University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Analysis of scheduling in a diagnostic imaging department: A
simulation study

Brendan Eagen
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Eagen, Brendan, "Analysis of scheduling in a diagnostic imaging department: A simulation study" (2009).
Electronic Theses and Dissertations. 7976.
https://scholar.uwindsor.ca/etd/7976

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7976?utm_source=scholar.uwindsor.ca%2Fetd%2F7976&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

ANALYSIS OF SCHEDULING IN A DIAGNOSTIC IMAGING DEPARTMENT:
A SIMULATION STUDY

By

Brendan Eagen

A Thesis
Submitted to the Faculty of Graduate Studies
through industrial and Manufacturing Systems Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2009
© 2009 Brendan Eagen



Bibliotheque et
Archives Canada

Library and Archives
* Canada
Published Heritage Direction du
Branch Patrimoine de I'édition

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-57622-9
Our file Notre référence
ISBN: 978-0-494-57622-9
"NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par 'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L’auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canad;

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése. '

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manguant.



Author’s Declaration of Originality

| hereby certify that { am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

| certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright
nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from
the work of other people included in my thesis, published or otherwise, are fully acknowledged in
accordance with the standard referencing practices. Furthermore, to the extent that | have included
copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, | certify that | have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

| declare that this is a true copy of my thesis, including any final revisions, as approved by my
thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.



Abstract

In this thesis we present an Agent-Based Modelling Tool (ABMT) for use in the investigation of
the impact that operational level changes have on diagnostic imaging scheduling and patient wait times.
This tool represents a novel application of agent-based modelling in the outpatient scheduling /
simulation fields. The ABMT is a decision support tool with a user friendly graphical user interface that is
capable of modelling a wide array of outpatient scheduling scenarios. The tool was verified and
validated using data and expertise from Hotel Dieu Grace Hospital, Windsor, Ontario, Canada. The ABMT
represents a technological advancement in the modelling of multi-server, multi-priority class customer

queueing systems with deterministic service times and uneven distribution of server up-time.



Dedication

To my parents,



Acknowledgements

Dr. Richard Caron

Dr. Walid Abdul-Kader
Kathy Hillman

Gail Peterson
Mary-Alice Beneteau
Neil McEvoy

Dayna Roberts

Dave McKenzie
Jacquie Mummery

Brenda Schreiber



Table of Contents

Author’s Declaration of OFIZINAILY . .oecuiie ettt ete e e s ere e e eraeeeeeeeesseaaesasseannneans i
Y o3 (o Lo SO OO TP PSSP TR SRR iv
[ 7Te [Tor=Nd o] s T T U S U U O VSR UPUPPORRTPP v
ACKNOWIEABEIMENTS. ... ceteeeeteie et e sttt ettt e e ettt e eet bt e e sttt e e teeesateesebeeeesteeasseansessmaeaearaesannseneanbaeesnseseesteanennnen vi
LISt OF TA S ettt ettt ettt sttt s te s et e bt st e e e s e et et e e e he e e bt eneesaaenateesree et e ix
LIST OF FIGUIES woneeee e et et e tee et ettt e e sttt e s et e e e e e e sa e e sateeaeaee s ssaeesteaessassabe e amssessbeaanasseasanessansseesssnnnsnsesnss X
LISt O ACTONYMIS ... i eee ettt et e ettt e st e e e et e e e s e e st e e seeeenseeeseeasteassseesaseeeassesssanananssaaanseseanseesssnnarasbeean Xi
R oY 4o Yo [V ot o KU OO RO PRSPPI 1
1.1 Problerﬁ D T=TY o] o YuTo ] o P U UUP PPt 2
1.2 Thesis StatBMENT. ittt st et e sr e sre e re e ree e s sbe e s e e s amee e e e e e e s ne e e s 3
1.3 (0] o] [=Tor 4117 PSPPSR PP UUPPPI 3
1.4 ReSEArCh METhOAOIOZY ...eviiiiiiiiiieciiiie ettt s st e s e s asan e e nsnasenaenesinennenas 3

2. REVIEW OF LItEIGTUIC . c.veeieieeeeeree ettt te sttt e b e e et ere e st s et sae st e beae e st eate s s seeeaee et eneeenreateaneesienrens 5
21 (O N TO TN T I o T<Te T o PSPPSR 5
2.2 SIMUIBTION .ttt e b e e et e st r et e e e s re e e b e e s e et ssoe e e e arasaassneaeeannnesmnneesstsesinstan 8
221 SIMUIGLION PAradigiMm c.ceeei ettt e e e e s ee s e e enare e e e s e aabb e e e e s bee s e rras 9
222 Agent-Based SIMUIGLION ......c..oiiieer et cee e e e e rn e e 11
2.2.3 SiMulation iN HEaltNCAre .....c..vviiee ettt et e san e 11

23 Outpatient Scheduling and SIMUIALION ......c..eiiiii e e 12
24 Literature RevieW CONCIUSIONS.......occcerreirieeiteerrr s etes ettt et n e s re e e sanee e sneeemnnesmsasesansnas 18

3. Agent-Based Modelling TOO! (ABMT)......oiiiiiiiriieenreeiie it s et eevee s e e s see s s e snsae e sareaeereeassssesoannensnses 19
3.1 ABMT ENVIFONMENT ...ttt sttt et e s e e es e s s s sersaarans s e s enesesanns 19
3.2 L2 L= o) ORI 22
3.3 el s T=Te (8] 1T T= 1 0 Tl o] [ 1T OO PSPPSRI 23
34 LYl ) (=] o - 1ol U OO TP 26
34.1 Y A0 | o IR < o U OO SO OO PP R PTUPTOPN 26
3.4.2 D E ) -l (=T el o] o [T S U USSP 26
343 2 F=TaTe (o) oo T o1 OSSO TP PR 26
34.4 SIMUITION RUN THME eeiii et e et e e e e e e s e s eva e e e s sensas e ssbban e ssanns 26
345 NUMBDET OF SEIVEIS ..ttt e et ra e s s ae 26
3.4.6 Scheduled HOUS PEF Day ......ccviieerccerenriesiee st esteeses e e st s s ssne e sasssaeaseeasnreeessneessensessbes 26



3.4.7 INTOrMAtioN DiSPIAY..ciiuveeicirericr et eer et sttt setee et e s e ave e s beesnseesannesmenenesnns 26

4, (Case Study: Hotel Dieu Grace HOSPILal ..o.oiceii ittt et 29
41 ol o T=Ts 1] o T ] e ol =Ty PP PPRUSPPR 29
4.2 ABMT PAIaMIELETS ..ceeiiiieiieiieee st eetr e s eete e s rer e e s a st e e e s beae e e e amene s s e e re e st nmneeeesameeeeanmereennsneies 29

421 ATIVAl RGOS ottt sttt e te e te e e beeeere s s e e e s r e s e abe e aaneenteenaneeaeannne s 29
422 Operating Hours & NUmMber of SCANNErS .....ovvciiii ittt 30
423 Prebooked Periods ... .c.iciii ettt st s e e e eanes 30
4.3 P Y olo |81 g=To l DL - T PO PR SUURR PR 30

5. Verification and Valldatlon ................................................. 32
5.1 SIMUIGEION ParamMELEIS..ueiuieiiiiiee ittt et ettt st ettt e b e e ee e aesanesmeesnnnens 32
5.2 Discussion of Simulated vs. HIStOrCal DAta .....c..cocoeeeeieeriirieeee ettt 35

ST B 11 ol 1 3] o OO PP PP PN 36

7. ConClUSIONS aNd FULUIE WOTK ..oiiuiiiiierities it niceetce st ecern sttt s ene s e e s s tas v e enesaseeennessanssmenessebres 38

=] o] [To =0 =Y o1 o 1O PO R PSP OUPPRP 40

Appendix |: NetLogo™ Code for ABMT ........coo s estiescenesnresesen s sesveeseee s s se e s neesstseesicssnrosasensesnens 44

RV 41 30 AN Lot (o] =3P OO 20

viii



List of Tables

Table 1 - Westeneng's input Parameters from Outpatient Scheduling Survey .........ccccoivrvicvnnncnnn. 13

Table 2 - Westeneng's control parameters and mechanisms from Outpatient Scheduling Survey.....14

Table 3 - Comparison of ABMT to published WOrKS.............ccoiievmrinnsie e 15
Table 3 Continued - Comparison of ABMT to published WOrKS .........ccccovereiienirnniiiirece s 16
Table 3 Continued - Comparison of ABMT to published WOrkS........cccccvereiiiiiicnnciiii e 17



List of Figures

Figure 1 - Single Stage, Multi-Server QUeUeing SYSTEM........cccoccrriimiriiiiiiiiie e e 6
Figure 2 - Approaches (Paradigms) in simulation modelling on abstraction level scale.........c.ccoceeucee. 10
Figure 3 - Patches and TUILIE ..o e s s 19
Figure 4 - Layout of Simulation ENVIFONMENT ........cciiiiiiiiiiciien e 20
Figure 5 - MUILI-Server LayOuUL..... ..ottt e e 20
Figure 6 - Preb00oKed TIME ..ottt st et er et enees 21
Figure 7 - Prebooked Time CONTIOl ..ottt et 21
Figure 8 - Arrival Distribution CONIOl ... ..ottt ettt eee e 22
Figure 9 - Scheduling Process: SINEIE SEIVET ...ttt e s 23
Figure 10 - Scheduling Process: MUITI-SEIVET .........c.iiiiiiiiiecte ettt s 24
Figure 11 - Bumping: Before and AfTEr ...ttt et 25
Figure 12 - INformation Display.......cceieirrcc ittt 27
Figure 13 - Comparison of Service Request by Month and Class........cccccoiiriiieiiinicineinsncee e 31
Figure 14 - Comparison of Wait Times by Month and Class ..........coeoiiiini e 31
Figure 15 - Requests for Service by Class - April 07 to May 09 ......ccoce i 31
Figure 16 - HDGH Prebooked Schedule..........cooiiiiiiiiiiniinii e 33
Figure 17 - Simulated Wait Times for Class 4 Patients.......cccccvvveiiiiiinniiicecciec et 34
Figure 18 - Simulated Wait Times for Class 3 Patients......cccovvririieniinri et 34
Figure 19 - Simulated Wait Times for Class 2 Patients........ocoeu i 34
Figure 20 - Average Wait Time for Class 4 Patients .......ccovvicrreeirerccie s 35

Figure 21 - Requests for Scans for Class 4 Patients........coouveoieciirrreie et 35



List of Acronyms

ABMT — Agent-Based Modelling Tool
CAT - Computed Axial Tomography

CT - Computed Tomography

FCFS — First Come First Serve

GUI — Graphical User Interface

HDGH — Hotel Dieu Grace Hospital

LHIN - Local Health Integration Network
MRI! - Magnetic Resonance Imaging

SIRO - Service In Random Order

xi



1. Introduction

Canada’s publicly funded healthcare system is dynamic. The system, composed of 10 provincial
and 3 territorial plans, has evolved into its current state over the past forty years. The goal of the system
however remains unchanged; providing universal coverage for medically necessary healthcare services
on the basis of need rather than the ability to pay. in recent years stress on the system has been
increasing due to factors such as the high cost of new medical technology and the aging of the baby
boom generation (Ministry of Health, 2005). In years to come this stress will only continue to increase as
the number of senior citizens in Canada continues to climb. The percentage of the total population that
were senior citizens in 2005 was 13%, however by 2036 that number is expected to nearly double to
24.5% (Turcotte & Schellenberg, 2006). Combined with the fact that seniors historically have consumed
44% (Canadian Institute for Health Information, 2008) of the healthcare spending of provinces and
territories it’s plain to see that Canadian healthcare system is headed into a period that will tax its

resources to a new level.

One area where resources are already spread thinly is diagnostic imaging. This area is concerned
with the use of MRI (Magnetic Resonance Imaging), CT or CAT Scans {Computed Axial Tomography),
Ultrasounds and X-Rays. In 2004 there were on average 4.9 MRI machines and 10.2 CT Scanners for
every million Canadians; by 2007 those numbers had risen to 6.8 and 12.8, respectively (Canadian
Institute for Health Information, 2004) (Canadian Institute for Health Services, 2007). However, between
2006 and 2007 the demand for MRI and CT scans increased by 42.9% and 27.9%, respectively.
Compounding this issue is the fact that diagnostic imaging resources are not evenly distributed across
the country, for example by the end of 2006 there were 10.2 CT scanners per million people in Ontario
but 21.6 per million people in Newfoundland and Labrador (Canadian Institute for Health Information,
2007). As a result of the increasing demand for and uneven distribution of diagnostic imaging equipment
wait times for diagnostic imaging scans have become a concern in Canada. To that end the government
of Ontario has begun an initiative to track wait times in areas throughout the province
(http://www.health.gov.on.ca). The Ministry of Health has also established target wait times for patients
of different acuity (sickness) levels which are used to assess healthcare providers’ wait time

performance.

At present, in many areas of Canada, the demand for diagnostic imaging services outstrips the
ability of public healthcare to provide these services. As a result, requests for services can go unmet,

except in emergency cases, until weeks after the request has been made resulting in lengthy queues.

1


http://www.health.gov.on.ca

The ‘Wait Time’ targets established by the government of Ontario represent the maximum period a
particular class of patients can wait for service before their health will suffer. At present there are 4
categories of patient acuity; class 1 patients are the sickest and require immediate attention {within 1
day) whereas class 4 patients are less critical and can often be elective requiring attention within 28

days.

The focus of this study will be ‘Wait Time’ as described by provincial government of Ontario’s
guidelines. However, from a queueing theory perspective this is not the actual wait time, but can be
more accurately described as access time. The key difference being that this thesis will examine the days
between the request for service and the day of service and will not consider the time that a patient may
wait for service on the day that he or she is scheduled as a result of interruptions in the pre-established
schedule. Essentially, the thesis will ignore the fact that a patient may have to wait as long as the waiting
occurs on the day that the patient is scheduled to be scanned. It should be noted that in many works
the terms access time and wait time are used interchangeably, we will assume them to both mean the

number of whole days a patient waits between requesting and undergoing service.

Based on these factors it is plain to see that diagnostic imaging service providers will need a
means to effectively manage resources, allocate funds and control their processes if they are to cope
with the increasing demand of the Canadian population for their services to be delivered in a timely

manner.

1.1 Problem Description

It was the recognition of the reality facing a diagnostic imaging department that iead to the
conception of this thesis. The research team, which consisted of Dr. Richard Caron, Dr. Walid Abdul-
Kader and Mr. Brendan Eagen, was invited by Mr. Neil McEvoy, former CEO of Hotel Dieu Grace Hospital
(HDGH), Windsor, Ontario, Canada, to study his hospital’s diagnostic imaging department and its
scheduling system. As a trained industrial engineer Mr. McEvoy was keenly aware of the benefits of
simulation and requested that the team pursue an agent-based solution to the problem. His vision was
that a tool be created for him and his staff that would assist them in the evaluation of the effects of
operational level changes to their current system. Mr. McEvoy suggested the use of NetLogo™, a zero
cost software used by researchers interested in agent-based modelling. These directives motivated this

thesis.



1.2 Thesis Statement
Our thesis is that agent-based modelling can provide a technological tool for use by hospital decision
makers to evaluate the effects that operational level changes will have on their diagnostic imaging

system with specific interest in the impact the changes will have on patient scheduling and wait time.

1.3 Objectives

With the above thesis statement in mind the objectives of this thesis are to create an agent-
based simulation tool with an easy to understand graphical user interface (GUI) that would allow
hospital decision makers to assess the impact of potential operational level changes to the diagnostic
imaging department on the department’s schedule of patients. Additionally this thesis will expand
knowledge of the use of agent-based modelling in the outpatient scheduling field. The tool is a decision
support tool, not a model of any one specific diagnostic imaging department, and allows users to modify

input parameters according to the scheduling system that they wish to model.

1.4 Research Methodology
The research methodology is implicit in the following overview of the thesis layout. Though enumerated,

many of the outlined activities were carried out in parallel.

1. Preliminary Research

a. Review of literature — An exhaustive literature review was performed and the results
provided insight into the proposed research’s piace in the fields of healthcare
simulation/scheduling and agent-based modelling. In the case of HDGH scheduling is
taken to mean the assignment of a patient to a specific appointment slot on a particular
CT scanner. Additionally, the literature review helped to establish the parameters that
would be used in the construction of the simulation model.

b. Consultation with healthcare professionals — Consultation with practicing medical
professionals and healthcare administrators helped to establish the user interface
requirements of the model as well as providing insight into what internal and external

factors affect the scheduling process.

2. Design and development —~The model was developed in the NetLogo™ simulation package using
the parameters established in the Preliminary Research phase. In order to use the NetLogo™

simulation package it was necessary to learn the unique programming language that is used to



control it. Learning this programming language required several months of study and resulted in
the development of a prototype simulation model designed to simulate scheduling of a single
server. Once the programming language had been mastered, the prototype model was

expanded to accommodate multi-server scenarios.

Verification and Validation — The model was presented to medical professionals and healthcare
administrators to verify that the diagnostic imaging scheduling process was accurately
represented in the model. Historical data was collected from the sponsoring hospital, HDGH,

and used to validate the simulation results.

Discussion — The overall effectiveness of the simulation tool was assessed and observations
were made and documented regarding the applicability of agent-based simulation to scheduling

in healthcare.

Dissemination — The simulation tool will be shared with Canadian medical professionals,

healthcare administrators and healthcare researchers.



2. Review of Literature

This review of literature assists in the determination of what methodology should be used to
approach the topic of this thesis and also to determine the thesis’ place in published literature. The
researchers will first consider the macro level problem of what solution method they wish to use. The
end result of this thesis will be a decision support tool that is transportable between diagnostic imaging
scheduling systems, as this decision support system will be required to support a system that is
relatively complex and also relies heavily on historical data thus a simulation-based decision support
system appears appropriate. Examples of simulation successfully being applied in healthcare include the
work of (McClean & Millard, 1995}, (Everett, 2002) and (Aktas, Ulengin, & Sahin, 2007} who have all
effectively applied simulation-based decision support in healthcare. Everett gives perhaps the best
justification for choosing simulation as a decision support tool. He states that the complex web of
stakeholder objectives in healthcare all but precludes the existence of an “optimal” solution to a
problem. Instead he suggests that it is the system modeller’s job to enable informed debate among
stakeholders. To that end, he continues, the development of a simulation model for decision support is
an excellent means by which to encourage communication between stakeholders and the modeller so
as to accurately capture the true nature of the system. Simulation also, through use of a graphical user
interface, allows the stakeholders without technical backgrounds to contribute toc the development and
assume owhership and commitment to the model. It should be noted that simulation was not the only
option considered for modelling the diagnostic imaging scheduling system. Queueing theory / analytical
options were initially considered but the complex nature of the system combined with the need for

flexibility across a wide array of scenarios lead us to disregard these approaches.

2.1 Queueing Theory

Based on preliminary consultations with HDGH diagnostic imaging staff we determined that the
system can most readily be compared to a queueing system in which multiple servers work in parallel to
serve a single queue of customers with weighted priority on a first come first serve basis and that have
deterministic service times. Figure 1 depicts a single-stage queueing system with multiple servers in

parallel serving a single queue in much the same way as CT scanners service patients at HDGH.



Servers

(Multiple Servers in Paraltel)

S1

Customers
S2

(Infinite Queue)

NVAVAVAVAVAN >

N

Figure 1 - Single Stage, Multi-Server Queueing System
Although discounted as a solution to this particular problem, queueing theory still provides a

useful means by which to describe the situation under consideration.

In order to understand queueing theory notation and its ability to describe the current problem
one must be familiar with the basic components of a queue and the way in which it functions. A brief
overview of queueing as well as the importance of the exponential distribution is provided by (Winston,
2004). A queue is essentially a waiting line in which customers wait to receive service from a server.
Queueing theory helps one to describe and understand the relationships between customers, queues

and servers.

Customers, be they people, automobiles, manufacturing equipment, etc. require ‘service’ of
some sort. For example, people are serviced at a bank or in a grocery store, cars are serviced by a
mechanic and a broken welding robot is serviced by a technician. In these cases the number of
customers often exceeds the number of servers, that is, the number of people requiring banking
services exceeds the number of bank tellers for example. in situations such as there queues form. The
order in which customers in a queue are serviced by the servers is known as the queue discipline. The
most common queue discipline is First Come First Serve but others exist such as Last Come First Serve

and Service In Random Order.

Understanding how customers come to be in the queue is another important aspect of queueing

theory. Customers ‘arrive’ in the system; this is known as the arrival process and is the input for the



system. The rate at which customers arrive is known as the ‘arrival rate” and in general can be modelled

by a mathematical distribution, the most common of which is the exponential distribution.

Exponential distributions are used to model interarrival times because of their no-memory

property. That is,

PA>t+hnA =>t) e M
P(A =t) T et

PA>t+h|A =)= = e =PA>h)

“The no-memory property of the exponential distribution is important, because it implies that if we
want to know the probability distribution of the time until the next arrival, then it does not matter how

long it has been since the last arrival.” (Winston, 2004)

Other factors also affect the arrival process such as whether or not more than one customer can arrive

in the system at a time and also the total number of customers that the system services.

Modelling the time required for a customer to receive service is also a key element of queueing
theory. The Erlang distribution is commonly used to model services times, however, other distributions
are also common. In some cases, when the same actions are repeated for every customer, the service

time will always be the same. In these situations the service time is said to be deterministic.

In order to summarize all of the information required to describe a queue Kendal developed a
standard notation (Kendall, 1951). Known as the Kendall notation, this method describes queues based

on 6 characteristics.

1) The arrival process

2) Service times

3) # of paraliel servers

4) Queue discipline

5) Max. # of customers in the system

6) Size of the population

Standard abbreviations were assigned to each characteristic, for example, M denotes an exponential

distribution and D denotes a deterministic process.



Thus,
M/D/2/FCFS/ oo foo

denotes a queueing system whose customers arrive based on an exponential distribution of interarrival
times which are served by two servers at a deterministic rate in a first come first serve manner. The

customers come from an infinite supply and are unlimited in the number that can occupy the system.

While a model of the imaging department at HDGH as an M/D/2/FCFS/eofeo queue might
provide insight, it would fail to capture complexities such as multiple patient classes that cause a
violation of the FCFS queue discipline; and scanner downtime so that the servers are not continuously
available. This reasoning leads us to the conclusion that simulation would be a better modelling

technique.

2.2 Simulation

Simulation is the imitation of the operation of a real-world process or system over time (Banks et al,
2005). Simulation can provide a means by which to forecast the future of the diagnostic imaging
schedule based on those past known events. The benefits of simulation are many fold as presented by

(Shannon, 1992):

e Simulation can be used to explore new policies, operating procedures, decision rules, organizational structures,
information flows, etc. without disrupting the ongoing operations.

e New hardware designs, physical layouts, software programs, transportation systems, etc. can be tested before
committing resources to their impiementation.

e Hypothesis about how or why certain phenomena occur can be tested for feasibility.

e  Simulation allows us to control time. - Time can be easily compressed, expanded etc. allowing us to quickly look at
long time horizons or to slow down a phenomenon for study.

e  Simulation can allow us to gain insight into which variables are most important to performance and how these
variables interact.

e  Simulation allows us to identify bottlenecks in material, information and product flows.

s  The knowledge gained about a system while designing a simulation study may prove to be invaluable to
understanding how the system really operates as opposed to how everyone thinks it operates.

e  Through simulation we can experiment with new situations about which we have limited knowledge and experience

so as to prepare for what may happen. Simulation’s great strength is its ability to let us explore “what if” questions.



Shannon’s first point holds significant weight in the case of this thesis. It is not feasible or safe to
interrupt the current diagnostic imaging scheduling process as doing so may adversely affect the health
of the patients relying on the system. Many forms of simulation also have the added benefit of providing
the modeller with a visual representation of the system which can be useful when presenting the model

to those whose knowledge of the system or simulation is lacking (Banks et al, 2005).

2.2.1 Simulation Paradigm

The simulation field is composed of many different approaches or paradigms. A system can be
modelled in many different ways ranging from simulations performed by hand to complex multi-
scenario simulations that require more computing power than the average desktop PC has to offer. For
ease of calculation and timeliness this study focused on computer simulation. For the purpose of this
investigation we considered 3 central simulation paradigms; discrete-event simulation, agent-based

simulation and system dynamics simulation.

Discrete-event simulation can be described in terms of its components; entities, resources,
control elements and operations (Schriber & Brunner, 1997). Entities interact with system resources

based on the rules established by control elements to perform operations.

Agent-based simulation functions somewhat differently than discrete-event simulation. [n
agent-based simulation agents are the primary focus. Agents are independent decision makers in a
system that react dynamically based on their characteristics and surroundings in a simulated
environment (Macal & North, 2007). Agent-based simulation‘is then the evolution of the behaviour of

the agents and their environment over time.

System dynamics simulation functions in a significantly different manner than discrete-event
simulation or agent-based simulation. System dynamics is primarily concerned with an aggregate level
of detail. It is not focused on individual entities or agents but aggregate behaviour of groups. It
functions by considering aggregate ‘stocks’ and their flow within a system based on feedback loops

(Coyle, 1996).

In Figure 2 {Borshchev & Filippov, 2004) provide a useful frame of reference for the simulation
paradigms considered. Figure 2 shows a comparison of the three paradigms with respect to their
appropriateness at various levels of abstraction. Borshchev and Filippov show that discrete-event
simulation is most appropriate at low to mid levels of abstraction in part due to its focus on individual

entities. At the opposite end of the spectrum they show that system dynamics simulation is best suited

9



for modelling system with a high level of abstraction. In contrast to discrete-event and system dynamics,
agent-based simulation can be used across all levels of abstraction with the capability to model
operational level detail but also present high level trends accurately (Borshchev & Filippov, 2004). Based
on this information it appears safe to conclude that regardless of the level of abstraction that modelling

a diagnostic imaging scheduling process requires, agent-based simulation would be an acceptable tool.

High Abstraction §

Less Details
Macro Level .
; Agent Based System Dynamics (SD) |
Strategic Level (AB) o Levels (ggregates) :

* Stock-and-Flow diagrams
o Peedback loops

* Active objects
» Individual

; behavior rules
Middle . W - o
_ . Discrete ¢ Direct or indirect
Abstraction Event” (DE) interaction

Medium Details

o Eniities (passive Environment

Meso Level objects) models
Tactical Level e Flowcharts and/or
transport
networks

Dynamic Systems (DS)\T[

. ¢ Physical state variables

e Resources

Low Abstraction \ /

]
More Details | o Block diagrams andfor %
MinO Level N~ algebraic-differential equationsj
Cperational Mainly discrete < ' -+ Mainly continuous
1 B Individual objects, exact sizes, distances, velocities, timings, ...
" H 3

Figure 2 - Approaches (Paradigms) in simulation modelling on abstraction level scale

The decision to use agent-based simulation was influenced in part also by Mr. McEvoy who felt that
this modelling technique might be especially applicable to diagnostic imaging scheduling and
recommended a free simulation software package, NetLogo™, to use in the modelling process.
Additionally, a preliminary review of literature revealed that using agent-based simulation to model an
outpatient scheduling system would be relatively novel. In support of this approach were (Macal &
North, 2007) who identify the appropriate time to use agent-based simulation with the following

criteria:

s When there is a natural representation as agents

s When there are decisions and behaviours that can be defined discretely (with boundaries)

e  When it is important that agents adapt and change their behaviours

e  Whenitisimportant that agents learn and engage in dynamic strategic behaviours

¢  When it is important that agents have dynamic relationships with other agents, and agent relationships form and

dissolve

10



e  When it is important that agents form organizations, and adaptation and learning are important at the organization
level

e  When itis important that agents have a spatial component to their behaviours and interactions

e  When the past is no predictor of the future

¢  When scaling-up to arbitrary levels is important

e  When process structural change needs to be a result of the model, rather than a model input

The diagnostic scheduling process meets the above criteria and so it was determined that agent-based
simulation would be an acceptable method to model the process. In the case of outpatient scheduling,
requests for appointments are considered agents and the schedule, represented on a 2 dimensional

plane (Time of the Day x Day in the planning horizon), is considered the environment.

2.2.2 Agent-Based Simulation

Agent-based simulation has a history in many fields ihcluding economics, mathematics, biology,
engineering, sociology and psychology (Axelrod, 2005). The application of agent-based simulation to
healthcare is a relatively novel but expanding field. However, much of that expansion is focused on
modelling the transmission of infectious diseases, such as the work of (Tricla & Holzman, 2003) who
modelled the transmission of nosocomial diseases in intensive care units or (Teweldemedhin, Marwala,

& Mueller, 2004) who study the transmission of HIV.

2.2.3 Simulation in Healthcare

Although there is a limited amount of research that has employed agent-based simulation in
healthcare settings, there is a significant amount of research in healthcare using other forms of
simulation. This should not be taken to mean that agent-based simulation does not have a place in
healthcare; just that it is a relatively unexplored application. Although somewhat dated (Jun, Jacobson,
& Swisher, 1999) survey over one hundred publications which employ simulation in healthcare. The uses
of simulation they present are diverse including (but certainly not limited to) patient routing and flow
schemes (Garcia et al, 1995) (McGuire, 1994) (Blake, Carter, & Richardson, 1996} and bed sizing and
planning (Butler, Karwan, & Sweigart, 1992) (Lowery, 1992) {Dumas, 1985).

Of particular interest to this thesis were those publications focused on patient scheduling,
including the work of (Bailey, 1952) who contributed some of the earliest work in outpatient scheduling.
Outpatients are those patients who need to stay in the hospital overnight after visiting during the day.
Bailey, looking at outpatients, counterbalanced patient wait times with physician utilization, developing

heuristic techniques for use in batch scheduling. Although pre-dating computer simulation, Bailey’s work

11



helped pave the way for the application of a scientific approach to the study of outpatient scheduling.
(Smith, Schroer, & Shannon, 1979} continue in a similar vein with their work that considers maximizing
patients seen by a physician during a 3 hour session, while minimizing patient waiting time and

determining the required number of nurses and examination rooms needed.

2.3 Outpatient Scheduling and Simulation

For a more current look at simulation focused specifically on outpatient scheduling we turn to
(Cayirli & Veral, 2003) who survey outpatient scheduling and (Westeneng, 2007) who distils their work.
Westeneng presents a useful condensed version of Cayirli & Veral’s outpatient scheduling survey as part
of his thesis on the evaluation of alternative appointment systems. His thesis shares commonalities with
this one but differs in its goals and approach. While this thesis focuses on a standard simulation tool for
outpatient scheduling in diagnostic imaging Westeneng focused on developing an optimal scheduling

procedure for a single ear, nose and throat clinic.

Westeneng presents Cayirli & Veral’'s work in two tables (See Tables 1 and 2). Table 1 captures
each works’ input parameters; those parameters that are beyond the control of the simulator. These
parameters could also be called outside forces or factors as they act on their respective systems from
the outside, relatively uncontrolled by the system stakeholders (Note: Not all of the material referenced
by Westeneg could be located, however the table has been reproduced as it appears in his thesis). Table
2 presents the control factors and mechanisms imposed on each system. These are the variables of the

system that are available for manipulation by the simulator or the system stakeholder.

Westeneng’s work served as a start point for establishing those internal and external
parameters that effect the operation of a diagnostic imaging scheduling system. While some parameters
are not applicable in the case of diagnostic imaging, others served to develop a deeper understanding of
the system when considered with the assistance of healthcare professionals and hospital decision

makers.

12



. . Patient No-Shows (p = Doctors’
Service Time . Walk-Ins (regular , L
Input Parameters: . Punctuality no-show Doctors' Lateness Interruption
Distribution - and emergency)
(mean, st.dev) probability) Level
Articles:
(Westeneng, 2007) Gamma N(-13, 17) p=0.05 Emergency only Late N(5,15) minutes yes (DICT)
(Bailey, 1952) Gamma Punctual p=0 None Punctual None
. . p=0,0.09 and .
(Blanco White & Pike) Gamma Gamma, mu=0 019 None 0,5, 10, 15 or 20 min. None
{Cayirli, Veral, & 0 to 15%, also
- = 0.15 |
Rosen, 2004) Lognormal N (-15, 25} p=0and regular Punctua None
(Cayirli, Veral, & N({0,25)and N _ 0to 15%, also
Rosen, 2006) Lognormal (-15,25) p=0and0.15 regular Punctual None
(Chen golgc;;)mson, Randomly Un;r):xgual, p=0 None Punctual None
{Clague, Reed,
Barlow, Rada, Clarke, Randomly Punctual p=0.2.3 None Punctual None
& Edwards, 1997)
Uniform,
(Denton & Gupts, Gamma and Punctual p=0 None Punctual None
2003)
Normal
(Fetter & Thompson, Empirically Late allowed to p=[0.04-0.22] 7 to 58% with mean .
1966) collected max. 5 min. with mean 0.14 38% 0, 30 or 60 min None
(Fries & Marathe, Negative, _
1981) Exponential Punctual p=0 None Punctual None
Unpunctual
(Harper & Gamlin, . {mean 8.3 min p >0 (not
f I
2003) Not specified early, SD=14.7 specified) Urgent Unpunctua None
min)
(Ho, Lau, & Li, 1995) Unlform., Punctual p=0, 0.10, 0.20 None Punctual None
exponential
(Hutzschenreuter, Triangular, Unpunctual, _
2004) Gamma (-10, 10) p=0.10 None Punctuatl None
(Kaandorp & Koole, . p=0,0.1,0.25,
2007) Exponential Punctual 05 None Punctual None
K M i
(Klassen & Rohleder, Lognormal Punctual p=0.05 ax2 emergenues Punctual None
1996) per session
K
( Iassenzgcoic;hleder, Lognormal Punctual p=0.05 10 % of patients Punctual None
{Lehaney, Clarke, & - _
Paul, 1999) Not specified Punctual p=0 None Punctual yes
Uniform, Uniform over [0,6]
(Liu & Liu, 1998} exponential, Punctual p=0,0.10,0.20 None . ! None
. min. late
Weibull
{Robinson & Chen, Generalized _
2003) Lambda Punctual p=0 None Punctual None
R ] -
(Rohleder & Kiassen, Lognormal Punctual p=0.05 Max. 2 emergenues Punctual None
2000) per session
(Vanden Bosch, Dietz, _
& Simeoni, 1999) Erlang Punctual p=0 None Punctual None
Included b
(Vissers & Wijngaard, In system IncI.ude.d by .nc _u € y .
General . adjusting adjusting service In system earliness None
1979) earliness s .
service times times
(Welch & Bailey, Gamma Punctual p=0 None Punctual None

1952)

Table 1 - Westeneng's input Parameters from Outpatient Scheduling Survey

13




09 "yffia: ananh ' e iy 5404 aaes US| uoisses g il SOy W WHGTI=1 600 5 I 1S L g (75610 A0BE P ORI
o e $424 odusafius | womses A 7 9u0y VAN PB 9N 0808 'GF 08 G2 '01=N 1=5 uoprs | (52643 a2 spssA
. - e , . {665 1) leoBugS
3 7] 33 HOREAS & : : A ™ L
op'md 500 S4%4 adepafus | uomsss up WIN BN PANA 1 L pUB I 1= By & 29K 'S0 LERBA
Rasantial 1 saeN
g o gL SR g . .
Skt B v xn e B - o o I . 34} LORBYNSUDZ U SURNBAL (paaiEoa: sy wukin U0 sausdep) . )
20 Sugean Kol URaa 'peams | JENBAIIY 540y elemafus | unsseseu) sousrbes ) K ! , ; e ueeruis | {Co0Z)uBssel ¥ sepByoY
aouiae Yl el 20, vsdo SIS 7 g AT RS o
i e 0 5 5201 ook e YE ksl 2 WS T o 12 0T 'BUeN W0i7EL e
XIS UBSl I 'Md Bl
I w5503 544 pousafus | uomses aug e a:0y peuav-ay A )21 83 BHmS Eolipay (8002 U843 § Uasgoy
I ') a1 153800 3404 adesafiug | u0iSses el W B0 oA SH=NSITS LGRS (e33ime
. - i & " sout) ool N (666,
e 3424 0iESas 30 i 0N SR H OS] gy g o o
a4} §52000 LTI . . Lz . Bt} LOSINSU0 18 - s s e e
Jonsos 0p"p sl EUE mn Ry Sd; shesabus Busgo) A 0 sariag SOUR\ A WENEMD 3841 A BUBY SN F=i SRTTe=L }=S woiprus | (5007) 0a0Y 3 LRSFRD
Pahizs A8} LOIBEBU0S U -5l (paniz0as 210 akin o spusdsp)
sl o & 'saun utrsidung | KMo ) 3 oiesafes | wnsass Fusrbes TURE P RS ‘) AT RIS I T S upne | (CRR1) ABNY S URSSE
o, saus i S 0 S loemnutymer| O | et sz vy | i Gl e 1= ¥ $61) A2y 35S
28 pute uESU o and
op i "and ) 3434 dozafug | uossasaug il a0y YAINA WT=1'0F 018N ' }=5 ety {1007 100y § ionuey
UKL $,03008 U Al ug) &4714 85ep afieg SnI038 SEME 300y €0fJ88 Moy b4 0Ri=1 B} '6=¢ 28 ucpnus (BORZ; JaarBUdSIT
JCHE T 3, R -2 2 = 4 “Uieses 8.0 g Beamnbeg 16 Q15 PUE UBBY 5 e B 3 B 8 .23 i A Gl 48 zay |
R $40d a3Rs GEuS | uDISS3B AuQ il a0y YA 2800 "N 1=3 URIS (35811 g 87 ol
i s 26N 0% (ALl yhug)
and Bug 5474 3 182 salRle . I ,3 S 95380 5 VRIS YIRANIIA DEYDBGS PU | B Y 'TT=S8 HCIRTUIS {2007 uwn g sdey
A3 £ O SUDISSBE LB LAER T BHE P0A
0p i "l ) 5434 @3 g il iy oA =18 By (195 1) J4eie g 33U
taseas i cnzere il 8963 Al oSSRs @ fuauonbes [RER AT USRS 13661 wosduul ¢ RLE
woos SRy pise ' 9 opeurgem ' 15 g B R0 | sow aning BIAAS] TN RIS 9651 418 BRE
ap p'wd 4800 $434 Besabus | u0SeEs el P BI85 U8R Al 176 e et ety {c00z3 Bydng ¢ uoag
e . s g N I " _ N sy sy 12 o
1" Ay poposasayy | RIS | ossas el fensij WA yARIN G-30= §=8 ugeining (264) B B 9n3D
19 3 T4 23033 Aig WHBSES SUO i 3408 TAINA =5 Py [T BT S R ET )
b SURRM [LB R m . BAAR Lauodin o - I et ) - -
op ip g Bl N #us | uosses aug aue 20usnbes U snoey, | EESUSDSS JC) SAD8 B PANA 01221 0T05=M 118 ueprws | (9007) Ussey 3 BIRA e
Sy 0 ssaumy, 'op i ad au|  £4vd sdosafus | uossss aug ghﬁﬂwﬁ@ RN YANA ie’iss uelprug  |(5007) ussey 9 oA "pake)
LGE UM S safh s I i AN WG] - ) . \
apdgpepadany | S| RANS | essan | ueRle MR | yening e o) g et ng a'0s'0n s i g | PTUS | GSBDM SO0 58
30 YR e B G Sl Sid e afas | uopeesaug Wi ] Ve US|l B2 SH LI 1SS | Usienis R
peorion A solage #uog a02104 @.G:R.&mm R AL o E-Au ] 7 { SHION N Uil toisl Di=D LRISH) DREYD NG OY eNRR2
“wonpzyga op o W -stag S EBHMEL | o ierd Eugroy pre Enion TR CENE] VARG B WA AP T NETIN B SRS 0D ENF G SoeRig
ssburs aoos LORIYsSED wapd | uomayse an SHSINTHOIN SNY
16 s156q UL SuBUSNpY Jusied Bupuenbs REE AL N T e

Table 2 - Westeneng's control parameters and mechanisms from Outpatient Scheduling Survey

14



Building on Westeneng’s work Table 3 (split onto 3 separate pages) combines Westeneng’s key

parameters and cited works with that of this thesis. This combined table also compares the work of the

thesis (labelled as ABMT) with that of other published articles.

Input Parameters:

Service Time

Patient
Punctuality

No-Shows (p = no-

Walk-Ins (regular

Distribution (mean, st.dev) show probability) | and emergency)
Articles:
Westeneng (2007) Gamma N(-13, 17) p=0.05 Emergency only
Bailey (1952) Gamma Punctual p=0 None
Blanco White & Pike (1964) Gamma Gamma, mu=0 p=0,0.09and0.19 None
Cayirli, Veral & Rosen (2004) Lognormal N (-15, 25) p=0and 0.15 0 to 15%, also regular
Cayirli, Veral & Rosen (2006) Lognormal N(O('_Zf;) ;;‘)d N p=0and0.15 0 to 15%, also regular
Chen & Robinson (2005) Randomly Unpunctual, mu=0 p=0 None
Clague et al. (1997) Randomly Punctual p=0,.2,.3 None
Denton & Gupta (2003) Uniform, Gamma and Punctual p=0 None

Normal

Fetter & Thompson (1966)

Empirically collected

Late allowed to max.

p=[0.04-0.22] with mean

7 to 58% with mean

5 min. 0.14 38%
Fries & Marathe (1981) Negative, Exponential Punctual p=0 None
Unpunctual (mean
Harper & Gamlin (2003) Not specified 8.3 min early, p > 0 {not specified) Urgent
SD=14.7 min)
Ho, Lau & Li {1995) Uniform, exponential Punctual p=0, 0.10, 0.20 None
Hutzschenreuter (2004) Triangular, Gamma Unpunctual, (-10, 10) p=0.10 None
Kaandorp & Koole (2007) Exponential Punctual p=0,0.1,0.25,05 None
Klassen & Rohleder (1996) Lognormal Punctual p =0.05 Max 2 emergencnes per
session
Klassen & Rohleder (2004) Lognormal Punctual p=0.05 10 % of patients
Lehancy, Clarke & Paul (1999) Not specified Punctual p=0 None
Liu & Liu (1998) Uniform, exponential, Punctual p=0,0.10,0.20 None
Weibull
Robinson & Chen (2003) Generalized Lambda Punctual p=0 None
Max. 2 i
Rohleder & Klassen (2000) Lognormal Punctual p=0.05 ax emergenctes pef
session
Max. 2 i
Rohleder & Klassen (2002) Lognormal Punctual p=0.05 ax emergenues per
session
Vanden Bosc(f:\l,glglge)tz & Simeoni Erlang Punctual p=0 None
I — incl —
Vissers & Wijngaard (1979) General In system earliness Inc udeq by fadjustlng ne udeq by ?djustmg
service times service times
Welch & Bailey (1952) Gamma Punctual p=0 None
ABMT Deterministic Punctual p=0 Variable Rate

Table 3 - Comparison of ABMT to published works

15




Doctors' Patient
Input Parameters: Methodology # of Servers e .
Lateness Classification
Articles:
Westeneng (2007) Late N{(5,15) minutes Simulation 10 Yes, 3
Bailey (1952) Punctual Simulation 1 No
Blanco White & Pike (1964) 0, 5,13, 15 or 20 min. Simulation 1 Yes, 2
Cayirli, Veral & Rosen (2004) Punctual Simulation 1 Yes, 2
Cayirli, Veral & Rosen (2006) Punctual Simulation 1 Yes,2
Chen & Robinson (2005) Punctual Analytical 1 No
Clague et al. (1997) Punctual Simulation 3 Yes, 2
Denton & Gupta {2003) Punctual Analytical 1 Yes, Fxpef:ted
Service Time
Fetter & Thompson (1966) 0, 30 or 60 min Simulation 3 Yes, 2
Fries & Marathe (1981) Punctual Analytical 1 No
Harper & Gamlin (2003) Unpunctual Simulation 22 Yes, 5
Ho, Lau & Li (1995) Punctual Simulation 1 No
Hutzschenreuter (2004) Punctual Simulation 1 Yes, Mean & SD
Kaandorp & Koole (2007) Punctual Analytical 1 No
Klassen & Rohleder (1996) Punctual Simulation 1 Yes, 2
Klassen & Rohleder (2004) Punctual Simulation 1 Yes, 2
Lehancy, Clarke & Paul (1999) Punctual Soft-Simulation 3 No
onit
Liu & Liu (1998) Uniform over [0,6] Simulation 2 No
min. late
Robinson & Chen (2003) Punctual Analytical 1 No
Rohleder & Klassen (2000) Punctual Simulation 1 Yes, 2
Rohleder & Klassen (2002) Punctual Simulation 1 Yes, 3
Vanden Bosch, Dietz & Simeoni
’ P‘ .
(1999) unctual Analytical 1 No
Vissers & Wijngaard {1979) In system earliness Simulation No
Welch & Bailey (1952) Punctual Simulation No
ABMT Punctual Servers Simulation 1to10 Yes, 4

Table 3 Continued - Comparison of ABMT to published works

16




Input Parameters:

Adjustments
based on pt.
class

Scope

Queue Discipline

Performance

Measures
PW=Patients_Wait
Si=Server_ldle
SO=Server_Overtime

Articles:

Rolling Planning

PW SO Sl utilization,

Waesteneng (2007) Interval & Sequencing Horizon FAFS workload
Bailey (1952) N/A One Session FCFS PW S0 Sl queue
length
Blanco White & Pike (1964) Appointment System One Session FCFS PW S p:(t)'i:itns within
Cayirli, Veral & Rosen (2004) Sequence & One Session FCFS PW SO S, 'fairness'
Appointment Interval
Cayirli, Veral & Rosen (2006) Sequence & One Session FAFS PW SI SO
Appointment Interval
Chen & Robinson (2005) N/A One Session FAFS PW Si
Clague et al. (1997) Interval One Session Shortest Queue PW SI
Denton & Gupta (2003) Interval One Session FCFS PW SI SO cost
Fetter & Thompson (1966) Service Tlrr‘les & One Session FCFS . PW SI .
Sequencing patients/session
Fries & Marathe (1981) N/A Multiple Sessions FCFS PW SI SO
Harper & Gamlin (2003} Block Size & Interval Ten Sessions FCFS PW
Length
Ho, Lau & Li {1995) N/A One Session FCFS PW SI
Hutzschenreuter (2004) Sequencing & Intervals One Session FCFS PW utilization
Kaandorp & Koole (2007} N/A One Session FCFS PW SI SO
Klassen & Rohleder (1996) Sequence One Session FCFS for regular PW I min./max.
urgent cases
Klassen & Rohleder (2004) Sequence 10 Day.Rolllng FCFS for regular PWSISO ut!hzatlon
Horizon access time
Lehancy, Clarke & Paul (1999) N/A One Session FCFS PW
Liu & Liu (1998) N/A One Session FCFS Sl flow
Robinson & Chen (2003) N/A One Session FCFS PW SI
Rohleder & Klassen (2000) Sequence One Session FCFS for Regular PW SI min./max.
urgent cases
Rohleder & Klassen (2002) Sequence Rolling F.’Iannlng FCFS for Regular PW SI ut|||.zat|on,
Horizon access time
Vanden Bosch, Dietz & Simeoni N/A One Session FCES PW SO
(1999)
Vissers & Wijngaard (1979) N/A One Session FCFS PW SI
PW Sl
Welch & Bailey (1952) N/A One Session FCFS SIS0 queue
length
Rolling Plannin Access Time, % of
ABMT Yes & & FCFS for regular patients on target,

Horizon

avg. wait time by class

Table 3 Continued - Comparison of ABMT to published works

17




2.4 Literature Review Conclusions

The literature review has established:

- That simulation is an acceptable means by which to create a decision support system, especially
in those cases where the system is complex and has many stakeholders.

- The pros and cons of simulation and where it is most applicable »

- That simulation in healthcare is a widely accepted practice and has the capability to yield
positive verifiable and validated results.

- That agent-based simulation is appropriate for the level of abstraction required to model a
diagnostic imaging scheduling system.

- That outpatient scheduling has been studied via simulation before but not through agent-based
modelling.

- That when modelling outpatient scheduling there are a standard set of parameters that must be
considered.

- That there is no established standard decision support tool for the scheduling of diagnostic

imaging services.

It is based on these facts that we chose to build a decision support tool using agent-based

simulation to assess the impact of operational level changes to a diagnostic imaging scheduling system.

18



3. Agent-Based Modelling Tool (ABMT)

This chapter describes the Agent-Based Modelling Tool (ABMT) built using NetLogo™ a programmable
modelling environment well suited to complex dynamic systems. In 3.1 we introduce the ABMT
Environment and in 3.2 the Patients. In 3.3 we describe the Scheduling Discipline. We end the chapter

with a presentation of the User Interface.

3.1 ABMT Environment

NetLogo™ uses two different types of agents, ‘patches’ and ‘turtles’. Patches are stationary and
the collection of patches form the environment in which the turtles exist and move. In Figure 3 we see
the agents used in the ABMT. Squares are patches and triangles are turtles. The colours green, blue,
vellow and brown represent the different patient priority classes. Red, black and grey represent times

that are not currently or cannot be used for scheduling a patient.

A /|

Current Time Class 1 Class 2 Class 3 Class 4
Available appointment Updater Patient Patient Patient Patient

during operating hours

Available appointment Prebooked Scheduled Scheduled Scheduled Scheduled

not during operating Time appointment appointment appointment appointment
hours for Class 1 for Class 2 for Class 3 for Class 4
Patient Patient Patient Patient

Prebooked Prebooked Prebooked Prebooked
Time Time Time Time
for Class 1 for Class 2 for Class 3 for Class 4
Patient Patient Patient Patient

Figure 3 - Patches and Turtle

The planning horizon is composed entirely of patches arranged to form a grid (See Figure 4).
When configured for a single server each column represents a single day and each row a specific time of
day. The number of days in the horizon is adjustable, but the number of appointment blocks in a day
(red and black combined) is not. At current there are 96 blocks (patches) per day (column), each
representing a 15 minute time block. Red patches are appointments that are available for scheduling
and black patches are periods when patients cannot be booked. The number of operating hours per day
(red patches) is controlled by the ‘Scheduled-Hours-per-day’ input box. Figure 4 depicts an empty

planning horizon with 2.5 available hours per day.

19



Columns represent days in the planning horizon. Example: The patch bordered in
black represents an available

AN appointment on the 8th day of the
/ \ planning horizon between 0:30
e and 0:45.
'—Nnjvlmiwr-m%m"f_’%—
=T - T - - R — T S -~
@ @ ® ® | n, m 3.8, 7| &
%DDD‘:O‘D,DOQvD!DiQ
[ -a0-as ' N
0:15 - 0:30
(0:30-0:45
0:45 - 1:00 Red patches indicate
1:00 - 1:15 > available appointment
115 1:30 slots within regular
1:30 - 1:45 operating hours.
) 1457200
en . 0
15 minute < _2:00- 215
time 2:15- 2:20 ‘ .
intervals. _2:30- 245 |8 5 | R N
245 -3:00 | R L L] . Biack patches indicate
3:60-315 R I -- 1 available time slots
3:15-330 TR [ during non-operating
e I
345 - 4:00 -- B -! i emergency demand.

4:00- 415

Figure 4 - Layout of Simulation Environment

For multi-server scenarios each column represents a specific server on a specific day. Figure 5 depicts a
multi-server scenario with 3 servers and 2.5 hours of scheduled time per day.

Server 1

| Celumns represent days by server in the planning horizon.
Server?
i Example: The patch bordered in
! " Seiver3 black represents an available
b e appointment on the 3rd day of the
T -:r“ planning horrizen between 0:30
- - and 0:45 on server number 3.
3 123
i (=g e} | | ; o
0:00 - 0:15 | ™
( 0:15 - 0;30
0:30 - 0:45
0:45 - 1:00 Red patches indicate
1:00 - 1:15 > available appointment
1:15 - 1:30 | slots within regular
’ ) '1‘;30 . 1-45 operating hours,
fec;::?:sent 1:43 - 200
15 minute < . g?g T g;g
time 92
intervals. 2 : T ] B -~
-M-—. 5 3400 K : T B [ ] ) " " | T \
245- 3. Black patches indicate
3:00- 315 4 1 1 . . available time slots
3:15- 330 f during non-operating
a0 . 345 | | | I { 1 >‘ hours. These slots are
3:30 - 3:45 used to meet
3.45 - 4:00 | emergency demand.
4:00~4:15

Figure 5 - Multi-Server Layout

20



Prebooked times are appointment slots set aside from the standard first come first serve
scheduling process. These prebooked times are used in many cases to meet demand for patients who
cannot wait for diagnostic imaging services. For example, many patients admitted to the hospital
require service from the diagnostic imaging department during their stay. It is inefficient and hazardous
to force them to wait for an appointment like a non-admitted patient might. To that end appointments
are set aside each day to meet the potential demand for diagnostic imaging services from admitted

patients. Figure 6 depicts an example of a planning horizon with prebooked time. Figure 7 shows 4 of

the prebooked time controls.

The light blue patches indicate time

that has been prebooked on the
second day of the week for class 2
patients.
0:00 - 0:15 I
0:15-0:30
0:30 - 0:45 |
| 0:45-1:00
1:00-1:15
1:15-1:30 ]

T130. 145 The light yellow patches indicate

N = time that has been prebooked every
day for class 3 patients. This was
accomplished by using the

Repeat Daily slider.

Figure 6 - Prebooked Time

Prebooked Tirne
TSn Weekly Prebocked | [ Iu————— 75 Repeat Day 1 {Gervers Bocked | ||| Ueeky_Prebook_Sam || Weekly_Prebook_End seckly Prebociked 1 Class |
off - Day_of the_week _ 1| dor - | ;‘da e
A e I
200 yjackly_Prebocked 2 | | IMGE———— | On i Servers_Booked_2 [Weekly_Prebook_otart_2 || Weekly_Prebook_End_2
Fi‘oﬁ Weekly Prebooked 2 | |50 " F the.week_2 1 ” T3 Repeat Daiy2 1 ocked- | Waeldy Prebook Sran e | Weeldy.Prebook tnd_ eekdy Prebooked 2 Closs
| { [ Ciae 2
L I|5.25 lils.25 s
i I
THOR ieakly Prebooked 2 | |LMRSa— N Repedt Dol 3 || Serve ) kSt 3 || Weekly Prebook End.3 | |eekly_Prebooked_3_Cl
h d_3 EHon Servers_Booked_3 Weekly_Prebook_Start_3 Weeldy_Prebook_End_3 aekly_Prebooked_3_Class
j‘off Weekly Prebooked Day _of the_week_3 1 !?;FF Repeat_Daily.3 l it o S
;1 j !3.75 | ;[3.75 ; - c
T ] ‘?éh'k cepeat Daly 4 || Servers_Booked_4  Weekly_Prebook_Start_4 [\Weskiy_Prebook_End_4 Weehby_Prebocked 4 Class
TTSp ety srbooicd s | (e | 00 v cpus ooty 3| - ‘ a2 Lot ekt A g
‘[1 j ,|5.75 ‘ :15}5 J b e

Figure 7 - Prebooked Time Control

21



3.2 Patients

Requests for patient service, also known simply as patients, are the driving force of the ABMT.
The following subsections describe the different types of patients, the method with which they come to

be in the system, and their interactions with each other and the simulation environment.

Patients, represented by turtles, come in 4 priority classes. These four classes are
representations of the patient priority class 1 through 4 used in Canadian hospitals; each patient
requesting service from the diagnostic imaging department is assigned a prior level by their physician.
Class 1 patients require immediate attention while class 2, 3 and 4 patients are to be scheduled if

possible within 2, 10 and 28 days respectively based on ministry of health guidelines.

Requests for patient service are received or ‘arrive’ according to probability distributions. The
distributions govern the inter-arrival time between patients of the same class. The distributions
available in NetLogo™ to describe the arrival rate are normal, exponential and Poisson. The user selects
the distribution that most accurately describes their system from a drop down menu as seen below.
Seen below in Figure 8 are the controls for the arrival rates of all 4 patient priority classes, example
means and standard deviations can he seen in the input boxes. In this example we can see that Class 1
patients have a mean interarrival time of 500 minutes, thus Class 1 patients’ arrivals are normally

distributed with a mean of 500 minutes.

Arrival Distributions

#robabihﬁy@éﬁént%lass» LAmvd Probabiliiylbaﬁent—clasé—Z-Afrival jﬁfbbaia}lity;Pauent-class-3§Arrival Probabiity -Patient-Class-4-Arrival
,‘Normal 7! K;\lormal 7]' Q‘Normal 73 gNorma! ) 7|

— A — e Normal S—
Patient-Class-1-Mean-Arrival-Rate Patient-Class-2-Mean-Arrival-Rate iPatient-Clags-3-Mean-Arrival-Rate Exponential  lean-Arrival-Rate

: : i

{SDD ! 25 10 Poisson .
L j
'Patient Class-1-D Patient-Class- 2-60 Patient-Class-3-8tD PatientClass-450

Figure 8 - Arrival Distribution Control

The ABMT uses a deterministic service time of 15 minutes per patient. The assumption is made
that all scans can be completed within 15 minutes and subsequent scans do not begin until 15 minutes
has elapsed since the preceding scan started. This may not always be the reality but because the focus
of this study is on access time not wait time and the resulting difference is considered negligible. In

those instances where the scheduled length of the scan is 30 minutes, one patch is blocked off as

22




prebooked for ‘None.’ That is to say that one of the patches, representing 15 minutes, is made

unavailable for scheduling to account for the time lost to the 30 minute appointment.

3.3 Scheduling Discipline

Scheduling operates on a first come first serve basis with the exception of emergency patients
and prebooked time. After a patient arrives in the system based on an arrival rate, the scheduling
operation searches for an available appointment slot {red patch or appropriate prebooked time) by
moving the patient down its current column patch by patch. If a patch is booked (not red or the
appropriate prebooked time colour) the patient moves on to the next patch {the one directly below it).
This continues until one of two things happens; if the patient comes to the end of scheduled time for a
day it is moved to the top of the next column {next day} and it continues its search or alternatively if the
patient finds an available appointment its search stops. Once the patient finds an available appointment
it changes the colour of the free appointment patch to its patient priority class colour (blue patients
make blue patches, brown patients make brown patches etc.). In this way patients are assigned to
appointment slots. When scheduling reaches the end of the planning horizon it resumes at the

beginning. This process is depicted below in Figure 9.

A Y2 TI2eN22TT B
A RRRRREEEREZR
| 0:00-0:15 § B 000-015
| 0:15-0:30 § - 0:15-0:30 |
0:30- 0:45 | 0:30-0:45 |
0:45 - 1:00 | 0:45 - 1:00 |
£ 1:00-1:15 | 1:00 - 1:15 |
1:15-1:30 § - 1:15-1:30 |
1:30-1:45 S 1 1:30- 1:45
1:45 - 2:00 | 1:45 - 2200 {1
2:00 - 2:15 | ' 2.00-2:15
2:15 - 2:30 § - 2:15-2:30 |}
| 2:30- 245 2:30 - 2:45 |
| 2:45-3:00 2:45-3:00 |
3:00 - 3:15 | 3:00-3:15 |
$3:15-3:30 | | 315-3:30 |
| 3:30- 345 | 3:30-3:45
2345 200 |l 3:45 - 4:00
| 4:00 - 4:15 4:00 - 4:15

Figure 9 - Scheduling Process: Single Server

23



000015

200-215 |

C

1:30- 1:45
1:45-.2:00

2:15-2.3

Example: Pictured above and adjacent is
an example of patient scheduling for a
single server. Section A shows the route
the patient will take in search of an
appointment (I then Il then 111). Section B
shows us that it is a class 4 patient, as
indicated by the brown triangle. Section
C shows us the final resulit of the search
and the subsequent appointment.

Figure 9 Continued - Scheduling Process: Single Server

Scheduling of patients occurs in much the same way for multiple servers as it does for a single server.

The primary difference is that the scheduling operation attempts to schedule patients on each server at

the earliest possible time before moving on to a later time. Figure 10 depicts scheduling in a multi-server

scenario.

Day 1

0:00 - 0:15 |
0:15 - 0:30
0:30 - 0:45 | S0
0:45 - 1:00 &4

1:00 - 1:15
1:15-1:30
1:30 - 1:45
1:45 - 2:00
2:00 - 2:15
2:15-2:30 |
2:30 - 2:45 |
245 - 3:00
3:00 - 3:15
3:16-3:30
3:30 - 3:45 a
3:45 - 4:00

Example: Pictured adjacent is an example of
patient scheduling in a multi-server scenario.
In this case there are 3 servers and the
planning horizon is 4 days long. The
scheduling operation begins searching for an
available appointment slot at the beginning
of day 2 on the first server (furthest to the
left in the horizon). This appointment is
booked so the

considering the availability of the 2" server

search continues by
during that same period. The 2" server is
also unavailable so the search continues
with the 3™ server. Because this server is
also unavailable and there are no more
servers the search begins again in the next
time period {0:15 — 0:30) with the 1% server.
The search continues in this way until an
available appointment is found.

Figure 10 - Scheduling Process: Multi-Server

24



Class 1 patients require immediate attention; they pre-empt cther patients, bumping them from
their currently scheduled slot to the subsequent appointment slot. Bumping is the only action that takes
rprecedence over prebooked time and the only action that can result in overtime for the hospital staff.
The bumping process can be seen below in Figure 11. After the bump, all patients are moved forward in
the same day. So, while the patient waits more time for service while in the clinic, it does not affect wait

time as defined.

- oo
-
G ©©
O a o

500 ¢ 0:00-015
0:15-0:30 - 0:156-0:30

| 0:30- 0:45 "030-045
| 0:45-1:00

1:30-1:.45
1:45 - 2.00

2:00- 215
2:15-2:30

230245 |
. 2:45-3:00 |
- 3:00-3:15 ]
©3:15-3:30 |
- 3:30 - 3:45

3:45 - 4:00

| 4:00- 415

| 3:15-3:30
3:30-3:45

3:45-4:00
4:00-4:15

Figure 11 - Bumping: Before and After

The simulator works by scheduling patients in future appointment slots relative to a constantly
updated ‘current time’. Because the simulator uses a static number of days in its planning horizon it is
necessary to reuse days (columns) to prevent the horizon from becoming full. Once scheduling reaches
the end of the horizon (the far right column) it continues at the beginning of the horizon (the far left

column).

Beginning from the first appointment slot on the first day of the horizon the current time
‘updater’ moves from appointment slot to subsequent appointment slot on each tick of the system.
When the updater moves to an appointment it clears the patch of any previous appointments, returning
the patch to its original (unscheduled) colour (red, black, or grey). In this way appointment slots are
cleared for future appointments allowing for a stable queue of scheduled appointments to be simulated
indefinitely. Additionally, the updater is used in the scheduling process to determine where the
scheduling operation should begin its search for appointments. For example, patients are never
scheduled on the day that they request an appointment (except emergencies), so the earliest a patient

can be scheduled is the current day (as determined by the updater) plus one.

25



3.4 User Interface

3.4.1 Setup & Go

These controls update the main display area with the currently inputted prebooked times and initiate
the simulation. Setup also clears the graphical outputs of the model as well as the average wait times

and percentage of patients who exceed guidelines.

3.4.2 Data Recording
NetLogo™ allows the user to export data from simulations to external files. The ABMT has been

configured to export the patient class and wait time data for each patient that is scheduled to a
Microsoft Excel file. The GUI controls allow the user to choose whether or not they wish to record data,

delete existing data or close the file the data is being recorded to.

3.4.3 Random Fill
The ABMT was designed to assist hospital decision makers in assessing changes to scheduling in

diagnostic imaging systems. In order to accurately capture the current state of an existing system it is
necessary to also simulate the existing queue of patients. The random fill functionality fills the planning
horizon with class 4 patients up to a specified number of days. For example, if the user wished to model
a system that at present has a 4 week wait time they would select a random fill of 28 days so that

scheduling of patients would begin on the 29" day.

3.4.4 Simulation Run Time
The ‘Days_to_run’ input controls the duration of the simulation. The user enters the number of

simulated days they wish the model to run for and the ABMT halts operation after that number of

simulated days have passed.

3.4.5 Number of Servers
This control allows the user to select the number of servers that will be used in the system.

3.4.6 Scheduled Hours per Day
This input determines the division between available appointments during operating hours (red patches)

and available appoints during non-operating hours (black patches).

3.4.7 Information Display
The simulator’s graphical user interface has been designed to give the user as much relevant data as

possible regarding the progress of a simulated model. At present there are several output figures,

graphics and charts to help the user make an initial analysis of the model being simulated.

26



Model behaviour can be seen in the main display window where scheduling takes place; this display
window offers insight into how patients are interacting with the schedule and the nature of the

appointment usage; the planning horizon is displayed here.

Adjacent to the main display window are plots of patient wait times broken down by priority class. The
plots operate by recording the time between arrival and services for each patient that enters the
system. Additionally, in order to keep the plots chronologically synchronous they are updated on every

system tick regardless of whether or not a patient of the type they are tracking is created.

The simulator also displays the percentage of patients who have exceeded their recommended wait
time by class. This number is updated on every patient arrival. Additionally, the simulator tracks and

displays the average wait for each patient type.

Figure 12 shows the ABMT’s main display, the average wait time for each class, the percentage

of each class that exceeds their wait time targets as well as the output plot windows for class 2, 3 and 4

patients.
Class 2 - % Qver Class 3 - % Over Class 4- 9% Over 4 e 15 Minute Intervals: 0 2p
Wf& Nia NA ]
Class 2 - Avg. Wait Class 3 - Aug. Wait  §] Class 4 - Avg. Wait
Ni& Nf& i NiA

Wait Time for Class 2 Patients

4
b=
2
o
=
>
b
il
o
0

0 Time 90

Wait Time for Class 3 Patients

20
-
2
o)
=
2.
m
a
o

ju] Time 90

Wait Time for Class 4 Patients

56
el
]
n
3
n
>
n
a
.o

o

Time 90

Figure 12 - Information Display

27




Configuring the ABMT to model a specific case is a relatively simple process but it does require the
user to have pertinent historical data in order to establish a basis for comparison. In order for the ABMT
to give the most accurate results the user should have access to or an approximation of the following

data:

- The current number of days a patient served strictly on a FCFC basis can expect to wait (In most
Canadian hospitals this information is available online)

- The number of servers the system uses

- The number of hours the system is operation per day

- The arrival rate of each class of patients

- Which times are prebooked and what classes they are prebooked for

With this data available the user is able to establish a model of the current system so that the effects of

changes to the system can be gauged by comparison.

28



4. Case Study: Hotel Dieu Grace Hospital

To test the applicability of the ABMT and to assess its accuracy, historical data was used to
model a recent change in the diagnostic imaging department of HDGH. In November 2007 an additional
CT scanner was added to HDGH’s diagnostic imaging department, bringing the total to two. The
diagnostic imaging department provided access to historical scheduling data for the CT scanners as well
as information regarding the scheduling process. For the ABMT to have successfully modelled the effects

of the change it needed to predict the change in wait time trends for CT scans.

4.1 Scheduling Process

Scheduling of CT scans is the responsibility of a single CT booking clerk. The clerk receives
requests for scans via telephone and fax throughout the day from both physicians’ offices and patients
themselves. The clerk takes the requests and books an appointment in the schedule. The clerk is also

responsible for the confirmation of appointments as the scheduled scan date approaches.

4.2 ABMT Parameters

In order to model the scheduling process of the diagnostic imaging department at HDGH several key

parameters needed to be determined. These parameters were:

e Arrival Rate of Class 1 Patients
e Arrival Rate of Class 2 Patients
e Arrival Rate of Class 3 Patients
e Arrival Rate of Class 4 Patients
¢ Operating hours

e # of operational scanners

e Prebooked periods

4.2.1 Arrival Rates
ideally arrival rates and patterns (for requests for appointments) would be determined by fitting
the number of arrivals per day and their arrival times to a mathematical distribution. Unfortunately
HDGH does not record at what time during the day a request for service is made. They do however
record how many requests were made per day. The assumption was made that the patient arrivals
are governed by an exponential distribution, (Winston, 2004) cites (Devardo, 2003) in support of this
decision, and a mean interarrival time value was calculated using the daily arrival totals. Values for

each class can be seen in the next chapter.

29



4.2.2 Operating Hours & Number of Scanners
The CT scan unit at HDGH is operational for 13.25 hours per day with the exception of weekends

during which it is only available for emergencies and inpatients in need of urgent scans. HDGH has 2

CT scanners, one having been added to the facility only a year ago.

4.2.3 Prebooked Periods
HDGH prebooks a significant number of appointment slots for class 2 priority patients. Of the 67

appointments available per day across both CT scanners, 13 are prebooked for class 2 patients; this
represents nearly 20% of the total number of scans performed during a regular day. The class 2
patients that use these prebooked periods are typically inpatients but can also be lower acuity

patients from the emergency room.

4.3 Acquired Data

Data was provided from HDGH’s database of scheduling records. In years past data was only
retained for 6 months after which point it was deleted. However, as a result of an increased interest in
tracking performance, data has been retained from as far back as April 2007. The records used in this
study were collected during the period of April 2007 to May 2009 by HDGH. It should be noted that data
entry in the diagnostic imaging department of HDGH is a manual process. As such it is only as accurate
as the person responsible for its entry. This is a limitation of the current data collection policy and

procedure at the hospital.

The data that was used consisted of 17,689 medical records. Each record contained the following

pertinent patient data:

- Medical Record Number

- Date that the request for service was made (scheduled)

- Date that the scan was performed

- The priority class of the patient
The wait / access time for each record was calculated by subtracting the date on which the appointment
was scheduled from the date on which the scan was performed. Of the total data collected

approximately 5% was unusable due to record keeping errors (failure to enter date of scheduling

request) or difficulty in calculation (Microsoft Excel has difficulty accounting for leap years).

Figures 13 & 14 depict the arrival rate of requests and the average wait time for patients on a month by

month, class by class basis.

30



Comparison of Service Requests by Month and
Class
1000

vy
et
7]
o 800 A, .
=) /\m\/\
[~
&£ 600 =—==Class 1
‘.6 N
E 400 — Class 2
g 200 Class 3
0 == — = Class 4
I~ M~ I~ ~ ™~ o8} [e.0] [o.0] [o.0] [2.0] o] (o3} [*2]
@ e @ Q@ @ 9@ @ Q@ 39 Q 9 Q
= [y [=T] - o L0 1~ c [T B, =1 1= Ko =
2 2208 ¢ &322 2084828 2
Figure 13 - Comparison of Service Request by Month and Class
Comparison of Wait Times by Month and Class
. 45
wn
> 40 N
a 35 V\\
¥ 30 __/Q\ y P
E o AN Y e=——Class 1
[
2 20 7 AY :
R e Vi P, N e clas
& 10 : NS Class 3
g S Ca— SN, ===Class4
g O
P~ ~ r~ N~ M~ o] o0 20} 00 0 [°2] (22} [#2)
@ Qe Q@ @ @ @ <@ @ @ @ I 9
= [ [=T4] - (8] 0 - c Bo P =) o) —
2 32 8¢ & 322038 ¢ &

Figure 14 - Comparison of Wait Times by Month and Class

Figure 15 provides another comparison of the differences in volume between the patient classes.

Requests for Service by Class
from April 07 - May 09

904, 5%
27 1662, 9%
0 D Class 1
Class 2
10892, 62% ' 4231, 24% 0 Class 3
Class 4

Figure 15 - Requests for Service by Class - April 07 to May 09



5. Verification and Validation

The verification and validation process has been described as one of the most important and
difficult tasks in modelling (Banks et al, 2005). This chapter will describe the verification and validation

process for the ABMT using data from HDGH.

Verification is described as building the model correctly, while validation ensures that the
correct model is built. Verification asks: Is the model implemented correctly in the simulation software?
And are the input parameters and logical structure of the model represented correctly? (Banks et al,
2005) In the case of the ABMT verification was achieved through modular development. Each of the
ABMT's functionalities were created in different modules or sub segments of code; essentially each of
the functions operate independently. This allowed for each function to be tested individually verifying
that it was in fact behaving in the manner that the programmer intended. To ensure robustness each
function was tested to its extremes; maximum and minimum arrival rates, extensive prebooked times
etc. Additionally, the ABMT was constructed iteratively by a single programmer; this ensured that new

work on the model was always based on previous work that had been verified to be correct.

Validation, according to Banks et al, attempts to confirm that a model is an accurate
representation of a real system. This is accomplished in two ways; through consultation with those
knowledgeable about the system being modelled and also through comparison of simulated and
historical data. The ABMT was validated with the assistance of the CT scheduling clerk and historical
data provided from HDGH. Ideally, the ABMT would be verified and validated using data from several

different hospitals; unfortunately data was only available to the researchers from HDGH.

5.1 Simulation Parameters

In order to test the ABMT's ability to detect changing trends in the wait time it was configured
to model a shift from a single server scenario to a dual server scenario. HDGH added a second CT
scanner to their operation in November 2008, prior to that they had accumulated approximately 6

weeks of backlogged appointments.

To model this scenario a random fill value of 42 was used to fill the first 6 weeks of the schedule
with booked appointments. Consultation with the CT scheduling clerk provided the information

necessary to build a schedule that incorporated the prebooked time used at HDGH, see Figure 16 below.

32



15 Minute Intervals: 0

I N
ol SR
g'z/ %8 8 8

Figure 16 - HDGH Prebooked Schedule

The following parameters were used in the HDGH model and were derived from historical data and

discussion with HDGH personnel:

Class 1 Patient Interarrival Time: mean of 1440 min
Class 2 Patient Interarrival Time: mean of 480 min
Class 3 Patient Interarrival Time: mean of 240 min
Class 4 Patient interarrival Time: mean of 84 min
Scheduled Hours per Day: 13.25

Number of Servers: 2

As previously mentioned, exponential distributions were used to model the arrival rates. This was
necessary because HDGH does not record the time at which a request for service is made; they only

record the day that the request was made. The above means were used as the exponential parameters.

The ABMT was used to simulate 17 months of scheduling beginning at the point when the
second CT scanner was added at HDGH to a point in the future when the system had reached a steady
state. This point was determined by observing the output plots in the GUI. The simulation was run 25
times with nearly identical results each time. Each run took approximately 50 minutes. Figures 17-19

depict standard results for each of the patient classes from the simulation runs.

33



Simulated Wait Times for Class 4 Patients
Nov 2007 - Mar 2009

40
35
30 \
w 25
& 20
@ 15
10
5
0
$° & F & P W @7’* SR K & e° & & @"’
Figure 17 - Simulated Wait Times for Class 4 Patients
Simulated Wait Times for Class 3 Patients
Nov 2007 - Mar 2009
40
35
30
w 25
& 20
0 15
10
5
0
6\ ,6\ Q% Q‘b 9% Q"a ’Q‘b Q‘b \’Q‘b ,Q"b QQ’ Q‘b Q°o Q‘b 0‘-) 0‘9 ‘Q%
$° & & & é‘ & @'5\ RN o% & & S & & & K
Figure 18 - Simulated Wait Times for Class 3 Patients
Simulated Wait Times for Class 2 Patients
Nov 2007 - Mar 2009
1.2
1
w 0.8 —/\
8 04
0.2
0
§\ ,6\ p‘b 0% Q‘b Q‘b D‘b Q‘b "b Q‘b Q‘b Q‘b 9% ,ch 9‘3 % (Q")
eO o@ \’b <<?; é‘ V‘Q @@* \0(\ \0 0% r_)QQ Oc‘ eo QQ/ \’bo <(Qz @'b

Figure 19 - Simulated Wait Times for Class 2 Patients

34



5.2 Discussion of Simulated vs. Historical Data

HDGH was a case study that served to highlight both the ABMT’s strengths and weaknessés. The
data that was availabie to validate the ABMT represented a time period during which the system
transitioned from a one CT scanner unit to a two CT scanner unit, effectively doubling its capacity. This
would appear to be an ideal situation in which to test the ability of the ABMT to predict the effect of the
change on the scheduled patient queue. The ABMT was able to predict the decline in wait times
however, it did not accurately predict the rate at which wait times would decrease. The reason for the
discrepancy was unclear until the CT booking clerk at HDGH was consulted. She brought to light what
was clear from the arrival data; that the number of requests for scans, especially amongst low priority
patients, had increased dramatically after the addition of the second CT scanner. Her reasoning was that
as physicians became aware that the wait time for a scan had decreased significantly they began to
order scans for patients they may not have historically order them for. Additionally, it was the
scheduler’s suspicion that physicians were now also diverting patients from other area hospitals due to
shorter wait times at HDGH and superior service. Finally, inpatients from other area hospitals were

being transferred to HDGH to undergo scans and then being returned to their originating hospital.

This trend can clearly be seen when comparing the arrival rate of class 4 patients over time as the wait
time for those patients decreased. Figure 20 shows the decreasing wait times for class 4 patients, while

figure 21 shows the substantial increase in requests for scans for class 4 patients.

Days Waited

Average Wait Time for Requests for Scans for Class 4
Class 4 Patients Patients
50 1000
2
b
40 ué_800 //%
30 a8 2 600 /
20 = S 400 A
L
a /
10 gzoo A\j\//
0 Z 0
N I I 00 00 0 00 0 0 O O O N IS IS I 00 0 0 &0 00 0 & Oy O
222 LR P22 LLQQeRRQ
> = Qo 2 Cco - > T Qo o2 oo = > 5 Qa 2oCc sEo>TS Q9 2og =
$522=238382=22%8 $382823°828:22

Figure 20 - Average Wait Time for Class 4 Patients

Figure 21 - Requests for Scans for Class 4 Patients

35




6. Discussion

The ABMT succeeded in achieving its primary objectives which were to provide hospital decision
makers with insight into the effects that operational level changes would have to their systems via a
graphical user interface. The ABMT was able to predict the new trend of decreasing wait times for
patients at HDGH; information that would have been valuable to decision makers prior to the addition of
the second server. The ABMT was not able however to accurately predict that rate at which wait times
would decrease. While this may represent a weakness of the ABMT it does’ not represent a failure. The
ABMT was designed to simulate the impact of changes to the system, not to the system’s environment.
It was not within the scope of the design to model the impact changes might have on the local network
of CT scanners and their queues nor the psychological impact reduced wait times would have on the
tendency of physicians to order CT scans. A potential extension of the ABMT may be to allow the user to

dynamically increase or decrease the arrival rates based on the current wait times.

The ABMT usefulness lies in its ability to explore ‘what-if’ scenarios and provide insight into how
changes might affect the wait time of patients. Questions one might consider using the ABMT to explore

include:

- How will increasing or decreasing the number of servers impact the wait time for patients?

- How will extending or decreasing the number of operational hours per day impact the wait time
of patients?

- What will be the impact on the schedule of increasing or decreasing the available prebooked
times for each patient class?

- At what volume of patients will wait times begin to rise to unreasonable levels?

- Where should funds be invested to have the greatest impact on wait time? Increasing operating
hours or adding servers?

- What impact will increasing the number of prebooked appointments for class W have on the
wait times for classes X, Y and Z?

Essentially the number of scenarios that the ABMT can explore is limitless however it is- most useful in

the hands of a system expert who can use it to explore those scenarios that could potentially be of the

most benefit to patients.

The decision to use simulation in the creation of the decision support tool appears to have been
an acceptable choice. The user friendliness and customizability of the user interface and the simulation
parameters proved invaluable in the presentation of the ABMT to hospital decision makers and helped

to garner support for the project. The value of using agent-based modelling to create the decision

36



support tool is debatable. NetLogo’s™ two dimensional main display, which was used to show the
schedule in the ABMT, was both a help and a hindrance. The main display was useful in that it provided
users with real time insight into how the schedule was developing but using it to accurately describe a
date, time and server proved unwieldy. Controlling the positioning of agents as they searched each
column for available appointment slots was cumbersome as even slight variation in heading would
result in agents assuming illogical appointment slots. Finally, the dynamic nature of the planning
horizon made all positioning of agents and patches relative to the current date; keeping track of the
current date and updating available appointment slots and prebooked time proved computationally
intensive resulting in increasing slowdowns as the current time approached the end of the horizon. As a
scheduling simulation tool NetlLogo™ proved to be acceptable however the interaction between agents
and agents and their environment, the core of agent-based modelling, were not used to their full

potential by this application.

37



7. Conclusions and Future Work

This thesis resulted in the creation of an agent-based simulation tool with an easy to understand
graphical user interface (GUI) that will allow hospital decision makers to assess the impact of potential
operational level changes to the diagnostic imaging department on the department’s schedule of
patients. Additionally, this thesis served to expand the knowledge of the agent-based modelling in

outpatient scheduling field.

The ABMT proved capable of detecting trends in patient wait times in a case study of HDGH’s CT
scanning unit and in the future could be used by the hospital to study its other diagnostic imaging
services. While accomplishing its objective of providing hospital decision makers with a tool to assess
the impact of internal changes the ABMT could be expanded, as a future endeavour, to consider the
effect the changes might have on other diagnostic imaging providers in the local area. A tool modelling a
network of diagnostic imaging centres in a given Local Health Integration Network (LHIN) may prove
invaluable to decision makers responsible for the administration of services to hundreds of thousands of

patients each year.

The ABMT has already been used to determine the point at which HDGH can expect wait times
to begin increasing given the current trend in class 4 patient volume. The exploration of this question
required minimal effort because of the flexibility of the ABMT; evaluating the effects of different patient
volumes required only slight modification of the arrival rate of class 4 patients. In the future (if data
becomes available from other area hospitals) it would be a worth while investigation to examine
whether or not the addition of a second CT scanner at HDGH significantly impacted the wait times at
other area hospitals. This would be a relatively simple task using the ABMT; one would only need to
configure the ABMT to model another area hospital (approx. 15 minutes of setup) using data collected
before the addition of the second CT scanner at HDGH. A difference between the simulated and
historical data at hospitals not undergoing major changes to their diagnostic imaging departments could
be in part attributed to the changes at HDGH. This information would be useful in determining the

impact of adding a CT scanner to the LHIN as a whole.

The ABMT is a ncvel application of agent-based modelling to outpatient scheduling. The
development of the ABMT served to highlight some of the challenges of using a tool designed for
dynamic, evolutionary behaviour in an environment based on the precise coordination of thousands of
individuals. While outpatient scheduling may not have taken full advantage of the ability of agents to

interact with one another, a model of a schedule developed by patients (as opposed to one organized by

38



a single human clerk) may prove useful in understanding the preferences of patients and assist in the

allocation of resources to better serve them.

The ABMT has already generated interest from researchers in fields outside of diagnostic
imaging. Researchers in the field of radiation therapy have expressed interest in the ABMT has a
potential scheduling modelling tool as radiation therapy and diagnostic imaging services share many

similar scheduling traits.

Working with healthcare professionals to develop the ABMT provided unique insight into the
complex nature of healthcare systems. The shift in patient arrival rates as explained by the CT
scheduling clerk brought to light the reality that healthcare is unlike any other industry and that the
application of industrial engineering techniques here will require an understanding of the healthcare
system as a whole, not just isolated elements. To that end this thesis will be used as a basis for>a peer-
reviewed journa!l article so that the knowledge gained here can be shared with other industrial
engineering practitioners in healthcare to help to develop the whole system knowledge required to

make a meaningful impact in the lives of healthcare professionais and patients.

32



Bibliography

Aktas, E., Ulengin, F., & Sahin, S. (2007). A decision support system to improve the efficiency of resource
allocation in healthcare management. Socio-Economic Planning Sciences , 41, 130-146.

Axelrod, R. (2005). AGENT-BASED MODELING AS A BRIDGE BETWEEN DISCIPLINES. In R. Axelrod, K. Judd,
& L. Tesfatsion (Eds.), Handbook of Computational Economics,Vol. 2: Agent-Based Computational
Economics.

Bailey, N. (1952). A study of queues and appointment systems in hospital outpatient departments, with
special reference to waiting times. J Roy Stat Soc, A15, 185-199.

Banks et al. (2005). Discrete-Event System Simulation (4th ed.). Prentice Hall.

Blake, J., Carter, M., & Richardson, S. (1996). AN ANALYSIS OF EMERGENCY ROOM WAIT TIME ISSUES
VIA COMPUTER SIMULATION. INFOR, 34 (4), 263-273.

Blanco White, M., & Pike, M. Appointment systems in Out-patients' Clinics and the Effect of Patients'
Unpunctuality. Medical Care, 2 (3), 133-145.

Borshchev, A., & Filippov, A. (2004). From System Dynamics and Discrete Event to Practical Agent Based
Modelling: Reasons, Techniques, Tools. 22nd International Conference of the System Dynamics Society.
Keble College, Oxford.

Butler, T., Karwan, K., & Sweigart, J. (1992). Multi-Level Strategic Evaluation of Hospital Plans and
Decisions. The Journal of the Operational Research Society , 43 (7), 665-675.

Canadian Institue for Health Services. (2007). National Survey of Selected Medical imaging Equipment.
Canadian Institute for Health Information. (2008). Health Care in Canada 2008. Ottawa, Ont.: CIHI.
Canadian Institute for Health Information. (2007). Medical Imaging in Canada. Ottawa, Ont: CIHI.

Canadian Institute for Health Information. (2004). National Survey of Selected Medical Imaging
Equipment.

Canadian Institute for Health Services. (2007). National Survey of Selected Medical Imaging Equipment.

Cayirli, T., & Veral, E. (2003). Outpatient scheduling in health care: a review of literature. Production and
Operations Management Scciety , 12 (4), 519-549.

Cayirli, T., Veral, E., & Rosen, H. (2004). Assessment of patient classification in appointment systems. 1st
Conference of the POMS College of Service Operations. New York, NY, USA.

Cayirli, T., Veral, E., & Rosen, H. (2006). Designing appointment scheduling systems for ambulatory care
services. Health Care Management Science , 9 (1), 47-58.

40



Chen, R., & Robinson, L. (2005). Scheduling doctor's appointments with unpunctual patient arrivals.
Davis Graduate School of Management, University of California, USA.: Working paper,.

Clague, J., Reed, P., Barlow, J., Rada, R., Clarke, M., & Edwards, R. (1997). Improving outpatient clinic
efficiency using computer simulation. International Journal of Health Care Quality Assurance, 10 (5),
197-201.

Coyle, R. G. (1996). System dynamics modelling: a practical approach. CRC Press.

Denton, B., & Gupta, D. (2003). A Sequential Bounding Approach for Optimal Appointment Scheduling.
IIE Transactions , 35 (11), 1003-1016.

Devardo, E. (2003). Dynamic Programming: Models and Applications. Prentice Hall.

Dumas, M. (1985). Hospital bed utilization: an implemented simulation approach to adjusting and
maintaining appropriate levels. Health Services Research , 20 (1), 43-61.

Everett, J. (2002). A Decision Support Simulation Model for the Management of an Elective Surgery
Waiting Model. Health Care Management Science , 5, 89-95.

Fetter, R., & Thompson, J. (1966). Patients’ waiting time and doctors' idle time in the outpatient setting.
Health Services Research, 1 (1), 66-90.

Fries, B., & Marathe, B. (1981). Determination of optimal variable-sized muitiple-block appointment
systems. Operations Research , 29 (2), 324-345.

Garcia et al. (1995). REDUCING TIME IN AN EMERGENCY ROOM VIA A FAST-TRACK. Proceedings of 1995
Winter Simulation Conference, (pp. 1048-1053).

Harper, P., & Gamlin, H. (2003). Reduced outpatient waiting times with improved
appointmentscheduling: a simulation modelling approach. OR Spectrum , 5 (2), 207-222.

Ho, C., Lau, H., & Lj, J. (1995). Introducing variable-interval appointment scheduling rules in service
systems. International Journal of Production & Operations Management, 15 (6), 59-68.

http://www.health.gov.on.ca. (n.d.). Ontario Wait Times Strategy: Introduction. Retrieved April 29,
2009, from http://www.health.gov.on.ca/transformation/wait_times/public/wt_public_mn.htm|

Hutzschenreuter, A. (2004). Waiting Patiently: An analysis of the performance aspects of outpatient
scheduling in health care institutes. Vrije Universiteit, Amsterdam, The Netherlands.

Jun, 1., Jacobson, S., & Swisher, J. (1999). Application of discrete-event simulation in healthcare clinics: A
survey. Journal of the Operational Research Society , 50 (2), 109-123.

Kaandorp, G., & Koole, G. (2007). Optimal outpatient appointment scheduling. Heaith Care
Management Science , 10 (3), 217-229.

41


http://www.health.gov.on.ca
http://www.health.gov.on.ca/transformation/wait_times/public/wt_public_mn.html

Kendall, D. (1951). Some Problems in the Theory of Queues. Journal of the Royal Statistical Society , 151-
185.

Klassen, K., & Rohleder, T. {2004). Outpatient appointment scheduling with urgent clients in a dynamic,
multi-period environment. International Journal of Service Industry Management, 15 (2), 167-186.

Klassen, K., & Rohleder, T. (1996). Scheduling outpatient appointments in a dynamic environment.
Journal of Operations Management , 14 (2), 83-101.

Lehaney, B., Clarke, S., & Paul, R. (1999). A case of intervention in an outpatient department. Journal of
the Operational Research Society, 50 (9), 877-891.

Liu, L., & Liu, X. (1998). Block appointment systems for outpatient clinics with multiple doctors. Journal
of the Operational Research Society , 49, 1254-1259.

Lowery, J. (1992). Simulation of a hospital's surgical suite and critical care area. Proceedings of the 24th
conference on Winter simulation, (pp. 1071-1078).

Macal, C. M., & North, M. J. (2007). AGENT-BASED MODELING AND SIMULATION: DESKTOP ABMS.
Proceedings of the 2007 Winter Simulation Conference, {(pp. 95-106).

McClean, S., & Millard, P. (1995). A decision support system for bed-occupancy management and
planning hospitals. Journal of Mathematics Applied in Medicine & Biology , 12, 249-257.

McGuire, F. {1994). USING SIMULATION TO REDUCE LENGTH OF STAY IN EMERGENCY DEPARTMENTS.
Proceedings of the 1994 Winter Simulation Conference, (pp. 861-867).

Ministry of Health. (2005). Canada's Healthcare System. HC Pub.: 5912.

NetLogo Website. (n.d.). NetLogo Manual: What is NetLogo. Retrieved 06 01, 2009, from NetLogo Home
Page: http://ccl.northwestern.edu/netlogo/docs/

Robinson, L., & Chen, R. (2003). Scheduling doctors’ appointments: optimal and empirically-based
heuristic policies. IIE Transactions , 35, 298-307.

Rohleder, T., & Klassen, K. (2000). Using client-variance information to improve dynamic appointment
scheduling performance. Omega, 28 (3), 293-302.

Schriber, T., & Brunner, D. (1997). INSIDE DISCRETE-EVENT SIMULATION SOFTWARE: HOW IT WORKS
AND WHY. In S. Andraddttir, K. J. Healy, D. H. Withers, & B. L. Nelson (Ed.), Proceedings of the 1997
Winter Simulation Conference.

Shannon, R. {1992). Introduction to Simulation. In D. G. J. ). Swain (Ed.), Proceedings of the 1992 Winter
Simulation Conference (pp. 65-73). ACM New York, NY, USA.

42


http://ccl.northwestern.edu/netlogo/docs/

Smith, S., Schroer, B., & Shannon, R. (1979). Scheduling of patients and resources for ambulatory
healthcare. Proceedings of the 11th conference on Winter simulatio. 2, pp. 553-561. IEEE Press
Piscataway, NJ, USA.

Teweldemedhin, E., Marwala, T., & Mueller, C. (2004). Agent-based Modelling: A Case Study in HIV
Epidemic. Fourth international Conference on Hybrid Intelligent Systems , {pp. 154-159).

Triola, M., & Holzman, R. (2003). Agent-Based Simulation of Nosocomial Transmission in the Medical
Intensive Care Unit. Computer-Based Medical Systems, Proceedings. 16th IEEE Symposium, {(pp. 284-
288).

Turcotte, M., & Schellenberg, G. (2006). A Portrait of Seniors in Canada. Ottawa: Statistics Canada.

Vanden Bosch, P., Dietz, D., & Simeoni, J. (1999). Scheduling Customer Arrivals to a Stochastic Service
System. Naval Research Logistics , 46, 549-559.

Vissers, J., & Wijngaard, J. (1979). The outpatient appointment system: design of a simulation study.
European Journal of Operations Research, 3 (6), 459-463.

Welch, J., & Bailey, N. (1952). Appointment systems in Hospital Outpatient Departments. The Lancet,
259,1105-1108.

Westeneng, J. {2007). Outpatient appointment scheduling: An evaluation of alternative appointment
systems to reduce waiting times and underutilization in an ENT outpatient clinic. University of Twente,
Industrial Engineering and Management, Enschede, The Netherlands.

Winston, W. L. (2004). Operations Research: Applications and Algorithms. Thomson.

43



Appendix I: NetLogo™ Code for ABMT

FRPIPPRPIIIRLIIITI2 PPN FFRRIII IR PRI 2O R IR IDI IR NIRRT FRIZIILIIDI 2020000 0 F 0000000002000 0000020225020 0022022200020)

globals [n countl count2 count3 count4 countlover count2over count3over count4over class2total
class3total class4total MSD G F B

bump_counter_1 bump_counter_2 bump_counter_3 Arrival_Rate_Counter_1 Arrival_Rate_Counter_2

Arrival_Rate_Counter_3 Arrival_Rate_Counter_4

Normal_Holder_1 Exponential_Holder_1 Poisson_Holder_1 Normal_Holder_2 Exponential_Holder_2
Poisson_Holder_2 Normal_Hgclder_3 Exponential_Holder_3 Poisson_Holder_3

Normal_Holder_4 Exponential_Holder_4 Poisson_Holder_4 tick_counter]

;; Globals are variables passed throughout the program
breed [class-1-patients patient-1] ;;;green

breed [class-2-patients patient-2] ;;;blue

breed [class-3-patients patient-3] ;;;yellow

breed [class-4-patients patient-4] ;;;brown

breed [updaters update-1] ;;;cyan

;; Breeds used to call patients by group

FRPRPIPRIZIZEIIIZDIIIR20 20000 0 00 800022000000 20000000000 0 80 000 800 0 000000 800000022 00 0800821800220 20200020008008030002010400022)

2522232100002 __SETUP—- BIFIPIISPPPINRRFIIIIRIIIIIIIRIRIANII SRR ISR IITRFINRDDDIR 2000000200000 00000022 0222222222000 02220027010)

FRIRDIIIIFIIIRIIRIIIRILIIIRIIIRPIL PR RRGITIIIINPRII LI IR RLLFIIL 2RI DRI IR EFIIIFIIINIIII IR RRRTIIINLSIIIIIIIIIIIIERIIINLYY

;; Setup clears all data from previous runs and initializes all variables.
to setup

clear-all

setup-patches

create-time-updater

setcountl 0

setcount2 0

set count3 0

set count4 0

set countlover 0

set count2over 0

set count3over 0

set count4over 0

set class2total O

set class3total O

set class4total O

setBO

set Arrival_Rate_Counter_10
set Arrival_Rate_Counter 20
set Arrival_Rate_Counter 3 0
set Arrival_Rate_Counter_4 0

44



if Record [file-open "output_data.xls"]
carefully [file-print date-and-time]
[print "Please close output file"]

if Daily_Prebooked ;; Checks to see if the Dain_Prébooked switch is on and blocks off time accordingly.
[ask patches '
{ if pycor <= Daily_Prebook_Start * -4 and pycor >= Daily_Prebook_End * -4 [ set pcolor grey ] ]

]

if Weekly_Prebooked ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setn O

while [n <= max-pxcor]

[

ifelse repeat_daily_1

[
if pycor <= Weekly_Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4

and pxcor = Servers_Booked_1+n-1
[if Weekly _Prebooked_1_Class = "None" [set pcolor grey]
if Weekly_Prebooked_1_Class = "Class 2" {set pcolor 107]
if Weekly_Prebooked 1 Class = "Class 3" [set pcolor 47]
if Weekly Prebooked 1_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4

and pxcor = (n + Servers_booked_1 - 1+ (Day_of_the_week - 1) * (number_of_servers))
[if Weekly_Prebooked 1 Class = "None" [set pcolor grey]
if Weekly _Prebooked 1_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_1 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 1 Class = "Class 4" [set pcolor 37] ]
set n n+number_of_servers * 7
| ,
]
]
]

if Weekly_Prebooked_2 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches 5 Thisyloops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setnO

45



while [n <= max-pxcor]

[

ifelse repeat_daily_2

[
if pycor <= Weekly_Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4

and pxcor = Servers_Booked_2+n-1
[if Weekly_Prebooked_2_Class = "None" [set pcolor grey]
if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4

and pxcor = (n + Servers_booked 2 - 1 + (Day_of_the_week_2 - 1) * (number_of_servers) )
[if Weekly Prebooked_2_Class = "None" [set pcolor grey]
if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers *7

]

if Weekly_Prebooked_3 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setn O

while [n <= max-pxcor]

[

ifelse repeat_daily_3

[
if pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4

and pxcor = Servers_Booked_3+n-1
[if Weekly_Prebooked_3_Class = "None" [set pcolor grey]
if Weekly_Prebooked_3_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_3_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

46



[
if pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4

and pxcor = (n + Servers_booked 3 -1 + (Day_of_the_week_3 - 1) * (number_of servers) )
[if Weekly_Prebooked_3_Class = "None" [set pcolor grey]
if Weekly Prebooked_3_Class = "Class 2" [set pcolor 107]
if Weekly Prebooked_3_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7

]
]
]
]

if Weekly_Prebooked_4 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and

if they are on the day of the week in question.
[setnO
while [n <= max-pxcor]

[

ifelse repeat_daily_4

[
if pycor <= Weekly Prebook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4

and pxcor = Servers_Booked_4+n-1
[if Weekly_Prebooked_4_Class = "None" [set pcolor grey]
if Weekly_Prebooked _4_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_4_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_4 Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly Prebook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4

and pxcor = {n + Servers_booked 4 -1 + (Day_of_the_week_4 - 1) * (number_of_servers) )
[if Weekly_Prebooked_4 Class = "None" [set pcolor grey]
if Weekly_Prebooked_4_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 4 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_4_Class = "Class 4" [set pcolor 37] ]
set n n+number_of_servers * 7

47



if Weekly_Prebooked_5 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_5

[
if pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4

and pxcor = Servers_Booked 5+n-1
[if Weekly_Prebooked_5_Class = "None" [set pcolor grey]
if Weekly_Prebooked_5_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_5_Class = "Class 3" [set pcolor 47]
if Weekly Prebooked 5_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of _servers

]

[
if pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4

and pxcor = {n + Servers_booked_5 - 1 + (Day_of_the_week_5 - 1} * (number_of_servers) )
[if Weekly Prebooked_5_Class = "None" [set pcolor grey]
if Weekly_Prebooked_5_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_5_Class = "Class 3" {set pcolor 47]
if Weekly _Prebooked_5_Class = "Class 4" [set pcolor 371 ]
set n n + number_of servers * 7

if Weekly_Prebooked_6 ;; Checks to see if the Weekly Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_6

[
if pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly_Prebock_End_6 * -4

and pxcor = Servers_Booked_6+n-1

48



[if Weekly_Prebooked_6_Class = "None" [set pcolor grey]
if Weekly_Prebooked_6_Class = "Class 2" [set pcolor 107]
'if Weekly_Prebooked_6_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_6_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly_Prebook_End_6 * -4
and pxcor = (n + Servers_booked_6 - 1 + (Day_of_the_week_6 - 1) * {number_of_servers) )
[if Weekly_Prebooked_6_Class = "None" [set pcolor grey]
if Weekly_Prebooked_6_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_6_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_6_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7
]
]
]
]

if Weekly_Prebooked_7 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_7

[
if pycor <= Weekly _Prebook_Start_7 * -4 and pycor >= Weekly_Prebook_End_7 * -4
and pxcor = Servers_Booked_7 +n-1
[if Weekly Prebooked 7_Class = "None" [set pcolor grey]
if Weekly_Prebooked_7 _Class = "Class 2" [set pcolor 107]
if Weekly Prebooked_7_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly Prebook_Start_7 * -4 and pycor >= Weekly Prebook_End_7 * -4
and pxcor = (n + Servers_booked_7 - 1 + (Day_of_the_week_7 - 1} * (number_of_servers) )
[if Weekly_Prebooked_7_Class = "None" [set pcolor grey]
if Weekly_Prebooked_7_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_7_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ]

49



set n n+ number_of_servers * 7
]
]
]
]

if Weekly Prebooked_8 ;; Checks to see if the Weekly Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setn O

while [n <= max-pxcor]

[

ifelse repeat_daily_8

[
if pycor <= Weekly_Prebook_Start_8 * -4 and pycor >= Weekly_Prebook_End_8 * -4
and pxcor = Servers_Booked_8+n-1
[if Weekly _Prebooked 8_Class = "None" [set pcolor grey]
if Weekly_Prebooked &_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_8_Class = "Class 3" [set pcolor 47]
if Weekly _Prebooked_8_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly Prebook_Start_8 * -4 and pycor >= Weekly_Prebook_End_8 * -4

and pxcor = (n + Servers_booked_8 - 1 + (Day_of_the_week_8 - 1) * (number_of_servers} )
[if Weekly_Prebooked_8_Class = "None" [set pcolor grey]
if Weekly_Prebooked_8_Class = "Class 2" [set pcolor 107]
if Weekly _Prebooked 8 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked & Class = "Class 4" [set pcolor 37] ]
set n n+ number_of servers *7
]
]
]
]

if Weekly Prebooked_9 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setn0

while [n <= max-pxcor]

[

50



ifelse repeat_daily_9

[
if pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly_Prebook_End_9 * -4
and pxcor = Servers_Booked 9+n-1
[if Weekly_Prebooked_9_Class = "None" [set pcolor grey]
if Weekly_Prebooked_9_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_9 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_9 Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of _servers

]

[

if pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly_Prebook_End_9 * -4
and pxcor = {n + Servers_booked_9-1 + (Day_of_the_week_9 - 1) * (number_of_servers) )
[if Weekly_Prebocked 9 Class = "None" [set pcolor grey]
if Weekly_Prebooked_9 Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_9 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 9 Class = "Class 4" [set pcolor 37] ]
set n n+ number_of servers * 7
]
]
]
]

if Weekly_Prebooked_10 ;; Checks to see if the Weekly _Prebooked switch is on and blocks off time
accordingly.

{ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setn O

while [n <= max-pxcor]

[

ifelse repeat_daily 10

[
if pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10 * -4
and pxcor = Servers_Booked_10+n-1
[if Weekly_Prebooked_10_Class = "None" [set pcolor grey]
if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_10_Class = "Class 3" [set pcolor 47]
if Weekly Prebooked_10_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[

if pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10 * -4
and pxcor = (n + Servers_booked_10 - 1 + (Day_of_the_week_10 - 1) * (number_of_servers} )

51



[if Weekly_Prebooked_10_Class = "None" [set pcolor grey]
if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_10_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_10_Class = "Class 4" [set pcolor 37] ]
set n n+ number_of_servers * 7

]
]
]
]

if Weekly_Prebooked_11 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO
while [n <= max-pxcor]

[
ifelse repeat_daily_11

[

if pycor <= Weekly_Prebook_Start_11 * -4 and pycor >= Weekly_Prebook_End_11 * -4
and pxcor = Servers_Booked_11+n-1

[if Weekly_Prebooked_11_Class = "None" [set pcolor grey]
if Weekly_Prebooked_11_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_11_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_11_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[

if pycor <= Weekly_Prebook_Start_11 * -4 and pycor >= Weekly_Prebook_End_11 * -4

and pxcor = (n + Servers_booked_11 -1 + (Day_of_the_week_11 - 1} * (number_of_servers) )
[if Weekly_Prebooked_11_Class = "None" [set pcolor grey]

if Weekly_Prebooked_11_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_11_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_11_Class = "Class 4" [set pcolor 371 ]
set n n + number_of servers * 7

]
]
]
]

if Weekly_Prebooked 12 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and

if they are on the day of the week in question.
fsetnO

52



while [n <= max-pxcor]

[
ifelse repeat_daily_12

[
if pycor <= Weekly_Prebook_Start_12 * -4 and pycor >= Weekly_Prebook_End_12 * -4
and pxcor = Servers_Booked_12+n-1
[if Weekly_Prebooked_12_Class = "None" [set pcolor grey]
if Weekly_Prebooked_12_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_12_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_12 * -4 and pycor >= Weekly_Prebook_End_12 * -4

and pxcor = (n + Servers_booked_12 - 1 + (Day_of_the_week_12 - 1) * (number_of_servers) )
[if Weekly Prebooked_12_Class = "None" [set pcolor grey]

if Weekly Prebooked_12_Class = "Class 2" [set pcolor 107]
if Weekly Prebooked_12_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37} ]
set n n + number_of_servers * 7

]
]
]
]

if Weekly_Prebooked_13 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_13

[
if pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly_Prebook_End_13 * -4
and pxcor = Servers_Booked_13+n-1
[if Weekly_Prebooked_13_Class = "None" [set pcolor grey]
if Weekly_Prebooked_13_Class = "Class 2" [set pcolor 107]
if Weekly Prebooked_13_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

53



[

if pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly_Prebook_End_13 * -4

and pxcor = (n + Servers_booked_13 - 1 + (Day_of _the_week_13 - 1) * (number_of_servers) )
[if Weekly_Prebooked_13_Class = "None" [set pcolor grey]

if Weekly_Prebooked_13_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_13_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ]
set n n+ number_of servers *7

]
]
]
]

if Weekly_Prebooked_14 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setn O
while [n <= max-pxcor]

[
ifelse repeat_daily_14

[

if pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4
and pxcor = Servers_Booked_14 +n -1

{if Weekly_Prebooked_14_ Class = "None" [set pcolor grey]
if Weekly_Prebooked_14 Class = "Class 2" [set pcolor 107]
if Weekly_Prebcoked_14_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[

if pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4

and pxcor = (n + Servers_booked_14 - 1 + (Day_of_the_week_14 - 1) * {(number_of_servers) )
[if Weekly_Prebooked_14_Class = "None" [set pcolor grey]

if Weekly_Prebooked 14_Class = "Class 2" {set pcolor 107]
if Weekly_Prebooked_14_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7

]
]
]
I

if Weekly_Prebooked_15 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

54



[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setn O

while [n <= max-pxcor]

[
ifelse repeat_daily_15

[
if pycor <= Weekly_Prebook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4
and pxcor = Servers_Booked_15+n-1
[if Weekly Prebooked_15 Class = "None" [set pcolor grey]
if Weekly Prebooked_15_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_15_Class = "Class 4" [set pcolor 37] ]
set n n + Number_of_servers

]

[
if pycor <= Weekly_Prabook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4
and pxcor = {n + Servers_booked_15 - 1 + (Day_of_the_week_15 - 1) * (number_of_servers) )
[if Weekly_Prebooked_15_Class = "None" [set pcolor grey]
if Weekly_Prebooked_15_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_15_Class = "Class 4" [set pcolor 37] ]
set n n+ number_of_servers * 7
]
]
]
1

if Weekly_Prebooked_16 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_16

[
if pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4
and pxcor = Servers_Booked 16 +n-1
[if Weekly_Prebooked_16_Class = "None" [set pcolor grey]
if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_16_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_16_Class = "Class 4" [set pcolor 37] ]

55



set n n+ Number_of_servers

]

[ ,
if pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4
and pxcor = {n + Servers_booked_16 - 1 + (Day_of_the_week_16 - 1) * (hnumber_of servers})
[if Weekly_Prebooked_16_Class = "None" [set pcolor grey]
if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_16_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_16_Class = "Ciass 4" [set pcolor 37] ]
set n n+ number_of_servers * 7
]
1
]

]
if Weekly Prebooked_17 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_17

[
if pycor <= Weekly_Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4

and pxcor = Servers_Booked_17 +n-1
[if Weekly_Prebooked_17_Class = "None" [set pcolor grey]
if Weekly_Prebooked_17_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_17_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_17_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

(
if pycor <= Weekly_Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4

and pxcor = (n + Servers_booked_17 - 1 + (Day_of_the_week_17 - 1) * (number_of_servers) )
[if Weekly Prebooked_17_Class = "None" [set pcoior grey]
if Weekly_Prebooked_17_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 17 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_17_Class = "Class 4" [set pcolor 37] ]
set n n + number_of servers * 7
]
]

56



if Weekly_Prebooked_18 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in guestion.
[setn O

while [n <= max-pxcor]

[
ifelse repeat_daily_18

[
if pycor <= Weekly_Prebook_Start_18 * -4 and pycor >= Weekly_Prebook_End_18 * -4
and pxcor = Servers_Booked_18 +n-1
[if Weekly_Prebooked_18_Class = "None" [set pcolor grey]
if Weekly_Prebooked_18_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_18 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_18_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of servers

]

[

if pycor <= Weekly_Prebook_Start_18 * -4 and pycor >= Weekly_Prebook_End_18 * -4

and pxcor = (n + Servers_booked_18 - 1 + (Day_of_the_week_18 - 1) * (number_of_servers} )
[if Weekly_Prebooked_18_Class = "None" [set pcolor grey]

if Weekly_Prebooked_18_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_18_ Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_18_Class = "Class 4" [set pcolor 37] ]
set n n + number_of _servers * 7

]
]
]
]

if Weekly_Prebooked_19 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO
while [n <= max-pxcor]

[
ifelse repeat_daily_19

[
if pycor <= Weekly Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4
and pxcor = Servers_Booked_19+n-1
[if Weekly_Prebooked_19_Class = "None" [set pcolor grey]
if Weekly Prebooked 19 _Class = "Class 2" [set pcolor 107]
if Weekly Prebooked_19_Class = "Class 3" [set pcolor 47]

57



if Weekly Prebooked_19 Class = "Class 4" [set pcolor 37] ]
setn n+ Number_of_servers

]

[ v
if pycor <= Weekly_Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4

and pxcor = (n + Servers_booked_19 - 1 + {Day_of_the_week_19 - 1) * (number_of_servers} )
[if Weekly_Prebooked_19 Class = "None" [set pcolor grey]
if Weekly_Prebooked_19_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_19_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_19_Class = "Class 4" [set pcolor 37] ]
set n n + number_of servers * 7
]
]
]

]
if Weekly_Prebooked_20 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_20

[
if pycor <= Weekly_Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4

and pxcor = Servers_Booked_20+n-1
[if Weekly_Prebooked_20_Class = "None" [set pcolor grey]
if Weekly_Prebooked_20_Class = "Class 2" {set pcolor 107]
if Weekly_Prebooked_20_Class = "Class 3" [set pcolor 47]
if Weekly Prebooked 20_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4

and pxcor = (n + Servers_booked_20- 1 + (Day_of_the_week_20 - 1) * (number_of_servers) )
[if Weekly_Prebooked_20_Class = "None" [set pcolor grey]
if Weekly_Prebooked 20 Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 20 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 20 Class = "Class 4" [set pcolor 37] ]
set n n+ number_of_servers * 7
]
]

58



if Weekly_Prebooked_21 ;; Checks to see if fhe Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question. '
[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_21

[
if pycor <= Weekly Prebook Start_21 * -4 and pycor >= Weekly Prebook_End 21 * -4

and pxcor = Servers_Booked_21+n-1
[if Weekly_Preboocked 21 Class = "None" [set pcolor grey]
if Weekly_Prebooked_21_Class = "Class 2" [set pcolor 107]
if Weekly _Prebooked 21 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_21_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_21 * -4 and pycor >= Weekly_Prebook_End_21 * -4

and pxcor = (n + Servers_booked_21 -1 + (Day_of_the_week_21 - 1) * (number_of_servers))
[if Weekly_Prebooked_21_Class = "None" [set pcolor grey]
if Weekly_Prebooked_21_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 21 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_21_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7
]
]
]
|

if Weekly_Prebooked_22 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_22

[
if pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4

and pxcor = Servers_Booked_22 +n-1
[if Weekly_Prebooked_22_Class = "None" [set pcolor grey]
if Weekly _Prebooked_22_Class = "Class 2" [set pcolor 107]

59



if Weekly_Prebooked_22_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_22_Class = "Class 4" [set pcolor 371 ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4

and pxcor = (n + Servers_booked 22 -1 + (Day_of_the_week 22 - 1) * (number_of_servers) )
[if Weekly_Prebooked_22_Class = "None" [set pcolor grey]
if Weekly Prebooked 22 Class = "Class 2" [set pcolor 107]
if Weekly Prebooked 22_Class = "Class 3" [set pcolor 47]
if Weekly Prebooked_22_Class = "Class 4" [set pcolor 37] ]
set n n+ number_of_servers * 7

]
]
]
]

if Weekly_Prebooked_23 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off timé

accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setn O

while [n <= max-pxcor]

|

ifelse repeat_daily_23

[
if pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4

and pxcor = Servers_Booked 23 +n-1
fif Weekly Prebooked_23_Class = "None" [set pcolor grey]
if Weekly_Prebooked_23_Class = "Class 2" [set pcolor 107]
if Weekly Prebooked_23_ Class = "Class 3" [set pcolor 47]
if Weekly Prebooked 23 _Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4

and pxcor = (n + Servers_booked_23 - 1 + (Day_of_the_week_23 - 1) * (number_of_servers) )
[if Weekly_Prebooked_23_Class = "None" [set pcolor grey]
if Weekly_Prebooked_23_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_23_Class = "Class 3" [set pcolor 47]
if Weekly Prebooked_ 23 Class = "Class 4" [set pcolor 37] ]
set n n+ number_of_servers * 7
]
]

60



]
]

if Weekly Prebooked_24 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setn O

while [n <= max-pxcor]

[

ifelse repeat_daily_24

[
if pycor <= Weekly_Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4
and pxcor = Servers Booked_24 +n-1
[if Weekly_Prebooked 24_Class = "None" [set pcolor grey]
if Weekly_Prebooked 24 Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_24_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_24_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4
and pxcor = (n + Servers_booked_24 - 1 + (Day_of_the_week_24 - 1) * (number_of_servers) )
[if Weekly_Prebooked_24 Class = "None" [set pcolor grey]
if Weekly_Prebooked_24_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_24_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 24 Class = "Class 4" [set pcolor 37] ]
set n n + number_of _servers * 7
]
]
]
]

if Weekly Prebooked_25 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_25

[
if pycor <= Weekly_Prebook_Start_25 * -4 and pycor >= Weekly_Prebook_End_25 * -4

61



and pxcor = Servers_Booked 25+n-1
[if Weekly_Prebooked_25_Class = "None" [set pcolor grey]
if Weekly_Prebooked_25_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_25_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 25 Class = "Class 4" [set pcolor 37] ]
set n n + Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_25 * -4 and pycor >= Weekly_Prebook _End_25 * -4
and pxcor = {n + Servers_booked 25 -1+ (Day_of_the_week_25 - 1} * (number_of_servers) )
[if Weekly_Prebooked_25_Class = "None" [set pcolor grey]
if Weekly_Prebooked_25_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_25_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_25_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7
]
]
]
]

if Weekly Prebooked_26 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_26

[
if pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4
and pxcor = Servers_Booked_26+n-1
[if Weekly_Prebooked 26_Class = "None" [set pcolor grey]
if Weekly_Prebooked_26_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 26_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 26_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of servers

]

[
if pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4
and pxcor = (n + Servers_booked_26 - 1 + (Day_of_the_week_26 - 1} * (number_of_servers) )
[if Weekly_Prebooked_26_Class = "None" [set pcolor grey]
if Weekly Prebooked_26_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_26_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_26_Class = "Class 4" [set pcolor 37] ]

62



set n n + number_of servers * 7

]
]
]
]

if Weekly_Prebooked_27 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setnO

while [n <= max-pxcor]

[

ifelse repeat_daily_27

[
if pycor <= Weekly_Prebook_Start_27 * -4 and pycor >= Weekly_Prebook_End_27 * -4

and pxcor = Servers_Booked_27 +n-1
[if Weekly_Prebooked_27_Class = "None" [set pcolor grey]
if Weekly_Prebooked_27_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_27_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_27_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_27 * -4 and pycor >= Weekly_Prebook_End_27 * -4

and pxcor = (n + Servers_booked_27 - 1 + (Day_of_the_week_27 - 1) * (number_of_servers) )
[if Weekly Prebooked_27 Class = "None" [set pcolor grey]
if Weekly_Prebooked_27_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_27_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_27_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7

]
]
]
]

if Weekly_Prebooked_28 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time

accordingly.
[ask patches ;; This loops asks patches to check if they are between the prebook start and end and

if they are on the day of the week in question.
[setnO
while [n <= max-pxcor]

[

ifelse repeat_daily_28

63



[
if pycor <= Weekly_Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4

and pxcor = Servers_Booked_28 +n-1
[if Weekly_Prebooked_28_Class = "None" [set pcolor grey]
if Weekly_Prebooked_28_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_28_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_28_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4

and pxcor = (n + Servers_booked 28 - 1 + (Day_of_the_week_28 - 1} * (number_of_servers) )
[if Weekly_Prebooked_28_Class = "None" [set pcolor grey]
if Weekly_Prebooked_28_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_28 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 28 Class = "Class 4" [set pcolor 37]]
set n n + number_of_servers * 7
]
]
]
]

if Weekly_Prebooked_29 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.
[setn O

while [n <= max-pxcor]

[

ifelse repeat_daily_29

[
if pycor <= Weekly Prebook_Start_29 * -4 and pycor >= Weekly_Prebook_End_29 * -4

and pxcor = Servers_Booked_29+n-1
[if Weekly_Prebooked_29_Class = "None" {set pcolor grey]
if Weekly_Prebooked_29_Class = "Class 2" [set pcolor 107]
if Weekly_Preboocked_29 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_29 Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

[
if pycor <= Weekly_Prebook_Start_29 * -4 and pycor >= Weekly_Prebook_End_29 * -4

and pxcor = (n + Servers_booked_29 - 1 + (Day_of_the_week_29 - 1} * (number_of_servers} )
[if Weekly_Prebooked_29 Class = "None" [set pcolor grey]

64



if Weekly_Prebooked_29_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 29_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 29 Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7

]
]

]

]

if Weekly_Prebooked_30 ;; Checks to see if the Weekly_Prebooked switch is on and blocks off time
accordingly.

[ask patches ;; This loops asks patches to check if they are between the prebook start and end and
if they are on the day of the week in question.

[setn O

while [n <= max-pxcor]

[

ifelse repeat_daily_30

[
if pycor <= Weekly_Prebook_Start_30 * -4 and pycor >= Weekly_Prebook_End_30 * -4

and pxcor = Servers_Booked_30+n-1
[if Weekly_Prebooked_30_Class = "None" [set pcolor grey]
if Weekly_Prebocked_30_Class = "Class 2" [set pcolor 107]
if Weekly_Prebocked_30_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 30_Class = "Class 4" [set pcolor 37] ]
set n n+ Number_of_servers

]

(
if pycor <= Weekly Prebook_Start_30 * -4 and pycor >= Weekly_Prebook_End_30 * -4

and pxcor = {n + Servers_booked_30- 1 + (Day_of_the_week_30 - 1} * (number_of_servers) )
[if Weekly_Prebooked_30_Class = "None" [set pcolor grey]
if Weekly Prebooked_30_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked _30_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 30_Class = "Class 4" [set pcolor 37] ]
set n n + number_of_servers * 7

B22D2FR22D200000F 2R FR 22002 0000004000700 7200002200020 00 8000000800002 00000 0000000002800 000000 0000000000000 3000000020200)

.................................................................................................................................

BI2DRFIRIFNRIEIIRRIIIIIRR 2220000 00000000 0000020080800 000000 0000000000020 0 0 8000 02 0000000 0000008000800 3800008000008008020302)

65



BIBDEI2EPPPIIIIIRD2IB DRI T23 0000002000800 800000000 00 00000080800 00000000 000000000 0008202028 00000 3020008080 00800000103)

;; This block asks patches to assume a colour based on whether or not they represent time that is
bookable.
to setup-patches
ask patches|
ifelse pycor >= (Scheduled-Hours-per-day) * -4
[set pcolor red]
[ set pcolor black]

]

end

FRIZDIRIRIIPIIIRR220 2000000000000 8 000 0000200000000 0008 0300000000000 0 800 0800 8 2000208 00000000000 0 80800080088 00000020509890707

to random_fill

ask patches

[

if pcolor =red or pcolor =37 or pcolor = 47 and pxcor <= number_of_random_fill_days *
number_of_servers

[set pcolor brown]

]

end

BRDRIIIIPZP22020 000000000 0000008800 080000000000 000 000 080800008 8020200000020 0020208000 8820 0080820808800 8000080080830 000028230572770)

s =GO S
NSRS I I S ]

;; This block initiates the simultor. The code used is based on the technique that has been selected.
;; For detailed explaination of each called function see below.

to go

if Scheduling_Technique =1

[create-patient-class-1

create-patient-class-2

create-patient-class-3

create-patient-class-4

schedule-class-1

set Arrival_Rate_Counter_1 Arrival_Rate_Counter_1- 15

66



set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 - 15
set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 - 15
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 - 15 ]

if Scheduling_Technique = 2 ; Disabled, future work will be continued here.
[
]
current-time-update
set Arrival_Rate_Counter_1 Arrival_Rate_Counter_1-15
tick
set tick_counter tick_counter + 1
if tick_counter =96 * Days_to_run
[ stop]
end

PEPEFIRIIIIIIIIRIIIRIRILIIIRISIRISP PP ILIRESISRII DRI IR ININIIIINEI IS IRITRR NI INFIINIRPIIIIIIIIIIIIIIILIIRIIIIIIEIININIIIIGG

sy == CREATING PATIENT CLASS 1 == 553

FEPRIIIEIZRIIDITIRIPERNFIIIEZIIRITRZI IR II IS LIR R0 0000000000020 0000 000 R 000000 R RO IIRRIRDIIRIRRIIIIIIIIIIIIIRIINRIRIINIIRRIIINTY

;; This block creates class one patients based on a probability which is evaluated on every tick of the

system.
;; The patients are created directly at the updater as they are emergency patients.

to create-patient-class-1

while [Arrival_Rate_Counter_1 <=0]

[

if Probability-Patient-Class-1-Arrival = "Normal” and Patient-Class-1-Mean-Arrival-Rate > 0

[set Normal_Holder_1 random-normal Patient-Class-1-Mean-Arrival-Rate Patient-Class-1-StD
set Arrival_Rate_Counter_1 Arrival_Rate_Counter_1 + Normal_Holder_1
create-class-1-patients 1 [set color green set size 1.5 move-to update-1 b set countl countl + 1]

]
if Probability-Patient-Class-1-Arrival = "Exponential” and Patient-Class-1-Mean-Arrival-Rate >0
[set Exponential_Holder_1 random-Exponential Patient-Class-1-Mean-Arrival-Rate

set Arrival_Rate_Counter_1 Arrival_Rate_Counter_1 + Expcnential_Holder_1
create-class-1-patients 1 [set color green set size 1.5 move-to update-1 b set countl countl + 1]

]

if Probability-Patient-Class-1-Arrival = "Poisson" and Patient-Class-1-Mean-Arrival-Rate > 0

67



[set Poisson_Holder_1 random-Poisson Patient-Class-1-Mean-Arrival-Rate
set Arrival_Rate_Counter_1 Arrival_Rate_Counter_1 + Poisson_Holder_1
create-class-1-patients 1 [set color green set size 1.5 move-to update-1 b set countl countl + 1]

]

if Patient-Class-1-Mean-Arrival-Rate = 0
[ set Arrival_Rate_Counter_1 Arrival_Rate_Counter_1 + 15]

;;This block of code allows this patient class to bump existing appointments to one slot later than the
one they currently occupy.
ask patches

[

if any? class-1-patients|

if pxcor = [pxcor] of update-1 b and pycor < [pycor] of update-1b
[ set pcolor [pcolor] of patch-at-heading-and-distance 0 1]

setbb+1
if b > Number_of_Servers - 1 [set b 0]

.................................................................................................................................

R R R R R N N N N N NN N N N R R R R N R N R R R Ry N N R NN R R R R R N R N S N N R P N DI N S R DR R R N N R

s == CREATING PATIENT CLASS 2 == 55550i5immmiimiiiiiisniniiiiisssssiiisissiiissisisiiiiiiisiiiiniiis
.................................................................................................................................

PIIDIIPIPIIIRIIIR IR PRI IR LRI 22 00000200 0200000000020 80000 0000000000 0000 0000000000000 0000080 220228202 0200000020020022101210))

;; This block creates class two patients based on a probability which is evaluated on every tick of the
system.

;; The patients are created and moved to the day that follows the day that the updater is currently
processing. (ie. Tomorrow)

to create-patient-class-2

while [Arrival_Rate_Counter_2 <= 0]

[

if Probability-Patient-Class-2-Arrival = "Normal" and Patient-Class-2-Mean-Arrival-Rate > 0

[set Normal_Holder_2 random-normal Patient-Class-2-Mean-Arrival-Rate Patient-Class-2-StD

set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + Normal_Holder_2

create-class-2-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse
xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0] set count2 count2 + 1]

]

68



if Probability-Patient-Class-2-Arrival = "Exponential" and Patient-Class-2-Mean-Arrival-Rate >0

[set Exponential_Holder_2 random-Exponential Patient-Class-2-Mean-Arrival-Rate

set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + Exponential_Holder_2

create-class-2-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse
xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count2 count2 +1]

]

if Probability-Patient-Class-2-Arrival = "Poisson" and Patient-Class-2-Mean-Arrival-Rate > 0

[set Poisson_Holder_2 random-Poisson Patient-Class-2-Mean-Arrival-Rate

set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + Poisson_Holder_2

create-class-2-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse
Xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 10 ] set count2 count2 +1 ]

]
if Patient-Class-2-Mean-Arrival-Rate = 0
[ set Arrival_Rate_Counter_2 Arrival_Rate_Counter_2 + 15]

ask class-2-patients
[
facexy 99999999999999999999999999999 max-pycor / 2
setD1
while [xcor <= max-pxcor]
(
ifelse (pcolor = green) or (pcolor = black)or (pcolor = biue)or {pcolor = yellow)or (pcolor = brown} or
(pcolor = grey)or (pcolor = 37) or {pcolor = 47) ;;; If the patch is occupied
;; Cut out xcor = ([xcor] of update-1 (number_of_Servers - 1}+ D * Number_of_Servers) and from
below
[ifelse ycor = (Scheduled-Hours-per-day) *-4-1 ;;; If it is the end of the day

[setxy [xcor] of update-1 (number_of_servers - 1} + D * number_of_servers + 1 0 if pcolor = red or
pcolor = 107 [if xcor > [xcor + 2 * Number_of_Servers} of update-1 (Number_of_Servers - 1) [set
count2over count2over + 1 Jset pcolor blue update-plot-class2 die set D 1]set D D + 1]

[ if xcor = ([xcor] of update-1 (Number_of_Servers - 1) + D * Number_of_Servers) or xcor + max-
pxcor - ([xcor]of update-1 (number_of_servers - 1} + D * Number_of_Servers) = -1
:: AN IF you are at the last server or
[ setxy ([xcor] of update-1 (Number_of_Servers - 1)+ D * Number_of_Servers -
Number_of_servers) + 1 ycor - 1 if pcolor = red or pcolor = 107[if xcor > [xcor + 2 * Number_of_Servers]
of update-1 (Number_of_Servers - 1) [set count2over count2over + 1 Jset pcolor blue update-plot-class2
die set D 1]] if number_of_Servers > 1 [ forward 1]] ]

[if xcor > [xcor + 2 * Number_of_Servers] of update-1 (Number_of_Servers - 1) [set count2over
count2over + 1 Jset pcolor blue update-plot-class2 die set D 1]

]

69



if Arrival_Rate_Counter_2>0
;; This block advances the plot pen for patient class two without making a mark. This is done if no class
two patients arrive during a given period.
[set-current-plot "Wait Time for Class 2 Patients”
set-current-plot-pen "Class 2"
plot-pen-up
plot 1]

FIRFIIIIIIIEIIRIIIIIIIRRI IR I ISR IR ILIVIR ISR IIER IR RIS PRI IIRINRIII IR ID IR I ITFF IR RN IIINSIIIIIFIIIIRIILIIIINIININRIIIIRIIENIINIIEY

s -= CREATING PATIENT CLASS 3 =- 5 s s s s s 0330303033033030333033

FIVIIIRIIIIIIRIIINFIIIIIRIRIIRII NI IRR P IRFIIITIIIIRIIUTIIIIIIRISLIT IR IR RIIRID IR PRI IIILIRNIRIIIRIINFLISNSRIINIFIINIIIRIIINIIIN Y

;; This block creates class three patients based on a probability which is evaluated on every tick of the
system.

;; The patients are created and moved to the day that follows the day that the updater is currently
processing. (ie. Tomorrow)

to create-patient-class-3

while [Arrival_Rate_Counter_3 <=0]

[

if Probability-Patient-Class-3-Arrival = "Normal” and Patient-Class-3-Mean-Arrival-Rate > 0

[set Normal_Holder_3 random-normal Patient-Class-3-Mean-Arrival-Rate Patient-Class-3-StD

set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 + Normal_Holder_3

create-class-3-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse
xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count3 count3 + 1]

]

if Probability-Patient-Class-3-Arrival = "Exponential" and Patient-Class-3-Mean-Arrival-Rate > 0

[set Exponential_Holder_3 random-Exponential Patient-Class-3-Mean-Arrival-Rate

set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 + Exponential_Holider_3

create-class-3-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse
xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0] set count3 count3 +1]

]
if Probability-Patient-Class-3-Arrival = "Poisson" and Patient-Class-3-Mean-Arrival-Rate > 0

[set Poisson_Holder_3 random-Poisson Patient-Class-3-Mean-Arrival-Rate
set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 + Poisson_Holder_3

70



create-class-3-patients 1 [set color green set size 1.5 move-to update-1 (Number_of Servers - 1) ifelse
xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0] set count3 count3 +1 ]
: :
if Patient-Class-3-Mean-Arrival-Rate = 0
[ set Arrival_Rate_Counter_3 Arrival_Rate_Counter_3 + 15]
ask class-3-patients
[
facexy 99999999999999999999999999999 max-pycor / 2
setG1
while [xcor <= max-pxcor]
[
ifelse (pcolor = green) or (pcolor = black)or (pcolor = blue)or (pcolor = yellow)or (pcolor = brown) or
(pcolor = grey)or (pcolor = 37) or (pcolor = 107) ;;; If the patch is occupied
;; Cut out xcor = ([xcor] of update-1 (number_of_Servers - 1)+ D * Number_of_Servers) and from
below
[ifelse ycor = (Scheduled-Hours-per-day) * -4 -1 ;;;; fitis the end of the day

[setxy [xcor] of update-1 (number_of_servers - 1) + G * number_of_servers + 10 if pcolor =red or
pcolor = 47 [ if xcor > [xcor + 10 * Number_of_Servers] of update-1 (Number_of_Servers - 1} [set
count3over count3over + 1 ]Jset pcolor yellow update-plot-class3 die set G 1]set G G + 1]

[ if xcor = ([xcor] of update-1 (Number_of_Servers - 1} + G * Number_of_Servers) or xcor + max-

pxcor - ([xcor]of update-1 (humber_of_servers - 1) + G * Number_of_Servers) =-1

[ setxy ([xcor] of update-1 (Number_of_Servers - 1)+ G * Number_of_Servers -
Number_of servers) + 1 ycor - 1 if pcolor = red or pcolor = 47]if xcor > [xcor + 10 * Number_of_Servers]
of update-1 (Number_of_Servers - 1) [set count3over count3over + 1 ]Jset pcolor yellow update-plot-
class3 die set G 1]] if number_of_Servers > 1 | forward 11] ]

[if xcor > [xcor + 10 * Number_of_Servers] of update-1 (Number_of_Servers - 1) [set count3over
count3over + 1 ]set pcolor yellow update-plot-class3 die set G 1]
]
]

]

;ifelse random 100 >= (100 - Probability-Patient-Class-3-Arrival) [set count3 count3 + 1 create-class-3-
patients 1
;[set color yellow set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse xcor = max-pxcor [setxy
min-pxcor 0] [ setxy xcor +1 0]]]
if Arrival_Rate_Counter_3>0
;; This block advances the plot pen for patient class three without making a mark. This is done if no class
three patients arrive during a given period.
[set-current-plot "Wait Time for Class 3 Patients"

set-current-plot-pen "Class 3"

plot-pen-up

plot 1]
end

71



.................................................................................................................................

BERPINRIIFIRII RIS ETIEFIIIIIRIIIIRFIPIRINRNRIRIIIIIIITII IR I RIS IR LI III LSRRI IIRIEFRIIIIRITIIAIIRAIINIIIIII IR RRIIFIIEY

s == CREATING PATIENT CLASS 4 =- 555 s i isissisiiiiios

JEEPRIIP IR IEI IR IR R F ISR B R RIS LI IR I RIE L RN IRR IR IR NI IR I IIIIIIRI IR IR RIS IR I IRIFIRIIIIRINIIIINIINIIIIIIIIIIIIIIIE

;; This block creates class four patients based on a probability which is evaluated on every tick of the
system.

;; The patients are created and moved to the day that follows the day that the updater is currently
processing. (ie. Tomorrow)

to create-patient-class-4

while [Arrival_Rate_Counter_4 <= 0]

[

if Probability-Patient-Class-4-Arrival = "Normal" and Patient-Class-4-Mean-Arrival-Rate > 0

[set Normal_Holder_4 random-normal Patient-Class-4-Mean-Arrival-Rate Patient-Class-4-StD
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + Normal_Holder_4

create-class-4-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse

Xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor + 1 0 ] set count4 count4 + 1]

]
if Probability-Patient-Class-4-Arrival = "Exponential" and Patient-Class-4-Mean-Arrival-Rate > 0

[set Exponential_Holder_4 random-Exponential Patient-Class-4-Mean-Arrival-Rate
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + Exponential_Holder_4

create-class-4-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse

xcor = max-pxcor [setxy min-pxcor 0] [ setxy xcor +1 0 ] set countd count4d + 1]

]
if Probability-Patient-Class-4-Arrival = "Poisson” and Patient-Class-4-Mean-Arrival-Rate > 0

[set Poisson_Holder_4 random-Poisson Patient-Class-4-Mean-Arrival-Rate
set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + Poisson_Holder_4

create-class-4-patients 1 [set color green set size 1.5 move-to update-1 (Number_of_Servers - 1) ifelse

xcor = max-pxcor [setxy min-pxcor 0} [ setxy xcor + 1 0] set countd count4 + 1]

]
if Patient-Class-4-Mean-Arrival-Rate = 0

[ set Arrival_Rate_Counter_4 Arrival_Rate_Counter_4 + 15]

ask class-4-patients

(
facexy 99999999999999999999999999999 max-pycor / 2

setF1
while [xcor <= max-pxcor]

[

72



ifelse (pcolor = green) or (pcolor = black)or (pcolor = blue)or (pcolor = yellow)or (pcolor = brown) or
{pcolor = grey)or (pcolor = 107} or (pcolor = 47) ;;; If the patch is occupied
;; Cut out xcor = ([xcor] of update-1 {(number_of_Servers - 1)+ D * Number_of Servers) and from
below
[ifelse ycor = (Scheduled-Hours-per-day) * -4 -1 ;;;; If itis the end of the day

[setxy [xcor] of update-1 (number_of servers - 1) + F * number_of _servers + 1 0 if pcolor =red or
pcolor = 37 [if xcor > [xcor + 28 * Number_of_Servers] of update-1 (Number_of_Servers - 1) [set
countdover countdover + 1 ]set pcolor brown update-plot-class4 die set F 1]set FF + 1]

[ if xcor = ([xcor] of update-1 (Number_of_Servers - 1) + F * Number_of_Servers) or xcor + max-
pxcor - ([xcor]of update-1 (number_of_servers - 1) + F * Number_of_Servers) =-1

[ setxy ([xcor] of update-1 {Number_of Servers - 1}+ F * Number_of Servers - Number_of servers)
+ 1 ycor - 1 if pcolor = red or pcolor = 37[if xcor > [xcor + 28 * Number_of_Servers] of update-1
(Number_of_Servers - 1) [set countdover countdover + 1 ]set pcolor brown update-plot-class4 die set F
1]] if number_of Servers > 1 [ forward 1]]]

[if xcor > [xcor + 28 * Number_of_Servers] of update-1 (Number_of_SerVers - 1) [set countdover
countdover + 1 ]set pcolor brown update-plot-class4 die set F 1]

]
]
]

;ifelse random 100 >= (100 - Probability-Patient-Class-4-Arrival) [set count4 count4 + 1 create-class-4-
patients 1

;[set color brown set size 1.5 move-to update-1 {(Number_of_Servers - 1} ifelse xcor = max-pxcor [setxy
min-pxcor 0] [ setxy xcor + 1 0]]]

if Arrival_Rate_Counter_4>0
;; This block advances the plot pen for patient class four without making a mark. This is done if no class
four patients arrive during a given period.
[set-current-plot "Wait Time for Class 4 Patients"
set-current-plot-pen "Class 4"
plot-pen-up
plot 1]

end

FIJIDIF2II2RIZR020 0200200000000 00000 RRRR R RRDIRNDRIDIRNLI2STD22220000000 20000000800 0200000000 00000030070 0800000000230828072)

s = SCEHDULING PATIENT CLASS 1 =- 3o

FPVIIDIIRIIIBIIIFIRRIIIEIIIIIRIILILIII IR IR SR RIRIINIILIIIINIIIIIIIIIRINIIII DRI DRI INIIIIIIIIR IR IFRIIINIIIIIINRIINININIEY

73



;; This block schedules class one patients that have already been created. It points the downward, moves
them forward one patch and kills them.
to scheduie-class-1

ask class-1-patients
[
facexy max-pxcor / 2 -99999999999999999999999999999
forward 1
set pcolor green
die
]

end

FIPPPPPRPIPZIIRIIIEIR2000 0000020 22000 00 0 200000000 00000000 000000008 800 0 2000000 0 80 8000002002000 0200000000020223821752282227227

BEIRIIEDIRIRNIIDDDREDRRIIIP IR AP IR B IR ARRAIISELIRNIITIR IR I DRIV IID R ID PP P PRSI IININIIIIRILALIIIIIIRIIIIFIRIIRINIFIFNILIYY

:: This block creates the turtle that acts as the 'current time.'

to create-time-updater
create-updaters Number_of_Servers [set color cyan set size 2.5 facexy max-pxcor -
99999999999999999999999999999 ]

Set MS O

while [MS <= (Number_of_servers - 1}]
[

ask update-1 MS [setxy MS 0]
setMSMS +1

]

end

FRIPPIRPIPIPIIPIII ISR LLI I IR I DI IR R IR DRI PRI ORII IR IRN IR RR ORIV IS IR IIFRIIRRRINIINNIIIRRIDII PRI IRIIENINIIIILINIIIIILLY)

.................................................................................................. T T T T T TR T TR
PEIIIEIEIIEIIIIIIIIIIILITIIIIIIII IR I REI IR RER NI I IRIRIIFISRID DI IRIRAD R TR IIIIETIATRRIR N IR III IR RIIIIIIIIIININIIIILINILININLY)

PIRRIRIIIRIIINIIRTRIIRFIRRFITISIIRI IR ATIIRNIDIIIRIIIIIRIIIIRINIIITDI ARSI PPPRRTIIPIIIRIIIIIIIIRIIRIIIIRLSSIIIIIRILINIIENIINIII LY

;;This block updates the current day by clearing the previous schedule. It returns red patches to red,
black to black and grey to grey. I

to current-time-update
ask updaters

[
facexy max-pxcor / 2 -99999999999999999999999999999

74



;; This section does grey and red for the scheduled time.
ifelse ycor >= (Scheduled-Hours-per-day) * -4
[ifelse {ycor <= Daily_Prebook_Start * -4 and ycor >= Daily_Prebook_End * -4 and Daily_Prebooked)
[ set pcolor grey ] [set pcolor red | forward 1 ]

;; This section does grey and black for unscheduled time.
[ifelse (ycor <= Daily_Prebook_Start * -4 and ycor >= Daily_Prebook_End * -4 and Daily_Prebooked)
[ set pcolor grey | [set pcolor black]

;; This section handles moving the updater from the end of one day to the beginning of another and
resets the counter for bumping patients.

if ycor = -96] setxy xcor + Number_of Servers 0 ifelse (ycor <= Daily_Prebook_Start * -4 and ycor >=
Daily_Prebock_End * -4 and Daily_Prebooked)

[ set pcolor grey ] [set pcolor red] ] forward 1]

;55 Updates For Weekly Prebooks at the end of every day;;;;

if [ycor] of update-1 0 =-96
[
if Weekly Prebooked or Weekly_Prebooked_2 or Weekly_Prebooked_3 or Weekly_Prebooked_4 or
Weekly Prebooked 5 ar Weekly_Prebooked_6
or Weekly Prebooked_7 or Weekly_Prebooked_8 or Weekly_Prebooked_9 or Weekly_Prebooked_10
or Weekly Prebooked_11 or
Weekly_Prebooked 12 or Weekly_Prebooked_13 or Weekly_Prebooked_14 or Weekly_Prebooked_15
or Weekly Prebooked_16 or Weekly Prebooked_17 or Weekly_Prebooked_18 or
Weekly Prebooked_19 or Weekly_Prebooked_ 20 or Weekly_Prebooked_21
or Weekly_Prebooked_22 or Weekly_Prebooked_23 or Weekly_Prebooked_24 or
Weekly_Prebooked_25 or Weekly_Prebooked_26 or Weekly_Prebooked_27
or Weekly _Prebooked 28 or Weekly_Prebooked_29 or Weekly_Prebooked_30

[ask patches
[setnO
while [n <= [xcor] of update-1 0]

[

if ( pycor <= Weekly_Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4 and
weekly prebooked and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_1)-1 + (Day_of the_week-1 ) * (number_of_servers) and not
repeat_Daily_1 )

[ if Weekly_Prebooked_1_Class = "None" [set pcolor grey]

if Weekly_Prebooked_1_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_1_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_1_Class = "Class 4" [set pcolor 37] ]

75



if ( pycor <= Weekly Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4 and
weekly_prebooked_2 and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_2)-1 + (Day_of_the_week_2-1 ) * (number_of_servers ) and
not repeat_Daily 2 )

[ if Weekly Prebooked_2_Class = "None" [set pcolor grey]

if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4 and
weekly prebooked_3 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_3)-1 + (Day_of_the_week_3-1 ) * (number_of_servers) and
not repeat_Daily_3 )

[ if Weekly_Prebooked_3_Class = "None" [set pcolor grey]

if Weekly_Prebooked_3_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_3_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4 and
weekly _prebooked_4 and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_4)-1 + (Day_of the_week_4-1 ) * (number_of_servers ) and
not repeat_Daily_4 )

[ if Weekly_Prebooked_4_Class = "None" [set pcolor grey]

if Weekly Prebooked_4_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_4_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_4_Class = "Class 4" [set pcolor 37} ]

if ( pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4 and
weekly_prebooked_5 and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_5)-1 + (Day_of _the_week_5-1 ) * (number_of_servers ) and
not repeat_Daily 5 )

[ if Weekly_Prebooked_5_Class = "None" [set pcolor grey]

if Weekly Prebooked_5_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_5_Class = "Class 3" [set pcolor 47]

if Weekly Prebooked 5 Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly_Prebook_End_6 * -4 and
weekly_prebooked_6 and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_6)-1 + (Day_of_the_week_6-1 ) * (number_of_servers ) and
not repeat_Daily 6 )

[ if Weekly_Prebooked_6_Class = "None" [set pcolor grey]

if Weekly_Prebooked_6_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_6_Class = "Class 3" [set pcolor 47]

76



if Weekly_Prebooked_6_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_7 * -4 and pycor >= Weekly Prebook_End_7 * -4 and
weekly_prebooked_7 and pxcor < [xcor] of update-10

and pxcor =(n+ Servers_booked_7)-1 + (Day_of the_week 7-1 )} * (number_of_servers}and
not repeat_Daily_7 )

[ if Weekly_Prebooked_7_Class = "None" [set pcolor grey]

if Weekly_Prebooked_7_Class = "Class 2" {set pcolor 107]

if Weekly_Prebooked_7_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ]

if { pycor <= Weekly_Prebook_Start_8 * -4 and pycor >= Weekly_Prebook_End_8 * -4 and
weekly_prebooked_8 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_8)-1 + (Day_of _the_week 8-1 ) * (number_of servers) and
not repeat_Daily_8 )

[ if Weekly_Prebooked_8_Class = "None" [set pcolor grey]

if Weekly_Prebooked_8_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_8_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_8_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly_Prebook_End_9 * -4 and
weekly_prebooked_9 and pxcor < [xcor] of update-1 0

and pxcor ={n + Servers_booked_9)-1 + (Day_of the_week_9-1 ) * (number_of_servers) and
not repeat_Daily_9 )

[ if Weekly_Preboocked_9_Class = "None" [set pcolor grey]

if Weekly Prebooked_9 Class = "Class 2" {set pcolor 107]

if Weekly_Prebooked_9_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_9_Class = "Class 4" [set pcolor 37] ]

if { pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10 * -4 and
weekly_prebooked_10 and pxcor < [xcor] of update-1 0

and pxcor = {n + Servers_booked_10)-1 + (Day_of_the_week_10-1 ) * (number_of servers)
and not repeat_Daily_10 )

[ if Weekly_Prebooked_10_Class = "None" [set pcolor grey]

if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107]

if Weekly _Prebooked_10_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_10_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_11 * -4 and pycor >= Weekly_Prebook_End_11 * -4 and
weekly_prebooked_11 and pxcor < [xcor] of update-1 0

and pxcor ={n + Servers_booked_11)-1 + (Day_of_the_week_11-1 } * {(number_of_servers)
and not repeat_Daily_11 )

[ if Weekly Prebooked_11_Class = "None” [set pcolor grey]

77



if Weekly_Prebooked_11_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_11_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_11_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly Prebook_Start 12 * -4 and pycor >= Weekly Prebook End 12 * -4 and
weekly prebooked_12 and pxcor < [xcor] of update-1 0

and pxcor =(n + Servers_booked 12)-1 +(Day_of_the_week 12-1 ) * {number_of_servers)
and not repeat_Daily_12 )

[ if Weekly_Prebooked_12_Class = "None" [set pcolor grey]

if Weekly_Prebooked_12_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_12_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly Prebook_End_13 * -4 and
weekly_prebooked_13 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_13)-1 +(Day_of_the_week_13-1 ) * (number_of_servers)
and not repeat_Daily_13 )

[ if Weekly Prebooked_13_Class = "None" [set pcolor grey]

if Weekly_Prebooked_13_Class = "Class 2" [set pcolor 107]

if Weekly _Prebooked_13_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4 and
weekly_prebooked 14 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_14)-1 +(Day_of_the_week_14-1 ) * (number_of_servers)
and not repeat_Daily_14 )

[ if Weekly Prebooked_14_Class = "None" [set pcolor grey]

if Weekly_Prebooked_14_Class = "Class 2" [set pcolor 107]

if Weekly Prebooked_14_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ]

if { pycor <= Weekly_Prebook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4 and
weekly_prebooked_15 and pxcor < [xcor] of update-1 0

and pxcor =(n + Servers_booked_15) -1 +(Day_of_the_week_15-1 } * (number_of_servers )
and not repeat_Daily_15 )

[ if Weekly Prebooked_15_Class = "None" [set pcolor grey]

if Weekly_Prebooked_15_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_15_Class = "Class 4" [set pcolor 37] ]

78



if ( pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4 and
weekly prebooked_16 and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_16)-1 + (Day_of_the_week_16 -1 } * (number_of_servers)
and not repeat_Daily_16 )

[ if Weekly Prebooked_16_Class = "None" [set pcolor grey]

if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107]

if Weekly _Prebooked_16_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_16_Class = "Class 4" [set pcolor 37] ]

if { pycor <= Weekly_Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4 and

weekly prebooked_17 and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_17)-1 + (Day_of_the_week_17 -1 } * (number_of_servers)
and not repeat_Daily_17 )

[ if Weekly_Prebooked_17_Class = "None" |set pcolor grey]

if Weekly _Prebooked_17_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_17_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_17_Class = "Class 4" [set pcolor 37] ]

if { pycor <= Weekly_Prebook_Start_18 * -4 and pycor >= Weekly_Prebook_End_18 * -4 and

weekly prebooked_18 and pxcor < [xcor] of update-10

and pxcor = (n + Servers_booked_18)-1 +(Day_of_the_week_18-1 ) * (number_of servers)
and not repeat_Daily_18 )

[ if Weekly_Prebooked_18_Class = "None" [set pcolor grey]

if Weekly Prebooked_18_Class = "Class 2" [set pcolor 107]

if Weekly _Prebooked_18_Class = "Class 3" [set pcolor 47]

if Weekly Prebooked_18_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4 and

weekly prebooked_19 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_19)-1 + (Day_of the_week_19-1 ) * (number_of_servers)
and not repeat_Daily_19 )

[ if Weekly_Prebooked_19_Class = "None" [set pcolor grey]

if Weekly_Prebooked_19_Class = "Class 2" [set pcolor 107]

if Weekly Prebooked 19 Class = "Class 3" [set pcolor 47]

if Weekly Prebooked 19 Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4 and

weekly_prebooked 20 and pxcor < [xcor] of update-1 0

and pxcor = (n + Servers_booked_20)-1 + (Day_of_the_week 20-1 ) * (number_of_servers)
and not repeat_Daily_20 )

| if Weekly_Prebooked_20_Class = "None" [set pcolor grey]

if Weekly_Prebooked_20_Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_20_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_20_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly Prebook_Start_21 * -4 and pycor >= Weekly_Prebook_End_21 * -4 and
weekly_prebooked_21 and pxcor < [xcor] of update-1 0

79



and pxcor = (n + Servers_booked_21)-1 + (Day_of the_week_21-1 )* (number_of_servers)
and not repeat_Daily_21 )

[ if Weekly_Prebooked_21_Class = "None" [set pcolor grey]

if Weekly _Prebooked 21 Class = "Class 2" {set pcolor 107]

if Weekly_Prebooked_21_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked 21 Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4 and

weekly_prebooked_22 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_22)-1 + (Day_of_the_week_22 -1 ) * (number_of_servers)
and not repeat_Daily_22 )

[ if Weekly_Prebooked_22_Class = "None" [set pcolor grey]

if Weekly_Prebooked 22 Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked 22 Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked 22 Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4 and

weekly_prebooked_23 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_23)-1 +(Day_of _the_week_23-1 ) * (number_of_servers)
and not repeat_Daily_23 )

[ if Weekly_Prebooked_23_Class = "None" [set pcolor grey]

if Weekly_Prebooked 23 _Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_23_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked _23_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4 and

weekly_prebooked_24 and pxcor < {xcor] of update-1 0

and pxcor =(n + Servers_booked_24) -1 + (Day_of _the_week_24-1 ) * (number_of_servers)
and not repeat_Daily_24 )

[ if Weekly_Prebooked_24 Class = "None" [set pcolor grey]

if Weekly_Prebooked 24 Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_24_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_24 Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly Prebook_Start_25 * -4 and pycor >= Weekly_Prebook_End_25 * -4 and

weekly prebooked_25 and pxcor < [xcor] of update-10

and pxcor = {n + Servers_booked_25)-1 +(Day_of the_week_25-1 } * (number_of_servers)
and not repeat_Daily_25 )

[ if Weekly_Prebooked_25_Class = "None" [set pcolor grey]

if Weekly_Prebooked 25 Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked 25 Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_25_Class = "Class 4" [set pcolor 37] ]

if { pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4 and
weekly_prebooked_26 and pxcor < [xcor] of update-1 0
and pxcor = (n + Servers_booked 26)-1 + (Day_of _the_week_26-1 ) * (number_of_servers)
‘and not repeat_Daily_26 )
[ if Weekly_Prebooked_26_Class = "None" [set pcolor grey]

80



if Weekly_Prebooked_26_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_26_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_26_Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly _Prebook_Start_27 *-4 and pycor >= Weekly_Prebook_End_27 * -4 and

weekly prebooked 27 and pxcor < [xcor] of update-1 0

and pxcor =(n + Servers_booked_27) -1 + (Day_of_the_week 27-1 ) * (number_of servers)
and not repeat_Daily_27 )

[ if Weekly_Prebooked_27_Class = "None" [set pcolor grey]

if Weekly_Prebooked 27 Class = "Class 2" [set pcolor 107]

if Weekly _Prebooked 27 Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked 27 Class = "Class 4" [set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4 and

weekly_prebocked_28 and pxcor < [xcor] of update-10

and pxcor =(n + Servers_booked_28)-1 + (Day_of_the_week_28-1 ) * (number_of_servers)
and not repeat_Daily 28 )

[ if Weekly_Prebooked_28_Class = "None" [set pcolor grey]

if Weekly Prebooked 28 Class = "Class 2" [set pcolor 107]

if Weekly_Prebooked_28_Class = "Class 3" {set pcolor 47]

if Weekly_Prebooked_28 Class = "Class 4" {set pcolor 37] ]

if ( pycor <= Weekly_Prebook_Start_29 * -4 and pycor >= Weekly_Prebook_End_29 * -4 and

weekly prebooked 29 and pxcor < [xcor] of update-1 0

and pxcor = (n + Servers_booked_29)-1 + (Day_of _the_week 29-1 )* (number_of _servers)
and not repeat_Daily_29 )

[ if Weekly_Prebooked_29_Class = "None" [set pcolor grey]

if Weekly Prebooked 29 Class = "Class 2" [set pcolor 107]

if Weekly Prebooked_29_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_29_Class = "Class 4" [set pcolor 37] ]

if { pycor <= Weekly_Prebook_Start_30 * -4 and pycor >= Weekly_Prebook_End_30 * -4 and

weekly_prebooked_30 and pxcor < [xcor] of update-1 0

and pxcor =(n + Servers_booked_30)-1 + (Day_of_the_week_30-1 }* (number_of_servers)
and not repeat_Daily_30 )

[ if Weekly_Prebooked_30_Class = "None" [set pcolor grey]

if Weekly_Prebooked_30_Class = "Class 2" [set pcolor 107]

if Weekly _Prebooked_30_Class = "Class 3" [set pcolor 47]

if Weekly_Prebooked_30_Class = "Class 4" [set pcolor 37] ]

setn n+7* (Number_of_servers)

]

81



if [ycor] of update-1 0 = -96
[
if Weekly_Prebooked or Weekly_Prebooked_2 or Weekly_Prebooked_3 or Weekly_Prebooked_4 or
Weekly_Prebooked_5 or Weekly_Prebooked_6
or Weekly_Prebooked_7 or Weekly_Prebooked_8 or Weekly_Prebooked_9 or Weekly_Prebooked_10
or Weekly_Prebooked_11 or
Weekly_Prebooked_12 or Weekly_Prebooked_13 or Weekly_Prebooked_14 or Weekly_Prebooked_15
or Weekly_Prebooked 16 or Weekly_Prebooked_17 or Weekly_Prebooked_18 or
Weekly_Prebooked_19 or Weekly_Prebooked_20 or Weekly_Prebooked_21
or Weekly_Prebooked_22 or Weekly_Prebooked_23 or Weekly_Prebooked_24 or
Weekly Prebooked 25 or Weekly_Prebocked_26 or Weekly_Prebooked_27
or Weekly_Prebooked_28 or Weekly_Prebooked_29 or Weekly_Prebooked_30
[ask patches
[setnO
while [n <= [xcor] of update-1 0]

[

if pycor <= Weekly Prebook_Start * -4 and pycor >= Weekly_Prebook_End * -4
and pxcor = Servers_Booked_1 +n-1 and repeat_daily_1 and Weekly_Prebooked
[if Weekly _Prebooked_1_Class = "None" [set pcolor grey]
if Weekly Prebooked_1_Class = "Class 2" [set pcolor 107]
if Weekly Prebooked_1_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_1_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_2 * -4 and pycor >= Weekly_Prebook_End_2 * -4
and pxcor = Servers_Booked_2 + n-1 and repeat_daily_2 and Weekly_Prebooked_2
[if Weekly_Prebooked_2_Class = "None" [set pcolor grey]
if Weekly_Prebooked_2_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_2_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_2_Class = "Class 4" [set pcolor 37} ]

if pycor <= Weekly_Prebook_Start_3 * -4 and pycor >= Weekly_Prebook_End_3 * -4
and pxcor = Servers_Booked_3 +n-1 and repeat_daily_3 and Weekly_Prebooked_3
[if Weekly Prebooked_3_Class = "None" {set pcolor grey]
if Weekly_Prebooked_3_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_3_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_3_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_4 * -4 and pycor >= Weekly_Prebook_End_4 * -4
and pxcor = Servers_Booked_4 + n-1 and repeat_daily_4 and Weekly_Prebooked_4
[if Weekly Prebooked_4_Class = "None" [set pcolor grey]
if Weekly_Prebooked_4_Class = "Class 2" [set pcolor 107]

82



if Weekly_Prebooked_4_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_4_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_5 * -4 and pycor >= Weekly_Prebook_End_5 * -4

and pxcor = Servers_Booked_5 + n-1 and repeat_daily_5 and Weekly_Prebooked_5
[if Weekly_Prebooked_5_Class = "None" [set pcolor grey]

~ if Weekly_Prebooked_5_Class = "Class 2" [set pcolor 107]
if Weekly _Prebooked 5_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_5_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_6 * -4 and pycor >= Weekly_Prebook_End_6 * -4
and pxcor = Servers_Booked_6 + n-1 and repeat_daily_6

[if Weekly_Prebooked_6_Class = "None" [set pcolor grey]
if Weekly_Prebooked_6_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_6_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_6_Class = "Class 4" [set pcolor 37] ]

and Weekly_Prebooked_6

if pycor <= Weekly_Prebook_Start_7 * -4 and pycor >= Weekly_Prebook_End_7 * -4

and pxcor = Servers_Booked_7 + n-1 and repeat_daily_7 and Weekly_Prebocked_7
[if Weekly_Prebooked_7_Class = "None" [set pcolor grey]

if Weekly_Prebooked_7_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_7_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_7_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_8 * -4 and pycor >= Weekly Prebook End_8 * -4
and pxcor = Servers_Booked_8 + n-1 and repeat_daily_8
[if Weekly_Prebooked_8_Class = "None" [set pcolor grey]
if Weekly_Prebooked_8_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_8_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_8_Class = "Class 4" [set pcolor 37] ]

and Weekly_Prebooked 8

if pycor <= Weekly_Prebook_Start_9 * -4 and pycor >= Weekly_Prebook_End_9 * -4
and pxcor = Servers_Booked_9 + n -1 and repeat_daily_9
[if Weekly_Prebooked 9 Class = "None" [set pcolor grey]
if Weekly_Prebooked_9_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_9_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_9 Class = "Class 4" [set pcolor 371 ]

and Weekly_Prebooked_9

if pycor <= Weekly_Prebook_Start_10 * -4 and pycor >= Weekly_Prebook_End_10* -4

and pxcor = Servers_Booked_10+n-1 and repeat_daily_10 and Weekly_Prebooked_10



[if Weekly_Prebooked_10_Class = "None" [set pcolor grey]
if Weekly_Prebooked_10_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 10_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 10 _Class = "Class 4" {set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_11 * -4 and pycor >= Weekly_Prebook_End_11 * -4

and pxcor = Servers_Booked_11 + n-1 and repeat_daily_11 and Weekly_Prebooked_11
[if Weekly Prebooked 11 Class = "None" [set pcolor grey]

if Weekly_Prebooked_11_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_11_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_11_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_12 * -4 and pycor >= Weekly_Prebook_End_12 * -4

and pxcor = Servers_Booked_12 +n-1 and repeat_daily_12 and Weekly_Prebooked_12
[if Weekly_Prebooked 12_Class = "None" [set pcolor grey]

if Weekly_Prebooked _12_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_12_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_12_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_13 * -4 and pycor >= Weekly_Prebook_End_13 * -4

and pxcor = Servers_Booked_13 +n-1 and repeat_daily_13 and Weekly_Prebooked_13
[if Weekly_Prebooked_13_Class = "None" [set pcolor grey]

if Weekly Prebooked 13 Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_13_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_13_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_14 * -4 and pycor >= Weekly_Prebook_End_14 * -4
and pxcor = Servers_Bocked_14 + n-1 and repeat_daily_14
[if Weekly_Prebooked _14_Class = "None" [set pcolor grey]
if Weekly_Prebooked_14_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_14 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_14_Class = "Class 4" [set pcolor 37] ]

and Weekly_Prebooked_14

if pycor <= Weekly_Prebook_Start_15 * -4 and pycor >= Weekly_Prebook_End_15 * -4

and pxcor = Servers_Booked_15 + n -1 and repeat_daily_15 and Weekly_Prebooked_15
[if Weekly_Prebooked_15_Class = "None" [set pcolor grey]

if Weekly_Prebooked_15_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_15_Class = "Class 3" [set pcolor 47]
if Weekly Prebooked_15 Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_16 * -4 and pycor >= Weekly_Prebook_End_16 * -4
and pxcor = Servers_Booked_16 + n- 1 and repeat_daily_16 and Weekly_Prebooked_16

84



[if Weekly_Prebooked_16_Class = "None" [set pcolor grey]
if Weekly_Prebooked_16_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_16_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_16_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly Prebook_Start_17 * -4 and pycor >= Weekly_Prebook_End_17 * -4
and pxcor = Servers_Booked_17 + n-1 and repeat_daily_17 and Weekly_Prebooked_17
[if Weekly_Prebooked_17 Class = "None" [set pcolor grey]
if Weekly_Prebooked_17 Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 17 _Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 17 Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly Prebook_Start_18 * -4 and pycor >= Weekly_Prebook_End_18 * -4
and pxcor = Servers_Booked_18 +n-1 andrepeat_daily_18 and Weekly_Prebooked_18
[if Weekly_Prebooked 18 Class = "None" [set pcolor grey]
if Weekly_Prebooked_18_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_18_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_18_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_19 * -4 and pycor >= Weekly_Prebook_End_19 * -4
and pxcor = Servers_Booked_19 + n-1 andrepeat_daily_19 and Weekly_Prebooked_19
[if Weekly_Prebooked_19_Class = "None" [set pcolor grey]
if Weekly_Prebooked_19_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked _19_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_19_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_20 * -4 and pycor >= Weekly_Prebook_End_20 * -4
and pxcor = Servers_Booked_20+ n-1 and repeat_daily_20 and Weekly_Prebooked_20
[if Weekly_Prebooked_20_Class = "None" [set pcolor grey]
if Weekly_Prebooked_20_Class = "Class 2" [set pcolor 107]
if Weekly _Prebooked 20_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_20_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_21 * -4 and pycor >= Weekly_Prebook_End_21* -4
and pxcor = Servers_Booked_21 +n-1 andrepeat_daily_21 and Weekly_Prebooked_21
[if Weekly_Prebooked_21_Class = "None" {set pcolor grey]
if Weekly_Prebooked_21_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked _21_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_21_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_22 * -4 and pycor >= Weekly_Prebook_End_22 * -4
and pxcor = Servers_Booked_22 + n-1 and repeat_daily_22 and Weekly_Prebooked_22
[if Weekly_Prebooked_22_Class = "None" [set pcolor grey] ’
if Weekly_Prebooked_22_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_22_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_22_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_23 * -4 and pycor >= Weekly_Prebook_End_23 * -4

85



and pxcor = Servers_Booked_23 + n-1 and repeat_daily_ 23  and Weekly_Prebooked_23
[if Weekly_Prebooked 23_Class = "None" [set pcolor grey]
if Weekly_Prebooked_23_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 23 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 23 _Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_24 * -4 and pycor >= Weekly_Prebook_End_24 * -4
and pxcor = Servers_Booked_24 +n-1 andrepeat_daily_24 and Weekly_Prebooked_24
[if Weekly_Prebooked_24_Class = "None" [set pcolor grey]
if Weekly_Prebooked_24_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked 24 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 24_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_25 * -4 and pycor >= Weekly_Prebook_End_25 * -4
and pxcor = Servers_Booked_25 + n-1 and repeat_daily_25 and Weekly_Prebooked_25
[if Weekly_Prebooked_25_Class = "None" [set pcolor grey]
if Weekly_Prebooked_25_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_25_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_25_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_26 * -4 and pycor >= Weekly_Prebook_End_26 * -4
and pxcor = Servers_Booked_26 + n-1 and repeat_daily_26 and Weekly Prebooked_26
[if Weekiy_Prebooked_26_Class = "None" [set pcolor grey]
if Weekly_Prebooked_26_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_26_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked _26_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_27 * -4 and pycor >= Weekly_Prebook_End_27 * -4
and pxcor = Servers_Booked_27 + n-1 and repeat_daily_27 and Weekly_Prebooked_27
[if Weekly_Prebooked 27 Class = "None" [set pcolor grey]
if Weekly_Prebooked 27_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_27_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 27_Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly Prebook_Start_28 * -4 and pycor >= Weekly_Prebook_End_28 * -4
and pxcor = Servers_Booked_28 + n-1 and repeat_daily_28 and Weekly_Prebooked_28
[if Weekly_Prebooked 28_Class = "None" [set pcolor grey]
if Weekly_Prebooked_28 Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_28 Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked 28 Class = "Class 4" [set pcolor 37] ]

if pycor <= Weekly_Prebook_Start_29 * -4 and pycor >= Weekly_Prebook_End_29 * -4
and pxcor = Servers_Booked_29 +n-1 and repeat_daily 29 and Weekly_Prebooked_29
[if Weekly_Prebooked_29_Class = "None" [set pcolor grey]
if Weekly_Prebooked 29_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_29_Class = "Class 3" [set pcolor 47]
if Weekly_Prebooked_29_Class = "Class 4" [set pcolor 37] ]

86



if pycor <= Weekly_Prebook_Start_30 * -4 and pycor >= Weekly_Prebook End 30 * -4
and pxcor = Servers_Booked_30+n-1 and repeat_daily_30 and Weekly_Prebooked_30
[if Weekly_Prebooked_30_Class = "None" [set pcolor grey]
if Weekly Prebooked 30_Class = "Class 2" [set pcolor 107]
if Weekly_Prebooked_30_Class = "Class 3" [set pcolor 47]
if Weekly Prebooked 30_Class = "Class 4" [set pcolor 371 ]

setn n+ Number_of servers

]

FEPIIIIRIIIRII PRI SRR SIS PP IR RLLIIIIIIIISI PSR RPI IR LRI IIINIIRIINIRIINIIIIIIIRIIIIIIR NI IRIIRIIRIPRIPIRRIINISIEIIINIEIIIIY

S = UP DATE-PLOT-CLASS2 - r1stsrrsssrsrsseereseasarrttriasssssntrutstsesiersstissssssssisssttaiassnrasessessess

FIPIIIRIIIIRINRIINIISIRIRIII IR IIIRI I IR IIRIRERIIRIRIIBRISIIIIIIIIIIIIIIIIIINIIIIRNINLYY

TIPIIIFEIIRIPIIIIIIRIIILFIIIIIIIFIIEIS NI ARR RN IRRLIIII TR IRIS RN IIIDIIRRDIIIIN DI IIRIASRNNNIIRRIIILIISIIINIIIIIIINRIIINENININIIIGY)

;; This block updates the plot of class two patient wait times.
;; The code counts the number of days (columns) between the current time (updater) and the
appointment patch to determine the days waited.
to update-plot-class2
set-current-plot "Wait Time for Class 2 Patients”
set-current-plot-pen "Class 2"
plot-pen-down
ifelse [xcor] of one-of class-2-patients >= [xcor] of update-1 (Number_of_Servers - 1)
[
plot floor ({[xcor] of one-of class-2-patients - [xcor] of update-1 (Number_of_Servers - 1)) /
Number of_Servers)
set class2total class2total + floor({ ([xcor] of one-of class-2-patients - [xcor] of update-1
(Number_of_Servers - 1)} ) / Number_of _Servers )
if Record [ file-write "Class 2" file-print floor ({[xcor] of one-of class-2-patients - [xcor] of update-1
(Number_of_Servers - 1)) / Number_of_Servers }]
1
[
plot floor {{max-pxcor - [xcor] of update-1 (Number_of_Servers - 1) + [xcor] of one-of class-2-
patients} / Number_of_Servers)
set class2total class2total + floor {(( max-pxcor - [xcor] of update-1 (Number_of_Servers - 1) + [xcor]
of one-of class-2-patients)) / Number_of_Servers)

87



if Record [file-write "Class 2" file-print floor ((max-pxcor - [xcor] of update-1 (Number_of Servers - 1)
+ [xcor] of one-of class-2-patients) / Number_of _Servers) ]

]

SIREIRIIIFIIII ISP IRIIR ISP IFIIEIIIRIIIINEINFRIITIIIFIIIRIIIRIINIII IR ESFIRRRTIIIIINIIIIDIIIRININISISIRRIIRIRIIIIINIIIIIIIILIYY

;; This block updates the plot of class three patient wait times.
;; The code counts the number of days (columns) between the current time (updater) and the
appointment patch to determine the days waited.
to update-plot-class3
set-current-plot "Wait Time for Class 3 Patients"
set-current-plot-pen "Class 3"
plot-pen-down
ifelse {xcor] of one-of class-3-patients >= [xcor] of update-1 (Number_of Servers -1)
[
plot floor {{[xcor] of one-of class-3-patients - [xcor] of update-1 (Number_of _Servers - 1)} /
Number_of_Servers )
set class3total class3total + floor({ ([xcor] of one-of class-3-patients - [xcor] of update-1
(Number_of Servers - 1)} ) / Number_of_Servers )
if Record [ file-write "Class 3" file-print floor (([xcor] of one-of class-3-patients - [xcor] of update-1
(Number_of_Servers - 1)) / Number_of_Servers ) ]
]
[

plot floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers - 1) + [xcor] of one-of class-3-
patients) / Number_of_Servers)
set class3total class3total + floor ({( max-pxcor - {xcor] of update-1 (Number_of Servers - 1} + [xcor]
of one-of class-3-patients)) / Number_of Servers)
if Record [ file-write "Class 3" file-print floor ((max-pxcor - [xcor] of update-1 (Number_of_Servers -
1) + [xcor] of one-of class-3-patients) / Number_of_Servers) ]

]

FEVRRRIEDIRRIRIIRILIRIRIILI LI FT 20200 002002000 000000 000 000000 00000 000800 8000000 0000 0FF i00000000000000F808000850022237

;; This block updates the plot of class four patient wait times.

;; The code counts the number of days (columns) between the current time {(updater) and the
appointment patch to determine the days waited.

to update-plot-class4

88



set-current-plot "Wait Time for Class 4 Patients"
set-current-plot-pen "Class 4"
plot-pen-down
ifelse [xcor] of one-of class-4-patients >= [xcor] of update-1 (Number_of_Servers - 1)
|
plot floor ({[xcor] of one-of class-4-patients - [xcor] of update-1 (Number_of Servers - 1))/
Number_of Servers)
set class4total class4total + floor(({ {[xcor] of one-of class-4-patients - [xcor] of update-1
{Number_of Servers - 1))}/ Number_of_Servers )
if Record [ file-write "Class 4" file-print floor ({[xcor] of one-of class-4-patients - [xcor] of update-1
(Number_of_Servers - 1)) / Number_of_Servers )]
]
[

plot floor {(max-pxcor - [xcor] of update-1 {Number_of Servers - 1} + [xcor] of one-of class-4-
patients) / Number_of_Servers)

set class4total class4total + floor ({{ max-pxcor - [xcor] of update-1 (Number_of_Servers - 1} + [xcor]
of one-of class-4-patients)) / Number_of_Servers)
if Record [ file-write "Class 4" file-print floor floor ({(max-pxcor - [xcor] of update-1 (Number_of_Servers
- 1) + [xcor] of one-of class-4-patients) / Number_of_Servers) 1]

PRPIRRIRIRIRIFRIIPIIPIPRRIIIINILINIS R IR I T IR IR RIS PR D RIS INRDIIRIRINIIIIIIRRDRIIIFDINIINIIIIIRIIINZIIIIIIILLY

89



Vita Auctoris

Brendan Eagen was born in Windsor, Ontario. He graduated from Assumption High School in 2003. From
there he went on to the University of Windsor where he obtained a BASc in Industrial and
Manufacturing Systems Engineering in 2007. He is currently a candidate from for the Master’s degree in
industrial and Manufacturing Systems Engineering at the University of Windsor and hopes to graduate in
Fall 2009.

90



	Analysis of scheduling in a diagnostic imaging department: A simulation study
	Recommended Citation

	ProQuest Dissertations

