
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Backfilling with fairness and slack for parallel job scheduling Backfilling with fairness and slack for parallel job scheduling

Wei Jin
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Jin, Wei, "Backfilling with fairness and slack for parallel job scheduling" (2009). Electronic Theses and
Dissertations. 7970.
https://scholar.uwindsor.ca/etd/7970

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7970?utm_source=scholar.uwindsor.ca%2Fetd%2F7970&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Backfilling with Fairness and Slack for Parallel Job

Scheduling

By

Wei Jin

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2009

© 2009 Wei Jin

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-57637-3
Our We Notre reference
ISBN: 978-0-494-57637-3

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• • I

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise,

are fully acknowledged in accordance with the standard referencing practices. Furthermore,

to the extent that I have included copyrighted material that surpasses the bounds of fair

dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a

written permission from the copyright owner(s) to include such material(s) in my thesis and

have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

i n

Abstract

Parallel jobs have different runtimes and numbers of threads/processes. Thus, scheduling

parallel jobs involves a packing problem. If jobs are packed as tightly as possible, utilization

will be improved. Otherwise, some resources have to stay idle. The common solution to deal

with idle resources is backfilling, which schedule smaller jobs submitted later to execute

earlier as long as they do not postpone the first job or all the previous jobs in the waiting

queue. Traditionally, backfilling uses first fit for idle resources, according to the submission

order. However, in this case, better packing of jobs could be missed. Hence, we propose an

algorithm which looks further ahead if significantly improving utilization. However at the

same time, this could be unfair to some jobs ahead in the queue. So we use a delay factor as a

constraint to limit unfairness. We propose a branch and bound algorithm which selects jobs

for backfilling which keep utilization high, while trying to stay close to

First-Come-First-Served (FCFS). We evaluate relative response time and utilization and

compare to other backfilling approaches. The selection of jobs for backfilling to optimize for

high utilization and low delay is implemented as an extension of the existing Scojo-PECT

preemptive scheduler.

IV

To my mother, Jianhua Zhang

my father, Guoshun Jin

V

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to my supervisor Dr.

Angela C. Sodan. Without her extensive guidance and constant encouragement, I could not

finish this thesis. I would also like to thank all committee members, Dr. Wai Ling Yee, Dr.

Ahmed Tawfik and Dr. Peter Tsin for their valuable time and comments.

My special thanks go to my parents and my brother. Their love and care have always been

with me during these years. Their trust and encouragement pulled me through hard times.

I would like to thank Xiejie Zeng, and Xiaorong Cao for the happy experience during the

time I worked with them. And especially the help they gave to me during these years.

Last, but not least, I would like to thank all of my friends for all the help and support during

the completion of this thesis.

VI

Table of Contents

Author's Declaration of Originality iii

Abstract iv

Dedication v

Acknowledgements vi

List of Tables ix

List of Figures x

Chapter 1. Introduction 1

Chapter 2. Background and Related Work 5

Chapter 3. Space Sharing and Backfilling Strategy 8

Chapter 4. Backfilling with Fairness and Slack for Parallel Jobs 13

4.1. Assumptions and Goals 13

4.2. Scheduling Objectives 16

4.3. Scheduling Algorithm 19

4.3.1. Job Fair Start Time 19

4.3.2. Job Slack 21

4.3.3. Job Selection 24

4.4. Incorporation into Scojo-PECT 31

Chapter 5. Experiments and Results Analysis 35

5.1. Experimental Set-up 35

5.2. Performance Results 37

vii

5.3. Impact of Different Parameters and Workload 39

5.4. Impact of Different Workloads 42

Chapter 6. Summary and Conclusion 49

Chapter 7. Future Work 51

Reference 52

Vita Auctoris 56

viii

List of Tables

Table 1. Terms used throughout the formulas in the thesis 17

Table 2. Workload characteristics 36

Table 3. Scheduler parameters and values used in the experiments 37

Table 4. Utilizations of different time interval 42

ix

List of Figures

Figure 1. Space Sharing for different parallel jobs 8

Figure 2. FCFS job scheduling 9

Figure 3. Conservative Backfilling 10

Figure 4. Job's Estimate Start Time 11

Figure 5. Pseudo code for calculating fair start time 21

Figure 6. Slack Factor with different waiting time 22

Figure 7. Flow chart for core scheduling algorithm 30

Figure 8. Partial Flow chart for core scheduling algorithm 31

Figure9. RR for original scheduler and backfill with fairness and slack scheduling

with Workload Wl and Goal Gl 38

FigurelO. RR for original scheduler and backfill with fairness and slack scheduling

with Workload W land Goal G2 38

Figure 11. RR for different lookahead number for backfilling with fairness

and slack with Workload Wl and Goal Gl 39

Figure 12. RR for different lookahead number for backfilling with fairness

and slack with Workload Wl and Goal G2 40

Figurel3. RR for different lookahead number for backfilling with fairness

and slack scheduling with Workload W2 and Goal Gl 40

Figure 14. RR for different lookahead number for backfilling with fairness

and slack scheduling with Workload W2 and Goal G2 40

X

Figurel5. RR for different slack factor for backfilling with fairness and scheduling

slack with Workload Wl and Goal Gl 41

Figure 16. RR for different slack factor for backfilling with fairness and scheduling

slack with Workload W land Goal G2 42

Figure 17. RR for original scheduler and backfill with fairness and slack scheduling

with a = 10.43 and Gl 44

Figurel 8. RR for original scheduler and backfill with fairness and slack scheduling

with a =10.43 and G2 45

Figure 19. RR for original scheduler and backfill with fairness and slack scheduling

with a = 10.73 and Gl 45

Figure20. RR for original scheduler and backfill with fairness and slack scheduling

with a =10.73 and G2 45

Figure21. RR for original scheduler and backfill with fairness and slack scheduling

with a = 10.05 and Gl 46

Figure22. RR for original scheduler and backfill with fairness and slack scheduling

with a = 10.05 and Gl 46

Figure23. Improvement for different workload for backfilling with fairness

and slack scheduling with Goal Gl 47

Figure24. Improvement for different workload for backfilling with fairness

and slack scheduling with Goal G2 : 48

xi

Chapter 1: Introduction

In High Performance Computing (HPC) field, job scheduling is an important issue. It acts

like an inter medium with one side is processors and the other side is jobs. Its role is to

decide certain jobs running in certain nodes during a specific time. In this context, each jobs

is referred as an application which may be composed by one process or multiple processes.

In job scheduling, there are two basic types of approaches which are time sharing and space

sharing. With time sharing, processors are shared by multiple processes with time slices, so

jobs are running on the same processors. In this case, jobs will be suspended even though

they are not finished at the end of time slice. And new jobs are switched to these processors

in the following slice time and run until the end of their time slice. Hence the most obvious

advantage is that later submitted jobs could start earlier. The reason is that these later

submitted jobs do not have to wait until all the previous ones finished, and they will start to

run only at their own time slices. However, time sharing suffers high overload from

switching processes. Another issue in time sharing is coordination which means that

processes of the same job communicate with each other by sending or receiving messages. In

this case, any processors can be chosen to run any processes. Their relationship is

independent. Hence, when communicating among processes, there are chances that some

processes of a job would have to wait for this job's other processes in different processors if

these processes cannot run at the same time. With space sharing, processors are assigned

exclusively to certain processes and until these processes finish running. This feature makes

i

jobs unsuspended. Therefore, compared with time sharing, space sharing does not have

overhead for switching jobs. Because of no switching, space sharing is also much easier to

implement, but unfortunately, the disadvantage of space sharing is obviously that some

processors are staying idle during some time periods because of imperfect packing of jobs.

These idle resources sometimes show like fragments. In order to improve the performance,

the size of fragment has to be decreased, and this problem is like solving bin packing

problem [30] [31] [32] to some extent. A lot of scheduling approaches have been proposed to

reduce the size of fragment as much as possible, such as implicit or dynamic coscheduling to

time sharing, and different ways to move later smaller jobs ahead to run in these fragment

areas in order to pack jobs as tightly as possible and to some extent improve the utilization of

resources.

In order to evaluate the performance of a scheduling approach, there are some well-known

metrics. From the perspective of system performance one metric is utilization which is usage

of resources. The utilization is equal to the ratio of used resources to total resources during a

period of time. Therefore, the fewer resources are idle, the higher utilization is and the better

performance is. Another metric is response time which is based on the benefits of users,

because it shows how fast the system finishes scheduling users' submission jobs. Response

time is related to some factors which are the time a job has to wait before it starts and the

time a job finishes running. Hence, it is a time period between the job's submission time and

the job's finishing executing time. However, usually average response time of all jobs is

calculated instead of each job's response time. Because in some situations, single user's

2

request is treated badly, but the overall users' requests are treated very well. In addition, there

is another metric, fairness, which is used to evaluate each individual job. For each job, it may

be treated preferentially which means it is scheduled to start earlier than supposed to be. And

also it may be treated unfairly which is just the opposite of the former. However, in fact all

these metrics work contradictorily. If getting higher utilization, the fairness may become

worse and average response time may increase. If getting better fairness or lower average

response time, the utilization may decrease. Therefore, scheduling approaches take some

metrics as main goal and keep other metrics as constraint, e.g. in the meantime of getting

higher utilization, there is a slack (Chapter 4.3.1) defined to set as a threshold so that every

single job's fairness is under control.

Backfilling [1] is a common solution to deal with the idle resources, which schedule smaller

later submitted jobs to execute earlier to improve the resources utilization. Also it has been

implemented in several production schedulers [15]. According to different rules, there are

different backfilling approaches. The first one is to move later smaller jobs ahead as long as

they do not postpone the first job, which is called Easy (Aggressive) Backfilling [14][1]. The

other one called Conservative Backfilling [14] [1] is much more constraint which only moves

later smaller jobs ahead if they do not delay all the previous jobs in the waiting queue.

Traditionally, backfilling uses first fit jobs for idle resources, according to some heuristics

such as the submission order, or jobs' response time [17] [6]. However, in this case, better

packing of jobs could be missed. Hence, we propose an algorithm which looks further ahead

and do conservative backfill with slack on those jobs instead of early ones if they can

3

significantly improve utilization. This algorithm of selecting jobs is based on branch and

bound algorithm and the jobs are chosen should keep utilization high, while trying to stay close

to FCFS [16]. Heuristics are used to simplify the NP-Hard problem to cut the tree's branch.

However at the same time, this could be unfair to some jobs ahead in the queue and preferential

to some jobs later in the queue. Hence we use a delay factor as a constraint to limit unfairness.

In this situation, instead of not delaying any previous jobs when backfilling later smaller

submitted jobs, the algorithm we apply allows and defines different slack to each individual

job at different time so that every job can be delayed by its slack. Besides, average unfairness

for both treated unfairly and preferentially jobs are calculated to compare with FCFS. Adding

slack to the jobs makes conservative backfilling more flexible, and can increase the chances of

backfilling more jobs.

The rest of the thesis is organized as follows. At first, in Chapter 2, background issues are

discussed. Then the specification of the problem and what can be improved in Chapter 3.

And the algorithm is described in details in Chapter 4. In Chapter 5, the simulation,

experiments and results analysis are presented. At last, there are conclusion of the thesis in

Chapter 6 and some future work about this thesis in Chapter 7.

Chapter 2: Background and Related Work

In some former work, a relaxed backfilling is used by applying a slack factor on the wait time

of the highest-priority job which is always the first one in the waiting queue [11]. Priority is

calculated by a number of parameters like wait time, runtime, size and importance of jobs.

The approach in [11] employs EASY backfilling. Benefits in evaluation are only shown when

the slack factor is very high equaling 2, which means slack is twice the wait time. A more

general idea of slack was introduced in [10]. Each job is assigned a slack which is based on

(dynamically changing) priority, average wait times, and a static delay-tolerance factor.

Most backfilling approaches make one-by-one decisions and use first-fit, i.e. select the first

job from the waiting queue which can be moved ahead without violating the backfill

guarantees. The scheduler in [10] proposes several heuristics to re-order the waiting queue

within the ranges of determined slack per job. The lookahead scheduling in [7], employed in

the context of EASY backfilling, applies a more global perspective and optimizes which

group of jobs is best to backfill under the metric of momentary increase of utilization. If

utilization is the same for different job combinations, a second metric is applied for which

maximum slowdown of the selected jobs evaluated best. Looking ahead 50 jobs was found to

deliver almost equally good results as looking at all jobs in the waiting queue. For a system

load (overall utilization) of 85%, average relative response times are improved by about

50%.

Similar effects as relaxation can be obtained from overestimation. Overestimation leads to

larger windows for backfilling smaller/shorter jobs. In [13], overestimates are investigated

which are either a static factor or random (up to twice the factor). Up to 25% improvements

were obtained if the overestimations were random but only if the lengthening had a very

wide range (up to a factor of 20). The scheduling policy used was shortest-job-first.

Whether EASY or conservative backfilling performs better was found to largely depend on

the workload and on the evaluation metric used (average response times or average relative

response times) though, more often, EASY performs slightly better [5]. Investigations per job

type (under basically FCFS scheduling) [9] found that long-narrow jobs benefit from EASY

backfilling, whereas short-wide jobs do better with conservative backfilling, and

short-narrow and long-wide jobs do equally well under both schemes. The differences

become more significant under high load. Combined scheduling which permits a certain

factor of delays (either using the overall running average or job-type-specific running

averages) for relative response times with EASY scheduling and schedules jobs

conservatively if exceeding their corresponding relative delay bound. With job-type-specific

delays factors, improvements were obtained for all job types (even for long-wide jobs) and

for all jobs of about 40%, while also lowering worst cases.

A consideration closely related to backfilling is fairness for which several metrics were

proposed. Start times may be predicted from runtime estimates if using conservative

backfilling, relative changes toward this prediction are calculated in [9] [8]. In [6],

6

differences of larger actual start times and predicted start time in relation to the overall

number of jobs are used as unfairness metric to judge the fairness of job schedulers. Another

unfairness metric—suitable e.g. for time sharing—considers any positive differences between

needed resources and allocated resources over the final runtime of the job. It means how

many resources a job uses compared with how many resources a job is supposed to have.

Both metrics are calculated in retro to compare the overall fairness of different scheduling

policies. As a result, no-guarantee backfilling and SJF (shortest-job-first) rate as much more

unfair under both metrics than FCFS and LXF (largest-expansion-factor-first with expansion

factor being the current relative response based on the estimated runtime). Wide jobs were

found to be treated extremely unfair under no-guarantee backfilling.

Slack was also applied in grid computing, mainly to deal with the problem of reservations

(which can cause fragmentation) and finding scheduling slots. Reservation times may be kept

flexible within certain time frames to adjust to dynamic resource availabilities, including

dynamic finishing times of other jobs or insertion of other jobs for better utilization [2][4][3].

In [2], heuristics are used to re-schedule some of the reservations. This approach is suitable

for workflow scheduling. With a large slack factor (applied to runtimes!) of 2, the probability

of rejecting a reservation decreases by about 80%. A similar approach for slack calculation is

applied in [3], where slack is calculated as average waiting time which can be a multiple of

the average runtime if the load is high (and much more if the job's runtime is far below the

average). A similar idea is to extend reservations for tasks in a workflow graph to deal with

uncertainties and possible delays from preceding jobs overrunning their reservations [12].

7

Chapter 3: Space Sharing and Backfilling Strategy

Our strategy of Backfilling with Fairness and Slack for Parallel Jobs Scheduling supports

space sharing which we define more precisely as follows:

Space sharing: Resources are grouped in a dedicated way. The processors which are

defined as space and shared by different processes, i.e., different groups of resources are

assigned exclusively to certain parallel jobs.

1

resources
8

6

4

2

i

Jo1>2

Jobl -

• ;

JobS

. • • • • •

0
time

Figure 1. Space Sharing for different parallel jobs.

In Figure 1, there are eight resources just like space. At time 0, Jobl and Job2 are sharing all

the eight resources, but exclusively using a group of them. And no more resources for Job3 at

time 0, then Job3 has to start at time 4 after all the previous jobs finished and also use a

group of resources.

In job scheduling, First-Come-First-Serve (FCFS) [16] is viewed as the fairest schedule. Take

the Figure 2 as an example; the submission order is from Jobl to Job6, so the serving order is

also from Jobl to Job6. However, some resources from time 0 to time tl, and some other

resources from time 0 to time t2 are idle, which means no jobs are running on these resources,

and this idle area is called fragment in this context. The reason why this happens is in that

some large jobs come earlier could possibly prevent other later submitted jobs from using

resources.

*

Johl

i

Job:
Job-? j

* JV>h>
i

|Job4 j J ° h n

<)'""" ' * " 11 * t2 t3 t4 time

Figure 2. FCFS job scheduling.

In the figure above, Job3 submits earlier than Job4, Job5, and Job6. And Job3 uses all of the

resources, so Job4 and Job5 have to wait until Job3 finished and use a group of resources

exclusively. Obviously, FCFS has poor utilization and bad response time (Chapter 1), though

it is the fairest schedule.

Hence, from the explanation and figure above, in order to improve resources utilization and

decrease response time, the size of fragment should shrink as much as possible. To deal with

this problem, intensive research has been done to decrease fragment and to optimize the

space sharing strategy [27]. Backfilling [28] is one important approach of these different

strategies. The main purpose of backfilling is to allow moving later smaller submitted jobs

ahead to fill the fragment. There are basically two kinds of backfilling. One is easy

backfilling [29], which moves later smaller jobs submitted ahead only if they do not delay the

first job versus its normal scheduling time in the job queue. The other one is conservative

9

backfilling [28], which moves later smaller submitted jobs ahead but do not delay any

previous jobs in the job queue versus their normal scheduling time [26]. In this context, all

the backfilling are applied based on conservative backfilling. And conservative backfilling is

explained in details as follows:

A

Job!

Job5

Job2

•

JobS FobO

Job4
•

0
tune

Figure 3. Conservative Backfilling.

Comparing Figure 3 with Figure 2, Job 5 starts at time 0 instead of time t3. When a job is

firstly submitted, it will check all the fragments to find a fragment which is large enough to

schedule the job. The fragment which is large enough means the number of free resources is

at least the same as the size of job, and the idle time for these resources should at least equal

to the runtime of this job. In Figure 3, at time 0, the number of resources is bigger than the

size of Job4, but the idle time of these resources is less than the runtime of Job4. If

backfilling Job4, then Job3 will be delayed versus its normal scheduling time which disobey

the definition of conservative backfilling. Hence, Job4 has to be scheduled after all of its

previous jobs finished. However for Job5, the situation is different, because the idle time of

these resources is larger than the runtime of Job5. If Job5 is backfilled, all jobs are not

delayed versus their scheduling time. Therefore, Job5 is scheduled at time 0 and sharing a

group of resources exclusively sharing with Jobl. Comparing Figure of 2 with Figure 3, the

10

size of fragment is much smaller than in Figure 3. In another word, the utilization of

resources increases, and in the mean time the response time of jobs decreases. Therefore, the

changes of both metrics stand that the performance is improved.

From the description of conservative backfilling above, there is obviously a limitation of

backfilling which it is job's runtime. The job runtime is usually obtained based on user's

estimation or history date of running this job, however it is not accurate. Besides, it is

necessary that one more thing should be obtained before doing conservative backfilling

which is every job's estimate start time. Traditionally, the estimate start time of every job is

calculated based on FCFS and conservative backfilling [1]. At first, it simulate

conservatively backfilling all the previous jobs and get the whole fragments. Then

conservatively backfill again on the new submit job, and the time for this job to start running

is this jobs' estimate start time.

A

Johl

JoM

JulO
Jol>4

Jol'O

i

* Joi>5
E

f
|
I

1

fr-

Figure 4. Job's Estimate Start Time.

In Figure 4, all jobs get their estimate start time based on FCFS and conservative backfilling.

Such as Jobl's estimate start time is at time 0, Job2 has to start running after Jobl and its

estimate start time is tl. Then Job3 is submitted, which can be conservatively backfilled at

ii

time 0. Hence Job3's estimate start time is also at time 0 which is the same as Jobl. Job4 and

Job5 have to schedule at time t2 and t3 respectively. Job6 performs similarly with Job3. Job6

is conservatively backfilled at time t2, so Job6's estimate start time is at time t2. However,

Backfilling with Fairness and Slack for Parallel Jobs Scheduling does not simply adopt

conservative backfilling, and it makes some changes to the original conservative backfilling

strategy. Hence, the way to calculate every job's start time is different and is explained in

detail in Chapter 4.3.1.

12

Chapter 4: Backfilling with Fairness and Slack for

Parallel Jobs Scheduling

This algorithm of Backfilling with Fairness and Slack for Parallel Jobs Scheduling is

implemented as an extension of the existing coarse-grain Scojo-PECT preemptive scheduler

[18]. In coarse-grain Scojo-PECT preemptive scheduler, the rule always chooses the first fit

jobs to backfill according to jobs' submission order which can be viewed as FCFS. The

backfilling in Scojo-PECT can be conservative backfilling or easy backfilling, and the jobs

chosen to backfill cannot delay any previous jobs or the first job according to different

backfilling strategies. However, Backfilling with Fairness and Slack for Parallel Jobs

Scheduling, instead of choosing jobs to backfill according to jobs' submission order, looks

further ahead and chooses later submitted jobs in the queue to backfill if they can improve

utilization significantly. However, this could be unfair to some jobs ahead of the queue.

Therefore at the same time, this backfilling strategy adds slack to each job. Hence, the slack

can act as a controller so that unfairness of each job would be limited and no individual job is

delayed severely. And meanwhile, backfilling is also set to be more flexible, in which each

job can be delayed by its slack other than no delay at all.

4.1 Assumptions and Goals

1. The Backfilling with Fairness and Slack for Parallel Jobs Scheduling algorithm is based

on the following assumptions.

13

• In each node, there is only one processor, and at each time, only one process is scheduled in

each processor.

• Instead of threads, jobs are composed by processes, with which jobs are more flexible to

schedule on different processors, e.g. MPI applications.

• The job's size is the number of processes. And also the number of processors a job needs is

the same with the number of processes, because of the first assumption.

• Besides the job's size, job's runtime and other characteristics information sufficiently to

calculate unfairness should be known when a job is submitted. For a job's size, users can

provide it. For a job's runtime and other characteristics, one way is based on history data of

scheduling this job. The other way is to simulate running this job with a sample input. This

sample input is actually the same used in the testing environment. Then get runtime and

characteristics from the execution.

• Mostly there are three kinds of jobs based on the situation of processes they need. The first

one is rigid jobs, which means the size of this kind of job cannot be changed with fixed

number of processes. The second one is moldable jobs, and their size can be changed only

at the time they begin to run. And the last one is malleable jobs. The size of this kind of job

can be changed at the start running time and even during the execution. However only rigid

jobs are considered in this implementation.

• From the perspective of jobs' property, jobs can be serial which only need one processor or

parallel jobs with power-of-two size which need at least two processors. This can be found

in many practical parallel system logs [19]. In this workload, most jobs are serial and some

are parallel.

14

2. The Backfilling with Fairness and Slack for Parallel Jobs Scheduling is designed with

following goals:

• Provide a flexible conservative backfilling takes advantage of every jobs' slack (Chapter

4.2). Slack defines that every job can start running later than they are supposed to be.

However, this time period of each job is different. The jobs with longer wait time

(Chapter 4.2) get smaller slack factor. In contrary, the jobs with shorter wait time get

bigger slack factor. And there is also a range of all the jobs' factor, which means the

factor cannot be too big or too small.

• Lookahead in the queue to find best packing of jobs to backfill, instead of backfilling first

fit jobs according to submission order. There are two goals we want to check. For the

primary goal, the jobs selected to backfill should stay close to FCFS, but keep utilization

high and unfairness low. For the opposite goal, the jobs selected to backfill increase

utilization significantly, but also should stay reasonably close to FCFS and keep

unfairness low.

• The order of jobs will be changed under the backfilling strategy compared to the FCFS

order. So the average unfairness is applied to all jobs to make sure that no individual job

is treated too unfairly or too preferentially.

• Improve system utilization, typically during the high-load phases. Reduce average

relative response time to provide better services to users.

is

4.2 Scheduling Objectives

The objective of the scheduler is to select best packing of jobs from all possible packings in

order to obtain higher utilization in phases of high-load, and decrease jobs' average response

time while keeping unfairness low. In [20], this paper points out that higher utilization in

high-load phases seems to get better average response time. Only some jobs in high-load

phases will be delayed when the schedulers with less utilization. However, these delayed jobs

will be scheduled when the following low-load phases comes. Therefore, from the whole

process, all the jobs could not queue-up. In addition, when the schedulers have high utilization,

they would not delay jobs during high-load phases and keep the resources idle or very lowly

loaded during low-load phases. Note: as long as jobs could not be queued-up and the

schedulers can deal with the workload, overall utilization almost does not change under

different scheduling policies if the workload remains the same.

Thus we use both job average response time and utilization improvement as primary objectives

while every job's delay factor is a constraint. This requires us to formally define high-load

phases, resources utilization, unfairness, and response time. Terms used through the thesis are

listed and explained in Table 1.

16

Si

Ti
PPNj

A makespan

N

Wresouerce

FSTj
ASTj

•^ slack

PhaseH

J^wait

NH

Nupi

TPi

Size (whole process number) of Job i
Runtime of Job i when scheduled individually with one process per node

Number of processes for Job I per node

Total runtime of the whole workload
Number of nodes in the cluster (machine size)

Resource utilization
Fair start time of Job i when scheduled in FCFS with conservative backfilling
Actual run time of Job i when scheduled in this context's strategy
Slack factor used for fairness check

High-load phases

The number of jobs in the waiting queue

A threshold for rating as high load
The number of used processors during a time period
A time period

Table 1. Terms used throughout the formulas in the thesis.

During some periods, the number of jobs in waiting queue is bigger than a defined threshold,

then these periods are defined as high-load phases and PhaseH are defined as:

PhaseH>i = [ti with Nwait,,i > NH && Nwait),u < NH for tn, &&

tj with Nwajjtj < NH && any tk between 1 and j has Nwait,tk > NH] (1)

ti, tj and tk are certain time points of status changes. Node utilization Unode, is the percentage

of used-nodes time over the makespan:

^resource ~ ^ i in all time periods
(TP i* Nupi) / (TmakeSpa„*N) (2)

Similarly, Uresource during a high-load phase is the percentage of used-resources time over

high phases.

According to the calculation of jobs' unfairness, there are many different considerations in

the literatures [22] [23] [24] [6]. We consider any difference between job's fair start time

(Chapter 4.3.1) and its actual start run time. The fair start time is calculated based on FCFS

17

and conservative backfilling with slack. The actual start time is the time this job is scheduled.

Since estimation of fair start time via simulating slack conservative backfilling at submission

time is possible explained in Chapter 4.3.1, we record the fair start time (FSTj) for job i.

When the job is actually running on one or some nodes, we record the actual start time (AST;)

for job i. Unfairness is then provided by calculating the start running time changes (FSTj

compared to ASTj) on average of all the jobs from the waiting queue which happens due to

our effort for utilization improvement and by permitting limited delays on every job. If the

AST - FST is less than zero, the job was given preferential treatment; if it equals to zero the

job was treated fairly; and if it is greater than zero, it was treated unfairly.. In the equations

below, n is the number of all jobs that are considered. For the jobs are treated unfairly,

OverallUnfairnessn is defined as below:

OverallUnfairnesSn = Ziejobs max((ASTj - FSTj),0) / Xnejobs 1 (3)

And, for the jobs are treated preferentially, this unfairness is defined as SkipUnfairnessn:

SkipUnfairnesSn = Ijejobs max((FSTj - ASTj),0) / Xnejobs 1 (4)

The overall average value of OverallUnfairness and SkipUnfairness are defined as the sum of

the OverallUnfairness and SkipUnfairness divided by the number of jobs separately.

Therefore, jobs which are given unfair treatment or preferential treatment cannot bring down

the metric, as we only sum over unfairly treated or preferentially treated jobs. Also, we divide

the sum by the total number of jobs. So if only one job is treated unfairly by T, the overall

unfairness is T/N. While, for an example, a scheme where N jobs are treated unfairly by Ti,

T2,... Tn, then will have an overall unfairness of (T1+T2 + ... +Tn) / N. And it is the same with

jobs treated preferentially.

4.3 Scheduling Algorithm

The original backfilling strategy sorts jobs in submission order and chooses the first fit job.

However, as explained before, this could miss more optimized combinations of jobs. Hence,

we choose to look further ahead and try more combinations of jobs, and then backfill more

than one job. Two criterions are used in job selection, which are fair start time and slack.

4.3.1 Job Fair Start Time

The Scojo-PECT (Chapter 4.4) scheduling predicts every job's start time by simulating its

scheduling in the future. The basic rule is FCFS. However, if a job can be conservatively

backfilled, then backfill it and the time is this job's estimate start time (Chapter 3).

Scojo-PECT also employs FCFS and typical conservative backfilling, in which every

previous job is not delayed versus their normal scheduling time due to backfilling. However,

in our backfilling strategy, every waiting job is assigned a delay slack to make the

conservative backfilling more flexible. A job can be backfilled when its start time is

estimated, but cannot be backfilled when it is actually scheduled. Hence, the original method

of start time prediction is not suitable any more. Therefore, we introduce another way to

estimate the job's fair start time from [24]. There are two cases in estimating the fair start

19

time of jobs:

• Case 1: the waiting job is the job whose fair start time needs to be estimated.

In this case, add this job in the back of possible fragments (free resources during certain

time in Chapter 3) to schedule and determine its fair start time.

• Case 2: the waiting job is not the target of fair start time estimation.

In this case simulate all of this kind of jobs to start based on conservative backfilling.

From the descriptions of these two cases, when calculating a job's fair start time, this job is

just scheduled in FCFS order. But jobs submitted before it are conservatively backfilled. The

reason is that a job can be conservatively backfilled into a fragment when estimating its start

time but possibly may not be conservatively backfilled again in actual scheduling later.

Hence, for calculating the fair start time, it should include this situation. So, FCFS is

employed to calculate its fair start time. However, our backfilling still adopts conservatively

backfilling. Therefore those submitted earlier jobs should be conservatively backfilled. Under

these two cases, the fair start time obtained in Backfilling with Fairness and Slack for Parallel

Jobs Scheduling is suitable to calculate unfairness (Chapter 4.2).

The pseudo code for calculating the fair start time is shown in Figure 5:

20

freeQueue = initBackfillOptions();

if(this job is needed to determine its FST){
FST = addlastframent;

}
else{

simulateFillWithConservativeBackfill;

//find all the fragments that can
be used to backfill jobs
// this is case 1
// add this job in the back of
fragments and get fair start time

// this is case 2
//conservative backfill this job

}

Figure 5. Pseudo code for calculating fair start time.

4.3.2 Job Slack

From the description of conservative backfilling (Chapter 3), we can tell that conservative

backfilling is very restricted. This restriction is used to ensure fairness. However, on the other

hand, it could possibly prevent backfilling jobs which can fit into free resources but their

runtimes are larger than resources' idle time. Therefore, applying a slack to every job can

relax the restriction, however slack must be controlled to avoid the violation of fairness.

According to the Lublin-Feitelson workload model [19], jobs are generated at a time but

cannot be scheduled on the resources immediately. Hence, some jobs have to wait for enough

resources. From the description above, Scojo-PECT is able to estimate job's start time and

record it. When a job is scheduled to run, Scojo-PECT is also able to retrieve the time and

record it. Therefore, every job's waiting time can be obtained by calculating the difference

between a job's submission time and the time it starts running, which is defined as Twait-

When a job has already been waiting for a long time, the user can not afford to wait any

longer. On the contrary, a job that has only been waiting for a short time, the user can afford

2!

to wait longer. Therefore, the slack factor Fsiack defined as follows:

Fsiack = min {Su„ K2 * Math.exp (Twait *K1) + Sd0wn} (5)

Every job's slack factor is related to job's wait time. Ki and K2 are two parameters to control

slack factor. Sd0Wn and S are the minimum and maximum values of slack factor range.

In Formula 5, the longer the wait time is, the smaller the slack factor is, and vice verse. Also

the decrement is non-linearly, which means the slack factor decreases more rapidly when

TWait is small, and more slowly when Twajt is large. Figure 6 shows the slack factor curve.

slack factor

5000 15000 25000 35000 45000 55000 65000 75000 85000 95000 105000115000125000

Waiting Time

Figure 6. Slack Factor with different waiting time.

In Figure 6, the horizontal axis is the waiting time, and its unit is seconds. The vertical axis is

slack factor each waiting time can get, and it is in a specific range. In the beginning, when

the waiting time varies from 5000 seconds to 65000 seconds, the slack factor drops from

almost 1.50 to 1.21 which is 0.29. On the other hand, the waiting time changes from 65000

seconds to 125000 seconds, the slack factor drops from 1.21 to 1.20 which is only 0.01.

Obviously, for the same amount of change in waiting time, the decrement of the slack factor

is much smaller for larger values of waiting time.

However, how to assign this slack at each time is another important issue. A job only can use

a fraction of its slack at each round of backfilling, so that every job cannot use up all its slack

at the very first time, and there is no delay any more.

The wait time is used to determines how much can be used at each time. We define Tareadywait

as the time this job has already waited, Fpartsiack is the fraction of slack factor the job can get at

this time, Fmininaisiack is the minimal slack factor which is a constant number but would be

changed in tests. So the fraction of slack is calculated using Equation 6:

(.** partslack"~ t1 mininalslack) ' v* s lack - fmininaisiack) — tareadywait' twait (6)

In Equation 6, we can see that the ratio of (Fpartsiack - FmininaiS|ack) to (Fsiack- Fmininaisiack) is the

same as the ratio of Tareadywait to Twait, and the fraction slack a job can get changes at each time.

The longer a job has waited the larger the fraction of its slack that can be used. Therefore, in

this case, a job could not use all its slack at the very first time, and cannot be pushed back any

more. Transferring Equation 6, we can get the calculation of Fpartsiack as below:

fpartsiack — (.tareadywait (Aslack - ^mininalslack/ ' twait) ^mininalslack (7)

23

4.3.3 Job Selection

In recent years, some strategies [33] [34] [37] have been introduced to select jobs for

backfilling into idle resources and many optimization algorithms have been proposed [38]

[40]. However, in this context, instead of backfilling first fit jobs according to their

submission order, it looks further ahead into job queue and backfills jobs that can improve

utilization significantly and also can stay close to FCFS. There are 2n possible combinations

of jobs; n is the number of waiting jobs that will be considered. It is a NP-Hard problem. So

when the n is very large, this problem becomes very difficult. Hence, it is hard to get the

optimal solution, but we can get an approximate one based on some heuristics.

Backfilling with Fairness and Slack for Parallel Jobs Scheduling is implemented via branch

and bound algorithm [35] [36] [39]. The algorithm description is generalized to work with

three kinds of backfilling (Chapter 4.4). The details of algorithm steps are explained as

below:

• Step 1: check whether this algorithm can be applied or not.

There are two conditions that determine whether this algorithm can be applied. The first

one is: that the remaining number of waiting jobs is more than zero. Otherwise, the

algorithm is meaningless. The second one is: that the amount of processed waiting jobs

should be less than the defined number. The define number is the maximum number that

would be considered to lookahead. This condition restricts lookahead a certain amount of

waiting jobs.

24

• Step 2: start building an incomplete tree based on the branch and bound algorithm.

The procedure of finding possible combination of jobs is based on the branch and bound

algorithm idea with some changes.

For every waiting job, there are two nodes. The left node means this job is selected to be

backfilled, and the right one means this job is not to be backfilled. This covers all the 2n

possible combinations of jobs.

There are two cases. Case 1: if the job is the first waiting job from the waiting queue,

then create two nodes for it. The left node is with this job selected and the right node is

without. Otherwise, in case 2, there are already some nodes in this tree, hence continue

creating two children of each node. The left child is with next job selected, and right child

is without.

• Step 3: check if there are left node or left children.

If the amount of left node or left children is larger than zero, then continue with step2 of

case two. If not, try next waiting jobs and continue with step 2 with case 1. We only need

to check every left node or left children. The reason for this is that, in fact, the right child

of next layer of tree is the same situation with the left child of previous layer.

• Step 4: sum up the sizes of selected jobs and compare with the amount of free resources

at current time.

This is one condition for cutting the tree. If the sum of sizes of selected jobs is larger than

25

the number of free resources at the current time, then obviously there are not enough

resources to schedule this combination of jobs. Hence this combination of jobs can be

deleted and the whole branch of this node as well.

• Step 5: compare the delays of waiting jobs that are not selected with their corresponding

slacks.

Another constriction to cut the tree is the slack of all other not selected waiting jobs.

When backfilling waiting jobs, this could delay some other not selected waiting jobs.

Therefore, we need to check all the other not selected waiting jobs that should not exceed

their slack at each time. If any of these not selected waiting jobs' slack is exceeded, then

this combination of job is deleted, and the whole branch of this node included.

• Step 6: save the jobs combination as temporary results, and the combination of jobs as a

node of this incomplete tree.

Only both of two constrictions are satisfied, then this combination of jobs can be the

results that would be backfilled and saved as temporary results. Also, this node is saved

and will be the parents of the tree to create new children in step 2 with case 2.

• Step 7: finish trying all possible combinations of jobs, then decide to schedule which

backfilling strategy.

When there are no more waiting jobs or the amount of processed waiting jobs is larger

than the number defined as the maximum lookahead number, then try to schedule waiting

26

jobs. If the sum of all possible combinations of jobs is zero, which means there are no

combinations of jobs satisfying both of two constrictions, then choose the original

backfilling strategy. Otherwise if there are some combinations of jobs, then try

Backfilling with Fairness and Slack for Parallel Jobs Scheduling.

• Step 8: if backfill with fairness and slack for parallel jobs scheduling is selected, then

decide which packing of jobs could be chosen to backfill.

There are two goals in backfilling of fairness and slack for parallel jobs scheduling. Goal

1 is to choose the packing of jobs which stay as close to FCFS as possible but keep

utilization high. Goal 2 is to choose the packing of jobs which increase utilization greatly

but stay reasonably close to FCFS.

• Step 9: if the remaining number of combination of jobs is more than zero, then find the

best packing of jobs to backfill according to every packing of jobs' OverallUnfairness,

SkipUnfaimess (Chapter 4.2) and utilization.

Goal 1: compare each packing of jobs' OverallUnfairness, SkipUnfaimess and utilization

with the smallest OverallUnfairness of all combinations of jobs, SkipUnfaimess and

utilization of the combination with the smallest OverallUnfairness as below:

OverallUnfairness / smallest OverallUnfairness <= max OverallUnfairness range &&

SkipUnfaimess / (SkipUnfaimess with smallest OverallUnfairness) <= max skipfaimess

range &&

Utilization / (utilization of smallest unfairness) >= min utilization range

27

Goal 2: compare each combination of jobs' utilization, OverallUnfairness, and

SkipUnfairness with the highest utilization of all combinations of jobs, the

OverallUnfairness and SkipUnfairness of the combination with the highest utilization as

below:

highest utilization / utilization <= minmum utilization range &&

(OverallUnfairness with highest utilization) / OverallUnfairness >= max

OverallUnfairness range &&

(SkipUnfairness with highest utilization) / SkipUnfairness >= max SkipUnfairness range

• Step 10: if satisfying either one of these two goals' conditions, the comibnation can be

saved.

Goal 1: SkipUnfairness and Utilization of next packing are compared with the latest

saved packing's, but OverallUnfairness is still the smallest one. The reason is the aim of

Goal 1, which always chooses the jobs which stay as close to FCFS (always compare

with the smallest OverallUnfairness) and improve utilization significantly (always

compare with the higher utilization).

Goal 2: OverallUnfairness and SkipUnfairness of next packing are compared with the

latest saved packing's, but Utilization is still the highest one for the reason of Goal 2's

aim, which always choose the jobs which improve utilization significantly (always

compare with the highest utilization) and stay reasonably close to FCFS (always compare

28

with the smaller OverallUnfairness).

• Step 11: If no packing of jobs can satisfy the conditions of these two goals:

Goal 1: the packing of jobs with smallest OverallUnfairness is selected.

Goal 2: the packing of jobs with highest Utilization is selected.

• Step 12: if the remaining number of combination of jobs is zero, then backfill the final

selected waiting jobs on the free resources at current time.

The core of this scheduling algorithm is shown in Figure 6 and Figure 7.

29

N

N

Case 1: create two nodes, left
one with first waiting job
selected, right one with not.

Case 2: create children of
parents, left children with next
waiting job selected, right ones
with not.

Save this jobs' combination as a node

of tree && save these combinations of

jobs as temporary results

Figure 7. Partial Flow chart for core scheduling algorithm.

N

Goal Vr OverallUnfairness/smallest

derail Unfairness <= max

OverallUnfairness range &&

- SkipUnfairness/(SkipUnfairness with

smallest OverallUnfairness) <= max

skipfairness range &&

Hjlization/(utilization of smallest/

unfaihjess) >= min utilization/range

Schedule the selected
jobs

N

Gp/rf 2: highest utilization/utilisation

= min utilization range &&

(OverallUnfairness with highest

utilization) /OverallUnfairness >=

max OverallUnfairness range &&

(SkipUnfairness with highest

irtilization) / SkipUnfairness >= ipfix

SkipLlnfairness range

Save skipunfairness,
unfairness, and jobs of
this packing

NJ

Figure 8. Partial Flow chart for core scheduling algorithm.

4.4 Incorporation into Scojo-PECT

Scojo-PECT [18] provides a framework of job scheduler provided by Dr. Sodan and her

graduate students. Scojo-PECT is a coarse-grain preemptive scheduler [8] with service

guarantees and predictability. With coarse-grain, the length of time slice in Scojo-PECT is

tens-of-minutes range instead of seconds. And preemptive allows jobs being preempted at the

end of time slice so that all memory space are freed and used by the next running jobs, while

in the mean time, it can avoid the situation of gang scheduling [25] about overhead and

memory pressures. Scojo-PECT makes constraint all the preempted jobs have to be restarted

on the same resources so that no hard-to-support checkpointing [1] is needed at all.

Jobs are separated into three types according to their run time in Scojo-PECT, which are

short job, medium job, and long job. Scojo-PECT also divides time in each interval into three

kinds of slices, short, medium and long time slice. Each job type is scheduled in a virtual

machine and run via time slices. Our scheduler uses space sharing per virtual machine. Hence

in each job type, jobs are scheduled in FCFS order in their own time slices/virtual machines.

However different kinds of backfilling as described below are applied in Scojo-PECT, short

jobs are always backfilled in other time slices. Hence, short time slice is only provided if

there are short jobs. Therefore the share of time slices in each interval is decided based on

potential dynamic adjustment. In the context of this thesis, the relative time slices are kept

static.

In Scojo-PECT typical backfilling is applied, in which later smaller jobs can be moved ahead if

they do not delay any other jobs. Scojo-PECT supports conservative and easy backfilling. But

in the presented work, we use conservative backfilling. Since the jobs are separated into

32

different types, it is likely to increase the idle resources because of job sizes and runtime tend

to be correlated [19], hence Scojo-PECT adds safe non-type slice backfilling applied on

preempted and waiting jobs. It requires that preempted or waiting jobs may be backfilled into

other time slice and the backfilling is only valid until the end of slice, only if they do not delay

any jobs of this time slice type jobs or of their own type according to the backfilling approach

applied. If all time slices (resource shares) get the same service, medium and long jobs get

similar service as standard space sharing with priorities, but serve short jobs better, then

Scojo-PECT improves overall response times by about 50% [18].

Scojo-PECT is implemented and evaluated via discrete event simulation. There are five kinds

of events which are job-submit event, job-finish event, slice-begin event, slice-end event and

load-finish event. The system's status can only be changed by these events. For example,

job-submit event means a new job is submitted and put in the waiting queue; job-finish event

means a job has finished running and the resources occupied by the job are free; slice-begin

event means a new time slice is created and set the system's status to be this slice; slice-end

event means this slice ends, set the system's status to be none and all current running jobs are

preempted; load-finish event means a job is finished loading into memory and it is in

memory now.

The implementation of Backfilling with Fairness and Slack for Parallel Jobs Scheduling is

based on the basic framework of Scojo-PECT. Scojo-PECT is applied per virtual machine or

time slice and job type, and it is to resume or schedule jobs after one of the job-submit,

33

job-finish and slice-begin events happens. Backfilling with Fairness and Slack for Parallel

Jobs Scheduling needs to compare every job's fair start time and actual start time, and the

predicted start time is relative time to current time. So in order to compare the fair star time

and actual start time, here we transfer the relative time to absolute system time. Hence, in

order to get the absolute system time, we need to know when the new slices begin in future

based on system's workload and interval and time slices settings as explained above.

Therefore, calculating job's fair start time starts when job-submit event happens.

Besides, the Backfilling with Fairness and Slack for Parallel Jobs Scheduling is applied to all

three kinds of backfilling including typical conservative backfilling and two safe non-type

slice backfilling. It is to resume or schedule jobs to run after one of the job-submit event,

job-finish event, and slice-begin events happen.

34

Chapter 5: Experiments and Results Analysis

5.1 Experimental Set-up

The evaluation is performed on the basis of discrete event simulation. Scojo-PECT uses the

Lublin-Feitelson statistical workload model [19] which is the best-available synthetic

workload model. Every test is performed with different workloads and seeds, and results are

averaged. Table 2 shows the characteristics of the workloads. There are several workloads we

tested. Workload Wl is high workload, workload W2 is normal workload, workload W3 is

lighter than workload W2 and workload W4 is much heavier than Wl. In Workload Wl, it sets

the a parameter in the inter-arrival time distribution to a smaller value and subsequently creates

shorter inter-arrival times. In workload W4, the a parameter is set to an even smaller value,

while the a parameter is set to a larger value in workload W3.

From the table, obviously workload W3 time interval is bigger and workload W4 time interval

is much smaller. Seed is used to generate random number for job's characteristics such as job's

runtime, job's size. We selected 11 seeds. Some seeds generate about 10% higher workload

than normal workload (W2), like seeds are 7, 31,35, 70, 71 and 73. Some seeds generate about

10% to 15% lower workload than normal workload (W2), such as seed are 3, 13, 23, 99 and

103.

35

Wl (high load)

W2 (normal load)
W3 (light load)

W4 (very heavy load)
seed
Machine size M

Short jobs Ns

Medium jobsNM

Longjobs NL

Work of short jobs Ws

Work of medium jobs WM

Work of long jobs WL

Serial jobs
Power-of-two size among parallel jobs

a =10.23
a =10.33
a =10.43, 10.73

a =10.05
s= 71,3,7,13,23,31,35,70,73,99,103
128
64%
19.5% (54% of Medium and Long)

16.5% (46% of Medium and Long)

0.5%
26.0%

73.5%
24%

75%

Table 2. Workload characteristics.

In Scojo-PECT, there are three types of jobs according to their runtime. Short jobs are with

the runtime less than ten minutes. Medium jobs are with the runtime less than three hours.

And others are all long jobs. Each type of job has its own time slice. Short time slice is only

created if there are short jobs. Therefore, one hour interval is set as time slice length for one

short time slice if there is a short time slice, one medium time slice and one long time slice.

The medium time slice and long time slice are set as 30% relative time share and 70%

relative time share respectively. The time overhead for switching jobs when each time slice

ends is 0 for all workloads.

To evaluate the performance of our algorithm, we mainly compare with original Scojo-PECT

scheduling with original conservative backfilling. Table 3 shows scheduler parameters used

in our experiments.

36

SLACKUP
SLACKDOWN

SLACKMININAL

Kl

K2

SELECTWAITINGJOBNUM

GOAL_FAIRNESS

1.5
1.2

1.1

-0.5

0.4

20

True

Maximum slack factor that a job can reach

Minimum slack factor that a job should have
Minimum slack factor when calculating how much part
slack a job can obtain

One parameter to control how much partial slack a job
can get at each time
Another parameter to control how much partial slack a
job can get at each time

Number of waiting jobs defines how many jobs are
lookaheaded
Decide to select jobs as close to FCFS and improve
utilization as goal Gl, or higher utilization and stay as
reasonably close to FCFS as goal G2

Table 3. Scheduler parameters and values used in the experiments.

We used the following metrics for comparison:

• Average relative response time (RR): pure runtime plus waiting time considering time

slices in relation to pure runtime which is the time without time slicing while using

cut-offs for very short jobs (only relevant for all-job evaluation)

5.2 Performance Results

The performance results are tested under Backfilling with Fairness and Slack for Parallel Jobs

Scheduling and compared with original Scojo-PECT scheduling using conservative

backfilling. The Figure 8 and Figure 9 show average relative response time for both scheduling

strategy.

i ffls Original BackfiJMng

i S3 Backfilling w i th Fairness and Slack I

Avg. RRjlong) Avg. RR(Medium)

7.29 S.4S

Avg. RR(Ai!>

3.81

Figure!). RR for original scheduler and backfill with fairness and slack scheduling with Workload Wl
and Gl.

FigurelO. RR for original scheduler and backfill with fairness and slack scheduling with Workload Wl
and G2.

Figure 9 and 10 are the results of improvement comparing our backfilling with original

backfilling. It shows Backfilling with Fairness and Slack for Parallel Jobs Scheduling performs

better than original Scojo-PECT by 10.49% for long jobs, 7.89% for medium jobs, and 6.92%

for all jobs for Goal 1. For Goal 2, it shows improvement by 9.73% for long jobs, 11.99% for

medium jobs, and 8.13% for all jobs. Note long jobs and medium jobs perform similarly.

Hence this scheduling can benefit both long and medium jobs. The scheduling with goal G2

performs a little better than the scheduling with goal Gl.

38

The whole running time of our backfilling is about 10 minutes on average for all the seeds and

10000 jobs, and it is about 7 minutes for the original one. Our backfilling runs only 3 minutes

longer which is about 40%. Therefore, the cutting of tree works well. It shows that Backfilling

with Fairness and Slack for Parallel Jobs Scheduling finds the best packing of jobs effectively.

5.3 Impact of Different Parameters

We tested the parameters with different numbers, which define how many jobs will be

lookaheaded and checked with which number the scheduler gets the best performance. In the

Figure 11 and Figure 12 below, the workload is Wl, and when the number is 20, then it is the

best results. And if lookahead even more jobs, the results almost remain the same. Therefore

lookahead more jobs makes no sense and is not needed.

8.5
8

7.5
7

6.5
6

5.5
5

4.5
4

3.5
3

i—•—Avg. RR(Long)

| —•— Avg. RR<Medlum I

|—*— Avg. RR(All)

Lookahead Number

m— * • • ,

JUI I ' "1*" " " ' " ' " " "

• •
i n ii i i i •?.

,

10

6.78

7.85

3.59

20

6.64 ;

7.84 i

3.57 |

30

7.04

7.89

3.63

40

7.04

7.89

3.63

Figurell. RR for different lookahead number for backfilling with fairness and slack scheduling with

Workload Wl and Goal Gl.

8.5
8

7.5
7

6.5
S

55
5

4.5
4

3.5
3

|—•— Avg. RR(Long)

! —«— Avg. RR(Medium)

!—«r- Avg. RRcAll)

Lookahead Number

» • •

•
-

10

6.71

7.77

3.56

20

6 69

7 57

3.53

30

6.74

7 62

3 55

40

6.74

7.62

3.55

Figure 12. RR for different lookahead number for backfilling with fairness and slack scheduling with

Workload Wl and Goal G2.

7.5
7

6.5

6

5.5

5

4.5

4
3.5

—+— Avg. RR(Long)

—w—Avg. RR(Medium)

i - * - A v g . RR(AII)

4 _ _

Lookahead Number

M

— « t — : ,

„ . „ . , „ . _ - _ _ _

• M . , l * l l . | . | |

_ _ _ _ _ _

a

— j
1

•' " • " ' • ' " " " " ; • ; \

10

5.71

6.99

3.27

20

5.69 ;

6.93

3.27 |

30

5.64

6.90

3.19

40

5.65

6.91

3.18

Figurel3. RR for different lookahead number for backfilling with fairness and slack scheduling with
Workload W2 and Goal Gl.

7.5

7

6.5

6

5.5

5

4.5

4

3.5

3

1 —«—Avg. RR(Long)

1 —•— Avg. RR(Medlum)

| - * - A v g . RR(Alf)

' - " " « " ™ * .

Lookahead Number

•"""•'••" — - T g M i B i i s a s • - ; ; =

„ _ _ ™ ™ _ . „

•" y:,"::;:::;;:,

_ . _ _ , „ .

I , I I I » . . ; ; ; « ' I , - » .

•

10

5.95

7.09

3.37

20

5.93 I

7.03

3.33 |

~ — : . • ' "'"

30

5.87

6.94

3.23

40

5.89

6.93

3.24

Figurel4. RR for different lookahead number for backfilling with fairness and slack scheduling with
Workload W2 and Goal G2.

In the Figure 13 and Figure 14, the workload is normal workload W2. Lookahead 30 jobs is

enough and can get the best results. Lookahead more jobs makes no sense and is not needed

either.

We also test this scheduling strategy with different slack factors, and compare the results. The

upper range of slack factor of more than 1.5 is only applied on smaller medium jobs which

are with runtime less than one hour, and wait time less than two hours. We do not apply high

slack factor too all jobs, because i.e. the job has been waiting for 3 hours, then it would wait

for 6 hours with slack factor can go up to 2 which is very unfair. And for all the different

slack factors, the lower range is 1.2, except the lower range is 1 when slack factor equals 1.

The result graphs are shown as below:

8.5

S

7.5

7

6 .5

6

5.5

5

4 .5

4

3

— * — Avg. RR<Long)

—w— Avg . RR<Medium>

—~*—Avg RR<A!I>

Slack Factor

... —
" ™

—~"~-~_.
.

stack factor =
1

7.35

7.81

3.67

slack factor =
1.2

6.9S

7.86

3.63

slack factor =
f.4

7.02

7.82

3.63

slack factor =
1.5

6.64

7.84

3.57

slack factoi ~
1.8

6.8

7.82

3 .59

•

slack factor =
2

6.8

7.82

3.5S

Figure 15. RR for different slack factor for backfilling with fairness and slack schdeduling with Workload
Wl and Goal Gl.

8.5

3

7

6.5

6

5.5

5

4.5

4

3

—«— Avg. RRtCong)
—s*—Avg. RRtMedlum)

—
~.. t. - • * - "

— '

• JJJ « -»«

stack factor =
1

7.01
7.9

—••<—Avg. RR(AH) | 3.63

slack factor =
1.2

6.67
8.02 ~
3 SI

slack factor =
1.4

6.79
7.81
3.59

slack factor -
i.5

6 69
7^57
3.53

slack factor —
1 8

6.84
7T67
3.54

slack factor -
2

S.84
7.67
3.54

Figurel6. RR for different slack factor for backfilling with fairness and slack scheduling with Workload
Wl and Goal G2.

From the Figure 15 and 16, we can tell that when the slack factor is small, average relative

response time is higher. The reason is when slack factor is small, then every job's slack is

also small, thus more jobs could be possibly rejected to be backfilled because there is not

enough time on idle resources. Hence, jobs have higher chances to be backfilled when

increasing the slack factor. And the average relative response time decreases. However, until

a certain value of slack factor, the average relative response time stays almost the same or

even worse. The explanation could be that all possible combinations of jobs have been

considered under a certain value of slack factor. In the Figure 14 and 15, when slack factor

reaches 1.5, scheduling gets the best performance. All the results are tested when slack factor

is in the range of 1.2 to 1.5.

We also tested another four parameters, which are SLACKDOWN, SLACKMININAL, Kl

and K2, and assigning different values to these parameters does not change the performance

significantly. The reason may be that changing the value of these parameters does not make

42

enough change to every job's slack, and the number of possible combinations of jobs is

almost the same.

5.4 Impact of Different Workloads

We also tested our backfilling under different workload. Comparing the utilization among

workload W3, workload W4 and workload W2 in Table 4 below, we find utilizations of a

equaling 10.43 and 10.73 both are smaller than the normal workload with a equaling 10.33

and the utilization of workload with a equaling 10.05 is higher than the normal workload

with a equaling 10.33. That is because workload W3 is light workload, and workload W4 is

heavy workload.

workload

utilization

a =10.33

76.43%

a =10:43

71.90%

a =10.73

63.29%

a = 10.05

85.29%

Table 4. Utilizations of different time interval.

In the Figure 17, comparing with original Scojo-PECT scheduler, Backfilling with Fairness

and Slack for Parallel Jobs Scheduling with a equals 10.43 improves average relative

response time by 5.32% for long jobs, 4.7% for medium jobs, and 3.74% for all jobs.

43

o= 10.43 and Gl

7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

Avg. RR(tong)
Avg.

RRfMedium}
Avg. RR(AM)

• Original Backfilling \

m Backfill ing w i th Fairness j
and Slack I

4.50 6.11 2.82

4.27 5.83 2.71

Figure 17. RR for original scheduler and backfill with fairness and slack scheduling with a = 10.43 and Gl

a =10.43 and G2

7.00

6.00

5 00

4.00

3.00

2.00

1.00

0.00 I
\ m Original Backfilling

I Backfil l ing w i t h Fairness i
and Slack !

Avg. RR(Long)

4.50

435

Avg.
RRfMedium}

6.11

5.66

Avg.RRfAH)

2.82

2.69

Figure 18. RR for original scheduler and backfill with fairness and slack scheduling with a = 10.43 and G2

In the Figure 18, with the same light workload but with G2, the improvement is 3.31% for

long jobs, 7.9% for medium jobs, and 4.51% for all jobs.

ct= 10.73 and Gl

5.00
4,50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

• Original Backfilling

[Backfilling w i th Fairness)
and Slack I

Avg. RR(Long)

2.98

2.90

Avg.
RFUMedium)

Avg. RR(AH)

4.56 2.20

4.31 2.13

Figurel9. RR for original scheduler and backfill with fairness and slack scheduling with a = 10.73 and Gl

« = 10.73 and G2

• Original Backfilling

s Backfilling w i th Fairness
and Slack

r
Avg.RRCLong) Avg.

RR(Medium)

4.56

4.39

Avg. RR(AIIJ

2.20

2 .11

Figure20. RR for original scheduler and backfill with fairness and slack scheduling with a = 10.73 and G2

In the Figure 19 and 20, the workload is even lighter with the a equaling 10.73. In this cases,

with Gl, the average relative response time is improved by 3.12% for long jobs, 7.32% for

medium jobs, and 3.78% for all jobs. With G2, the improvement is 4.69% for long jobs,

8.76 % for medium jobs, and 4.76% for all jobs. Comparing these results of light workload

with the results of workload Wl, the improvement is not as much as workload Wl. The

reason is probably because there are not enough jobs in the queue, so not so many jobs can

be looked further ahead.

The testing results on the very heavy workload W4 are shown in the Figure 21 and 22 as

below:

a = 10.05 and Gi

14.00
12.00
10.00

8.00
6.00
4.00
2.00
0.00

Avg. RR(Long)
Avg.

RR(Medium)

i Original Backfilling

i Backfilling with Fairness
and Slack

13.18

12.18

9.90

9.20

Figure21. RR for original scheduler and backfill with fairness and slack scheduling with a = 10.05 and Gl

a = 10.05 and G2

Avg. RR(Long)

i Original Backfilling

ei Backfilling with Fairness
and Slack

13.18

12.26

Avg.
RR(Medium)

9.90

9.01

Avg.fiR(AH)

S.08

4.83

Figure22. RR for original scheduler and backfill with fairness and slack scheduling with a = 10.05 and G2

In the Figure 21, compared with original Scojo-PECT, the average relative response time of

our backfilling strategy improved 8.17% for long jobs, 7.59% for medium jobs, and 5.8% for

all jobs with Gl and the a equaling 10.05. In the Figure 22, with G2, the improvement is

7.48% for long jobs, 9.86% for medium jobs and 5.05% for all jobs.

As seen from Figure 17 to 22, the improvement is higher with a equaling 10.05 comparing

with a equaling 10.43 or 10.73, which means the higher workload gets better results. The

reason is just opposite to the one why no so much improvement when the workload is light.

When the workload is heavy, more jobs are created and submitted in the waititng queue, thus

more combinations of jobs are tried. So there is a higher chance that a better packing of jobs

can be obtained to be backfilled, which improve utilization signicantly and also keep

unfairness low.

However, comparing with the high workload Wl, light workload W3, and very heavy

workload W4 in Figure 23 and 24, we found that it is not the higher workload is, the better

performance is.

12.00% r

10.00% [•••

8.00%

6.00%

4.00%

2.00% |

—*—'Avg.RR(Long) |

—•— Avg. RR(Medium)

™*™Avg. RR(AII)
3 — - - " - ™ ™ . ™ - . . ~ -.-

" • ^

0=10.23

10.49%

7.89%

6.92%

. ^ W * * * ^

a = 10.43

5.32%

4.70%

3.74%

—

X ^ JF" '
*0>

a -10.73

2.76%

5.84%

3.08%
— - • - — ~

—

S „.\ —

a = 10.05

8.17%

7.59%

S.80% 1

Figure23. Improvement for different workload for backfilling with fairness and slack scheduling with
Goal G l .

14.00%

12.00%

10.00%

8.00%

6.00%

4.00%

2,00%

0.00%

V"

a =10.23 a =10.43

Avg.RR{long} 9.73% 3.31%

-•-Avg.RR^Medfum} 11.99% | 7.90%

™*-Avg,RR(Al!} 8.13% I 4.51%

a = 10.73

6.38%

3.87%

4.48%

a = 10.05

7.48%

9.86%

5.05%

Figure24. Improvement for different workload for backfilling with fairness and slack scheduling with

Goal G2.

The results with workload W2 are better than the ones with workload W4. This may mainly

because the slack, which defines how much each individual job can be delayed. If there are

more jobs are in the waiting queue, then more slack should be satisfied when decide to

backfill this packing of jobs or not. Therefore, even though there are a number of jobs in the

waiting queue, some combinations of jobs could be rejected. Hence, on the other side, this

also proves that lookaheading a number of jobs gets the best results somehow, and there is no

need to look even futher ahead.

The average unfairness of all jobs which are treated unfairly under different parameters stays

in around 160 seconds which is about 3 minutes and the number is about 800 jobs out of

10000 jobs. In the 800 jobs, there are about 500 jobs are medium jobs. This time represents

that the scheduling time of 800 jobs out of 10000 is about 3 minutes later than FCFS

scheduling time, and 3 minutes is totally tolerable. The average of skip unfairness of all jobs

which are treated preferentially under different parameters is about 20,000 seconds and it is 5

48

hours and the number is about 50 jobs out of 10000 jobs. The skip unfairness is high in that

Scojo-PECT supports non-type safe backfilling, in which jobs can be backfilled into other

type of time slices (Chapter 4.4).

Chapter 6: Summary and Conclusion

We have presented the Backfilling with Fairness and Slack for Parallel Jobs Scheduling which

incorporates space sharing on coarse-grain preemptive Scojo-PECT scheduler. With space

sharing, jobs are sharing the whole resources exclusively. The decision of choosing which

jobs to be backfilled is made according to the jobs' slack, jobs' fairness, and utilization gain

at current time. Specifically, the thesis has following contributions:

• Every job gets its individual slack factor according to its waiting time. Slack factor has

two characteristics:

a) The slack factor decreases when the estimated waiting time increases. The shorter the

time a job is expected to wait, the larger slack factor it will get. In other words, if a

job is waiting very long, it cannot afford to be pushed back as much as other jobs

which are expected to only wait for a short time. To some extent, this decision is also

very fair to all jobs.

b) The slack factor decreases non-linearly, which means the assigned slack decreases

much more with shorter expected waiting time than with longer expected waiting

time. (Chapter 4.3.1)

• Each job cannot use all its slack immediately. Therefore, every job can be pushed back

many times, instead of only the very first time. How much a job can be pushed back is

different based on elements such as how long this job has originally to wait, how long

this job has now been waiting, and how much this job's slack factor is.

• This algorithm proposes a modification of [24] to calculate fair start time. It

conservatively backfills jobs which are submitted earlier at first, then schedule the next

job in FCFS order and estimate its fair start time.

• A number of heuristics are applied when trying to choose packing of jobs since it is an

NP-Hard problem of selecting jobs to backfill among multiple waiting jobs.

• When the workload is high, lookahead 20 jobs to backfill is enough. And lookahead 30

jobs is enough for low workload.

• Two metrics are used to control job's fairness:

a) Assign each individual job a slack. And from the results, it is not the larger the slack

factor is the better performance it is. The slack factor in a range less than 1.5 of each

individual job's waiting time gets the best results.

b) For all jobs, average unfairness check is done to avoid serious delay which measures

how many jobs are delayed and how many jobs are advanced based on the

differences between their fair start time and actual run time (Chapter 4.2). And it is

also used to select optimal combination of jobs to backfill with utilization gain at

current time.

Backfilling with Fairness and Slack for Parallel Jobs Scheduling is integrated with the

coarse-grain preemptive Scojo-PECT scheduler. The experiments show that our scheduler

improves average response times by about 10% compared to the original backfilling scheduler

which only backfill one job each time and according to their submission order and without

considering jobs' slack or fairness.

51

Chapter 7: Future Work

One of the tasks for future work is to select jobs to backfilling based on the globe

improvement instead of current one. From the testing, the decrement of relative response

time is not so much as predicted. The main reason is, at each time, the jobs are chosen based

on the utilization gain and unfairness at current time. Hence, the jobs that are selected to

backfill now are the best. However from the whole progress, they may not, and may affect

performance when new jobs are submitted in the future.

From the whole progress, jobs are chosen to backfill into fragment would push back other

jobs. New fragments could possibly be created which can also be used to backfill jobs too. If

trying to backfill jobs in these new fragments, newer fragments are created again. And this

recursive backfilling will continue. Hence, we need to investigate in detail the behavior of

this recursive backfilling works, and find the rule to deal with recursive backfilling so that we

can always choose the jobs to backfill that can improve the performance globally.

52

References
[1] A.C. Sodan, "Loosely Coordinated Coscheduling in the Context of Other Dynamic

Approaches for Job Scheduling—A Survey", Concurrency & Computation: Practice &

Experience, 17(15), Dec. 2005, pp. 1725-1781.

[2] U. Farooq, S. Majumdar, E.W. Parsons, "A Framework to Achieve Guaranteed QoS for

Applications and High System Performance in Multi-Institutional Grid Computing", Proc.

Internat. Conf. on Parallel Processing (ICPP), 2006.

[3] C. Hu, J. Huai, and T. Wo, "Flexible Resource Reservation Using Slack Time for Service

Grid", Proc. Internat. Conf. on Parallel and Distributed Systems (ICPADS), 2006.

[4] N.R. Kaushil, S.M. Figueira, and S.A. Chiappari, "Flexible Time-Windows for Advance

Reservation Scheduling", Proc. 14th IEEE Internat. Symp. on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS), 2006.

[5] A. Mu'alem and D. Feitelson, "Utilization, predictability, workloads, and user runtime

estimates in scheduling the IBM SP2 with backfilling," in IEEE Trans, on Parallel and

Distributed Systems, 12(6), June 2001.

[6] G. Sabin and P. Sadayappan, "Unfairness Metrics for Space-Sharing Parallel Job

Schedulers", Proc. JSSPP, Cambridge MA, USA, June 2005, Springer,

LNCS 3834, pp. 238-256.

[7] E. Shmueli and D.G. Feitelson, "Backfilling with Lookahead to Optimize the Packing of

Parallel Jobs", J. of Parallel and Distributed Computing 65, 2005, pp. 1090-1107.

[8] A. Sodan and B. Esbaugh, "Service Control and Service Prediction with the Preemptive

Parallel Job Scheduler Scojo-PECT", submitted to journal.

[9] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, "Selective Reservation

Strategies for Backfill Job Scheduling", Proc. JSSPP, Springer, LNCS 2537, 2002, pp.

55-71.

[10] D. Talby and D. Feitelson, "Supporting Priorities and Improving Utilization of the IBM

SP2 Scheduler Using Slack Based Backfilling", Proc. IPPS/SPDP, 1999.

[ll]W. Ward, C.L. Mahood, and J.E. West, "Scheduling Jobs on Parallel Systems Using a

Relaxed Backfill Strategy", Proc. JSSPP, Springer, LNCS 2537, 2002, pp. 88-102.

53

[12]H. Zhao and R. Sakellariu, "Advance Reservation Policies for Workflows", Proc. JSSPP

2006, Springer, LNCS 4376, 2007.

[13]D. Zotkin and P.J. Keleher, "Job-Length Estimation and Performance in Backfilling

Schedulers", Proc. 8th IEEE Internal. Symp. on High Performance Distributed

Computing, August 1999.

[14] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, "Characterization of

Backfilling Strategies for Parallel Job Scheduling", Proc. Internal Conf. on Parallel

Processing Workshops (ICPPW'02), 2002, pp. 1530-2016.

[15]D. Jackson, Q. Snell, and M. J. Clement, "Core Algorithms of the maui scheduler", In

JSSPP, 2001, pp. 87-102.

[16]U. Schwiegelshohn, and R. Yahyapour, "Analysis of First-Come-First-Serve Parallel Job

Schedluling", In Proc. Of the 9th SIAMSymp osium on Discrete Algorithms, 1998.

[17]Z. Liu, and E. Sanlaville, "Preemptive Scheduling with Variable Profile, Precedence

Constraints and Due Dates", Discrete Applied Mathematics, April 1995, pp. 253-280.

[18] B. Esbaugh, and A.C. Sodan, "Coarse-Grain Time Slicing with Resource-Share Control in

Parallel-job Scheduling", High Performance Computing and Communication (HPCC),

Houston, LNCS 4782, Springer Verlag, Sept. 2007.

[19]U. Lublin, and D.G. Feitelson, "The Workload on Parallel Supercomputers: Modeling the

Characteristics of Rigid Jobs", Journal of Parallel and Distributed Computing, 2003, pp.

1105-1122.

[20] A.C. Sodan, "Adaptive Scheduling for QoS Virtual-Machines under Different Resource

Availability - First Experiences", Job Scheduling Strategies for Parallel Processing

(JSSPP), 2009.

[21]D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. Wong, "Theory and

Practice in Parallel Job Scheduling". In D. Feitelson andL. Rudolph, editors, 3r Workshop

on Job Scheduling Strategies for Parallel Processing, volume 1291 of LNCS,

Springer-Verlag, 1997, pp. 1-34.

[22] N. Bansal, and M.H. Baiter, "Analysisi of SRPT Scheduling: Investigating Unfairness",

ACM SIGMETRICS Performance Evaluation Review, 2001, pp. 279-290.

[23]G. Sabin, G. Kochhar, and P. Sadayappan, "Job Fairness in Non-Preemptive Job

54

Scheduling", Proc. Intern. Conf. on Parallel Proc. IEEE, 2004.

[24] G. Sabin, V. Sahasrabudhe, "On Fairness in Distributed Job Scheduling Across Multiple

Sites", CLUSTER IEEE, 2004.

[25] S. Setia, M. Squillante, and V. Naik, "The Impact of Job Memory Requirements on

Gang-Scheduling Performance", Performance Evaluation Review, vol. 26, no. 4, 1999,

pp. 30-39.

[26] Y. Zhang, "Scheduling and Resource Management for Next Generation Clusters", Ph.D

thesis dissertation, Department of Computer Science and Engineering The Pennsylvania

State University, August 2002.

[27] D. G. Feitelson, "A survey of Scheduling in Multiprogrammed Parallel Systems",

Research report re 19790 (87657), IBM T. J. Waston Research Center, Yorktown Heights,

Second Revision, February 1997.

[28]D. G. Feitelson and A. M. Weil, "Utilization and Predictability in Scheduling the IBM SP2

with Backfilling", In 12ix International Parallel Processing Symposium, April 1998, pp.

532-546.

[29] D. Lifka, "The ANL/IBM SP Scheduling System", Proc. Job Scheduling Strategies for

Parallel Processing (JSSPP), Lecture Notes in Computer Science, Springer Verlag, Vol.

949, 1995.

[30] A. Lodi, S. Martello, and D. Vigo, "Recent Advances on Two-Dimensional Bin Packing

Problems", Discrete Applied Mathematics, Vol. 123, 2002, pp. 373-390.

[31] A. Lodi, "Algorithm for Two-Dimensional Bin Packing and Assignment Problems—A

survey", Vol. 141, 2002, pp. 241-252.

[32] L. Horchani, and M. Bellalouna, "The 2-Dimensional Probabilistic Bin Packing Problem:

An Average Case Analysis", International Journal of Mathematics and Computers in

Simulation, Issue 1, Vol. 2, 2008.

[33] A. C. Sodan, A. Kanavallil, and B. Esbaugh, "Group-Based Optimization for Parallel Job

Scheduling with Scojo-PECT-O", IEEE, Quebec City, June 2008.

[34] S. Vasupongayya, S. H. Chiang, andB. Massey, "Search-based Job Scheduling for Parallel

Computer Workloads", IEEE, Boston City, September 2005.

[35] G. Belov and G. Scheithauer, "A Branch-and-Cut-and-Price Algorithm for

55

One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting", European

Journal of Operational Research, Vol. 171, May 2006, pp. 85-106.

[36] D. R. Ulm, J. W. Baker and M. C. Scherger, "Solving a 2D Knapsack Problem Using a

Hybrid Data-Parallel / Control Style of Computing", Proc. Of The 18th International

Parallel and Distributed Processing Symposium (IPDPS), 2004.

[37] P. Bonzon, "Necessary and Sufficient Conditions for Dynamic Programming of

Combinatorial Type", Journal of the ACM (JACM), ISSN: 0004-5411, Issue 4, Vol. 17,

1970, pp675-682.

[38]J. Bentley, "Programming Pearls, Second Edition", Addison-Wesley, Inc., ISBN

0-201-65788-0, 2000.

[39] G. Fred, and T. Lee, "Dynamic Strategies for Branch and Bound", The Int. Journal of

Mgmt Sci. (OMEGA). Issue 5, Vol.4, 1976, pp: 571-576.

[40] K. Brucker, and S. Knust, "Complex Scheduling", Springer Berlin Heidelberg New York,

ISBN: 978-3-540-29545-7, 2006.

56

Vita Auctoris

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

Wei Jin

JiangXi, P.R. China

1985

The 1th High School, FuLiang, JiangXi, China

1999-2002

JiangXi Normal University, NanChang, China

2002-2006

University of Windsor, Windsor, Ontario, Canada

2007 - 2009

57

	Backfilling with fairness and slack for parallel job scheduling
	Recommended Citation

	ProQuest Dissertations

