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Abstract 

Recent work in the Stephan Group has identified the concept of "frustrated" Lewis 

pairs, in which traditional Lewis acid-base adducts of sterically demanding phosphines 

and the borane, B(C6Fs)3 are not formed and alternative reactivity can occur. 

Compounds derived from "frustrated" Lewis pair chemistry have been investigated as 

novel co-catalysts for ethylene polymerization. The phosphonium borates of the form, 

[HPR3][B(C6F5)4], [R2PHC6F4BF(C6F5)2] and [R2PHC4H8OB(C6F5)3], have been shown 

to be effective protic activators for the generation of electrophilic cationic Ti metal 

centers of the form, [CpTiMe(NP'Bu3)]. The derivatization of the perfluoroaryl-linked 

phosphonium borates to form the perfluoroaryl-link phosphino-boranes of the form, 

R2PC6F4B(C6Fs)2, provides a unique family of potential Lewis acidic co-catalysts. These 

compounds were found to be excellent co-catalysts, as the interaction of the Lewis basic 

phosphine with the cationic Ti center increases ion-pair separation, resulting in a more 

active catalytic system. 

Investigations of Lewis basic phosphine additives to the polymerization of ethylene 

using CpTiMe(NP'Bu3)/B(C6F5)3 systems resulted in the observation that the addition of 

sterically bulky phosphines, such as P'Bu3 and PCy3, increased the observed 

polymerization activity. It has been proposed that this phenomenon is a result of the 

greater ion-pair separation, due to interaction of the phosphine with the Ti metal center. 

This provides a novel way to view the active catalyst system and the methods involved 

with enhancement and activity optimization. 

The synthesis of the sterically bulky phosphine-functionalized monomers, 

'Bu2P(CH2)3CHCH2, and the polymerization of these monomers was investigated. The 
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phosphine functionalized monomer was co-polymerized with 1-hexene, albeit in low 

percent yield and low incorporation of the functionality. Investigations of the potential 

inhibition pathways indicated that the co-polymerizations and homo-polymerizations of 

the phosphine-functionalized monomers are inhibited by reactivity with the co-catalyst, 

intermolecular coordination of the phosphine functionality, and intramolecular 

coordination of the phosphine. 

Sterically frustrated Lewis pairs of bulky phosphines and the borane, B(C6Fs)3 

exhibit unprecedented reactivity with olefins, affording both intermolecular additions as 

well as intramolecular cyclizations. The expansion of the reactivity of the olefin 

activation is hindered by the nucleophilic aromatic substitution reactions. 

These studies demonstrate the application of the concept of "frustrated" Lewis Pairs 

to the polymerization and activation of olefins. 
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Chapter 1: Introduction 

1.1 Polymerization of Ethylene by Early Transition Metals 

In the 1930's Imperial Chemical Industries reported the free radical process for the 

production of highly branched, low density polyethylene. The many uses of this material 

were quickly discovered and this process is still in use today.1 

In the early 1950's, a leap into the arena of highly active catalytic olefin 

polymerization was independently initiated by the groundbreaking work of Ziegler and 

Natta. These findings, in part, have lead to the widespread use of polyolefins today. In 

the initial report by Zeigler, a catalyst system based on titanium halides and 

alkylaluminum compounds which was demonstrated to polymerize ethylene at high 

activities (105 kg polymer/mol Ti) at pressures and temperatures much lower than the free 

radical processes.2 Separately, Natta also reported a similar system that could polymerize 

alpha-olefins in a stereoregular fashion.3 These heterogeneous systems are collectively 

known as Ziegler-Natta catalysts and are still in use today; modern systems typically 

consist of TiCU supported on MgCh and AlEt3.' 

1.2 Homogeneous Single-Site Metallocenes 

The next major breakthrough in olefin polymerization occurred with the development 

of soluble, single-site metallocene-based catalysts.4'5 Unlike the heterogeneous Ziegler-

Natta systems, the specific nature of the polymerization site could be designed a priori, 

rationally modified based on ligand design principles and be probed using mechanistic 

investigations.6 These initial metallocene catalyst systems developed were based on a 

1 



Cp2TiCl2 pre-catalyst and a Et2AlCl co-catalyst. Further studies demonstrated that the 

formation of the active catalyst species occurred through ligand exchange between 

Cp2TiCh and Et2AlCl to form the complex Cp2TiEtCl, which forms an adduct with the 

aluminium species, which polarized the Ti-Cl bond, and the insertion of ethylene occurs 

into the Ti-R bond.7"10 This process is illustrated in Figure 1.1. 

& ^ _&/* C V / E t , 1^®,*E' C \ e / E t
 H,C=CH^ l ^ e / * 1 C \ e / ' 

Ti + Et2AICI 8*Ti Al - J i + > l ( ~ * ^ / ' + A l ' 

Alkyl/Halide Exchange Ethylene Insertion 

Figure 1.1 Alkyl/Halide Exchange and Ethylene Insertion 

Although these systems provided mechanistic insight into the early transition metal 

catalyzed polymerization of ethylene, the polymerization activities of these systems were 

lower than those observed for the heterogeneous Ziegler-Natta systems. Numerous 

attempts were carried out to increase the effectiveness of these systems. Reichert and 

Meyer11 reported a surprising increase in activity upon the addition of water to a 

CpaTiEtCl/EtAlCh system. Subsequent studies led to the suggestion that the addition of 

water led to a dimeric aluminumoxane system, which would be a stronger Lewis acid and 

therefore, a better activator than previous aluminium co-catalysts utilized.12 These results 

led to the development of the highly effective activator, methylaluminumoxane, MAO.13" 

15 The discovery of MAO led to the rejuvenation of single-site catalysts and the 

development of novel pre-catalysts and co-catalysts. 
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1.3 Co-catalysts for Early Metal Olefin Polymerization 

1.3.1 MAO 

MAO is prepared via the controlled hydrolysis of AlMe3 to give an oligomeric 

species consisting of-Al(Me)-0- subunits. Although the exact structure of MAO is not 

fully understood,1617 the generation of the active species for olefin polymerization occurs 

through halide for methyl exchange at the pre-catalyst and subsequent alkyl/halide 

abstraction,18'19 as described for aluminium activators. This activation mechanism is 

illustrated in Figure 1.2. 

LnMCl2
 M A 0 - LnM(CH3)Cl-MAO - [LnM(CH3)]

+[Cl-MAO]' 

Figure 1.2 Activation Mechanism for MAO 

Although MAO was found to be an excellent co-catalyst, there are numerous 

disadvantages to its use. Due to the unknown structure of the co-catalyst, the nature of 

the active polymerization species is not well understood. Also, there are a limited number 

of active sites, necessitating the use of MAO in ratios of up to 1000:1. This has led to the 

development of new co-catalysts with well defined structures which allow for 

structure/activity relationships of the pre-catalyst and co-catalyst to be explored. 

1.3.2 Perfluoroaryl Boranes 

Although the synthesis of tris(pentafluorophenyl)borane, B(C6Fs)3, was first reported 

in 196420, it was not until 1991 when Marks21 and Ewen22 independently reported the 

combination of metallocene dialkyls and B(C6F5)3 to produced a catalyst which is highly 
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effective for olefin polymerization. The active species is formed by alkyl abstraction of a 

methyl group by the strongly Lewis acidic borane21'23 as illustrated in Figure 1.3 

+ ,CH3 

^ 5 + / 8" 
LnM(CH3)2+B(C6F5)3 • LnM ^ 3 ^ ^ ^ ^ = ^ [LnM(CH3)]

+[(CH3)B(C6F5)3]-

CH3 

Figure 1.3 Activation Mechanism for B(C6F5)3 

Since this seminal report, not only has the use of B(C6Fs)3 in olefin polymerization 

grown rapidly, but the design of numerous perfluoroarylboranes and their effectiveness as 

activators for olefin polymerization been investigated24. Notably, the research groups of 

Marks ' and Piers have developed novel borane co-catalysts. Investigations of the 

impact of the electronic and steric properties of these boranes and the subsequent 

influence of these properties on the ability of the compounds to act as activators for olefin 

polymerization have been conducted. In general, for the perfluoroaryl boranes the 

increased Lewis acidity leads to increased polymerization activity.24'44 

1.3.3 Trityl and Ammonium Borates 

In the effort to design non-coordinating ions to minimize the cation-anion interactions, 

the development of effective co-catalysts employing then trityl cation, [Ph3C]+, which is a 

powerful alkyl abstracting agent, and the ammonium cation, [R3NH]+, which can cleave 

the M-alkyl bond via protonation, in combination with the relatively non-coordinating 

anion, [B(C6F5)4]", have been developed.21'45"48 The formation of the active species via 

these routes are illustrated in Figure 1.4 
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L„M(CH3)2 + [Ph3C][B(C6F5)4] [LnM(CH3)]
+[B(C6F5)4]- + Ph3CCH3 

LnM(CH3)2 + [Me2PhNH][B(C6F5)4] [LnM(CH3)]
+[B(C6F5)4]- + Me2PhN + CH4 

Figure 1.4 Activation Mechanisms For [Ph3][B(C6F5)4] and [Me2PhNH][B(C6F5)4] 

Modifications of the borate-based activators have also been explored to improve the 

stability and solubility of these activators.49'50 

1.3.4 Role of the Anion in Polymerization Mechanism 

In addition to the formation of the active metal center, the anion play a significant role 

in the polymerization process. There are numerous experimental51 and theoretical52"54 

studies that suggest the anion must be considered in the propagation mechanism, as 

illustrated in Figure 1.5. Therefore the displacement of the anion must occur for 

monomer coordination and insertion to proceed. 

© 

0 
A 

H3C=CH3 

L„M- L„M 

e 
A 

A = Anion 

Q = Polymer Chain 

Figure 1.5 Propagation Mechanism 
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1.3.4.1 Stabilization of Ion-Pairs 

Although the development of weakly or non-coordinating ions has been targeted56, 

there is evidence that cation-anion interactions stabilize the chemically reactive cationic 

metal center.24 Therefore, in designing a catalyst system the pre-catalyst-co-catalyst 

structure-activity relationship and the optimization of this relationship for olefin 

polymerization must be considered. 

1.4 Pre-catalysts for Early Metal Olefin Polymerization 

As discussed previously, the discovery of MAO led to the resurgence of studies of 

homogeneous, single-site catalyst systems. Not only has the modification of 

metallocence pre-catalyst been extensively studied,57'59 but also the design of non-

metallocene pre-catalyst systems.60"63 Additionally, the use of non-Group IV transition 

metal systems has been investigated and has been reviewed elsewhere.60'64"66 As with the 

co-catalyst, the pre-catalyst selected has a dramatic impact on the polymerization activity 

and resultant polymer properties. 

1.4.1 Metallocene Pre-catalysts 

As discuss previously, the metallocene framework has been modified and the 

ancillary ligands used to control the electronic and steric properties of the catalyst system, 

which has shown to have an impact on the polymerization activity and polymer 

properties. Rational modification of these systems has led to the ability to control the 

stereoselective polymerization of alpha-olefins.67"69 
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1.4.2 Alternative Group IV Pre-catalysts 

As addressed earlier, there are numerous reported ligand frameworks for the 

development of Group IV, most specifically Ti and Zr, pre-catalyst systems and this work 

has been extensively reviewed. Of these pre-catalyst systems the Constrained Geometry 

catalysts (CGC) and the Fenokishi-Imin Haiishi (FI) catalysts have had a large impact on 

the field of olefin polymerization and have industrial applications. (Figure 1.6) 

/ 2 

CGC Pre-catalyst FI Pre-catalyst 

M = Ti, Zr 
R = CH3, CI 

Rl,R2 = alkyl,aryl 

Figure 1.6 CGC and FI Pre-catalysts 

The CGC ligand systems were first reported by Bercaw and co-workers70 and 

Okuda.71 Subsequently, catalysts systems based on the CGC ligand system were patented 

by both the Dow Chemical Company72 and Exxon Mobil Corporation.73 These systems 

have been extensively investigated both experimentally ' ' and theoretically. 
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The FI catalyst systems were developed by Fujita and co-workers at Mitsui 

Chemicals,78 and are noted for their high olefin polymerization activity. Modifications of 

this ligand framework have also been extensively investigated.63-79"81 

The high polymerization activities observed for both the CGC and FI catalysts have 

been attributed to the greater exposure of the metal center, providing more space for 

olefin binding. 

1.4.3 Group IV Phosphinimide Pre-catalysts 

Another class of pre-catalysts which have found industrial applications are the group 

IV phosphinimide systems, developed Stephan and co-workers.82 As illustrated in Figure 

1.7 

M = Ti, Zr 
X = alkyl, halide 
R = alkyl, aryl 

Figure 1.7 Group IV Phosphinimide Pre-catalysts 

These catalyst systems have been found to exhibit polymerization activities 

comparable to the metallocene and CGC systems, and have been patented by NOVA 

Chemicals Corp.83"85 The phosphinimide functionality was chosen as an ancillary ligand 

due to the steric and electronic similarities of the [NPR3]" ligand with Cp".86 
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4.4 Summary and Conclusions 

The co-polymerization of 1-hexene and phosphine-functionalized monomers using 

the CpMe2Ti(NP'Bu3) catalyst systems has been demonstrated, albeit at low yields and 

low phosphine monomer incorporation. The co-polymerizations and homo-

polymerizations of the phosphine-functionalized monomers are inhibited by reactivity 

with the co-catalyst, intermolecular coordination of the phosphine functionality, and 

intramolecular coordination of the phosphine. Future work to increase the activity of the 

polymerizations includes altering the sterics and nucleophilicity of the phosphine moiety. 
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Chapter 5: Reactivity of "Frustrated Lewis Pairs": Three Component 

Reactions of Phosphine, Borane and Olefins 

5.1 Introduction 

The formation of Lewis acid-base adducts is a classical concept in chemistry.162 This 

idea is fundamental to main group chemistry, the basis of coordination chemistry of the 

transition metals163 and the foundation of a variety of both stoichiometric and catalytic 

organic transformations.164 In all of these cases, the observed chemistry is predicated on 

the interaction of a Lewis base with a Lewis acid in a donor-acceptor fashion. In recent 

work, the Stephan Group has been studying systems in which steric demands preclude 

such classical donor-acceptor interactions. Examination of sterically hindered phosphines 

with B(C6F5>3 has demonstrated that in the absence of the formation of classical Lewis 

acid-base adducts novel reaction pathways are available. When the tertiary phosphines, 

PCy3 and P'Pr, or the secondary phosphines, HP'Bu2 and HPMes2 were utilized no simple 

Lewis acid-base adduct formation was observed.140 These studies indicate that steric 

congestion precludes coordination of the phosphine to the borane and that nucleophilic 

attack by the phosphine at the more accessible, electrophilic para-carbon of an arene ring 

occurs. Thus, substitution occurs with concurrent fluoride transfer to B to yield the 

zwitterionic compounds, [R3P(C6F4)BF(C6F5)2] (R = Cy or 'Pr) or 

[R2PH(C6F4)BF(C6F5)2] (R = 'Bu, Mes).108 Similar reactivity has also been observed by 

Erker and co-workers in the thermal rearrangement of the phosphorus ylide adduct 

(Ph3PCHPh)B(C6F5)3 to the para-substituted species [Ph3PCHPh(C6F4)BF(C6F5)2].165 For 

related phosphine/borane combinations where steric demands are even greater, no 
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interaction between the Lewis acid and Lewis base was apparent and formation of the 

zwitterionic phosphonium-borates does not occur 

phosphines is summarized in Figure 5.1. 

116,119 The reactivity of B(C6Fs)3 and 

PR3
 + B(C6F5)3- •— R3P--B(C6F5)3 

R = Me, Et, "Bu, Ph 

PR3 + B(C6F5)3 RT 
R' = R = 'Pr, Cy R 
R* = H,R = 'Bu,Mes 

Lewis Acid-Base Adduct 

Nucleophilic Aromatic 
Substitution 

PR3 + B(C6F5)3- No Interaction "Frustrated" Lewis Pair 

R = 'Bu, Mes 

Figure 5.1 Reactivity of B(C6F5)3 and Phosphines 

In the case of the extremely sterically encumbered phosphines, P'Bu3 and PMes3, the 

steric frustration leaves the original Lewis acidity and basicity unquenched, therefore 

these centers are available for further reactivity. Initial studies showed that exposure of H2 

to simple solutions of the phosphines, P'Bu3 or PMes3 with B(C6Fs)3 resulted in 

heterolytic cleavage of hydrogen.119 

In this chapter the reactivity of sterically demanding phosphines and B(C6Fs)3 with 

olefins to give alkyl-linked phosphonium borates is discussed. Additionally, the 

reactivity of phosphines containing olefinic substituents with B(C6Fs)3 is described. 
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5.2 Experimental 

5.2.1 General Considerations 

All preparations were completed under an atmosphere of dry, 02-free N2 employing 

both Schlenk line techniques and an Innovative Technologies or Vacuum Atmospheres 

inert atmosphere glove box. Solvents were purified employing a Grubbs' type column 

system manufactured by Innovative Technology. *H, l3C, n B, ,9F and 3IP NMR 

spectroscopy spectra were recorded on a Bruker Avance-300 spectrometer. 'H and ,3C 

NMR spectra were referenced to SiMe4 using the residual solvent peak impurity of the 

given solvent. 31P, nB and l9F NMR spectroscopy were referenced to 85% H3PO4, BF3, 

and CFCI3, respectively. Chemical shifts are reported in ppm and coupling constants in 

Hz. Combustion analyses were performed in house employing a Perkin Elmer CHN 

Analyzer. 

5.2.2 Solvents 

Toluene, methylene chloride, hexanes and pentanes were purified employing Grubbs-

type column systems manufactured by Innovative Technologies or were distilled from the 

appropriate drying agents under N2. Uninhibited THF was purchased from EDM and 

dried over Na/benzophenone and distilled prior to use. Deuterated bromobenzene 

(C6D5Br), benzene (C6D6), and methylene chloride (CD2CI2) were purchased from 

Cambridge Isotopes Laboratories, dried over Na/benzophenone (CeDe) or CaH2 (CeDsBr 

and CD2CI2), freeze-pump-thaw degassed (3 times) and then vacuum distilled prior to 

use. 
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5.2.3 Reagents 

Ethylene and propylene was purchased from BOC gases. Ethylene was dried over Q5 

copper deoxygenation material and 3 A molecular sieves. Ethylene and propylene were 

passed through a dririte gas drying unit prior to use. 1-Hexene was purchased from 

Aldrich Chemical Company and distilled from Na/benzophenone. PMes3 was purchased 

from Aldrich Chemical Co.; P'Bu3, P(o-tolyl)3 and HP'Bu2 were purchased from Strem 

Chemicals, Inc.; all were used as received. Mes2PH was prepared as reported in the 

literature.166 B(C6Fs)3, was generously donated by NOVA Chemicals Corp. and used 

without further purification. 

5.2.3.1 Reaction ofB(C^F$)i and Phosphines with Olefins 

'Bu3P(C2H4)B(C6F5)3 (5.1): To a solution of B(C6F5)3 (0.499 g, 0.97 mmol) in C6H5Br 

(50 mL) under ethylene purge, was added a solution of 'BU3P (0.221 g, 1.09 mmol) in 

C6H5Br (2 mL). The resulting solution was purged with ethylene for 1 h and the reaction 

was stirred under 1 atm of ethylene at room temperature for 16 h. The solvent was 

removed in vacuo and the residue was dissolved in CH2CI2 and hexanes added to 

precipitate a white solid. The solid was filtered and washed with hexanes several times 

and dried in vacuo. Yield 0.452 g (63%). Crystals suitable for X-ray diffraction were 

grown from a layered CH2Cl2/pentane solution at 25 °C. *H NMR (THF-d8, 300 MHz, 

300 K): 5 1.69-1.94 (br, m, 4H, C2H4), 1.43 (d, 27H, 3JH-P= 14 Hz, 'Bu). "Bf'H} NMR 

(THF-d8, 96 MHz, 300 K): 5 -13.3. ,3C{'H} NMR (THF-dg, 75 MHz, 300 K): partial 5 

88 



149.1 (dm, 'JC-F = 238 Hz, ortho-C6F5), 139.0 (dm, 'jc.F = 244 Hz, para-C6F5), 137.57 

(dm, "JC-F = 245 Hz, meta-C6F5), 39.9 (d, !JC-p = 30 Hz, 'Bu), 29.90 (s, 'Bu), 19.0 (d, 'Jc-p 

= 30 Hz, PCH2), 17.6 (br, BCH2).
 I9F NMR (THF-d8, 282 MHz, 300 K): 5 -132.58 (d, 

6F, 3JF-F= 25 Hz, ortho-C6F5), -164.14 (t, 3F, 3JF-F = 20 Hz, para-C6F5), -167.27 (t, 6F, 

3JF.F = 20 Hz, meta-Ctfs). 3,P{'H} NMR (THF-d8, 121 MHz, 300 K): 5 50.0. Anal. 

Calcd. For C32H31BF15P: C, 51.77; H, 4.21. Found: C, 51.92; H, 3.93 %. 

'Bu3P(CH(CH3)CH2)B(C6F5)3 (5.2): To a solution of B(C6F5)3 (0.473 g, 0.92 mmol) in 

CeHsBr (50 mL) under propylene purge, was added a solution of 'BU3P (0.258 g, 1.28 

mmol) in C6HsBr (2 mL). The resulting solution was purged with propylene for 4 hours 

and the reaction was stirred under 1 atm of propylene at room temperature for 12 h. The 

solvent was removed in vacuo and the residue was dissolved in CH2CI2 and hexanes 

added to precipitate a white solid. The solid was filtered and washed with hexane several 

times and dried in vacuo. Yield 0.436 g (63%). Crystals suitable for X-ray diffraction 

were grown from a layered CH2Cl2/pentane solution at 25 °C 'H NMR (THF-dg, 300 

MHz, 300 K): 5 2.72 (br, 1H, PCH), 2.30 (br, 2H, BCH2), 1.59 (d, 27H, 3JH-p = 13 Hz, 

'Bu), 1.57 (m, 3H, Me). llB{lU} NMR (THF-dg, 96 MHz, 300 K): 8 -11.6. l3C{lU} 

NMR (THF-d8, 75 MHz, 300 K): partial 8 149.1 (dm, 'JC-F = 237 Hz, ortho-C6F5), 139.1 

(dm, 'JC-F = 230 Hz, para-C6Fs), 137.5 (dm, 1JC-F = 245 Hz, meta-C6F5), 41.6 (d, 'JC-P = 

25 Hz, 'Bu), 33.7 (d, 'JC-P= 22 Hz, PCH), 31.1 (s, 'Bu), 18.92 (s, Me). ,9F NMR (THF-d8, 

282 MHz, 300 K): 8 -129.08 (br, s, 6F, ortho-C6F5), -162.41 (t, 3F, 3JF.F = 20 Hz, para-

C6F5), -165.53 (mt, 6F, meta-C6F5).
 3,P{'H} NMR (THF-d8, 121 MHz, 300 K): 8 56.9. 

Anal. Calcd. For C33H33BF15P: C, 52.40; H, 4.40. Found: C, 52.14; H, 4.36 %. 
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'Bu3P(CH(C4H9)CH2)B(C6F5)3 (5.3): To a solution of B(C6F5)3 (0.496 g, 0.97 mmol) in 

1-hexene (30 mL) was added a solution of'BU3P (0.211 g, 1.04 mmol) in 1-hexene (2 

mL) was added. The solution was stirred at room temperature for 12 h, during which time 

a white precipitate formed. The solid was filtered and washed with pentanes and dried in 

vacuo. Yield 0.428 g (55%). Crystals suitable for X-ray diffraction were grown from a 

layered CH2Cl2/pentane/C6D6 solution at 25 °C. 'H NMR (THF-d8, 300 MHz, 300 K): 5 

2.84 (br m, 1H, P-CH), 2.40 (br m, 1H, CHC#2), 2.12 (br m, 2H, BC//2), 1.63 (d, 27H, 

SJH.P= 13 Hz, 'Bu), 1.53 (br m, 1H, CHCH2), 1.02-1.34 (br m, 2H, CH2C//2CH2), 0.78 -

0.93 (m, 2H, CH2Me), 0.69 (t, 3H, iJH.H= 7 Hz, Me). nB{xW\ NMR (THF-dg, 96 MHz, 

300 K): 8 -13.0. "C^H} NMR (THF-dg, 75 MHz, 300 K): partial 8 149.5 (dm, 'jc.F = 

237 Hz, ortho-C6F5), 139.2 (dm, 'jc.F = 244 Hz, para-C6Fs), 137.8 (dm, 'jc.F = 256 Hz, 

meta-C6F5), 42.1 (d, 'jc.P= 24 Hz, 'Bu), 40.1 (d, lJC-p= 18 Hz, PCH), 33.9 (s, CHCH2), 

33.1 (d, 3Jc-P = 10 Hz, CH2CH2CH2), 31.5 (s, 'Bu), 23.9 (s, CH2Me), 14.0 (s, Me). I9F 

NMR (THF-dg, 282 MHz, 300 K): 8 -129.31 (br s, 2F, ortho-C6F5), - 130.66 (br s, 4F, 

ortho-C6Fs), -164.22 (t, 3F, 3JF.F=20 Hz,para-C6FS), -167.42 (t, 6F, 3JF.F = 23 Hz, meta-

C6F5).
 31P{'H} NMR (THF-dg, 121 MHz, 300 K): 8 58.3. Anal. Calcd. For C36H39BF15P: 

C, 54.15; H, 4.92. Found: C, 53.93; H, 4.64%. 

Mes2PH(CH(C4H9)CH2)B(C6F5)3 (5.4): To a solution of B(C6F5)3 (0.243 g, 0.48 mmol) 

in 1-hexene (10 mL) was added a solution of Mes2PH (0.127 g, 0.47 mmol) in hexanes (2 

mL). The solution was stirred at room temperature for 12 hours, during which time a 

white precipitate formed. The solid was filtered and washed with pentanes and dried in 
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vacuo. Yield 0.272 g (66.8%). Crystals suitable for X-ray diffraction were grown from a 

CH2Cl2/pentane solution at -35 °C. 'H NMR (CD2C12, 300 MHz, 300 K) 5: 7.22 (dd, 1H, 

'jH.p= 460 Hz, 3JH.H= 9 Hz, P-H), 7.02 (br s, 4H, C^Hi) 2.76 (br m, 1H, P-C#), 2.36 (s, 

6H, C6H2M?-2,6), 2.35 (s, 6H, C6H2M?-2,6), 2.31 (s, 6H, C6H2M>-4), 1.93 (brm, 1H, P-

CH-C//2-CH2-CH2-CH3), 1.65 (br m, 1H, P-CH-C//2-CH2-CH2-CH3), 1.30 (br m, 2H, B-

C//2), 0.89 (br m, 2H, P-CH-CH2-C//2-CH2-CH3), 0.73 (m, 2H, P-CH-CH2-CH2-C//2-

CH3), 0.54 (t, 3H, SJH.H= 7 Hz, P-CH-CH2-CH2-CH2-C//3). . nB{lH} NMR (CD2C12, 96 

MHz, 300 K) 5: -13.6 (s). ,3C{'H} NMR (CD2C12, 75 MHz, 300 K) partial 5: 148.7 (dm, 

'JC-F = 237 Hz, ortho-Ctfs), 146.2 (br s, para-C6H2Me3), 144.0 (d, 2Jc.p = 9 Hz, ortho-

C6H2Me3), 143.7 (d, 2JC.P = 9 Hz, or//»o-C6H2Me3), 138.7 (dm, 'jc.F = 244 Hz, para-

C6F5), 137.2 (dm, 'jc.F = 256 Hz, meta-C6F5), 132.4 (d, 3Jc.p = 10 Hz, meta-C6H2Me3), 

132.2 (d, 3JC-p = 10 Hz, ro«?ta-C6H2Me3), 38.7 (d, 'jc.p = 27 Hz, P-CH-CH2-CH2-CH2-

CH3), 31.4 (s, P-CH-CH2-CH2-CH2-CH3), 31.3 (d, 3Jc.p = 5 Hz, P-CH-CH2-CH2-CH2-

CH3), 23.1 (d, 3JC-p= 6 Hz, C6H2M>-2,6), 22.9 (s, P-CH-CH2-CH2-CH2-CH3), 22.7 (d, 

3JC.P = 6 Hz, C6H2M?-2,6), 21.5 (s, C6H2A/e-4), 13.66 (s, P-CH-CH2-CH2-CH2-CH3).
 I9F 

NMR (CD2Cl2, 282 MHz, 300 K) 8: -131.86 (d, 6F, 3JF.F= 23 Hz, ortho-C6F5), -163.20 

(t, 3F, 3JF.F = 23 Hz, para-Ctfs), - 166.86 (t, 6F, 3JF.F= 20 Hz, meta-C6¥5). 31P{'H} 

NMR (CD2C12, 121 MHz, 300 K) 8: 5.3 (s). 

5.2.3.2 Synthesis of Phosphines with Pendant Olefinic Substituents 

Mes2PCH2CH2CH2CHCH2 - To a solution of Mes2PLi (1.532 g, 5.66 mmol) in THF 

(50 mL) a solution of BrCH2CH2CH2CHCH2 (0.902 g, 6.05 mmol) in THF (5 mL) was 

added. The solution was stirred at room temperature for 14 hours. The solvent was 

91 



removed in vacuo and hexanes was added to precipitate LiBr. The solution was filtered 

through a celite plug and the solvent removed in vacuo to yield bright yellow oil. Yield 

0.712 g (37.2%). 'H NMR (C6D6, 300 MHz, 300 K) 8: 6.69 (d, 4H, 4JH-P = 2 Hz, 

C6//2Me3), 5.56 - 5.69 (m, 1H, PCH2CH2CH2C//CH2), 4.90 - 4.97 (m, 2H, 

PCH2CH2CH2CHC//2), 2.44 - 2.49 (m, 2H, PCH2CH2C/f2CHCH2), 2.38 (s, 12H, 

C6H2Me-2,6), 2.08 (s, 6H, C6H2Me-4), 1.98 - 2.06 (m, 2H, PCH2C//2CH2CHCH2), 1.44 -

1.52 (m, 2H, PC//2CH2CH2CHCH2). l3C{lH} NMR (C6D6, 75 MHz, 300 K) 5: 142.1 (d, 

2JC-p = 13 Hz, ortfio-C6H2Me3), 138.4 (s, /?ara-C6H2Me3), 137.3 (s, 

PCH2CH2CH2CHCH2), 134.0 (d, 'JC.P= 23 Hz, ipso-C6H2Me3), 130.3 (s, me/a-C6H2Me3), 

115.0 (s, PCH2CH2CH2CHCH2), 35.5 (d, 3JC.P= 15 Hz, PCH2CH2CH2CHCH2), 27.7 (d, 

2Jc-p = 15 Hz, PCH2CH2CH2CHCH2), 26.9 (d, 'jc.P= 22 Hz, PCH2CH2CH2CHCH2), 23.3 

(d, iyc./.= 15 Hz, C6H2M?-2,6), 20.7 (s, C6H2M?-4). 31P{!H} NMR (C6D6, 121 MHz, 300 

K)5:-22.1(s). 

'Bu2PCH2CHCH2: 'Bu2PCl (2.410 g, 13.33 mmol) was added dropwise to a solution 

CH2CHCH2Br (13.33 mmol) in 50 mL of diethyl ether. The solution was refluxed for 16 

hrs, filtered through celite, and volatiles removed in vacuo to give a clear liquid. Yield 

2.279 g (91.7 %) 'H NMR (C6D6, 300 MHz, 300 K) 5: 5.95 - 6.13 (m, 1H, 

PCH2C//CH2), 4.96 - 5.13 (m, 2H, PCH2CHC//2), 2.19 - 2.24 (m, 2H, PC//2CHCH2), 

1.08 (d, 18H, 3JH.p= 11 Hz, P'Bu2). "C^H} NMR (C6D6, 75 MHz, 300 K) 5: 139.3 (d, 

2JC-P= 18 Hz, PCH2CHCH2), 115.3 (d, 3JC-P= 11 Hz, PCH2CHCH2), 32.0 (d, 'JC.P= 24 

Hz, P/Bu2), 30.2 (d, 2Jc.p= 13 Hz, P#Bu2), 27.9 (d, JJC.P= 23 Hz, PCH2CHCH2).
 3,P{'H} 

NMR (C6D6, 121 MHz, 300 K) 8: 27.5 (s). 
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5.2.3.3 Reactions ofB(C(Fs)i and Phosphines with Pendant Olefmic Substituents 

,Bu2PCH(C3H6)CH2B(C6F5)3 (5.5): To a solution of B(C6F5)3 (0.704 g, 1.37 mmol) in 

CH2C12 (20 mL), 'BUJPCHJCHJCHZCHC^ (0.314 g, 1.47 mmol) was added. The 

solution was stirred overnight and the solvent removed in vacuo. The residue was 

dissolved in 3 mL of CH2CI2 and pentanes was added to precipitate a white solid. The 

solid was filtered and washed with pentanes several times and dried in vacuo. Yield 0.932 

g (93.7%). *H NMR (CD2C12, 300 MHz, 300 K) 8: 2.78 (br m, 1H, P-CH), 1.95 - 2.30 

(br m, 6H, B-CH2, PCH2CH2CH2CH), 1.37 (d, 9H, 3JH-P= 15 Hz, PtBu2), 1.41-1.53 (br, 

m, 2H, PCH2CH2CH2CH), 1.22 (d, 18H, V P = 15 Hz, P'Bu2). '^{'H} NMR (CD2C12) 

96 MHz, 300 K) 8: -13.7 (s). ,3C{'H} NMR (CD2C12, 75 MHz, 300 K) partial 8:148.8 

(dm, 'JC-F = 234 Hz, ortho-C6F5), 138.7 (dm, 'JC-F = 245 Hz, para-C6F5), 137.4 (dm, 'JC-F 

= 233 Hz, meta-C6F5), 40.2 (d, 'JC-P= 32 Hz, PCH(C3H4)), 36.2 (d, 1JC-P= 29 Hz, P'Bu2), 

34.8 (d, ' JC .P= 32 Hz, PlBu2), 33.2 (s, PCH2CH2CH2CH), 28.1 (s, P'Bu2), 27.3 (s, P*Bu2), 

25.8 (s, PCH2CH2CH2CH), 18.7 (d, 'jc.p= 44 Hz, PCH2CH2CH2CH). ,9F NMR (CD2C12, 

282 MHz, 300 K) 8: -131.71 (d, 6F, 3JF.F= 23 Hz, ortho-C6F5), -163.24 (t, 3F, 3JF.F = 20 

Hz, para-C6F5), -166.73 (t, 6F, 3JF.F = 20 Hz, meta-C6F5). ^Pf'H} NMR (CD2C12, 121 

MHz, 300 K) 8: 62.3 (s). Anal. Calcd. For C3iH27BFi5P: C, 51.26; H, 3.75; Found: C, 

51.26; H, 3.64%. 

Mes2PCH(C3H4)CH2B(C6F5)3 (5.6): To a solution of B(C6F5)3 (0.155 g, 0.30 mmol) in 

CH2CI2 (30 mL), Mes2PCH2CH2CH2CHCH2 (0.095 g, 0.28 mmol) was added. The 

solution was refluxed for 72 hours. The solvent was removed in vacuo, the residue was 

dissolved in 3 mL of CH2C12 and pentanes was added to precipitate a white solid. The 
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solid was filtered and washed with pentanes several times and dried in vacuo. Yield 0.124 

g (52.1%). *H NMR (CD2CI2, 300 MHz, 300 K) 5: 6.90 - 6.98 (br m, 4H, C6//2Me3), 

3.50 (m, 1H, PC//2CH2CH2CH), 3.32 (br m, 1H, PCH2CH2CH2C//), 2.32 - 2.43 (br m, 

3H, PC//2C//2CH2CH), 2.30 (s, 3H, C6H2Me-4), 2.25 (s, 3H, C6H2Me-4), 1.85 - 2.22 (br 

m, 16H, C6H2Me-2,6, B-CH2, PCH2CH2C//2CH). "B^HJ NMR (CD2C12, 96 MHz, 300 

K) 5:-13.7. I3C{'H} NMR (CD2C12, 75 MHz, 300 K) partial 5: 148.6 (dm, 'jc.F = 245 

Hz, ortho-C6F5), 145.0 (s, ortho-C6H2Me3), 145.0 (s, ort/jo-C6H2Me3), 144.5 (s, ortho-

C6H2Me3), 144.5 (s, or//w-C6H2Me3), 141.9 (s, /?a/"a-C6H2Me3), 141.8 (s, para-

C6H2Me3), 138.6 (dm, 'jc.F = 243 Hz, para-Crfs), 137.2 (dm, 'JC-F = 257 Hz, meta-

C6F5), 133.0 (s, weto-C6H2Me3), 132.9 (s, /weta-C6H2Me3), 132.4 (s, m<?ta-C6H2Me3), 

132.2 (s, /m?ta-C6H2Me3), 41.7 (d, 'jc.P= 33 Hz, PCH2CH2CH2CH), 32.1 (d, 'jc.p = 22 

Hz, PCH2CH2CH2CH), 30.7 (d, 2JC.P= 10 Hz, PCH2CH2CH2CH), 24.3 (d, 2JC.P= 10 Hz, 

PCH2CH2CH2CH), 22.9 (s, C6H2M?-2,6), 22.8 (s, C6H2M?-2,6), 21.3 (s, C6H2M?-4), 

21.1 (s, C6H2M>-4). ,9F NMR (CD2C12, 282 MHz, 300 K) 5: -132.02 (d, 6F, 3JF.F = 20 

Hz, ortho-C6F5), -163.47 (t, 3F, 3JF.F=25 Hz, para-C6F5), -166.86 (t, 6F, 3JF.F= 20 Hz, 

meta-C6F5). 3,P{!H} NMR (CD2C12, 121 MHz, 300 K) 5: 52.7(s). Anal. Calcd. For 

C41H31BF15P: C, 57.9; H, 3.67. Found: C, 57.63; H, 3.63 %. 

,Bu2P(CH2CHCH2)C6F4BF(C6F5)2 (5.7): To a solution of B(C6F5)3 (0.253 g, 0.49 

mmol) in CH2C12 (10 mL), 'B^PCfyCHC^ (0.094 g, 0.50 mmol) was added. The 

solution was stirred overnight and the solvent removed in vacuo. The residue was 

dissolved in 3 mL of CH2C12 and hexanes was added to precipitate a white solid. The 

solid was filtered and washed with pentanes several times to give a white solid which was 

dried in vacuo. Yield 0.176 g (51.4 %). *H NMR (CD2C12, 300 MHz, 300 K) 5: 5.75 -
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5.83 (br m, 1H, Bu2PCH2C//CH2), 5.58 - 5.66 (m, 2H, Bu2PCH2CHC//2), 3.58 - 3.61 (br 

m, 2H, B112PCH2CHCH2), 1.56 (d, 18H, 3JH-p= 15 Hz, P'Bu2). "fit1!!} NMR (CD2C12, 96 

MHz, 300 K) 8: -0.5 (d, 'JB-F= 62 Hz). l3C{lB] NMR (CD2C12, 75 MHz, 300 K) partial 

8: 148.4 (dm, XJC.F = 237 Hz, CF), 139.6 (dm, lJC-F = 245 Hz, CF), 137.3 (dm, XJC-F = 257 

Hz, CF), 125.5 - 125.7 (m, PCH2CHCH2), 38.9 (d, 'jc.P = 30 Hz, P'Bu2), 27.8 (s, P'Bu2), 

24.9 (dd, 'jc.p = 33 Hz, 3JC.F = 13 Hz, PCH2CHCH2). 19F NMR (CD2C12, 282 MHz, 

300 K) 8: -123.14 - -122.94 (m, IF, C(JF4\ -128.43 (s, IF, C ^ ) , -128.98 (s, IF, C6F4), 

-131.63 - -131.51 (m, IF, C6F4), -135.90 (t, 4F, 3JF.F = 14 Hz, ortho-C^s), -161.85 (t, 

2F, %.F = 20 Hz , para-Cffs), -166.90 - -166.72 (m, 4F, meta-Cffs), -193.13 (br d, IF, 

]JF.B = 76 Hz, BF). 3,P{'H} NMR (CD2C12, 121 MHz, 300 K) 8: 51.7 (s). 

'Bu2P((CH2)9CHCH2)C6F4BF(C6F5)2 (5.8): To a solution of B(C6F5)3 (0.254 g, 0.50 

mmol) in CH2C12 (10 mL), tBu2P(CH2)9CHCH2 (0.156 g, 0.52 mmol) was added. The 

solution was stirred overnight and the solvent removed in vacuo. The residue was 

dissolved in 3 mL of CH2C12 and hexanes was added to precipitate an off-white solid. 

The solid was filtered and washed with pentanes several times to give a white solid which 

was dried in vacuo. Yield 0.198 g (50.0 %). 'H NMR (CD2C12, 300 MHz, 300 K) 8: 5.74 

- 5.88 (m, 1H, ,BU2P(CH2)9CM:H2), 4.89 - 5.01 (m, 2H, ^vkPOCHJMCHCHi), 2.51 -2.63 

(br m, 2H, 'Bu^C/^CHCHz), 1.99 - 2.08 (br m, 2H, tBu2P(C//2)9CHCH2), 1.62 -1.79 

(br, m, 2H, tBu2P(C//2)9CHCH2), 1.51 (d, 18H, 3JH.p = 13 Hz, 'Bu2), 1.25 - 1.36 (br, 12H, 

,Bu2P(C//2)9CHCH2). "B^H} NMR (CD2C12, 96 MHz, 300 K) 8: -0.1 (br). 13C{'H} 

NMR (CD2C12, 75 MHz, 300 K) partial 8: 148.4 (dm, ]JC.F = 238 Hz, CF), 139.7 (s, 

tBu2P(CH2)9CHCH2), 139.5 (dm, ]JC-F = 244 Hz, CF), 137.1 (dm, XJC.F = 244 Hz, CF), 

114.3 (s, tBu2P(CH2)9CHCH2), 38.3 (d, 'jC-p = 32 Hz, 'Bu2), 34.2 (s, 
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'BujPCCHzfcCHCHz), 32.1 (s, tBu2P(CH2)9CHCH2), 31.9 (s, tEu2P(CU2)^C\iCll2), 29.9 

(s, ,Bu2P(CH2)9CHCH2), 29.5 (s, tBu2P(CH2)9CHCH2), 29.4 (s, tBu2P(CH2)9CHCH2), 

29.2 (s, (Bu2P(CH2)9CHCH2), 27.9 (s, lBu2), 20.0 (dd, 'jC-p = 40 Hz, 3JC.F = 13 Hz, 

'Bu2P(CH2)9CHCH2).
 ,9F NMR (CD2C12, 282 MHz, 300 K) 5: -119.93 - -119.73 (m, IF, 

C6F4), -125.24 (s, IF, C ^ ) , -125.82 (s, IF, C6F4), -130.28 - -130.06 (m, IF, C6F4), -

132.54 (t, 4F, V/r./r = 12 Hz, ortho-CtF5), -158.28 (t, 2F, 3JF.F = 20 Hz , para-C^Fs), -

163.78 - -163.22 (m, 4F, meta-C^s), -190.87 (br s). 3,P{'H} NMR (CD2C12, 121 MHz, 

300 K) 8: 54.9 (s). 
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Table 5.1 Selected NMR Data 

g 3 1 p 6 n B 
A * 

8 , 9F(0-F,p-F,/M-F) 

Starting Materials 

B(C6F5)3
lt" 

P'Bu3
a 

HPMes2
B 

'BU2P(CH2)3CHCH2D 

N^PCFbCFkCtbCHCFh1 ' 

'Bu2PCH2CHCH2
D 

'Bu2P(CH2)9CHCH2,> 

62.1 

-92.7 

27.8 

-22.1 

27.5 

27.8 

59 

Reaction ofB(CfF%)* and vhosvhines with olefins 

'Bu3P(C2H4)B(C6F5)3 (5.1)c 

'Bu3P(CH(CH3)CH2)B(C6F5)3 (5.2)c 

fBu3P(CH(C4H9)CH2)B(C6F5)3 (S3f 

Mes2PH(CH(C4H9)CH2)B(C6F5)3 

(5.4)c 

50.0 

56.9 

58.3 

5.4 

-13.3 

-11.6 

-13.0 

-13.7 

18.2 -128.5, -143.1, -161.3 

3.2 

3.1 

3.2 

3.7 

-132.6,-164.1,-167.3 

-129.1,-162.4,-165.5 

-129.3,-130.6,-164.2, 

-167.4 

-131.9,-163.2,-166.9 

Reaction ofBfCfjFdi and phosphines with pendant olefinic substituents 

,Bu2PCH(C3H6)CH2B(C6F5)3 (5.5)a 

Mes2PCH(C3H4)CH2B(C6F5)3 (5.6)a 

'Bu2P(CH2CHCH2)C6F4BF(C6F5)2 

(5.7)d 

'Bu2P((CH2)9CHCH2)C6F4BF(C6F5)2 

(5.8)d 

62.4 

52.8 

51.8 

55.0 

-13.8 

-13.7 

-0.5 

-0.2 

3.5 

3.4 

5.0 

5.2 

-131.7,-163.2,-166.7 

-132.0,-163.5,-166.9 

-123.0,-128.4,-129.0, 

-131.6,-135.9,-161.9, 

-166.8,-193.1 

-119.8,-125.2,-125.8, 

-130.1,-132.5,-158.3, 

-163.5,-190.9 

'C6D5Br DC6D6,
 eTHF,d CD2CI2, 'Chemical shift difference between para and meta resonances in '*FNMR 

spectrum 
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5.2.4 X-ray Data 

Single crystals were mounted in thin-walled capillaries either under an atmosphere of 

dry N2 in a glove box and flame sealed or coated in paratone-N oil. The data were 

collected using the SMART software package168 on a Siemens SMART System CCD 

diffractometer using a graphite monochromator with MoKa radiation (K = 0.71073 A). A 

hemisphere of data was collected in 1448 frames with 10 second exposure times unless 

otherwise noted. Data reductions were performed using the SAINT software package169 

and absorption corrections were applied using SADABS.170 The structures were solved 

by direct methods using XS and refined by full-matrix least-squares on F2 using XL as 

implemented in the SHELXTL suite of programs.171 All non-H atoms were refined 

anisotropically. Carbon-bound hydrogen atoms were placed in calculated positions using 

an appropriate riding model and coupled isotropic temperature factors. Phosphorus-

bound hydrogen atoms were located in the electron difference map and their positions 

refined isotropically. For compound 5.3 disordered CH2CI2 solvent molecules were 

removed using the 'squeeze ' command in PLATON.172173 All ORTEP figures are shown 

with ellipsoids at 30%. 
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Table 5.2 Selected Crystallographic Data for Compounds 5.1, 5.2, 5.3 

Crystal 

Formula 

Formula weight 

Crystal system 

Space group 

a(A) 

b(A) 

c(A) 

a(°) 

P(°) 
y(°) 

V(A3) 

Z 

d(calc)gcm"' 

AbscoefF, e, cm"1 

Data collected 

Data F0
2>3CT(F0

2) 

Variables 

R' 

Rw 

Goodness of Fit 

5.1 

C32H3,BF,5P 

742.35 

Monoclinic 

P2|/c 

11.9532(14) 

15.3319(18) 

18.729(2) 

90 

107.436(2) 

90 

3274.7(7) 

4 

1.506 

0.193 

31010 

5758 

546 

0.0452 

0.1045 

1.017 

5.2 

C33H33BF15P 

756.37 

Triclinic 

P-l 

9.6037(15) 

11.2601(18) 

15.519(3) 

100.501(2) 

91.834(2) 

95.109(2) 

16.41.5(5) 

2 

1.530 

0.194 

4867 

1319 

451 

0.0638 

0.1746 

1.054 

5.3 

C36H38BF15P 

797.44 

Triclinic 

P-l 

11.352(4) 

11.609(4) 

15.623(5) 

111.445(4) 

99.753(4) 

93.350(4) 

18.72.4(11) 

2 

1.414 

0.174 

17977 

6576 

486 

0.0483 

0.1357 

1.066 

This data was collected at 25°C with Mo Kot radiation (k = 0.71073 A). 
•R=KF„-FC)/EF0

 bRw=(Z[w(F0
2-Fc

2 f] /E^F,,)2])* 
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Table 5.3 Selected Crystallographic Data for Compounds 5.4 and 5.5 

Crystal 

Formula 

Formula weight 

Crystal system 

Space group 

a(A) 

b(A) 

c(A) 

O 

P(°) 
y(°) 

V(AJ) 

Z 

d(calc) g cm"1 

Abs coeff, e, cm"1 

Data collected 

Data F0
2>3CT(F0

2) 

Variables 

Ra 

Rw 

Goodness of Fit 

5.4-CH2Cl2 

C43H37BF,5PC12 

916.77 

P-l 

Triclinic 

11.987(20) 

12.74(2) 

17.13(3) 

106.12(2) 

101.06(2) 

109.00(2) 

2259(6) 

2 

1.399 

0.271 

19859 

7871 

571 

0.0701 

0.1788 

1.036 

5.5 

C31H27BFI5P 

726.31 

P2, 

Monoclinic 

14.994(3) 

12.770(2) 

16.538(3) 

90 

94.449(3) 

90 

3157.1(9) 

4 

1.528 

0.198 

29773 

11111 

865 

0.0838 

0.1934 

1.006 

This data was collected at 25°C with Mo K<x radiation (X = 0.71073 A). 
* R = K F 0 - F C ) / 2 : F 0

 bRw=(X[w(F0
2-Fc

2)2] /I[w(F0)2]),/4 



5.3 Results and Discussion 

5.3.1 Reaction of B(C6F5)3 and Tertiary Phosphines with Olefins 

A bromobenzene solution containing the "frustrated" Lewis pair combination of 

P'Bu3 and B(C6F5)3 was purged with ethylene and sealed under 1 atm of ethylene at 25 

°C. Over the course of several hours, a colorless precipitate 5.1 formed, which was 

isolated by filtration in 63% yield. The 3IP{'H} NMR spectrum of 5.1 showed a singlet 

resonance at 50.1 ppm while the corresponding nB{'H} NMR signal was observed at -

13.3 ppm. The *H NMR spectrum of 5.1 showed broad multiplets at 1.69-1.94 ppm. 

These data strongly suggest the presence of phosphonium and borate fragments linked by 

C2H4 and is consistent with the formulation of 5.1 as 'Bu3P(C2H4)B(C6Fs)3 as shown in 

Figure 5.2. 

C*F 6r5_ 
C6F5i 

_. 1 atm ethylene 
B(C6F5)3 + P*Bu3 i *- CH2—CH2 

\© 
' B u ^ l ' " " ^ 

'Bu 

Figure 5.2 Reaction of P,Bu3 and B(C6F5)3 with Ethylene 

An X-ray crystallographic study (Figure 5.3, Table 5.1) confirmed the proposed 

zwitter-ionic formulation, establishing unambiguously that the phosphine and borane add 

to opposite ends of ethylene. Both the P and B centers are found in pseudo-tetrahedral 

environments with the B-C and P-C distances of 1.653(4) A and 1.831(3) A, respectively. 

These metric parameters are expected for alkyl phosphonium and alkyl borate species. 
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Figure 5.3 ORTEP of 5.1 

30% thermal ellipsoids are shown. Hydrogen atoms are omitted for clarity. Selected 

metrical parameters {Distances (A) angles (°)}: P(l)-C(20) 1.831(3), P(l)-C(29) 1.883(3), 

P(l)-C(21) 1.884(3), P(l)-C(25) 1.891(3), C(13)-B(l) 1.658(4), C(7)-B(l) 1.665(4), C(l)-

B(l) 1.667(4), C(19)-B(l) 1.653(4), C(19)-C(20) 1.532(4), C(20)-P(l)-C(29) 110.29(13), 

C(20)-P(l)-C(21) 107.71(13), C(29)-P(l)-C(21) 111.84(13), C(20)-P(l)-C(25) 

103.68(12), C(29)-P(l)-C(25) 111.46(13), C(21)-P(l)-C(25) 111.48(13), C(19)-C(20)-

P(l) 122.61(19), C(20)-C(19)-B(l) 113.7(2), C(19)-B(l)-C(13) 103.9(2), C(19)-B(l)-

C(7) 109.0(2), C(13)-B(l)-C(7) 112.7(2), C(19)-B(l)-C(l) 115.5(2), C(13)-B(l)-C(l) 

112.0(2), C(7)-B(l)-C(l) 103.98(19), B(l)-C(19)-C(20)-P(l) 172.63(19). 
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Similar intermolecular reactions of propylene and 1-hexene with P'Bii3 and B(C6Fs)3, 

afforded the new species 5.2 and 5.3,respectively, which are illustrated in Figure 5.4. 

These white solids were subsequently isolated in 63 and 55% yield, respectively. The 

products exhibited 3IP{'H} and "Bl 'H} NMR signals at 56.9, and 58.3 and -11.6 and 

-13.0 ppm, respectively, consistent with the presence of phosphonium and borate 

fragments similar to 5.1. The 'H and ' F NMR spectra reveal the expected resonances for 

propyl and hexyl groups and inequivalent C6F5 groups consistent with the generation of a 

chiral center from the prochiral olefins. Two dimensional 13C-'H NMR correlation spectra 

were used to establish resonance assignments. These data supported a regiochemistry of 

addition in which P-atom adds to the secondary olefinic carbon while the B-atom adds to 

the terminal methylene group, indicating that 5.2 and 5.3 can be formulated as 

'Bu3P(CH(R)CH2B(C6F5)3 (R = CH3, C4H9), respectively. 

C6F5 

C 6 F 5 ^ \ 0 

CH2—CH 
1 atm propylene ̂ ^ \ @ 

P""'IIT 

B(C6F5)3 + P'BU3 

1-hexene 

'Bu 

C6F5 

C6F5*A 0 

CH2--CH 

\© -P- . 
B u " ^ 

'Bu 

"/ 'Bu 

Figure 5.4 Reaction of P'Bu3 and B(C6F5)3 with a-olefins 
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X-ray crystallographic study of 5.2 and 5.3 confirmed this regiochemistry of addition 

(Figure 5.5, Table 5.1). The B-C bond lengths of 5.2 and 5.3 are 1.678(18) and 1.670(3), 

and the P-C bond lengths 1.903(14) and 1.890(2) respectively. These bond lengths are 

similar to those observed for 5.1. The remaining metrical parameters are also quite 

similar to 5.1 and remain unexceptional. It should be noted in the X-ray crystal structures 

of 5.1 - 5.3 exhibit weak intermolecular C-HF-C interactions of approximately 2.5 A 

between the 'Bu groups on P and the fluoroaryl groups on B. These interactions, as well 

as the zwitter-ionic charge structure, likely contribute to the low solubility of 5.1 - 5.3 in 

most organic solvents. 
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Figure 5.5 ORTEP of 5.2 

30% thermal ellipsoids are shown. Hydrogen atoms are omitted for clarity. Selected 

metrical parameters {Distances (A) angles (°)}: P(l)-C(26) 1.867(12), P(l)-C(22) 

1.873(13), P(l)-C(20) 1.903(14), P(l)-C(30) 1.936(16), B(l)-C(13) 1.62(3), B(l)-C(l) 

1.64(3), B(l)-C(19) 1.678(18), B(l)-C(7) 1.68(3), C(19)-C(20) 1.472(15), C(20)-C(21) 

1.640(18), C(26)-P(l)-C(22) 113.8(7), C(26)-P(l)-C(20) 112.7(7), C(22)-P(l)-C(20) 

109.9(7), C(26)-P(l)-C(30) 110.1(7), C(22)-P(l)-C(30) 105.6(7), C(20)-P(l)-C(30) 

104.0(8), C(19)-C(20)-P(l) 116.7(11), C(21)-C(20)-P(l) 114.2(10), C(20)-C(19)-B(l) 

121.1(12), C(13)-B(l)-C(l) 110(2), C(13)-B(l)-C(19) 104.6(15), C(l)-B(l)-C(19) 

117.1(16), C(13)-B(l)-C(7) 112(2), C(l)-B(l)-C(7) 101.2(15), C(19)-B(l)-C(7) 

111.5( 16), B( 1 )-C( 19)-C(20)-P( 1) -154.9( 14), C(30)-P( 1 )-C(20)-C( 19) -164.2( 10), C(26)-

P(l)-C(20)-C(21) 79.7(12), C(30)-P(l)-C(20)-C(21) -39.5(12), B(l)-C(19)-C(20)-C(21) 

76.5(17) 
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Figure 5.6 ORTEP of 5.3 

30% thermal ellipsoids are shown. Hydrogen atoms are omitted for clarity. Selected 

metrical parameters {Distances (A) angles (°)}: P(l)-C(20) 1.890(2), P(l)-C(33) 1.896(2), 

P(l)-C(29) 1.906(2), P(l)-C(25) 1.921(3), B(l)-C(13) 1.664(3), B(l)-C(6) 1.669(3), B(l)-

C(19) 1.670(3), B(l)-C(7) 1.672(3), C(19)-C(20) 1.556(3), C(20)-C(21) 1.552(3), C(21)-

C(22) 1.522(3), C(22)-C(23) 1.518(4), C(23)-C(24) 1.493(4), C(20)-P(l)-C(33) 

111.11(10), C(20), P(l)-C(29) 107.18(10), C(33)-P(l)-C(29) 110.73(11), C(20)-P(l)-

C(25) 109.37(11), C(33)-P(l)-C(25) 109.94(12), C(29)-P(l)-C(25) 108.42(12), C(21)-

C(20)-P(l) 112.49(14), C(19)-C(20)-P(l) 114.15(14), C(20)-C(19)-B(l) 121.45(17), 

C(13)-B(l)-C(6) 100.89(16), C(13)-B(l)-C(19) 114.19(17), C(6)-B(l)-C(19) 111.09(17), 

C(13)-B(l)-C(7) 114.36(17), C(6)-B(l)-C(7) 108.93(16), C(19)-B(l)-C(7) 107.23(17), 

B(l)-C(19)-C(20)-P(l) -150.55(16), C(25)-P(l)-C(20)-C(21) -43.22(19), C(33)-P(l)-

C(20)-C(21) 78.33(17), C(33)-P(l)-C(20)-C(19) -48.46(17), C(25)-P(l)-C(20)-C(19) -

170.01(16), B(l)-C(19)-C(20)-C(21) 81.6(2) 
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In an effort to probe the limits of the observed reactivity the frustrated Lewis pair 

combination of PMes3 and B(C6Fs)3 was also investigated towards activation of olefins. A 

bromobenzene solution of equi-molar amounts of PMes3 and B(C6Fs)3 was purged with 

ethylene and stored under 1 atm of ethylene at 25 °C for 12 hours and, surprisingly, no 

reactivity was observed. This result stands in stark contrast to the related H2 activation 

chemistry, where the "frustrated" Lewis pair of PMes3 and B(C6Fs)3 readily cleaves H2.119 

Additionally, combinations of PMes3 or P(o-tolyl)3 and B(C6Fs)3 were stable in neat 1 -

hexene. These results demonstrate that not only are the sterics of the phosphine important, 

but the electronic attributes are essential as well. Here the considerably less basic 

phosphines, PMes3 and P(o-tolyl)3, do not activate olefins in the presence of B(C6Fs)3, 

where as the more basic P'Bu3 does. Additionally, attempts to activate 1-hexene with 

perfluoroary 1-1 inked phosphino-borane, R2P(C6F4)B(C6Fs)2 (R = 'Bu or Mes),108 at room 

temperature were also unsuccessful. As the phosphine in the perfluoroaryl-linked 

phosphine-borane compound is bonded to a strongly electron withdrawing fluoroaryl 

group, similar arguments based on lack of base strength can rationalize this lack of 

reactivity. 

It has recently been reported by the Stephan Group that phosphine-B(C6Fs)3 adducts 

will undergo thermal rearrangement to give zwitter-ionic phosphonium borates of the 

form, [R3P(C6F4)BF(C6F5)2].114 Additionally, bulky phosphines such as PCy3 rapidly 

react with B(C6F5)3 to generate [Cy3P(C6F4)BF(C6F5)2].108 We envisioned that carrying 

out these reactions in the presence of olefins may prevent /rarra-nucleophilic aromatic 

substitution. Heating the HPCp2B(C6Fs)3 adduct to reflux in neat 1-hexene resulted in 

formation of only the perfluoroaryl linked phosphonium-borate, 

[HPCp2(C6F4)BF(C6F5)2]. Similarly, addition of PCy3 to a solution of B(C6F5)3 in neat 1-
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hexene, showed only formation of the zwitter-ion, [Cy3P(C6F4)BF(C6F5)2]. These results 

indicate that the nucleophilic aromatic substitution reaction is more rapid than olefin 

addition. 

5.3.2 Reaction of B(C6Fs>3 and Secondary Phosphines with Olefins 

Sterically encumbered secondary phosphines HPR2 (R = 'Bu, Mes ), form very weak 

adducts with B(C6Fs>3, and the subsequent zwitter-ion formation is relatively slow. 

Therefore, there exists the possibility that such phosphine and B(C6Fs)3 combinations 

could effect the activation of olefins. The secondary phosphine, HP'Bu2, was added to a 

solution of B(C6Fs)3 in 1-hexene. Formation of a white precipitate was observed almost 

immediately. The product was isolated and solution NMR spectroscopy indicated the 

formation of both the previously reported perfluoroaryl linked phosphonium-borate, 

['Bu2PH(C6F4)BF(C6Fs)2], and a new alkyl linked phosphonium-borate product 

['Bu2PH(CH(C4H9)CH2B(C6F5)3], as illustrated in Figure 5.7. Unfortunately, due to their 

similar solubilities the products could not be separated and the new alkyl linked complex 

was not fully characterized. 

C6F, 

1-hexene C 6 F 5 ^ \ / C < H ' 
B(C6F5), + HF^Bu, • - CH2-CH + 

\ © 
PH 

Figure 5.7 Reaction of HP'Bu2 and B(C6F5)3 with 1-hexene 
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In contrast to the reactivity with HP'Bu3, addition of HPMes2 to a solution of 

B(C6Fs)3 in 1-hexene at 25 °C, afforded the new species 5.4, which was isolated in 67 % 

yield. This product exhibited 3,P{'H} and " B J ' H } NMR signals at 5.4, and -13.7 ppm, 

respectively, consistent with the presence of phosphonium and borate fragments similar to 

5.3. No evidence of the perfluoroaryl linked phosphonium-borate product was observed 

by NMR spectroscopy. This difference in reactivity can be attributed to the relative rates 

of nucleophilic aromatic substitution where the HP'Bu2 reaction proceeds at room 

temperature while complete HPMes2 reaction is only achieved after refluxing in toluene 

for 16 hours.108 Similar to 5.2 and 5.3 the data supported a regiochemistry of addition in 

which P-atom adds to the secondary olefinic carbon while the B-atom adds to the terminal 

methylene group, prompting the formulation of 5.4 as Mes2PH(CH(C4H9)CH2B(C6F5)3 as 

shown in Figure 5.8. The reaction of HPMes2 is in contrast to that of PMes3 which 

showed no reactivity toward 1-hexene. Clearly the reduced steric bulk of HPMes2 allows 

for closer approach to the olefin and favours further pyrimidalization at P. 

C6F5 

1-hexene Q£^ \ /-4™9 
B(C6F5)3 + HPMes2 - 6 5

 3 H 2 - C H 
\© 

PH 

Mes Mes 

Figure 5.8 Reaction of HPMeS2 and B(C6F5)3 with 1-hexene 
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X-ray crystallographic study of 5.4 confirmed this regiochemistry of addition (Figure 

5.9, Table 5.2), metrical parameters are similar to those reported for 5.1 - 5.3, with the 

newly formed B-C and P-C bond distances of 1.693(7) and 1.858(5), respectively and 

remain unexceptional. 

110 



Figure 5.9 ORTEP of 5.4 

30% thermal ellipsoids are shown. Hydrogen atoms on carrbon are omitted for clarity. 

Selected metrical parameters {Distances (A) angles (°)}: P(l)-H(l) 1.34(4), P(l)-C(34) 

1.812(4), P(l)-C(25) 1.827(5), P(l)-C(20) 1.858(5), C(l)-B(l) 1.665(7), C(7)-B(l) 

1.673(7), C(13)-B(l) 1.662(7) , C(19)-C(20) 1.546(6), C(21)-C(22) 1.523(7), C(22)-

C(23) 1.550(9), C(23)-C(24) 1.520(11), C(34)-P(l)-C(25) 114.0(2), C(34)-P(l)-C(20) 

113.4(2), C(25)-P(l)-C(20) 118.5(2), C(19)-C(20)-P(l) 112.0(3), C(21 )-C(20)-P( 1) 

107.9(3), C(20)-C(19)-B(l) 117.7(4), C(13)-B(l)-C(l) 113.9(4), C(13)-B(l)-C(7) 

111.7(4), C(l)-B(l)-C(7) 102.3(4), C(13)-B(l)-C(19) 104.1(4), C(l)-B(l)-C(19) 

116.7(4), C(7)-B(l)-C(19) 108.3(4), B(l)-C(19)-C(20)-P(l) -175.1(3), B(l)-C(19)-C(20)-

C(21) 61.1(5), P(l)-C(20)-C(21)-C(22) 69.2(5), C(25)-P(l)-C(20)-C(21) -96.0(3) 
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5.3.3 Reaction of B(C*Fs)3 and phosphines with pendant olefinic substituents 

"Frustrated" Lewis pairs can also react with olefins in an intramolecular fashion. The 

olefinic derivatives of sterically demanding phosphines of the form CH2CH(CH2)3PR2 (R 

= 'Bu, Mes) were prepared via conventional methods outlined in Chapter 4. 

Stoichiometric reactions with B(C6Fs)3 were monitored by 3,P NMR spectroscopy. These 

data reveal no evidence of phosphine-borane adduct formation. The phosphine, 

CH2CH(CH2)3P'Bu2 was added to a solution of B(C6F5)3 in CH2C12 at 25°C to give 

species 5.5 in 94 % isolated yield. A Solution of CH2CH(CH2)3PMes2 and B(C6F5)3 in 

CH2C12 was heated to reflux (45°C) to form 5.6 in a 52 % isolated yield. The 3IP{'H} 

NMR spectrum of 5.5 and 5.6 showed singlet resonances at 62.4 and 52.8 ppm, 

respectively, while the corresponding '^{ 'H} NMR signals were observed at -13.8 and 

-13.7 ppm, respectively. I9F NMR spectra for 5.5 and 5.6 confirmed the presence of C6F5 

groups. These data together with the *H and l3C NMR data support the loss of the olefinic 

substituents and the formulation of 5.5 and 5.6 as the cyclized phosphonium-borate 

R2PCH(C3H6)CH2B(C6F5)3 (R = 'Bu 5.5, C6H2Me3 5.6). In both cases no formation of the 

perfluoroaryl linked phosphonium-borate was observed nor were the products due to the 

intermolecular activation of the olefin detected. 

Figure 5.10 Intramolecular Cyclization 

© 
CH2 <=>/ 

£6F. 6^5 

R = 'Bu, Mes 
-CSF 6^5 

CfiF, 
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An X-ray crystallographic study of 5.5 (Figure 5.11, Table 5.2) confirmed the 

proposed connectivity, although rotational disorder of f-butyl groups dictated a 

constrained refinement. Related cyclic products have been generated by addition of PH 

bonds to a pendant olefinic group mediated by a lanthanide species. These have been 

proposed as catalytic hydrophosphination intermediates en route to the secondary 

phospholesHPCH(Me)(C3H6).
174'175 
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Figure 5.11 ORTEP of 5.5 

30% thermal ellipsoids are shown. Hydrogen atoms on carrbon are omitted for clarity. 

Selected metrical parameters {Distances (A) angles (°)}: P(l)-C(28) 1.791(12), P(l)-

C(24) 1.843(13), P(l)-C(20) 1.857(11), P(l)-C(23) 1.894(11), B(l)-C(7) 1.644(11), B(l)-

C(13) 1.651(11), B(l)-C(l) 1.656(11), B(l)-C(19) 1.691(13), C(19)-C(20) 1.500(9), 

C(20), C(21) 1.539(15), C(21)-C(22) 1.513(16), C(22)-C(23) 1.526(16), C(28)-P(l)-

C(24) 120.1(5), C(28)-P(l)-C(20) 117.7(5), C(24)-P(l)-C(20) 109.2(5), C(28)-P(l)-C(23) 

105.3(6), C(24)-P(l)-C(23) 106.3(6), C(20)-P(l)-C(23) 94.2(5), C(19)-C(20)-P(l) 

117.9(8), C(21)-C(20)-P(l) 103.3(7), C(22)-C(23)-P(l) 105.1(8), C(20)-C(19)-B(l) 

116.7(9), C(7)-B(l)-C(13) 102.6(8), C(7)-B(l)-C(l) 111.6(9), C(13)-B(l)-C(l) 116.3(8), 

C(7)-B(l)-C(19) 106.7(8), C(13)-B(l)-C(19) 115.8(10), C(l)-B(l)-C(19) 103.7(8), B(l)-

C(19)-C(20)-P(l) 172.4(9), C(28)-P(l)-C(20)-C(19) 36.9(12), C(24)-P(l)-C(20)-C(19) -

104.5(11) 
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The impact of the chain length was investigated in attempt to vary the size of the 

phosphine ring generated by this reaction. Reaction of 'B112PCH2CHCH2 and 

'Bu2P(CH2)9CHCH2 with B(C6F5)3 in CH2C12 resulted in the formation of the products 5.7 

and 5.8 in 51.4 and 50.0 % yield respectively. The 3,P{'H} NMR spectrum shows peaks 

at 51.8 and 55.0 indicating the formation of a four coordinate phosphonium cation. The 

'^{ 'H} and l9F NMR spectra indicates formation of the perfluoroaryl linked 

phosphonium-borates , 5.7 and 5.8 as illustrated in Figure 5.12. This was also supported 

by 'H and l3C NMR spectra, most tellingly by presence of remaining olefinic peaks 

between 4.89 - 5.88 ppm. 

^ ^ V P T J U , + P'Bu;, + BfQFj), 

Figure 5.12 Perfluoroaryl-Linked Phosphonium-Borates 

The formation of the perfluoroaryl linked phosphonium-borate via nucleophilic 

aromatic substitution is favoured over the intramolecular olefin activation due to the 

ability of the phosphine to intramolecularly add to the olefin. In the case of the phosphine 

with a 3 carbon linker between the phosphine and olefin, 'Bu2P(CH2)3CHCH2, a stable 

five-member ring is formed. However for the chain shortened species 'BU2PCH2CHCH2 

the expected intramolecular addition product would generate an unstable three member 

ring. Upon increasing the chain length to the phosphine 'Bu2P(CH2)9CHCH2 the ability of 
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the phosphine to "bite back" and add to the olefin is reduced the nucleophilic aromatic 

substitution is more rapid. 

5.3.4 Mechanistic Insights 

The mechanism of the present reactions is intriguing given that neither phosphines or 

boranes of this type are not known to react individually with olefins. It is tempting to 

suggest that these reactions are initiated by Lewis acid activation of the olefin, which 

prompts attack by the phosphine. This view is supported to some degree by the 

observations of Herrebout and van der Veken176 who reported IR data for the van der 

Waals BF3-ethylene and BF3-propylene complexes generated in an Argon matrix at 93-

125 K. We attempted to observe an analogous borane-olefin interaction by variable 

temperature NMR methods using solutions of B(C6Fs)3 in neat 1-hexene. At temperatures 

to -90°C no evidence of interaction was observed by l9F, n B or *H NMR spectroscopy. It 

is noteworthy that DFT calculations for ethylene-alane177 and borane adducts178 suggested 

weak ^-donation complexes are formed. In the case of the olefin-BF3 adduct, only small 

deviations to the geometry of the olefin and the borane were computed upon 

complexation178 suggesting that in the present cases, the phosphine nucleophile may play 

a significant role in driving the addition reaction. It is noteworthy that the conventional 

hydroboration reaction is postulated to proceed via a n-olefin-borane complex.179 As well, 

these additions of B and P across olefins are reminiscent of Br2 addition to olefins, as the 

latter is proposed to proceed via electrophilic bromonium ion (Br+, Lewis acid) attack 

followed by nucleophilic attack of bromide ion (Br', Lewis base).179 
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Very recent calculations by Papai and co-workers have suggested that in solution the 

'frustrated' Lewis pair combination P'Bus/B^Fs^ can exist as an encounter complex, 

held together by dispersion forces and weak intermolecular CH FC interactions with 

phosphorus / boron distances of approximately 4.2 A.180 (Figure 5.13) 

F 

Me 
Me 

,, Me 
'Me 

Figure 5.13 P'Bu3/B(C6F5)3 Encounter Complex 

It is proposed that the addition of P'Bus and B(C6Fs)3 to olefin occurs via a 

synergistic phosphine-olefin and borane-olefin interaction, and the addition process has a 

slight asynchronous character with the development of the B-C bond occurring before the 

formation of the P-C bond. This would develop an increased positive charge on the beta 

carbon of the olefin, which, in the cases of propylene and 1-hexene, would be stabilized 

by the electron donating pendant alkyl chain. Their results also support the 

regioselectivity of the addition to alkyl-substituted olefins, as the terminal CH2 group acts 

as a Lewis base due to the excess electron density on the primary carbon of the double 

bond.181 In a similar theoretical study, Guo and Li also suggest the intramolecular 
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cyclization of the phosphines with the olefinic substituent and B(C6F5)3 occurs through a 

similar concerted transition state.182 

5.4 Summary and Conclusions 

In summary, sterically frustrated Lewis pairs of bulky phosphines and the borane, 

B(C6F5)3 exhibit unprecedented reactivity with olefins, affording both intermolecular 

additions as well as intramolecular cyclizations. These reactions are all the more 

remarkable given that any pair of these reagents do not react but combination of the three 

reagents results in product formation. The expansion of the reactivity of the olefin 

activation is hindered by the nucleophilic aromatic substitution reactions. The utility of 

such remarkably selective three component reactions and the further reactivity of 

"frustrated" Lewis pairs are the subject of ongoing study. Currently, the development of 

novel boranes which prohibit jpara-nucleophilic substitution are being developed and the 

application to olefin activation being studied. Additionally, the investigation of three 

component reactions of phosphines, boranes and internal olefins, dienes and alkynes is 

being pursued. 
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Chapter 6: Summary 

The application of the concept of "frustrated" Lewis Pairs in the polymerization and 

activation of olefins has been investigated. 

Phosphonium-borates, phosphonium-alkoxyl borates, and phosphino-boranes, are all 

novel compounds derived from "frustrated" Lewis pairs and have been demonstrated to 

be effective co-catalysts for the polymerization of ethylene. The incorporation of a bulky 

phosphine moiety in a borane framework has been demonstrated to have an increase in 

the observed ethylene polymerization activity, due to the proposed increasing the ion-pair 

separation of the cation-anion systems through interactions of the Lewis basic phosphine 

with the cationic metal center. 

The use of sterically bulky phosphine additives to the polymerization of ethylene 

using the CpTiMe2(NP/Bu3)/B(C6Fs)3 catalyst systems results in observed polymerization 

activities greater than those observed for the parent catalyst system. The increase is 

observed activity is postulated to be a result of increasing the ion-pair separation of the 

cation-anion systems through interactions of the Lewis basic phosphine with the cationic 

metal center. 

The design and synthesis of sterically bulky phosphine-functionalized monomers was 

conducted and attempts to polymerize these monomers investigated. Although homo-

polymerizations attempts were unsuccessful, the phosphine functionalized monomer was 

co-polymerized with 1 -hexene, albeit in low percent yield and low incorporation of the 

functionality. Investigations of the potential inhibition pathways indicated the co-

polymerizations and homo-polymerizations of the phosphine-functionalized monomers 
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are inhibited by reactivity with the co-catalyst, intermolecular coordination of the 

phosphine functionality, and intramolecular coordination of the phosphine. 

Sterically "frustrated" Lewis pairs of phosphines and the borane, B(C6Fs)3 exhibit 

unprecedented reactivity with olefins, affording both intermolecular additions as well as 

intramolecular cyclizations. 
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Appendix A: Standard Ethylene Polymerization Results 

A.l Overview 

There are numerous factors that may affect polymerization results obtained using the 

Buchi reactor system. To ensure results obtained were comparable routine standards 

were run to evaluate reproducibility of the system. These polymerization results and 

analysis are outlined 

A. 1.1 Polymerization Protocol 

A.l.1.1 Description of Polymerization Reactor Set-up 

Polymerizations were performed in a 1 L Buchi reactor system. Following assembly, 

the reactor vessel and solvent storage unit were refilled with nitrogen via 4 

refill/evacuation cycles over at least 90 minutes. Approximately 600 mL of toluene was 

transferred to the solvent storage container from the purification column. The solvent was 

then purged with dry nitrogen for 20 minutes and transferred to the reactor vessel by 

differential pressure. In the reactor vessel, the solvent was stirred at 1500 ± 5 RPM and 

the temperature was kept constant at 30 ± 2 °C. Ethylene was introduced into the reactor 

vessel via five vent/refill cycles 
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A. 1.1.2 Description of Catalyst and Co-catalyst Preparation 

The pre-catalyst, co-catalyst and scrubber stock solutions were freshly prepared, 

loaded into syringes in a glovebox, and then transferred to the reactor immediately before 

injection to limit possibility of catalyst decomposition. An example polymerization 

experiment using CpTiMe2(NP'Bu3) as the catalyst, 1 equivalent of B(C6F5)3 as co-

catalyst, and 20 equivalents of T/BA1 as the scrubber will be used to describe how the 

stock solutions were prepared. 

Catalyst Solution: CpTiMe2(NP'Bu3) (0.012 g, 0.032 mmol) was weighed into a vial. 

Toluene (15.570 g, 18.0 mL) was then added to form a clear, light yellow solution. 1.0 

mL (0.0018 mmol CpTiMe2(NP'Bu3)) of the solution was transferred to a syringe for 

injection into the reactor. 

Co-Catalyst Solution: B(C6F5)3 (0.011 g, 0.022 mmol) was weighed into a vial. 

Toluene (15.570 g, 18.0 mL) was added to form a clear, colourless solution. 1.5 mL 

(0.0018 mmol B(C6F5)3, 1 equivalent) of the solution was transferred to a syringe for 

injection into the reactor. 

Scrubber Solution: 0.2 mL of a 25.2 weight % solution of T/BA1 in heptanes (0.18 

mmol AI/-BU3) was added to toluene (12.836 g, 14.84 mL) to produce a clear, colourless 

solution. 3.0 mL (0.036 mmol T/BA1, 20 equivalents) of the solution was transferred to a 

syringe for injection into the reactor. 

A. 1.1.3 Description of Polymerization Experiments 

The prepared solution of T/BA1 (3.0 mL) was injected into the reaction vessel through 

the catalyst injection inlet and allowed to stir for 5 min. The prepared CpTiMe2(NP'Bu3) 

solution (1.0 mL) was then injected into the reaction vessel followed immediately by 
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injection of the B(C6F5)3 solution (1.5 mL). The mixture was stirred at 1500 ± 5 RPM at 

30 °C under 2 atm of dynamic ethylene flow for 10 minutes. Temperature and ethylene 

flow rate were recorded manually at regular intervals. After 10 minutes, polymerization 

was stopped by closing the ethylene inlet valve and venting the reactor. Stirring was 

stopped, and the reactor disassembled. 

A.l.1.4 Description of Polymer Recovery and Work-up 

The contents of the reactor were emptied into a 4 L beaker that contained 

approximately 100 mL of 10% HC1 (v/v) in MeOH. The polymer that precipitated was 

then collected by filtration, washed with toluene and acetone, and dried overnight. 

Resulting polymer was weighed and polymerization activity calculated according to 

Equation 2.1: 

Equation 2.1: Polymerization Activity 

mass of polymer (g) 
Activity (gmmol xhrxatm l) = 

amount of catalyst (mmol)x time (hrjx pressure of ethylene (atm) 

A. 2 Polymerization Results 

A catalyst, CpTiMe2(NP'Bu3), concentration of 3 umol/L was used, and 1 equivalents 

of the co-catalyst. The polymerizations were conducted at 30°C for 10 minutes in toluene, 

under an atmosphere of 2 atm of ethylene. The results are shown in Table A.l. 
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Table A. 1 Polymerization Results 

Run 

1 

2 

3 

4 

5 

6 

7 

Activity1' 

15550 

13272 

15462 

13347 

12468 

13432 

14560 

Run 

8 

9 

10 

11 

12 

13 

Activity" 

16817 

13700 

15647 

13810 

14165 

15753 

a Polymerization Conditions: Catalyst - CpTiMe2[NP'Bu3] (3 umol/L), 1 equiv. co-catalyst, 20 equiv. 
T/BAL, ethylene pressure - 2 atm, polymerization time - 10 min, polymerization temperature - 30 °C 
b Activity reported in g mmol'1 hr'1 atm'1 

A.2.1 Average Activity 

To calculate the average activity for the 13 trials Equation A.l was employed. 

Equation A. 1 

Activity (gmmol 1Ar~1atm~1') = 
2] Activity (gmmol xhr ^atm ' ) 

Number of Trials 

A.2.2 Percent Difference 

To calculate the % difference between the highest activity and lowest activity observed 

equation A.2 was employed. 

Equation A.2 
\highest activity - lowest activity | (5) Ann 

i Difference = „ • • „ / • > x 1 0 ° 
average activity (g) 
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