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Abstract 

Constraint satisfaction based techniques for camera control has the flexibility to add new 

constraints easily to increase the quality of a shot. We address the problem of deducing 

and adjusting constraint weights at run time to guide the movement of the camera in an 

informed and controlled way in response to the requirement of the shot. This enables the 

control of weights at the frame level. We analyze the mathematical representation of the 

cost structure of the domain of constraint search so that the constraint solver can search 

the domain efficiently. We start with a simple tracking shot of a single target. The cost 

structure of the domain of search suggests the use of a binary search which searches along 

a curve for 2D and on a surface for 3D by utilizing the information about the cost 

structure. The problems of occlusion and collision avoidance have also been addressed. 
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Chapter 1 

Introduction 

1.1 Motivation 

Constraint satisfaction based technique to camera control is a general approach. Complex 

properties can be easily represented as constraints. There is no limit to the number of 

properties that these techniques can handle. It has the flexibility to analyze the space of 

possible camera parameters and find a suitable solution in interactive dynamic 

environments (Christie and Olivier, 2006; Bourne and Sattar, 2004b; Bares, Thainimit 

and McDermott, 2000). 

However, because of conflicting requirements in the problem domain the resulting 

constraint satisfaction problem is an over-constrained problem (Bourne and Sattar, 

2004b). Constraint weighting is used to give each constraint a priority order and the 

weighted sum of the costs of violation for all the constraints is used as the objective 

function. Constraint satisfaction optimization is used to solve the problem. 

Bares, McDermott et al. (2000), Bares, Thainimit and McDermott (2000) and 

Bourne and Sattar (2005a) use user specified constraint weights based on the relative 

importance of the constraints in a particular type of shot. Bourne and Sattar (2005b), and 

1 



Bourne (2006) use example animation trace to deduce the weights for all the constraints 

corresponding to that animation. The resulting constraint weights and the desirable values 

for all the constraints are coupled together, and they are appropriate for a particular type 

of shot that is equivalent to the example animation trace. In our approach the physical 

significance of the weights are used to deduce them automatically from the requirements 

of the shot. 

It seems that Bourne and Sattar (2006) and Bourne (2006) were the first to 

identify the higher cost regions of the search domains for different weights. But they use 

only height, distance and orientation constraints, and their work is limited to either equal 

weights or only one constraint having higher weight. To take advantage of this 

information about the search space they use a specialized constraint solver called a 

"sliding octree solver" to search the domain quickly. It prunes the regions with poor 

solutions quickly. But, until now, the mathematical representation of the cost structure of 

the domain of search has not been studied. Consequently, the information about the 

structure of the domain could not be utilized to arrive at an exact solution or to direct the 

search by that information. We use the cost structure of the domain to search it. This will 

ensure an effective and informed way of pruning the domain, and there will be no 

problem with local minima. 

According to Halper et al. (2001), one of the main challenges of the camera 

control problem is to find a balance between optimal camera positions and frame 

coherence. They do not use constraint to enforce frame coherence. On the basis of the 

prediction about the future target positions, they evaluate future camera positions and 

move the camera toward those positions. Bourne and Sattar (2004b) say that this does not 
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ensure frame coherence and the method is fully dependent on the algorithm used to 

predict the movement of the target. Bourne and Sattar (2005a) and Bourne (2006) 

introduced the frame coherence constraint in the weighted constraint representation of the 

camera control problem. Since the properties of the frame coherence constraints are 

different from those of visual constraints, we decouple the two types of constraints and 

use their relative priority to influence the search of the solution camera position. 

1.2 Structure of the Thesis 

Chapter 2 discusses the current research in autonomous camera control using the 

constraint satisfaction technique. Chapter 3 presents our analysis of the weighted 

constraint representation of the camera control problem and its solution technique. 

Chapter 4 extends the method to handle the problem of occlusion and collision avoidance. 

Chapter 5 contains the conclusions and direction for further extension. 
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Chapter 2 

Automatic Camera Control 

2.1 Applications of Camera Control in Virtual Environment 

The theory of camera control is used in nearly all 3D interactive applications. Recent 

development in 3D graphics technologies has created a great opportunity for a new 

generation of interactive 3D entertainment, education, and simulation based training 

systems (Bares and Lester, 1999a, 1999b). Applications of automatic camera control are: 

• Computer and video games 

• Generating 3D illustrations 

• Producing 3D animated movies 

• Generating 3D animated explanations to achieve communicative goals 

• Visualizing museum walkthroughs and virtual chatrooms 

• Generating 3D scenes with simulated humans for ergonomic simulation and 

virtual reality training 
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2.2 Camera Control in Computer Games 

Barwood (2000) says, "Games may owe something to movies, but they are as different 

from them as movies are different from theater." Christie et al. (2005) say that since most 

games are controlled by a player and define a dynamic environment, camera control in 

computer games is more complex than that for a static environment or for the areas where 

the evolution of action is known in advance. 

Halper et al. (2001) explain that camera techniques in computer games will have 

to use their own languages and rules on top of cinematographic techniques. They argue 

that unlike film or theatre, computer games are highly interactive. This makes the 

rehearsal or staging of actions in computer games impossible before actual shooting. So, 

they infer that cinematographic techniques can not be used in computer games since they 

depend to a large extend on trial and error. They also argue that for real movies it is 

possible to change the position and orientation of actors, the scene and even the script, but 

that is not possible in computer games. In the latter case the scene has to be shot as it has 

evolved up to that point of time even if it results into a poor quality shot. Thus, they 

deduce that converting cinematographic techniques into idioms for positioning and 

moving the camera in computer games will not be adequate to convey the visual 

information in the interactive situation that characterizes the computer games. 

Christie et al. (2005) say that real-time camera control in computer games in 

particular, and computer graphics applications in general, is similar to that of 

documentary movies in that the position and orientation of scene elements must not be 

changed by the camera module. On the other hand Hawkins (2005) says that in some 
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cases cheating is necessary, and he suggests doing it, e.g., adjusting the position of a 

candle that is placed to enhance the mood of the scene only. 

Christie et al. (2005) say that although the camera system is increasingly 

becoming the decisive factor for the success of computer games, little attention has been 

given to it. They also note that although editing can enhance storytelling and reduce 

confusions that are seen in many games, they are used very rarely. They note that 

Tomlinson et al. (2000) and Friedman and Feldman (2004) have used some common 

editing techniques to effectively engage the player, but their editing is based on the nature 

of action in the environment rather than on the emotion of the player. 

Christie and Olivier (2006) argue that the camera system is only a small part of a 

computer game engine, and only a small part of the time between successive frames can 

be devoted to it. 

Christie et al. (2005) and Christie and Olivier (2006) classify camera systems in 

computer games into three main categories: 

• First Person Camera Systems: Users control this type of camera. They see through 

the character's eyes. It gives the user the feeling that he is the character or the 

game and that he moving around in the virtual environment. Doom and Quake are 

among the many games that use this type of camera. 

• Third Person Camera Systems: This type of camera system tracks the target from 

some fixed positions and changes the camera's position and orientation in 
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accordance with the environment (such as occlusion problem) and the target's 

interaction with the environment. 

• Action Replay Camera Systems: Used to highlight important events such as 

crashes in driving games, goals in football games, etc. 

2.3 Properties of Camera 

A camera has 7 degrees of freedom, viz., 3 for position, 3 for orientation and 1 for field of 

view. Properties of a shot determine these parameters of the camera. There are three types 

of properties, such as on-camera, on-screen and on-path properties (Christie and Olivier, 

2006). These are discussed in the following subsections. 

2.3.1 On-Camera Properties 

These properties constrain the camera parameters more or less directly. Vantage angle, 

focal length, distance and collision avoidance are examples of these properties. Distance 

and vantage angle are the most important properties (Katz, 1991) and as such are 

considered by most researchers, such as Drucker (1994), Bares, Thainimit and 

McDermott (2000), Halper et al. (2001) and Christie and Languenou (2003). Collision 

avoidance is addressed by a few researchers such as Bourne and Sattar (2005a) and 

Christie and Languenou (2003). Focal length is directly specified by some approaches 

such as Blinn (1988) and He et al. (1996). Focal length is determined by constraints in 

some other approaches such as Drucker (1994) and Christie and Languenou (2003). 
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2.3.2 On-Screen Properties 

These properties specify the location of the objects on the screen in a relative, absolute or 

approximate manner; and other properties such as size, orientation and occlusion of 

objects. Location of objects on screen are specified absolutely by Blinn (1988), Gleicher 

and Witkin (1992), Drucker (1994), He et al. (1996) and Halper et al. (2001). Relative 

position of objects on screen are specified by Olivier et al. (1999), Bares, McDermott et 

al. (2000), Christie and Normand (2005) among others. Approximate locations of objects 

on or out of screen are specified in such papers as Jardillier and Languenou (1998), 

Olivier et al. (1999), Bares, McDermott et al. (2000), Halper and Olivier (2000), 

Pickering (2002) and Christie and Languenou (2003). A very large set of on screen 

properties are considered by researchers. 

Occlusion is a geometrical relation (Christie and Olivier, 2006). An object is 

occluded if some part of its image is obscured by the image of another object. An object 

may be totally occluded, partially occluded or unoccluded. Some occlusion avoidance 

techniques are described below: 

• Ray casting: In this technique a ray is cast from the camera to the target. This 

technique is simple and efficient; and is used in most computer games (Christie 

and Olivier, 2006). To improve performance, the ray intersection is found with the 

bounding volume instead of the target. 

• Consistent regions: Bounding boxes of the potentially occluding objects are 

projected onto the sphere with centre at the centre of each of the subjects for 

which the occlusion avoidance is being considered. All these projections are 
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converted into a global spherical coordinate system and negated to obtain the 

occlusion free region (Bares and Lester, 1999a, 1999b). 

• Hardware rendering: In this technique the scene is rendered in the hardware 

stencil buffers. Each object is shown with separate colour. The buffer is read back 

and analyzed to generate the occlusion information (Halper and Olivier, 2000; 

Halper et al, 2001). 

• Bounding volume: In this technique bounding volumes are computed around both 

the camera and the target. Objects are not allowed to enter these bounding 

volumes (Marchand and Courty, 2002). 

2.3.3 On-Path Properties 

Properties in this category include frame coherency, collision avoidance, etc. Frame 

coherence requirement was first proposed by Halper et al. (2001), but they did not 

consider frame coherence as a constraint. They use prediction of target movement and 

guess where the camera should be in future frames and move the camera towards that 

position. Bourne and Sattar (2004b) argue that this method does not guarantee frame 

coherent movement of the camera, because it entirely depends on the algorithm for 

predicting the future movement of the target. Bourne and Sattar (2004b) use two 

constraints such as frame coherence distance and frame coherence rotation to represent 

the requirement of frame coherence. In their approach these two constraints must be 

satisfied to some degree, otherwise the solution is identified as invalid. 

Bourne and Sattar (2004b) indicate that the method proposed by Christie et al. 

(2002) represents the camera movement as a constrained combination of predefined 
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cinematographic primitive motions such as panning, tracking, dolly, traveling, arcing and 

zooming. It ensures frame coherence to some extent and the camera's motion can be 

reasonably accurately represented. But the predefined motions do not have the dynamic 

property that the constraints can provide, and they do not support unexpected movements 

required by the camera, if those movements are not represented as predefined motions. 

Bourne and Sattar (2004b) say that the constraints completely determine the motion of the 

camera in their approach. 

2.4 Requirements of Camera Control 

Some of the design guidelines for a general purpose autonomous camera control system 

as identified by different researchers are given below (Bares and Lester, 1999a, 1999b; 

Bares, McDermott et al., 2000; Bares, Thainimit and McDermott, 2000; Bourne and 

Sattar, 2005a): 

• User-Specified Viewing Goals: The camera should be able to deal with the user 

specified viewing goals (Bares and Lester, 1999a, 1999b). 

• Environmental Complexity: The camera must be able to operate in an arbitrary 

environment (Bares and Lester, 1999a, 1999b). 

• World Non-interference: The camera system should not modify the world to 

simplify the problem (Bares and Lester, 1999a, 1999b; Bares, Thainimit and 

McDermott, 2000). In some cases cheating may be acceptable, e.g., adjusting the 

position of a candle that is used to enhance the mood (Hawkins, 2005), cutaway of 

occluders (Feiner and Seligmann, 1992). 
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• Failure Handling: The camera should be able to produce the next best solution 

when a satisfactory solution is not available, so that the users get an acceptable 

view of the scene for those situations (Bares, Thainimit and McDermott, 2000). 

• Autonomy: The camera must be able to move autonomously without user 

intervention. While moving, the camera must be able to maintain the visual 

properties (Bourne and Sattar, 2005a). 

• Reactive: The camera module must be able to work without any prediction about 

the future position of the target (Bourne and Sattar, 2005a). 

• Real-time: The camera system must be able to perform all its computations in 

real-time so that it can be used in interactive applications (Bares, McDermott et 

al., 2000; Bourne and Sattar, 2005a). 

• Dynamic: The camera system must be able to operate in a dynamic environment 

and with dynamically changing targets (Bourne and Sattar, 2005a). 

2.5 Approaches to Camera Control 

There are many approaches to solve the problem of autonomous camera control. These 

approaches have o riginated from many diverse disciplines such as medical imaging, 

robotics and virtual cinematography. They are given below: 

• Predefined camera position relative to the subject 

• Idiom-based System 

• Constraint Satisfaction Approach 

• Automated Camera Control Assistant 

• Automated Camera Navigation Assistant 
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• Potential Fields 

• Intelligent Agent 

• Image-based Visual Servoing 

• Spline Systems 

• Path Planning 

2.6 Camera Control Using Constraint Satisfaction Techniques 

In the constraint satisfaction approach the user describes the scene in terms of 

cinematographic properties (Mascelli, 1998; Arijon, 1991; Katz, 1991). The properties are 

expressed as numerical constraints and/or objective functions on the parameters of the 

camera. The constraints must be satisfied and the objective functions are to be maximized 

or minimized. The problem is solved by exploring the space of camera parameters to 

minimize / maximize the objective function while satisfying the constraints (Christie et al. 

2005; and Christie and Olivier, 2006). The search may be broadly categorized into two 

groups: complete and incomplete. 

The camera has 7 degrees of freedom with each having a continuous large 

domain. Depending on the problem and its representation, the number of variables varies 

between 1 and 7 (Bourne and Sattar, 2004b). So, the search tree is very wide and not 

very deep. Due to the shallow depth of the search tree for the camera control problem, the 

search heuristics for complete search, such as back jumping or conflict directed back 

jumping, provide little benefit in pruning the large space. Bourne and Sattar (2004b) say 

that although local search can find a reasonable solution to a large and difficult problem 

easily, it does not guarantee the best solution and it has the tendency to violate the frame 

12 



coherence properties more often than the complete search because of its use of the 

property of randomness in its solution method. To increase the probability of finding the 

best or near-best solution, it is necessary to evaluate a maximum number of solutions. But 

this reduces the performance. So, the authors suggest using a trade-off between 

performance and accuracy. 

The constraint satisfaction based approaches differ in the nature of domains 

considered for search. They vary from the consideration of fully continuous to fully 

discrete domains. The discrete domains are derived by regular or stochastic subdivision of 

the domain of camera parameters. The approaches also differ in the consideration of the 

solving techniques. They vary from pure optimization based techniques to pure constraint 

satisfaction problem based techniques. Pure optimization based techniques use soft 

constraints and try to find the best solution with respect to an objective function. Pure 

constraint satisfaction problem based techniques use the hard constraint approach and 

perform exhaustive search on the domain. 

2.6.1 Domain Selection Strategy 

Bares, McDermott et al. (2000) limit the domain of each parameter of the camera between 

the allowable minimum and maximum values of the constraints. For each constraint they 

determine the valid region of space for the related camera parameters. The common valid 

region is obtained by taking the intersection of all the valid regions. The solver searches 

in the common valid region at discrete steps on all the 7 camera parameters. The search 

starts at a relatively coarse grid, then recursively searches at increasingly finer resolution. 
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But the resulting search space is still coarse and the method does not use the speed of the 

camera to scale it (Bourne and Sattar, 2004b). 

Bourne and Sattar (2004b) use a dynamic domain selection strategy that is based 

on the movement of the camera in the past frame. The resulting domain will have fine 

resolution for a slowly moving camera and coarse resolution for a fast moving camera. 

2,6.2 Using Information about the Search Space 

In Bourne (2006) and Bourne and Sattar (2006) the authors analyze the cost structure of 

the domain of search of the constraints such as distance, height and orientation (for a 

tracking shot) for different weights. They show that the optimal solution is often in the 

middle of the domain. But the movement of the target and the use of different constraints 

move the optimal solution to various regions of the search space. From this information 

they infer that there is no guarantee that the solution will be around the mid-point or that 

starting from the mid-point will find the optimal solution quickly. Using the information 

about the search space for the weighted constraint representation of the camera control 

problem, the authors have identified some design goals for the constraint solver that are 

given below: 

• Search large domains quickly as there are large regions of space with poor 

solutions. 

• Exploit the spatial characteristic of the application. 

• Utilize the gradient of the domain to focus near the optimal solution. 

14 



• Must be able to find the optimal solution at arbitrary place because there is no 

prior knowledge about the location of the optimal solution. 

They propose a sliding octree solver and claim that it fulfils the above design 

goals. They claim that 120 searches are sufficient to find an optimal solution. 

2.7 An Overview of Constraint Satisfaction Based Approaches 

The following approaches are used for the incomplete search: 

• Constraint Satisfaction Optimization Problem Based Approaches: Drucker (1994), 

Drucker and Zeltzer (1994, 1995), Bares, McDermott et al. (2000), Christie and 

Normand (2005), Bourne and Sattar (2005a, 2005b) and Bourne (2006) use the 

constrained optimization based technique. 

• Pure Optimization Based Approaches: Olivier et al. (1999), Halper and Olivier 

(2000) and Pickering (2002). 

• Partial Constraint Satisfaction Problem Based Approaches: Halper et al. (2001) 

and Bourne and Sattar (2004a, 2004b) use a hierarchical constraint approach. 

The complete search approaches use the following techniques: 

• Partial Constraint Satisfaction Problem Based Approaches: In this approach some 

of the constraints are considered as hard and others as soft. Bares et al. (1998), 

Bares and Lester (1999a, 1999b) and Bares, Thainimit and McDermott (2000) use 

this approach with hierarchical constraints. 
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• Pure Constraint Satisfaction Based Approaches: In this approach all the 

constraints are considered as hard. Jardillier and Languenou (1998), Languenou et 

al. (1998), Christie et al. (2002) and Christie and Languenou (2003) use this 

approach with pure interval arithmetic. 

Drucker (1994) and Drucker and Zeltzer (1994, 1995) offer the first constraint 

based camera control system. It is called CAMDROID. It is a task based camera model 

which specifies the behaviour of the camera using task level goals and constraints on the 

camera parameters. They regroup some of the cinematographic primitives into camera 

modules which are similar to shots in cinematography. The camera module provides an 

interface for user interaction with the module. The constraints of a module are combined 

by a constraint solver. They propose a constrained optimization solver based on Feasible 

Sequential Quadratic Programming to find a solution. 

This paper is the first to handle the screen-space constraint in cinematographic 

context, and it presents a complete set of screen-space constraints (Jardillier and 

Languenou, 1998). Jardillier and Languenou (1998) also note that the method computes a 

static camera solution for each frame, and hence interpolation between key frames is of 

no use because of the risk of constraint violation. Christie and Olivier (2006) say that the 

method is limited to a smooth fitness function and smooth constraints which is difficult to 

ensure in computer graphics. They also note that the method is prone to local minima and 

is sensitive to initial condition. Bares et al. (1998) argue that it does not offer a systematic 

solution for constraint failure that can frequently happen in a dynamic virtual 

environment with complex scene. 
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In Bares et al. (1998) and Bares and Lester (1999a, 1999b) the problem of 

constraint failure is addressed by using the partial constraint satisfaction problem 

technique of relaxing weak constraints in the order of lowest priority to provide the user 

with an approximate solution when constraints fail and, if necessary, decompose a single 

shot into multiple shots. They have implemented their method in CONSTRAINTCAM, a 

framework for camera control. 

Their camera system implements four types of constraints such as vantage angle, 

shot distance, occlusion avoidance and subject inclusion. Each of these constraints can be 

applied to any object. Each of them has a relative strength and a marker which shows if 

the respective constraint can be relaxed. 

The constraint solver first identifies the consistent regions of subject space relative 

to each constraint of every subject. The consistent region for each constraint of every 

subject is expressed in terms of its local spherical polar coordinate system with the origin 

at the mid-point of the respective subject. Then, each local consistent region is converted 

into a common global spherical polar coordinate system. The origin of this global 

coordinate system is placed at the centre of all subjects of interest. The constraint solver 

then attempts to find the intersection of all the consistent regions. If the intersection of the 

consistent regions is non-empty then the constraint solver searches for the optimal 

vantage (0, (p) within the intersection that is nearest the optimal vantage angle of all the 

subjects. Then the distance of the camera from the centre of the subjects is determined by 

taking intersection of the distance intervals of the consistent regions related to the 

viewing distance constraints of the subjects. If the optimal vantage angle is occluded then 

the distance is decreased to place the camera in front of the nearest occluder. For 
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occlusion detection, a ray casting on bounding volumes of the occluders is used. This 

determines the solution camera position. 

If no solution is found, the solver first tries to find an approximate solution which 

satisfies as many higher priority constraints as possible by satisfying the constraints in the 

order of decreasing priority. To do so, it first identifies the incompatible constraints by 

constructing an "incompatible constraints pair graph". Each node in the graph represents 

a constraint. Pairs of inconsistent constraints are joined by an arc. Then it repeatedly 

relaxes the weak constraints in the order of increasing priority until all the inconsistencies 

are resolved or no more relaxation is possible. 

If the relaxation is successful, a single shot solution is determined. Otherwise, it 

decomposes the original problem into a minimum number of sub-problems by employing 

the strategy of satisfying as many constraints as possible in each sub-problem. It then 

displays the multiple shots either sequentially or simultaneously using a composite shot 

consisting of a main viewport and one or more insert viewports. 

Christie and Olivier (2006) claim that CONSTRAINTCAM is based on only a 

limited subset of cinematographic properties and is applicable to relatively small 

problems involving only two subjects. They also note that a drawback of using the partial 

constraint satisfaction technique is that the user has to provide a hierarchy of constraints, 

but determining the hierarchy on the basis of visual appearance is not always trivial. 

Bourne (2006) argues that the process of relaxing the constraints repeatedly can be time 

consuming if the number of subjects and constraints increases. Halper et al. (2001) say 
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that CONSTRAINTCAM uses purely reactive application of constraints which results in 

jumpiness of the camera. 

Bares and Lester (1999a, 1999b) have extended the approach of Bares et al. 

(1998). They assigned relative priority to the targets also. The strength of a constraint is 

calculated by multiplying the priority of the constraint and that of the subject involved. 

To remove inconsistency in the incompatible constraints pair graph, this measure of 

strength is used. When producing a multi-shot solution, if any inset shot is not better than 

the overview shot (according to the total cost of the strengths of the failed constraints) 

that inset shot is removed. The authors claim that CONSTRAINTCAM performs in real­

time. They also noted that it misses some solution positions which are in front of the 

occluding objects. 

Bares, Thainimit and McDermott (2000) is an extension to the previous work on 

the CONSTRAINTCAM. It supports fifteen different types of constraints that can be 

applied either on the camera parameters or on one or two objects in the image. Each of 

the constraints has a range of allowable values, an optional optimal value and a relative 

priority value with respect to other constraints. A weighted sum is used to measure the 

constraint satisfaction at each potential position in the domain of the camera parameters. 

The cost of each constraint is evaluated on the basis of its nearness to its respective 

optimal value and its range is specified as 0.0 to 1.0. The weight is the relative priority of 

the respective constraint. The weighted costs of all the constraints are added to obtain the 

cost for a potential solution. 
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An exhaustive generate-and-test strategy is used to search the domain of all the 

camera parameters at discrete steps and test its satisfaction using the weighted sum 

measure. The one with the highest value is returned as the solution for the camera 

position, orientation and field of view. It searches at steps of 20x20x20 grid on camera 

positions, 15 degree intervals for orientation parameters and 10 units for field of view. It 

has been noted that the exhaustive generate-and-test method is impractical. 

Bares, McDermott et al. (2000) further extends CONSTRAINTCAM. In this 

extension they propose a heuristic search algorithm which is also applied at discrete steps 

like the previous one. It uses the same 15 different types of constraints and the same 

weighted sum measure for evaluating the fitness of the potential solution. 

The heuristic search method uses the allowable minimum and maximum values of 

constraints to reduce the size of the search domain of the 7 parameters of the camera. For 

each constraint it determines the valid regions of space of the respective camera 

parameters. Common valid region for all the constraints are evaluated by intersection. 

The common valid region is searched at discrete steps on all the 7 parameters of the 

camera using a generate-and-test method. The search begins by using a relatively coarse 

grid, then recursively searches at increasingly finer resolution. At each step a pre-

specified number of best candidate solutions are selected and the search continues 

recursively about those candidate solutions at finer grid resolution. The process stops 

when a solution is found that exceeds the given minimum threshold value for the weighed 

total fitness value or when the minimum grid resolution is reached. 
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In the first iteration a 9x9x9 grid is scanned. The second iteration is scanned over 

a 5x5x5 grid about 5 best potential solutions from the first iteration. Occlusion is tested 

using the ray casting method. They claim that the solver computes a shot in 0.016 

milliseconds, whereas an exhaustive search algorithm takes 20 to 30 minutes to compute 

2 million shots. 

Christie and Normand (2005) extend the idea of identification of the feasible 

region of space before search (Bares, McDermott et al., 2000; Pickering, 2002). The 

method provides semantic meaning to each valid volume with respect to its corresponding 

constraint in terms of cinematographic properties. The volumes are intersected to obtain 

the feasible region of space for search. If the intersection is empty the problem has no 

solution. If there is a solution, stochastic local search is used to find a minimum cost 

solution with respect to a cost function. The solver starts with an initial guess about the 

solution from inside the feasible volume. In each iteration it searches a set of neighbours 

around the current configuration of the camera and keeps the best one as the centre of the 

next iteration. The search ends when a solution is found or after a predefined number of 

steps. Finally, the user can interact with the system and utilize the semantic information 

of the volumes. 

This approach can be applied to a static camera only because of the computational 

cost involved in finding the intersection of the volumes and the dependency of the 

computation of the volumes on the object's position in space (Christie and Olivier, 2006). 

Halper and Olivier (2000) present a camera control framework called 

CAMPLAN. They say that the approaches offered by Blinn (1988), Seligmann (1993), 

21 



Drucker (1994), Christianson et al. (1996), Bares et al. (1998) and Bares and Lester 

(1999a) have the limitations of limited range of image properties that may be specified 

and that they use unrealistic point-based characterization of scene elements. These 

shortcomings are addressed in their proposed approach. They use genetic algorithms to 

find the optimal camera position where all the degrees of freedom of the camera are 

encoded in the chromosomes of each gene. They propose an "optimized visible surface 

determination algorithm" to evaluate occlusion constraints. Christie and Olivier (2006) 

argue that the method is computationally costly and has non-deterministic behaviour. 

Pickering (2002) uses constraints on the camera position to find a valid region. In 

the second step, a genetic algorithm is used to search in that region. Christie et al. (2005) 

say that this method prunes the search space efficiently and results in searching in the 

interesting regions. Christie and Olivier (2006) point out that the main problem is that it is 

difficult to model multiple constraints into a single objective function. They also note that 

the values of the weights are usually determined by a tedious generate-and-test method. 

In Halper et al. (2001) the authors extend the approach of CAMPLAN (Halper and 

Olivier, 2000). They introduce the idea of frame coherence (Bourne, 2006). Halper et al. 

(2001) refer to Drucker et al. (1992), Drucker and Zeltzer (1994, 1995) and Bares and 

Lester (1999a) and note that none of them use predictive analysis of the virtual 

environment, or impose constraints based on present camera position and movement. 

They say that for these reasons they can not achieve a high level of frame coherence. 

They present what they claim to be the first constraint solver based on existing camera 

state and motion characteristics. Their constraint solver applies constraint hierarchically -

first solves for certain constraints, then modifies the camera state to accommodate other 
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constraints. Each successive constraint minimally influences output camera state of its 

previous constraints. 

Bourne (2006) says that the camera system of Halper et al. (2001) is only as good 

as its prediction system, that the computation of prediction in a complex environment can 

be expensive, and that allocating computation for predicting a future state that can never 

be reached is a waste of resources. 

Bourne and Sattar (2004a, 2004b) use the following frame coherence and 

visibility constraints to ensure frame coherence and avoid occlusion, camera holes, 

camera cutting and unnecessary movement of the camera: 

• Frame Coherence Constraints: Distance and rotation constraints are used to 

ensure frame coherence. Distance constraint ensures smooth displacement of the 

camera between frames by restricting the displacement of the camera to a 

distance that is based on the distance the camera has moved in the previous 

frames with some adjustments for acceleration or deceleration. Rotation 

constraint similarly ensures smooth rotation of the camera based on its rotation in 

the previous frames. Camera cutting is obviously avoided by the frame coherence 

constraints. Unnecessary movement is also avoided by the frame coherence 

constraints which cause the camera to remain at rest until the cost of the solution 

increases high enough to force the camera to move to another position to reduce 

the cost. 
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• Visibility Constraint: To avoid occlusion, non-visible areas behind occluders are 

given higher cost. To avoid camera holes, areas near the object increase the cost of 

the solution. 

The authors use hierarchy of constraints in three layers where violation of higher 

layer constraints has higher costs. Level 1 is the highest layer in the constraint hierarchy. 

They consider frame coherence as the most important visual property, and so related 

constraints such as frame coherence distance and frame coherence rotation constraints are 

placed in this layer. They argue that the reason behind this choice is that unsmooth 

camera movement can cause motion sickness to the player. Level 2 has the constraints 

whose satisfaction is important but not mandatory. The visibility constraint which is 

related to the occlusion, camera cutting and camera hole is placed in this level since the 

authors consider smooth movement more important than these constraints. Level 3 

contains the constraints which can be violated more readily in order to satisfy the 

constraints in the higher layers. The authors place the constraints related to the general 

behaviour of the camera in this level. They use a trailing camera to test their approach. 

They use distance and height constraints to implement the trailing camera and so place 

them in this layer. 

The authors assign each constraint a cost that is proportional to its violation. The 

costs for all the constraints are added to obtain the total cost for a solution. They optimize 

the domain by specifying the upper and lower bounds to realistic values on the basis of 

the past movement of the camera. They use a branch and bound backtracking algorithm, 

and a greedy local search algorithm to search the domain. In the branch and bound 

algorithm the search continues into inconsistent regions of the search tree if the cost of 

24 



the partial solution is less than a specified maximum cost or the best cost solution found 

so far. 

The local search algorithm initially assigns each variable a random value from its 

domain. It keeps this set of values as the best solution found so far. If the total cost of the 

potential solution is not zero, it randomly selects a variable and assigns a new value to it 

from its domain. It recalculates the total cost. If the cost is less than the previous best 

solution, the new solution replaces the previous best solution. The process continues 

iteratively until either a zero cost solution is found or a specified number of searches have 

been performed. 

The performance of branch and bound is nowhere close to real-time, whereas the 

greedy local search performs close to real-time without using any optimization or search 

heuristics. The qualities of the solutions generated by the two algorithms are similar. 

Using these results they conclude that complete search is not necessary for this case. 

Bourne and Sattar (2005a) is an extension of their earlier work (Bourne and Sattar, 

2004b). They include a visibility constraint that influences the efficiency and structure of 

the constraint solver, and investigate application of the constraint weighting technique to 

the autonomous camera control problem. They describe the use of constraint costs and 

their weights to control the behaviour of the camera, and propose an efficient search 

heuristic for the solver. 

The authors claim that prior to their paper the integration of the approaches to 

autonomous camera control and the methods of occlusion avoidance were not effective or 
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unified. Their goal is to achieve an effective and unified method by integrating constraint 

weighted local search for the solver and ray-casting for visibility. 

These authors say that there are four major requirements for a successful 

autonomous camera, viz., autonomy, reactive, real-time and dynamic. They do not use 

any prediction for the future target states. This satisfies the requirement of a reactive 

camera. They claim that the minimal set of constraints required to adequately represent 

the visual properties of the camera and attain real-time performance are height, distance, 

orientation and frame coherence. This ensures automatic maintenance of visual properties 

of the camera (autonomy) and real-time performance. They use weighted average for the 

calculation of viewpoint for multiple targets. This addresses the requirement of a dynamic 

camera. The reasons behind the weighted average strategy for viewpoint are that the 

single target situation occurs most of the time and that the computational complexity 

involved in solving a multiple target situation as a constraint satisfaction problem is not 

justifiable in comparison to the frequency of its occurrence. Each of the height, distance 

and orientation constraints has a value and a user specified weight. The value of each of 

the weights is normalized with respect to the scale of values of the respective constraint. 

The frame coherence constraint tries to maintain a level of coherency in the 

distance the camera moves in the current frame in relation to that in the previous frame. 

This constraint acts as an acceleration or deceleration force. Frame coherence and 

visibility constraints are assigned weights, but they have no explicit desired values. 

Occlusion constraint is not used until there is an occlusion problem, in which case it 

influences how quickly the camera moves away from the occluded positions. They claim 

that this method has the advantage of avoiding contact between camera and scene 
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geometry; explicit collision detection between camera and scene geometry and its 

response is rarely necessary. They also claim that this integration of visibility 

maintenance method with the constraint solver enables it to become applicable to any 

environment and domain. 

A constraint directed stochastic local search algorithm is used to search the 

domain of constraint values. The solver searches iteratively, and evaluates each potential 

solution and keeps the best one. After a specified number of moves the best one is 

returned as the solution. They suggest using a problem specific search heuristic to take 

advantage of the nature of the problem such as ordered domain, and geometric nature of 

the problem. As an example they propose the heuristic of what they call "competitive 

strategy" to prune the domain. In this strategy the constraint with the highest cost 

(dominant constraint) attains temporary control of the search and prunes the search space 

where its cost of violation is higher. 

The set of constraint values and their respective weights is called the camera 

profile. Different camera profiles generate different types of camera behaviour. The 

behaviour of the camera can be changed by changing the camera profile at run time with 

the use of simple interpolation of the profiles during the transition. 

They claim that their camera system performs all of the visualization requirements 

of existing works, including Bares, McDermott et al. (2000), Bares, Thainimit and 

McDermott (2000) and Halper et al. (2001), and that it is better than those systems in 

terms of cost. They also claim that their representation has reduced the problem of camera 

control into selecting an effective and efficient constraint solver, and that it can be 
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extended to include new constraints without modification of representation or constraint 

solver. 

Bourne and Sattar (2005b) further extend their above idea. They address the 

problem of automatically generating constraint weights appropriate for the properties, and 

thus relieving the artists and game designers of determining them using a trial-and-error 

process. They use a genetic algorithm which takes a set of example animation traces as 

input and produces the corresponding constraint weights by searching the space of 

possible camera profiles. 

The above method is further extended in Bourne (2006) and Bourne and Sattar 

(2006). They analyze the cost structure of the domain of search of the constraints such as 

distance, height and orientation (for a tracking shot) for different weights and, using the 

result, they propose a sliding octree solver which takes advantage of that information to 

search the domain efficiently (details are given in section 2.6.2). 

Jardillier and Languenou (1998) and Languenou et al. (1998) use the pure interval 

method to calculate the whole set of camera movements in virtual environment satisfying 

user constraints on screen and/or on camera. They assume that the objects' behaviour is 

completely known in advance by the system. The camera path is assumed as a 

parameterized function of degree 3 for each degree of freedom of the camera. Time is 

also considered as a constraint. The unknowns are the parameters of the function. They 

use interval arithmetic for the constraint solver which is based on recursive subdivision of 

the search domain. They claim that there is no key framing and no interpolation and 

hence the solutions are guaranteed to satisfy the constraints. The authors say that they 
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consider only simple movements, and do not consider occlusion avoidance or collision 

detection. 

The interval arithmetic based approach is computationally expensive, especially 

for many variables and large domains, but it has the advantage of providing guaranteed 

approximation of all the solutions, or return false if there is no solution (Christie et al., 

2002; Christie and Olivier, 2006). 

Christie et al. (2002) and Christie and Languenou (2003) improve the above 

interval based method by reducing the number of variables and directing the search with 

propagation of good canonical solutions. They also address the problem of occlusion 

avoidance and collision detection. They represent the path of the camera as a constrained 

combination of primitive camera movements based on cinematography that are 

sequentially linked together. The primitives include panning, traveling, arcing and any 

combination of these movements. Each primitive camera movement, called hypertube, is 

treated as a separate constraint satisfaction problem. The constraint solver uses depth first 

search and during backtracking it uses tabu strategy. The hypertubes are solved in 

sequence ensuring the end of the i hypertube joins the beginning of (i+1) hypertube. 

Christie and Olivier (2006) claim that in the interval based approach the 

fulfillment of properties for the whole sequence is guaranteed. They also argue that the 

main problem with the interval based approaches is that when there is no solution the 

solver exits without any information about the inconsistencies. This then requires the user 

to remove some constraints and run the process again iteratively until a solution is found. 
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2.8 Conclusion 

This chapter provides the underlying concepts of automatic camera control in the virtual 

environment in general, and computer games in particular. An overview of the constraint 

satisfaction techniques that have been proposed to date for solving the problem has been 

given. The next chapter describes our proposed method to solve the problem. 
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Chapter 3 

The Camera Control System 

Our motivation for this research (Chapter 1) and its current state (Chapter 2) have been 

described in the previous chapters. In this chapter we present an analysis of the 

representation of the camera control problem using weighted constraint, and propose a 

solution for the problem on the basis of this analysis. 

3.1 Problem Formulation 

In this thesis we shall consider a simple tracking shot of a single target. The most 

important visual properties are represented by the size of the subject's image in relation to 

the frame and viewpoint (Katz, 1991; Mascelli, 1998). The viewpoint is determined by 

the orientation and the camera height or the angle of view. The image size is determined 

by the distance of the camera from the subject and the focal length of the camera. So, we 

can use a relatively larger range for the domain of distance and adjust the focal length 

after determining the most appropriate distance. The visual requirements of the distance 

and orientation can be expressed as constraints on the distance and azimuth angle of the 

polar coordinate system whose pole is at the position of the subject in the current frame 

and polar axis is along the horizontal projection of the direction of line of action (e.g., 
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along the direction of facing or the direction of movement of the subject). We shall use 

the zenith angle of a spherical polar coordinate system to represent the angle of view 

constraint. The positive z-axis of the coordinate system is along the vertical line. Then the 

constraint will be independent of the distance and orientation constraints. Whatever may 

be the variations in the distance and orientation, the shot will always be at the same 

camera angle, such as at eye level, as long as the zenith angle is within its acceptable 

range of values. But, if we use the height coordinate of a cylindrical coordinate system to 

represent this constraint, for some values of the distance within its range of acceptable 

values, the shot may not be at eye level, it may become a high angle or low angle shot. 

Let the desired position of the camera be specified as a point with coordinates (pd, 9d, <Pa) 

with respect to this spherical coordinate system (p, 9, cp). 

If the potential position of the camera is at (pp, 9P, cpp), the costs for the visual 

constraints are given by: 

P i = I P P - Pd I 

9i = | 9P - 9d | 

cpi = | cpp - cpd | 

If ki, li and mi are the corresponding weights, then the weighted cost for the 

visual constraints is: 

kipi + li9i + mi(pi 
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Similarly, we use (p', 0', cp') as the spherical coordinate system for the motion 

constraints of the camera with the pole at the position of the camera in the previous 

frame, horizontal projection of the direction of movement of the camera in the previous 

frame as the polar axis and the vertical line at the pole as the positive z-axis. Let the 

desired position of the camera according to the motion constraints be (p'a, 0'd, <p'd). If the 

potential position of the camera is at (p'p, 0'p, (p'p) with respect to this coordinate system, 

then the costs for motion constraints are given by: 

P2 = | P'p " p'd | 

02 = | 8'p - 9'd | 

92 = I <P'P - 9'd I 

If k2, h and ni2 are the corresponding weights, then the weighted cost for the 

motion constraints is: 

k2p2 + b02 + m292 

The total weighted cost for the problem is given by: 

kipi + liGi + micpi + k2p2 + b02 +111292 (3.1) 

3.2 Determination of the Solution 

First we consider a 2-dimensional problem and then extend it to 3 dimensions. We first 

consider visual constraints of distance and orientation relative to a single target. Let the 

total weighted cost is 
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kipi + li6i 

where ki and l\ are the constant weights. 

The system of isocurves Ti of visual constraints (Figure 3.1 shows a member yi of 

the family Ti) are given by 

kipi + li8i = c 

where c is a constant. We note that the cost on an isocurve is proportional to the distance 

cost when 0i = 0. It is also proportional to the orientation cost when pi = 0. Let pio and 9io 

be the ranges of acceptable values for pi and 0i respectively. Since A and B are 

acceptable solutions lying at the edges of the two constraint ranges keeping the other 

constraint's cost to zero, they must have the same total cost. Thus, the curve ABCD has 

total constant cost, and its equation is given by 

pi/pio + 0i/8io = 1 

and the weights for distance and orientation are inversely proportional to pio and 0io 

respectively. Thus, the isocurves of total constant cost are given by 

Figure 3.1: An isocurve yi of visual constraints. 
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pi/pio + 9i/Oio ~ constant 

If the total cost is greater than 1 the potential position for the camera is outside the 

domain of visual constraints and hence of less than acceptable quality. Here the constraint 

costs can be viewed as normalized costs and the weights are equal, viz., 1.0. 

Similarly, we can find the isocurves and the weights for the linear and angular 

frame coherence constraints from their desired values and the ranges of acceptable values. 

The results will be similar. The weights here will act as linear and angular acceleration / 

deceleration. 

The following theorem reveals the cost structure of the domain for the visual and 

the motion constraints. We prove the theorem for visual distance and orientation 

constraints. It also holds for frame coherence distance and rotation constraints. 

Theorem 3.1: Isocurves of less cost are contained within isocurves of higher cost. 

Proof: Let yi be an isocurve (Figure 3.2) with total cost c given by 

Pi/pio + 9i/0io = c 

Let P be a point inside yi. Let TP meets with yi at R and intersects with BD at Q. Then R 

has the total constraint cost of c. Since P is inside yi, QP < QR = pi. Since the points P 

and R have the same angle 0i, the total cost at P is less than that at R. So, any point inside 

yi has less cost than that on yi. Similarly, we can show that any point outside yi has 

higher cost than that on y i. 

35 



Figure 3.2: Isocurves of less cost are contained within isocurves of higher cost. 

Hence all the points with cost less than that of yi are contained inside yi. This 

proves that each curve passing through points having total cost less than that of yi lies 

inside yi.D 

Now, let the total weighted cost of visual and frame coherence constraints for a 

potential position of the camera be c. From (3.1) we have 

kipi + liGi + k2p2 + l2e2 = c (3.2) 

We have to find the point where c is the minimum. 

Frame coherence is necessary to keep a viewer's attention to the action in the 

image and to nothing else. Without it, the viewer's attention will be drawn to the camera 

(Thompson, 1998). On the other hand, adequate coverage is the minimum requirement for 

the visual effect of a scene (Katz, 1991). So, frame coherence must be given higher 

priority than the visual constraints. Frame coherence constraint cannot be relaxed beyond 

its acceptable range, but visual constraint can be relaxed as much as the situation 

demands provided there is adequate coverage. Consequently, frame coherence constraint 

will limit the search domain to promising regions of space. Within this region the frame 
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coherence constraint can be relaxed more readily than other constraints. So, once we 

identify this region we can ignore frame coherence constraints. Also the nature of their 

effect on the cost potential is different from that of the visual constraints. So, we need to 

decouple the cost potential for frame coherence constraints from that for visual 

constraints to analyze the cost structure of the search space and take advantage of that to 

control the camera in an informed way. 

To that end we decompose the above problem (3.2) into two - one for the frame 

coherence constraints and the other for the visual constraints: 

kipi + l i 8 i = c i 

k2p2 + l2@2 = C2 

where ci + C2 = c. We have to find ci and C2 such that c is the minimum. These two 

equations define two systems of isocurves for their respective constraints. All the points 

on a particular isocurve have the same cost with respect to the cost potential of the 

isocurve given on the left hand side of their respective equation. 

Now, we can specify the visual and the motion weights separately by considering 

the acceptable domains of visual and motion constraints respectively. The weights are 

determined automatically once we identify the respective acceptable domains. Moreover, 

the solution will always be within their common domain - if they have an acceptable 

common region. Thus, one need not consider the weights. Only the most appropriate 

desired positions and range of acceptable positions of camera with respect to visual 

constraints and frame coherence constraints need to be determined. 
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The points of intersection of the two families of isocurves will have the cost that is 

the total of the costs of the two isocurves. So, if we find the point of intersection of the 

two systems of isocurves that has the total minimum cost, that point will be the solution 

for the total problem. Obviously the locus of the point of contact of the two families of 

isocurves will contain the minimum cost point. The following theorem helps us find this 

point. 

Theorem 3.2: If within a certain region of space one of the visual or motion constraints 

has higher priority, then the total least cost for all of the visual and motion constraints will 

be at the end point of the locus of the point of contact within that region of the two 

systems of isocurves for visual and motion constraints that has the lowest cost for the 

higher priority constraints. 

Proof: Let the total weighted cost be given by (3.1). The points with constant weighted 

cost are given by 

mi(pi + ni6i) + P2 + n202 = c 

where c is a constant for the particular locus of point of total constant cost. The systems 

of isocurves T\ and T2 with constant cost for visual and motion constraints respectively 

are given by: 

mi(pi +m0i) =ci (3.3) 

P2 + n202 = C2 (3.4) 

where ci + C2 = c 
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Figure 3.3: Point of contact of the isocurves of visual and motion constraints. 

Let P be the point of contact of the isocurve 72 of motion constraints with 

isocurve yil of visual constraints and UPV be the locus of the point of contact (Figure 

3.3). The other curves from Ti intersecting with 72' will contain P and hence by Theorem 

3.1 they will have more visual cost than that on yi1. Since all the points of 72' have the 

same motion cost, those other intersecting points will have more total cost for combined 

visual and motion constraints than that at P. 

Let the isocurves yi1 and 72 * intersect with their respective axis at p'i and p'2 

respectively. Then, from (3.3) and (3.4) we see that the cost for their respective isocurves 

will be mip'i and p'2 respectively. So, the total cost at the point of contact will be 

mip'j + p'2 (3.5) 
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Successive interior curves of one family will be in contact with the successive 

exterior curves of the other family. So, if the costs mip'i of successive interior curves of 

r i decrease, the costs p'2 of the corresponding tangential successive exterior curves of T2 

increase, and similarly the other way around. 

So, in the total cost expression given by (3.5), if p'i increases then p'2 decreases, 

and vice versa. Since (3.5) is linear in p'i and p'2, and since p'i and p'2 are non-negative 

and bounded, we can select mi sufficiently large within a certain region bounded by the 

isocurve 72° of motion constraints to make the visual constraints higher priority than the 

motion constraints within that region which will make the total cost in (3.5) minimum 

when p'i is the minimum. So, the minimum cost point will be at an end point N of the 

locus VMPN of the point of contact within that region that has the lowest cost for the 

visual constraints. 

Similarly, by making mi sufficiently small we can make the motion constraints 

higher priority than the visual constraints within a certain region bounded by the isocurve 

Yi° of visual constraints, for which case the minimum cost solution will be at the end 

point M of the locus UNPM of the point of contact within that region that has the lowest 

cost for the motion constraints. Similarly, it can be shown that the theorem also holds for 

the other alignment of the isocurves of visual and motion constraints. • 

In Figure 3.3 suppose we can relax the motion constraints readily within a certain 

region bounded by the isocurve Y21 of motion constraints. Then Theorem 3.2 shows that 

the minimum cost solution will be at P. We can use this property of the constraints to 

better control the motion or the visual effect of the camera. For example, we can move the 
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camera most vigorously (of course, frame coherently) by relaxing the motion constraints 

for the whole domain of frame coherent motion. For this case the visual quality will be 

the maximum for the problem. To further increase the visual quality we can even further 

increase the region of relaxation of the motion constraints. But that will make the camera 

motion unsmooth. Or, we can relax the motion constraints for only a part of its maximum 

acceptable range of relaxation to move the camera very smoothly. 

In the extreme cases, if the motion constraints cannot be relaxed at all (i.e., if it 

has more priority than the visual constraints throughout the whole domain) then the 

solution will be at the desired position of the camera according to the motion constraints 

and the camera will be moving at the same speed in the same direction. On the other 

hand, if the visual constraint cannot be relaxed at all then the camera solution point will 

be at the desired position of the camera according to the visual constraints, and the 

camera will be moving erratically always going to the best possible viewing position. 

If only one of the motion constraints, say linear motion of the camera, can be 

relaxed and the other can not be relaxed at all then the camera will be moving in the same 

direction with variable speed. The solution camera position will be at any point on the 

straight line along the motion direction within the range of acceptable values for linear 

motion. Similar will be the case if only the rotation speed of the camera can be relaxed 

but its linear speed can not be relaxed. 
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Figure 3.4: Effect of constraint weights. 

3.3 Effect of Weights 

The combined effect of the constraint weights on the motion of the camera is shown in 

Figure 3.4. In this figure we use higher priority for the visual constraints within the region 

bounded by the isocurve ABCD of motion constraints. 

Figure 3.4 shows that for the values of frame coherence weights such that its 

isocurve has axes of equal length, the weights for visual distance and orientation 

constraints that have isocurve of equal length axes will attract the camera solution point 

toward the desired position U according to the visual constraints in a uniform manner (the 

solution point is Q in Figure 3.4). Higher weight for the visual distance constraint attracts 

the camera more rapidly towards the positions of desired distance than the positions of 
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desired orientation (the solution point is R in Figure 3.4), and higher weight for the visual 

orientation constraint attracts the camera more rapidly towards the positions of desired 

orientation than the positions of desired distance (the solution point is P in Figure 3.4). 

Similarly, we can show the total effect of weights for the case of higher and lower 

weights for frame coherence distance than frame coherence rotation. 

The case will be similar for giving higher priority to the motion constraints within 

a region bounded by an isocurve of visual constraints. In this case the role of those two 

groups of constraints will be interchanged. 

3.4 Control of Weights at Frame Level 

In Bares, McDermott et al. (2000), Bares, Thainimit and McDermott (2000), Bourne and 

Sattar (2005a, 2006) and Bourne (2006) constraint weights are determined and applied at 

the level of a simple shot (i.e., for the whole length of a simple shot). They cannot be 

determined or specified at the frame level. During the transition the camera profiles are 

interpolated by Bourne and Sattar (2005a, 2006) and Bourne (2006). In our approach, 

weights can be determined and applied at all levels including simple shot level and frame 

level. Application of weights at frame level is necessary if some constraints are affecting 

only portions of a simple shot. 

Hierarchical control of weights is necessary to have finer control on the visual 

effect or camera movement. Depending on the situation they are controlled down to the 

frame level. Frame level weights will have the highest precedence, developing shot level 

weights will have the lowest precedence, and the simple shot level weights will have the 
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precedence in between. For example, at the simple shot level if we can afford to have less 

control for visual quality within a region, we can apply stricter frame coherence weight 

within that region and the camera motion becomes very smooth. For portions of the 

simple shot it may be necessary to increase the frame coherence domain to its maximum 

possible extent to have a common domain to position the camera, thus reducing the 

weights for frame coherence constraints at the frame level. 

Once new desired values and weights are assigned to the constraints, the camera 

will automatically be guided toward the desired position smoothly. No interpolation is 

necessary. The camera may be accelerated or decelerated radially or angularly at the 

frame level by higher level adjustment of the weights of camera motion and the relative 

priority of the motion constraints with respect to the visual constraints. 

3.5 Strategy for Using the Constraints 

The effect of all the requirements and hence the constraints of a shot on camera 

parameters and its motion are not similar. To control the camera intelligently we need to 

have prior information about the effect of each constraint and the resultant effect of all the 

constraints before their application. Since decomposing the problem helps us to know and 

precisely control the effect of each constraint in the overall problem involving all the 

constraints of the camera, it is desirable to classify the constraints as visual constraints 

and motion constraints. Their combined effect will determine the position of the camera. 

The centre of view and view up vector determine other three parameters of the camera. 

Finally, determining the field of view fixes the focal length. Thus all the seven parameters 

of the camera are determined. 
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For that we need to group the constraints in relation to the type of camera 

parameters or camera motion they are interacting with. The classification is given below: 

• Camera Motion Constraints: They are related to the frame coherent motion of the 

camera. They include frame coherent constraints, and all other constraints related 

to the movement of the camera, viz., slow or fast moving camera, jerky camera, 

ascending or descending camera, tracking camera, etc. This group will also 

include the constraints that will guide the camera to move to a desired region of 

space in the future frames by using prediction to avoid collision of the camera 

with the environment elements, or to avoid occlusion of, say, dramatic circle of 

interest by environment elements, or to transition to another shot within the same 

developing shot. Each of them will have the most appropriate value and a domain 

of acceptable values, the range of which determines the weight for it. 

• Visual Constraints: This group includes all other constraints. All these constraints 

are related to the quality of the image. They include, for example, distance, 

orientation, camera height, depth order, etc. 

• Centre of View Constraints: They include location of subject / subjects of the shot 

on the image, object inclusion constraint, etc. 

• Field of View Constraints: This group consists of such constraints as dramatic 

circle of interest, shot size on the image, object inclusion constraint, etc. 

Some of the constraints may be hard constraints, e.g., frame coherence constraints, 

and avoiding occlusion of eyes in extreme close up. They must be satisfied. Most of the 

constraints are soft constraints. Each of the soft constraints in each group are satisfied in 
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the best possible way with respect to other constraints in their respective groups using the 

weighted constraint method or any other method appropriate for that particular constraint. 

In this way, camera motion constraints and visual constraints will produce two acceptable 

domains with the most appropriate desired position in their respective centres. The 

position having the least total cost for these two groups of constraints will be the position 

of the camera. 

Once the camera is positioned there, the centre of view is determined by 

considering the related constraints. Finally, the field of view is adjusted by using its 

related constraints. These two are also adjusted smoothly. The strategy described here is 

very similar to the real cameraman as he moves the camera smoothly to the best possible 

position and adjusts the centre of view and field of view accordingly. 

3.6 Strategy for Using the Weights 

Knowing the behaviour of the camera position (corresponding to visual constraints) and 

motion (corresponding to motion constraints) in relation to their respective weights the 

camera module can control the camera in an informed way. Different strategies can be 

used for different types of shots to determine the appropriate weights for that type of shot. 

An example strategy would be to use a very restrictive domain (may be a one point 

domain in the extreme case) for the camera motion constraints in the first attempt (Table 

3.1). More weight is given to visual constraints so that the solution lies on the outer 

isocurve of the restrictive domain of camera movement. 
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1st attempt 

2nd attempt 

3rd attempt 

Final attempt 

Motion Constraints 

Most restrictive domain 

Relax domain 

More weight 

Domain is as in 2nd attempt 

Domain is as in 3 rd attempt 

Visual Constraints 

Most restrictive domain 

More weight 

Domain is as in 1st attempt 

Relax domain 

More weight 

Relax the domain to its maximum 

possible extent 

More weight 

Table 3.1: Using the weights 

If there is no common region in the first attempt, the camera motion domain can 

be relaxed, but more weight can be given on it so that the solution lies within its domain. 

This can be achieved by searching along the bounding isocurve of visual constraints that 

bounds the acceptable region of visual constraints. If the second attempt fails, the domain 

for the visual constraints can be relaxed and the visual constraints can be given higher 

priority than the motion constraints. If the third attempt fails but still then we need a 

solution, the domain for the visual constraints can be relaxed to its maximum extent and 

the higher weight is maintained. The visual quality of the image may be very poor. This 

option can be used in such cases as during the computation of the next shot for which it is 

not possible to cut to another shot in the current frame. 

This hierarchy of decision is based on the relative importance of frame coherent 

movement of the camera versus the visual effect of the scene. The above hierarchy may 

be modified if the shot demands differently. 
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3.7 Solving for Camera Position 

We consider only one scenario where the visual constraints have higher preference (i.e., 

weights) than the motion constraints within the domain of motion constraints and lower 

preference outside that. We also assume that all the weights are constant. So, both the 

systems of isocurves will be either convex or concave in each quadrant. According to 

Theorem 3.2, if the desired position of the camera according to the visual constraints is 

inside the domain of the motion constraints then the solution camera position is at that 

desired position, otherwise the solution camera position will be at one of the points of 

contact of the outermost isocurve for motion constraints with an isocurve for visual 

constraints where the cost of the visual constraints is the minimum. 

But there is no known exact solution. So, we need to search the outermost 

isocurve for motion constraints to find the point where the total weighted cost of the 

visual constraints is the minimum. We shall use a binary search in which the search 

domain is successively refined into one half of its previous size and the search continues 

in the region which is known to contain the point with the minimum total weighted cost 

for the visual constraints. 

First we consider the search of an arc such as a quadrant AB, or its part, of the 

isocurve of motion constraints (Figures 3.5a, 3.5b, 3.5c and 3.5d). On the arc AB of 

Figure 3.5 there may be the only minimum for the arc (absolute minimum in Figure 3.5a 

and local minimum in 3.5b), or a minimum at each of the two end points and one 

maximum in between (Figure 3.5c), or one minimum and one maximum at the end points 

(Figure 3.5d). 
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Figure 3.5: Searching a quadrant or a portion of it. 

To search, say, AB we first evaluate the cost for visual constraints at A and B. 

Then we divide AB by the point C and calculate the cost for visual constraints at C. Then 

we divide the two halves AC and CB of AB by D and E respectively. We note that the 

quadrant AB contains either one minimum or two minima for the quadrant. The absolute 

minimum for the quadrant is either at the point of contact of AB with an isocurve of the 

visual constraints or at one of its end points. The two minima are at the end points A and 

B. We check the arcs ADC, DCE and CEA to find the one that contains the point of 

contact having the absolute minimum cost for the quadrant. If they do not contain the 

point of contact with the absolute minimum cost then the arcs AD or EB contains the 

point of contact or the end point having the absolute minimum cost for the quadrant. The 

algorithm is given below: 
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If cost(D) <= cost(A) and cost(D) <= cost(C) 

Then ADC contains the minimum cost position 

Else if cost(C) <= cost(D) and cost(C) <= cost(E) 

Then DCE contains the minimum cost position 

Else if cost(E) <= cost(C) and cost(E) <= cost(B) 

Then CEB contains the minimum cost position 

Else if cost(A) is the minimum among these five points 

Then AD contains the minimum cost position 

Else EB contains the minimum cost position 

If the resultant arc was only a quarter of the arc in the previous iteration (AD in 

Figures 3.5c and 3.5d) we follow the procedure of searching AB. If the resultant arc is 

one half of the arc in the previous iteration then it contains the point of contact with the 

absolute minimum for the quadrant (ADC in Figures 3.5a and 3.5b). We divide the two 

halves of this resultant arc and continue our search to the portion of the arc that contains 

the point of contact. The length of this portion of the arc will be one half of the length of 

the arc in the second iteration. We continue until the search domain is refined to the 

desired accuracy. This method has the advantage that the search domain is partitioned 

into increasingly smaller regions with decreasing cost. For all the cases of Figure 3.5, the 

absolute minimum point for the arc AB is found by this search. 

In each iteration the resultant arc length reduces by one half, and 2 mid-points are 

evaluated, except for the first iteration. In the first iteration 3 points are evaluated. So, to 

refine the domain size to (l/2n)th we need to search (2n +1) points. In particular, to refine 
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,7xth 
the domain size to < 1%, we need to reach (1/2 ) of the domain size. This will require 

only 15 points to search. 

Now we consider the whole isocurve of motion constraints for searching. We see 

from Figure 3.6 that there will be more than one point of contact. In this figure there are 

two local minima (at Q and R) and one absolute minimum (at P). In addition, there is one 

maximum (at C). For all the cases the binary search algorithm will find the absolute 

minimum point for each of the quadrants. The algorithm can be applied to all the four 

quadrants separately and, among the resulting four minimum points, the absolute 

minimum point will be the solution point. To reduce the search space to (1/2 ) each 

quadrant should be divided five times. The algorithm needs to search a total of 4 x (2 x 5) 

or 40 points. 

Figure 3.6: Absolute minimum (P), local minima (Q) and local maxima (R and S) on the 
same isocurve. 
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To improve the performance we avoid searching the quadrants that are known not 

to contain the absolute minimum for the whole isocurve of motion constraints. In this 

thesis we consider only one situation corresponding to a particular relative position of T 

and U with respect to IV such as when they are below IV (Figure 3.6), and describe how 

to find the quadrant(s) on which we have to apply the binary search. First we consider if 

the angle TMI is an acute angle: 

If TU intersects with IV on the left side of A: 

Else if TU intersects with AB: 

Else if TU intersects with BC: 

If KL intersects with BC: 

Else: 

Else: 

IfTU<=TOB: 

ElseifTB<=TU<=TC: 

Else: 

search DAB 

search AB 

search BC 

search ABC 

search ABC 

search BC 

search BCD 

If the angle TMI is greater than or equal to a right angle: 

If TU intersects with IV on the right side of C: search BCD 

Else if TU intersects with BC: search BC 

Else if TU intersects with AB: 

If KL intersects with AB: search AB 

Else: (i.e., if KL intersects with BC) search ABC 

Else: (i.e., if TU intersects with IV on the left side of A) 

IfTU<=TB: search ABC 
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Else if TB <= TU <= TA: search AB 

Else: (i.e., if KL intersects with AD) search DAB 

We note that at most two adjacent quadrants are selected. In the above pruning 

process, if TU or KL intersects twice in the same quadrant of ABCD, we can eliminate 

that part of the quadrant that is farther from U. Similarly, for the other three situations 

corresponding to other relative positions of T and U we can use the properties of the two 

systems of isocurves to remove the quadrants that are known not to contain the absolute 

minimum, and select one or two adjacent quadrant(s) or their parts that contain the 

absolute minimum. If one quadrant or its part is selected we search it using the binary 

search method. 

If two quadrants or their part are selected one of them will contain the absolute 

minimum and the other will contain local minimum only at the common point of the two 

octants or of their parts. To find the quadrant or the portion of the quadrant that contains 

the absolute minimum we evaluate the common point of the two quadrants and its 

adjacent points on both sides of it at the granularity of the refinement of the problem. If 

the common point has the minimum cost then one of the quadrant has only one minimum 

at that point and the other quadrant or its part has minima at its two end points, i.e., at the 

common point for the two quadrants and at the other end of that arc. The minimum 

between these two points is the solution point. 

On the other hand, if the common point for the two quadrants does not have the 

minimum cost the quadrant or the portion of the quadrant that contains the minimum cost 

point among the three points will contain the absolute minimum point. We search this 
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quadrant or its part using the binary search method. This will require 10 more points to be 

evaluated to reach the refinement of (l/25)th of the quadrant, i.e., (l/27)th of the whole 

isocurve. Adding the common point and its two adjacent points the total number of points 

to be evaluated is 13. 

One advantage of this algorithm is that we follow the isocurves of successive 

lower cost in each iteration to reach the minimum cost solution. We can use an ordered 

set of numbers to track these areas of cost hierarchy where the first element corresponds 

to the first pass, second element corresponds to the second pass, and so on. The serial 

number of only the minimum cost point in a pass is stored in its corresponding element. 

Since there are five points to compare in each pass along a curve we use numbers 

from 0 to 4 to represent the position of the minimum cost point in a pass. So, each 

element in the set of ordered numbers will be from 0 to 4. The five points for each pass 

are numbered from 0 to 4 in one common direction along the isocurve of search. The first 

element of the ordered set of number contains the serial number of the minimum cost 

point in the first pass, the second element contains the serial number of the minimum cost 

point in the second pass, and similarly for the other elements. The last element will give 

the serial number of the solution point. 

For the special cases when the minimum cost point is at one of the edge points of 

the current interval (recognized by the minimum cost point number 0 or 4 in the 

corresponding element for the pass in the ordered set of numbers) the search confines to 

the two point subinterval at the corresponding edge which has the size 
of(l/22) thofthe 

current interval of search. We use only one mid-point for the next pass, but the search 
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interval for the following pass is not reduced by this. So, the next element in the ordered 

set will contain 0 to 2. The next pass will again have five points to compare. In the first 

iteration the search domain is divided into (l/22)th, so the number of elements in the 

ordered set of numbers will be one less than the number of passes. If we refine a search 

space into (1/25)1, the ordered set would have four elements. 

In Figure 3.7 an example search with its related ordered set and minimum cost 

points in each pass are shown. In the first iteration the search domain is divided into 

(l/22)th, so the number of elements in the ordered set of numbers will be one less than the 

number of passes. Thus if we refine a search space into (1/2 ) , the ordered set would 

have four elements. 

Qx4«mA set of numbers: 

1 2 3 3 

r"*" 

Domain for 2?** p&ss 
„,,, i,iiiiiiiii,i[|,[[jj|,i,,ir^^SS..i' 

Domam for 4* pass 
~%y 

rntoa 

airi4 

Domain for $*p*m mi% - minimum m nth pass 

Figure 3.7: Ordered set of numbers representing the search domain hierarchically. 
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We note that each pass compares five points to find the minimum among them 

and confines the search to the half of its domain containing three of its points in the next 

pass. If for any reason, e.g., the problem of occlusion, the minimum cost solution is not a 

valid solution, we check the four other points corresponding to the last pass for a valid 

solution. They cover half of the domain size in the previous pass. If all these five points 

are invalid, we need to check the other half of the domain in the previous pass. This can 

be done by checking the other two points of the previous pass and searching that half 

domain down to the level of refinement for the problem. If that half is also invalid, then 

all the domain of this pass is invalid. This is one half of the domain of its previous pass. 

We move on to the previous pass and search the other half of its domain down to the level 

of refinement for the problem. We continue this process of moving on to the next higher 

pass and checking for validity down to the level of refinement for the problem. The 

process continues until all the passes including the first pass are refined and checked for 

validity. If it fails, there is no valid point for the camera position and all the points have 

been checked. But we do not need to check the whole domain. We can use information 

about the occluded areas and the ordered set of numbers about the cost hierarchy to avoid 

the occluded areas and jump to the immediate next higher cost area that is unoccluded. 

If the minimum point is found directly at a point of intersection without searching 

we can use the reverse process of binary search to expand the search domain in each 

iteration to double of its previous size with with the new half having the next best cost 

point, and check that new half for occlusion. If that half is also occluded the search 

domain is expanded again to double of its present size. But if the new half has an 
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unoccluded area then that is searched and checked for occlusion using binary search as 

before down to the level of refinement of the problem. 

3.8 Extension to 3D 

Let the total weighted cost for the 3D problem be c. Then we have 

kipi + liGi + micpi + k2p2 + h^2 + ni292 = c (3.6) 

With the straightforward extension of our approach to 3D, we decompose (3.6) 

into two separate problems for visual and motion constraints respectively: 

kipi + l i 0 i + m i 9 i = c i 

k2p2 + l2©2 + ni292 = C2 

where c = ci + c2. These two equations define two systems of isosurfaces. A 

straightforward extension of Theorems 3.1 and 3.2 to 3D readily apply to them. Again, 

we consider the visual constraints having higher preference than the motion constraints 

within a certain region bounded by an isosurface y2 of motion constraints, and that all the 

constraint weights are constant for the current frame. Similarly to 2D, if the desired 

position of the camera according to visual constraints is not within the region bounded by 

the isosurface 72 of motion constraints, then the solution camera position will be at the 

point of contact of 72 with an isosurface of visual constraints, and we search on 72 to find 

the point where the total cost of the visual constraints is the minimum. We observe that 

the isosurface of motion constraints will intersect with the isosurface of visual constraints 

at isocurve of total cost of visual and motion constraints, and that these isocurves will be 
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inclusive of one another, i.e., each will be contained within the others of higher total cost. 

We utilize this property and direct our search successively towards the inner curves to 

reach the minimum cost position. 

We shall use an extension of the binary search algorithm used for 2D. We use the 

technique of binary slice and search where we slice the search area successively into two 

halves and confine our search into the area that is known to contain the inner isocurves of 

total cost of visual and motion constraints completely. This will ensure that the refined 

search area contains the solution point. The refined search area in each pass is of the size 

of one half of the size of the search area in the previous pass. 

First we describe a brute force search method. Again, let us consider the search of 

a portion, such as an octant AOB, of the isosurface of motion constraints (Figure 3.8). To 

begin, we search the arcs OA, OB and the middle arc OC using our binary search method 

for 2D up to the desired level of refinement of the problem (in Figure 3.8 we have shown 

the subdivision five times along the arc OB only). This will find the minimum points on 

the curves up to the required level of refinement. Then we search the middle arcs OD and 

OE of the two halves AOC and COB using our binary search method for 2D up to the 

desired level of refinement of the problem. Among the arcs OA, OB, OC, OD and OE we 

identify the one that has the point with the minimum cost among them. Then we know 

that the isocurve of minimum cost will be within the areas on either side of this arc. So, 

we search the one or two slices of the surface that is/are adjacent to that arc. For example, 

if OE has the point with minimum cost we search the area BOC, and if OB has the point 

with minimum cost we search the area BOE. 
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Figure 3.8: Binary slice and search of an octant AOB. The algorithm slices the domain 
using arcs and searches each arc using binary search method for 2D. 

For searching BOE, we follow the method of searching AOB. For searching BOC, 

we search along the arcs that divide the slices COE and EOB using our binary search 

method for 2D up to the desired level of refinement. Then we select the arc that contains 

the point with minimum cost and apply the search again to the two refined slices adjacent 

to that arc. We continue this process until the thickness of the slice reaches to the desired 

level of refinement. 

For refining the search space to (1/25 x IH5)^ of the octant we need to use a 

maximum of 2 x 5 + 1 = 11 arcs and a maximum of 2 x 5 + 1 = 11 points on each arc. O 

is common to all the arcs. So, we need a maximum of 1 1 x 1 1 - 1 0 = 111 points to search 

an octant. 

For the whole isosurface of motion constraints there will be more than one point 

of contact with local minima or maxima. Similarly to 2D, if an octant has more than one 

minimum or have both minimum and maximum we search the area that contain the 

absolute minimum for the octant. If an octant or its part has one local minimum the above 
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method will find it. If there is a local maximum, the local minima will be determined at 

an edge of the octant. We can apply the above search method separately to all the eight 

octants and the minimum cost point among all the eight resulting minimum cost points of 

the eight octants will be the solution point. We need to evaluate 8 x 111 =888 points to 

search eight octants each with the refinement of (1/25 x \I25)^ of the octant. This reduces 

the whole isosurface to the refinement of (1/27 x 1111), or less than (1% x 1%) of its total 

area. There is one common edge for each pair of octants in each half surface for which the 

total number of points to be evaluated reduces by 2 x 4 x 2 x 5 = 80. Also, there is a 

common dividing curve which divides the surface into two. For this the total reduces by 4 

x 5 = 20. Each of the the two halves has an apex point which is evaluated for each of the 

octants in its corresponding half. For these two points the total reduces by 6. Thus, the 

total number of distinct points to be evaluated is 782. 

Similarly to 2D, we can use the properties of the isosurfaces to eliminate the 

octants that are known not to contain the absolute minimum for the whole isosurface of 

motion constraints, and find the resulting one to four octants of which one will contain the 

absolute minimum. If one octant or its part is selected we search that area using the binary 

slice and search method. We know that it will evaluate a maximum of 111 points. 

If more than one octant is selected we can apply the binary slice and search 

method to each of them separately to find the absolute minimum for each of them. The 

minimum among them will be the solution point. For the maximum of four octants it will 

search a maximum of 401 points. To improve the performance we can identify the octant 

or part of an octant that contains the absolute minimum for the problem in a manner 

similar to 2D. For that we check the common edges of the octants to determine whether 
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the cost is decreasing towards the interior of an octant. If it is decreasing towards an 

octant that octant will contain the absolute minimum for the problem. Otherwise, the 

absolute minimum point is on the common edges or at the point of intersection of the 

isosurface of motion constraints with the axes of the isosurface of visual constraints. For 

the worst case of four octants we check a pair of opposite edges of the isosurface of 

motion constraints and their four adjacent arcs, at the level of refinement of the problem, 

with one on each side of them. We search these edges and arcs separately at the level of 

refinement of the problem using the binary search method for searching an arc. If the cost 

is decreasing towards the interior of an octant that octant will constain the absolute 

minimum for the problem. We search that octant using the binary slice and search method 

for searching a surface. This will evaluate 100 more points in addition to the 61 points 

that are evaluated for searching the two edges and their four adjacent arcs. Thus a total of 

161 points are evaluated. But if the cost is not decreasing towards the interior of any 

octant we do not need to search any octant. The solution point will be on an edge or at a 

point of intersection of the isosurface of motion constraints with the axes of the isosurface 

of visual constraints. 

Similarly to 2D, we use ordered set of numbers to represent the minimum cost 

slicing arc and the minimum point on the arc so that if the minimum cost solution is 

invalid for some reason we can backtrack and search. We need an ordered set to represent 

the hierarchy of slicing. Each of its elements contains the serial number of the arc whose 

minimum cost point is the lowest amongst the arcs in the corresponding pass. It organizes 

the slices in cost hierarchy that is similar to the hierarchical organization of subintervals 
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of an arc for ID searching based on cost. For each slicing arc we need an ordered set of 

numbers that is the same as that for searching an arc for ID searching. 

3.8.1 Backtracking Search 

We can improve the performance of the brute force search of an octant by using 

backtracking. Similar to the brute force search, in each iteration we divide the slice(s) 

adjacent to the minimum point arc in the previous iteration, and search a portion of the 

dividing arc(s) that contains the minimum point on that/those arc(s) with domain size of 

one half of the domain size on the dividing arc(s) in the previous iteration. So, we need to 

find either three points on this/these dividing arc(s) with the minimum cost in the middle 

point, or two points with the minimum cost at the end of the arc(s). We start the search for 

the domain on the dividing arc(s) by evaluating points near the minimum points in the 

previous iteration. 

More specifically, to evaluate the first point on a dividing arc, if the average of the 

minimum point positions of its two adjacent arcs in the previous iteration is at one of the 

5 (or 3) partitioning points that divide the domain of the minimum point arc into 4 (or 2), 

we first evaluate a point at the same level on the dividing arc(s) in the current iteration, 

then evaluate the point on this arc that is on the other side of the vertex of the quadrant 

and whose distance from the first point is one half of the domain size in the current 

iteration. If the average is not at the partitioning points, we round the fraction toward the 

partitioning point that is near the minimum point between the two adjacent arcs. Then, 

depending upon the cost at the vertex of the quadrant and these two points, and the length 

of the interval containing these three points, we evaluate a point on one side of these two 
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points at a distance of one half of the domain size from the nearest one. If an interval 

containing the minimum cost for the arc is found we search that interval using ID binary 

search method up to the desired level of refinement. Otherwise, we evaluate a point next 

to and at a distance of half of the domain size from the previous point We continue the 

process until an interval is found that contains the minimum point for the arc, or we reach 

an end of the arc. For the latter case, the interval at the end contains the minimum. Then 

we search the resulting interval using ID binary search algorithm up to the desired level 

of refinement. 

To show the backtracking, consider an octant AOB (Figure 3.9). Similar to the brute force 

slice and search method, first we search the arcs OA, OB and the dividing arc OC using 

ID binary search method up to the desired level of refinement and find the minimum 

points on them. Let the minimum points be P, Q and R respectively. If the minimum 

among them is at P or Q, we need to search only one slice AOC or COB respectively, 

otherwise we need to search both the slices. Let the minimum be at R. Then we search the 

dividing arcs OD and OE using backtracking binary search. The domain size will be one 

half of the size of the arc in the previous pass. For this we first evaluate the points on OD 

Figure 3.9: Backtracking search. 

63 



and OE that are near R. Here R is at the middle partitioning point of OC. We evaluate the 

mid-points Di and Ei. Then we evaluate D2 and E2 that are farther from O. 

On OD, if Di is the minimum among O, Di and D2, we evaluate the point D3 

between O and Di. Then OD3D1 contains the minimum, so we search OD3D1 up to the 

refinement of the problem using 2D binary search. If D2 is the minimum among O, Di 

and D2 we evaluate D. Then D1D2D contains the minimum, so we search it using up to 

the refinement of the problem using 2D binary search. Similarly, on OE we select and 

search an interval of half of its size. 

In this backtracking method, starting from OD and OE, the search domain is 

reduced to one half in each iteration. Since the isosurfaces are convex and 0 is not the 

minimum point, in the worst case the algorithm may start with the minimum points near 

O or AB, and backtrack to the other end. The backtracking may proceed gradually in 

many iterations or abruptly in one iteration. For abrupt backtracking we double the step of 

backtracking at each point. Suppose we want to search up to the granularity of (1/25 x 

l/25)th of the octant. Searching OA, OB and OC requires 3 * ( 1 + 2 * 5) - 2 = 31 points to 

be evaluated. In each iteration the backtracking method searches one half of the domain 

size in the previous iteration and backtracks on the average of one point. So, for gradual 

backtracking at most 2 * [2 * (4 + 1) + 2 * (3 + 1) + 1 + 2 * (2 + 1) + 1 + 2 * (1 + 1) + 1] 

= 62 points will be evaluated. For each octant, at most 93 points are evaluated. On the 

other hand, the brute force binary slice and search algorithm takes 111 points to search an 

octant. Thus, this is not a big improvement to the brute force method. 
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3.9 Example 

We have implemented our framework in the 2D and 3D tracking shot of a single target 

moving in an environment without any occluder or other environment elements. For 2D 

we have used four constraints such as distance and orientation of the camera with respect 

to the target, and frame coherence distance and rotation. For 3D we have included two 

additional constraints such as vertical angle of the camera with respect to the target and 

the frame coherence vertical rotation. Each has a desired value and a range of acceptable 

values. The framework uses the range of values to find the weights for the respective 

constraints automatically. The resulting camera position and its motion are found to be as 

expected. 

3.10 Discussion 

In this chapter we have described our approach to automatic camera control using a 

simple tracking shot of a single target in 2D and 3D without any occluder. We use a 

weighted constraint representation for the camera control problem. To keep it simple, we 

consider only four constraints for 2D such as frame coherence distance, frame coherence 

orientation, visual distance and visual orientation, and two additional constraints for 3D 

such as frame coherence vertical rotation and visual angle, and apply them purely 

reactively to enable it for a dynamic environment. Each of these constraints has an 

optimal value and a range of acceptable values. They give rise to the weights for them 

and identify the two systems of isocurves for 2D or isosurfaces for 3D. Then, finding the 

minimum cost solution reduces to finding the point of contact of two curves/isosurfaces 

from the two systems. But there is no known exact solution for this. So we use a binary 
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search technique along a curve for 2D and on a surface for 3D to find the minimum cost 

solution. The algorithm searches a maximum of 13 points to reduce the granularity of the 

domain to less than 1% for 2D. For 3D, it evaluates a maximum of 161 points for a brute 

force search to achieve the refinement of less than 1% x 1%. There is no appreciable 

improvement in efficiency in the backtracking search. 

The optimal value and the range of allowable values of a constraint determine the 

weight for it. The relative priority value used in Bares et al. (2000a, 2000b) is not 

necessary among constraints within visual or motion constraints. Because increasing (or 

decreasing) the relative priority value from 1.0 is equivalent to decreasing (or increasing) 

the range of acceptable values for the constraint, provided the costs at the end points of 

the range of allowable values of each constraint are equally acceptable and we use the 

total of weighted constraint cost with constant weight for the cost function. However, the 

relative priority between the groups of visual and motion constraints can be used at a 

higher level to guide the motion of the camera. For this we do not need any specific 

value. There are only three cases, such as higher, lower or equal priority. 

The seven parameters of the camera can be specified in the following way: 

• First we find the best possible position for the camera satisfying frame coherence, 

distance, orientation, height and all the other constraints. 

• Then we point the camera towards the centre of view. 

• Finally, we adjust the focal length. 
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Chapter 4 

Occlusion and Collision Avoidance 

4.1 Introduction 

There are two types of occlusion constraints: 

• If the subject, object or the environment is required to be occluded wholly or 

partially for visual effects then the desired values and/or domains of the visual 

constraints such as distance, orientation and angle will be affected. So, this type of 

occlusion will have an effect on the determination of the weights of those visual 

constraints. In this thesis we shall not consider this type of occlusion. 

• On the other hand, if the subject, object or environment are required to be 

unoccluded, then this will not have any effect on the quality of the shot and hence 

on the visual constraints such as distance, orientation and angle. The only effect 

this type of occlusion has is to make a potential position, or a part or the whole 

domain of potential positions of the camera either valid or invalid. This type of 

occlusion cannot be readily included as a constraint in the fitness function of the 

constraint satisfaction problem, because this constraint has no cost involved. This 
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constraint should have the effect of avoiding the occluded areas of the domain of 

camera positions. In this thesis we shall consider this type of occlusion. 

rp 

Figure 4.1: Unoccluded area SXT will not be a valid solution in the next frame due to 
collision with the object MN. 

In Figure 4.1, let the nl frame be the current frame. Let In-i and Tn-i be the 

position of the camera and the target in the previous frame. Let the target be at Tn in the 

current frame and assume that in the next frame (n+1) it will be at T„+i. Let MN be an 

object that may cause occlusion. The object MN does not affect the visual quality of the 

shot or the motion of the camera in the current frame n. Suppose, if we do not consider 

the probable occlusion by MN in the future frame, the camera goes to position In in the 

current frame. If the camera can move to the area WXYZ in the next frame (n+1) 

according to the frame coherent motion, then from the figure we see that either the 

camera will collide with the object MN or the target will be occluded by that object in the 

(n+l)th frame. Although the area SXT of the region of frame coherent motion of the 
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camera is unoccluded, the camera cannot move there due to collision with the object MN. 

So, we need to consider occlusion avoidance and collision avoidance together. 

To avoid occlusion and collision we can choose one of the following options: 

• Cut to a new shot 

• Continue with the same shot but move the camera to another point of view such 

as in front of the subject. 

• If possible, continue with the same point of view and the same shot. 

To cut to a new shot we need to know beforehand that the present shot cannot be 

continued longer, and that we have to wait for the appropriate action or situation in the 

scene when we can cut to a new shot. During this waiting period the camera configuration 

for the new shot can be computed. So, we need a prediction about the future state of the 

scene and the camera. Otherwise, the cut may not be smooth, we may miss the best shot 

that we can shoot next if we cut immediately to a new shot before that, and we may not 

have enough time to compute the camera configuration for the next shot. 

If we can guide the camera to avoid the occlusion and the collision, and we do not 

have the appropriate state of the scene to cut to a new shot or we do not need to cut to a 

new shot, then we can continue with the present shot. 

To move the camera to a new point of view or to continue with the present point 

of view in the same shot we need to avoid the occlusion or collision of the camera with 

the environment or other objects or subjects. 
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In this thesis we discuss the occlusion or collision avoidance while continuing 

with the same point of view. Changing the point of view will involve determining the new 

point of view. Once a new point of view is selected, moving the camera towards that 

location is the same as moving the camera for the same point of view, except that the 

point of view for the current frame will be located at a new position relative to the subject 

of the shot. 

It is desirable to avoid occlusion even for a single frame. In some situations, a 

brief occlusion for a single or a couple of frames, viz., occlusion by a fast moving object 

for a couple of frames, may be acceptable (Hawkins, 2000). But collision cannot be 

allowed even for a single frame. So, the camera needs to have knowledge about the future 

situation of the scene so that it can avoid occlusion and collision or it can cut to a new 

shot. Motion characteristics of the subject, object and the camera can be used to predict 

their future positions. 

But, for a completely dynamic environment such as computer games there will 

always be some inaccuracy in the prediction. Since we use prediction at each frame, any 

deviation from the predicted positions due to the dynamic nature of the problem will be 

corrected by the predictions in the next frames. 

As the number of frames for prediction increases, the inaccuracy of the predicted 

information increases. But since we need to have future information about occlusion and 

collision anyway, we shall use prediction for a couple of frames. W e can use past 

velocity, angular velocity, acceleration and angular acceleration of the subject, camera 

and object to predict about their future position. In this thesis we shall not be concerned 
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with developing an efficient method for prediction. We shall use only their linear and 

angular velocity to roughly predict their future position and orientation and discuss how 

to avoid probable occlusion and/or collision by assuming that they will be around those 

predicted positions. 

4.2 Effect of Occlusion and Collision Avoidance on Constraints 

Occlusion and collision are related to camera motion. Occlusion and collision do not 

affect the visual quality of a shot. They simply make some areas of the world invalid. But 

the cost of visual constraints at the unoccluded and collision free areas will remain 

unchanged. So, we cannot change the weightage for the visual constraints. Since the 

weight of a constraint is inversely proportional to the range of acceptable values for that 

constraint, it follows that the domain of visual constraints cannot be changed, otherwise 

the cost of the visual constraints will be modified inappropriately. We cannot restrict the 

domain of visual constraints to guide the camera to move more vigorously towards the 

unoccluded or collision free areas. So, they will restrict the domain of camera motion. 

This will in turn increase the weights of the corresponding motion constraints. Thus, the 

camera will be moved vigorously away from the possible occlusion and collision area. 

If different parts of the motion domain have the problem of occlusion and/or 

collision and we want to move the camera through that area (e.g., moving the camera 

through the bushes or the leaves of a tree), we cannot restrict the domain to guide the 

camera towards an occlusion and/or collision free area. For such cases we need to search 

the whole motion domain. If there is a collision problem at different parts of the motion 

domain, the minimum point may have an occlusion and/or collision problem. The next 
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best solution may be in the interior of the domain of motion constraints. We also need to 

search the interior area of the domain of camera motion. Our binary search algorithm can 

not search the interior efficiently. In this thesis we shall not consider the avoidance of 

such type of collision. We shall discuss the searching method for the other cases when 

there is occlusion at different parts of the motion domain, but no collision problem 

therein. 

4.3 Occlusion and Collision Avoidance in the Current Frame 

First we discuss the avoidance of occlusion and collision in the current frame only. Here 

we assume that either there will be no occlusion or collision problem in the predicted 

future frames or that we do not need to consider the occlusion and collision problem in 

the future frames (this is possible for such cases as when the current frame will be the last 

frame of this shot). For this case we do not need to guide the camera to move towards the 

area that is promising for the future frames. We just need to avoid the occlusion and 

collision areas from the domain of motion constraints. 

First we consider collision avoidance (Figures 4.2a and 4.2b). In these figures, I is 

the position of the camera in the past frame, Q is the desired position of the camera 

according to the motion constraints, MN is the probable colliding object and ABCD is the 

domain for motion constraints, po, 0o and cpo are the range of acceptable values for motion 

constraints p, 0 and cp respectively. We use hardware rendering to project the region of 

camera motion IBC on the farthest arc (for 2D) or surface (for 3D) CB, with the centre of 

projection being at the position of the camera I. We can use, say, 32 x 32 buffer in the 

rendering. 
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Figure 4.2a: Collision avoidance without prediction: Desired position of camera is not 
affected by collision problem. 

Figure 4.2b: Collision avoidance without prediction: Desired position of camera is 
affected by collision problem. 

In Figure 4.2a and 4.2b, CS is the projection of the object MN on CB. In Figure 

4.2a, positions along the desired orientation have no collision. The desired orientation and 

the range of orientation for the lower half domain for the motion constraints will remain 

unchanged, the range of orientation for the upper portion of the domain will be reduced to 

the angle SIQ. In Figure 4.2b, position along the desired orientation also has collision. We 

change desired orientation to the direction of IS, and change the range of values for 

orientation for the top and bottom portion of the domain to 0 and the angle SIB 

respectively. 

If different areas of BATS (or different areas of ABCD if the object MN does not 

cause any collision problem) have a collision problem, those areas will be identified in 
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the projection. We mentioned before in Section 4.2 that this kind of collision problem will 

not reduce the domain size. But occlusion can reduce the size of the motion domain. So, 

we can consider this kind of collision avoidance together with a similar kind of occlusion 

avoidance. As mentioned in Section 4.2, we shall not consider this kind of collision. 

After the application of the condition of collision avoidance, the restricted motion 

domain is valid for movement of the camera to any point of the restricted domain of 

motion that is not identified as colliding. Now we apply the occlusion avoidance 

condition to further restrict that domain. 

Figure 4.3: Occlusion avoidance without prediction: Arc UAV of the isocurve of motion 
constraints is occluded by the object MN. It is removed from the search domain. 

Let I be the position of the camera in the last frame and T be the position of the 

target in the current frame (Figure 4.3). We assume that we have already validated the 

collision avoidance condition which has restricted the motion domain to EFGH. First we 
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consider the case that no area of EFGH has a collision problem. So, there is no object 

within this domain to cause any occlusion to the target. We need to check for the occluder 

in the area ETF. We project the area between the isocurve ABCD and T onto the isocurve 

with T as the centre of projection. Let TN intersects with the isocurve ABCD at V and U. 

The area VAU of the isocurve is occluded and the area VBCDU of the isocurve is 

unoccluded. We search this unoccluded area of the isocurve and the part of TN cut by it, 

i.e., the curve VBCDUV to find the minimum cost solution. 

If some areas of VBCDU (or some areas of the whole isocurve ABCD - if the 

object MN did not cast any occlusion) are occluded we use backtracking guided by the 

ordered set of numbers for hierarchical representation of the curve/surface to find the 

unoccluded best cost solution. For this search we use binary search for 2D problems or 

binary slicing and searching for 3D problems and generate the ordered set of numbers. 

Then we check the minimum cost solution for occlusion by checking the buffer array for 

occlusion. If it is not occluded then it is the solution. Otherwise, we need to backtrack and 

search. For 2D problems we check the buffer array for unoccluded points on both sides of 

the minimum point and get the location of those two points. We evaluate the visual cost 

of visual constraints for them. The one with the minimum cost will be the solution. For 

3D we use the ordered set of numbers to find the area of next best cost solutions and 

check that area in the buffer array for occlusion. If there is an unoccluded area in that 

region, we select this area. If the next best cost region is found to be occluded, we use the 

ordered set of numbers to find the area of next best cost solutions. We repeat this 

procedure until we find a region of best cost points that has unoccluded points. We use 
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the binary slice and search to search that area up to the desired refinement of the search 

space. Then, the buffer array is checked for occlusion and the process is repeated. 

If during the collision avoidance procedure some areas of VBCDU (or some areas 

of the whole isocurve ABCD - if the object MN did not cast any occlusion) have been 

found to be invalid due to collision problem, irrespective of whether some of its area is 

now found to be invalid due to occlusion problem, the least cost solution on the surface of 

the isocurve of motion constraints may become invalid. Some points interior to the 

isocurve may be the next best cost and valid solution. So, we need to search the interior of 

the motion isocurve. As mentioned before in Section 4.2, our binary search algorithm can 

not search that area efficiently, and so we shall not consider this type of collision in this 

thesis. 

4.4 Variable Weight 

Now let us consider another example of occlusion and collision avoidance (Figure 4.4). 

Let KLMN be a wall with NM on the ground and KL being the top of it. Let KN be 

vertical and LM be inclined. Here the domain of 0 is changing vertically and that of cp is 

changing sideway 0o is decreasing downward and <po is decreasing leftward. They may 

become 0 at some point. Further down the point where 0o = 0 the desired values for 0 will 

be the values of 0 for the points along the line LM. Similar will be the case for the desired 

values of 9 for further left of the point where 90 = 0- This gives rise to variable 0o and 90. 

In other cases po may be variable. Still the isosurfaces are convex and isosurfaces of 

higher cost will contain those of lower cost. So, we can use our binary slice and search 

algorithm on the isocurve of motion constraints to find the solution. 
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w 
Figure 4.4: Variable weight. 

4.5 Using Prediction to Avoid Occlusion and Collision 

A 

Now we discuss the avoidance of probable occlusion or collision in the future frames. In 

Figures 4.5a, 4.5b, 4.6a and 4.6b, the target is at Tn.i, Tn and Tn+i in the past frame (n-1), 

current frame n and next frame (n+1). Let the camera be at In-i in the previous frame. If 

we do not use prediction, suppose the camera moves to In in the current frame. Then in 

the next frame (n+1), the camera will collide with the object MN in Figures 4.5b, 4.6a and 

4.6b. For Figure 4.5a, either the camera will collide with the object MN or the target will 

be occluded by the object MN in the next frame (n+1). We shall use hardware rendering 

to check for occlusion and collision in each frame. 
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Figure 4.5a: Desired position Pn according to motion constraints is a valid solution. 

Figure 4.5b: Desired position Pn according to motion constraints is not a valid solution 
due to collision problem in the next frame. 

Figure 4.5: Avoiding collision in the next frame for an over the shoulder tracking shot. 
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Figure 4.6a: Desired position Pn according to motion constraints is not a valid solution 
due to collision problem in the next frame. 
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Figure 4.6b: Desired position Pn according to motion constraints is a valid solution. 

Figure 4.6: Avoiding collision in the next frame for a profile tracking shot. 
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First we check for occlusion and collision in the current frame. To check for 

collision we use hardware rendering to project the region CnBnIn-i on BnCn using In.i as 

the centre of projection. We see from Figures 4.5a, 4.5b, 4.6a and 4.6b that there is no 

collision in the current frame. Let LnKn be the arc for the desired value of distance. Then, 

the maximum angular stretch for the camera position in the next fame (n+1) will be 

within the region ESG. Using hardware rendering we project the region ESG on the line 

Tn+iFn+i with S as the centre of projection. Let the portion EF of this projection be 

occluded. If the desired position Pn for motion constraints collides with MN (Figures 4.5b 

and 4.6a), then our desired orientation for the angular movement will be along In-iNF, and 

the range of acceptable values of 0 for the upper region would be 0 and for the lower 

region would be (Go - angle (PnIn.iN)). If P„ does not collide with MN (Figures 4.5a and 

4.6b) we do not need to modify the desired value for orientation and its range of values 

for the bottom part. We can avoid the collision by changing the range of acceptable 

values of 0 for the upper part to the angle FIn.iPn. 

Here we have used prediction about only one future position of the target at Tn+i 

and occluder at MN. We do not use prediction about the future position of the camera. 

Similarly, using prediction about a couple of future positions of the target, we can 

increase the ability of the camera to avoid collisions which cannot be avoided by using 

prediction about only one frame. If it is seen by prediction that collision cannot be 

avoided in the future, then we will have time to change the point of view or cut to a new 

shot. 
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Figure 4.7: Occlusion avoidance in the next frame using prediction. 

Now we discuss occlusion avoidance using prediction. Here we shall consider 

prediction for one frame only. We predict about the position of the target and the 

occluding objects in the next frame based on their motion in the current frame. Let Tn.i 

and In-i be the position of the target and the camera in the previous frame (Figure 4.7). Let 

Tn be the position of the target in the current frame. Let Tn+i be the predicted position of 

the target in the next frame (n+1) based on its motion and En+iFn+iGn+iHn+i be the domain 

for visual constraints for the next frame. Let Mi Ni be the position of an occluder in the 

current frame. Let M2 N2 be the predicted position of another occluder based on its 

motion in the previous frame. 

Let AnBnCnDn be the domain of camera motion in the current frame after the 

restriction imposed by the collision problem. Occlusion by Mi Ni restricts the domain to 
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AnEFDn. With this domain in the current frame, the camera can move to the area GHIJ in 

the next frame. Occlusion by M2 N2 in the next frame restricts this range to GYZJ which 

intersects with the visual domain En+iFn+iGn+iHn+i in the next frame at UVWX. We 

evaluate the domain of camera positions in the current frame in order to move to the area 

UVWX in the next frame according to the motion of the camera. Now we adjust the 

desired position of the camera for the motion constraints. This will identify the isocurve 

for the motion constraints. We apply the search on this curve. 

If the common area UVWX does not have any valid position due to a scattered 

occlusion or collision problem, the next frame may not have a solution camera position in 

the current point of view. We then prepare to change the point of view or cut to a new 

shot. 
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Chapter 5 

Conclusion 

5.1 Summary 

Due to its generality the constraint based approach is used to solve the autonomous 

camera control problem in an interactive digital environment. Conflicting requirements 

make the problem over-constrained. Difference of priorities for the constraints warrants 

the representation of the cost function as a weighted sum. Initially a simple tracking shot 

of a single target in an environment with no occluder is considered. 

The total weighted cost of the problem is decomposed to decouple the frame 

coherence cost. It is shown that the weight for a constraint is determined by the 

acceptable range of values for it. This relieves the user of specifying the weights. The 

search space is represented as two systems of isocurves/isosurfaces with constant weights 

corresponding to the two types of constraints such as visual and motion constraints. 

The minimum cost solution is on the locus of the point of contact of the two 

systems of curves/surfaces. If the visual and frame coherence constraints are considered 

as equal in importance, all the points on this locus have equal cost, so any point on this 

locus is the minimum cost solution. If any of these two types of constraints has a higher 
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priority compared to the other, the most optimal position with respect to that particular 

type of constraint will have the minimum cost solution. Since it is always desirable to 

accelerate or decelerate the camera to reach the optimal position with respect to the visual 

constraints, the visual constraints must be given higher priority than the motion 

constraints. There is no need to specify the relative priority value. It only makes the 

solution point lie on the point of contact of the outer isocurve/isosurface for the motion 

constraints with the corresponding isocurve/isosurface for the visual constraints. This has 

the advantage of providing the autonomous camera a higher level control on the linear 

and angular speed of the camera by increasing or decreasing the range of acceptable 

values for their respective constraints. 

The point of contact of the two curves/surfaces from the two families of 

isocurves/isosurfaces is the exact solution for the optimal camera position. Since camera 

motion constraints has the lower priority within a certain region of space around its 

desired position, the solution camera position will be at the point of contact of the 

isocurve/isosurface of motion constraints which encloses that area with an 

isocurve/isosurface of the visual constraints. This region contributes to the acceleration or 

deceleration of the camera which can be controlled from a higher level to move the 

camera in an informed way to the desired location. 

The method of finding the exact solution for the point of contact is not known. So, 

we use a binary search technique to search on the isocurve/isosurface of motion 

constraints. For 2D it evaluates 13 points to reach the granularity of less than 1% of the 

search domain. For 3D it searches a maximum of 161 points. The search organizes the 

search space in a hierarchy of cost. When the minimum cost solution is not a valid 
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solution and we need to find the nearest best cost solution, we can use the hierarchical 

information for cost to direct the search to the next best solution. 

We use prediction to determine the occlusion and collision. Hardware rendering is 

used to project the area of interest for occlusion and collision information. Except for the 

case when different parts of the motion domain have the problem of occlusion and 

collision, the occlusion and collision problems are tackled by removing the invalid 

collision and occluded area from the domain of camera motion. They affect the 

isocurve/isosurface of motion constraints and the search area respectively. 

5.2 Future Work 

Future research can be undertaken in the following directions: 

• Our binary search method cannot search the interior of the search domain 

efficiently. An efficient method can be formulated to do that. 

• Until now, constraints for camera control have not been methodically studied. 

They can be investigated. 

• Variable constraint weights and irregular bounding surfaces for the domains of 

visual and motion constraints can be investigated. 

• More efficient and reliable techniques to predict about two or more future frames 

can be studied. 

• Determination of the maximum limits of the radial and angular acceleration and 

deceleration of the camera in relation to its radial and angular speed and visual 

requirements can be investigated. 
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