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ABSTRACT 

Substantial research has been done, and sill continues, for reducing the bandwidth requirement 

and for reliable access to the data, stored and transmitted, in a space efficient manner. Bloom 

filters and their variants have achieved wide spread acceptability in various fields due to tiieir 

ability to satisfy these requirements. 

As this need has increased, especially, for the applications which require heavy use of the 

transmission bandwidth, distributed computing environment for the databases or the proxy 

servers, and even the applications which are sensitive to the access to the information with 

frequent modifications, this thesis proposes a solution in the form of compressed delta Bloom 

filter. 

This thesis proposes delta Bloom filter compression, using stochastic learning-based weak 

estimation and prediction with partial matching to achieve the goal of lossless compression with 

high compression gain for reducing the large data transferred frequently. 

Keywords: Bloom filter, Compression, Stochastic learning-based weak estimation, Delta Bloom 

filter, PPM. 
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Chapter 1 

INTRODUCTION 

Computers and the technology related with computers have evolved over time. In 

seventies, memory requirements were a major issue. The reason for it was that the 

memory available at that time was small and expensive. Therefore, for commercial and 

research purposes it was essential to utilize memory resources as efficiently as possible. 

In recent years, the scenario has evolved, though the core issues remain the same. The 

data to be dealt with has increased exponentially. Although, memory capacities have 

increased since the last decades, with the present data requirements, there is a substantial 

need to handle the data sets as concisely as possible. On the network side, also, there is a 

limitation on the bandwidth and the communication times and costs, since the data 

residing at any one node itself are significantly large. Here, also, there is a need for a 

concise data representation. Membership query is the most common query type and 

extensively used. It would reduce the relative costs sufficiently, even if there was just a 

way to know in advance and succinctly about the membership of an element, i.e. whether 

the element exist in the set or not. 

Bloom filters have the capacity to fulfill all these requirements (broadly speaking, three 

aspects of Information Economy), though, with a small limitation. Therefore, there was a 

boom in the research work related to Bloom filters and their active participation in the 

recent applications. In fact, its use has been picked up for the web applications which are 

in demand in the industry. 

Bloom filters are now widely used in peer-to-peer network systems [YS2006] and the 

research on them is still active in this field. The applications are for string matching, 

confidentiality maintenance, or the security [LPKS2005]. Bloom filters are also used for 

wireless podcasting and the association rules in data mining [0LW2OO7]. Bloom filters 

have found place in the forensic science to efficiently aggregate and search hashing 
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information. md5bloom [RCBG2006], a Bloom filter manipulation tool that can be 

incorporated into forensics, has been introduced. Recently Microsoft produced a Bloom 

filter forwarding architecture called BUFFALO which uses a small SRAM to store one 

Bloom filter of the addresses associated with each outgoing link. BUFFALO significantly 

reduces memory cost, increases the scalability of the data plane, and improves packet -

forwarding performance [MS2009]. A data popularity conscious Bloom filter has been 

introduced recently [ZLSS2008]. It considers object popularity in sets and membership 

queries and minimizes false-positive probability of BF by adapting the number of hash 

functions used for each data object to its popularity in sets and membership queries. An 

aging BF with two BF for the dynamic set is introduced to remove stale data in the BF to 

make space for the new data. This scheme utilizes memory space more efficiently than 

double buffering, the current state of the art [Yoon2010]. 

As technology is evolving further, now, there is a need for improving the efficiency and 

representation of compressed Bloom filters. The applications involving heavy use of the 

bandwidth, distributed computing environment for databases or proxy servers, and even 

applications that are sensitive to the access to the data with frequent modifications, all 

will benefit from the use of compressed Bloom filters. Depending on the benefits that 

compressed Bloom filters offer, they will prove of vital use in application areas such as 

databases, web caching, P2P applications and network applications. 

Moving ahead of this, applications, for example in web proxies, that broadcasts its cache 

content or the updates to the other proxies at frequent intervals, will benefit more from 

the compressed delta Boom filter, which represents the updates to the Bloom filter in the 

compressed form. In this way less data has to be transmitted. 

In this thesis, delta Boom filter compression is proposed using Stochastic learning-based 

weak estimation (SLWE) [OR2005] and using prediction with partial matching (PPM). 

For delta Bloom filter compression, a lossless compression technique is needed to reduce 

the amount of data without any loss of data. Using SLWE, probabilities of the source 

symbols can be adaptively updated while being encoded. This technique not only uses 
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statistics of the source but also considers the variability of the source statistics. PPM is a 

higher-order source modeling technique that makes use of the past history of the data 

being encoded to give more efficient compression. 

The proposed methods will provide substantial compression gain to applications relying 

on heavy use of the bandwidth and distributed computing environment relying on 

frequent updates of the underlying data. 

1.1. Motivation 

Bloom filters have a widespread use in databases, web caching, P2P applications and 

network applications both for data storage and as a message. There is a present need for 

an efficient and compact transfer of Bloom filter updates. This thesis addresses this need 

and proposes delta Bloom filter compression using SLWE and PPM based methods. 

Why Bloom Filters? 

A Bloom filter is a probabilistic data structure which is used to test whether an element is 

a member of a set, i.e. membership testing. Given a set S = {*/, } on a 

universe U, if there is a need to answer queries of the form: Is y e SI, a Bloom filter is a 

good choice. Bloom filters provide an answer in a constant time depending on the time to 

hash. It requires a small amount of space compared to the original data. 

Why Delta Bloom filters? 

A Bloom filter is not just a data structure; it can also be used as a message which needs to 

be broadcasted. In applications, for example, which require web cache sharing, the 

proxies periodically broadcast updates of their cache contents. It has been proved that 

Bloom filter-based caches are more efficient than the exact dictionary or the server list 

approaches [FCAB2000]. In this scenario, where broadcasting of the updates is required, 

a delta Boom filter can be sent instead. Applications that rely on the access to the data, 
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which is frequently updated, can gain from the use of the delta Boom filter. Furthermore, 

this delta Boom filter can be compressed to increase the compression gain for these 

applications and this is the main aim that we endeavor in this thesis. 

Why Compression? 

In a situation in which the Bloom filter is not just a data structure but also a message and 

this message needs to be transmitted from one location to another, it will be beneficial to 

compress it. Where there is a need for the access to this data which is frequently updated 

and transmitted, compressed delta Boom filter can prove beneficial. Compression will 

reduce the amount of the data being transmitted. 

Why Lossless Compression? 

Lossless compression is a process in which the data recovered after decompression is 

exactly same as the original data. Bloom filters represent the set in the form of a bit 

vector. Each element is hashed k times hi,...hk with the range {l,....m}, i.e. A,-: X —* 

{l....m}, 1 < i < k . To store an element Xe S, the bits hj(X) are set to 1 for 1 < / < 

k . If any of these bits are incorrectly represented due to the loss of data during 

compression, the element which is a member of the set might be incorrectly represented 

as not a member. This defies the basic property of the Bloom filter which states that the 

false negative rate is not a characteristic of a Bloom filter [Mitz2002]. Therefore, lossless 

data compression is the only choice for Bloom filter Compression. 

Why SLWE based Compression? 

Stochastic Learning-based Weak Estimation (SLWE) is a fairly new technique introduced 

in [OR2006]. To the best of our knowledge, it has not been used to compress Bloom 

filters. Using this technique we can adaptively update the probabilities of the source 

symbols while being encoded. This technique not only uses higher-order statistical 

models about the source but also considers the variability of the source statistics. Using 
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this technique, the data is encoded through single pass unlike the static coding algorithms 

which require two passes, one pass to learn the probabilities and the second to encode the 

data. As opposed to higher models, SLWE based compression has linear space 

complexity. Also, in our experiments it was found out that SLWE achieves a better 

compression gain than benchmark arithmetic coding and the higher-order Prediction with 

partial matching compression method. Our proposed delta Boom filter compression 

method using SLWE also works better in terms of scalability and adaptability in 

comparison to the above mentioned methods. This thesis also proposes delta BF 

compression using PPM model with arithmetic coding. 

1.2. Thesis Contribution 

This thesis proposes delta Boom filter compression. With respect to this goal, the thesis 

contribution is twofold. Firstly, the use of higher-order model with arithmetic coding, in 

terms of prediction with partial matching, for achieving delta Bloom filter compression. 

Secondly, the use of SLWE an advanced estimation technique with arithmetic coding that 

uses higher-order statistical model and, also, takes into account the variability of the 

source statistics, for compressing the delta Bloom filter. 

The compression gain achieved by the proposed methods is compared with the 

benchmark arithmetic coding with adaptive unigram model with a conclusion that the 

proposed methods are more efficient. Also, the results are compared between the 

proposed delta Bloom filter compression using higher-order prediction with partial 

matching and arithmetic coding, and found that the second proposed method for delta 

Boom filter compression using SLWE is better in terms of compression gain. 

The proposed methods are tested for the efficiency in terms of the compression gain, 

scalability in terms of the dependence on the size of the Bloom filter and the adaptability 

in terms of the number of the hash functions used, delta change in the Bloom filter 

content, and dependence on the parameter A, (in case of SLWE). 
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1.3. Thesis Summary 

The thesis is organized as follows: 

Chapter 2: Bloom filter: In this chapter, Bloom filter principles are explained with its 

characteristics and limitations. We highlight why Bloom filters are widely accepted for 

the applications. Few uses of Bloom filters for networking and web applications are also 

discussed. This cements the fact that, although Bloom filters were introduced in 1970's 

[Blooml970], they have an active participation in the computer field. In this chapter, the 

principles of the delta Boom filters are also explained. 

Chapter 3: Data Compression: This chapter discusses data compression in the past and 

in the present scenarios and how it is the behind-the-scene enabler for the common 

aspects of our life. This chapter presents different data compression techniques including 

lossless compression. Then, the encoding methods and the higher-order models for 

coding are discussed. This chapter explains Huffman and arithmetic coding techniques, 

as well as higher-order models, including Prediction with partial matching, Burrows-

Wheeler transformation and most importantly, the Stochastic learning- based weak 

estimation method which is the backbone of the thesis, are also presented here. 

Chapter 4: Problem Specification and Solution: This chapter presents the delta Boom 

filter in detail including the real world applications and importance of the proposed 

compressed delta Boom filter and how it can play an active role in enhancing the 

efficiency of the present model. First, the implementation of the proposed method for 

delta Boom filter compression using a higher-order model in terms of prediction with 

partial matching coupled with arithmetic coding is presented. Then, the implementation 

details of the second proposed method for delta BF compression by using the Stochastic 

learning-based weak estimation method are presented. 
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Chapter 5: Implementation and Experiments: This chapter presents the issues faced 

during the implementation and the experimental setup. Then the results of the proposed 

delta Boom filter compression using the Stochastic learning-based weak estimation 

method are presented. The proposed method is tested for efficiency in terms of 

compression gain, scalability in terms of the dependence on the size of the Bloom filter 

and adaptability in terms of the number of the hash functions used, delta change in the 

Bloom filter content and its dependence on the parameter X. 

Then the efficiency and dependence of the proposed methods are compared to the 

benchmark and among each other on the factors mentioned above. With the encouraging 

results of the comparison, it can be stated that the second proposed method that utilizes 

SLWE is better than the benchmark arithmetic coding with adaptive unigram model and 

the higher-order model that utilizes prediction with partial matching. 

Chapter 6: Conclusion and Future Work: This chapter concludes the thesis by 

highlighting the contribution and the possible avenues for future work. 
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Chapter 2 

BLOOM FILTERS 

This chapter presents Bloom filters. First, the concept of probabilistic data structure is 

presented and then the Bloom filter, a type of probabilistic data structure is introduced 

with its characteristics. Then, Bloom filter applications are discussed. At the end, the 

principle of the delta Boom filter is presented. 

2.1. Probabilistic Data Structure 

A probabilistic data structure (PDS) is a data structure that supports algorithms which 

inherently use a certain amount of randomness for their operations. Without a measure of 

randomness, the data these data structures encode would use a prohibitive amount of 

memory and/or the algorithms they support would be very slow. As a trade off for their 

space, speed, and computational efficiency, many PDSs allow for a small margin of error 

returns for instance Bloom filters. 

2.2. Standard Bloom Filter 

The Bloom filter was first introduced by Burton H. Bloom in 1970 [BLOOM 1970]. It is a 

probabilistic data structure that is used basically to test whether an element is a member 

of a set, i.e. membership testing. Here, false positives are possible, but false negatives are 

not. Elements can be inserted into the set, but not removed/deleted. There are Bloom 

filter variants that have achieved this (counting Bloom filter). The application areas 

which require error free performance are not meant to use Bloom filters. 

A Bloom filter represents an n-element set S = {Xj, X2, , X„} by using a bit vector 

V= Vi, V 2,-— Vm of length m. All the bits are initially set to zero as in Figure 2-1 (a). The 

filter uses k independent hash functions hi,...hk with the range {l,..../w}, i.e. hi: X —> 

{!..../»}, 1< i< k. 
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As in Figure 2-1 (b), to store an element Q e S, the bits A,-(Q) are set to 1 for 1 < / < k. It 

is to be noted that although a location can be set to one multiple times, it is only the first 

change that has an effect. With respect to Figure 2-1 (c), if we want to check whether the 

element Q is in the set S, we simply check if all ht{Q) are set to 1 or not. If any is set to 0, 

then Q is not a member of S. 

0 0 0 0 0 0 0 0 0 0 

Figure 2-1: Standard Bloom filter 

(a): all the bits are initially set to zero. 

(b): each element is hashed k times and corresponding bits are set to one. 

(c): While membership testing, Qi and Q3 cannot be members of the groups as they 

have a 0 value in the bit corresponding to them. 
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2.2.1. False Positive Rate / False Drop Rate 

If all hi (Q) are set to 1, we should not infer from it that the element Q is definitely in S. 

There is a reason behind this. It is also possible that by coincidence hi(Q),...Jtk (Q) are 

all set to 1. In the above example in Figure 2-1(c), hiiQi), h2(Qi) and /JJ(£?2) all bits are 

set to 1, yet there is a probability that Qz is not the element of the set. This is known as 

the false-positive/drop. The probability of this happening is termed as the false-positive 

rate. Here, it is to be noted that the Bloom filter does not have a false-negative but may 

have false-positive. This means that if an element does not exist in the set, the answer 

could be that it does exist. On the other hand, if the element does exist in the set, it is 

never possible that it is reported not to exist. In Figure 2-l(c), Q\ and Qi cannot be in the 

set as there is a 0 value corresponding to them. 

When all the elements are hashed into the Bloom filter, the probability that a specific bit 

is still 0 is: 

(1-1/#»)*" *£*""" 

Suppose that p = e "kn/m. Then, the probability of a false positive, on the assumption that 

the hash functions are purely random, is: 

f ^ - e ^ y = ( l - / t f , where P = e ^ 

The false-positive rate depends on the total length of the filter and the number of 

elements that it contains. In other words, it means that the smaller the size of the Bloom 

filter and larger the number of elements it contains, the greater the false positive rate is. It 

is to be noted that if the probability, i.e. the false positive rate, is small enough, the false 

positive is accepted for many applications. This depends on the advantages of using the 

Bloom filter outweighing the false positive disadvantage. 
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The overhead borne due to the addition of every hash function remains constant, whereas, 

after a given threshold value the compounded benefit of adding this new hash function 

starts decreasing. The probability of false positives can be reduced by the allocation of a 

larger amount of memory [Mitz2002]. 

2.3. Bloom Filter Applications 

Bloom filters have a wide spread use for the applications that require data for 

membership testing or similarity detection. These applications can rely heavily on the 

bandwidth. In this section, the Bloom filter use for network and web based applications is 

presented. It is relevant to discuss these applications as these are the fields which can also 

benefit in the future from the compressed delta Boom filters. 

2.3.1. Using Bloom filters for Network Applications 

Bloom filters upon their introduction, were not considered for their use in network 

applications. As the data residing at any one node itself grew exponentially, it was 

realized that there is a limitation on the bandwidth, communication time and cost. The 

need for a concise data structure like the Bloom filter was felt and, consequently, they 

were implemented into various areas within networking as listed in Figure 2-2. The 

research on the applications in networking is later summarized in Table 2-1. 
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Applications In Networking 

^ 1 x 
f Netww* N Authentication 1 /^^Attack Security 

— 7~^ 
Worm 

^ • ^ 

Spam 

Figure 2-2: Applications in Networking 

2.3.1.1. Broadcast Authentication 

As broadcast authentication is the most basic approach to defend against attackers in the 

wireless environments, it is a critical security primitive for sensor networks. The central 

server relies on it to issue legitimate commands or queries to all or partial motes in the 

network. //TESLA is a light-weight and self-healing protocol for sensor motes. Chen et al 

[CLL2008] have proposed an efficient and flexible broadcast authentication protocol 

combing //TESLA and compressed Bloom filter techniques. This technique also supports 

multiuser authentication. 

To bundle W independent //TESLA instances, Curtain takes the last N keys as entries to 

be hashed into the Bloom filter of m bits. The Bloom filter bitmap replaces the last-

generated key in standard //TESLA or the root key in tree-based //TESLA as the 

commitment. Pre-loaded by the sender to each receiver, the bitmap provides the 

computational security during the usage of W //TESLA instances. For the receiver to 

activate the next instance, it just checks that the last-generated N keys are all successfully 

hashed into the Bloom bitmap. Before the end of the W instances, the sender broadcasts 

the compressed bitmap of the next W instance with an ECC signature to enter the next 

session. 
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The hash functions used are based on SHA1 and a variant of first-order difference 

compression is used to compress the bitmap [CLL2008] 

2.3.1.2. Network Routing 

Longest Prefix Matching (LPM) techniques are important for networking due to their 

fundamental role in the performance of the Internet routers. Internet routers are required 

to search variable-length address prefixes for the Classless inter-domain routing (CIDR) 

in order to find the longest matching prefix of the IP destination address and retrieve the 

corresponding forwarding information for each packet traversing the router. This is often 

the performance reducer for the high-performance internet routers. 

A probable solution given by Dharmapurikar et al [DKT2003] is sorting the forwarding 

table entries by prefix length, associating a Bloom filter with each unique prefix length, 

and "programming" each Bloom filter with prefixes of its associated length. A search 

begins by performing parallel membership queries to the Bloom filters by using the 

appropriate segments of the input IP address. The result of this step is a vector of 

matching prefix lengths, some of which may be false matches. Hash tables corresponding 

to each prefix length are probed in order of longest to shortest match in the vector, 

terminating when a match is found or all of the lengths represented in the vector are 

searched. The best part is that the approach is feasible for the newer version Internet 

Protocol Version 6 (IPv6) which uses four times larger destination address of 128 bits. 

2.3.1.3. Wireless Networks 

A wireless object network is a network that connects objects to each other wirelessly. 

Due to hardware advances it will be possible to embed small devices into everyday 

objects such as toasters and coffee mugs, and hence forming a network. Wang et al. 

presented a search engine for such a network called Snoogle. Snoogle uses information 

retrieval techniques to index information and process user queries. It uses Bloom filters to 
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reduce communication overhead. Snoogle also considers security and privacy protections 

for sensitive data [WTL2008]. 

2.3.1.4. Authentication 

There are two major components for entity authentication for pervasive computing 

environments: the Master key and the multiple access tokens. Master keys are 

convenient, whereas multiple access tokens improve usability and do not have the 

revocation problems. The question is how to combine both the advantages of traditional 

master keys and multiple access tokens while avoiding their disadvantages. Zhu et al. 

[FML2006] present the Master Key method, which is an approach for digital access 

tokens to have the advantages of master keys and multiple access tokens. 

The Master Key is invoked when the owner pushes a lock (target resource) or unlock 

button. At that time, the Master Key discovers the right key (digital access token) for a 

lock and authenticates with the lock. Now, the master key has to deal with privacy, 

security and scalability- efficiency problems. The Bloom filter approach is useful here. 

The Master key can utilize Bloom filter's time and space advantages as well as false 

positive cases. The Bloom filter approach also helps in maintaining the security as 

cryptographic hash functions, such as MD5 and SHA, are used. 

Code words in the master key approach have two formats: the hash format and the Bloom 

filter format. The hash format is used when the key and lock has a one-to-one relation, for 

example, after the Master Key has discovered the target lock. The Bloom filter format is 

used when keys and locks have one-to-many relationships. For instance, the Master Key 

queries a set of potential locks, or a lock needs to identify a particular key owner from 

many key owners. 

However, here, the Master Key does not support multiple groups of key owners. There 

are Bloom filter variants which support multisets. These could be investigated for the 

future work. Moreover, compressed Bloom filter can be used for further improvement. 
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2.3.1.3. Network Security 

2.3.1.3.1. Worm Attack 

It is a fact now that the manual defense techniques are not useful against the worm 

epidemic. Due to the high infection speed of worms, worm identification and 

containment methods are deployed into the network (instead of end-hosts) for fast and 

coordinated response with a high coverage. Signature-based filtering has a higher chance 

of containing epidemics and precision compared to blacklisting methods. 

The fundamental operation of signature-based filtering is deep packet inspection (DPI), 

the string matching of packet payloads against characteristic worm content, known as 

signatures [AC2005]. Artan et al presented a space-efficient method to follow and detect 

signatures that are fragmented over multiple packets, to solve the multi-packet signature 

detection problem. To solve this problem, they introduced a new data structure, called 

prefix Bloom filters (PBFs) and Chain heuristic (CH). 

PBFs help recognize prefixes of signatures so that signatures over multiple packets can 

be detected. These are Bloom filters programmed with the prefixes of the signatures. P, is 

taken as the set of /-length prefixes of all signatures with lengths longer than i and 5, is 

the set of signatures with lengths i. Then, PBFi is a Bloom filter that is programmed with 

the elements of the set Pt and SBFt is a Bloom filter programmed with the elements of 

set,. 

The major advantage of the Prefix Bloom filter is that, even if a string contains only a 

prefix of the signature, this prefix can be detected due to the use of the PBF. Also, to 

make sure that the prefixes are detected just like the signatures, the Bloom filter is used to 

store these signature prefixes. However, this increases the load on memory requirements. 

Therefore, another concept called Chain heuristic is introduced to reduce this increased 

memory requirement. This Chain heuristic is used to decrease the false positive rate of 
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prefix Bloom filters as well as the SBFs, without the requirement of any additional 

memory. 

2.3.1.3.2. Spam Filters 

Spamming is the abuse of electronic messaging systems to indiscriminately send 

unsolicited bulk messages. The filters are used as a safeguard against the spam by 

classifying email as spam or ham (non-spam) by a statistical analysis of the message's 

header and content (body). Statistical-based Bayesian filters are widely used in the tools 

for blocking spam. 

However, they have a problem of being bounded by the memory access rate. Kang. et al. 

[KZ2006] have used Bloom filters for speeding up spam filters while keeping high 

classification accuracy. First, the method used approximates of the dictionary lookup 

with hash-based Bloom filter lookup, which trades off memory accesses with increase in 

computations. Second, the method uses lossy encoding. 

The approach takes Bloom filters one step ahead and uses a Bloom filter to serve for 

value queries while preserving the Bloom filter's desired operating characteristics. For a 

given token in the member set, the extension returns a value that corresponds to a given 

token as the spam filters must retrieve each token's associated probability value. 
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Table 2-1: Summary of the Research on the use of Bloom filters for Network Applications. 

Authors) 

Wang, H., Tan, 

C.C., Li,Q 

Chen, Y., Lin, I., Lei, 

C , and Liao, Y. 

Dharmapurikar, S., 

Krishnamurthy, P., and 

Taylor, D. E. 

Feng, Z., Matt W. M., 

and Lionel M. N. 

Artan, N. S., and Chao, 

H.J. 

Kang, L., and Zhenyu 

Z. 

Conference/Journal 
and Year 

IEEE INFOCOM 2008 

Lecture Notes in Computer 

Science, 2008 

ACM Conference on 

Applications, Technologies, 

Architectures and Protocols 

For Computer 

Communications, 2003. 

IEEE International Conference 

on Pervasive Computing and 

Communications, 2006. 

IEEE, Global 

Telecommunications 

Conference, 2005. 

ACM Joint international 

conference on Measurement 

and modeling of computer 

systems, 2006. 

Tide of the Paper 

Snoogle: A Search 
Engine for the Physical 
World 

Broadcast 

Authentication in 

Sensor Networks Using 

Compressed Bloom 

filters 

Longest prefix 

matching using bloom 

filters 

The Master Key: A 

Private Authentication 

Approach for Pervasive 

Computing 

Environments 

Multi-packet signature 

detection using prefix 

bloom filters 

Fast statistical spam 

filter by approximate 

classifications 

Main Contribution 

The authors propose a search 
engine, Snoogle, for wireless 
object networks. It uses a BF to 
reduce communication 
overhead. 
The authors propose an 

efficient and flexible broadcast 

authentication protocol 

combing/<TESLA and 

compressed Bloom filter 

techniques. It also supports 

multiuser authentication. 

The authors introduce the use 

of bloom filters for the longest 

prefix matching for Internet 

Protocol (IP) routing lookups. 

The authors introduce a new 

entity authentication approach, 

combining both the advantages 

of the traditional master keys 

and multiple access tokens 

(using BF), for pervasive 

computing environments. 

The authors introduce Prefix 

BF to detect the signatures, of 

the worms and malicious items, 

that are fragmented over the 

network packets and thus to 

prevent the epidemic. 

The authors introduce use of 

Bloom filters to deal with the 

problem of memory access of 

Bayesian filters (spam filter), 

by approximating 

classification. 
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2.3.2. Using Bloom filters for Web Applications 

Bloom filters can be used at the different levels of the web search/ refinement. Since this 

is a relatively new application area, further research is required to get the maximum 

benefit from the use of Bloom filters. This research area can be further divided depending 

on the context of the use of Bloom filters: membership testing or the less explored area 

similarity detection. Bloom filters cannot be used for exact matching due to their false 

positive property. However, Bloom filters can be efficiently used for similarity detection. 

Web Application! 

s 
<^~~ Membership Query ^ ~ ^ > 

• ^ 
Prospective Search 

\ 

Unk-Based Ranking 

N̂  
(^[^JSImitarlty Detection""^) 

• Si 
Template Removal DupHcata Document 

Removal 

Figure 2-3: Web Applications 

2.3.2.1._Membership Test Based 

First is the prospective search. Most of the searches are retro in nature. There is another 

search - the prospective search by Irmak et al [IMSGI2006]. This can be used for news 

alerts, job hunting, etc. This is a keyword oriented search. The Bloom filter is used along 

with a hash table. During the matching phase, when the hash entries are created, the 

corresponding bits in the Bloom filter are also set. The overhead for this is quite low. 

During the testing phase, first a lookup is done into the Bloom filter to see if there might 

be a hash entry for the current QID (integer query ID). If the answer is negative, the 

process is continued with the next posting otherwise a lookup is performed into the hash 
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table. Here, not much can be done with the Bloom filter variants. A standard Bloom filter 

is sufficient. 

One of the basic problems in Information Retrieval on web applications is the ranking 

problem: how to arrange the documents that satisfy a query into an order such that the 

documents most relevant to the query rank first. A solution is provided by Link-based 

ranking algorithms which, again, can be grouped into two classes: query-independent 

(in-link count or Google's famous PageRank) and query-dependent (HITS and SALSA). 

What can be done further is to lower the query-time cost of HITS-like ranking 

algorithms, i.e. algorithms that perform computations on the distance-one neighborhood 

graph of the results to a query [GNPmc]. The basic idea is to compute a summary of the 

neighborhood of each page on the web (an operation that is query-independent and thus 

can be done off-line, may be at index construction time), and to use these summaries at 

the time of the query for the approximation of the neighborhood graph of the resulting set 

and hence, to compute scores using this approximate graph. 

Here, Bloom filters are used to store the ancestors, descendents in the neighborhood 

graph to facilitate the membership testing of the elements. Since, here, consistent 

sampling is done instead of the random one the properties relevant to the ranking 

algorithms are preserved in spite of using approximation of the neighborhood graph. 

2.3.2.2. Similarity Detection Based 

In web search, content relevance and link analysis comes next. Earlier, not much 

attention was paid towards this area. But then researchers got interested in web search 

refinement as it became the need of the time and of the industry. 

Web search engines have now become a necessity as they offer a lot of convenience to 

the users. Therefore, their performance is always under the scrutiny and day after day 

better performance is expected. A necessary but also a hindrance in their efficiency is a 

feature called Templates. Templates in web sites decrease the web search engine 
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performance. There are other template removal methods but their main bottleneck is 

speed and scalability. Therefore, Chen et al [CYL2006] have used Bloom filters to 

overcome this problem. In the first phase, web segmentation is done. Then the blocks are 

clustered based on their layout style information. During the second phase, the word 

offset distribution in the block is used to measure the similarity between the contents. 

Here, Bloom filters are used. The evaluation is fast here as matching is only a bit wise 

AND operation. 

Next is the improving of the search experience by removing or grouping all near 

duplicate documents in the results presented to the user by Jain N. et al [JDT2005]. 

There are three stages required here: 

1: In the first stage content defined chunking is done to extract the document features. 

2: In the second stage, these features are used as the set elements for the Bloom filter. 

3: Finally, these Bloom filters are compared to detect the near-similar documents 

(a threshold value is already defined). 

Compared to other approaches like shingling, the Bloom filter approach is faster as only 

bitwise ANDing is required. The second advantage is the compact size of the Bloom 

filter. Due to this compact size, it can be easily attached to the document tag. Although, it 

would have been more beneficial if a compressed Bloom filter was used; lesser data 

would have to be transferred. 
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Table 2-2: Summary of the Research on the use of Bloom filters for Web Applications 

Authors) 

Irmak, U., 

Mihaylov, S., 

Suel, T., Ganguly, 

S., and Izmailov, 

R. 

Gollapudi, S., 

Najork, M., and 

Panigrahy, R. 

Chen, L., Ye, S., 

and Li, X. 

Jain, N., Dahlin, 

M. and Tewari, R. 

Conference/Journal 
and Year 

International conference 

on World Wide Web, 

ACM, 2006. 

research.microsoft.com, 
2007. 

ACM symposium on 

Applied computing, 2006. 

International Workshop 

on the Web and 

Databases, 2005. 

Title of the 
Paper 

Efficient Query 

Subscription 

Processing for 

Prospective 

Search Engines 

Using Bloom 

Filters to Speed 

Up HITS-like 

Ranking 

Algorithms 

Template 

detection for large 

scale search 

engines 

Using Bloom 

Filters to Refine 

Web Search 

Results 

Main Contribution 

The authors introduce the 

Prospective search engine utilizing 

the bloom filters for effective 

membership testing. 

The authors attempts the major 

problem of information retrieval 

and introduces a new technique, 

utilizing bloom filter, for reducing 

the query-time cost of query 

dependent link-based ranking 

algorithms 

The authors introduce a two-stage 

template detection method 

approach which combines the 

template detection and removal to 

the index building process of a 

search engine. The paper 

introduces a bloom filter based 

technique for finding similar 

sequences 

The authors introduce the solution 

to the web search efficiency 

problem by refining the web 

search results by using bloom 

filters for the similarity detection 
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2.4. Delta Bloom filter 

In a scenario where an update to the Bloom filter has to be sent, these updates can either 

be new Bloom filters or representations of the changes between the updated filter and the 

original filter. Suppose there are two Bloom filters, BF1 and BF2. If an update has to be 

sent, another Bloom filter can be generated, which represents the update, by performing 

Exclusive-OR between the two Bloom filters as represented in Figure 2-4. The newly 

generated Bloom filter representing the update or delta is known as the delta Boom filter. 

Delta Bloom filters are discussed in detail in the Section 4.1. 

BF1 

BF2 

Delta Bloom Filter 
(BF2XORBF1) 

0 0 , r 0 1 0 0 0 1 

t i 'V' 0 1 0 
If . 

?'& 0 1 

1 1 0 0 0 0 
# ; 

0 0 0 

Figure 2-4: Delta Boom filter 

One of the practical applications for the delta Bloom filter is sharing of caches between 

web proxies. Sharing of caches between web proxies is an important technique for 

reducing web traffic and relieving network bottlenecks. Each proxy maintains a Bloom 

filter representing its local cache. It also holds the Bloom filters representing caches of 

the other proxies. The proxies periodically broadcast updates to their cache contents 

[FCAB2000]. Here, delta Bloom filters can be sent as the updates. 
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Chapter 3 

DATA COMPRESSION 

In the last two decades, there has been a vast improvement in the way communication 

takes place. Ever growing Internet, mobile and video communications have become an 

integral part of our lives. All these require large amounts of data to be processed, stored 

and transmitted. Another aspect that is common to all these, as a major enabler, is data 

compression. It would not be an exaggeration to say that if data compression was not 

there, then we would not be enjoying today's facilities for communication and 

entertainment. It would not even be practical to load images on the websites. Little do we 

realize that even for a long distance phone call, it is the data compression in the back­

ground present as one of the enabler s. 

There is an example of data compression from mid-19th century in the form of Morse 

code introduced by Samuel Morse. Morse had observed that a telegram, represented with 

dots and dashes, has some letters having more frequency than others. Based on this 

observation he assigned shorter codes to the letters occurring more frequently (for 

example,'.' for e). This reduced the average time to send the message. 

Data compression can range from simple removal of extra space characters to the most 

complex and sophisticated currently available statistical models. For example, a simple 

removal of all extra space characters, insertion of a single repeat character to indicate a 

string of repeated characters, and the substitution of the smaller bit strings for the 

frequently occurring characters, can reduce the original size of a text file up to 50 % 

[SK2000]. 

Data compression can be defined as the process of encoding using fewer bits than un-

encoded data through the use of encoding or compression techniques. In general terms, 

data compression is a science of representing data in a compact form. The selection of the 

compression tools for a particular application depends on the characteristics of the data 

and application for which it is going to be used: streaming versus file; expected patterns 
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and regularities in the data; relative importance of CPU usage, memory usage, channel 

demands and storage requirements, along with other factors [Mertlbm]. 

This chapter presents different categories of the data compression techniques as well as 

various encoding methods and models. 

3.1. Lossless Data Compression 

Data compression techniques can be classified as of two types: Lossy and Lossless. 

Lossy compression involves techniques in which compressing the data and then 

decompressing it, retrieves data that is not exactly the same as the original, but is close 

enough to be useful for the application. For an example, if there is a need to compress an 

image representing scenery, some loss of data would not matter much. Here, limitations 

of human perception can be taken advantage of. 

Lossless compression is a technique that reduces the size of a file without losing any 

data at all. That means that when a file is compressed, it will take up less space, but when 

decompressed, it will still have the exact same data. For instance, images representing 

medical data cannot afford to lose data between generation, storage, transmission and 

reconstruction. 

For lossless data compression, X, in Figure 3-1, is exactly same as Y whereas for lossy 

compression schemes, X is slightly different from Y but in the allowable range. Cx 

represents the compressed form of X. Y is reconstructed from Cx. As a trade off to this 

distortion, lossy compression techniques provide higher compression rate. 
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Hbhefrekm,. 

X Y 

Figure 3-1: Compression and Decompression 

3.2. Encoding Methods 

By taking advantage of redundancy or patterns in the data, it is possible to abbreviate the 

data so as to take up less space yet maintain the ability to reconstruct a full version of the 

original data when required. In the encoding process, a code word, where a code alphabet 

A = {ai, ..., a„}, is associated to represent each source alphabet word, where a source 

alphabet S={si sm}, so as to minimize the size of the encoded data. 

For lossless compression, we need uniquely decodable codes, that is, any given sequence 

code words can be decoded in one and only one way. A code is uniquely decodable if its 

extension is non-singular (it is a prefix code). For example, the mapping 

C= {a, ->0, <*;>-• I0,ar->110,a,->111} 

is uniquely decodable. This can be demonstrated by looking at the follow-set after each 

target bit string in the map, because each bit string is terminated as soon as we see a 0 bit 

which cannot follow any existing code to create a longer valid code in the map, but 

unambiguously starts a new code. 

Ffrggvfvnjkn 
Nbnlkmdcadf 
Cdsfmlklemn 
Hbhefrekm,. 
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3.2.1. Huffman Coding 

In Huffman coding, the assignment of code words to source messages is based on the 

probabilities with which the source messages appear in the message sequence. Messages 

which appear more frequently are represented by short code words while messages with 

smaller probability map to longer code words. These probabilities are determined before 

the transmission begins or can be estimated while encoding in a process called adaptive 

coding. A code is said to be adaptive if the mapping from the set of messages to the set of 

code words changes with time. Static Huffman coding requires the knowledge of the 

probabilities of the source sequence while Adaptive Huffman coding requires 

computation of an approximation to the probabilities of occurrence at an instant, as the 

sequence is being transmitted. The assignment of code words to messages is based on the 

values of the relative frequencies of occurrence at each point in time. A message Xcan be 

represented by a short code word early in the transmission because it occurs frequently at 

the beginning of the sequence, even though its probability of occurrence over the total 

collection is low. Later, when the more probable messages begin to occur with higher 

frequency, the short code word will be mapped to one of the higher probability messages 

and X will be mapped to a longer codeword. 

3.2.2. Shannon - Fano Coding 

In 1960's Claude E. Shannon (MIT) and Robert M. Fano (Bell Laboratories, also taught 

at MIT) introduced a coding procedure to generate a binary code tree. The procedure 

evaluates the symbol's probability and assigns code words with a corresponding code 

length. Compared to other methods Shannon-Fano coding is easy to implement. In 

practical operation Shannon-Fano coding is not of larger importance. This is due to the 

lower code efficiency in comparison to Huffman coding explained above. To create a 

code tree according to Shannon's and Fano's algorithm, an ordered table is required 

providing the frequency of any symbol. Each part of this table is divided into two 

segments and '0 ' is added to the code words in one part while '7 ' is added to the other 

part. The algorithm has to ensure that the upper and the lower part of the segment have 
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nearly the same sum of frequencies. This procedure is repeated until only a single symbol 

is left. 

3.2.3. Arithmetic Coding 

Arithmetic coding, a special type of entropy coding, is a popular method for generating 

variable-length codes but follows a different approach for data compression in 

comparison to the static methods. It is more useful while dealing with sources with small 

alphabets, for example, binary sources and alphabets with highly skewed probabilities. 

Arithmetic coding is capable of achieving compression results which are arbitrarily close 

to the entropy of the source [LH1987]. Deviations which are caused by the bit-resolution 

of binary code trees do not occur by using this coding. In contrast to a binary Huffman 

code tree the arithmetic coding offers a clearly better compression rate. On the other 

hand, its implementation is much more complex. The most well-known paper on practical 

arithmetic coding algorithm is by Rissanen and Langdon [RL1979]. Arithmetic coding is 

also a part of the JPEG 2000 image format [JPEG2009]. 

The major drawback of arithmetic coding is its low speed because of the several required 

multiplications and divisions for each symbol. It is a general technique for coding the 

outcome of a stochastic process based on an adaptive model. The main idea behind 

arithmetic coding is to assign to each symbol an interval. Starting with the interval [0..1), 

each interval is divided into several subintervals, where sizes are proportional to the 

current probability of the corresponding symbols of the alphabet. The subinterval from 

the coded symbol is then taken as the interval for the next symbol. The output is the 

interval of the last symbol. Implementations write bits of this interval sequence as soon as 

they are certain. 
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3.3. Adaptive Methods 

All of the adaptive methods are one-pass methods; only one scanning of a sequence is 

required. Static coding requires two passes: one pass to compute probabilities and 

determine the mapping, and a second pass for transmission. Thus, as long as the encoding 

and decoding times of an adaptive method are not substantially greater than those of a 

static method, the fact that an initial scan is not needed implies a speed improvement in 

the adaptive case. In addition, the mapping determined in the first pass of a static coding 

scheme must be transmitted by the encoder to the decoder. The mapping may preface 

each transmission (that is, each file sent), or a single mapping may be agreed upon and 

used for multiple transmissions. In one-pass methods, the encoder defines and redefines 

the mapping dynamically, during transmission. The decoder must define and redefine the 

mapping in sympathy, in essence, learning the mapping as code words are received. 

3.4. Higher-Order Models 

Data Compression techniques can also be broadly divided into two categories, the ones 

which use statistical techniques and the others which depend on the use of a dictionary. 

Dictionary-based compression techniques generally create a dictionary (a pattern of the 

characters) in memory as data is scanned looking for repeated data (some 

implementations use a static dictionary so it does have to be built dynamically). Based on 

a pattern recognition process (a look-up in the dictionary), that string of data is replaced 

by a much shorter but uniquely identifiable string. This results in a compression of that 

overall data. 

Archiving applications tend to use more of the dictionary-based compression techniques 

while statistical compression techniques are used more often for real-time applications. 

The reason for this selection is based on the speed of the compression and 

decompression. Dictionary-based compression techniques have slow compression but 

fast decompression speed, whereas statistical compression techniques usually have 
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similarly fast compression and decompression speed. Adaptive dictionary methods can be 

traced to the research papers by Ziv and Lempel [ZL1977] [ZL1978]. A combination of 

statistical and dictionary based technique is also possible. 

Statistical encoding techniques determine the output on the basis of the probability of 

the occurrence of the input data sequence. They operate by encoding the symbols one at a 

time. The symbols are encoded into variable length output codes. The length of the output 

code varies based on the probabilities or frequencies of the symbols. Lower-probability 

symbols are encoded using more bits while high probability symbols are encoded using 

fewer bits. As such algorithms are more symmetric in nature, the compression and 

decompression generally requires the same amount of time. Huffman and arithmetic 

coding are probably the most common and widely-used statistical compression 

techniques [MBB2003]. 

3.4.1. Models 

A good model for the data is useful in estimating the entropy of the source and leads to an 

efficient compression algorithm. A mathematical model for modeling data is usually 

needed to develop techniques involving manipulation of data using mathematical 

operations. There are many approaches for creating mathematical model for compression 

[Syd2000]. 

3.4.1.1. Probabilistic Models 

The simplest statistical model for the source is with an assumption that each one of the 

letters generated by the source is independent of each other letter, and each of them has a 

particular probability of occurrence. Furthermore, the independence assumption of the 

letters can be used with the assignment of the probability of occurrence to each letter. 

The probability model for the source generating the letters from the alphabet 

A = { a/, a2, —, am}, is defined as P = {P{ai\ P(ai), ..., P{am)}. Having a probability 

model, the entropy of the source can be calculated. 
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3.4.1.2. Markov Models 

When the probability model requirement of the assumption about the independence of the 

letters cannot be met, there is a need to describe the dependence of the elements of the 

data sequence on each other. This can be achieved by a model introduced by a Russian 

mathematician, Andrei A. Markov and hence known as Markov Model. 

q 

Figure 3-2: A two- state Markov model 

Knowledge of the past k symbols is equivalent to the knowledge of the entire past history 

of the process. This indicates the dependence between the symbols not the form of the 

dependence. The use of the Markov model does not require the linearity assumption. A 

Markov model can be represented by a two-state diagram, for example in case of binary 

images, as in Figure 3-2. This Figure consists of nodes 0 and 1, representing possible 

states of the system, connected by arrows, representing the rate at which the system 

operation transitions from one state to the other state. A state-to-state transition is 

characterized by a probability distribution. The probabilities of the transition arrows 

emanating from any state must sum to 1. Here, transition probability from state 1 to 0 is 

q and that of being in the same state 1 is \-q. 
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3.4.2. Prediction with Partial Matching (PPM) 

Some of the most effective results in data compression have been achieved by statistical 

source modeling in combination with arithmetic coding. Specifically, prediction with 

partial matching (PPM) has generated notable results. The PPM algorithm was proposed 

by Cleary and Witten [CW1984]. Substantial improvements and analyses have been 

presented since its introduction [Mitz2002]. The techniques which make use of the past 

history of the data being encoded to give more efficient compression are known as 

predictive coding schemes. There has been resurgence in the use of predictive coding in 

its many forms. The latest JPEG standard for lossless image compression uses a 

predictive coding algorithm [JPEG2009]. 

The PPM algorithm initially tries to use the largest context whose size is predetermined. 

In case symbol to be encoded has not been encountered in this context, an escape symbol 

is encoded and the algorithm tries to use the next smaller context. If, in this context the 

symbol is not found, then the context size is reduced further. This process continues until 

the context which has been previously encountered with this symbol has been found or it 

can be concluded that the symbol has not been encountered in any of the contexts. In this 

scenario, a probability 1/Mis used to encode the symbol (M is the size of the source 

alphabet). For instance, while coding h of the string "matching", it is first check if the 

string "match" has been encountered before, i.e. if h has occurred in context "mate". If it 

has not appeared in this context, then escape is encoded and checking for the lower order 

context, "ate", takes place. If this has also not occurred then again an escape flag is 

transmitted and context "tc " is checked. In the scenario if we escape from every context 

then that is a special "order -1" context in which every letter has equal probability or a 

frequency 1. 

3.4.3. Burrows - Wheeler Transformation (BWT) 

The Burrows-Wheeler compression algorithm, introduced in 1994 by Michael Burrows 

and David Wheeler [BWT 1994], is a recent development in the field of lossless data 
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compression. The algorithm received considerable attention because of its Lempel-Ziv 

like execution speed and its compression performance close to state-of-the-art PPM 

algorithms. 

It is based on a permutation of the input sequence - the Burrows-Wheeler Transformation 

(BWT), also called Block Sorting, which groups symbols with a similar context close 

together. In the original version, this permutation was followed by a Move to Front 

(MTF) transformation and a final entropy coding (EC) stage. Later versions used 

different algorithms which come after the Burrows-Wheeler transform, since the stages 

after the Burrows-Wheeler transform have a significant influence on the compression rate 

too. In many approaches the MTF stage is replaced by a different stage in order to 

achieve a better ranking. Since the task of the MTF stage or its replacement is to 

transform the local structure of the BWT output into a global structure the stage is called 

a Global Structure Transformation (GST) as represented in Figure 3-3. Representatives of 

GSTs are MTF, WFC, AWAF, IF, SIF and DC. A Run Length Encoding (RLE) stage, 

which exists in many variations, is also common, mostly in front of the EC Stage 

[BWT1994]. 

BWT ••^Glftv; fWJ 

Figure 3-3: A basic Burrows - Wheeler Compression scheme 

3.4.4. Stochastic Learning-based Weak Estimators (SLWE) 

A new family of "weak" estimators has been introduced recently [OR2005], known as 

Stochastic Learning-based Weak Estimators (SLWE), and developed by using the 

principles of stochastic learning. The uniqueness of this new approach lies in its 
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capability of dealing with data coming from different and time-varying sources, making it 

suitable for, among other applications, a large range of files types which are transmitted 

or stored in computer systems. This technique is used for the proposed delta Bloom filter 

compression and is discussed in detail in the next chapter. 
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Chapter 4 

PROBLEM SPECIFICATION AND SOLUTION 

This chapter presents the delta Bloom filter concept in detail including the real world 

applications and the proposed compressed delta Bloom filter. Then the implementation of 

the delta Bloom filter compression by the use of a higher-order model in terms of 

prediction with partial matching is presented. Next, the implementation details of the 

delta Bloom filter compression by the use of the stochastic learning-based weak 

estimation method, is presented. At last the benefits of the proposed delta Bloom filter 

compression are presented. 

4.1. Delta Bloom Filter 

The Squid Web Proxy Cache is a fully featured publicly available internet caching server 

which is capable of handling all types of web requests on behalf of a user. A request from 

the user for a web resource, for instance a web page or a movie, is passed to the real web 

server through the caching server. When the real web server returns the requested 

resource to the caching server, it stores a copy of the resource in its cache prior to 

forwarding it to the user. In the future, if the user requests a copy of the cached resource, 

it is delivered from the local proxy server instead of being delivered from a real web 

server located far away from the proxy. 

The real advantage of a proxy server lies in greatly reducing the web browsing speed as 

the frequently visited sites and requested resources are stored locally in the cache. The 

commercial profit can be gained by large organizations having a large number of internet 

users. On a small scale, it has the advantage for the small businesses or households 

having a download quota. Squid web proxy servers also have several other features like 

access control [SQJ. 
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Sharing caches between web proxies is an important technique for reducing web traffic 

and relieving network bottlenecks. User requests to the server are handled through the 

proxy. Each proxy maintains a Bloom filter that represents its local cache as shown in 

Figure 4-1. It also holds the Bloom filters representing caches of the other proxies. These 

proxies periodically broadcast updates to their cache contents. These updates can either 

be new Bloom filters or representations of the changes between the updated filter and the 

original filter. These updates to the Bloom filters can be exchanged periodically, or after 

a certain percentage of the documents in the cache has been replaced, depending on the 

underlying implementation. This fairly new web cache protocol called Summary Cache 

was introduced by Fan et al. [FCAB2000]. Summary Cache is implemented in Squid 

vl.1.14. Also, a variation of this procedure called cache digest is implemented in Squid 

1.2b20[SQ]. 

Figure 4-1: Summary Cache Representation. 

The difference, or delta, between the updated and original filter can be represented by 

performing exclusive-OR of the corresponding bit arrays. As represented in the following 

Figure 4-2, suppose there are two Bloom filters BF1 and BF2 of the same size. Delta 
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Bloom filter is formed by performing exclusive-or operation on BFU and BF2i and 

storing in dBFh Here, dBF7 =BF17 © BF27. 
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0 
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BF10XORBF2o 

BF17XORBF27 
- * • > 

0 

0 
0 

BF1 BF2 Delta Bloom Filter 
(BF2XORBF1) 

Figure 4-2: Delta Bloom Filter 

The delta Bloom filter can then be compressed. Compression of the delta Bloom filter 

using arithmetic coding was first discussed by M. Mitzenmacher [Mitz2002]. 

This thesis, proposes the delta Bloom filter compression by using a fairly new technique 

known as stochastic learning based weak estimation (SLWE) [RO2005]. This technique 

is adapted for the use with the data. The results show that SLWE based compression 

results in much more compression gain in comparison to the benchmark arithmetic 

coding and also with the use of the higher order PPM based compression. The PPM 

algorithm has been adapted for the delta Bloom filter compression and presented in this 

thesis. 

Due to the inexistence of the appropriate standard data benchmarks, the efficiency of the 

algorithm has been proved through simulation with synthetic data. This is the same 

approach which has been followed by M. Mitzenmacher [Mitz2002] to present their 

experiment results. A pseudorandom number generator is used for generating the values 
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for creating the Bloom filters. A seed is used with the pseudorandom generator to 

initialize it. This ensures that each time testing of the implemented algorithm is 

performed the same random number series is generated. These values are passed to k 

hash functions, where 2 < k < 10. These hash functions generate a value within the range 

of m, the size of the Bloom filter. The bits at the corresponding index positions generated 

by the hash functions are set to 1. Figure 4-2 represents a Bloom filter with m = 10. 

Element a passed to four hash functions as k = 4. The result of the first hash function Hi. 

is the index 2. Therefore, the bit at position 2 is set to 1. Similarly, for element a, the bits 

at positions P4, Pzand Pw are set to 1. 

± 
o_ 
JL 
jo 
jo 
j _ 
o. 
1 

Figure 4-3: Bloom filter with 4 hash functions. 

Due to the difficulty of dealing with the implementation of arithmetic coding, the 

maximum number of bits that would be required to be sent to the decoder for 

decompression are calculated. 

For e lement a 

H i ( a ) = P 2 

H 2 ( a ) = P 9 

H 3 ( a ) = P 4 

H 4 ( a ) = P 7 

-=» 
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4.2. Adaptive Unigram Model 

The adaptive unigram model tracks the count of the bytes encountered before and based 

on the frequency count estimates the probability for the byte b. The model updates 

counters after each byte, and hence it is adaptive. It makes use of strings of length 1, that 

is why, it is known as unigram. Each of the byte's counters has an initial value of 1 based 

on the principle of Laplace smoothing. If the sum of the counts exceeds the maximum, 

the counts are rescaled by dividing them by 2 and rounding up to at least 1. The adaptive 

unigram model with the arithmetic coding is the benchmark compression method for the 

comparisons in the thesis. The results of the proposed delta Bloom filter compression 

using PPM and SLWE are compared with adaptive unigram based compression. 

4.3. Prediction with Partial Matching (PPM) 

As discussed in the third chapter, prediction with partial matching is an adaptive model 

that can be used with the entropy-based encoding technique. Here, PPM is used with 

arithmetic coding. This implementation can be found at http://www.data-

compression.info/Algorithms/AC/. For this thesis, it has been adapted for the use 

depending on the data being compressed. The thesis presents a new method that involves 

delta Bloom filter compression using a PPM model. 

BloomFilterl BloomFiltera 

BF2 X O R BF1 

Delta Bloom Filter 

P P M Adaptive 
Model with 

Arithmetic Coding 

i 
Compressed Data 

Figure 4-4: Delta Bloom filter compression using PPM. 
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Once the two Bloom filters are created, the exclusive-OR operation is performed on 

them. Exclusive-OR is a logical operator which results in a value / or true when exactly 

one of the operands is true. Here, exclusive-OR results in a value 1 to denote an update or 

delta to the Bloom filter. This operation results in the generation of the delta Bloom filter. 

Then, the data is converted to the byte format using a shift operator as the PPM model 

deals with the bytes. This data is passed to the PPM model and then encoded using 

arithmetic coding for the compression. For encoding, the data is accessed in the bit 

format. 

PPM Algorithm: 

Repeat 

Read next symbol, s. 

Let dK, d(K-i), • • •, di be the preceding K characters. 

Set the context size, k, to the maximum, K. 

While (dk,. .., d{) has not been seen previously: 

Set£<-£- 1. 

While k > 0 and c is not in context {dk, . .., di): 

Transmit an escape flag using context {dk,..., di). 

Set k to k - 1. 

If A: <—-1: Transmit symbol s using the special "order -1" context. Set k = 0. 

Else Transmit s using context {dk, • • •, di). 

VM\ek<K: 

If context {dk, • • •, di) does not exist, create it. 

Increment the count for s in context {dk,.. ., di). 

Set&<-£ + 1. 

Until end of file. 

For decompression, the compressed data is passed to the arithmetic decoder which using 

the PPM model reconstructs the original data. 
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The algorithm for delta Bloom filter compression using PPM is as follows: 

Start 

Get Bloom niters BF1 and BF2 

if BF1 is not equal to BF2 

calculate BFX ^-BF2 XOR BF1 

end if 

convert BFX to byte array 

use PPM model with the given context size, K, to provide an estimate for the probability 

for the nth byte 

encode data with cumulative probabilities 

End 

4.4. Stochastic Learning-based Weak Estimation (SLWE) 

As discussed earlier, two Bloom filters are generated through simulation. Pseudorandom 

number generator is used for generating the values for creating the Bloom filters. These 

values are passed to k hash functions, where 2 < k < 10. These hash functions generate a 

value within the range of m, the size of the Bloom filter. 

Once the two Bloom filters are created, the exclusive-OR operation is performed between 

them. This operation results in the generation of the delta Bloom filter representing the 

updates to the original Bloom filter. Then Stochastic Learning-based Weak Estimation is 

used for updating the probabilities as represented in the following Figure 4-5. 
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BloomFilterl BloomFilter2 

BF2 XOR BF1 

Delta Bloom Fllteif 

SLWE with 
Arithmetic Coding 

1 
Compressed Data 

Figure 4-5: Delta Bloom filter compression using SLWE. 

Binomial distribution is a discrete probability distribution of the number of successes in a 

sequence of n independent success/failure observations, each of which yields 

success/failure with probability p. Such a success/failure experiment is also called a 

Bernoulli trial. Therefore, it can be said that a binomial random variable is characterized 

by the number of the Bernoulli trials and the parameter characterizing each Bernoulli 

trial. It is assumed that the number of observations is the number of trials, and the 

stochastic learning methods are used to estimate the Bernoulli parameter for each trial. 

Suppose that X is a binomially distributed random variable, having the value of "0" or 

" 1 " . It is an assumption that X obeys the distribution S, where S = [s\, sj]7 where T 

denotes the transpose of a vector. 

X = "0" with probability s0 

= " 1 " with probability s\, where, so + s\ = 1. 

Let x («) be a concrete realization of Xat time "«". The goal is to estimate S, i.e., s, for 

i =0, 1. This is achieved by maintaining a running estimate 

P (n) = [po (n), pi (n)]T of S, wherep,(n) is the estimate of 5, at time ' V , for i = 0, 1. 
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Then, the value of po (n) is updated as per the following rule: 

Po(n+\)*-Xp0(n)ifx(n)=l (1) 

<-l-Xpi(n)ifx(n) = 0 (2) 

Where k is a user defined parameter and/?i(« +1) <— 1 - po(n + 1); k is used to learn the 

probability of the next symbol based on the probability of the previous symbol. 

The above explained probability updating method is utilized by an entropy based 

encoding technique called arithmetic coding. This method for probability updating is 

invoked by the encoding and decoding algorithm. 

The algorithm followed for the delta Bloom filter compression using SLWE is as follows: 

Start 

Get Bloom filters BF1 and BF2 

ifBFl is not equal to BF2 

BFX^BF2XORBFl 

end if 

set count to 0 

for each chosen value of X. 

update the probabilities for each symbol in BFX 

calculate number of bits used to encode each symbol in BFX by its information 

amount, /n <- [- log2 Vi 001 

Sum the number of bits used to encode all the symbols 

hot *~ 'tot + 'n 

count +—count + 1 

end for loop 

calculate the number of bits required to send k, bl <— flog2 counter] 

calculate total number of bits required to represent compressed data, bitsn *—I,ot+ bl + 2, 

and round off bitsn. 
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calculate compression gain s <—(1 - bitsn) / 100 

End 

4.4.1. Notes on the Implementation 

Due to the difficulty of dealing with the implementation of the arithmetic coding, the 

maximum number of bits that would be required to be sent to the decoder for 

decompression are calculated. 

It is assumed that the symbol at time n, s,, is encoded using the number of bits determined 

by its information amount that is — log2Pj (n). This also assumes that all the symbols 

occur independently of each other. Hence, the whole sequence, X, can be encoded by 

using the following number of bits: 

r-iog2n£=iP(*(n))i 

= r-2£_ilog2p(x(n))l 

As the bits to be transferred cannot be represented as a fraction, the total information 

amount is rounded off. 

On the other hand, the SLWE needs the parameter X to learn the probability of the next 

symbol based on the probability of the previous symbol. This parameter X is optimized 

based on the knowledge of the previous experiments [RO2005]. The range that is used 

for the proposed method is 0.9900 < X < 0.9999. This gives a total 100 different values 

for X. For decompression, the decoder requires to know the value of X in order to fully 

recover the original data. The number of bits required to send the values of X can be 

calculated as Pog21001, that is 7 bits. Again, this value needs to be rounded off in order 

to avoid getting a fraction as the number of bits. 
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Arithmetic coding has lower and upper bounds for a number of bits sent to the output 

based on the information amount, entropy and the statistical data of the symbols predicted 

by the SLWE. These bounds on the information amount can be derived as follows. 

Upper and lower bounds on the number of bits required to be sent [Syd2000]: 

The number of bits l(x) required to encode the entire sequence x, with enough accuracy 

such that the codes for different values is unique is 

lM = K^l + 1 (1) 

where P(x) is the probability of x. 

Since, /(x) is the number of bits required to encode entire sequence x, the average length 

of an arithmetic code for a sequence of the length m, IAm , is given by 

IAm = ZP(X)1(X) (2) 

<!PW[[log^l+ l + l] (4) 

= -ZP(x)logP(jr) + 2EP(;0 (5) 

= H(Xm) + 2 (6) 

Given that the average length is always greater than the entropy, the lower and upper 

bounds on Ij* are 

H(Xm) < IAm < H(Xm) + 2 (7) 
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Since the equation (7) gives an upper bound, the number of bits needed to encode a 

sequence of the length m will not exceed 2 bits from the number of bits determined by its 

information amount. 

Therefore, the number of bits required to send the compressed data, two bits to cover the 

upper limit for arithmetic coding and the number of bits required to send the value of X, 

which is 7, are added together to estimate the size of the output. All of these will make 

sure that the original input will be completely recovered from the compressed data and, 

hence, achieving lossless compression. 

4.5. Benefits of Delta Bloom Filter Compression 

The proposed methods will provide substantial compression gain to applications relying 

on heavy use of the bandwidth and distributed computing environment relying on 

frequent updates of the underlying data. In a scenario where Bloom filter is not just a data 

structure but also a message which needs to be transmitted from one location to another, 

it is beneficial to compress it especially where frequent updates of this Bloom filter are 

required to be transmitted. It will reduce the amount of data transmitted. If any of the bits 

of the Bloom filter are incorrectly represented due to the loss of data during compression, 

the element which is a member of the set might be incorrectly represented as not a 

member. This will defy the basic property of the Bloom filter which states that the false 

negative rate is not a characteristic of a Bloom filter. To ensure this does not happen, for 

the proposed methods, lossless compression technique is used to reduce the amount of 

data and there would be no loss of information due to compression. Further, using 

SLWE as proposed in our method, probabilities of the source symbols can be adaptively 

updated while being encoded requiring only one pass as opposed to the static coding 

method that would have required two passes. 

The proposed methods are tested for the efficiency in terms of the compression gain, 

scalability in terms of the dependence on the size of Bloom filter and adaptability in 

terms of the number of hash functions used, delta change in the Bloom filter content, and 
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its dependence on the parameter X. This ensures that the proposed methods perform better 

than the benchmark zero-order arithmetic coding for different requirements of the 

applications. 
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Chapter 5 

IMPLEMENTATION AND EXPERIMENTS 

This chapter presents the details of the experiments. The details of the case of delta 

Bloom filter compression using SLWE with arithmetic coding method are presented here. 

Adaptive kth order prediction with partial matching model with arithmetic coding for 

delta Bloom filter has also been implemented. Delta Bloom filter compression using 

adaptive unigram with arithmetic coding acts as the benchmark to compare the 

performance of the proposed delta Bloom filter compression using the higher-order 

models with arithmetic coding, including PPM and the Stochastic Learning-based Weak 

Estimation (SLWE) method. The results show that further improvement in the 

compression gain is possible by applying the proposed compression methods. 

In this chapter, first, the implementation issues and the experiment set-up are discussed. 

Then the results of the experiments are discussed. The proposed delta Bloom filter 

compression methods are tested for scalability by varying the size of the Bloom filter. 

The results of the experiments are compared with the varying number of the hash 

functions and the percentage of change between the Bloom filters to test for the 

adaptability. This chapter also presents the impact of varying X, a parameter required for 

SLWE, on the compression gain. At the end of the chapter, the findings are compared and 

concluded with positive results. 

5.1. Implementation Considerations 

We have to deal with the different formats of the data for the two implementations. 

Prediction with partial matching uses data in the byte format whereas Stochastic learning-

based weak estimation requires data to be in bit format. The implementation needs to be 

carried out so as to process the data in the required format specific to each model. Then, 

for the comparison between the efficiency of the two methods, the compression gain is 
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used. The model which has a higher compression gain or the percentage of the space 

savings, represented as S, is better. 

Secondly, the values of A need to be passed to the decoder as this value will be required 

for the reconstruction of the data from the compressed data. As explained in Chapter 4, 

the number of bits required to be sent to the decoder are calculated. There will be a small 

overhead for sending these data. 

5.2. Experimental Setup 

All the implementations are done in Java on Eclipse IDE on a Windows XP operating 

system with 760 MB of RAM, on Intel® Celeron M® 1.6 GHz processor. 

For the experiments and comparisons, the implementation includes the following three 

schemes: 

• Benchmark: the adaptive unigram model with arithmetic coding for delta 

Bloom filter (base for comparison). 

• Adaptive kfh order PPM model with arithmetic coding for the delta Bloom 

filter. 

• SLWE with arithmetic coding for the delta Bloom filter. 

The basic code for the adaptive unigram and PPM models were obtained from the 

compression data repository [ACcomp]. In this thesis, a new method for delta Bloom 

filter compression is proposed using PPM. After the implementation, the code is tested 

with Bloom filters of various sizes, m, with different number of hash functions used to 

create a Bloom filter, k, with different percentage of changes for the delta Bloom filter, c, 

and with A, the parameter used in SLWE values. 

First, two Bloom filters of the same size using random numbers are generated. For this a 

pseudorandom number generator in Java is used. A specific seed is used to initialize the 
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pseudorandom number generator. This ensures that each time the code is tested the same 

random number series are generated. For creating the Bloom filter, in the initial 

experiments, two hash functions are used. The general hash function library is used from 

http://www.partow.net and modified to suit the data requirements. The hashing algorithm 

md5, which is available in the Java library, can also be used. However, this could be only 

one of the k hash functions. 

The size of the Bloom filter, m, is set to 140,000 bits and two hash functions are used, 

k=2. The percentage difference between the two Bloom filters, c, is set to 5%. This setup 

is followed for all initial tests of the implemented methods. This is the setup discussed by 

Mitzenmacher for compressed Bloom filters [Mitz2002]. Therefore, to ensure that the 

proposed method performs with the same settings, initially, we tested our code with them. 

At first, two Bloom filters are generated as discussed earlier for the initial testing and the 

delta Bloom filter is created by Exclusive ORing the two Bloom filters. As discussed 

earlier, this Delta Bloom filter represents the update in the Bloom filter. Then the delta 

Bloom filter is passed to the adaptive unigram model, PPM and SLWE, based on which 

the arithmetic coding is carried out. 

5.3. Experimental Results and Observations 

In this section, firstly, the results of the proposed delta Bloom filter compression using 

SLWE are presented. Secondly, the results of the delta Bloom filter compression using 

PPM are presented. The proposed methods are tested with the Bloom filters of various 

sizes, m, with different numbers of hash functions used to create a Bloom filter, k, with 

different percentages of changes for the delta Bloom filter, c and with X, the parameter 

used in SLWE and tested only for SLWE values. The results have been organized in a 

tabular format, and then to show the trend of the results by varying the factor values is 

represented through the graphs 
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5.3.1. Results for the SLWE based Delta Bloom filter compression 

In this section, we discuss the results of the experiments performed for testing the 

proposed delta Bloom filter compression using the SLWE technique. The pattern 

followed by varying the size of the Bloom filter, number of hash functions used, 

percentage of change between the Bloom filters and the effect of the parameter X on our 

proposed method are studied and presented. It is found that the proposed methods follow 

a consistent pattern based on the above mentioned factors. 

5.3.1.1. Size of the Bloom filter 

i) The delta Bloom filter compression is tested for different sizes of the Bloom filter. The 

size of the Bloom filter is in the range from 4 to 10Mb. Four hash functions are used to 

create the Bloom filters and the percentage of change between the Bloom filters is 5%. 

In Table 5-1 the results of the experiments are summarized. Table 5-1 shows the effect of 

the size of the Bloom filter and X on the compression gain. For example, if a 5 Mb Bloom 

filter is compressed by using X = 0.9994, a maximum compression gain of 86.98238% is 

achieved. It also shows that if a larger size Bloom Filter is used then the compression 

gain is higher. The compression gain increases with the size of the Bloom filter. 

Compression gain also depends on the values of A but one particular value for X does not 

result in the best result for all sizes of the Bloom filters. 
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Lambda 
Values 
0.999 

0.9991 

0.9992 

0.9993 

0.9994 

0.9995 

0.9996 

0.9997 

0.9998 

0.9999 

4Mb 
86.716 

86.718 

86.720 

86.721 

86.721 

86.719 

86.715 

86.705 

86.683 

86.609 

5Mb 
86.976 

86.978 

86.980 

86.982 

86.982 

86.982 

86.979 

86.973 

86.956 

86.897 

Bloom Filter Size 
6Mb 
87.487 

87.490 

87.492 

87.494 

87.495 

87.495 

87.493 

87.488 

87.474 

87.426 

7Mfr 
88.121 

88.124 

88.127 

88.129 

88.130 

88.131 

88.130 

88.126 

88.114 

88.072 

; •' V !;••'<: "-

8M%-^' 
88.711 

88.713 

88.716 

88.718 

88.720 

88.721 

88.720 

88.717 

88.707 

88.671 

£•*. V • •/• 
3WH*"1.:; • 
89.222 

89.225 

89.227 

89.230 

89.232 

89.233 

89.233 

89.231 

89.222 

89.190 

10Mb 
89.732 

89.735 

89.738 

89.740 

89.743 

89.744 

89.744 

89.743 

89.735 

89.706 

Table 5-1: Effect of the size of the Bloom filter (4Mb < m < 10Mb) on the SLWE based 
compression 

The graph in Figure 5-1 has two variables, size of the Bloom filter and the parameter X. It 

shows the effect of the size of Bloom filter on the compression gain achieved by SLWE-

based delta Bloom filter compression for a specific value of X. It can be noticed that the 

graph follows a particular trend of consistent increase in compression gain with the 

increase in the size of the Bloom filter. It also shows that the difference between 

compression gain achieved by varying values of A for a particular size of the Bloom filter 

is very close. 

Lambda 

O) 
c 
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— 0.999 
0.9991 

* 0.9992 
0.9993 

— 0.9994 
— 0.9995 
— 0.9996 
— 0.9997 

0.9998 
--0.9999 

Size of the Bloom filter (m) • 

Figure 5-1: Effect of the size of Bloom filter on the SLWE-based compression 
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ii) Delta Bloom filter compression has also been tested on large size Bloom filters. 

During these experiments, the size of the Bloom filter is set in the range 5 to 40Mb. Four 

hash functions are used to create the Bloom filters and the percentage of change between 

the Bloom filters is 5%. Table 5-2 shows the effect of the size of the Bloom filter and X, a 

parameter used for SLWE technique, on the compression gain. For instance, if a 30 Mb 

Bloom filter is compressed by using X = 0.9997, a maximum compression gain of 

94.82777 % is achieved. It also shows that if a larger size Bloom Filter is used, then the 

compression gain is more. The compression gain increases with the size of the Bloom 

filter. The compression gain depends on the values of A and one particular value of X does 

not result in the best result for all the sizes of the Bloom filters. 

Lambda 
values 
0.9990 

0.9991 

0.9992 

0.9993 

0.9994 

0.9995 

0.9996 

0.9997 

0.9998 

0.9999 

Bloom filter size 
5Mb 

86.976 

86.978 

86.980 

86.982 

86.982 

86.982 

86.979 

86.973 

86.956 

86.897 

10Mb 

89.732 

89.735 

89.738 

89.740 

89.743 

89.744 

89.744 

89.743 

89.735 

89.706 

15Mb 

91.769 

91.773 

91.776 

91.779 

91.781 

91.784 

91.785 

91.785 

91.781 

91.762 

20Mb 

93.140 

93.144 

93.147 

93.150 

93.153 

93.156 

93.158 

93.158 

93.156 

93.142 

25Mb 

94.108 

94.112 

94.115 

94.118 

94.122 

94.124 

94.127 

94.128 

94.127 

94.116 

30Mb 

94.806 

94.810 

94.814 

94.817 

94.821 

94.824 

94.826 

94.828 

94.827 

94.819 

35Mb 
95.374 

95.379 

95.383 

95.387 

95.390 

95.393 

95.396 

95.398 

95.398 

95.391 

40Mb 

95.804 

95.808 

95.812 

95.816 

95.819 

95.822 

95.825 

95.827 

95.828 

95.822 

Table 5-2: Effect of the size of the Bloom filter (5Mb < m< 40Mb) on the SLWE-based 
compression 

As noticed from Table 5-2, there is a consistent trend of the increase in the compression 

gain with the increase in the size of the Bloom filter. However, we cannot choose one 

specific value for A,. The graph in Figure 5-2 makes the result trend visually 

comprehensible. The two parameters here are the size of the Bloom filter and X, the 

parameter used for SLWE-based compression. The graph represents the effect of these 

two variables on the compression gain achieved by the proposed delta Bloom filter 
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compression method. It shows that if a larger size Bloom Filter is used, then the 

compression gain is increased. 

Lambda 
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--0.9999 

Size of the Bloom filter (m) 

Figure 5-2: Effect of the size of the Bloom filter on SLWE-based compression. 
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5.3.1.2. Number of Hash Functions Used 

The experiments were performed for the different number of hash functions used to 

create the Bloom filter. By increasing the number of hash functions, we can test the 

adaptability of the proposed delta Bloom filter compression. Initially, Bloom filters of 

size 140Kb were used. Table 5-3 summarizes the findings. The number of hash functions 

used, k, is in the range 2 to 10 and X is in the range 0.99 to 0.999. It can be noticed that as 

the number of the hash functions used increases, the compression gain decreases. By 

using two hash functions for generating a Bloom filter of size 140Kb, a compression gain 

of 94.19 % can be achieved. 

Lambda 
values 

0.990 

0.991 

0.992 

0.993 

0.994 

0.995 

0.996 

0.997 

0.998 

0.999 

Number of Hash functions, k 
2 
93.821 

93.898 

93.972 

94.041 

94.101 

94.151 

94.187 

94.199 

94.163 

93.954 

3 
92.117 

92.183 

92.246 

92.305 

92.355 

92.398 

92.428 

92.437 

92.401 

92.199 

4 
90.758 

90.816 

90.874 

90.925 

90.970 

91.007 

91.033 

91.039 

91.004 

90.807 

5 
89.591 

89.646 

89.699 

89.747 

89.790 

89.825 

89.850 

89.855 

89.820 

89.627 

6 
88.566 

88.618 

88.669 

88.715 

88.756 

88.791 

88.815 

88.822 

88.788 

88.600 

7 
87.890 

87.940 

87.989 

88.034 

88.073 

88.106 

88.128 

88.133 

88.098 

87.911 

8 
87.237 

87.285 

87.332 

87.375 

87.412 

87.444 

87.466 

87.470 

87.434 

87.248 

9 
87.042 

87.090 

87.137 

87.179 

87.217 

87.249 

87.271 

87.276 

87.242 

87.057 

10 
86.716 

86.762 

86.807 

86.849 

86.886 

86.917 

86.938 

86.942 

86.908 

86.727 

Table 5-3: Effect of the Number of the Hash Functions on the SLWE based compression 

The graph in the Figure 5-3 represents the data presented in Table 5-3.The two variables 

here are the number of hash functions used to create a Bloom filter and X. It shows the 

trend of the decrease in the compression gain with increase in the number of hash 

functions. As it can be noticed from the graph, the compression gain with respect to X 
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values is very close but consistently decreases with the number of hash functions used to 

create Bloom filters. 

Lambda A 

2 3 4 5 6 7 
Number of Hash Functions (k) -

8 10 

— 0.99 

0.991 

* 0.992 

• 0.993 

-*- 0.994 

— 0.995 
— 0.996 
— 0.997 

0.998 
0.999 

Figure 5-3: Effect of the Number of the Hash Functions on SLWE-based compression. 

5.3.1.3. Percentage of Change (c) Between the Two Bloom Filters 

The experiments were performed to test the effect of the change between two Bloom 

filters on the compression models. For this comparison, Bloom filters of size 140Kb are 

created using two hash functions. Table 5-4 summarizes the results. The experiments 

were performed for the percentage of change between the two Bloom filters ranging from 

1% to 10 %. It can be noticed that the compression gain decreases with the increase in c. 
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Lambda 
Values 
0.990 

0.991 

0.992 

0.993 

0.994 

0.995 

0.996 

0.997 

0.998 

0.999 

% of change, c, between the Bloom filters 
l 
97.456 

97.574 

97.691 

97.805 

97.911 

98.008 

98.090 

98.144 

98.141 

97.930 

2 
96.503 

96.608 

96.710 

96.806 

96.895 

96.974 

97.036 

97.070 

97.046 

96.823 

3 
95.595 

95.690 

95.781 

95.867 

95.944 

96.011 

96.062 

96.086 

96.055 

95.836 

4 
94.691 

94.777 

94.859 

94.935 

95.004 

95.063 

95.106 

95.125 

95.092 

94.879 

5 
93.821 

93.898 

93.972 

94.041 

94.101 

94.151 

94.187 

94.199 

94.163 

93.954 

« 
92.947 

93.017 

93.085 

93.147 

93.201 

93.245 

93.277 

93.285 

93.248 

93.043 

7 
92.106 

92.171 

92.233 

92.290 

92.340 

92.380 

92.408 

92.415 

92.378 

92.176 

8 
91.312 

91.373 

91.432 

91.485 

91.531 

91.570 

91.596 

91.603 

91.566 

91.368 

9 
90.567 

90.626 

90.681 

90.732 

90.777 

90.814 

90.839 

90.844 

90.809 

90.612 

10 
89.783 

89.838 

89.890 

89.938 

89.979 

90.013 

90.037 

90.040 

90.003 

89.808 

Table 5-4: Effect of % of change between two Bloom filters, c, and X on SLWE-based 
delta Bloom filter compression for m = 140Kb. 

The graph in the Figure 5-4 represents the experiment results summarized in Table 5-4. 

The two variables here are percentage change between two Bloom filters and the 

parameter X. There is a consistent decrease in the compression gain with the increase in 

the percentage change between the two Bloom filters for a specific value of X. The 

percentage of change between two Bloom filters denotes the update to the original Bloom 

filter. Therefore, if there is a need to send the updates very frequently, then c can be 

chosen as 1%. If a very frequent exchange of updated data is not required, then c = 5 can 

be chosen. This will cost a slight decrease in the compression gain but frequent 

transmission cost can be reduced. 
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Figure 5-4: Effect of percentage of change between two Bloom filters, c, and X on the 
SLWE-based delta Bloom filter compression for m = 140Kb. 

5.3.1.4. User Defined Parameter A, for SLWE based Delta Bloom Filter Compression 

In this case, the experiments were performed for the compression methods with a 140Kb 

Bloom filter generated using two hash functions and with 5% change between the Bloom 

filters. Table 5-5 summarizes the results. It can be noticed that the value of the parameter 

X affects the compression gain achieved using the SLWE method. 

Comp. 
Model 

SLWE 

Lambda Value 
0.990 

93.821 

0.991 

93.898 

0.992 

93.972 

0.993 

94.041 

0.994 

94.101 

0.995 

94.151 

0.996 

94.187 

0.997 

94.199 

0.998 

94.163 

0.999 

93.95 

Table 5-5: Effect of X on SLWE-based Delta Bloom filter compression. 
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The graph in the Figure 5-5 presents the effect of varying X on the compression gain 

achieved by SLWE-based delta Bloom filter compression. It can be noticed that it does 

not follow a specific trend. The compression gain achieved at first consistently increases 

for 0.990 < X < 0.997. After this it starts to decrease till the maximum value set for the 

experiments. 

w 

C 
CO 

O 
c 
o 
CO 
CO 
CD 
Q . 
E 
o o 

* <s>N & <& <s>* «*F <d* £ <& <s? 
Q* ^* ^» $y Q' ^ Q* ^« ^* 

Lambda {A) • 

Figure 5-5: Effect of varying X on SLWE-based delta Bloom filter compression for 
w=140Kb. 

5.3.2. Comparison Between the SLWE-based and PPM models for Delta Bloom 
Filter Compression 

For the comparison between the results of delta Bloom filter compression using different 

compression methods, the same setup is used as described in earlier sections. The tests on 

all the methods are performed on the same data. The cross validation of the process is 

done in the case of the method using PPM model by testing whether the Bloom filter 

reconstructed after compression is the same as the original Bloom filter. For the delta 

Bloom filter compression using SLWE, cross validation is not required, as we are 

calculating the bits required to send the compressed data and then the compression gain 

based on this data. In the previous section, the effect of varying the size of the Bloom 
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filter, number of the hash functions, percentage of change between the Bloom filters and 

that of the parameter X, on our proposed delta Bloom filter compression using SLWE 

were seen. In this section, the comparison is performed between the benchmark adaptive 

unigram method, SLWE-based delta Bloom filter compression, and the one based on the 

higher-order model PPM. 

5.3.2.1. Size of the Bloom Filter (m) 

The size of the Bloom Filer plays a major role in compression. The larger the data for 

training the model the better the compression achieved is. The proposed method of the 

delta Bloom filter compression using SLWE consistently works better than the rest of the 

compression methods in terms of compression gain as shown in Table 5-6. For this 

comparison larger sizes of the Bloom filters are considered, in the range from 10 to 40 

Mb, with four hash functions and percentage of change of 5%. In the table, the uniform 

model represents no compression of the data. It can be noticed that the SLWE-based delta 

Bloom filter compression provides consistent better compression gain than the unigram 

and the PPM models. The difference between the compression gains achieved by SLWE-

based compression for a specific size of Bloom filter is not large but consistently better 

than the other models for all the sizes considered during the experiments. 

Compression 
Models 

Uniform 

Unigram 

PPM(O) 

PPM(l) 

PPM(2) 

PPM(3) 
PPM(4) 

PPM(5) 

PPM(6) 
PPM(7) 

PPM(8) 
PPM(IO) 

SLWE 

Bloom filter size (Mb) 

10 

-0.070 

89.680 

89.166 

88.590 

88.559 

88.498 

88.416 
88.325 

88.243 
88.157 

88.070 

87.900 

89.744 

15 
-0.070 

91.719 

91.182 

90.866 
90.810 

90.743 
90.662 

90.579 

90.496 
90.417 

90.345 

90.200 

91.785 

20 

-0.070 

93.088 
92.532 

92.396 

92.336 

92.269 
92.187 

92.106 

92.030 

91.955 

91.882 

91.740 

93.158 

25 
-0.070 

94.057 

93.484 

93.484 
93.419 

93.352 
93.270 
93.194 

93.119 

93.043 

92.973 

92.833 

94.128 

30 
-0.070 

94.756 

94.172 

94.271 

94.199 

94.133 
94.055 

93.981 

93.903 

93.829 

93.761 

93.619 

94.828 

35 
-0.070 

95.325 

94.730 

94.909 

94.836 

94.769 
94.693 

94.621 

94.546 

94.475 

94.405 

94.266 

95.398 

40 
-0.070 

95.753 

95.151 

95.390 
95.317 

95.252 
95.177 

95.104 

95.031 
94.962 

94.894 

94.758 

95.828 

Table 5-6: Effect of the size of the Bloom filter (m) on the compression gain with respect 

to different compression models. 
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The graph in the Figure 5-6 represents the data from Table 5-6 for the effect of the size of 

the Bloom filter on the compression gain achieved by different compression models. It 

shows that the size of the bloom filter is one of the factors on which delta Bloom filter 

compression is dependent and considering this factor, SLWE-based compression 

consistently performs better than the unigram and the proposed PPM-based delta Bloom 

filter compression methods. This also proves that the proposed SLWE-based method is 

scalable while consistently achieving better results than the other methods. 
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Figure 5-6: Effect of the size of the Bloom filter (m) on the compression gain with respect 

to the different compression models. 

5.3.2.2. Number of Hash Functions (k) 

The tests were performed by varying the number of hash functions used to create the 

Bloom filter. By increasing the number of hash functions, we can test the adaptability of 

the proposed delta Bloom filter compression methods. Bloom filters of size 140Kb were 

used. Table 5-7 shows in detail the compression gain for the unigram, PPM and SLWE 

based delta Bloom filter compression. Uniform means that there was no compression. It 
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can be noticed that the PPM model-based proposed compression method performs better 

than the unigram based compression irrespective of the number of hash functions used. 

The SLWE-based proposed compression method performs even better than the PPM 

model. For the given size of the Bloom filter with two hash functions, as used by 

Mitzenmacher [Mitz2002], our proposed SLWE based delta Bloom filter compression 

method has a compression gain of 93.959 compared to 93.153 of the 0th order unigram-

based compression. 

Compression 
Models 

Uniform 

Unigram 

P(0) 

P(l) 

P(2) 

P(3) 

P(4) 

P(5) 

P(6) 

P(7) 

P(8) 

P(10) 

SLWE 

Number of Hash functions, k, used 

-0.080 

93.153 

92.976 

93.839 

93.759 

93.696 

93.582 

93.502 

93.473 

93.399 

93.330 

93.193 

94.199 

3 
-0.080 

91.407 

91.247 

91.876 

91.784 

91.716 

91.659 

91.561 

91.401 

91.327 

91.287 

91.144 

92.437 

4 
-0.080 

90.014 

89.871 

90.312 

90.237 

90.249 

90.094 

89.957 

89.848 

89.786 

89.751 

89.517 

91.039 

5 
-0.080 

88.830 

88.687 

88.985 

88.968 

88.905 

88.768 

88.647 

88.607 

88.464 

88.373 

88.075 

89.855 

6 
-0.080 

87.804 

87.672 

87.861 

87.929 

87.781 

87.592 

87.535 

87.426 

87.261 

87.129 

86.786 

88.822 

7 
-0.080 

87.118 

86.986 

87.124 

87.146 

86.958 

86.815 

86.826 

86.581 

86.415 

86.255 

85.883 

88.133 

8 
-0.080 

86.449 

86.312 

86.403 

86.341 

86.152 

86.032 

85.998 

85.740 

85.535 

85.363 

85.026 

87.469 

9 
-0.080 

86.272 

86.140 

86.203 

86.129 

85.958 

85.855 

85.786 

85.512 

85.300 

85.140 

84.786 

87.276 

10 
-0.080 

85.940 

85.809 

85.883 

85.815 

85.655 

85.546 

85.403 

85.146 

84.929 

84.723 

84.374 

86.942 

Table 5-7: Effect of the number of Hash Functions used to construct a Bloom filter on the 
compression models. 

The graph in the Figure 5-7 shows the effect of the number of Hash Functions used to 

construct a Bloom filter on the compression models. It shows that the number of has 

functions used is a factor on which all the considered compression models are dependent 

upon. The graph reflects the trend of the reduction in compression gain with the increase 
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in the number of hash Junctions used to construct a Bloom filter. As we can notice, with 

the increase in the number of hash functions, SLWE-based compression actually achieves 

better compression in comparison with the other methods in terms of the compression 

gain although the use of larger number of hash functions will increase the computational 

complexity. 
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Figure 5-7: Effect of the number of Hash Functions used to construct a Bloom filter on 
different compression models. 

5.3.2.3. Percentage Change Between the Two Bloom filters 

The experiments were performed to test the effect of the percentage of change between 

the two Bloom filters on different compression models. For this comparison, Bloom 

filters of size 140Kb, created using two hash functions were used. Uniform means there is 

no compression. Except for the 1% of change, SLWE-based compression leads to better 

compression gain than the PPM-based compression model and the unigram model, as 

clearly reflected in Table 5-8. This reflects the adaptability of the proposed compression 

method for delta Bloom filter compression as though all the considered compression 

models depend on this factor but the SLWE-based method achieves consistent better 

compression gain than the unigram or PPM-based methods. 
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Models 

Uniform 

Unigram 

P(0) 

P(D 

P(2) 

P(3) 

P(4) 

P(5) 

P(6) 

P(7) 

P(8) 

P(10) 

SLWE 

% of change between two Bloom filters, c 

1 
-0.080 

97.186 

96.980 

98.215 

98.187 

98.164 

98.147 

98.124 

98.095 

98.061 

98.044 

97.998 

98.144 

2 
-0.080 

96.065 

95.859 

96.985 

96.951 

96.905 

96.860 

96.802 

96.762 

96.728 

96.694 

96.619 

97.070 

3 
-0.080 

95.052 

94.863 

95.916 

95.864 

95.790 

95.704 

95.653 

95.590 

95.538 

95.515 

95.424 

96.086 

4 
-0.080 

94.074 

93.891 

94.852 

94.772 

94.715 

94.617 

94.543 

94.486 

94.440 

94.406 

94.240 

95.125 

•5 . 
-0.080 

93.153 

92.976 

93.839 

93.759 

93.696 

93.582 

93.502 

93.473 

93.399 

93.330 

93.193 

94.199 

€ 
-0.080 

92.249 

92.083 

92.844 

92.747 

92.695 

92.581 

92.552 

92.444 

92.352 

92.278 

92.140 

93.285 

7 
-0.080 

91.385 

91.225 

91.860 

91.780 

91.700 

91.649 

91.523 

91.403 

91.317 

91.254 

91.151 

92.415 

8 
-0.080 

90.583 

90.429 

90.949 

90.909 

90.823 

90.772 

90.635 

90.520 

90.492 

90.417 

90.246 

91.603 

9 
-0.080 

89.823 

89.674 

90.120 

90.057 

90.040 

89.891 

89.760 

89.628 

89.600 

89.445 

89.262 

90.844 

10 
-0.080 

89.017 

88.868 

89.228 

89.160 

89.125 

88.942 

88.788 

88.662 

88.639 

88.462 

88.239 

90.040 

Table 5-8: Effect of the percentage of change between two Bloom filters, c, on different 
compression models. 

The graph in the Figure 5-8 represents the data from Table 5-8 for the effect of the 

percentage of change between two Bloom filters, c, achieved by the different 

compression models. It can be noticed that SLWE-based compression consistently 

performs better than unigram and PPM for delta Bloom filter compression. For very 

frequent updates to the original Bloom filter, c = 1, unigram, PPM and SLWE based 

compression models achieve very high compression gain with little difference between 

them. As the value of c increases, the difference between the compression gain achieved 

by SLWE-based compression and the other models increases. If an application doesn't 

require a very frequent data updates, then the selection of SLWE-based delta Bloom filter 

compression method becomes easier. 
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Figure 5-8: Effect of percentage of change between two Bloom filters, c, on different 
compression models. 

5.4. Analysis and Discussion 

The experiments were performed according to the setup discussed in Section 5.2 of 

Chapter 5 for considering the dependence and effect of various factors on delta Bloom 

filter compression. For the first set of experiments, the size of the Bloom filter, m, was set 

to 140,000 bits, which were created using two hash functions, k, and the percentage of 

difference between the two Bloom filters, c, was set to 5%. The results of these 

experiments were very encouraging. The proposed SLWE-based compression had a 

higher percentage of compression gain, s, relative to the benchmark unigram model or the 

higher-order PPM-based compression. Not only this, the experiments were performed by 

varying the number of hash functions used, \<k< 10, it was found that the SLWE based 

delta Bloom filter compression, again, achieves higher compression gain than the others. 

This pattern of better compression gain continued even when the experiments were 

performed with different values of c, that is, the percentage of change between the Bloom 

filters (or the delta Bloom filter). 

Encouraged by the experiments results as expected, we went ahead to simulate the real 

application setup for the proposed delta Bloom filter compression. As discussed in the 
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fourth chapter, the delta Bloom filter can be used with the Bloom filter-based summary 

cache for the web proxies. Due to the unavailability a standard benchmark for the real 

application data, the experiments were performed through simulation. Mitzenmacher has 

also performed the tests through simulation [Mitz2002]. 

The size of the Bloom filters was calculated to be used in this scenario. In practice, 

proxies typically have 8 to 20GB of cache space and an average file size of 8KB. 

Therefore, the average number of documents can be said to be in the range 1 to 2.5 M 

documents. The load factor, If, options chosen by Li Fan et al [FCAB2000] were 8, 16 or 

32, preferably 8 or 16. Based on these findings, the size of the Bloom filter will be: 

8 Mb-20Mb for //= 8, 

16 Mb-40Mb for //= 16. 

The percentage of change is in the range 1< c < 10. The optimal number of hash function 

[MITZ2002] would highly increase the computation cost. Therefore, there is a tradeoff 

between the false positive rate and the number of hash functions used. Here, four hash 

functions are used. 

In this scenario, also, the second proposed method for delta Bloom filter compression 

performs better than the first proposed method that uses PPM based compression and the 

benchmark unigram-based compression, for scalability as well as adaptability, in terms of 

compression gain. 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

As technology evolves, the need for representing and transferring the data concisely and 

reliably also increases. Bloom filters play a vital role in fulfilling this requirement. 

However, to fulfill the requirements of the applications which rely on the heavy use of 

the bandwidth and also the need to access to frequently modified data, the standard 

Bloom filter use needs enhancement. 

6.1. Conclusions 

In this thesis, the use of the delta Bloom filter is proposed for such applications and then 

the delta Bloom filter compression is proposed to increase the benefits. The proposed 

method for delta Bloom filter compression will bring substantial benefits to the above 

mentioned applications. 

For compressing any data, the selection of the compression tools depends on the 

characteristics of the data and application for which it is going to be used: 

• Streaming versus file. 

• Expected patterns and regularities in the data. 

• Relative importance of CPU usage, memory usage, channel demands and storage 

requirements along with other factors. 

In this thesis, delta Bloom filter compression is proposed using an advanced estimation 

technique for arithmetic coding known as stochastic learning-based weak estimation 

technique that uses a higher-order statistical model and, also along with it, takes into 

account the variability of the source statistics. Also, delta Bloom filter compression is 

proposed using higher-order prediction with a partial matching with arithmetic coding. 

The performance of the proposed compression methods is compared in terms of 

compression gain to the benchmark compression model and between each other. 
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Comprehensive experiments were performed to test for the dependence and effect of 

various factors on the proposed delta Bloom filter compression using SLWE-based and 

PPM-based compression. The considered factors are the size of the Bloom filter, the 

number of hash functions used to create Bloom filters, percentage change between two 

Bloom filters, and parameter X. The results of the experiments are encouraging in terms 

of compression gain while also taking scalability and adaptability factors into 

consideration. The proposed method of the delta Bloom filter compression using 

stochastic learning-based weak estimation consistently achieves better results in 

comparison to the other methods. 

Due to the unavailability of the standard benchmark real application data, the results are 

based on simulation. In the future, there is a plan to perform the tests for the proposed 

delta Bloom filter compression with the data from real applications. A move has already 

been initiated in this direction and, based on the encouraging results of the simulations, 

the plan is to present similar results with real application data. 

6.2. Future Work 

This thesis identifies a need for frequent updates of the data summaries to be transmitted 

and provides an efficient solution to this problem by reducing the amount of the data 

being transmitted. In this way, it reduces the bandwidth requirements of a system. The 

applications involving heavy use of the bandwidth, distributed computing environment 

for databases or proxy servers, and applications that are sensitive to the access to the data 

with frequent modifications, all will benefit from the proposed technique. For these 

applications, there is another aspect to be considered and that is related to security. The 

next logical step should be a study to combine both these aspects of compression and 

security. The proposed method provides a solution for large data sets and frequent data 

transfers. As a future work, a combined solution for large data transfer as well as in 

encryption can be carried out. For this, the probable areas of study can be the type of hash 
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functions to be used, combination of compression and encryption algorithms, and trade­

off between the combined method and the computational limits of the system. 

In the proposed method, cryptographic hash functions are not used. However, we plan to 

use hash functions such as MD5 and SHA. A future study can be carried out for the use 

of different types of hash functions to be used with the proposed method. 

Also, as a future work, further study and experiments can be performed to learn A,, 

parameter used for SLWE, while encoding. In this thesis, the range set for parameter A, is 

0.9900 to 0.9999 based on previous studies [OR2006]. A set block from the data can be 

utilized to learn A and that value of A can be utilized to learn the probability of the next 

symbol. Also, further studies can be continued on the use of non-linear stochastic 

learning-based estimation for the delta Bloom filter compression. Within SLWE 

approaches there are many learning automata schemes that could be utilized such as 

nonlinear, continuous, discretized, pursuit learning and estimator algorithms [OR2006]. 

The study of these algorithms combined with entropy-based coding technique can be 

done for delta Bloom filter compression. In this thesis, SLWE and PPM are used with 

arithmetic coding for delta Bloom filter compression. As a future work, these methods 

can be combined with other encoding schemes such as adaptive Fano coding which could 

be used for delta Bloom filter compression. Also, Burrows-Wheeler transformation or 

Block sorting which is discussed in Chapter 3 can be used for delta Bloom filter 

compression. The algorithm works by applying a reversible transformation to a block of 

input text. The transformation does not itself compress the data, but re-orders it to make it 

easy to compress with simple algorithms such as move-to-front encoding. Experiment 

using block sorting was carried out during thesis. The initial results seem promising; 

however, more tests are desired and can be carried out in future. 
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