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ABSTRACT 

The objective of this thesis is to investigate the applicability of Field Programmable Gate 

Arrays (FPGAs) for frame delay implementation. FPGAs are programmable devices that 

can be directly configured by the end user without the use of an integrated circuit 

fabrication facility. They offer the designer the benefits of custom hardware, eliminating 

high development costs and manufacturing time. Frame delays are easier to realize using 

R/W memory where data is written into the memory and read out for each frame. FPGAs 

are used in a Quartus II environment as it is easy to perform frame delay implementation 

using schematic entry procedure. Since FPGAs use look-up tables as configurable logic 

blocks, they are considered as an appropriate choice for frame delay based designs. 

IV 



DEDICATION 

To our Lord Jesus Christ and to my mother Mrs Joyce Nortey Johnson. 

v 



ACKNOWLEDGEMENTS 

I would like to express my sincere appreciation to both of my co-supervisors Dr. 

Maher Sid-Ahmed and Dr. Rashid Rashidzadeh for giving me the opportunity to work 

with them. I am also grateful to them for their encouragement, support and guidance 

during my research work presented in this thesis. I would also like to thank the thesis 

committee members Dr. Gaspar and Dr. Tepe for their comments and advice. 

I am also thankful to my parents Mr. Edward G. Afrifa and Mrs. Joyce Johnson, 

for their prayers and moral support. A lot of thanks to my siblings: Ama Asantewaa and 

Afua for their support and affection. I would also like to express my appreciation to Mr. 

and Mrs. Masse for their kindness. My thanks also go to Mr. and Mrs. Balga for the 

accommodation afforded me during my stay in Canada. I also extend my gratitude to 

Andria Ballo who helped ensure I completed my studies. I also thank my friends and 

colleagues who helped make my stay in this university a memorable one. 

VI 



TABLE OF CONTENTS 

DECLARATION OF ORIGINALITY iii 

ABSTRACT iv 

DEDICATION v 

ACKNOWLEDGEMENTS vi 

LIST OF TABLES ix 

LIST OF FIGURES x 

ABBREVIATIONS xi 

CHAPTER 

1. INTRODUCTION 

1.1 Motivation 1 
1.2. Thesis Organization 4 

2. BACKGROUND 

2.1 Introduction to FPGA Technology 5 
2.2FPGA 6 

2.3 Programming Technologies ...9 

2.3.1 Static RAM Programming Technology 10 

2.3.2 EPROM Programming Technology 10 

2.4 Look-up table (LUT) based FPGA Architectures 11 

2.5 Cyclone II Architecture 13 

2.6 Frame Delay 17 

3. DESIGN AND METHODOLOGY 

3.1. Platform and Methodology 21 

3.2. FPGA Implementation Procedure 22 

3.3. Procedure For Creating Frame Delay 24 

3.4. Altera FPGA Board for Frame Delay Implementation 25 

4. SIMULATIONS AND RESULTS 

4.1. Compilation Results 30 
4.2. Implementation Results 31 

vn 



5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 37 

5.2. Future Recommendations 38 
APPENDIX A:VHDL CODE FOR IMPLEMENTATION 39 

REFERENCES 52 

VITA AUCTORIS 55 

Vll l 



LIST OF TABLES 

TABLE 3.1 FPGA DEVICE AND FPGA BOARD CHARACTERISTICS 21 

TABLE 3.2 DESIGN TOOLS 22 

TABLE 4.1 DATA INPUT AND LOCATION 32 

IX 



LIST OF FIGURES 

FIG.2. 1 CONCEPTUAL DIAGRAM OF A TYPICAL FPGA ARCHITECTURE 7 

FIG.2. 2 ARCHITECTURE OF A XILINX FPGA 11 

FIG.2. 3 ARCHITECTURE OF AN ALTERA FPGA 14 

FIG.2. 4 REPRESENTATION OF MOVING IMAGES 18 

FIG.2. 5 REALIZATION OF A 3-D FIR FILTER 20 

FIG.3.1FIFO SHIFT REGISTER REALIZED USING R/W MEMORY 24 

FIG.3. 2 ALTERA FPGA DEVELOPMENT BOARD 26 

FIG.3. 3 QUARTUS II ENVIRONMENT 27 

FIG.3. 4 QUARTUS PROGRAMMER INTERFACE 29 

FIG.4. 1 COMPILATION REPORT 30 

FIG.4. 2 TIME FOR COMPLETE COMPILATION 31 

FIG.4. 3 LOCATION 0 WITH DATA INPUT 9 33 

FIG.4. 4 LOCATION 3 WITH DATA INPUT 8 34 

FIG.4. 5 LOCATION 4 WITH DATA INPUT 15 34 

FIG.4. 6 LOCATION 7 WITH DATA INPUT 13 35 

FIG.4. 7 LOCATION 6899 WITH DATA INPUT 6 35 

FIG.4. 8 LOCATION 65451 WITH DATA INPUT 7 35 

x 



ABBREVIATIONS 

ASIC 

CAD 

CLB 

elk 

CPLD 

DMA 

DRAM 

DSP 

EPROM 

FIFO 

FIR 

FPGA 

GUI 

HDL 

IIR 

I/O 

IOE 

LAB 

LE 

LED 

LIFO 

Application Specific Integrated Circuit 

Computer-Aided Design 

Configurable Logic Block 

clock 

Complex Programmable Logic Device 

Direct Memory Access 

Dynamic Random Access Memory 

Digital Signal Processing 

Erasable Programmable Read-Only Memory 

First In First Out 

Finite Impulse Response 

Field Programmable Gate Array 

Graphical User Interface 

Hardware Description Language 

Infinite Impulse Response 

Input/Output 

Input/Output Element 

Logic Array Block 

Logic Element 

Light Emitting Diode 

Last In First Out 



LUT Look-up Table 

PAL Programmable Array Logic 

PLA Programmable Logic Array 

PLL Phase-Locked Loop 

PLD Programmable Logic Device 

PROM Programmable Read-Only Memory 

RAM Random Access Memory 

R/W Read/Write 

sclr Synchronous clear 

SDRAM Synchronous Dynamic Random Access Memory 

SPLD Simple Programmable Logic Device 

SRAM Static Random Access Memory 

SSI Small Scale Integration 

VHDL (Very-high speed integrated circuit) hardware description language 

VLSI Very Large Scale Integration 

wren write enable 

xn 



CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

In this thesis, a new application for FPGAs is explored. FPGAs are considered for frame 

delay implementation. This thesis is to help realize a cost effective and easy to use frame 

delay which can be used to implement or realize 3-D filters, improve the quality of real 

time video streams and help reduce noise. Three-dimensional (3-D) digital filters are of 

increasing interest because of their potential applications, the space-time domain of the 3-

D signals corresponds to the two spatial dimensions and the temporal dimension. 

Example of this is a time varying image, such as a video sequence. A video sequence is a 

three-dimensional signal, with the three dimensions being horizontal orientation, vertical 

orientation and time, and is said to be in spatio-temporal domain. 

In digital video processing, 3-D IIR filters are useful for applications involving the 

selective enhancement of objects having various passband linear velocities in the 

presence of other objects having stopband velocities and noise [7, 8, 9, 10]. In [5] the 

first-order 3-D IIR frequency-planar filter is an important building block for many high-

order 3-D IIR digital filters. In digital plane-wave filtering, highly-selective 3-D IIR 

beam and cone filters are useful for applications involving the selective enhancement of 

broadband spatio-temporal plane-waves based on their directions of arrivals in the 

presence of plane-waves, interference and additive white Gaussian noise. 
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In [19] systolic hardware realization structure permits the 2-D input data to be scanned 

row-wise and broadcasted on value at a time to various processing elements likewise 3-D 

input data is sent frame by frame to the memory and received after delay in the time 

domain. 

Sid-Ahmed in [20] presented the realization of 3-D filters along with the hardware 

implementation of frame delays using read/write memory arrays. Three-dimensional 

filters were devised to operate on a sequence of images. These could provide, in some 

respect, an added advantage over 2-D filters when dealing with a sequence of images. An 

application that has been studied in the literature [6], [11] is the removal of moving 

objects along a given path and at a given speed from a sequence of images. Another 

application is the increase of frame rate in television images. 

Three-dimensional filter realization enables frame delays to be obtained. Frame delay is 

achieved by sending sequence of frames to be written into memory and later read out. 

The time lapse between the frame being written and the read out one is basically the 

frame delay. The parallelism feature invites systolic architecture approach for VLSI 

realization of frame delay operations. 

There are numerous attractive features in FPGAs, which encouraged the frame delay 

implementation. The arrangement of arrays of logic blocks in FPGAs appears systolic in 

structure, where logic blocks can be treated as Processing Elements. Additionally some 

FPGAs have ample flip-flops which make them suitable for pipelined systolic 
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architectures. Altera FPGAs use logic elements as configurable logic blocks, and have 

abundant flip-flops to support pipelining. These favourable features make Altera FPGAs 

an ideal choice for implementing frame delays. 

It is inefficient to directly retarget a full or semi-custom implementation of frame delay 

design to FPGA technology. In a full-custom implementation, all parts of the circuit, the 

logic, the routing circuitry are carefully tailored to meet a set of specific requirements. An 

FPGA is a prefabricated chip with programmable logic blocks and routing connections. 

There are density and performance penalties associated with user-programmable routing 

in FPGAs. For good FPGA implementation, the perspective is to efficiently utilize the 

available configurable logic blocks and the programmable routing connections between 

them. Minimizing the number of configurable logic blocks needed to realize a given 

function, is a very area-efficient solution for FPGAs. Reducing the number of CLBs is 

also effective in terms of reducing the routing performance penalty, as the connections 

between the CLBs are reduced if the number of CLBs is reduced. 

Frame delay is realized using R/W memory. The sequence of frames are sent to a RAM 

one frame at a time and stored before they are called out as output. There is a counter 

which help to create locations for data to be sent to the memory and a clock which helps 

data to be written into the memory and then to read the data after another clock signal. 

This frame delay would be implemented in the Quartus II environment for synthesis in a 

reconfigurable hardware. 
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1.2. Thesis Organization 

This thesis consists of 5 chapters. In the second chapter a background of frame delay and 

material to understand FPGA technology are presented. It covers programmable devices, 

explanation on FPGA architectures and how to implement the circuit. 

In Chapter 3, the implementation of frame delay in Altera EP2C35 series FPGAs is dealt 

with. It shows the method of creating a frame delay and how to use the Quartus II 

schematic diagram to implement the proposed frame delay method. 

Chapter 4 includes simulation results of the implemented frame delay. This chapter 

shows how FPGAs implement frame delays efficiently with its accompanying results. 

The final chapter presents the conclusion and shows some directions that can be taken for 

future research work. 

4 



CHAPTER 2 

BACKGROUND 

2.1 Introduction to FPGA Technology 

This chapter provides a background of frame delay and materials to understand the FPGA 

technology. The evolution of programmable devices is reviewed and then goes on with 

three-dimensional filters so as to show frame delays. This frame delay would later be 

implemented with the aid of an FPGA. The FPGA industry sprouted from programmable 

read-only memory (PROM) and programmable logic devices (PLDs). A PROM is a one

time programmable device that consists of a two dimensional array of memory cells and a 

decoder. Based on the address line inputs, the decoder selects and outputs one row of the 

memory on the data lines. To implement logic functions, address lines are used as the 

logic circuit inputs and each data line can implement a separate logic function. PROMs 

are most suited for implementing memory in applications such as microcontroller based 

systems. 

The next generation of programmable devices are known as Programmable Logic 

Devices (PLDs). The basic PLDs are Programmable Logic Arrays (PLAs) and 

Programmable Array Logic (PALs) devices. PLAs have an AND-plane which can give 

any product term of the inputs as an output and an OR-plane which can generate any sum 

term of the product terms. Thus a PLA is optimally suitable for implementation of sum-

of-products forms of Boolean expressions. The two programmable planes in the PLA are 

costly to build and they introduce considerable propagation delays for signals. In PALs, 

only the AND-plane is programmable and the OR-plane is fixed. So PALs are 
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inexpensive to manufacture and they provide very high speed-performance of 

implemented circuits. PALs with registered outputs are used in developing many finite-

state machines. PALs and PLAs are collectively referred to as Simple Programmable 

Logic Devices (SPLDs) in the literature. They are best used for implementing control 

circuitry. 

Due to the limited logic capacity of SPLDs, denser Complex Programmable Logic 

Devices (CPLDs) were introduced by the microelectronics community. CPLDs have a 

hierarchical arrangement of multiple SPLDs on a single chip, and the logic capacity of 

CPLDs can advance to 5000 logic gates. CPLDs can also sustain system clock rates 

above 100 MHz. In order to use the merits, and remove the demerits of SPLDs and 

FPGAs, one of the semiconductor companies, Xilinx, introduced a new invention of 

programmable devices called Field Programmable Gate Arrays (FPGAs). Presently 

FPGAs can support logic capacities up to millions of gates. FPGA implementation of 

circuits has high operating speeds. 

2.2 FPGA 

FPGAs are one of the fastest growing segments of the semiconductor industry. They are 

programmable devices that can be directly configured by the end user without the 

application of an integrated circuit fabrication facility. They offer the designer the 

benefits of custom hardware, eliminating high development costs and turnaround time 

and thereby easily evolving as a lower cost alternative for VLSI implementation of 

circuits. They were first introduced in 1985 by Xilinx, and since then have quickly gained 
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widespread acceptance as an excellent technology for implementing moderately large 

digital circuits in low production volumes. Since then, many different FPGAs have been 

developed by number of companies such as Actel [1], Altera [2], Motorola, QuickLogic 

and Crosspoint Solutions. Fig. 2.1 shows a conceptual diagram [4] of a typical FPGA. 

IntercDimection Resources 

Logic Slock I/O Block n n n n n n n &-
^ 

p i r i r iP i 

LJhJkJIiJ 

Fig.2.1 Conceptual diagram of a typical FPGA architecture 

An FPGA generally consists of a regular array of logic blocks called Configurable Logic 

Block (CLB) that can be programmed to implement combinational and sequential logic 

functions, I/O block and user-programmable routing channels [3, 12, 13, 14] that 

provides connections between the logic blocks. The interconnect resources comprises 

segments of wire, where the segments may be of different lengths. The interconnect 

resources include programmable switches that serve to connect the logic blocks to one 

another or one wire segment to another. Logic circuits are implemented in the FPGA by 
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partitioning the logic into individual blocks and then interconnecting the blocks as 

required via the switches. 

The structure and content of the interconnect resources in an FPGA is called its routing 

architecture. The routing architecture consists of wire segments and programmable 

switches. There exists many diverse ways to design the structure of a routing architecture, 

some FPGAs offer simple connection between blocks, and others provide less, but more 

complex routes. There are many advantages in using FPGA technology and they can be 

utilized in almost all the applications that currently use PLDs and Small Scale Integration 

(SSI) logic chips. Some of the applications are listed as follows. 

Application Specific Integrated Circuits: An FPGA can be thought of as a general 

medium for implementation of ASICs. Some examples that have been reported are: a 1 

megabit FIFO controller, a DRAM controller and a graphics engine. 

Random logic implementation: Random logic circuitry is habitually implemented using 

PALs. If the speed of the circuit is not of immense concern then such circuits can be 

implemented advantageously with FPGAs. A single FPGA can implement a circuit that 

might require between ten to twenty PALs. 

Prototyping: FPGAs are very appropriate for prototyping logic designs. The low outlay of 

implementation and short instance needed to physically realize a given design, provide 

them massive advantages over traditional approaches for building prototype hardware. 
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On-site Reconfiguration of Hardware: Some FPGAs can be reprogrammed unlimited 

number of times. Reprogrammability is a very striking feature where hardware has to be 

changed dynamically, or where hardware has to be modified to different user 

applications. 

There are disadvantages for using FPGAs. The two main disadvantages of FPGAs are 

their relatively low speed of operation, and relatively low logic density. The propagation 

delays in FPGAs are adversely affected by the inclusion of programmable switches, 

which have considerable resistance and capacitance, in the connections between logic 

blocks. Logic density is reduced because the programmable switches and coupled 

programming circuitry require a great deal of chip area compared to the metal 

connections. 

2.3 Programming Technologies 

It is constructive to gain a better understanding of how FPGAs are made field-

programmable. The term programmable switch actually refers to the programmable 

elements of the FPGA chip and a typical FPGA may contain 100000 of them. 

Programming elements are implemented using different technologies [4], such as static 

RAM cells and EPROM transistors. Regardless of the technology of implementation the 

programming elements are all configurable in one of two states: ON or OFF. The 

desirable properties of the programming elements are that they should consume as little 

chip area as possible, they should have a low ON resistance and a very high OFF 

resistance and it should be possible to reliably fabricate a large number of them on a 

single chip. 
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2.3.1 Static RAM Programming Technology 

This technology is used in FPGAs produced by numerous companies: Concurrent Logic, 

and Xilinx. In these FPGAs, programmable connections are made using pass-transistors, 

transmission gates or multiplexers that are all controlled by SRAM cells. The RAM cell 

controls the pass-gates to be turned on or off. When off, the pass-gate presents a very 

high resistance between the two wires to which it is attached and the wires are hence 

disconnected. When the pass gate is turned on, it forms a relatively low resistance 

connection between the two wires. The chip area required by the static RAM approach is 

relatively large as at least five transistors are needed for each RAM cell, along with 

additional transistors for the pass-gates or multiplexers. The foremost advantage of this 

technology is that it provides an FPGA that can be reprogrammed very quickly. 

2.3.2 EPROM Programming Technology 

EPROM programming technology is used in FPGAs manufactured by Altera Corporation 

[2] and Plus Logic. The technology is the same as that used in EPROM memories. Unlike 

a simple MOS transistor, an EPROM transistor comprises two gates, a floating gate and a 

select gate. The floating gate is not electrically connected to any circuitry. In its 

unprogrammed state, no charge exists on the floating gate and the transistor can be turned 

ON in the normal fashion using the select gate. However, when the transistor is 

programmed by causing a large current to flow between the source and drain, a charge is 

trapped under the floating gate. The charge has the effect of permanently turning the 

transistor OFF. In this way, the EPROM transistor can function as a programmable 

element. An EPROM transistor can be re-programmed by first removing the trapped 

charge from the floating gate. EPROM transistors in addition to serving as programmable 

10 



11 

element can be used as "pull down" devices for logic block inputs. As long as the 

transistor is not programmed into the OFF state, the word line can cause the bit line, 

which is connected to a logic block input, to be pulled to logic zero. 

2.4 Look-up table (LUT) based FPGA Architectures 

This section gives a description of LUT-based architectures using the Xilinx FPGA 

family as an example. The general architecture of a Xilinx FPGA [4] is shown in Fig. 2.2 
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Fig.2. 2 Architecture of a Xilinx FPGA 

It comprises of a two-dimensional array of programmable blocks, called Configurable 

Logic Blocks (CLBs), with horizontal routing channels between rows of blocks and 
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vertical channels between columns. Programmable resources are controlled by static 

RAM cells. The gate count measure is given in terms of "equivalent to a mask-

programmable gate array of the same size". 

A CLB in the XC2000 family [15] consists of a 4-input look-up table with two outputs, 

and a D flip-flop. The look-up table can produce any function up to four variables or any 

two functions of three variables. Either the CLB ouputs can be combinational, or one 

output can be registered. The XC2000 routing architecture employs three types of routing 

resources: direct interconnect, general purpose interconnect and long lines. At every 

intersection of four CLBs, switch matrices are present; they hold a number of routing 

switches that can interconnect the wiring segments on its four sides. Longer wires are 

formed by connecting general purpose wiring segments through switch matrices. 

Connections that are required to reach several CLBs with low skew can use the long 

lines, which navigate at most one routing switch to span the entire length or width of the 

FPGA. The XC3000 [15] is an enhanced version of the XC2000, featuring a more 

complex CLB and more routing resources. XC4000 CLBs include on-chip static memory 

resources. An optional mode for each CLB makes the memory look-up tables in the 

function generators usable as either a 16 x 2 or 32 x 1 bit array of Read/Write memory 

cells. The inputs to the function generators act as address lines, selecting a particular 

memory cell in each look-up table. On-chip RAM is very useful for DMA counters, LIFO 

stacks and FIFO buffers. 
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There are three types of routing resources in the XC4000 [16], they are single length 

lines, double length lines and long lines. The single length lines are a framework of 

horizontal and vertical lines that intersect at a switch matrix between each block. The 

double length lines consist of a framework of metal segments twice as long as the single 

length lines; i.e., a double length lines runs past two CLBs before entering a switch 

matrix. Long lines forms a grid of metal interconnect segments that run the entire length 

or width of the array. Longlines can be driven by global buffers, designed to distribute 

clocks and other high fanout control signals throughout the array with negligible skew. 

Communication between longlines and single length lines is controlled by programmed 

interconnect points at the line intersections. Double length lines do not connect to other 

lines. 

2.5 Cyclone II Architecture 

This section gives a description of architectures using the Altera Cyclone II FPGA family 

as an example. The general architecture of an Altera FPGA is shown in the block diagram 

in Fig.2.3 
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Fig.2. 3 Architecture of an Altera FPGA 

Cyclone II devices contain a two-dimensional row and column-based architecture to 

implement custom logic. Column and row interconnects of varying speeds provide signal 

interconnects between logic array blocks (LABs), embedded memory blocks and 

embedded multipliers. The logic array consists of LABs, with 16 logic elements (LEs) in 

each LAB. An LE is a small unit of logic providing efficient implementation of user logic 

functions. LEs operate in either normal mode or arithmetic mode. LABs are grouped into 

rows and columns across the device. 

The devices provide a global clock network and up to four phase-locked loops (PLLs). 

The global clock network consists of up to 16 global clock lines that drive throughout the 

entire device. The global clock network can provide clocks for all resources within the 

device, such as input/output elements (IOEs), LEs, embedded multipliers, and embedded 

memory blocks. The global clock lines can also be used for other high fan-out signals. 
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Cyclone II PLLs provide general-purpose clocking with clock synthesis and phase 

shifting as well as external outputs for high-speed differential I/O support. 

M4K memory blocks provide dedicated true dual-port, simple dual-port, or single-port 

memory up to 36-bits wide. The M4K memory blocks include registers that synchronize 

writes and output registers to pipeline designs and improve system performance. The 

output registers can be bypassed, but input registers cannot. Each embedded multiplier 

block can implement up to either two 9x9-bit multipliers or one 18x18-bit multiplier. 

Embedded multipliers are arranged in columns across the device. Each device I/O pin is 

fed by an IOE located at the ends of LAB rows and columns around the periphery of the 

device. Each IOE contains a bidirectional I/O buffer and three registers for registering 

input, output, and output-enable signals. 

The FPGA configuration is normally specified using a hardware description language 

(HDL), comparable to that used for an application-specific integrated circuit (ASIC). 

FPGAs can be used to implement any logical function that an ASIC could execute. 

FPGAs contain programmable logic components called logic blocks, and a hierarchy of 

reconfigurable interconnects that allow the blocks to be wired together. 

Most recent FPGAs have the ability to be reprogrammed at "run time" and this has lead 

to the notion of reconfigurable computing or reconfigurable systems- CPUs that 

reconfigure themselves to suit the task at hand. Historically, FPGAs have been slower, 

less energy efficient and generally achieved less functionality than their fixed ASIC 
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counterparts. A combination of volume, fabrication improvements, research and 

development, and the I/O capabilities of new supercomputers have largely closed the 

performance gap between ASICs and FPGAs. 

Xilinx claims that several market and technology dynamics are changing the ASIC/FPGA 

paradigm: 

• Integrated circuit costs are rising aggressively 

• ASIC complexity has bolstered development time and costs 

• Financial constraints in a poor economy are driving low-cost technologies 

• Research and Development resources and head count are decreasing 

Some FPGAs have the capability of partial re-configuration that lets one portion of the 

device be re-programmed while other portions continue running. The inherent parallelism 

of the logic resources on an FPGA allows for substantial computational throughput even 

at low MHz clock rates. The flexibility of the FPGA allows for even higher performance 

by trading off precision and range in the number format for an increased number of 

parallel arithmetic units. 

Implementation of large digital circuits such as full systems-on-chips in modern high-

density FPGAs is enabled by sophisticated CAD tools. The process of mapping a circuit 

on an FPGA is divided into a series of sequential subproblems which make the procedure 

tractable. In the first phase, a designer describes a circuit in a hardware description 

language (HDL) such as Verilog or VHDL. 
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The second phase is synthesis stage which contains several steps. In the first step HDL is 

converted into a netlist of basic gates which is subsequently minimized. Then, the basic 

netlist is mapped onto a netlist of FPGA logic cells. The third step is packing, in which 

the logic cells are packed into the logic clusters. In the third phase, for each logic cluster 

from the netlist it is decided where it is going to be placed on an FPGA device. After 

locations of logic blocks are determined, a router finds a path between each connected 

logic block in the netlist and determines how the routing channels should be configured 

to implement the connection [21]. Routing algorithms are usually timing-driven as most 

of the delay in FPGAs stems from the programmable routing. Once it is ascertained that 

the synthesized circuit meets all requirements of the specifications the chip programming 

file is generated. 

2.6 Frame Delay 

A frame delay is obtained during the realization of a three dimensional filter. Assuming 

images are formed from the x and y axes then as these image frames move along the 

temporal axis there are some delays between these frames which become the frame 

delays. As frames move along the time axis there is a lapse of time between frames sent 

and received hence providing the frame delay. A 3-D digital filter is a system that, when 

given a sequence of 3-D input numbers, produces a sequence of 3-D output numbers 

subject to a specified set of rules providing some expected changes to the characteristics 

of the 3-D input signal. Three-dimensional digital filters has applications of removal of 

moving objects along a given path at a given speed from a sequence of images [17] as 

well as increasing frame-rate in television images. Filters of any dimension are 

traditionally divided into two categories: non-recursive filters and recursive filters. Non-
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recursive filters, also known as Finite Impulse Response (FIR) filters, produce an output 

which is weighted average of present and previous values. Recursive filters also known 

as Infinite Impulse Response (IIR) filters, produce an output that is a weight average of 

present and past values as well as past output values [18]. 

Certain types of three-dimensional filters are defined by linear time-invariant function in 

zi, Z2 and z3. In this case zi is considered as a pixel delay, z2 as a line delay, and z3 as a 

frame delay [18]. Fig. 2.4 shows a sequence of images represented by f(x,y,t). A three-

dimensional z-transform of f(x,y,t) would yield F (zi,z2,z3) as depicted in Fig.2.4 
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Fig.2.4 Representation of moving images 

Digital video is an example of a moving digital image sequence, with each frame of video 

representing a separate two-dimensional digital image. These images change as a 
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function of time, and it is this temporal variation which represents the third dimension in 

digital video. 

For a lxlxl FIR filter 

i i i 

H(zx,zz,Zi) = ^ J j ^ h(i,j, fyz^z^z-* (2.1) 
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Given that X(zi,Z2,Z3) is the input and Y(zi,z2,z3) is the output of the 3-D filter, equation 

(2.3) can be realized as shown in Fig. 2.5 

frame delay 

A{h>z2>h) 

>F(z1,z2,z3) 

Fig.2. 5 Realization of a 3-D FIR filter 
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CHAPTER 3 

DESIGN AND METHODOLOGY 

3.1. Platform and Methodology 

The main motivation of this work is to implement frame delay in a realistic hardware 

environment. The platform and methodology was selected to implement frame delay and 

run it on an FPGA device. Altera Cyclone II FPGA device is the chosen basis platform. 

This high-density device is intended for a full system-on-a chip implementation as it 

contains a balance of memory and logic resources. Table 3.1 contains the characteristics 

of the FPGA platform selected. Also the Altera tools that are used by the platform are 

listed in Table 3.2. 

Table 3.1 FPGA device and FPGA board characteristics 

FPGA device 

M4K RAM blocks (4Kbits plus 512 parity 

bits) 

Logic Elements (LEs) 

Total RAM bits 

Embedded Multipliers 

PLLs 

Maximum user I/O pins 

Altera Cyclone II EP2C35F672C6 

105 

33216 

483840 

35 

4 

475 
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Table 3. 2 Design Tools 

Synthesis CAD tool 

System-on-a chip design tool 

Embedded processor 

Software compilation tool 

Altera Quartus II 9.1 

Altera SOPC Builder 

Altera Nios II 

Altera Nios II Embedded Design Suite 

3.2. FPGA Implementation Procedure 

An FPGA design code can be implemented with the aid of a text editor or a schematic 

editor or a look-up table using simulation software such as Active-HDL, Quartus II or 

ModelSim. After the verification of the design, compilation including synthesis and floor 

planning are performed. Thus when developing a DSP system, two roles are needed to 

fulfill the FPGA development. One is the DSP engineer who is assigned to design and 

simulate the system before it is implemented. Another FPGA designer is assigned to 

design the structure from VHDL code to compilation and programming. Since both the 

coding work of development and system design are tedious, the process is divided 

between two different engineers, one focuses on the system and other focuses on the 

FPGA logic. 

Altera has developed different software to improve this process and save time. Altera 

makes use of Simulink of Mathwork's MATLAB GUI interface, and it is also developed 

a block set called DSP builder. The schematic components are combined to generate this 

complex block set similar to other Simulink block set. Then in this GUI interface, the 

design generates a model file. The model file is translated to an HDL file, and the fitter 
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can perform the compilation. During this process, the tedious HDL coding process 

becomes a process of pulling, plugging and debugging. This new procedure hides the 

HDL coding process so that the designer does not need to write HDL codes. This lessens 

the development and makes the process easier so that one engineer can do the job. In this 

interface, the synthesis process can be done by calling synthesis software such as Quartus 

II from Altera. 

In Altera's GUI environment, DSP Builder links Mathworks MATLAB and Simulink 

software with the Altera Quartus II software. DSP system design in Altera FPGA requires 

both high-level algorithm and hardware description language (HDL) development tools. 

The Altera DSP Builder incorporates these tools by combining the algorithm 

development, simulation and verification abilities of the Mathworks MATLAB and 

Simulink system-level design tools with VHDL and Verilog HDL design flows, including 

the Altera Quartus II software. 

The DSP Builder begins the Quartus II compilation automatically. It provides arithmetic 

and logical operators for use with the Simulink software. The DSP Builder Signal 

Compiler block reads Simulink model files that are built using DSP Builder, and 

generates VHDL and Verilog HDL files and Tel scripts for the synthesis, hardware 

implementation and simulation. It also generates VHDL or Verilog HDL testbench or 

Quartus II vector file from MATLAB and Simulink test vectors. 
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Also the DSP Builder contains bit-cycle-accurate Simulink blocks and takes advantage of 

key device feature such as embedded memory ,built-in PLLs, or. DSP blocks. It provides 

faster performance and richer instrumentation of hardware co-simulation by 

implementing parts of the design in an FPGA using Hardware In the Loop (HIL) feature. 

The HIL block enables FPGA hardware accelerated co-simulation with Simulink. 

The DSP Builder supports the SignalTap II logic analyzer an embedded signal analyzer 

that provides signals from the Altera device on the development board, and imports the 

data into the MATLAB workspace to facilitate visual analysis. 

3.3. Procedure For Creating Frame Delay 

A frame delay can be realized using R/W memory as shown in fig. 3.1 for a frame size of 

512x512 pixels. The setup basically works as a FIFO shift register and operates as 

follows: 

location 0 

address 

location 1 

location 2 

16 

Data irr 

Data output 

counter set to 65535 

RAM 

R/W 

Fig.3.1FIFO shift register realized using R/W memory 
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The clock signal, driving the R/W memory and counter, sets the R/W memory to the read 

mode during the period when the clock signal is high, and to write mode during the 

period when the clock signal is low. Before the circuit is switched on, the 16-bit counter 

is set to 216-1= 65535. At the first clock cycle and during the read portion, the output read 

is that of location zero of the R/W memory, which should contain a zero value at the 

start. 

During the write portion of the cycle, data is written at that same location. In the second 

clock cycle, the counter is incremented to 1, reading of the second location first takes 

place in memory during the period when the clock signal is high, which is again zero, and 

writing is carried out during the second half of the cycle, at the same location of the R/W 

memory. This continues until the counter is at 65535. The following cycle resets the 

counter to zero, the value that was written at location zero in the first cycle is read out, 

and a new value is written in, and so on. 

3.4. Altera FPGA Board for Frame Delay Implementation 

The Altera FPGA board for the implementation of frame delay is shown in Fig.3.2. The 

board provides an ideal environment for hardware implementations of digital logic 

circuits and systems. It depicts the layout of the board and indicates the location of the 

connectors and key components. This board has many features that allow the user to 

implement a wide range of designed circuits, from simple circuits to various multimedia 

projects. 
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9V DC Power 
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IBtflCDMosule 

T-Scjmont Displays 

18RadLEDs 
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Fig.3. 2 Altera FPGA Development Board 

The board is provided with some hardware such as the following: 

• Altera Cyclone II 2C35 FPGA device 

• Altera Serial Configuration device - EPCS16 

• USB Blaster (on board) for programming and user API control; both 

JTAG and Active Serial (AS) programming modes are supported 

• 512-KbyteSRAM 

• 8-Mbyte SDRAM 

• 4-Mbyte Flash memory (1 Mbyte on some boards) 

• 4 pushbutton switches 

• 18 toggle switches 

• 18 red user LEDs and 9 green user LEDs 

• 50-MHz oscillator and 27-MHz oscillator for clock sources 
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In support to these hardware features, the board has software support for standard I/O 

interfaces and a control panel facility for accessing various components. In order to 

provide maximum flexibility for the user, all connections are made through the Cyclone 

II FPGA device. Thus, the user can configure the FPGA to implement any system design. 

The Quartus II synthesis environment is used to implement the frame delay in a 

reconfigurable hardware. The environment is shown in Fig.3.3 which is a schematic entry 

implementation of the frame delay. 

fl'h * ' f t^VMlMwlMrt* 
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JFo»H<»*. (*<•** Ft 

Fig.3. 3 Quartus II Environment 

After a project is opened in the Quartus environment, the block diagram as shown in 

Fig.3.3 is designed by using MegaWizard Plug-in Manager to create the 16-bit counter, 

the clock and RAM. The counter has a synchronous clear (sclr) which is used to clear the 

counter before it provides the address locations for the RAM. The sclr is then assigned as 
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PIN_V2 which is toggle switch 17 on the FPGA board. The RAM also has the write-

enable (wren) which is on when set to 1 and off when set to 0 at which the already 

written data would be read. It was assigned as PIN_V1 which is toggle switch 16. Also 

the toggle switches 0-3 represent the input data which is in binary form. The clock (elk) 

is assigned PING26 which is KEYO one of the debounced pushbutton switches. The 

output is read using the fifth segment of the Seven Segment Display. The first four 

segments of the Seven Segment Display provide the address locations for storing the data 

in the memory. The Seven Segment Display is in the hexadecimal form. 

The block diagram named rot.bdf is processed by going to Processing and then compiled. 

Also the compilation can be done by using the VHDL code which is shown in thesis as 

Appendix A. 

After the compilation is done, the function Tools is selected and then Programmer is 

clicked on. The FPGA board is connected to the computer in the Quartus II environment, 

the Hardware Setup is set to USB-Blaster as seen in Fig.3.4. The function rot.sof is 

selected after which Add File is activated. The function is run by clicking Start and the 

board is ready to be used when Progress reads 100%. 
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C& Add Device... 

•p Up 
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Fig.3. 4 Quartus Programmer Interface 

The FPGA board is now turned on data written into the various address locations and 

later read out. 
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CHAPTER 4 

SIMULATIONS AND RESULTS 

4.1. Compilation Results 

The compilation produces a compilation report for the FPGA implementation block 
diagram which is named rot.bdf. 

I rot bdf <<§> Compilation Report - Flow Summary 

^ ^ Compilation Report 

# f i Legal Notice 

: - ^ B Flow Summary 

i ~ ^ B Flow Settings 

\ S B Flow Non-Default Global Se 

h i § B Flow Elapsed Time 

1 ^ H Flow OS Summaiy 

i # B Flow log 

13 • J | E ] Analysis & Synthesis 

IS• # C J Fitter 

l i - ^ S Q Assembler 

ril - ^ P l Timing Analyzer 

Flow Summary 

Row Status 

Quartus II Version 

Revision Name 

Top-level Entity Name 

Family 

Device 

Timing Models 

Met timing requirements 

Total logic elements 

Total combinational functions 

Dedicated logic registers 

Total registers 

Total pins 

Total virtual pins 

Total memory bits 

Embedded Multiplier 9bit elements 

Total PLLs 

Successful - Thu Aug 2613:45:01 2010 

9.1 Build 350 03/24/2010 SP 2 SJ Web Edition 

rot 

rot 

Cyclone II 

EPX35F672C6 

Rnal 

No 

1 3 1 / 3 3 . 2 1 6 < < 1 % ) 

131 / 33.216 ( < 1 % ) 

20 / 33.216 < < 1 % 5 

20 

4 2 / 4 7 5 ( 9 * . ; ) 

0 

262,144/483,840(54*4) 

0 /70(0%) 

0/4(051) 

Fig.4.1 Compilation Report 

Fig.4.1. shows the type of device used, the total number of logic elements used, total 

registers, pins and total memory bits. It is seen from Fig.4.1. that 131 logic elements are 

used in the implementation which is less than 1% of the total available. Also the total 

number of registers is 20 with the memory used being 262144 bits which is 54% of total 

memory bit space available. The number of LUTs used for the implementation is 111 

covering about 1% of the LUTs available. Fig.4.2 shows the time for the compilation to 

be completed that is it takes about 37 seconds to complete the Analysis & Synthesis, 

Fitter, Assembler and the Classic Timing Analysis. 
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Fig.4. 2 Time for Complete Compilation 

4.2. Implementation Results 

After the compilation and the Quartus Programmer interface is accessed and turned on 

together with the Altera board then 4-bit data is written into the memory from location 0 

to location 65535. Location 0 is represented as 0000 in hexadecimal form whilst Location 

65535 is represented as FFFF in hexadecimal form. The toggle switches 0 to 3 which are 

the inputs are turned on or off to represent binary digits 1 and 0 respectively. 
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Table 4.1 Data input and location 

Data Input(Binary) 

1001 

0001 

0100 

1000 

1111 

0000 

0010 

1101 

• 

0110 

• 

0111 

• 

0101 

Location(Decimal) 

0 

1 

2 

3 

4 

5 

6 

7 

• 

6899 

• 

65451 

• 

65535 

Location(Hexadecimal) 

0000 

0001 

0002 

0003 

0004 

0005 

0006 

0007 

• 

1AF3 

• 

FFAB 

• 

FFFF 

After the sclr is turned on together with the clock, the wren is turned on again but in this 

instance becomes the read enable and the following is seen on the FPGA board. 
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Fig.4. 3 Location 0 with data input 9 
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Fig.4. 4 Location 3 with data input 8 
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Fig.4. 5 Location 4 with data input 15 
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Fig.4. 6 Location 7 with data input 13 
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Fig.4. 7 Location 6899 with data input 6 
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Fig.4. 8 Location 65451 with data input 7 
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The Classic Timing Analyzer is selected from Processing and produces a report. The 

report shows a Clock period of 5ns and indicates the maximum frequency of 200 MHz. 

The Total Thermal Power Dissipation obtained from the Power Analyzer was 114.64mW 

for the implementation of frame delay. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the summary of the main conclusions of this thesis and also 

provides recommendations for future work directions. 

5.1. Conclusions 

In this thesis, the design and implementation of the frame delay using a Field 

Programmable Gate Array (FPGA) was performed. The implementation of frame delay 

for realistic performance experiments and architecture exploration is designed by the use 

of Altera FPGA board. During the same period, high-performance in a complexity-

efficient manner is achieved, that is, consume minimal chip resources while achieving 

maximum operating frequency of about 200 MHz. 

Altera Cyclone II FPGAs was chosen as the target hardware technology. The advantages 

of the FPGAs such as cost and reconfigurability allows for the easy implementation of 

frame delay. The FPGA platform is used as the target deployment platform which makes 

it easier for the counter, clock and memory to be employed for the implementation. This 

approach validates the possibility of an efficient hardware implementation of a frame 

delay. 

The implemented frame delay can be used to realize a real-time three-dimensional filter. 

The procedure used is computationally simple and easily implemented mainly by the use 

of the schematic process in Quartus II. 

37 



38 

The total power dissipation was 114.64mW which shows that the frame delay 

implementation consumes very little power for the entire process. The implementation 

consumes less than 1% of logic elements. It also uses 54% of the total memory bits and 

about 9% of the total pins. 

5.2. Future Recommendations 

There are some suggestions for future work. It would be of immense importance to 

investigate the implementation of frame delay in other hardware environment. Also frame 

delay should be used to implement video streams with high quality. This frame delay 

should be applied in the realization of cone and beam three-dimensional filters. Frame 

delay should be performed on coloured 3-D TV on different FPGA platforms. During the 

implementation of frame delay it is found out that there is a period of delay before the 

data is read out and it would make sense for data to be manipulated in this instance before 

it is called out. 
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APPENDIX A 

VHDL CODE FOR IMPLEMENTATION 

— Copyright (C) 1991-2010 Altera Corporation 

— Your use of Altera Corporation's design tools, logic functions 

— and other software and tools, and its AMPP partner logic 

— functions, and any output files from any of the foregoing 

— (including device programming or simulation files), and any 

— associated documentation or information are expressly subject 

— to the terms and conditions of the Altera Program License 

— Subscription Agreement, Altera MegaCore Function License 

— Agreement, or other applicable license agreement, including, 

— without limitation, that your use is for the sole purpose of 

~ programming logic devices manufactured by Altera and sold by 

— Altera or its authorized distributors. Please refer to the 

— applicable agreement for further details. 

— PROGRAM "Quartus II" 

— VERSION "Version 9.1 Build 350 03/24/2010 Service Pack 2 SJ Web 

Edition" 

— CREATED "Tue Aug 31 14:08:47 2010" 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 
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LIBRARY work; 

ENTITY rot IS 

PORT 

( 

wren : IN STD LOGIC; 

sclr: IN STDLOGIC; 

elk: IN STDLOGIC; 

Din : IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

M : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); 

N : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); 

Q: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); 

R: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); 

T : OUT STD LOGIC_VECTOR(6 DOWNTO 0) 

); 

END rot; 

ARCHITECTURE bdfjype OF rot IS 

COMPONENT ox 

PORT(sclr: IN STDLOGIC; 

clock: IN STDLOGIC; 

q : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT cow 
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PORT(wren : IN STD LOGIC; 

clock : IN STDLOGIC; 

address : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 

data : IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt2 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt3 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt4 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT wet 

PORT(data0x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

datalOx : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

datallx : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 
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datal2x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

datal3x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

datal4x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

datal5x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

datalx : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data2x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data3x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data4x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data5x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data6x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data7x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data8x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

data9x : IN STD_LOGIC_VECTOR(6 DOWNTO 0); 

sel: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt5 

PORT( result: OUT STD LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt6 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 
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); 

END COMPONENT; 

COMPONENT pelt7 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt8 

PORT( result: OUT STD LOGIC VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt9 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt 10 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT peltl 1 

PORT( result: OUT STD LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt 13 
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PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt 14 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT peltl 5 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT peltl2 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT pelt 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 

COMPONENT peltl 

PORT( result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 

); 

END COMPONENT; 
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SIGNAL F : STD_LOGIC_VECTOR(15 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE81 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE82 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZED_WIRE_83 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE84 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE85 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE86 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE87 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZED_WIRE_88 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE89 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE90 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE91 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE92 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE93 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZED_WIRE_94 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE95 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZEDWIRE96 : STD_LOGIC_VECTOR(6 DOWNTO 0); 

SIGNAL SYNTHESIZED_WIRE_80 : STD_LOGIC_VECTOR(3 DOWNTO 0); 

BEGIN 

b2v_inst: ox 

PORT MAP(sclr => sclr, 

clock => elk, 
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q=>F); 

b2v_instl : cow 

PORT MAP(wren => wren, 

clock => elk, 

address => F, 

data => Din, 

q => SYNTHESIZEDWIRE80); 

b2v_instl3 : pelt2 

PORT MAP( result => SYNTHESIZED_WIRE_89); 

b2v_inst22 : pelt3 

PORT MAP( result => SYNTHESIZED_WIRE_90); 

b2v_inst23 : pelt4 

PORT MAP( result => S YNTHESIZEDWIRE91); 

b2v_inst24 : wet 

PORT MAP(dataOx => SYNTHESIZEDWIRE81, 

datalOx => SYNTHESIZEDWIRE82, 

datal lx => SYNTHESIZEDWIRE83, 

datal2x => SYNTHESIZEDWIRE84, 

datal 3x => SYNTHESIZEDWIRE85, 

datal 4x => SYNTHESIZEDWIRE86, 

datal 5x => SYNTHESIZEDWIRE87, 

datalx => SYNTHESIZED_WIRE_88, 

data2x => SYNTHESIZEDWIRE89, 



data3x => SYNTHESIZEDWIRE90, 

data4x => SYNTHESIZEDWIRE91, 

data5x => SYNTHESIZEDWIRE92, 

data6x => SYNTHESIZEDWIRE93, 

data7x => SYNTHESIZEDWIRE94, 

data8x => SYNTHESIZEDWIRE95, 

data9x => SYNTHESIZEDWIRE96, 

sel => F(3 DOWNTO 0), 

result => M); 

b2v_inst25 : wet 

PORT MAP(dataOx => SYNTHESIZED_WIRE_81, 

datalOx => SYNTHESIZEDWIRE82, 

datal lx => SYNTHESIZEDWIRE83, 

datal2x => SYNTHESIZEDWIRE84, 

datal 3x => SYNTHESIZEDWIRE85, 

datal4x => SYNTHESIZED_WIRE_86, 

datal 5x => SYNTHESIZEDWIRE87, 

datal x => SYNTHESIZEDWIRE88, 

data2x => SYNTHESIZEDWIRE89, 

data3x => SYNTHESIZED_WIRE_90, 

data4x => SYNTHESIZEDWIRE91, 

data5x => SYNTHESIZED_WIRE_92, 

data6x => SYNTHESIZED WIRE 93, 



data7x => SYNTHESIZEDWIRE94, 

data8x => SYNTHESIZED_WIRE_95, 

data9x => SYNTHESIZEDWIRE96, 

sel => F(7 DOWNTO 4), 

result => N); 

b2v_inst26 : wet 

PORT MAP(dataOx => SYNTHESIZEDWIRE81, 

datalOx => SYNTHESIZEDWIRE82, 

datal lx => SYNTHESIZEDWIRE83, 

datal2x => SYNTHESIZEDWIRE84, 

datal 3x => SYNTHESIZEDWIRE85, 

datal 4x => SYNTHESIZEDWIRE86, 

datal 5x => SYNTHESIZEDWIRE87, 

datalx => SYNTHESIZED_WIRE_88, 

data2x => SYNTHESIZEDWIRE89, 

data3x => SYNTHESIZED_WIRE_90, 

data4x => SYNTHESIZEDWIRE91, 

data5x => SYNTHESIZEDWIRE92, 

data6x => SYNTHESIZEDWIRE93, 

data7x => SYNTHESIZED_WIRE_94, 

data8x => SYNTHESIZEDWIRE95, 

data9x => SYNTHESIZEDWIRE96, 

sel =>F(11 DOWNTO 8), 
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result => R); 

b2v_inst27 : wet 

PORT MAP(dataOx => SYNTHESIZEDWIRE81, 

datalOx => SYNTHESIZEDWIRE82, 

datal lx => SYNTHESIZEDWIRE83, 

datal2x => SYNTHESIZEDWIRE84, 

datal 3x => SYNTHESIZED_WIRE_85, 

dataHx => SYNTHESIZED_WIRE_86, 

datal 5x => SYNTHESIZEDWIRE87, 

datal x => SYNTHESIZEDWIRE88, 

data2x => SYNTHESIZEDWIRE89, 

data3x => SYNTHESIZEDWIRE90, 

data4x => SYNTHESIZED_WIRE_91, 

data5x => SYNTHESIZEDWIRE92, 

data6x => SYNTHESIZEDWIRE93, 

data7x => SYNTHESIZED_WIRE_94, 

data8x => SYNTHESIZEDWIRE95, 

data9x => SYNTHESIZED_WIRE_96, 

sel=>F(15DOWNTO 12), 

result => T); 

b2v_inst36 : pelt5 

PORT MAP( result => SYNTHESIZEDWIRE92); 

b2v_inst37 : pelt6 



PORT MAP( 

b2v_inst38 : pelt7 

PORT MAP( 

b2v_inst39 : pelt8 

PORT MAP( 

b2v_inst40 : pelt9 

PORT MAP( 

b2v_inst41 : peltlO 

PORT MAP( 

b2v_inst42 : peltl 1 

PORT MAP( 

b2v_inst44:peltl3 

PORT MAP( 

b2v_inst45 : pelt 14 

PORT MAP( 

b2v_inst46:peltl5 

PORT MAP( 

b2v_inst47 : pelt 12 

PORT MAP( 

b2v inst6 : wet 

result => SYNTHESIZEDWIRE93); 

result => SYNTHESIZEDWIRE94); 

result => SYNTHESIZED_WIRE_95); 

result => SYNTHESIZEDWIRE96); 

result => SYNTHESIZEDWIRE82); 

result => SYNTHESIZEDWIRE83); 

result => SYNTHESIZEDWIRE85); 

result => SYNTHESIZEDWIRE86); 

result => SYNTHESIZEDWIRE87); 

result => SYNTHESIZEDWIRE84); 

PORT MAP(dataOx => SYNTHESIZEDWIRE81, 

datalOx => SYNTHESIZEDWIRE82, 

datallx=> SYNTHESIZED WIRE 83, 
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datal2x => SYNTHESIZEDWIRE84, 

datal3x => SYNTHESIZED_WIRE_85, 

dataHx => SYNTHESIZEDWIRE86, 

datal5x => SYNTHESIZED_WIRE_87, 

datalx => SYNTHESIZEDWIRE88, 

data2x => SYNTHESIZEDWIRE89, 

data3x => SYNTHESIZEDWIRE90, 

data4x => SYNTHESIZEDWIRE91, 

data5x => SYNTHESIZEDWIRE92, 

data6x => SYNTHESIZED_WIRE_93, 

data7x => SYNTHESIZEDWIRE94, 

data8x => SYNTHESIZEDWIRE95, 

data9x => SYNTHESIZED_WIRE_96, 

sel => SYNTHESIZED_WIRE_80, 

result => Q); 

b2v_inst7 : pelt 

PORT MAP( result => S YNTHESIZEDWIRE81); 

b2v_inst8 : peltl 

PORT MAP( result => SYNTHESIZED_WIRE_88); 

END bdfjype; 
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