
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

FPGA implementation of a frame delay FPGA implementation of a frame delay

Kwasi Gyening Afrifa
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Afrifa, Kwasi Gyening, "FPGA implementation of a frame delay" (2010). Electronic Theses and
Dissertations. 7913.
https://scholar.uwindsor.ca/etd/7913

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7913&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7913?utm_source=scholar.uwindsor.ca%2Fetd%2F7913&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FPGA IMPLEMENTATION OF A FRAME DELAY

By

Kwasi Gyening Afrifa

A Thesis
Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

September, 2010

© 2010 Kwasi Gyening Afrifa

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-70581 -0
Our file Notre reference
ISBN: 978-0-494-70581 -0

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

in

ABSTRACT

The objective of this thesis is to investigate the applicability of Field Programmable Gate

Arrays (FPGAs) for frame delay implementation. FPGAs are programmable devices that

can be directly configured by the end user without the use of an integrated circuit

fabrication facility. They offer the designer the benefits of custom hardware, eliminating

high development costs and manufacturing time. Frame delays are easier to realize using

R/W memory where data is written into the memory and read out for each frame. FPGAs

are used in a Quartus II environment as it is easy to perform frame delay implementation

using schematic entry procedure. Since FPGAs use look-up tables as configurable logic

blocks, they are considered as an appropriate choice for frame delay based designs.

IV

DEDICATION

To our Lord Jesus Christ and to my mother Mrs Joyce Nortey Johnson.

v

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to both of my co-supervisors Dr.

Maher Sid-Ahmed and Dr. Rashid Rashidzadeh for giving me the opportunity to work

with them. I am also grateful to them for their encouragement, support and guidance

during my research work presented in this thesis. I would also like to thank the thesis

committee members Dr. Gaspar and Dr. Tepe for their comments and advice.

I am also thankful to my parents Mr. Edward G. Afrifa and Mrs. Joyce Johnson,

for their prayers and moral support. A lot of thanks to my siblings: Ama Asantewaa and

Afua for their support and affection. I would also like to express my appreciation to Mr.

and Mrs. Masse for their kindness. My thanks also go to Mr. and Mrs. Balga for the

accommodation afforded me during my stay in Canada. I also extend my gratitude to

Andria Ballo who helped ensure I completed my studies. I also thank my friends and

colleagues who helped make my stay in this university a memorable one.

VI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

ABBREVIATIONS xi

CHAPTER

1. INTRODUCTION

1.1 Motivation 1
1.2. Thesis Organization 4

2. BACKGROUND

2.1 Introduction to FPGA Technology 5
2.2FPGA 6

2.3 Programming Technologies ...9

2.3.1 Static RAM Programming Technology 10

2.3.2 EPROM Programming Technology 10

2.4 Look-up table (LUT) based FPGA Architectures 11

2.5 Cyclone II Architecture 13

2.6 Frame Delay 17

3. DESIGN AND METHODOLOGY

3.1. Platform and Methodology 21

3.2. FPGA Implementation Procedure 22

3.3. Procedure For Creating Frame Delay 24

3.4. Altera FPGA Board for Frame Delay Implementation 25

4. SIMULATIONS AND RESULTS

4.1. Compilation Results 30
4.2. Implementation Results 31

vn

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions 37

5.2. Future Recommendations 38
APPENDIX A:VHDL CODE FOR IMPLEMENTATION 39

REFERENCES 52

VITA AUCTORIS 55

Vll l

LIST OF TABLES

TABLE 3.1 FPGA DEVICE AND FPGA BOARD CHARACTERISTICS 21

TABLE 3.2 DESIGN TOOLS 22

TABLE 4.1 DATA INPUT AND LOCATION 32

IX

LIST OF FIGURES

FIG.2. 1 CONCEPTUAL DIAGRAM OF A TYPICAL FPGA ARCHITECTURE 7

FIG.2. 2 ARCHITECTURE OF A XILINX FPGA 11

FIG.2. 3 ARCHITECTURE OF AN ALTERA FPGA 14

FIG.2. 4 REPRESENTATION OF MOVING IMAGES 18

FIG.2. 5 REALIZATION OF A 3-D FIR FILTER 20

FIG.3.1FIFO SHIFT REGISTER REALIZED USING R/W MEMORY 24

FIG.3. 2 ALTERA FPGA DEVELOPMENT BOARD 26

FIG.3. 3 QUARTUS II ENVIRONMENT 27

FIG.3. 4 QUARTUS PROGRAMMER INTERFACE 29

FIG.4. 1 COMPILATION REPORT 30

FIG.4. 2 TIME FOR COMPLETE COMPILATION 31

FIG.4. 3 LOCATION 0 WITH DATA INPUT 9 33

FIG.4. 4 LOCATION 3 WITH DATA INPUT 8 34

FIG.4. 5 LOCATION 4 WITH DATA INPUT 15 34

FIG.4. 6 LOCATION 7 WITH DATA INPUT 13 35

FIG.4. 7 LOCATION 6899 WITH DATA INPUT 6 35

FIG.4. 8 LOCATION 65451 WITH DATA INPUT 7 35

x

ABBREVIATIONS

ASIC

CAD

CLB

elk

CPLD

DMA

DRAM

DSP

EPROM

FIFO

FIR

FPGA

GUI

HDL

IIR

I/O

IOE

LAB

LE

LED

LIFO

Application Specific Integrated Circuit

Computer-Aided Design

Configurable Logic Block

clock

Complex Programmable Logic Device

Direct Memory Access

Dynamic Random Access Memory

Digital Signal Processing

Erasable Programmable Read-Only Memory

First In First Out

Finite Impulse Response

Field Programmable Gate Array

Graphical User Interface

Hardware Description Language

Infinite Impulse Response

Input/Output

Input/Output Element

Logic Array Block

Logic Element

Light Emitting Diode

Last In First Out

LUT Look-up Table

PAL Programmable Array Logic

PLA Programmable Logic Array

PLL Phase-Locked Loop

PLD Programmable Logic Device

PROM Programmable Read-Only Memory

RAM Random Access Memory

R/W Read/Write

sclr Synchronous clear

SDRAM Synchronous Dynamic Random Access Memory

SPLD Simple Programmable Logic Device

SRAM Static Random Access Memory

SSI Small Scale Integration

VHDL (Very-high speed integrated circuit) hardware description language

VLSI Very Large Scale Integration

wren write enable

xn

CHAPTER 1

INTRODUCTION

1.1 Motivation

In this thesis, a new application for FPGAs is explored. FPGAs are considered for frame

delay implementation. This thesis is to help realize a cost effective and easy to use frame

delay which can be used to implement or realize 3-D filters, improve the quality of real

time video streams and help reduce noise. Three-dimensional (3-D) digital filters are of

increasing interest because of their potential applications, the space-time domain of the 3-

D signals corresponds to the two spatial dimensions and the temporal dimension.

Example of this is a time varying image, such as a video sequence. A video sequence is a

three-dimensional signal, with the three dimensions being horizontal orientation, vertical

orientation and time, and is said to be in spatio-temporal domain.

In digital video processing, 3-D IIR filters are useful for applications involving the

selective enhancement of objects having various passband linear velocities in the

presence of other objects having stopband velocities and noise [7, 8, 9, 10]. In [5] the

first-order 3-D IIR frequency-planar filter is an important building block for many high-

order 3-D IIR digital filters. In digital plane-wave filtering, highly-selective 3-D IIR

beam and cone filters are useful for applications involving the selective enhancement of

broadband spatio-temporal plane-waves based on their directions of arrivals in the

presence of plane-waves, interference and additive white Gaussian noise.

1

2

In [19] systolic hardware realization structure permits the 2-D input data to be scanned

row-wise and broadcasted on value at a time to various processing elements likewise 3-D

input data is sent frame by frame to the memory and received after delay in the time

domain.

Sid-Ahmed in [20] presented the realization of 3-D filters along with the hardware

implementation of frame delays using read/write memory arrays. Three-dimensional

filters were devised to operate on a sequence of images. These could provide, in some

respect, an added advantage over 2-D filters when dealing with a sequence of images. An

application that has been studied in the literature [6], [11] is the removal of moving

objects along a given path and at a given speed from a sequence of images. Another

application is the increase of frame rate in television images.

Three-dimensional filter realization enables frame delays to be obtained. Frame delay is

achieved by sending sequence of frames to be written into memory and later read out.

The time lapse between the frame being written and the read out one is basically the

frame delay. The parallelism feature invites systolic architecture approach for VLSI

realization of frame delay operations.

There are numerous attractive features in FPGAs, which encouraged the frame delay

implementation. The arrangement of arrays of logic blocks in FPGAs appears systolic in

structure, where logic blocks can be treated as Processing Elements. Additionally some

FPGAs have ample flip-flops which make them suitable for pipelined systolic

2

3

architectures. Altera FPGAs use logic elements as configurable logic blocks, and have

abundant flip-flops to support pipelining. These favourable features make Altera FPGAs

an ideal choice for implementing frame delays.

It is inefficient to directly retarget a full or semi-custom implementation of frame delay

design to FPGA technology. In a full-custom implementation, all parts of the circuit, the

logic, the routing circuitry are carefully tailored to meet a set of specific requirements. An

FPGA is a prefabricated chip with programmable logic blocks and routing connections.

There are density and performance penalties associated with user-programmable routing

in FPGAs. For good FPGA implementation, the perspective is to efficiently utilize the

available configurable logic blocks and the programmable routing connections between

them. Minimizing the number of configurable logic blocks needed to realize a given

function, is a very area-efficient solution for FPGAs. Reducing the number of CLBs is

also effective in terms of reducing the routing performance penalty, as the connections

between the CLBs are reduced if the number of CLBs is reduced.

Frame delay is realized using R/W memory. The sequence of frames are sent to a RAM

one frame at a time and stored before they are called out as output. There is a counter

which help to create locations for data to be sent to the memory and a clock which helps

data to be written into the memory and then to read the data after another clock signal.

This frame delay would be implemented in the Quartus II environment for synthesis in a

reconfigurable hardware.

3

4

1.2. Thesis Organization

This thesis consists of 5 chapters. In the second chapter a background of frame delay and

material to understand FPGA technology are presented. It covers programmable devices,

explanation on FPGA architectures and how to implement the circuit.

In Chapter 3, the implementation of frame delay in Altera EP2C35 series FPGAs is dealt

with. It shows the method of creating a frame delay and how to use the Quartus II

schematic diagram to implement the proposed frame delay method.

Chapter 4 includes simulation results of the implemented frame delay. This chapter

shows how FPGAs implement frame delays efficiently with its accompanying results.

The final chapter presents the conclusion and shows some directions that can be taken for

future research work.

4

CHAPTER 2

BACKGROUND

2.1 Introduction to FPGA Technology

This chapter provides a background of frame delay and materials to understand the FPGA

technology. The evolution of programmable devices is reviewed and then goes on with

three-dimensional filters so as to show frame delays. This frame delay would later be

implemented with the aid of an FPGA. The FPGA industry sprouted from programmable

read-only memory (PROM) and programmable logic devices (PLDs). A PROM is a one

time programmable device that consists of a two dimensional array of memory cells and a

decoder. Based on the address line inputs, the decoder selects and outputs one row of the

memory on the data lines. To implement logic functions, address lines are used as the

logic circuit inputs and each data line can implement a separate logic function. PROMs

are most suited for implementing memory in applications such as microcontroller based

systems.

The next generation of programmable devices are known as Programmable Logic

Devices (PLDs). The basic PLDs are Programmable Logic Arrays (PLAs) and

Programmable Array Logic (PALs) devices. PLAs have an AND-plane which can give

any product term of the inputs as an output and an OR-plane which can generate any sum

term of the product terms. Thus a PLA is optimally suitable for implementation of sum-

of-products forms of Boolean expressions. The two programmable planes in the PLA are

costly to build and they introduce considerable propagation delays for signals. In PALs,

only the AND-plane is programmable and the OR-plane is fixed. So PALs are

5

6

inexpensive to manufacture and they provide very high speed-performance of

implemented circuits. PALs with registered outputs are used in developing many finite-

state machines. PALs and PLAs are collectively referred to as Simple Programmable

Logic Devices (SPLDs) in the literature. They are best used for implementing control

circuitry.

Due to the limited logic capacity of SPLDs, denser Complex Programmable Logic

Devices (CPLDs) were introduced by the microelectronics community. CPLDs have a

hierarchical arrangement of multiple SPLDs on a single chip, and the logic capacity of

CPLDs can advance to 5000 logic gates. CPLDs can also sustain system clock rates

above 100 MHz. In order to use the merits, and remove the demerits of SPLDs and

FPGAs, one of the semiconductor companies, Xilinx, introduced a new invention of

programmable devices called Field Programmable Gate Arrays (FPGAs). Presently

FPGAs can support logic capacities up to millions of gates. FPGA implementation of

circuits has high operating speeds.

2.2 FPGA

FPGAs are one of the fastest growing segments of the semiconductor industry. They are

programmable devices that can be directly configured by the end user without the

application of an integrated circuit fabrication facility. They offer the designer the

benefits of custom hardware, eliminating high development costs and turnaround time

and thereby easily evolving as a lower cost alternative for VLSI implementation of

circuits. They were first introduced in 1985 by Xilinx, and since then have quickly gained

6

7

widespread acceptance as an excellent technology for implementing moderately large

digital circuits in low production volumes. Since then, many different FPGAs have been

developed by number of companies such as Actel [1], Altera [2], Motorola, QuickLogic

and Crosspoint Solutions. Fig. 2.1 shows a conceptual diagram [4] of a typical FPGA.

IntercDimection Resources

Logic Slock I/O Block n n n n n n n &-
^

p i r i r iP i

LJhJkJIiJ

Fig.2.1 Conceptual diagram of a typical FPGA architecture

An FPGA generally consists of a regular array of logic blocks called Configurable Logic

Block (CLB) that can be programmed to implement combinational and sequential logic

functions, I/O block and user-programmable routing channels [3, 12, 13, 14] that

provides connections between the logic blocks. The interconnect resources comprises

segments of wire, where the segments may be of different lengths. The interconnect

resources include programmable switches that serve to connect the logic blocks to one

another or one wire segment to another. Logic circuits are implemented in the FPGA by

7

8

partitioning the logic into individual blocks and then interconnecting the blocks as

required via the switches.

The structure and content of the interconnect resources in an FPGA is called its routing

architecture. The routing architecture consists of wire segments and programmable

switches. There exists many diverse ways to design the structure of a routing architecture,

some FPGAs offer simple connection between blocks, and others provide less, but more

complex routes. There are many advantages in using FPGA technology and they can be

utilized in almost all the applications that currently use PLDs and Small Scale Integration

(SSI) logic chips. Some of the applications are listed as follows.

Application Specific Integrated Circuits: An FPGA can be thought of as a general

medium for implementation of ASICs. Some examples that have been reported are: a 1

megabit FIFO controller, a DRAM controller and a graphics engine.

Random logic implementation: Random logic circuitry is habitually implemented using

PALs. If the speed of the circuit is not of immense concern then such circuits can be

implemented advantageously with FPGAs. A single FPGA can implement a circuit that

might require between ten to twenty PALs.

Prototyping: FPGAs are very appropriate for prototyping logic designs. The low outlay of

implementation and short instance needed to physically realize a given design, provide

them massive advantages over traditional approaches for building prototype hardware.

8

9

On-site Reconfiguration of Hardware: Some FPGAs can be reprogrammed unlimited

number of times. Reprogrammability is a very striking feature where hardware has to be

changed dynamically, or where hardware has to be modified to different user

applications.

There are disadvantages for using FPGAs. The two main disadvantages of FPGAs are

their relatively low speed of operation, and relatively low logic density. The propagation

delays in FPGAs are adversely affected by the inclusion of programmable switches,

which have considerable resistance and capacitance, in the connections between logic

blocks. Logic density is reduced because the programmable switches and coupled

programming circuitry require a great deal of chip area compared to the metal

connections.

2.3 Programming Technologies

It is constructive to gain a better understanding of how FPGAs are made field-

programmable. The term programmable switch actually refers to the programmable

elements of the FPGA chip and a typical FPGA may contain 100000 of them.

Programming elements are implemented using different technologies [4], such as static

RAM cells and EPROM transistors. Regardless of the technology of implementation the

programming elements are all configurable in one of two states: ON or OFF. The

desirable properties of the programming elements are that they should consume as little

chip area as possible, they should have a low ON resistance and a very high OFF

resistance and it should be possible to reliably fabricate a large number of them on a

single chip.

9

10

2.3.1 Static RAM Programming Technology

This technology is used in FPGAs produced by numerous companies: Concurrent Logic,

and Xilinx. In these FPGAs, programmable connections are made using pass-transistors,

transmission gates or multiplexers that are all controlled by SRAM cells. The RAM cell

controls the pass-gates to be turned on or off. When off, the pass-gate presents a very

high resistance between the two wires to which it is attached and the wires are hence

disconnected. When the pass gate is turned on, it forms a relatively low resistance

connection between the two wires. The chip area required by the static RAM approach is

relatively large as at least five transistors are needed for each RAM cell, along with

additional transistors for the pass-gates or multiplexers. The foremost advantage of this

technology is that it provides an FPGA that can be reprogrammed very quickly.

2.3.2 EPROM Programming Technology

EPROM programming technology is used in FPGAs manufactured by Altera Corporation

[2] and Plus Logic. The technology is the same as that used in EPROM memories. Unlike

a simple MOS transistor, an EPROM transistor comprises two gates, a floating gate and a

select gate. The floating gate is not electrically connected to any circuitry. In its

unprogrammed state, no charge exists on the floating gate and the transistor can be turned

ON in the normal fashion using the select gate. However, when the transistor is

programmed by causing a large current to flow between the source and drain, a charge is

trapped under the floating gate. The charge has the effect of permanently turning the

transistor OFF. In this way, the EPROM transistor can function as a programmable

element. An EPROM transistor can be re-programmed by first removing the trapped

charge from the floating gate. EPROM transistors in addition to serving as programmable

10

11

element can be used as "pull down" devices for logic block inputs. As long as the

transistor is not programmed into the OFF state, the word line can cause the bit line,

which is connected to a logic block input, to be pulled to logic zero.

2.4 Look-up table (LUT) based FPGA Architectures

This section gives a description of LUT-based architectures using the Xilinx FPGA

family as an example. The general architecture of a Xilinx FPGA [4] is shown in Fig. 2.2

Configurable logic

l o c i

I/O Block

•
•
•

•
D
•

DD

•
•
•
•

• •

•
•
•
•

• •

•
•
•
•

- — - — • — -

DD,
— i - -

• . „ i -

•
•
•

- — — -

4-

_ _

H -

j _

•
•
•
D
rJ
•
a •

riiontai h€\M

\ DD DD
Vertical Routing Channel

DD DD

Fig.2. 2 Architecture of a Xilinx FPGA

It comprises of a two-dimensional array of programmable blocks, called Configurable

Logic Blocks (CLBs), with horizontal routing channels between rows of blocks and

11

12

vertical channels between columns. Programmable resources are controlled by static

RAM cells. The gate count measure is given in terms of "equivalent to a mask-

programmable gate array of the same size".

A CLB in the XC2000 family [15] consists of a 4-input look-up table with two outputs,

and a D flip-flop. The look-up table can produce any function up to four variables or any

two functions of three variables. Either the CLB ouputs can be combinational, or one

output can be registered. The XC2000 routing architecture employs three types of routing

resources: direct interconnect, general purpose interconnect and long lines. At every

intersection of four CLBs, switch matrices are present; they hold a number of routing

switches that can interconnect the wiring segments on its four sides. Longer wires are

formed by connecting general purpose wiring segments through switch matrices.

Connections that are required to reach several CLBs with low skew can use the long

lines, which navigate at most one routing switch to span the entire length or width of the

FPGA. The XC3000 [15] is an enhanced version of the XC2000, featuring a more

complex CLB and more routing resources. XC4000 CLBs include on-chip static memory

resources. An optional mode for each CLB makes the memory look-up tables in the

function generators usable as either a 16 x 2 or 32 x 1 bit array of Read/Write memory

cells. The inputs to the function generators act as address lines, selecting a particular

memory cell in each look-up table. On-chip RAM is very useful for DMA counters, LIFO

stacks and FIFO buffers.

12

13

There are three types of routing resources in the XC4000 [16], they are single length

lines, double length lines and long lines. The single length lines are a framework of

horizontal and vertical lines that intersect at a switch matrix between each block. The

double length lines consist of a framework of metal segments twice as long as the single

length lines; i.e., a double length lines runs past two CLBs before entering a switch

matrix. Long lines forms a grid of metal interconnect segments that run the entire length

or width of the array. Longlines can be driven by global buffers, designed to distribute

clocks and other high fanout control signals throughout the array with negligible skew.

Communication between longlines and single length lines is controlled by programmed

interconnect points at the line intersections. Double length lines do not connect to other

lines.

2.5 Cyclone II Architecture

This section gives a description of architectures using the Altera Cyclone II FPGA family

as an example. The general architecture of an Altera FPGA is shown in the block diagram

in Fig.2.3

13

14

JOEs

Multipliers

SMK Stocks

IOCS
Afiay

Logic
Array

Logic
Array

Logic
Array iOEs

KUX Blocks

IOEs

Fig.2. 3 Architecture of an Altera FPGA

Cyclone II devices contain a two-dimensional row and column-based architecture to

implement custom logic. Column and row interconnects of varying speeds provide signal

interconnects between logic array blocks (LABs), embedded memory blocks and

embedded multipliers. The logic array consists of LABs, with 16 logic elements (LEs) in

each LAB. An LE is a small unit of logic providing efficient implementation of user logic

functions. LEs operate in either normal mode or arithmetic mode. LABs are grouped into

rows and columns across the device.

The devices provide a global clock network and up to four phase-locked loops (PLLs).

The global clock network consists of up to 16 global clock lines that drive throughout the

entire device. The global clock network can provide clocks for all resources within the

device, such as input/output elements (IOEs), LEs, embedded multipliers, and embedded

memory blocks. The global clock lines can also be used for other high fan-out signals.

14

15

Cyclone II PLLs provide general-purpose clocking with clock synthesis and phase

shifting as well as external outputs for high-speed differential I/O support.

M4K memory blocks provide dedicated true dual-port, simple dual-port, or single-port

memory up to 36-bits wide. The M4K memory blocks include registers that synchronize

writes and output registers to pipeline designs and improve system performance. The

output registers can be bypassed, but input registers cannot. Each embedded multiplier

block can implement up to either two 9x9-bit multipliers or one 18x18-bit multiplier.

Embedded multipliers are arranged in columns across the device. Each device I/O pin is

fed by an IOE located at the ends of LAB rows and columns around the periphery of the

device. Each IOE contains a bidirectional I/O buffer and three registers for registering

input, output, and output-enable signals.

The FPGA configuration is normally specified using a hardware description language

(HDL), comparable to that used for an application-specific integrated circuit (ASIC).

FPGAs can be used to implement any logical function that an ASIC could execute.

FPGAs contain programmable logic components called logic blocks, and a hierarchy of

reconfigurable interconnects that allow the blocks to be wired together.

Most recent FPGAs have the ability to be reprogrammed at "run time" and this has lead

to the notion of reconfigurable computing or reconfigurable systems- CPUs that

reconfigure themselves to suit the task at hand. Historically, FPGAs have been slower,

less energy efficient and generally achieved less functionality than their fixed ASIC

15

16

counterparts. A combination of volume, fabrication improvements, research and

development, and the I/O capabilities of new supercomputers have largely closed the

performance gap between ASICs and FPGAs.

Xilinx claims that several market and technology dynamics are changing the ASIC/FPGA

paradigm:

• Integrated circuit costs are rising aggressively

• ASIC complexity has bolstered development time and costs

• Financial constraints in a poor economy are driving low-cost technologies

• Research and Development resources and head count are decreasing

Some FPGAs have the capability of partial re-configuration that lets one portion of the

device be re-programmed while other portions continue running. The inherent parallelism

of the logic resources on an FPGA allows for substantial computational throughput even

at low MHz clock rates. The flexibility of the FPGA allows for even higher performance

by trading off precision and range in the number format for an increased number of

parallel arithmetic units.

Implementation of large digital circuits such as full systems-on-chips in modern high-

density FPGAs is enabled by sophisticated CAD tools. The process of mapping a circuit

on an FPGA is divided into a series of sequential subproblems which make the procedure

tractable. In the first phase, a designer describes a circuit in a hardware description

language (HDL) such as Verilog or VHDL.

16

17

The second phase is synthesis stage which contains several steps. In the first step HDL is

converted into a netlist of basic gates which is subsequently minimized. Then, the basic

netlist is mapped onto a netlist of FPGA logic cells. The third step is packing, in which

the logic cells are packed into the logic clusters. In the third phase, for each logic cluster

from the netlist it is decided where it is going to be placed on an FPGA device. After

locations of logic blocks are determined, a router finds a path between each connected

logic block in the netlist and determines how the routing channels should be configured

to implement the connection [21]. Routing algorithms are usually timing-driven as most

of the delay in FPGAs stems from the programmable routing. Once it is ascertained that

the synthesized circuit meets all requirements of the specifications the chip programming

file is generated.

2.6 Frame Delay

A frame delay is obtained during the realization of a three dimensional filter. Assuming

images are formed from the x and y axes then as these image frames move along the

temporal axis there are some delays between these frames which become the frame

delays. As frames move along the time axis there is a lapse of time between frames sent

and received hence providing the frame delay. A 3-D digital filter is a system that, when

given a sequence of 3-D input numbers, produces a sequence of 3-D output numbers

subject to a specified set of rules providing some expected changes to the characteristics

of the 3-D input signal. Three-dimensional digital filters has applications of removal of

moving objects along a given path at a given speed from a sequence of images [17] as

well as increasing frame-rate in television images. Filters of any dimension are

traditionally divided into two categories: non-recursive filters and recursive filters. Non-

17

18

recursive filters, also known as Finite Impulse Response (FIR) filters, produce an output

which is weighted average of present and previous values. Recursive filters also known

as Infinite Impulse Response (IIR) filters, produce an output that is a weight average of

present and past values as well as past output values [18].

Certain types of three-dimensional filters are defined by linear time-invariant function in

zi, Z2 and z3. In this case zi is considered as a pixel delay, z2 as a line delay, and z3 as a

frame delay [18]. Fig. 2.4 shows a sequence of images represented by f(x,y,t). A three-

dimensional z-transform of f(x,y,t) would yield F (zi,z2,z3) as depicted in Fig.2.4

t

r

«x,y,0)

X

«x,y.l/2D)
«x,y,2/20)

«x,y.3/20)

flTv v f l
»v*»v t r /

Fig.2.4 Representation of moving images

Digital video is an example of a moving digital image sequence, with each frame of video

representing a separate two-dimensional digital image. These images change as a

18

19

function of time, and it is this temporal variation which represents the third dimension in

digital video.

For a lxlxl FIR filter

i i i

H(zx,zz,Zi) = ^ J j ^ h(i,j, fyz^z^z-* (2.1)
i-Oj-0k=0

1 1

= ^T ^ V (W > °) Z?Z2 J + KU. l)zf !22
 J^]

E = 0 J"=0

1 1 1 1

= Z Z ft(fJ' °)Z1 ̂ ^ + 2 Z ft(^' ^l"'Z2^3 l

i=0jf=0 ! = 0 / = o

H(izvzz,z£ = H - ^ ^) + if2Cz1,z2)2:3~
1 (2.2)

,'feere H1(zvzz)
 = } } k(*'J> °)zi~'zz J

and Hz(zt,z2) = 1U9Z%0 h&j.tyzi'z'*

for Y{zvz2,z{) = H{zx,z2,z{)X(zvzvz{)

= ^ (Z j . Z j ^ C ^ Z j , Z3) + / f 3 Cz 1 ,2 2)^CSi^2^ 3)23 X (2.3)

19

20

Given that X(zi,Z2,Z3) is the input and Y(zi,z2,z3) is the output of the 3-D filter, equation

(2.3) can be realized as shown in Fig. 2.5

frame delay

A{h>z2>h)

>F(z1,z2,z3)

Fig.2. 5 Realization of a 3-D FIR filter

20

CHAPTER 3

DESIGN AND METHODOLOGY

3.1. Platform and Methodology

The main motivation of this work is to implement frame delay in a realistic hardware

environment. The platform and methodology was selected to implement frame delay and

run it on an FPGA device. Altera Cyclone II FPGA device is the chosen basis platform.

This high-density device is intended for a full system-on-a chip implementation as it

contains a balance of memory and logic resources. Table 3.1 contains the characteristics

of the FPGA platform selected. Also the Altera tools that are used by the platform are

listed in Table 3.2.

Table 3.1 FPGA device and FPGA board characteristics

FPGA device

M4K RAM blocks (4Kbits plus 512 parity

bits)

Logic Elements (LEs)

Total RAM bits

Embedded Multipliers

PLLs

Maximum user I/O pins

Altera Cyclone II EP2C35F672C6

105

33216

483840

35

4

475

21

22

Table 3. 2 Design Tools

Synthesis CAD tool

System-on-a chip design tool

Embedded processor

Software compilation tool

Altera Quartus II 9.1

Altera SOPC Builder

Altera Nios II

Altera Nios II Embedded Design Suite

3.2. FPGA Implementation Procedure

An FPGA design code can be implemented with the aid of a text editor or a schematic

editor or a look-up table using simulation software such as Active-HDL, Quartus II or

ModelSim. After the verification of the design, compilation including synthesis and floor

planning are performed. Thus when developing a DSP system, two roles are needed to

fulfill the FPGA development. One is the DSP engineer who is assigned to design and

simulate the system before it is implemented. Another FPGA designer is assigned to

design the structure from VHDL code to compilation and programming. Since both the

coding work of development and system design are tedious, the process is divided

between two different engineers, one focuses on the system and other focuses on the

FPGA logic.

Altera has developed different software to improve this process and save time. Altera

makes use of Simulink of Mathwork's MATLAB GUI interface, and it is also developed

a block set called DSP builder. The schematic components are combined to generate this

complex block set similar to other Simulink block set. Then in this GUI interface, the

design generates a model file. The model file is translated to an HDL file, and the fitter

22

23

can perform the compilation. During this process, the tedious HDL coding process

becomes a process of pulling, plugging and debugging. This new procedure hides the

HDL coding process so that the designer does not need to write HDL codes. This lessens

the development and makes the process easier so that one engineer can do the job. In this

interface, the synthesis process can be done by calling synthesis software such as Quartus

II from Altera.

In Altera's GUI environment, DSP Builder links Mathworks MATLAB and Simulink

software with the Altera Quartus II software. DSP system design in Altera FPGA requires

both high-level algorithm and hardware description language (HDL) development tools.

The Altera DSP Builder incorporates these tools by combining the algorithm

development, simulation and verification abilities of the Mathworks MATLAB and

Simulink system-level design tools with VHDL and Verilog HDL design flows, including

the Altera Quartus II software.

The DSP Builder begins the Quartus II compilation automatically. It provides arithmetic

and logical operators for use with the Simulink software. The DSP Builder Signal

Compiler block reads Simulink model files that are built using DSP Builder, and

generates VHDL and Verilog HDL files and Tel scripts for the synthesis, hardware

implementation and simulation. It also generates VHDL or Verilog HDL testbench or

Quartus II vector file from MATLAB and Simulink test vectors.

23

24

Also the DSP Builder contains bit-cycle-accurate Simulink blocks and takes advantage of

key device feature such as embedded memory ,built-in PLLs, or. DSP blocks. It provides

faster performance and richer instrumentation of hardware co-simulation by

implementing parts of the design in an FPGA using Hardware In the Loop (HIL) feature.

The HIL block enables FPGA hardware accelerated co-simulation with Simulink.

The DSP Builder supports the SignalTap II logic analyzer an embedded signal analyzer

that provides signals from the Altera device on the development board, and imports the

data into the MATLAB workspace to facilitate visual analysis.

3.3. Procedure For Creating Frame Delay

A frame delay can be realized using R/W memory as shown in fig. 3.1 for a frame size of

512x512 pixels. The setup basically works as a FIFO shift register and operates as

follows:

location 0

address

location 1

location 2

16

Data irr

Data output

counter set to 65535

RAM

R/W

Fig.3.1FIFO shift register realized using R/W memory

24

25

The clock signal, driving the R/W memory and counter, sets the R/W memory to the read

mode during the period when the clock signal is high, and to write mode during the

period when the clock signal is low. Before the circuit is switched on, the 16-bit counter

is set to 216-1= 65535. At the first clock cycle and during the read portion, the output read

is that of location zero of the R/W memory, which should contain a zero value at the

start.

During the write portion of the cycle, data is written at that same location. In the second

clock cycle, the counter is incremented to 1, reading of the second location first takes

place in memory during the period when the clock signal is high, which is again zero, and

writing is carried out during the second half of the cycle, at the same location of the R/W

memory. This continues until the counter is at 65535. The following cycle resets the

counter to zero, the value that was written at location zero in the first cycle is read out,

and a new value is written in, and so on.

3.4. Altera FPGA Board for Frame Delay Implementation

The Altera FPGA board for the implementation of frame delay is shown in Fig.3.2. The

board provides an ideal environment for hardware implementations of digital logic

circuits and systems. It depicts the layout of the board and indicates the location of the

connectors and key components. This board has many features that allow the user to

implement a wide range of designed circuits, from simple circuits to various multimedia

projects.

25

26

9V DC Power
Supply Connector

27-MMz Chelator

24-biiAudaCsfa

Power ON/OFF Switch

USBNcsV'SlaveCortfoler

TV Deader (NTSCPAL)

AlSs*a U3e Blaster Controller Cfispsst

Altera EPCSISConfigiiraeon Devxo

RWPR06 Stftett for JTAG'AS ftfe

IBtflCDMosule

T-Scjmont Displays

18RadLEDs

ISTiggteSwrSKes

Fig.3. 2 Altera FPGA Development Board

The board is provided with some hardware such as the following:

• Altera Cyclone II 2C35 FPGA device

• Altera Serial Configuration device - EPCS16

• USB Blaster (on board) for programming and user API control; both

JTAG and Active Serial (AS) programming modes are supported

• 512-KbyteSRAM

• 8-Mbyte SDRAM

• 4-Mbyte Flash memory (1 Mbyte on some boards)

• 4 pushbutton switches

• 18 toggle switches

• 18 red user LEDs and 9 green user LEDs

• 50-MHz oscillator and 27-MHz oscillator for clock sources

26

USB USB USB Blter-ial
Biailsr Devil* Hosl Ms Urn Line Video VGAVrfes 1JV100VJ

Psri Port Port in h 0:J! h Pr i Port RS-232Port

i t J t U t l t t t

PS/2 Keybow&Wmsc Port

VGA1G-M0AC

Ettarat 1W00VI Controller

Expansion Heater 2 (JP2)

Fxpansfot Hester 1 (4P1)

A Sera Cyeimie li FPGA

SD Catl S!o!

8 Green LEOs

HJATratswvar

4 Detartccd susWutten Switches

SO-MtteOsei later S-MB SDRAM 512-KBSF«f,1 4-MB Flash Memory

27

In support to these hardware features, the board has software support for standard I/O

interfaces and a control panel facility for accessing various components. In order to

provide maximum flexibility for the user, all connections are made through the Cyclone

II FPGA device. Thus, the user can configure the FPGA to implement any system design.

The Quartus II synthesis environment is used to implement the frame delay in a

reconfigurable hardware. The environment is shown in Fig.3.3 which is a schematic entry

implementation of the frame delay.

fl'h * ' f t^VMlMwlMrt*

^ H - . - . , ! * Q u i , # l ' n v i ' U

i •iMU

-T*

LT*'M3 ..

T«"* ..iH**-* '̂*.

g.\S»t»0»^"Horf t i i * ' ta \ ' \ ""fci*H* lifts ^ W f t ^ WfflrtinQ^ tt#iC4fWMw,) ^ f « » ^ *>g«**»-*<J ^ l-Uq /

JFo»H<»*. (*<•** Ft

Fig.3. 3 Quartus II Environment

After a project is opened in the Quartus environment, the block diagram as shown in

Fig.3.3 is designed by using MegaWizard Plug-in Manager to create the 16-bit counter,

the clock and RAM. The counter has a synchronous clear (sclr) which is used to clear the

counter before it provides the address locations for the RAM. The sclr is then assigned as

27

28

PIN_V2 which is toggle switch 17 on the FPGA board. The RAM also has the write-

enable (wren) which is on when set to 1 and off when set to 0 at which the already

written data would be read. It was assigned as PIN_V1 which is toggle switch 16. Also

the toggle switches 0-3 represent the input data which is in binary form. The clock (elk)

is assigned PING26 which is KEYO one of the debounced pushbutton switches. The

output is read using the fifth segment of the Seven Segment Display. The first four

segments of the Seven Segment Display provide the address locations for storing the data

in the memory. The Seven Segment Display is in the hexadecimal form.

The block diagram named rot.bdf is processed by going to Processing and then compiled.

Also the compilation can be done by using the VHDL code which is shown in thesis as

Appendix A.

After the compilation is done, the function Tools is selected and then Programmer is

clicked on. The FPGA board is connected to the computer in the Quartus II environment,

the Hardware Setup is set to USB-Blaster as seen in Fig.3.4. The function rot.sof is

selected after which Add File is activated. The function is run by clicking Start and the

board is ready to be used when Progress reads 100%.

28

29

) Quartus n - CAJseis/Kwasi/fat/rc^ - rot - (rotcdf)

File Edrt Processing Tools Window

X, Hardware Setup...! j'USB-Sttte tUEB-0]" • f Progress:

V Enable real-lime ISP to allow background programming {tor MAX II devices)

(J i Auto Detect

X Delete

|S> Add File..

^ C h a n g e Fte..

BJi Save Fie...

C& Add Device...

•p Up

^ p Down

For Help, press Fl |NUM I A

Fig.3. 4 Quartus Programmer Interface

The FPGA board is now turned on data written into the various address locations and

later read out.

29

CHAPTER 4

SIMULATIONS AND RESULTS

4.1. Compilation Results

The compilation produces a compilation report for the FPGA implementation block
diagram which is named rot.bdf.

I rot bdf <<§> Compilation Report - Flow Summary

^ ^ Compilation Report

f i Legal Notice

: - ^ B Flow Summary

i ~ ^ B Flow Settings

\ S B Flow Non-Default Global Se

h i § B Flow Elapsed Time

1 ^ H Flow OS Summaiy

i # B Flow log

13 • J | E] Analysis & Synthesis

IS• # C J Fitter

l i - ^ S Q Assembler

ril - ^ P l Timing Analyzer

Flow Summary

Row Status

Quartus II Version

Revision Name

Top-level Entity Name

Family

Device

Timing Models

Met timing requirements

Total logic elements

Total combinational functions

Dedicated logic registers

Total registers

Total pins

Total virtual pins

Total memory bits

Embedded Multiplier 9bit elements

Total PLLs

Successful - Thu Aug 2613:45:01 2010

9.1 Build 350 03/24/2010 SP 2 SJ Web Edition

rot

rot

Cyclone II

EPX35F672C6

Rnal

No

1 3 1 / 3 3 . 2 1 6 < < 1 %)

131 / 33.216 (< 1 %)

20 / 33.216 < < 1 % 5

20

4 2 / 4 7 5 (9 * . ;)

0

262,144/483,840(54*4)

0 /70(0%)

0/4(051)

Fig.4.1 Compilation Report

Fig.4.1. shows the type of device used, the total number of logic elements used, total

registers, pins and total memory bits. It is seen from Fig.4.1. that 131 logic elements are

used in the implementation which is less than 1% of the total available. Also the total

number of registers is 20 with the memory used being 262144 bits which is 54% of total

memory bit space available. The number of LUTs used for the implementation is 111

covering about 1% of the LUTs available. Fig.4.2 shows the time for the compilation to

be completed that is it takes about 37 seconds to complete the Analysis & Synthesis,

Fitter, Assembler and the Classic Timing Analysis.

30

31

p D G£ y m i fi j * *
Project Navigator ----- ~:-_-.--~. -.---..-

Quartus II - CyUsers/Kwasi/fat/rot - rot - [rot.bdf]

TO File Edit View Project Assignments Processing Tools Window Help

^ Compilation Repoit -

rot

Entity

<£> Cyclone II: EP2C35F672C6

» • • • & ^ &

Logic Cells I Dedicated Logic

131 (1) 20(0)

< Q H j •

rot.bdf

^Hierarchy | El Files | & Design Units]

T a ^ - v v ^ : ^ c i ^ ^ . - ^ ^ : . - . ^ . - ^ ; . - - _ ^ v - ^ - - L ' ~ .

Row: JCompilation

TaskB1

>/ H • Compile Design

V & - • • Analysis S Synthesis

V" $ - • > Fitter (Place S, Route)

V ! $! • - • Assembler (Generate programming files)

V* I?-- ̂ Qassic Timing Analysis

ffl-> EDA Netlist Writer

^ Program Device Ppen Programmer)

< ; in j

^ ^ : J * X

A
Time 3

00:00:37

00:00:14

00:00:15

00:00:05

OftOOfi?

"~

•

\k A
o-O
m

At

3 DO

Fig.4. 2 Time for Complete Compilation

4.2. Implementation Results

After the compilation and the Quartus Programmer interface is accessed and turned on

together with the Altera board then 4-bit data is written into the memory from location 0

to location 65535. Location 0 is represented as 0000 in hexadecimal form whilst Location

65535 is represented as FFFF in hexadecimal form. The toggle switches 0 to 3 which are

the inputs are turned on or off to represent binary digits 1 and 0 respectively.

31

32

Table 4.1 Data input and location

Data Input(Binary)

1001

0001

0100

1000

1111

0000

0010

1101

•

0110

•

0111

•

0101

Location(Decimal)

0

1

2

3

4

5

6

7

•

6899

•

65451

•

65535

Location(Hexadecimal)

0000

0001

0002

0003

0004

0005

0006

0007

•

1AF3

•

FFAB

•

FFFF

After the sclr is turned on together with the clock, the wren is turned on again but in this

instance becomes the read enable and the following is seen on the FPGA board.

32

33

7-Segment Display.

0 0 0

L_l
_ i n i i

i i

i
i i
i i

i i

• H y y • 000»

18 Toggle Switches 4 Debounced Pushbutton Switches

Fig.4. 3 Location 0 with data input 9

33

7-Segment Display,

34

l_l
1 1

uuu

n i i
i i

i i
i i

_ i

8000 0 0 0 *

18 Toggle Switches 4 Debounced Pushbutton Switches

Fig.4. 4 Location 3 with data input 8

7-SegmentDisplay.

I_

UUU

n
i i

i i
i i

i i
i i

I_I

ooot

18 Toggle Switches 4 Debounced Pushbutton Switches

Fig.4. 5 Location 4 with data input 15

34

7-Segment Display,

35

BBB

n i i
i i

i i
i i

QCJDQD ooot

18 Toggle Switches 4 Debounced Pushbutton Switches

Fig.4. 6 Location 7 with data input 13

7-Segment Display,

L_
i i

YAUU

1
1 Fl l_

I LU

HB B 0 0 0

18 Toggle Switches 4 Debounced Pushbutton Switches

Fig.4. 7 Location 6899 with data input 6

7-Segment Display,

F h H h

UU\A BBBBB 000

18 Toggle Switches 4 Debounced Pushbutton Switches

Fig.4. 8 Location 65451 with data input 7

35

36

The Classic Timing Analyzer is selected from Processing and produces a report. The

report shows a Clock period of 5ns and indicates the maximum frequency of 200 MHz.

The Total Thermal Power Dissipation obtained from the Power Analyzer was 114.64mW

for the implementation of frame delay.

36

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the summary of the main conclusions of this thesis and also

provides recommendations for future work directions.

5.1. Conclusions

In this thesis, the design and implementation of the frame delay using a Field

Programmable Gate Array (FPGA) was performed. The implementation of frame delay

for realistic performance experiments and architecture exploration is designed by the use

of Altera FPGA board. During the same period, high-performance in a complexity-

efficient manner is achieved, that is, consume minimal chip resources while achieving

maximum operating frequency of about 200 MHz.

Altera Cyclone II FPGAs was chosen as the target hardware technology. The advantages

of the FPGAs such as cost and reconfigurability allows for the easy implementation of

frame delay. The FPGA platform is used as the target deployment platform which makes

it easier for the counter, clock and memory to be employed for the implementation. This

approach validates the possibility of an efficient hardware implementation of a frame

delay.

The implemented frame delay can be used to realize a real-time three-dimensional filter.

The procedure used is computationally simple and easily implemented mainly by the use

of the schematic process in Quartus II.

37

38

The total power dissipation was 114.64mW which shows that the frame delay

implementation consumes very little power for the entire process. The implementation

consumes less than 1% of logic elements. It also uses 54% of the total memory bits and

about 9% of the total pins.

5.2. Future Recommendations

There are some suggestions for future work. It would be of immense importance to

investigate the implementation of frame delay in other hardware environment. Also frame

delay should be used to implement video streams with high quality. This frame delay

should be applied in the realization of cone and beam three-dimensional filters. Frame

delay should be performed on coloured 3-D TV on different FPGA platforms. During the

implementation of frame delay it is found out that there is a period of delay before the

data is read out and it would make sense for data to be manipulated in this instance before

it is called out.

38

APPENDIX A

VHDL CODE FOR IMPLEMENTATION

— Copyright (C) 1991-2010 Altera Corporation

— Your use of Altera Corporation's design tools, logic functions

— and other software and tools, and its AMPP partner logic

— functions, and any output files from any of the foregoing

— (including device programming or simulation files), and any

— associated documentation or information are expressly subject

— to the terms and conditions of the Altera Program License

— Subscription Agreement, Altera MegaCore Function License

— Agreement, or other applicable license agreement, including,

— without limitation, that your use is for the sole purpose of

~ programming logic devices manufactured by Altera and sold by

— Altera or its authorized distributors. Please refer to the

— applicable agreement for further details.

— PROGRAM "Quartus II"

— VERSION "Version 9.1 Build 350 03/24/2010 Service Pack 2 SJ Web

Edition"

— CREATED "Tue Aug 31 14:08:47 2010"

LIBRARY ieee;

USE ieee.std_logic_1164.all;

39

http://ieee.std_logic_1164.all

40

LIBRARY work;

ENTITY rot IS

PORT

(

wren : IN STD LOGIC;

sclr: IN STDLOGIC;

elk: IN STDLOGIC;

Din : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

M : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

N : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

Q: OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

R: OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

T : OUT STD LOGIC_VECTOR(6 DOWNTO 0)

);

END rot;

ARCHITECTURE bdfjype OF rot IS

COMPONENT ox

PORT(sclr: IN STDLOGIC;

clock: IN STDLOGIC;

q : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END COMPONENT;

COMPONENT cow

41

PORT(wren : IN STD LOGIC;

clock : IN STDLOGIC;

address : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

data : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt2

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt3

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt4

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT wet

PORT(data0x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

datalOx : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

datallx : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

42

datal2x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

datal3x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

datal4x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

datal5x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

datalx : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data2x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data3x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data4x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data5x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data6x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data7x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data8x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

data9x : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

sel: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt5

PORT(result: OUT STD LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt6

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

43

);

END COMPONENT;

COMPONENT pelt7

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt8

PORT(result: OUT STD LOGIC VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt9

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt 10

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT peltl 1

PORT(result: OUT STD LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt 13

44

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt 14

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT peltl 5

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT peltl2

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT pelt

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

COMPONENT peltl

PORT(result: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)

);

END COMPONENT;

45

SIGNAL F : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE81 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE82 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZED_WIRE_83 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE84 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE85 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE86 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE87 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZED_WIRE_88 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE89 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE90 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE91 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE92 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE93 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZED_WIRE_94 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE95 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZEDWIRE96 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL SYNTHESIZED_WIRE_80 : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN

b2v_inst: ox

PORT MAP(sclr => sclr,

clock => elk,

46

q=>F);

b2v_instl : cow

PORT MAP(wren => wren,

clock => elk,

address => F,

data => Din,

q => SYNTHESIZEDWIRE80);

b2v_instl3 : pelt2

PORT MAP(result => SYNTHESIZED_WIRE_89);

b2v_inst22 : pelt3

PORT MAP(result => SYNTHESIZED_WIRE_90);

b2v_inst23 : pelt4

PORT MAP(result => S YNTHESIZEDWIRE91);

b2v_inst24 : wet

PORT MAP(dataOx => SYNTHESIZEDWIRE81,

datalOx => SYNTHESIZEDWIRE82,

datal lx => SYNTHESIZEDWIRE83,

datal2x => SYNTHESIZEDWIRE84,

datal 3x => SYNTHESIZEDWIRE85,

datal 4x => SYNTHESIZEDWIRE86,

datal 5x => SYNTHESIZEDWIRE87,

datalx => SYNTHESIZED_WIRE_88,

data2x => SYNTHESIZEDWIRE89,

data3x => SYNTHESIZEDWIRE90,

data4x => SYNTHESIZEDWIRE91,

data5x => SYNTHESIZEDWIRE92,

data6x => SYNTHESIZEDWIRE93,

data7x => SYNTHESIZEDWIRE94,

data8x => SYNTHESIZEDWIRE95,

data9x => SYNTHESIZEDWIRE96,

sel => F(3 DOWNTO 0),

result => M);

b2v_inst25 : wet

PORT MAP(dataOx => SYNTHESIZED_WIRE_81,

datalOx => SYNTHESIZEDWIRE82,

datal lx => SYNTHESIZEDWIRE83,

datal2x => SYNTHESIZEDWIRE84,

datal 3x => SYNTHESIZEDWIRE85,

datal4x => SYNTHESIZED_WIRE_86,

datal 5x => SYNTHESIZEDWIRE87,

datal x => SYNTHESIZEDWIRE88,

data2x => SYNTHESIZEDWIRE89,

data3x => SYNTHESIZED_WIRE_90,

data4x => SYNTHESIZEDWIRE91,

data5x => SYNTHESIZED_WIRE_92,

data6x => SYNTHESIZED WIRE 93,

data7x => SYNTHESIZEDWIRE94,

data8x => SYNTHESIZED_WIRE_95,

data9x => SYNTHESIZEDWIRE96,

sel => F(7 DOWNTO 4),

result => N);

b2v_inst26 : wet

PORT MAP(dataOx => SYNTHESIZEDWIRE81,

datalOx => SYNTHESIZEDWIRE82,

datal lx => SYNTHESIZEDWIRE83,

datal2x => SYNTHESIZEDWIRE84,

datal 3x => SYNTHESIZEDWIRE85,

datal 4x => SYNTHESIZEDWIRE86,

datal 5x => SYNTHESIZEDWIRE87,

datalx => SYNTHESIZED_WIRE_88,

data2x => SYNTHESIZEDWIRE89,

data3x => SYNTHESIZED_WIRE_90,

data4x => SYNTHESIZEDWIRE91,

data5x => SYNTHESIZEDWIRE92,

data6x => SYNTHESIZEDWIRE93,

data7x => SYNTHESIZED_WIRE_94,

data8x => SYNTHESIZEDWIRE95,

data9x => SYNTHESIZEDWIRE96,

sel =>F(11 DOWNTO 8),

49

result => R);

b2v_inst27 : wet

PORT MAP(dataOx => SYNTHESIZEDWIRE81,

datalOx => SYNTHESIZEDWIRE82,

datal lx => SYNTHESIZEDWIRE83,

datal2x => SYNTHESIZEDWIRE84,

datal 3x => SYNTHESIZED_WIRE_85,

dataHx => SYNTHESIZED_WIRE_86,

datal 5x => SYNTHESIZEDWIRE87,

datal x => SYNTHESIZEDWIRE88,

data2x => SYNTHESIZEDWIRE89,

data3x => SYNTHESIZEDWIRE90,

data4x => SYNTHESIZED_WIRE_91,

data5x => SYNTHESIZEDWIRE92,

data6x => SYNTHESIZEDWIRE93,

data7x => SYNTHESIZED_WIRE_94,

data8x => SYNTHESIZEDWIRE95,

data9x => SYNTHESIZED_WIRE_96,

sel=>F(15DOWNTO 12),

result => T);

b2v_inst36 : pelt5

PORT MAP(result => SYNTHESIZEDWIRE92);

b2v_inst37 : pelt6

PORT MAP(

b2v_inst38 : pelt7

PORT MAP(

b2v_inst39 : pelt8

PORT MAP(

b2v_inst40 : pelt9

PORT MAP(

b2v_inst41 : peltlO

PORT MAP(

b2v_inst42 : peltl 1

PORT MAP(

b2v_inst44:peltl3

PORT MAP(

b2v_inst45 : pelt 14

PORT MAP(

b2v_inst46:peltl5

PORT MAP(

b2v_inst47 : pelt 12

PORT MAP(

b2v inst6 : wet

result => SYNTHESIZEDWIRE93);

result => SYNTHESIZEDWIRE94);

result => SYNTHESIZED_WIRE_95);

result => SYNTHESIZEDWIRE96);

result => SYNTHESIZEDWIRE82);

result => SYNTHESIZEDWIRE83);

result => SYNTHESIZEDWIRE85);

result => SYNTHESIZEDWIRE86);

result => SYNTHESIZEDWIRE87);

result => SYNTHESIZEDWIRE84);

PORT MAP(dataOx => SYNTHESIZEDWIRE81,

datalOx => SYNTHESIZEDWIRE82,

datallx=> SYNTHESIZED WIRE 83,

51

datal2x => SYNTHESIZEDWIRE84,

datal3x => SYNTHESIZED_WIRE_85,

dataHx => SYNTHESIZEDWIRE86,

datal5x => SYNTHESIZED_WIRE_87,

datalx => SYNTHESIZEDWIRE88,

data2x => SYNTHESIZEDWIRE89,

data3x => SYNTHESIZEDWIRE90,

data4x => SYNTHESIZEDWIRE91,

data5x => SYNTHESIZEDWIRE92,

data6x => SYNTHESIZED_WIRE_93,

data7x => SYNTHESIZEDWIRE94,

data8x => SYNTHESIZEDWIRE95,

data9x => SYNTHESIZED_WIRE_96,

sel => SYNTHESIZED_WIRE_80,

result => Q);

b2v_inst7 : pelt

PORT MAP(result => S YNTHESIZEDWIRE81);

b2v_inst8 : peltl

PORT MAP(result => SYNTHESIZED_WIRE_88);

END bdfjype;

52

REFERENCES

[1] Actel, "FPGA Data Book and Design Guide," 1994

[2] Altera Data Book, 1993

[3] Betz, V., Rose, J. And Marquardt, A, "Architecture and CAD for Deep-Submicron

FPGA" Kluwer Academic Publishers, Norwell, MA, U.S.A., 1999

[4] Brown, D.S., Francis, R.J., Rose, J and Vranesic, Z.G, "Field Programmable Gate

Arrays", 1992

[5] Bruton, L.T. and Bartley, N.R., "Three-Dimensional Image Processing Using the

Concept of Network Resonance" IEEE Transactions on Circuits and Systems,

Vol. 32, Issue 7, pp. 664-672, July 1985

[6] Bruton, L. and Bartley, N., "The design of highly selective adaptive three-

dimensional recursive cone filters" IEEE Transactions on Circuits and Systems,

Vol. 34, Issue 7, pp. 775-781, July 1987

[7] Bruton, L. T. and Kuenzle, B., "3-D IIR filtering using decimated DFT-polyphase

filter bank structures" IEEE Transactions on Circuit and Systems I: Regular

Papers, Vol. 53, Issue 2, pp. 394-408, 2006

[8] Bruton, L.T. and Kuenzle, B., "A novel low-complexity spatio-temporal ultra wide-

angle polyphase cone filter bank applied to subpixel motion discrimination" IEEE

International Symposium on Circuits and Systems, ISCAS 2005, Vol.3, pp. 2397-

2400, Kobe, Japan, 2005

[9] Bruton, L.T. and Zhang, Y., "Applications of 3-D LCR networks in the design of 3-D

recursive filters for processing image sequences" IEEE Transactions on Circuits

and Systems for Video Technology, Vol.4, Issue 4, pp. 369-382, 1994

53

[10] Bruton, L.T. and Fowlow, T.J, "The design and application of a high quality three

dimensional linear trajectory filter" IEEE International Symposium on Circuits

and Systems, Vol.2, pp. 1033-1036, 1998

[11] Bruton, L.T. and Knudsen, K.S., "Mixed Multidimensional Filters" Proceedings of

the 33rd Midwest Symposium on Circuits and Systems, Vol.1, pp. 80-83, 1990

[12] Kuon, I. and Rose, J., " Measuring the Gap between FPGAs and ASICs",

Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field

programmable gate arrays, pp. 21-30, ACM Press, New York, NY, U.S.A.,2006

[13] Lin, M., "The amorphous FPGA architecture", Proceedings of the 16th International

ACM/SIGDA Symposium on Field programmable gate arrays, pp. 191-200, ACM

Press, New York, NY, U.S.A., 2008

[14] Rose, J., El Gamal, A. and Sangiovanni-Vincentelli, A., "Architecture of Field

Programmable Gate Arrays" Proceedings of the IEEE, Vol.81, Issue 7, pp. 1013-

1029, July 1993

[15] Xilinx, "The Programmable Logic Data Book", 1993

[16] Xilinx, "The XC4000 Data Book", 1992

[17] Sid-Ahmed, M.A., "Image Processing-Theory, Algorithms & Architectures" 1994

[18] El-Feghi, I. S.,"Design of Three-Dimensional Digital Filters," MASc Thesis,

University of Windsor, Windsor, 1999

[19] Sid-Ahmed, M.A., "A systolic realization for 2-D digital filters" IEEE Transactions

on Acoustics, Speech and Signal Processing, Vol.37, Issue 4, pp.560-565, April

1989

54

[20] Sid-Ahmed, M.A., "Systolic and semi-systolic realizations of three dimensional

filters" IEEE Transactions on Consumer Electronics, Vol.40, Issue 2, pp. 107-113,

1994

[21] Capalija, Davor, "Microarchitecture and FPGA implementation of the multi-level

computing architecture" MASc. Thesis, University of Toronto, Toronto, 2008

VITA AUCTORIS

Kwasi Gyening Afrifa was born in April, 1982 in Accra, Ghana. He attended Prempeh

College for his high school education. He graduated from the Kwame Nkrumah

University of Science and Technology in 2005 where he obtained his BSc. in Electrical

and Electronics Engineering. He is currently a candidate for the Master's degree in

Electrical and Computer Engineering department at the University of Windsor.

55

	FPGA implementation of a frame delay
	Recommended Citation

	ProQuest Dissertations

