ;;;; If it is the end of the day 

[setxy [xcor] of update-1 (number_of_servers -1) + G * number_of_servers + 1 0 if pcolor = red or 
pcolor = 47 [ if xcor > [xcor + 10 * Number_of_Servers] of update-1 (Number_of_Servers -1) [set 
count3over count3over + 1 ]set pcolor yellow update-plot-class3 die set G l]set G G + 1] 

[ if xcor = ([xcor] of update-1 (Number_of_Servers -1) + G * Number_of_Servers) or xcor + max-
pxcor - ([xcor]of update-1 (number_of_servers -1) + G * Number_of_Servers) = -1 

[ setxy ([xcor] of update-1 (Number_of_Servers -1)+ G * Number_of_Servers -
Number_of_servers) + 1 ycor - 1 if pcolor = red or pcolor = 47[if xcor > [xcor + 10 * Number_of_Servers] 
of update-1 (Number_of_Servers -1) [set count3over count3over + 1 ]set pcolor yellow update-plot-
class3 die set G 1]] if number_of_Servers > 1 [ forward 1]] ] 

[if xcor > [xcor + 10 * Number_of_Servers] of update-1 (Number_of_Servers -1) [set count3over 
count3over + 1 ]set pcolor yellow update-plot-class3 die set G 1] 

] 
] 

] 

;ifelse random 100 >= (100 - Probability-Patient-Class-3-Arrival) [set count3 count3 + 1 create-class-3-
patients 1 
;[set color yellow set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse xcor = max-pxcor [setxy 
min-pxcor 0] [ setxy xcor + 1 0]]] 
if Arrival_Rate_Counter_3 > 0 
;; This block advances the plot pen for patient class three without making a mark. This is done if no class 
three patients arrive during a given period. 
[set-current-plot "Wait Time for Class 3 Patients" 
set-current-plot-pen "Class 3" 
plot-pen-up 
plot 1] 

end 

71 



ftnnitifi>iintii>ii>iiiiiitfttututt)utittnunt)inttiutin>uiitt}ti}mtt}tjrtt}ttiinttintiimntf>ttt>titftt>trtf>t 

ni$>nttutnttuitinitiintutttttttuinrtnttnniuttin}itntinuiiiiufintiinriinitnnin$iu$tt}ttftttfttftttitttit 

ifttttttttttftt \*A\\Lr\\ I IMV3 r n I I L l M I L L n J J * t ~ iiiw>irr>nur>>ttfftft/tjmtrrttfr>>fuui>>iiimiuiu>>jinur/>>nnntttr 

iiitrttfrtrtfTftrrTitfrffiiftttutiiimriiiitutfuittttftttfttiitfijftttJtitiHtftttfuituiftuitttTtutfimiiiitiiiimni}! 

;; This block creates class four patients based on a probability which is evaluated on every tick of the 
system. 
;; The patients are created and moved to the day that follows the day that the updater is currently 
processing, (ie. Tomorrow) 
to create-patient-class-4 

while [Arrival_Rate_Counter_4 <= 0] 

[ 
if Probability-Patient-Class-4-Arrival = "Normal" and Patient-Class-4-Mean-Arrival-Rate > 0 

[set Normal_Holder_4 random-normal Patient-Class-4-Mean-Arrival-Rate Patient-Class-4-StD 
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + Normal_Holder_4 
create-class-4-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count4 count4 + 1 ] 
] 

if Probability-Patient-Class-4-Arrival = "Exponential" and Patient-Class-4-Mean-Arrival-Rate > 0 

[set Exponential_Holder_4 random-Exponential Patient-Class-4-Mean-Arrival-Rate 
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + Exponential_Holder_4 
create-class-4-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count4 count4 + 1 ] 

if Probability-Patient-Class-4-Arrival = "Poisson" and Patient-Class-4-Mean-Arrival-Rate > 0 

[set Poisson_Holder_4 random-Poisson Patient-Class-4-Mean-Arrival-Rate 
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + Poisson_Holder_4 
create-class-4-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse 

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count4 count4 + 1 ] 

] 
if Patient-Class-4-Mean-Arrival-Rate = 0 
[ set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + 15] 

ask class-4-patients 

[ 
facexy 99999999999999999999999999999 max-pycor/ 2 
s e t F l 
while [xcor <= max-pxcor] 



ifelse (pcolor = green) or (pcolor = black)or (pcolor = blue)or (pcolor = yellow)or (pcolor = brown) or 
(pcolor = grey)or (pcolor = 107) or (pcolor = 47) ;;; If the patch is occupied 

;; Cut out xcor = ([xcor] of update-1 (number_of_Servers -1)+ D * Number_of_Servers) and from 
below 

[ifelse ycor = (Scheduled-Hours-per-day) * -4 - 1 ;;;; If it is the end of the day 

[setxy [xcor] of update-1 (number_of_servers -1) + F * number_of_servers + 1 0 if pcolor = red or 
pcolor = 37 [if xcor > [xcor + 28 * Number_of_Servers] of update-1 (Number_of_Servers -1) [set 
count4over count4over + 1 ]set pcolor brown update-plot-class4 die set F l]set F F + 1] 

[ if xcor = ([xcor] of update-1 (Number_of_Servers -1) + F * Number_of_Servers) or xcor + max-
pxcor - ([xcor]of update-1 (number_of_servers -1) + F * Number_of_Servers) = -1 

[ setxy ([xcor] of update-1 (Number_of_Servers -1)+ F * Number_of_Servers - Number_of_servers) 
+ 1 ycor - 1 if pcolor = red or pcolor = 37[if xcor > [xcor + 28 * Number_of_Servers] of update-1 
(Number_of_Servers -1) [set count4over count4over + 1 ]set pcolor brown update-plot-class4 die set F 
1]] if number_of_Servers > 1 [ forward 1]] ] 

[if xcor > [xcor + 28 * Number_of_Servers] of update-1 (Number_of_Servers -1) [set count4over 
count4over + 1 ]set pcolor brown update-plot-class4 die set F 1] 

} 
] 
] 

;ifelse random 100 >= (100 - Probability-Patient-Class-4-Arrival) [set count4 count4 + 1 create-class-4-
patients 1 
;[set color brown set size 1.5 move-to update-1 (Number_of_Servers -1) ifelse xcor = max-pxcor [setxy 
min-pxcor 0] [ setxy xcor + 1 0]]] 

if Arrival_Rate_Counter_4 > 0 
;; This block advances the plot pen for patient class four without making a mark. This is done if no class 
four patients arrive during a given period. 
[set-current-plot "Wait Time for Class 4 Patients" 
set-current-plot-pen "Class 4" 
plot-pen-up 
plot 1] 

end 
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;; This block schedules class one patients that have already been created. It points the downward, moves 
them forward one patch and kills them, 
to schedule-class-1 

ask class-1-patients 

[ 
facexy max-pxcor / 2 -99999999999999999999999999999 
forward 1 
set pcolor green 
die 

] 
end 
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;; This block creates the turtle that acts as the 'current time.' 

to create-time-updater 
create-updaters Number_of_Servers [set color cyan set size 2.5 facexy max-pxcor -
99999999999999999999999999999] 

Set MS 0 

while [MS <= (Number_of_servers -1)] 

[ 
ask update-1 MS [setxy MS 0] 
set MS MS+ 1 

] 
end 
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;;This block updates the current day by clearing the previous schedule. It returns red patches to red, 
black to black and grey to grey. 

to current-time-update 
ask updaters 

[ 
facexy max-pxcor / 2 -99999999999999999999999999999 



;; This section does grey and red for the scheduled time, 
ifelse ycor >= (Scheduled-Hours-per-day) * -4 
[ifelse (ycor <= Daily_Prebook_Start * -4 and ycor >= Daily_Prebook_End * -4 and Daily_Prebooked) 
[ set pcolor grey ] [set pcolor red ] forward 1 ] 

;; This section does grey and black for unscheduled time. 
[ifelse (ycor <= Daily_Prebook_Start * -4 and ycor >= Daily_Prebook_End * -4 and Daily_Prebooked) 
[ set pcolor grey ] [set pcolor black] 

;; This section handles moving the updater from the end of one day to the beginning of another and 
resets the counter for bumping patients. 
if ycor = -96[ setxy xcor + Number_of_Servers 0 ifelse (ycor <= Daily_Prebook_Start * -4 and ycor >= 

Daily_Prebook_End * -4 and Daily_Prebooked) 
[ set pcolor grey ] [set pcolor red] ] forward 1] 

] 

;;;; Updates For Weekly Prebooks at the end of every day;;;; 

if [ycor] of update-1 0 = -96 

[ 
if Weekly_Prebooked or Weekly_Prebooked_2 or Weekly_Prebooked_3 or Weekly_Prebooked_4 or 

Weekly_Prebooked_5 or Weekly_Prebooked_6 
or Weekly_Prebooked_7 or Weekly_Prebooked_8 or Weekly_Prebooked_9 or Weekly_Prebooked_10 

or Weekly_Prebooked_ll or 
Weekly_Prebooked_12 or Weekly_Prebooked_13 or Weekly_Prebooked_14 or Weekly_Prebooked_15 
or Weekly_Prebooked_16 or Weekly_Prebooked_17 or Weekly_Prebooked_18 or 

Weekly_Prebooked_19 or Weekly_Prebooked_20 or Weekly_Prebooked_21 
or Weekly_Prebooked_22 or Weekly_Prebooked_23 or Weekly_Prebooked_24 or 

Weekly_Prebooked_25 or Weekly_Prebooked_26 or Weekly_Prebooked_27 
or Weekly_Prebooked_28 or Weekly_Prebooked_29 or Weekly_Prebooked_30 

[ask patches 
[set n 0 
while [n <= [xcor] of update-1 0] 

[ 

if ( pycor <= Weekly_Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4 and 
weekly_prebooked and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_l) - 1 + (Day_of_the_week - 1 ) * (number_of_servers ) and not 
repeat_Daily_l ) 

[ if Weekiy_Prebooked_l_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_l_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_l_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_l_Class = "Class 4" [set pcolor 37] ] 
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if ( pycor <= Weekly_Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4 and 
weekly_prebooked_2 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_2) - 1 + (Day_of_the_week_2 - 1 ) * (number_of_servers ) and 
not repeat_Daily_2 ) 

[ if Weekly_Prebooked_2_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4 and 
weekly_prebooked_3 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_3) - 1 + (Day_of_the_week_3 - 1 ) * (number_of_servers) and 
not repeat_Daily_3 ) 

[ if Weekly_Prebooked_3_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_3_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_3_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4 and 
weekly_prebooked_4 and pxcor < [xcor] of update-10 

and pxcor = (n + Servers_booked_4) - 1 + (Day_of_the_week_4 - 1 ) * (number_of_servers ) and 
not repeat_Daily_4 ) 

[ if Weekly_Prebooked_4_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_4_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_4_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_4_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4 and 
weekly_prebooked_5 and pxcor < [xcor] of update-10 

and pxcor = (n + Servers_booked_5) - 1 + (Day_of_the_week_5 - 1 ) * (number_of_servers ) and 
not repeat_Daily_5 ) 

[ if Weekly_Prebooked_5_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_5_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_5_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_5_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly_Prebook_End_6 * -4 and 
weekly_prebooked_6 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_6) - 1 + (Day_of_the_week_6 - 1 ) * (number_of_servers ) and 
not repeat_Daily_6 ) 

[ if Weekly_Prebooked_6_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_6_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_6_Class = "Class 3" [set pcolor 47] 
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if Weekly_Prebooked_6_Class = "Class 4" [set pcolor 37] 

if ( pycor <= Weekly_Prebook_Start_7 * -4 and pycor >= Weekly_Prebook_End_7 * -4 and 
weekly_prebooked_7 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_7) - 1 + (Day_of_the_week_7 - 1 ) * (number_of_servers ) and 
not repeat_Daily_7 ) 

[ if Weekiy_Prebooked_7_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_7_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_7_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_8 * -4 and pycor >= Weekly_Prebook_End_8 * -4 and 
weekly_prebooked_8 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_8) - 1 + (Day_of_the_week_8 - 1 ) * (number_of_servers ) and 
not repeat_Daily_8 ) 

[ if Weekly_Prebooked_8_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_8_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_8_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_8_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly_Prebook_End_9 * -4 and 
weekly_prebooked_9 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_9) - 1 + (Day_of_the_week_9 - 1 ) * (number_of_servers ) and 
not repeat_Daily_9 ) 

[ if Weekly_Prebooked_9_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_9_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_9_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_9_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10 * -4 and 
weekly_prebooked_10 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_10) - 1 + (Day_of_the_week_10 - 1 ) * (number_of_servers ) 
and not repeat_Daily_10 ) 

[ if Weekly_Prebooked_10_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_10_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_10_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_ll * -4 and pycor >= Weekly_Prebook_End_ll * -4 and 
weekly_prebooked_ll and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_ll) - 1 + (Day_of_the_week_ll - 1 ) * (number_of_servers ) 
and not repeat_Daily_ll ) 

[ if Weekly_Prebooked_ll_Class = "None" [set pcolor grey] 
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if Weekly_Prebooked_ll_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_ll_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_ll_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_12 * -4 and pycor >= Weekly_Prebook_End_12 * -4 and 
weekly_prebooked_12 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_12) - 1 + (Day_of_the_week_12 - 1 ) * (number_of_servers ) 
and not repeat_Daily_12 ) 

[ if Weekly_Prebooked_12_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_12_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_12_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly_Prebook_End_13 * -4 and 
weekly_prebooked_13 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_13) - 1 + (Day_of_the_week_13 - 1 ) * (number_of_servers ) 
and not repeat_Daily_13 ) 

[ if Weekly_Prebooked_13_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_13_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_13_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4 and 
weekly_prebooked_14 and pxcor < [xcor] of update-10 

and pxcor = (n + Servers_booked_14) - 1 + (Day_of_the_week_14 - 1 ) * (number_of_servers ) 
and not repeat_Daily_14 ) 

[ if Weekly_Prebooked_14_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_14_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_14_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4 and 
weekly_prebooked_15 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_15) - 1 + (Day_of_the_week_15 - 1 ) * (number_of_servers ) 
and not repeat_Daily_15 ) 

[ if Weekly_Prebooked_15_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_15_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_15_Class = "Class 4" [set pcolor 37] ] 
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if ( pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4 and 
weekly_prebooked_16 and pxcor < [xcor] of update-10 

and pxcor = (n + Servers_booked_16) - 1 + (Day_of_the_week_16 - 1 ) * (number_of_servers ) 
and not repeat_Daily_16 ) 

[ if Weekly_Prebooked_16_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_16_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_16_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4 and 
weekly_prebooked_17 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_17) - 1 + (Day_of_the_week_17 - 1 ) * (number_of_servers ) 
and not repeat_Daily_17 ) 

[ if Weekly_Prebooked_17_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_17_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_17_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_17_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_18 * -4 and pycor >= Weekly_Prebook_End_18 * -4 and 
weekly_prebooked_18 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_18) - 1 + (Day_of_the_week_18 - 1 ) * (number_of_servers ) 
and not repeat_Daily_18 ) 

[ if Weekly_Prebooked_18_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_18_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_18_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_18_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4 and 
weekly_prebooked_19 and pxcor < [xcor] of update-10 

and pxcor = (n + Servers_booked_19) - 1 + (Day_of_the_week_19 - 1 ) * (number_of_servers ) 
and not repeat_Daily_19 ) 

[ if Weekly_Prebooked_19_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_19_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_19_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_19_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4 and 
weekly_prebooked_20 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_20) - 1 + (Day_of_the_week_20 - 1 ) * (number_of_servers ) 
and not repeat_Daily_20 ) 

[ if Weekly_Prebooked_20_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_20_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_20_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_20_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_21 * -4 and pycor >= Weekly_Prebook_End_21 * -4 and 
weekly_prebooked_21 and pxcor < [xcor] of update-1 0 
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and pxcor = (n + Servers_booked_21) - 1 + (Day_of_the_week_21 - 1 ) * (number_of_servers ) 
and not repeat_Daily_21 ) 

[ if Weekly_Prebooked_21_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_21_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_21_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_21_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4 and 
weekly_prebooked_22 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_22) - 1 + (Day_of_the_week_22 - 1 ) * (number_of_servers) 
and not repeat_Daily_22 ) 

[ if Weekly_Prebooked_22_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_22_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_22_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_22_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4 and 
weekly_prebooked_23 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_23) - 1 + (Day_of_the_week_23 - 1 ) * (number_of_servers ) 
and not repeat_Daily_23 ) 

[ if Weekly_Prebooked_23_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_23_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_23_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_23_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4 and 
weekly_prebooked_24 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_24) - 1 + (Day_of_the_week_24 - 1 ) * (number_of_servers ) 
and not repeat_Daily_24 ) 

[ if Weekly_Prebooked_24_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_24_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_24_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_24_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_25 * -4 and pycor >= Weekly_Prebook_End_25 * -4 and 
weekly_prebooked_25 and pxcor < [xcor] of update-10 

and pxcor = (n + Servers_booked_25) - 1 + (Day_of_the_week_25 - 1 ) * (number_of_servers ) 
and not repeat_Daily_25 ) 

[ if Weekly_Prebooked_25_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_25_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_25_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_25_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4 and 
weekly_prebooked_26 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_26) - 1 + (Day_of_the_week_26 - 1 ) * (number_of_servers ) 
and not repeat_Daily_26 ) 

[ if Weekly_Prebooked_26_Class = "None" [set pcolor grey] 



if Weekly_Prebooked_26_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_26_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_26_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_27 * -4 and pycor >= Weekly_Prebook_End_27 * -4 and 
weekly_prebooked_27 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_27) - 1 + (Day_of_the_week_27 - 1 ) * (number_of_servers ) 
and not repeat_Daily_27 ) 

[ if Weekly_Prebooked_27_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_27_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_27_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_27_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4 and 
weekly_prebooked_28 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_28) - 1 + (Day_of_the_week_28 - 1 ) * (number_of_servers ) 
and not repeat_Daily_28 ) 

[ if Weekly_Prebooked_28_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_28_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_28_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_28_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_29 * -4 and pycor >= Weekly_Prebook_End_29 * -4 and 
weekly_prebooked_29 and pxcor < [xcor] of update-10 

and pxcor = (n + Servers_booked_29) - 1 + (Day_of_the_week_29 - 1 ) * (number_of_servers ) 
and not repeat_Daily_29 ) 

[ if Weekly_Prebooked_29_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_29_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_29_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_29_Class = "Class 4" [set pcolor 37] ] 

if ( pycor <= Weekly_Prebook_Start_30 * -4 and pycor >= Weekly_Prebook_End_30 * -4 and 
weekly_prebooked_30 and pxcor < [xcor] of update-1 0 

and pxcor = (n + Servers_booked_30) - 1 + (Day_of_the_week_30 - 1 ) * (number_of_servers ) 
and not repeat_Daily_30 ) 

[ if Weekly_Prebooked_30_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_30_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_30_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_30_Class = "Class 4" [set pcolor 37] ] 

set n n + 7 * (Number_of_servers) 

] 
] 
] 

] 
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if [ycor] of update-1 0 = -96 

[ 
if Weekly_Prebooked or Weekly_Prebooked_2 or Weekly_Prebooked_3 or Weekly_Prebooked_4 or 

Weekly_Prebooked_5 or Weekly_Prebooked_6 
or Weekly_Prebooked_7 or Weekly_Prebooked_8 or Weekly_Prebooked_9 or Weekly_Prebooked_10 

or Weekly_Prebooked_ll or 
Weekly_Prebooked_12 or Weekly_Prebooked_13 or Weekly_Prebooked_14 or Weekly_Prebooked_15 
or Weekly_Prebooked_16 or Weekly_Prebooked_17 or Weekly_Prebooked_18 or 

Weekly_Prebooked_19 or Weekly_Prebooked_20 or Weekly_Prebooked_21 
or Weekly_Prebooked_22 or Weekly_Prebooked_23 or Weekly_Prebooked_24 or 

Weekly_Prebooked_25 or Weekly_Prebooked_26 or Weekly_Prebooked_27 
or Weekly_Prebooked_28 or Weekly_Prebooked_29 or Weekly_Prebooked_30 

[ask patches 
[set n 0 

while [n <= [xcor] of update-1 0] 

t 

if pycor <= Weekly_Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4 
and pxcor = Servers_Booked_l + n - 1 and repeat_daily_l and Weekly_Prebooked 

[if Weekly_Prebooked_l_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_l_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_l_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_l_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4 
and pxcor = Servers_Booked_2 + n - 1 and repeat_daily_2 and Weekly_Prebooked_2 

[if Weekly_Prebooked_2_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4 
and pxcor = Servers_Booked_3 + n - 1 and repeat_daily_3 and Weekly_Prebooked_3 

[if Weekly_Prebooked_3_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_3_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_3_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4 
and pxcor = Servers_Booked_4 + n - 1 and repeat_daily_4 and Weekly_Prebooked_4 

[if Weekly_Prebooked_4_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_4_Class = "Class 2" [set pcolor 107] 
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if Weekly_Prebooked_4_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_4_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4 
and pxcor = Servers_Booked_5 + n - 1 and repeat_daily_5 and Weekly_Prebooked_5 

[if Weekly_Prebooked_5_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_5_CIass = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_5_CIass = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_5_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly 
and pxcor = Servers_Booked_6 + n - 1 and repeat_daily_6 

[if Weekly_Prebooked_6_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_6_CIass = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_6_CIass = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_6_CIass = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_7 * -4 and pycor >= Weekly_Prebook_End_7 * -4 
and pxcor = Servers_Booked_7 + n - 1 and repeat_daily_7 and Weekly_Prebooked_7 

[if Weekly_Prebooked_7_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_7_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_7_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_8 * -4 and pycor >= Weekly_Prebook_End_8 * -4 
and pxcor = Servers_Booked_8 + n - 1 and repeat_daily_8 and Weekly_Prebooked_8 

[if Weekly_Prebooked_8_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_8_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_8_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_8_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly 
and pxcor = Servers_Booked_9 + n - 1 and repeat_daily_9 

[if Weekly_Prebooked_9_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_9_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_9_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_9_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10 * -4 
and pxcor = Servers_Booked_10 + n - 1 and repeat_daily_10 and Weekly_Prebooked_10 

Prebook_End_6 * -4 
and Weekly_Prebooked_6 

Prebook_End_9 * -4 
and Weekly_Prebooked_9 

od 



[if Weekly_Prebooked_10_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_10_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_10_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_ll * -4 and pycor >= Weekly_Prebook_End_ll * -4 
and pxcor = Servers_Booked_ll + n - 1 and repeat_daily_ll and Weekly_Prebooked_ll 

[if Weekly_Prebooked_ll_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_ll_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_ll_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_ll_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_12 * -4 and pycor >= Weekly_Prebook_End_12 * -4 
and pxcor = Servers_Booked_12 + n - 1 and repeat_daily_12 and Weekly_Prebooked_12 

[if Weekly_Prebooked_12_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_12_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_12_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly_Prebook_End_13 * -4 
and pxcor = Servers_Booked_13 + n - 1 and repeat_daily_13 and Weekly_Prebooked_13 

[if Weekly_Prebooked_13_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_13_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_13_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4 
and pxcor = Servers_Booked_14 + n - 1 and repeat_daily_14 and Weekly_Prebooked_14 

[if Weekly_Prebooked_14_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_14_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_14_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4 
and pxcor = Servers_Booked_15 + n - 1 and repeat_daily_15 and Weekly_Prebooked_15 

[if Weekly_Prebooked_15_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_15_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_15_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4 
and pxcor = Servers_Booked_16 + n - 1 and repeat_daily_16 and Weekly_Prebooked_16 
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[if Weekly_Prebooked_16_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_16_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_16_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4 
and pxcor = Servers_Booked_17 + n - 1 and repeat_daily_17 and Weekly_Prebooked_17 

[if Weekly_Prebooked_17_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_17_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_17_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_17_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_18 * -4 and pycor >= 
and pxcor = Servers_Booked_18 + n - 1 and repeat_daily_18 

[if Weekly_Prebooked_18_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_18_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_18_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_18_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4 
and pxcor = Servers_Booked_19 + n - 1 and repeat_daily_19 and Weekly_Prebooked_19 

[if Weekly_Prebooked_19_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_19_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_19_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_19_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4 
and pxcor = Servers_Booked_20 + n - 1 and repeat_daily_20 and Weekly_Prebooked_20 

[if Weekly_Prebooked_20_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_20_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_20_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_20_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_21 * -4 and pycor >= Weekly_Prebook_End_21 * -4 
and pxcor = Servers_Booked_21 + n - 1 and repeat_daily_21 and Weekly_Prebooked_21 

[if Weekly_Prebooked_21_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_21_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_21_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_21_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4 
and pxcor = Servers_Booked_22 + n - 1 and repeat_daily_22 and Weekly_Prebooked_22 

[if Weekly_Prebooked_22_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_22_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_22_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_22_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4 

Weekly_Prebook_End_18 * -4 
and Weekly_Prebooked_18 
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and pxcor = Servers_Booked_23 + n - 1 and repeat_daily_23 and Weekly_Prebooked_23 
[if Weekly_Prebooked_23_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_23_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_23_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_23_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4 
and pxcor = Servers_Booked_24 + n - 1 and repeat_daily_24 and Weekly_Prebooked_24 

[if Weekly_Prebooked_24_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_24_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_24_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_24_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_25 * -4 and pycor >= Weekly_Prebook_End_25 * -4 
and pxcor = Servers_Booked_25 + n - 1 and repeat_daily_25 and Weekly_Prebooked_25 

[if Weekly_Prebooked_25_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_25_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_25_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_25_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4 
and pxcor = Servers_Booked_26 + n - 1 and repeat_daily_26 and Weekly_Prebooked_26 

[if Weekly_Prebooked_26_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_26_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_26_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_26_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_27 * -4 and pycor >= Weekly_Prebook_End_27 * -4 
and pxcor = Servers_Booked_27 + n - 1 and repeat_daily_27 and Weekly_Prebooked_27 

[if Weekly_Prebooked_27_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_27_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_27_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_27_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4 
and pxcor = Servers_Booked_28 + n - 1 and repeat_daily_28 and Weekly_Prebooked_28 

[if Weekly_Prebooked_28_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_28_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_28_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_28_Class = "Class 4" [set pcolor 37] ] 

if pycor <= Weekly_Prebook_Start_29 * -4 and pycor >= Weekly_Prebook_End_29 * -4 
and pxcor = Servers_Booked_29 + n - 1 and repeat_daily_29 and Weekly_Prebooked_29 

[if Weekly_Prebooked_29_Class = "None" [set pcolorgrey] 
if Weekly_Prebooked_29_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_29_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_29_Class = "Class 4" [set pcolor 37] ] 
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if pycor <= Weekly_Prebook_Start_30 * -4 and pycor >= Weekly_Prebook_End_30 * -4 
and pxcor = Servers_Booked_30 + n - 1 and repeat_daily_30 and Weekly_Prebooked_30 

[if Weekly_Prebooked_30_Class = "None" [set pcolor grey] 
if Weekly_Prebooked_30_Class = "Class 2" [set pcolor 107] 
if Weekly_Prebooked_30_Class = "Class 3" [set pcolor 47] 
if Weekly_Prebooked_30_Class = "Class 4" [set pcolor 37] ] 

set n n + Number_of_servers 
] 

] 

end 

fttnittifntttitftttttittitfuntntiiimnttrttrtitttttinnnttniitiiinnntnttttmtttntftfttittttttttunitiiitmum 

ffttttnttnttttttttiftffufrffjunttmimtiftttttfttttmtmifntttiinnitnjtiiminnfttftftrntttttttmnmiiiiuint 
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;; This block updates the plot of class two patient wait times. 
;; The code counts the number of days (columns) between the current time (updater) and the 
appointment patch to determine the days waited. 
to update-plot-class2 
set-current-plot "Wait Time for Class 2 Patients" 
set-current-plot-pen "Class 2" 
plot-pen-down 
ifelse [xcor] of one-of class-2-patients >= [xcor] of update-1 (Number_of_Servers -1) 

[ 
plot floor (([xcor] of one-of class-2-patients - [xcor] of update-1 (Number_of_Servers -1)) / 

Number_of_Servers) 
set class2total class2total + floor(( ([xcor] of one-of class-2-patients - [xcor] of update-1 

(Number_of_Servers -1))) / Number_of_Servers ) 
if Record [ file-write "Class 2" file-print floor (([xcor] of one-of class-2-patients - [xcor] of update-1 

(Number_of_Servers -1)) / Number_of_Servers )] 

] 
[ 
plot floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers -1) + [xcor] of one-of class-2-

patients) / Number_of_Servers) 
set class2total class2total + floor ((( max-pxcor - [xcor] of update-1 (Number_of_Servers -1) + [xcor] 

of one-of class-2-patients)) / Number_of_Servers) 
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if Record [file-write "Class 2" file-print floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers -1) 
+ [xcor] of one-of class-2-patients) / Number_of_Servers) ] 

end 

nmiiiintiiiiiiiiittimtJjturiitiJftitfmiittttitutufittutfuutftunnuDutimttntutntiuinnttitttinttitiim 

ttii>intiii>}iiinntnmjuii!nui}int}uiiJii}Httttt}tttrtitiuut}t}tJittutiTttii>tmn!i}}itmmtttf>Pttntttttiifit 
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;; This block updates the plot of class three patient wait times. 
;; The code counts the number of days (columns) between the current time (updater) and the 
appointment patch to determine the days waited. 
to update-plot-class3 

set-current-plot "Wait Time for Class 3 Patients" 
set-current-plot-pen "Class 3" 
plot-pen-down 
ifelse [xcor] of one-of class-3-patients >= [xcor] of update-1 (Number_of_Servers -1) 

[ 
plot floor (([xcor] of one-of class-3-patients - [xcor] of update-1 (Number_of_Servers -1)) / 

Number_of_Servers) 
set class3total class3total + floor(( ([xcor] of one-of class-3-patients - [xcor] of update-1 

(Number_of_Servers -1))) / Number_of_Servers ) 
if Record [ file-write "Class 3" file-print floor (([xcor] of one-of class-3-patients - [xcor] of update-1 

(Number_of_Servers -1)) / Number_of_Servers ) ] 

plot floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers -1) + [xcor] of one-of class-3-
patients) / Number_of_Servers) 

set class3total class3total + floor ((( max-pxcor - [xcor] of update-1 (Number_of_Servers -1) + [xcor] 
of one-of class-3-patients)) / Number_of_Servers) 

if Record [ file-write "Class 3" file-print floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers -
1) + [xcor] of one-of class-3-patients) / Number_of_Servers) ] 

] 

end 

urtrtttntt//intntfttttftttft}tttttittntnttttuttimwntiuifttnntf})tttiiiutnjt!ttunttu}uiiiitiimniiuiiimt 

itnittniimtuturfrtttitttttttttftfrttftttfftftnifiiiiiiiinttttnuintmnfittitfmnnffttttmmitmmuimiimti 

-= UPDATE-PLOT-CLASS4 =-
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;; This block updates the plot of class four patient wait times. 
;; The code counts the number of days (columns) between the current time (updater) and the 
appointment patch to determine the days waited. 
to update-plot-class4 



set-current-plot "Wait Time for Class 4 Patients" 
set-current-plot-pen "Class 4" 
plot-pen-down 
ifelse [xcor] of one-of class-4-patients >= [xcor] of update-1 (Number_of_Servers -1) 

[ 
plot floor (([xcor] of one-of class-4-patients - [xcor] of update-1 (Number_of_Servers -1)) / 

Number_of_Servers ) 
set class4total class4total + floor(( ([xcor] of one-of class-4-patients - [xcor] of update-1 

(Number_of_Servers -1))) / Number_of_Servers ) 
if Record [ file-write "Class 4" file-print floor (([xcor] of one-of class-4-patients - [xcor] of update-1 

(Number_of_Servers -1)) / Number_of_Servers )] 
] 
[ 
plot floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers -1) + [xcor] of one-of classy-

patients) / Number_of_Servers) 
set class4total class4total + floor ((( max-pxcor - [xcor] of update-1 (Number_of_Servers -1) + [xcor] 

of one-of class-4-patients)) / Number_of_Servers) 
if Record [ file-write "Class 4" file-print floor floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers 
-1) + [xcor] of one-of class-4-patients) / Number_of_Servers) ] 

] 

end 

tfiuuttmtttTrtftftutmtitiitfittitnftnutffmiuttftntitfutttiiuiinutfftnttntttuftiuttnttPtfttttffttitttttmt 
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