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Abstract 

This study presents new structural observations and high precision major and trace 

element data for metamorphosed volcanic and sedimentary rocks in the Ivisaartoq (ca. 

3075 Ma), Ujarassuit (ca. 3070 Ma), and Storo (2800-2840 Ma) greenstone belts, Nuuk 

region, southwestern Greenland. The new data are used to investigate postdepositional 

alteration, petrogenesis of volcanic rocks, provenance of sedimentary rocks, and 

geodynamic setting. 

The Mesoarchean Ivisaartoq belt underwent two stages of calc-silicate alteration. 

Stage-I alteration appears to have resulted from sea-floor hydrothermal alteration. Stage-

II alteration was developed during the regional metamorphism. Both stages of alteration 

caused mobilization of major elements, large ion lithophile elements (LILE: Rb, Cs, Sr, 

Ba, Pb), and light rare earth elements (LREE). Heavy rare earth elements (HREE) and 

high field strength elements (HFSE: Th, Nb, Ta, Zr, Ti) remained relatively immobile 

during stage-I alteration but were variably disturbed during the stage-II metasomatism. 

Transition metals (e.g., Ni, V, Co, Cr, and Sc) were immobile during both metasomatic 

events. 

The geochemical characteristics of metavolcanic rocks in the Mesoarchean Ujarassuit 

and Ivisaartoq greenstone belts suggest that these belts include island arc tholeiites (IAT), 

andesites, boninites, subduction-related picrites, and normal-mid-ocean ridge basalts (N-

MORB). Metasedimentary rocks have low chemical indexes of alteration values (CIA = 

46 to 62), enriched LREE patterns, and high contents of transition metals, indicating that 

they have been derived from poorly weathered felsic to mafic source rocks. Accordingly, 

the Ujarassuit and Ivisaartoq greenstone belts are interpreted to represent dismembered 
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fragments of Mesoarchean supra-subduction zone oceanic crust formed either in a forearc 

or back-arc tectonic setting. 

The Neoarchean Store greenstone exhibit a tectonic contact with the surrounding 

tonalite-throndjemite-granodite (TTG) gneisses. Metavolcanic rocks in this belt possess 

near-flat to slightly enriched LREE patterns and pronounced negative Nb-Ta anomalies 

indicating a subduction zone geochemical signature. Metasedimentary rocks are 

characterized by low chemical indexes of alteration values (CIA = 50 to 71), high 

contents of transition metal, and enriched LREE patterns. These characteristics suggest a 

mixed-provenance consisting of poorly weathered felsic to mafic igneous source rocks. 

Collectively, the lithogeochemical characteristics of the Storo greenstone belt are 

consistent with a supra-subduction zone geodynamic setting. 
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CHAPTER 1 

Introduction 

1.1. Background on Archean geodynamics 

The Archean eon (ca. 3.8-2.5 Ga) corresponds to approximately 30% of earth history 

(cf. Van Kranendonk, 2007). Therefore, Archean cratons contain invaluable information 

on the geological processes in the early Earth. These cratons consist of associations of 

greenstone belts and tonalite-trondhjemite-granodiorite (TTG) orthogneisses. 

Metamorphic grade may range from prehnite-pumpellyite facies, through greenschist, to 

amphibolite facies (Wilkins, 1997). The oldest volcanic and sedimentary rocks on earth 

are preserved in the Archean greenstone belts. These belts are composed of ultramafic, 

mafic, intermediate, and felsic volcanic and volcaniclastic rocks. They also include 

chemical and siliciclastic sedimentary rocks. Volcanic rocks (-80 %) normally occur in 

greater proportion than the sedimentary counterparts (-20 %) (Condie, 1994). Therefore, 

any attempt to determine the depositional tectonic setting, or settings, of Archean 

greenstone belts requires an understanding of the magmatic processes in these belts. The 

surrounding TTG-gneisses may form the depositional basement of greenstone belts; or 

alternatively, they may exhibit intrusive or tectonic contacts (Ridley et al., 1997; Bleeker, 

2002; Thurston, 2002; Thurston and Ayres, 2004). Accordingly, greenstone belts may be 

either allochtonous or autochthonous, relative to the adjacent felsic crustal rocks. 

However, the original structural, stratigraphic, magmatic, and mineralogical 

characteristics of granite-greenstone terranes are rarely preserved, given strong 

overprinting by multiple episodes of ductile deformation, metamorphism, plutonism, and 

hydrothermal alteration. 
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The diverse lithological and geochemical characteristics of Archean greenstone belt 

volcanic rocks suggest various magma sources, petrological processes, and geodynamic 

environments (Eriksson et al., 2004). However, petrological studies of Archean 

greenstone belts are complicated, because advanced hydrothermal alteration and 

polyphase metamorphism modify the original geochemical characteristics of volcanic and 

sedimentary rocks (Gelinas, 1982; Ludden et al., 1982; Gruau et al., 1992; 1996; Polat 

and Hofmann, 2003; Terabayashi et al, 2003; Weiershauser and Spooner, 2005). The 

recognition and characterization of volcanic rocks with near-primary magmatic 

geochemical signatures and those with altered geochemical patterns is one of the most 

fundamental problems to be resolved in geochemical studies of Archean greenstone belts. 

Structural, geochronological, geochemical, and geophysical investigations have 

provided evidence, although disputed in some cases, indicating that Archean plate 

tectonic processes were comparable with those in the Phanerozoic earth (see Cawood et 

al., 2006). Some of the most significant evidence include: 1) the discovery of 

Paleoarchean sheeted dykes in the Isua greenstone belt (Furnes et al., 2007); 2) the 

recognition of Archean eclogites in the Baltic Shield (Volodichev et al., 2004); 3) 

fragments of Neoarchean (2505 Ma) suprasubduction zone oceanic crust in the North 

China craton (Kusky et al., 2004; Polat et al., 2006); 4) well recorded, subduction 

accretion processes and strike-slip fault tectonics in the 2.7 Ga Abitibi and Wawa 

subprovinces of the Superior Province (Mueller et al., 1996; Polat et al., 1998; Polat and 

Kerrich, 2001; Daigneault et al., 2002); 5) occurrence of Archean hot subduction zone 

volcanic rocks including boninites, picrites, adakites, high-Mg andesites, and Nb-enriched 

basalts (Polat and Kerrich, 2006); and 6) recognition of seismic reflectors extending for 

approximately 30 km down into the lithospheric mantle, indicating a 2.7 Ga old fossil 
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subduction zone in the Superior Province (Calvert et al., 1995). In addition, Archean 

greenstone belts also include well-documented continental rift volcano-sedimentary 

sequences. Some of those belts occur in the Slave province, Rae province, Dharwar 

craton, and Baltic shield (see Chardon et al., 1998; Thurston and Kozhevnikov, 2000; 

Bleeker, 2002; Srivastava et al., 2002; Hartlaub et al., 2004). 

Accordingly, greenstone belts may have formed in various tectonic settings including 

intra-oceanic subduction zones and active continental margins, mid-ocean ridges, oceanic 

plateaus, and continental rifts (cf. Abbott, 1996; Ohta et al., 1996; Percival, et al., 1997; 

Polat et al., 1998; Kloppenburg et al., 2001; Polat and Kerrich, 2001; Bleeker, 2002; 

Nutman et al., 2002; Dostal and Mueller, 2004; Smithies et al., 2004; Thurston and Ayres, 

2004). A single greenstone belt may comprise a collage of rock units formed in different 

tectonic environments, resembling modern subduction-accretion complexes (Percival et 

al., 1997, Polat and Kerrich 2001; Hickman, 2004). Therefore, there is not a unique 

tectonic environment applicable to all greenstone belts (Polat and Kerrich, 2006). 

Despite the acceptance of Archean plate tectonics by many researchers, Archean 

geodynamic processes remain controversial (see Hamilton, 1993; 1998; 2003; Eriksson 

and Catuneanu, 2004; Kerrich and Polat, 2006). Vertical tectonics, as opposed to 

Phanerozoic-like horizontal tectonics, has been suggested to explain the origin of dome 

and keel structures that characterize some Archean granite-greenstone terranes (e.g., 

Chardon et al., 1998; Hamilton, 1998). Vertical tectonics appears to be the result of 

granitic diapirism, which is driven by convective overturn of a density inverted crustal 

profile with a lower to middle granitic crust overlain by a hot upper basaltic crust (Rey et 

al., 2003). In this model, greenstone belts are the products of intra-continental magmatism, 

similar to continental flood basalts or continental rifts. The regional structure of the East 
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Pilbara granite-greenstone terrane has been interpreted as a result of vertical tectonics 

owing to prolonged plume-related magmatism (Hickman, 2004; Van Kranendonk, et al., 

2004; Smithies et al., 2007). Some researchers have suggested that both vertical and 

horizontal tectonic processes operated in the Archean (Van Kranendonk et al., 2004; Lin, 

2005; Smithies et al., 2007). 

The operation of Phanerozoic-style plate tectonic processes in the Archean implies 

that Archean greenstone belts with volcanic rocks having intra-oceanic geochemical 

signatures may be the equivalents of Phanerozoic ophiolite complexes (Dilek and Polat, 

2008; Sylvester et al., 1997). However, the existence of Archean ophiolites has been 

questioned, given the apparent absence of Archean greenstone belts with a complete 

Penrose-type ophiolite pseudostratigraphy (cf. McCall, 2003). A complete and 

undeformed Penrose-type ophiolite will display a layer cake pseudostratigraphy 

consisting of, from bottom to top, tectonized upper mantle, ultramafic to mafic cumulates, 

mafic sheeted dykes, pillowed and massive basaltic lava flows, and an uppermost layer of 

sediments (Anonymous, 1972). However, over the last 50 years, comparative studies of 

Phanerozoic ophiolites and modern ocean floor have revealed more complex and diverse 

stratigraphic, geochemical, and petrological characteristics (see Dilek, 2003; Kusky, 

2004a,b; De Wit, 2004; Dilek and Polat, 2008). These studies have shown that ophiolites 

may form in diverse geodynamic settings, different from mid-ocean ridges. Therefore, 

neither Phanerozoic nor Archean ophiolites need to display a typical Penrose-type 

internal structure (Sylvester et al., 1997; Kusky, 2004b). 

Despite the significance of Archean greenstone belts to understanding the evolution 

of early earth systems, 80% of those belts, worldwide, have not been investigated in detail 

(see De Wit, 2004). To resolve the above outstanding issues in Archean greenstone belts, 
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I have investigated the structural and geochemical characteristics of several unstudied 

Meso- to Neoarchean greenstone belts in the Nuuk Region of southern West Greenland 

(Fig. 1.1). These include the Ivisaartoq, Ujarassuit, and Store greenstone belts. Detailed 

field observations and new high precision major and trace element data are reported for 

ultramafic to intermediate volcanic rocks, and associated siliciclastic sedimentary rocks, 

to understand their postmagmatic hydrothermal alteration, petrogenesis, tectonic settings 

of origin, and sedimentary provenance. This study provides new evidence supporting 

Phanerozoic-style plate tectonic processes in the Archean, and the existence of 

dismembered Archean ophiolites formed at suprasubduction zone settings. 

1.2. Meso- to Neoarchean greenstone belts of the Nuuk Region, SW Greenland 

The Nuuk region of southern West Greenland is part of the Archean North Atlantic 

craton (Nutman, 1997). The region is formed by associations of Eo- to Neoarchean (3850 

to 2800 Ma) TTG-gneisses, greenstone belts, anorthosite-gabbro complexes, and layered 

and massive ultramafic rocks (Garde, 2003) (Fig. 1.1). Numerous studies have been 

conducted in the region since the recognition of orthogneisses older than 3600 Ma, and 

volcanic and sedimentary rocks, in Isua greenstone belt, of approximately 3800 to 3700 

Ma in age (McGregor, 1973; Moorbath et al., 1973; Bridgwater et al., 1974; Nutman et al., 

1996, 2001, 2004). Detailed structural, geochronological, and geochemical studies have 

indicated that the Nuuk region comprises a collage of several allochtonous terranes (Fig. 

1.1) with different geological history prior to their final juxtaposition (Friend et al. 1987, 

1988, 1996; Nutman et al, 1989, 1993, 1996, 2001, 2004, 2007; McGregor et al. 1991; 

Crowley et al., 2002; Friend and Nutman, 2005). These studies have proposed that the 

amalgamation of tectono-stratigraphic terranes occurred within a period of approximately 
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400 Ma, as a result of multiple continent-continent collisions taking place between 2960 

to 2600 Ma. Therefore, the Nuuk region appear to be one of the best documented 

examples of Archean collisional orogenesis (see Nutman and Friend, 2007), and its 

tectonic evolution is believed to be an analogue of Phanerozoic Alpine-Himalayan and 

Altaid orogens (cf. Coney et al., 1980; Sengor, 1990; Sengor and Natal'in, 2004). 

The tectono-stratigraphic terrane model proposed for the Nuuk region predicts the 

development of intra-oceanic and intra-continental subduction zones, and obduction of 

oceanic terranes such as oceanic plateaus, mid-ocean ridges, and island arcs. 

Consequently, the Ivisaartoq, Ujarassuit, and Store greenstone belts may represent 

remnants of Archean oceanic crust, juxtaposed with felsic crust during collisional 

orogenesis (Fig. 1.1). Therefore, these greenstone belts could be the Archean equivalents 

of fragments of Phanerozoic ophiolites (cf. Sengor, 1990; De Wit, 2004; §engor and 

Natal'in, 2004; Dilek and Polat, 2008). Or alternatively, they may represent continental 

rift and continental flood basalts, deformed and metamorphosed during collisional 

orogenesis. 

The Eoarchean Isua greenstone belt comprises ultramafic to mafic volcanic rocks 

with geochemical characteristics that are consistent with an intra-oceanic subduction zone 

setting (Polat et al., 2003; 2004). In the Akia terrane (Fig. 1.1), the Mesoarchean Qussuk 

greenstone belt has been interpreted to represent a relict island arc build on basaltic 

oceanic crust (Garde, 2007). Thus, the structural and geochemical characteristics of Isua 

and Qussuk greenstone belts are consistent with the collisional model proposed for the 

Nuuk region. However, this interpretation cannot be extended to other unstudied Meso- to 

Neoarchean greenstone belts in the area (Fig. 1.1). 
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Despite the recent advances in understanding the geological evolution of the Nuuk 

region, several problems remain to be resolved: 1) the first-order structural and 

geochemical characteristics of the majority of greenstone belts have not been studied in 

detail; 2) the geodynamic setting of these belts is not known; and 3) their magmatic and 

postmagmatic evolution is not well understood. To resolve these problems, in this thesis I 

have studied the results of a detailed field and geochemical investigation of the 

Mesoarchean Ujarassuit and Ivisaartoq greenstone belts, and the Neoarchean Store 

greenstone belt (Fig. 1.1). These belts were chosen given that they belong to the central 

Nuuk region where the tectonic terrane model has been best investigated (Fig. 1.1), and 

because they are part of different tectono-stratigraphic terranes. Therefore, these 

greenstone belts are key elements in testing the current geological models for the region, 

and also provide an excellent opportunity to understand Archean geodynamic processes. 

1.3. Objectives 

There are several fundamental questions regarding on the origin of the Meso- to 

Neoarchean greenstone belts in the Nuuk region: 

1) Are greenstone belts in the Nuuk Region the product of intra-oceanic or intra-

continental magmatism? 

2) Are volcanic rocks in these belts comparable with those erupted in 

Phanerozoic volcanic arcs, oceanic plateaus, mid-ocean ridges, continental 

rifts, or continental flood basalts? 

3) What are the effects of high-grade metamorphism and postmagmatic alteration 

on the original magmatic geochemical signatures? 
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4) What are the characteristics of the Archean mantle source for ultramafic to 

mafic rocks in the belts? 

5) Do these belts represent relict Archean oceanic crust? 

6) How different is the Archean volcanism recorded in these greenstone belts 

from modern volcanism? 

7) Are siliciclastic sedimentary rocks contained in these belts derived from older 

continental rocks or juvenile volcanic-plutonic rocks? 

8) What are the implications of these greenstone belts for the geological 

evolution of the Nuuk region and Archean geodynamics? 

To resolve these questions and to test terrane accretion and crustal evolution models 

in the Nuuk region, the following objectives were proposed in this study: 

1) To study the structural characteristics of greenstone belts in the Nuuk region. 

2) To analyze volcanic and sedimentary rocks for their rare earth elements (REE), 

high field strength elements (HFSE), large ion lithophile elements (LILE), and 

transition metal concentrations. 

3) To investigate the effects of postmagmatic alteration on the near-primary 

geochemical characteristics of these rocks. 

4) To understand the petrologic evolution of individual volcanic associations. 

5) To asses the role of crustal contamination. 

6) To characterize the tectonic setting or settings. 

7) To investigate the provenance for siliciclastic sedimentary rocks in these belts. 

8) To compare the geochemical and structural characteristics of greenstone belts 

in the study area with other greenstones in the area and worldwide. 
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1.4. Outline of thesis structure 

This thesis consists of 5 chapters. Chapter 1 is the introduction for the thesis and 

Chapter 5 presents a summary of this study. Chapters 2 to 4 are a collection of three 

manuscripts published and submitted to peer reviewed scientific journals. 

A version of Chapter 2 was published as a research article in Precambrian Research. 

This chapter investigates in detail the postmagmatic geochemical changes experienced by 

mafic and ultramafic volcanic rocks, in the Ivisaartoq greenstone belt, during multistage 

hydrothermal alteration. Through detailed field work and petrographic observations, at 

least two stages of calc-silicate metasomatism were identified. Stage-I metasomatic 

alteration occurred during sea floor hydrothermal alteration, whereas stage-II alteration 

occurred during regional prograde metamorphism at upper amphibolite facies conditions. 

High precision major and trace element geochemistry of 40 samples including altered and 

unaltered mafic to ultramafic rocks were analyzed to understand the cumulative effects of 

prolonged alteration on the primary magmatic geochemical signatures. 

A version of Chapter 3 has been submitted to be considered for publication in a 

Lithos special issue on "Mantle dynamics and crust-mantle interactions in collisional 

orogens". This chapter discusses the structural and geochemical evolution of the 

Ujarassuit and Ivisaartoq greenstone belts. Structural observations indicate at least three 

phases of ductile deformation at upper amphibolite facies metamorphic conditions. High 

precision major and trace element data are reported for 34 samples of volcanic rocks to 

understand their postmagmatic geochemical changes, petrogenesis, mantle source 

characteristics, and geodynamic setting of origin. In addition, 13 samples of sedimentary 

rocks were also analyzed for their geochemistry in order to understand the weathering 
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history of source rocks, their provenance, and to provide additional constraints on the 

geodynamic setting of Ujarassuit and Ivisaartoq greenstone belts. 

A version of Chapter 4 has been submitted to Precambrian Research. This chapter 

discusses the field and geochemical characteristics of volcanic and sedimentary rocks in 

the Store greenstone belt. A comprehensive analysis of postmagmatic alteration, 

petrogenesis, mantle source characteristics, and sediment provenance is integrated into a 

model to explain the geodynamic setting of origin of this belt. In addition, the field 

observations and geochemical data of supracrustal rocks in the Store greenstone belt are 

compared with those of the Qussuk, Ujarassuit, and Ivisaartoq greenstone belts (Fig. 1.1). 
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Figure 1.1. Geological map showing the Eo- to Neoarchean tectonostratigraphic terranes of the 

Nuuk Region. Also indicated are the locations of Isua, Ujarassuit, Ivisaartoq, Qussuk, and Store 

greenstone belts. The map is adapted from Friend and Nutman (2005), and Nutman and Friend 

(2007). 
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CHAPTER 2 

Evidence for HFSE and REE mobility during calc-silicate metasomatism, 

Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland 

2.1. Introduction 

Many Archean greenstone belts display geochemical and petrographic evidence for 

post-magmatic alteration resulting from fluid-rock interaction during sea-floor, regional, 

and contact metamorphism (Fryer et al., 1979; Gruau et al., 1992; 1996; Lahaye et al., 

1995; Polat et al., 2003; Terabayashi et al., 2003; Weiershauser and Spooner, 2005). 

Alteration processes in the Archean appear to have significantly modified the primary 

igneous textures and geochemical signatures of greenstone belts. Post-depositional 

alteration generally results in the mobility of most major elements and LILE (e.g., K, Sr, 

Rb, Cs, Ba, Pb), whereas the abundances of the REE (La-Lu), HFSE (e.g., Zr, Hf, Nb, Ta, 

Ti, Y), and transition metals (e.g., Ni, Cr, Co, V, Sc) are not significantly changed 

(Gelinas et al., 1982; Ludden et al., 1982; Middelburg et al, 1988; Polat and Hofmann, 

2003). Therefore, most Archean metavolcanic rocks appear to have preserved only near-

primary REE, HFSE, and transition metal geochemical compositions. 

Systematic investigation of chemical changes occurring at different stages of post-

magmatic alteration is important to understand the origin and geodynamic evolution of 

Archean greenstone belts. However, resolving post-magmatic alteration events is 

sometimes hindered by multiple episodes of deformation, metamorphism, and plutonism 

that invariably affected greenstone belts. 

Despite amphibolite facies metamorphism and polyphase deformation (Hall and 

Friend, 1979; Chadwick, 1985, 1990; Friend and Nutman, 2005), the Ivisaartoq belt 
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exhibits well preserved field relationships allowing the recognition of at least two 

successive stages of calc-silicate metasomatism. An early metasomatic event (stage-I) 

occurred during sea-floor hydrothermal alteration and was followed by intense 

metasomatism (stage-II) coeval with the regional dynamothermal metamorphism (Polat et 

al., 2007). The stage-I metasomatism is best recorded in pillow cores and rims, displaying 

a metasomatic zonation decreasing in intensity towards the pillow rims. The stage-II calc-

silicate metasomatism is best recorded in concordant to discordant boudinaged calc-

silicate layers preferentially located along shear zones. 

The occurrence of non-metasomatized versus concentrically zoned pillow basalts, and 

their highly deformed counterparts (mafic amphibolites) variably affected by the stage-II 

calc-silicate alteration provides a unique opportunity to evaluate the geochemical effects 

associated with the different stages of post-magmatic alteration. The effects of the stage-I 

metasomatism on the primary geochemical characteristics of mafic and ultramafic rocks 

of the Ivisaartoq belt were investigated by Polat et al. (2007a). However, the geochemical 

changes resulting from the subsequent stage-II metasomatism and its effects on the near-

primary magmatic composition of Ivisaartoq volcanic rocks are unknown. Accordingly, 

we present new field, petrographic, and geochemical data from the second stage 

metasomatic rocks and associated mafic and ultramafic amphibolites to understand the 

chemical and mineralogical changes that occurred during this alteration event. We report 

new, high precision major and trace element data for a total of 40 samples (25 

amphibolites, and 15 calc-silicate rocks) to asses the effects of stage-II metasomatism on 

element mobility. The data presented in this study provide new insights into the 

geochemical effects of post-magmatic alteration on mafic to ultramafic rocks of the 
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Ivisaartoq greenstone belt and their implications on the petrogenetic and geodynamic 

evolution of the belt. 

2.2. Regional geology and field characteristics 

The Ivisaartoq greenstone belt is one of the largest and best preserved Archean 

greenstone belts in the Nuuk region, SW Greenland (Fig. 2.1). This belt forms an 

asymmetric syncline approximately 30 km long and 1 to 5 km wide. Structural and 

geochronological studies have shown that the Nuuk region is formed by several tectono-

stratigraphic terranes ranging in age from 2860 to 3870 Ma (Friend et al., 1987, 1988, 

1996; Nutman et al. 1989, 1993; Friend and Nutman, 2005; Garde, 2007). The Ivisaartoq 

belt is located within the ca. 3075-2960 Ma Kapisilik terrane and has an average U-Pb 

zircon age of-3075 Ma (Friend and Nutman, 2005; Polat et al., 2007). The minimum age 

of the belt is indicated by 2963±12 Ma old granites intruding the belt (Friend and Nutman, 

2005). 

The Ivisaartoq belt is composed primarily of mafic and ultramafic amphibolites with 

minor intercalations of paragneisses, pelitic schists, quartzites, and ultramafic schists with 

relict olivine (Fig. 2.2). These rocks are the result of intense deformation and 

amphibolite-facies metamorphism of basalts, picrites, gabbros, diorites, siliciclastic 

sedimentary rocks, sulphide-bearing siliceous volcaniclastic (?) rocks, and ultramafic 

cumulates (Hall, 1980; Brewer et al., 1984; Chadwick, 1985, 1986; 1990; Polat et al., 

2007). Despite deformation and metamorphism, primary magmatic features such as 

pillow flows, concentric cooling-cracks and drainage cavities in pillows (Fig. 2.3a-b), 

volcanic breccia, ocelli structures in basalts, magmatic layering, and cumulate textures are 

well preserved in low-strain zones. 
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Chadwick (1990) subdivided the belt into upper and lower amphibolite groups (Fig. 

2.2). Primary magmatic features are well preserved in the upper group. In contrast, the 

lower group is more deformed, and most of the primary magmatic features have been 

obliterated. These lithotectonic groups are bounded by an ENE-trending alteration zone 

approximately 50 m thick and -10 km long. A nearly continuous thin (-10 m thick) sheet 

of magnetite-rich ultramafic amphibolite, called the magnetic marker, occurs within this 

zone and has been used as a lithologic marker separating the upper and lower groups 

(Chadwick, 1985, 1990). Deformation in mafic and ultramafic rocks of the upper 

amphibolite group increases towards the magnetic marker. Therefore, mafic and 

ultramafic amphibolites around the contact zone are the highly strained counterparts of 

the less-deformed basaltic and picritic pillowed lavas occurring higher up in the sequence. 

These structural characteristics suggest that major deformation was accommodated at the 

contact between the lower and the upper groups. This zone has been interpreted as a 

tectonic contact (Polat et al., 2007). 

The stage-I calc-silicate alteration overprints mineral assemblages in pillow cores, 

pillow interstitials, and contacts between pillows and gabbros (Fig. 2.3a-b). This 

alteration is well exposed in the upper amphibolite group. Metasomatized pillow basalts 

exhibit concentric structure with distinct mineralogical and chemical composition (Fig. 

2.3a-b). From core to rim these include (1) empty or quartz-filled drainage cavities, (2) 

calc-silicate rich (diopside ± epidote ± scapolite) inner pillow cores, (3) calc-silicate free 

outer pillow cores, and (4) amphibole-rich pillow rims (metamorphosed chilled margins). 

Outer pillow cores preserve near-primary basaltic composition (Polat et al., 2007). This 

concentric mineralogical and chemical zonation (Fig. 2.3b) appears to have resulted from 

circulation of hydrothermal fluids through drainage cavities during the early stage of sea-
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floor alteration predating the regional metamorphism and deformation (Appel, 1994, 

1997; Raith et al., 2006; Polat et al., 2007). 

The stage-II calc-silicate rocks exhibit mineral assemblages indicating prograde 

(assemblages Ha, lib) to retrograde (assemblage lie) metamorphic conditions (Table 2.1). 

Prograde calc-silicates occur as centimeter- to meter-scale boudinaged layers and are 

concordant to the regional foliation (Fig. 2.3c-d). They contain relict enclaves of 

amphibolites up to 1 m long and 0.5 m wide (Fig. 2.3d). Retrograde calc-silicates occur as 

brittle veins crosscutting the regional foliation and as patchy alterations overprinting the 

prograde assemblages (Fig. 2.3e-f). The stage-II calc-silicate rocks are associated with 

shear zones and are dominant along the contact between the upper and lower amphibolite 

groups in the vicinity of the magnetic marker (Fig. 2.2). 

2.3. Petrography 

Mafic amphibolites are composed of hornblende (60-80%) + plagioclase (5-20%) + 

quartz (5-20%) + titanite (0-2%) ± Fe-Ti oxides (0-5%) ± apatite (< 1%) (Fig. 2.4a). 

Biotite and fibrolitic actinolite and tremolite locally replace hornblende. In some locations 

amphibole is replaced by epidote and diopside. These calc-silicate minerals occur as 

disseminations and as thin layers (1-5 mm) concordant to the prevalent foliation. 

Amphibolites with mylonitic fabrics are locally present. They contain hornblende 

porphyroclasts with undulose extinction, subgrains, and kink folding (Fig. 2.4b-c). 

Ultramafic amphibolites are composed primarily of actinolite, with minor tremolite 

and hornblende (<10%) (Fig. 2.4d). Actinolite and tremolite form aggregates with 

preferential orientation. Some ultramafic amphibolites are partially to completely 

replaced by chlorite. Calcite and biotite are occasionally associated with this alteration. 
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Mylonitic fabrics similar to those displayed by the mafic amphibolites are also present in 

ultramafic amphibolites. 

Detailed petrographic description of stage-I calc-silicates are given in Polat et al. 

(2007). The stage-II calc-silicate rocks are of stratabound appearance, replacing the mafic 

and ultramafic amphibolites, and gabbroic dykes (Fig. 2.3c-f). They are composed of 

diopside (10-80%) + epidote (30-85%) + quartz (1-20%) + plagioclase (0-5%) ± garnet 

(0-5%) ± Fe-Ti oxides (< 1%) ± titanite (< 1%) ± calcite (< 1%) (Table 2.1, Fig. 2.5a-f). 

Scheelite and vesuvianite have been documented by Appel (1983, 1994, 1997). 

The stage-II calc-silicates include two phases of prograde (assemblages Ha, lib) and 

one phase of retrograde (assemblage lie) metamorphism (Table 2.1). The prograde 

metasomatic assemblage Ha is characterized by fine-grained aggregates of epidote + 

clinozoisite + clinopyroxene + quartz + plagioclase + titanite ± apatite (Fig. 2.5a). 

Clinopyroxene is rich in diopside component (Polat et al., 2007). This assemblage is the 

most abundant and occurs as concordant (relative to the regional foliation) boudinaged 

layers replacing the mafic and ultramafic amphibolites. 

The prograde metasomatic assemblage lib consists of coarse-grained clinopyroxene 

(second generation) and garnet (Fig. 2.5b). Garnet is composed of grossular-andradite, 

and clinopyroxene is dominated by diopside (Polat et al., 2007). The assemblage lib 

replaces the epidote-rich metasomatic assemblage Ila. Diopside and garnet have smooth 

contacts indicating growth at equilibrium conditions. Diopside also forms massive pods 

of coarse-grained (up to 4 cm) crystals overprinting the metasomatic assemblage Ila. 

The retrograde metasomatic assemblage lie consists predominantly of epidote 

(second generation) with minor quartz, amphibole, and calcite. This assemblage occurs as 

patchy alterations and brittle veins (Table 2.1). Coarse-grained patchy epidote overprints 
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earlier assemblages (Ha and lib) and contains relict skeletal inclusions of garnet, diopside, 

and idioblastic titanite (Fig. 2.5c). This assemblage shows cataclastic texture with angular 

porphyroclasts of diopside, quartz, and plagioclase (assemblages Ha and lib) cemented by 

a groundmass of late epidote, clinozoisite, and minor calcite (Fig. 2.5d). Tremolite is 

locally associated with this assemblage and mantles diopside. Epidote veins are highly 

discordant and crosscut amphibolites, stage-I calc-silicates, and calc-silicate assemblages 

Ha and lib. Fine veinlets (< 0.5 mm) of epidote and rare calcite crosscut the prograde 

assemblages (Fig. 2.5e-f). 

2.4. Analytical methods and data presentation 

Samples were pulverized using an agate mill in the Department of Earth and 

Environmental Sciences of the University of Windsor, Canada. Major elements and some 

trace elements (Sc and Zr) were analyzed on a Thermo Jarrel-Ash ENVIRO IIICP-OES 

by Activation laboratories Ltd. (ATCLABS) in Ancaster, Canada. The samples were 

mixed with a flux of lithium metaborate and lithium tetraborate, and fused at 1000 °C in 

an induction furnace. The molten beads were rapidly digested in a solution of 5% HNO3 

containing an internal standard, and mixed continuously until complete dissolution. Loss 

on ignition (LOI) was determined by measuring weight loss upon heating to 1100 °C over 

a three hour period. Totals of major elements are 100 ± 1 wt.% and their analytical 

precisions are of 1-2%. The analytical precisions for Sc and Zr are better than 5%. 

Transition metals (Ni, Co, Cr, and V), REE, HFSE, and LILE were analyzed on a high-

sensitivity Thermo Elemental X7 ICP-MS in the Great Lakes Institute for Environmental 

Research (GLIER), University of Windsor, Canada, following the protocols of Jenner et 

al. (1990). Samples dissolution was conducted under clean lab conditions with double 
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distilled acids. Approximately 100-130 mg of sample powder was used for acid digestion. 

Samples were dissolved in Teflon bombs in a concentrated mixture of HF-HNO3 at a 

temperature of 120 °C for 3 days and then further attacked with 50% HNO3 until no 

visible solid residue was left. Hawaiian basalt standards BHVO-1 and BHVO-2 were 

used as reference materials to estimate precision and accuracy. Analytical precisions are 

estimated as follows: 3-10% for REE, Y, Nb, Rb, Sr, Cs, Ba, Cu, and Co; 10-20% for Li, 

Ni, Zn, Ta, Th, and U; and 20-30% for Pb, V, and Cr. 

Major element analyses were recalculated to 100 wt.% anhydrous basis for inter-

comparisons. Chondrite and primitive mantle reservoir compositions are those of Sun and 

McDonough (1989) and Hofmann (1988), respectively. The Eu (Eu/Eu*), Ce (Ce/Ce*), 

Nb (Nb/Nb*), Ti (Ti/Ti*), and Zr (Zr/Zr*) anomalies were calculated with the following 

equation after Taylor and McLennan (1985): 

A/A* = AN/([(BN)(CN)]1/2 

where 

A/A* = Element anomaly 

AN = Chondrite normalization for Eu and Ce anomalies, and primitive mantle 

normalization for Nb, Ti, and Zr anomalies. 

BN and CN = Neighboring immobile elements as follow: Sm and Gd for Eu/Eu*; 

La and Pr for Ce/Ce*, Th and La for Nb/Nb*, Nd and Sm for Zr/Zr*, and Tb and 

Dy for Ti/Ti*. 

These geochemical anomalies are used for petrogenesis only in samples with near 

primary magmatic composition. Mg-numbers (%) were calculated as the molecular ratio 

of Mg2+/(Mg2+ + Fe2+) where Fe2+ is assumed to be 90% of the total Fe. 
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2.5. Geochemical results 

2.5.1. Mafic amphibolites 

Mafic amphibolites are characterized by Mg-numbers ranging from 43 to 67. They 

have variable Si02 (42.9 to 56.9 wt.%), MgO (4.6-11.4 wt.%), Na20 (0.80-4.0 wt.%), 

K20 (< 0.01-0.87 wt.%), Fe203 (7.1-20.6 wt.%), and CaO (7.3-14.7 wt.%) contents. 

Zirconium ranges from 31 to 95 ppm (Figs. 2.6-2.7; Table 2.2). They do not display 

significant correlations on Zr versus Na20, K20, Fe203, and LILE (Rb, Sr, and Pb) 

diagrams (Figs. 2.6-2.7). Niobium, Th, and LREE show variably scattered patterns on Zr 

variation diagrams. In contrast, HREE, A1203, Ti02, Ni, Sc, V, and Co show good 

correlation with Zr. The majority of samples possess Zr/Y ratios similar to those found in 

modern tholeiitic basalts (1.0-3.7 vs. < 2.0-4.5 in tholeiites) (cf. Barrett and MacLean, 

1994). 

Mafic amphibolites can be subdivided into four groups on the basis of the trace 

element systematics (Fig. 2.8). Group 1 amphibolites display near-flat REE patterns 

(La/Ybcn=0.8-l.l). They possess negative Nb (Nb/Nb*=0.42-0.67), and negative to 

slightly positive Ti (Ti/Ti*=0.67-1.14) and Zr (Zr/Zr*=0.83-1.19) anomalies (Table 2.2; 

Fig. 2.8a-b). The europium anomalies (Eu/Eu*=0.88-1.05) are not pronounced. 

Group 2 amphibolites are characterized by U-shape REE patterns (La/Smcn=2.6-3.0, 

Gd/Ybcn=0.28-0.43). They display positive Nb (Nb/Nb*=1.3-1.5) and Eu (Eu/Eu*=1.95-

2.32) anomalies, and strong negative to positive Ti (Ti/Ti*=0.23-6.27) and Zr 

(Zr/Zr*=0.41-8.2) anomalies (Table 2.2; Fig. 2.8c-d). 

Group 3 amphibolites display variably depleted LREE patterns (La/Smcn=0.3-0.9). 

They possess negative Nb (Nb/Nb*=0.2-0.9), and negative to positive Ti (Ti/Ti*=0.35-

1.17), Zr (Zr/Zr*=0.79-1.17), and Eu (Eu/Eu*= 0.55-1.10) anomalies (Fig. 2.8e-f). 
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Group 4 amphibolites have positively fractionated REE patterns (La/Ybcn=1.0-3.5; 

Gd/Ybcn=1.5-1.6). They exhibit negative to positive Zr (Zr/Zr*=0.58-1.18) anomalies, 

and negative Nb (Nb/Nb*=0.22-0.54), Ti (Ti/Ti*=0.72-0.88), and Eu (Eu/Eu*= 0.89-

0.91) anomalies. 

2.5.2. Ultramafic amphibolites 

Ultramafic amphibolites are compositionally variable at 44.2-53.4 wt.% Si02, 15.5-

25.6 wt.% MgO, 6.8-12.4 wt.% Fe203, 0.2-2.4 wt.% Na20, and 0.02-0.30 wt.% K20 (Figs. 

2.6-2.7). Mg-numbers range from 73 to 87. Low Zr contents (7-32 ppm) are consistent 

with an ultramafic composition. On Zr variation diagrams, Ti02 and AI2O3 display 

positive correlations, whereas Ni shows a negative correlation (Figs. 2.6-2.7). They 

exhibit Zr/Y ratios mostly between 1.6 and 3.5 (Table 2.2). 

Ultramafic amphibolites show variable characteristics on chondrite- and primitive 

mantle-normalized trace element diagrams (Fig. 2.9). Some ultramafic amphibolites have 

consistent negative Nb (Nb/Nb*=0.23-0.40) anomalies, slightly enriched LREE, and 

near-flat HREE (La/Ybcn=1.7-3.3; Gd/Ybcn=0.8-1.2) patterns (Fig. 2.9a-b). Other samples 

display negative to positive Nb (Nb/Nb*=0.06-2.64) anomalies, and depleted to highly 

enriched LREE (La/Ybcn=0.44-22.1) patterns (Fig. 2.9c-d). 

2.5.3. Calc-silicate rocks 

As a group, the stage-II calc-silicate rocks have highly variable geochemical 

characteristics (Figs. 2.6-2.7). Relative to the mafic and ultramafic amphibolites, they 

have comparable compositional ranges of Si02 (43-57 wt.%), Ti02 (0.17-1.84 wt.%), 

A1203 (1.0-16.4 wt.%), Zr (9-113 ppm), and Y (3.4-50.3 ppm) (Table 2.3). They have 
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higher CaO (15-30 wt.%), and lower MgO (2-11 wt.%), K20 (O.01-0.15 wt.%), and 

Fe203 (5.7-14.9 wt.%) than amphibolites at a given Zr content. They have large variations 

in Na20 (0.09-2.7 wt.%), MnO (0.10-0.64 wt.%), Sr (40-2000 ppm), and Pb (2-36 ppm) 

contents. 

The calc-silicate rocks display variable trace element characteristics on chondrite-

and primitive mantle-normalized diagrams (Fig. 2.10). They exhibit two distinct Nb 

anomalies: (1) negative (Nb/Nb*=0.43-0.94) (Fig. 2.10b), and (2) positive Nb 

(Nb/Nb*=1.01-7.28) anomalies (Fig. 2.10d). They have near-flat REE patterns with 

minor depletion or enrichment of LREE and HREE (La/Ybcn=0.64-2.0; Gd/YbCn=0.8-1.7). 

They possess negative to positive Eu (Eu/Eu*=0.7-3.6), Ti (Ti/Ti*=0.4-3.5), and Zr 

(Zr/Zr*=0.4-2.5) anomalies. Sample 485411 displays a LREE depleted trace element 

pattern similar to group 3 amphibolites (Fig. 2.10c-d). 

2.6. Discussion 

2.6.1. Regional metamorphism and metasomatism 

The contrasting ages and complex metamorphic histories of the granite-greenstone 

associations of the Nuuk region have been explained in terms of allochthonous terranes 

docked by horizontal lithospheric motions comparable to those of Phanerozoic collisional 

and accretionary orogens (Bridgwater et al., 1974; Friend et al., 1987, 1988, 1996; 

Nutman et al., 1989, 1993; McGregor et: al., 1991; Polat et al., 2002; Polat and Hofmann, 

2003; Friend and Nutman, 2005; Nutman, 2006). On the basis of field relations and 

geochemical characteristics, Polat et al. (2007a) suggested that the Ivisaartoq belt formed 

in a juvenile intra-oceanic island arc setting. The amphibolite-facies regional 

metamorphism recorded by the Ivisaartoq greenstone belt might have taken place during 
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the terrane accretion, possibly during the docking of the Mesoarchean Kapisilik (ca. 3000 

Ma) and Paleoarchean Isukasia (> 3600 Ma) terranes, shortly before the intrusion of the 

weakly deformed ca. 2.960 Ma marginal granites (see Friend and Nutman, 2005). 

The stage-II calc-silicate rocks are the products of prolonged metasomatic reactions. 

They provide evidence for changing physical and chemical conditions during 

metamorphism. For example, the replacement of the epidote-rich metasomatic 

assemblage Ha by the anhydrous garnet-clinopyroxene assemblage lib indicates an 

increase in temperature. Metasomatic garnet and clinopyroxene replacing mineral 

assemblages in metasedimentary rocks, metabasalts, komatiites, and iron formations have 

been documented to be formed at relatively high- T and intermediate-/5 (600-700 °C and 

4.0-6.0 kbar ~ 12-18 km) during regional and/or contact metamorphism (e.g., Raith, 

1991; Pan and Fleet, 1992; Mueller et al., 2004). The occurrence of garnet-diopside 

assemblage associated with ductile structures such as shear zones, tectonic boudins, and 

mylonitic foliations indicate that this assemblage was formed during the prograde stage of 

the regional amphibolite-facies metamorphism. In contrast, the metasomatic assemblage 

lie exhibits cataclastic textures reflecting transitional ductile to brittle conditions. This 

brittle deformation and cataclasis might have accompanied the retrograde metamorphic 

evolution of the Ivisaartoq belt, possibly under upper greenschists-facies as indicated by 

the presence of accessory chlorite, tremolite, and calcite. 

Transformation of mafic and ultramafic rocks into calc-silicates requires significant 

fluid-rock interaction, mass transfer, and reactions with Ca-rich fluids (see Rose et al., 

1996). Fluids in metamorphic environments can be magmatic, derived from 

devolatilization reactions, meteoric, and mixtures of those fluid types (Rosing and Rose, 

1993; Oliver, 1996; Ferry and Gerdes, 1998). There are no stable isotope or fluid 



34 

inclusion studies to unequivocally address the origin of the fluids responsible for the 

stage-II calc-silicate metasomatism of the Ivisaartoq belt. However, some constraints can 

be placed on the basis of field relationships. For instance, the contacts between the 

Ivisaartoq belt and the neighboring TTG-gneisses are marked by mylonites. Granites and 

granodiorites (ca. 2960 Ma) intruding the margins of the belt are only weakly deformed 

indicating that they postdate the regional metamorphism (Friend and Nutman, 2005). 

Granites and pegmatites occurring in the central parts of the belt transect the regional 

metamorphic fabrics and intrude the calc-silicate rocks. All these characteristics suggest 

that the intrusions exposed in the area are unlikely to be the source of metasomatic fluids. 

However, unexposed deep-seated syn-metamorphic intrusive rocks cannot be ruled out as 

the potential source of heat and fluids. 

An alternative source of fluids could be metamorphic dehydration reactions. Fluids 

released during prograde metamorphism might have remobilized calcium from carbonates 

precipitated during sea-floor hydrothermal alteration in the sedimentary and volcanic 

rocks of the Ivisaartoq belt. Dehydration of clastic metasedimentary rocks in greenstone 

belts have been recognized as a significant source of fluids during regional 

metamorphism, causing intense metasomatism and ore deposition in the mafic and 

ultramafic metavolcanic counterparts (cf. Van Hees et al., 1999; Shelton et al., 2004). The 

lowermost part of the Ivisaartoq belt comprises a 500 m thick clastic metasedimentary 

unit (Figs. 2.1 and 2.2) composed of quartz-feldspathic gneisses and pelitic schists. We 

speculate that this unit could have played an important role in the generation of fluids that 

reacted with mafic and ultramafic rocks to produce the prograde metasomatic 

assemblages Ha and lib. 
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2.6.2. Element mobility during the stage-I metasomatic alteration 

Polat et al. (2008) investigated the geochemical and Sm-Nd isotope characteristics of 

well preserved picritic to basaltic pillow lavas and ultramafic cumulate rocks of the upper 

amphibolite unit. These rocks display flat to slightly enriched REE patterns, negative 

anomalies of HFSE (mainly Nb-Ta), and positive initial £Nd (+0.30 to +4.97) values. The 

preservation of primary magmatic textures including relict igneous clinopyroxene, and 

the coherent geochemical and isotopic characteristics suggests that these rocks retain a 

near-primary magmatic composition (see Polat et al., 2008). 

In addition, some basaltic pillow lavas from the upper amphibolite unit exhibit 

mineralogical and chemical zonation providing evidence for sea-floor hydrothermal 

alteration (Fig. 2.3a-b). Epidote-rich inner pillow cores appear to have resulted from 

reactions with fluids circulating through drainage cavities; whereas the amphibole-rich 

pillow rims most likely represent chloritized chilled margins owing to interaction with sea 

water (see Polat et al., 2007). The outer pillow cores (Fig. 2.3b) appear to be an interface 

that remained relatively unaffected by sea-floor hydrothermal alteration. The average 

composition of these mineralogically and chemically zoned pillow basalts is presented in 

Table 2.2. 

To assess the chemical changes that resulted from sea-floor alteration we present two 

isocon diagrams in Figure 2.11. In the isocon method, the elemental concentrations of the 

precursor versus the altered counterpart are plotted to quantify mass changes and element 

mobility owing to metasomatism. Accordingly, immobile elements will plot along a 

straight line (isocon) intercepting the origin. The slope of this line quantifies the total 

mass change in the altered rocks. Gains and losses of mobile elements are indicated by 
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their position either above or below the isocon line respectively (see Gresens, 1967; Grant, 

1986; Baumgartner and Olsen, 1995). 

Relative to the least altered outer pillow cores, the isocon slopes (Fig. 2.11, Table 

2.2) indicate a total mass gain of 3.6% in the inner pillow cores and a total mass loss of 

5.5% in the pillow rims. The isocon diagrams confirm large mobility of major elements 

(Ca, K, Na, Fe, Mg), LILE (Pb, Rb, Cs, Ba), and LREE (mostly La, Ce, and Eu) in the 

inner cores and pillow rims. In contrast, HREE, Th, Nb, Ta, Zr, and Ti consistently plot 

along and close to the isocon lines indicating their relatively low mobility. 

The outer pillow cores display flat to slightly enriched LREE, near-flat HREE, and 

Nb-depleted trace element patterns similar to the least altered pillow basalts. These 

geochemical patterns have been interpreted as near-primary magmatic characteristics 

(Polat et al, 2007). 

2.6.3, Origin of the geochemical patterns in the metavolcanic rocks 

The deformation of the pillow lavas increases towards the magnetic marker giving 

rise to amphibolites with penetrative foliation. Group 1 amphibolites exhibit similar trace 

element patterns (Fig. 2.8a-b) to those of the least altered pillow basalts suggesting that 

their REE and HFSE have not been significantly modified by the strong metasomatic 

alteration that affected the areas along the magnetic marker (Fig. 2.3c-f). Therefore, 

Group 1 amphibolites preserve near-primary geochemical characteristics. 

The trace element patterns of Group 2, 3, and 4 amphibolites are significantly 

different from those of the least altered pillow lavas (Fig. 2.8c-h). Several processes 

including source heterogeneity, crustal contamination, magma mixing, different degrees 

of partial melting, fractional crystallization, and hydrothermal alteration can produce the 
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contrasting trace element patterns of these amphibolites. Therefore, they could represent 

either volcanic flows with contrasting petrogenesis, or their trace element patterns may 

reflect complex hydrothermal alteration of the pillow lavas. 

The U-shape REE patterns of Group 2 amphibolites resemble those of Phanerozoic 

boninites (Fig. 2.8c-d). These REE patterns in boninites result from partial melting of 

strongly depleted refractory mantle that has been refertilized by subduction fluids or melts 

prior to, or during melt production (Hickey and Frey, 1982; Crawford et al., 1989; 

Falloon and Danyushevsky, 2000). Although secular variations of the earth mantle 

prevents strict comparisons with modern magmatism (e.g., Glikson, 2001), the 

petrogenesis of Archean boninite-like melts, like their modern counterparts, requires a 

mantle source that has been depleted through several partial melting events prior to 

boninitic volcanism (Smithies et al., 2004). Melting of a refractory source would result in 

high-Mg (4.0-22 wt.%) magmas with low Ti02 (< 0.5 wt.%) and Zr (< 55 ppm) contents, 

and high concentrations of transition metals (Ni ~ 47-520 ppm; Cr > 196-2343 ppm) (cf. 

Smithies, 2002; Smithies et al., 2004, and references therein). In comparison to modern 

boninitic lavas, the Mesoarchean Ivisaartoq Group 2 amphibolites display higher contents 

of Ti02 (up to 1.4 wt.%) and Zr (up to 80 ppm), and lower abundances of MgO (10-11 

wt.%), Ni (71-75 ppm), and Cr (116-196 ppm), implying that Group 2 amphibolites are 

not metamorphosed boninitic lavas. In addition, these amphibolites display strong 

positive Eu anomalies (Fig. 2.8c). Accordingly, we suggest that the geochemical 

characteristics of Group 2 amphibolites reflect the mobility of many major and trace 

elements, including LILE, REE, and HFSE during post-magmatic metasomatic alteration. 

The concentrations of Ti and Zr in samples 485402 and 485403 are comparable to those 

of Group 1 amphibolites and least altered pillow basalts, indicating that they were derived 
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from pillow basalt protoliths occurring in the upper volcanic sequence (upper 

amphibolites). Significant loss of the MREE, relative to Ti and Zr, would explain the U-

shape REE patterns and the pronounced positive Ti and Zr anomalies of these samples 

(Fig. 2.8c-d). In contrast, sample 485406 displays strong negative Ti and Zr anomalies 

suggesting that these elements were locally remobilized along with the REE. 

The flat HREE and depleted LREE patterns of Group 3 amphibolites resemble N-

MORB (Fig. 2.8e-f). Unlike MORB, however, these amphibolites present negative Nb-Ta 

anomalies in primitive mantle-normalized diagrams. Crustal contamination and mixing 

with felsic magmas can result in negative HFSE anomalies and produce the enrichment of 

LREE from Group 3 to Groups 1 and 4 amphibolites. However, given the low 

concentration of transition metals (e.g, Ni, Co, and Cr) and MgO in felsic rocks, these 

processes would significantly decrease the content of these elements. In contrast, the 

concentration of transition metals and MgO of all amphibolite groups is comparable at a 

given Zr content (Figs. 2.6-2.7). Compelling evidence against significant crustal 

contamination and mixing in the petrogenesis of the Ivisaartoq volcanic rocks is provided 

by positive £Nd values of the associated mafic (+0.30 to +3.1) and ultramafic (+4.2 to 

+5.0) lavas (Polat et al., 2008). 

Polat et al. (2007a) suggested that the Ivisaartoq belt formed in a suprasubduction zone. 

Basaltic rocks formed across those settings display complex trace element variations 

ranging from MORB-like REE patterns with negative Nb anomalies to typical arc lavas 

enriched in LREE and negative HFSE anomalies. These contrasting trace element 

patterns stem from different degrees of melting of heterogeneous depleted-mantle sources 

variably modified by subduction components (Klein and Karsten, 1995; Karsten et al., 

1996; Sinton et al., 2003; Godard et al., 2006). Accordingly, these complex processes 
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may well produce the negative Nb-Ta anomalies and the enrichment of LREE from 

Groups 3 to Groups 1 and 4 amphibolites. However, these processes would also result in 

lavas with distinct contents of MgO, transition metals, Zr, Ti02, Y, and HREE reflecting 

the degree of melting and depletion of the sources. In contrast, the concentration of those 

elements in Groups 1, 3 and 4 amphibolites is virtually the same at a given Zr content 

(Figs. 2.6-2.8). 

In addition, crystal fractionation of a parental magma cannot explain the crossed LREE 

patterns between different amphibolite groups. Even within Group 3 amphibolites, some 

samples (e.g., 485407 and 485401) display extremely low La/Smcn ratios and strong 

depletion of Nb despite their high HREE content (Fig. 2.8e-f). These patterns cannot be 

explained by fractionation but suggest that the LREE and Nb were remobilized. 

Although melting of a heterogeneous mantle source could have played a major role in 

the formation of diverse geochemical compositions in the Ivisaartoq volcanic rocks, the 

evidence for significant element mobility in the vicinity of calc-silicate formations 

indicates that the large geochemical variations in the belt have resulted from post-

magmatic alteration processes (Fig. 2.3c-f). In addition, all groups of amphibolites locally 

occur within the same outcrops (e.g., samples 485401, 485402, 405405, and 485410) 

without structural discontinuity. This suggests that their contrasting trace element patterns 

most likely resulted from alteration of the pillow basalts. 

The ultramafic amphibolites provide additional evidence for significant post-magmatic 

alteration. For example, some ultramafic rocks, 485434 (£N<I = +8.3; La/Ybcn
 = 20) and 

485436 (sNd = +9.5; La/Ybcn = 24), display highly enriched LREE patterns (Fig. 2.9c-d) 

and strong positive £Nd values (see Polat et al., 2008). These samples are from the same 

outcrop as sample 485435 (sNd = +2.9; La/Ybcn = 1.8). Enrichment of LREE by crustal 
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contamination cannot explain the more positive 8Nd values. These contrasting 

geochemical variations have been attributed to post-magmatic alteration (Polat et al., 

2008). Altered ultramafic rocks display slightly depleted to extremely enriched LREE 

patterns and variable negative to positive anomalies of Eu, Nb, Ta, Ti, and Zr (Fig. 2.9c-

d). In contrast, some samples still preserve geochemical characteristics comparable to the 

least altered ultramafic pillows and cumulates (Fig. 2.9a-b) (Polat et al., 2007). They 

possess slight LREE-enriched patterns and consistent negative anomalies of HFSE 

(especially Nb and Ta). We interpret these rocks as the least altered ultramafic 

amphibolites. 

On variation diagrams, Zr is used as an alteration and differentiation index (Figs. 2.6-

2.7) because of its immobile behaviour in different geological conditions, and consistent 

incompatibility during fractionation of ultramafic to mafic magmas (Winchester and 

Floyd, 1977; Barrett and MacLean, 1994; Pearce, 1996). Accordingly, immobile elements 

will display systematic correlations with Zr consistent with magmatic fractionation. Some 

major elements such as Si, Mg, Ca, Fe, Na, K, and trace elements including Rb, Sr, Ba, 

Pb show no correlation on variation diagrams indicating large mobility in all amphibolites 

(Figs. 2.6-2.7). Scatter of REE, Ti, Th, Nb, and Y on variation diagrams is consistent with 

various degrees of mobility of these elements. Transition metals Ni, V, Sc, Co, and Cr 

present excellent correlation with Zr (Fig. 2.7) in all amphibolites indicating that these 

elements were practically immobile during alteration. 

Despite element mobility, systematic trends of increasing Al, REE, and HFSE with 

increasing Zr can be resolved. These trends are shared by all amphibolites. It is unlikely 

that the linear trends on variation diagrams of Zr represent a liquid line of descent given 

the differences in eNd values between ultramafic and mafic pillows. However, the 
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collective geochemical correlations suggest crystal fractionation. For example, ultramafic 

rocks exhibit a steep negative correlation of Ni versus Zr consistent with olivine 

fractionation (Fig. 2.7). Aluminum content increases with increasing Zr in ultramafic 

amphibolites but decreases in the mafic amphibolites suggesting that plagioclase was only 

important during fractionation of the basaltic melts (Fig. 2.6). The trends of Sc and V 

reflect clinopyroxene fractionation. Fractionation of these mineral phases is consistent 

with the occurrence of olivine-bearing ultramafic sheets grading upwards into gabbroic 

rocks, clinopyroxene-rich cumulates, anorthosites intrusions, and plagioclase-rich ocelli 

structures in gabbros and basalts. 

There is no unequivocal evidence indicating the relative timing of this alteration. 

However, the samples in this study were collected along a high strain zone at the contact 

between the upper and lower amphibolite groups. This zone was a fluid pathway during 

the regional metamorphism as indicated by ductile calc-silicate layers, quartz veins, and 

silicic mylonites (Chapter 2.6.1). We postulate that the alteration patterns displayed by 

Groups 2-4 amphibolites were formed during the regional metamorphic event coeval with 

the stage-II calc-silicate metasomatism. 

2.6.4. Element mobility during the stage-II calc-silicate metasomatism 

The stage-II calc-silicate rocks resulted from prolonged metasomatic reactions in 

ultramafic to mafic rocks. Local mobility of REE and HFSE in the magmatic precursors 

makes a quantitative estimation of elemental mass changes difficult because most 

methods use ratios of immobile elements as a datum (Gresens, 1967; Grant, 1986; 

MacLean and Kranidiotis, 1987; MacLean, 1988, 1990). Thus, we present a qualitative 
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evaluation of the chemical changes occurring during the stage-II calc-silicate 

metasomatism. 

As a group, the stage-II calc-silicate rocks represent significant additions of Ca and 

losses of Na and K relative to the volcanic protoliths (Fig. 2.6). Manganese, Fe, and Mg, 

were consistently lost during formation of the prograde assemblage Ha, and gained to 

form the garnet-clinopyroxene metasomatic assemblage lib. Some LILE such as Rb, Sr, 

Ba, and Pb were variably enriched in the calc-silicate assemblages lib and lie. 

Primitive mantle- and chondrite-normalized trace element patterns of the stage Ha 

calc-silicates are slightly depleted in HREE, however, the concentration levels of trace 

elements are comparable to those of the least altered mafic amphibolites and pillow 

basalts (filled symbols, Fig. 2.10a-b). Moreover, the concentrations of Ni, Sc, V, Cr, and 

Co in this assemblage are consistent with a basaltic protolith (Fig. 2.7). These 

characteristics indicate that Th, Nb, Ta, Ti, Zr, REE (excepting Eu), and transition metals 

were not significantly changed during the development of the metasomatic assemblage 

Ha. 

Large additions of Ca (CaO = 17-30 vs. 15-22 wt.% in the assemblage Ha) in calc-

silicate assemblages lib and lie resulted in low REE and HFSE abundances (< 3 x 

primitive mantle values) due to residual dilution (Fig. 2.10). For instance, sample 499718 

(CaO -30 wt.%) exhibits low concentrations of transition metals (e.g., Ni = 29; Cr = 47, 

and Co = 11 ppm) coupled with low REE and HFSE contents (Fig. 2.10a-b). However, 

low trace element abundances in some calc-silicates may reflect the composition of their 

protoliths. Samples 499740 and 499741 were collected from calc-silicate boudins 

spatially associated with ultramafic amphibolites (see Fig. 2.3d). They display high Ni (> 
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1300 ppm), Co (> 100 ppm), and Cr (> 1500 ppm) contents, and low abundances of REE 

and HFSE consistent with an ultramafic precursor (Fig. 2.10c-d). 

The stage lib and lie calc-silicate rocks exhibit evidence for REE and HFSE mobility. 

Sample 485411 (Fig. 2.10c-d) displays a strongly depleted LREE pattern similar to those 

of Group 3 amphibolites (Fig. 2.8e-f) suggesting loss of LREE. Gains and losses of HFSE 

are indicated by strong positive (samples 499715, 499716, and 499741) and 

complementary large negative (sample 485411) Nb-Ta anomalies in primitive mantle-

normalized diagrams (Fig. 2.10d). Despite strong Ca enrichment, samples 499715 and 

499716 posses high REE contents. This suggests that REE were enriched in these samples. 

Retrograde overprinting makes it difficult to determine whether the REE, Nb, and Ta 

were mobilized during the development of the metasomatic assemblage lib or the 

retrograde assemblage lie. Calc-silicate metasomatism of volcanic rocks in other Archean 

greenstone belts has resulted in significant mobility of the REE and HFSE mainly during 

the formation of prograde garnet-pyroxene assemblages (e.g., Galley et al., 2000). In 

addition, experimental and empirical studies indicate that HFSE are more easily 

mobilized at high temperatures (cf. Rubin et al., 1993; Van Baalen, 1993; Tilley and 

Eggleton 2005; Wood, 2005). Therefore, we suggest that the observed remobilization of 

HFSE and REE may have occurred during the formation of garnet-clinopyroxene 

assemblage lib, probably over 500 °C. 

2.7. Conclusions and Implications 

Geochemical investigations of Archean volcanic rocks, as a proxy to understand the 

magmatic and tectonic evolution of greenstone belts, rely on the systematics of elements 

that are not easily disturbed during hydrothermal alteration and metamorphism. Most 
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major elements (Si, Na, K, Ca, Mg, and Fe) and LILE (Rb, Cs, Ba, Sr, Pb, U) are highly 

mobile during fluid-rock interaction limiting their use in petrologic and tectonic 

investigations (Hart et al, 1974; Condie et al., 1977; Ludden and Thompson, 1979; 

Ludden et al., 1982; Ague, 1994; Staudigel et al., 1996; Alt, 1999; Masters and Ague, 

2005). In contrast, transition metals (Ni, Sc, Co, Cr, and V), HFSE (Zr, Ti, Nb, Ta, and 

Th), and REE (mainly the HREE) have been reliably used to investigate the evolution of 

variably altered and metamorphosed greenstone belts due to their largely immobile 

behaviour (Arndt, 1994; Polat and Hofmann, 2003; Polat et al., 2003). 

This study has provided evidence for remobilization of those (e.g., REE and HFSE) 

normally immobile trace elements during a second stage of calc-silicate metasomatism 

yielding the following results: 

1. Although almost all normally 'immobile' elements were disturbed, the collective 

geochemical correlations with Zr suggest different degrees of mobility. Accordingly, 

trace element mobility in the stage-II calc-silicate rocks and associated amphibolites 

increases from Zr, Ti, Ni, V, and Co, through HREE, Th, Nb, Ta, Y, Al, Sc, and Cr, to 

LREE and MREE. Petrographic and geochemical characteristics of calc-silicate rocks 

appear to indicate that the mobility of HFSE and REE occurred during the prograde stage 

of the regional metamorphism at upper amphibolite facies conditions (stage-II 

metasomatism). This trace element mobility contrasts with the consistent immobile 

behaviour of HREE and HFSE during an early stage of sea-floor hydrothermal alteration 

(stage-I metasomatism). 

2. Altered amphibolites and calc-silicate rocks exhibit complementary trace element 

patterns of enriched and depleted LREE, Th, Nb, and Ta (Fig. 2.12). It is noteworthy that 

the mobility of these elements occurred along shear zones and resulted in the formation of 
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amphibolites with trace element characteristics resembling those displayed by volcanic 

rocks formed at contrasting tectonic settings such as boninites and N-MORB-like lavas 

(cf. Dostal et al., 1980). Considering these trace element patterns as primary can lead to 

misleading geodynamic interpretations. 

3. The close spatial association of strongly altered and least altered metavolcanic 

rocks indicates that the REE and HFSE (mainly Th, Nb and Ta) were mobile on a local 

scale (1-4 m). It appears that the REE were removed at some localities, giving rise to 

Group 2 and 3 amphibolites, and re-precipitated within several meters, generating the 

LREE-enriched patterns of Group 4 amphibolites and some ultramafic rocks (Figs. 2.8-

2.9). 

4. Despite large element mobility, mafic and ultramafic amphibolites display 

discernable linear trends on diagrams of Zr versus REE, HFSE, and transition metals 

(Figs. 2.6-2.7). Net gains or losses of major elements during hydrothermal alteration (e.g., 

silicification, chloritization, calc-silicate alteration, etc) may well produce positive linear 

trends of immobile elements due to residual dilution or enrichment effects (Finlow-Bates 

and Stumpfl, 1981; MacLean and Kranidiotis, 1987; MacLean, 1990; MacLean and Hoy, 

1991; Barrett and MacLean, 1994; Ague, 1994). Although Ca, Mg, Fe, and Si were 

mobile during post-magmatic alteration, the abundance of these elements in the Ivisaartoq 

amphibolites is still consistent with basaltic to picritic compositions (see also Polat et al. 

2007a). This suggests that alteration and metamorphism did not produce significant mass 

changes, except where intense calc-silicate replacement occurred. Therefore, the 

correlation of REE, HFSE, and transition metals with Zr resulted from magmatic 

processes. 
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5. Near-primary magmatic signatures in the amphibolites are indicated by inflections 

on variation diagrams (e.g., Zr versus Al, Ni, Sc, and V) which are more likely produced 

by magmatic fractionation (Figs. 2.6-2.7). Although differences in 8Nd values between 

mafic and ultramafic pillows and cumulates rule out a parental magma (Polat et al., 2008), 

taken all together, the covariations of transition metals and Al with Zr indicate 

fractionation of olivine, clinopyroxene, and plagioclase. 

6. The geochemical characteristics of the Ivisaartoq volcanic rocks indicate that they 

are part of the same mafic to ultramafic volcanic suite. The least altered Group 1 

amphibolites and ultramafic rocks (Figs. 2.8a-b and 2.9a-b) exhibit trace element patterns 

with flat to slightly enriched LREE, consistent negative Nb-Ta anomalies, and flat-HREE. 

These geochemical characteristics are consistent with subduction zone geochemical 

signatures (see Hawkesworth et al., 1993; Pearce and Peate, 1995) and partial melting of 

a garnet-free shallow mantle source region. 
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Figure 2.3. Field photographs of outcrops from the Ivisaartoq greenstone belt, (a) Pillowed lavas 

with well preserved drainage cavities (arrow), epidosite cores (stage-I metasomatism), and pillow 

rims, (b) Concentrically zoned pillow lava displaying epidote-rich inner pillow core (1), calc-silicate 

free outer pillow core (2), and amphibole-rich pillow rim (3). (c) Boudins of stage-II calc-silicate 

rocks, (d) Relict ultramafic enclave in a thick layer of epidote + diopside (assemblage Ha), (e) 

Coarse-grained epidote-rich assemblage lie (arrows) partially replacing the assemblage Ila. (f) 

Brittle discordant veins of epidote (assemblage lie) crosscutting mafic amphibolites. 
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Figure 2.4. Photomicrographs of metavolcanic rocks, (a) Mafic amphibolites with characteristic 

foliation defined by oriented hornblende, (b) Mylonitic amphibolite with recrystallized ribbons of 

hornblende, (c) Mylonitic amphibolite with deformed porphyroclasts of hornblende embedded in 

a dynamically recrystallized groundmass. (d) Actinolite-rich ultramafic amphibolite. Plane 

polarized light for (a). Crossed polarized light for (b-d). Abbreviations: Hbl = hornblende; PI = 

plagioclase. 
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Figure 2.5. Photomicrographs of stage-II calc-silicate assemblages (crossed polarized light), (a) 

Fine grained epidote-rich metasomatic assemblage Ha. (b) Coarse grained garnet-clinopyroxene 

assemblage lib overprinting the fine grained assemblage Ha. (c) Patchy epidote (metasomatic 

assemblage lie) replacing clinopyroxene of the assemblage lib. (d) Relict clinopyroxene and 

plagioclase partially replaced by epidote (arrows) of the assemblage lie. (e) Fine veinlets of 

epidote and clinozoisite replacing fractured garnet porphyroblast. (f) Calcite overprinting the 

assemblage lib. Abbreviations: Ttn = titanite; Ep = epidote; Grt = garnet; Cpx = clinopyroxene; 

Czo = clinozoisite; Cal = calcite. 
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Figure 2.6. Variation diagrams of Zr versus selected major elements and LILE. Ultramafic 

amphibolites from Polat et al. (2008) and this study (Table 2.2). Amphibolites and their associated 

calc-silicates have been plotted to show the chemical changes associated with the stage II calc-

silicate alteration. The amphibolites exhibit concentration levels of Ti02, AI2O3, and MgO 

consistent with an ultramafic to mafic protolith. Arrows indicate differentiation trends (see text). 
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Figure 2.7. Variation diagrams of Zr versus selected REE, HFSE, and transition metals. 

Ultramafic amphibolites from Polat et al. (2008) and this study (Table 2.2). Differentiation trends 

are indicated by arrows. The trace element variations of amphibolites are consistent with an 

ultramafic to mafic protolith. The stage II calc-silicate rocks overlap the compositional trend of 

the amphibolites. 
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Figure 2.8. Chondrite- and primitive mantle-normalized diagrams showing different groups of 

mafic amphibolites. The compositional field of Group 1 amphibolites (shaded area) is overlap to 

Groups 2-4 amphibolites for intercomparisons. Chondrite normalization values from Sun and 

McDonough (1989), and primitive mantle normalization values from Hofmann (1988). 
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Figure 2.9. Chondrite- and primitive mantle-normalized diagrams of ultramafic amphibolites. 

Samples 499742 and 499743 from this study (Table 2.2), other ultramafic amphibolites from 

Polat et al, (2008). The shaded area represents the composition of the least altered ultramafic 

pillows and cumulates of Polat et al. (2007). 
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Figure 2.10. Chondrite- and primitive-mantle normalized diagrams of stage-II calc-silicate rocks. 

Filled circles = samples with the metasomatic assemblage Ha; other symbols = samples variably 

overprinted by the metasomatic assemblages lib and lie. Fields of the least altered mafic and 

ultramafic rocks from Polat et al. (2007, 2008) and this study. 
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Figure 2.11. Isocon diagrams of pillow basalts with core and rim structures resulting from stage-I 

calc-silicate alteration (see also Figure 2.3b). Non-metasomatized outer pillow cores are 

compared with (a) strongly metasomatized inner pillow cores, and (b) amphibole-rich pillow rims. 

Sample compositions are average estimates from Polat et al. (2007) (See Table 2.2). The isocon 

plots (solid lines) are defined using Zr as immobile element. Dashed line represents the line of 

constant mass (see Grant, 1986). Major elements are plotted in weigh percent and trace elements 

in ppm. Data are scaled as indicated. 
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Figure 2.12. Summary of the geochemical patterns displayed by mafic (a) and ultramafic (b) 

amphibolites and associated stage-II calc-silicates. Shaded area represents the composition of 

least altered mafic and ultramafic metavolcanic rocks of the Ivisaartoq belt (from Polat et al., 

2007, 2008; this study). 
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Table 2.1. Sequence of metasomatic assemblages of the stage-11 calc-silicate rocks. 
Assemblage Mineralogy Characteristics 

Prograde assemblage Ha 
Epidote + clinozoisite + 
clinopyroxene + quartz + 
plagioclase + titanite ± apatite 

Pervasive alteration replacing mafic 
and ultramafic metavolcanic rocks. 
Occur as concordant boudinaged layers 
(Figs. 2.3c-d and 2.5a). 

Prograde assemblage lib 
Garnet + clinopyroxene + 
titanite ± vesuvianite ± 
Scheelite 

Coarse grained assemblages 
overprinting the metasomatic 
assemblage Ha and stage-I calc-silicate 
rocks (Fig. 2.5 b). 

Retrograde assemblage lie 
Epidote + quartz ± tremolite 
± calcite 

Occur as patchy alterations replacing 
the prograde assemblages Ha and lib, 
and as brittle irregular veins transecting 
the amphibolites and stage-I calc-
silicate rocks (Figs. 2.3e-f and 2.5c-f). 
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Table 2.2. Major (wt.%) and trace element (ppm) concentrations and significant element ratios for mafic and ultramafic 

amphibolites and calc-silicate rocks 

Group-1 amphibolites 

Si02 (wt.%) 

Ti0 2 

A120, 

Fe203 

MnO 
MgO 
CaO 

Na 20 

K 2 0 

P2O5 

LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Rb 
Sr 
Y 
Zr 

Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

(La/Yb)cn 
(La/Sm)cn 
(GcVYb)cn 
(Eu/Eu*)cn 
(Ce/Ce*)cn 

Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr'»)pm 
(Ti/Ti*)pm 
EREE 

North 
West 

485405 

51.2 

1.04 

14.60 

12.03 

0.19 
8.14 
10.12 

2.36 

0.08 

0.19 
0.79 
57 

35 
195 
245 
42 
92 
1.0 

129.7 
25.5 
94.8 
2.45 
0.05 
17.4 
0.15 
2.01 
0.60 
0.13 
4.09 
12.03 
1.90 
9.82 
3.14 
1.24 
4.18 
0.71 
4.70 
1.01 
2.99 
0.43 
2.83 
0.43 

0.97 
0.82 
1.20 
1.05 
1.04 

14.05 
15.97 
3.71 
65.69 
0.64 
1.19 
0.73 

49.50 

64°43.838' 
49°55.618' 

485409 

50.6 

1.59 

13.98 

14.85 

0.22 
5.67 
9.53 

2.95 

0.33 

0.26 
0.36 
43 

43 
256 
104 
39 
70 
6.4 

119.6 
32.7 
76.4 
2.48 
0.38 
47.4 
0.17 
6.59 
0.68 
0.17 
5.86 
15.56 
2.30 
11.47 
3.57 
1.35 
5.06 
0.88 
5.85 
1.30 
3.85 
0.54 
3.56 
0.54 

1.11 
1.03 
1.15 
0.97 
1.02 

8.78 
14.84 
2.34 

124.95 
0.51 
0.83 
0.90 

61.70 

64°43.631' 
49°55.799' 

496114 

49.4 

1.74 

11.06 

19.00 

0.30 
5.67 
9.23 

2.80 

0.57 

0.26 
0.50 
37 

47 
299 
190 
34 
105 
24.0 
21.6 
28.5 
59.1 
2.21 
3.33 
53.4 
0.14 
4.50 
0.61 
0.11 

4.57 
11.83 
1.82 
9.14 
3.03 
1.10 
4.25 
0.75 
5.06 
1.09 
3.32 
0.48 
3.28 
0.51 

0.94 
0.95 
1.05 
0.94 
0.99 

6.36 
15.65 
2.08 

176.29 
0.54 
0.79 
1.14 

50.23 

64°43.657' 
49°56.762' 

485414 

50.6 

0.75 

15.23 

11.58 

0.18 
7.62 
12.46 
1.39 

0.08 

0.05 

0.85 
57 

43 
243 
122 
49 
117 
1.1 

126.1 
15.3 
42.4 
1.61 
0.14 
17.5 
0.11 
1.88 
0.37 
0.06 
2.57 
6.98 
1.11 
5.54 
1.90 
0.70 
2.45 
0.43 
2.93 
0.60 
1.85 
0.26 
1.70 
0.25 

1.02 
0.85 
1.17 
0.99 
0.99 

20.31 
14.47 
2.77 

106.05 
0.67 
0.91 
0.85 

29.29 

64°44.055' 
49°56.286' 

485416 

52.5 

0.81 

15.85 

9.41 

0.22 
4.59 
14.71 

1.71 

0.18 

0.07 

0.69 
49 

42 
272 
981 
53 
187 
2.4 

115.1 
18.0 
42.4 
1.76 
0.27 
24.3 
0.12 
1.57 
0.40 
0.16 
2.82 
7.64 
1.18 
6.17 
2.08 
0.74 
2.76 
0.47 
3.20 
0.70 
2.16 
0.33 
2.08 
0.31 

0.91 
0.85 
1.07 
0.94 
1.01 

19.60 

14.43 
2.35 

114.33 
0.67 
0.83 
0.84 

32.64 

64°44.069' 
49°56.307' 

485425 

56.9 

0.52 

15.22 

7.08 
0.17 
6.46 
12.45 

1.08 

0.11 

0.04 

0.52 
64 

44 
217 

2030 
51 

218 
1.6 

46.9 
14.5 
31.5 
1.36 
0.29 
31.4 
0.08 
2.79 
0.66 
0.16 
2.63 
6.43 
0.89 
4.54 
1.36 
0.50 
2.12 
0.37 
2.66 
0.58 
1.73 
0.26 
1.68 
0.27 

1.05 
1.22 
1.02 
0.90 
1.01 

29.11 

17.09 
2.17 
99.40 
0.42 
0.89 
0.67 

26.02 

64°44.920' 
49°57.202' 

496119 

48.2 

0.78 

15.87 

12.73 
0.20 
8.27 
11.91 
1.74 

0.21 

0.06 

0.67 
56 

44 
278 
275 
53 

236 
1.5 

84.4 
15.6 
40.5 
1.37 
0.06 
14.2 
0.10 
3.63 
0.47 
0.06 
2.06 
6.05 
0.90 
4.71 
1.69 
0.57 
2.28 
0.41 
2.83 
0.61 
1.82 
0.26 
1.72 
0.26 

0.81 
0.77 
1.07 
0.88 
1.07 

20.47 

13.78 
2.60 

114.80 
0.57 
1.00 
0.92 

26.17 

64°43.927' 
49°56.222' 

496120 

50.8 

0.79 

15.47 

9.75 
0.20 
7.57 
13.90 
1.25 

0.17 

0.06 

0.69 
61 

41 
245 
269 
53 

274 
0.5 

118.0 
16.5 
42.6 
1.49 
LDL 
25.0 
0.11 
2.18 
0.36 
0.07 
2.75 
7.61 
1.12 
5.81 
1.88 
0.66 
2.57 
0.45 
3.03 
0.64 
1.94 
0.28 
1.86 
0.27 

1.00 
0.92 
1.12 
0.92 
1.04 

19.59 

13.61 
2.58 

111.13 
0.61 
0.90 
0.87 

30.87 

64°44.058' 
49°56.756' 

496121 

55.3 

0.70 

13.90 

9.46 
0.18 
7.73 
11.19 
1.36 

0.13 

0.06 

0.68 
62 

36 
221 
235 
48 

232 
1.1 

116.7 
14.8 
37.1 
1.29 
0.21 
23.1 
0.10 
1.35 
0.32 
0.06 
2.28 
6.21 
0.95 
5.01 
1.64 
0.58 
2.23 
0.40 
2.72 
0.59 
1.73 
0.25 
1.61 
0.24 

0.95 
0.87 
1.12 
0.93 
1.02 

19.93 

12.75 
2.51 

112.74 
0.62 
0.91 
0.86 
26.44 

64°44.005' 
49°57.191' 

LDL = Lower than detection limit 

*Calc-silicates with metasomatic assemblage Ha, other calc-silicate samples are variably replaced by the assemblages lib and 
He 
a Avaraged pillow basalt composition from Polat et al. (2007) 
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Group-2 amphibolites Group-3 amphibolites 

Si02 (wt.%) 

Ti0 2 

A1203 

Fe203 

MtiO 
M g O 

C a O 

NajO 

K 2 0 

P205 

LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 

Cr 

Co 

N i 

Rb 

Sr 

Y 

Zr 

N b 

Cs 

B a 

Ta 

Pb 

Th 

U 

La 

Ce 

Pr 

N d 

Sm 

Eii 

G d 

Tb 

D y 

H o 

Er 

T m 

Y b 

Lu 

(La/Yb)cn 
(La/Sm)cn 
(GoVYb)cn 
(Eu/Eu*)cn 
(Ce/Ce*)cn 
Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
IREE 

North 
West 

485402 

50.7 

1.34 

14.61 

11.46 
0.13 
10.15 
7.41 

3.70 

0.46 

L D L 

1.98 
64 

47 

308 

129 

37 

73 

52.5 
52.9 
6.3 

71.5 
1.00 
7.26 
60.2 
0.10 
1.76 
0.05 
0.02 
1.49 
2.62 
0.29 
1.19 
0.31 
0.29 
0.46 
0.10 
0.78 
0.22 
0.85 
0.16 
1.36 
0.26 

0.74 
2.99 
0.28 
2.32 
0.96 
10.92 
10.03 
11.43 

112.11 
1.51 
8.20 
6.27 
10.39 

64°43.803' 
49°55.723' 

485403 

52.7 

1.42 

13.49 

10.21 
0.13 
10.26 
7.96 
3.45 

0.35 

L D L 

1.61 
67 

46 

266 

116 

35 

72 

48.6 
53.6 
6.9 

80.1 
0.96 
6.71 

56.1 
0.10 
1.71 
0.04 
0.02 
1.74 
3.34 
0.39 
1.62 
0.42 
0.33 
0.61 
0.10 
0.93 
0.24 
0.90 
0.17 
1.50 
0.27 

0.78 
2.58 
0.33 
1.95 
0.97 
9.47 
9.58 
11.67 

106.60 
1.52 
6.76 
5.87 
12.57 

64°43.803' 
49°55.723' 

485406 

49.7 

0.07 

13.43 

14.11 

0.17 
11.40 
6.11 
3.18 

L D L 

1.78 

0.09 
62 

77 

L D L 

197 

46 

75 

3.2 

34.2 
7.8 

7.1 

2.21 
3.22 

13.7 
0.19 
1.51 
0.20 
0.03 
2.41 
5.03 
0.58 
2.45 
0.59 
0.45 
0.80 
0.14 
1.08 
0.28 
1.04 
0.18 
1.51 
0.27 

1.07 
2.55 
0.43 
2.01 
1.02 

191.01 
11.61 
0.92 
59.09 
1.29 
0.41 
0.23 
16.82 

64°43.877' 
49°55.729' 

485401 

42.9 

1.14 

12.74 

20.55 
0.15 
8.76 
12.89 
0.90 

L D L 

L D L 

0.73 
46 

35 

399 

73 

58 

97 

2.8 

119.4 
34.9 
42.3 
0.14 
0.93 
3.2 

0.03 
1.46 
0.06 
0.04 
1.16 
4.21 
0.84 
5.54 
2.56 
0.62 
4.55 
0.86 
6.14 
1.36 
4.10 
0.58 
3.83 
0.56 

0.20 
0.28 
0.96 
0.55 
1.03 

11.22 
4.60 
1.21 

161.01 
0.22 
0.79 
0.63 
36.93 

64°43.771' 
49°55.605' 

485407 

48.1 

0.61 

13.45 

14.53 
0.13 
6.77 
14.50 
1.77 

0.13 

0.02 

0.80 
48 

2 4 

312 

151 

49 

101 

2.9 

127.7 
31.2 
68.7 
1.08 
0.67 
19.7 
0.10 
4.33 
0.44 
0.21 
2.25 
6.87 
1.30 
8.03 
3.39 
0.76 
4.85 
0.86 
5.82 
1.26 
3.66 
0.50 
3.14 
0.45 

0.48 
0.42 
1.25 
0.57 
0.97 

22.22 
10.37 
2.20 
52.81 
0.45 
0.92 
0.35 

43.15 

64°43.877' 
49°55.729' 

496116 

48.1 

0.93 

16.82 

13.50 
0.14 
6.79 
9.44 
3.34 

0.87 

0.08 

0.77 
50 

40 

273 

119 

48 

106 

42.3 
92.1 
30.2 
49.9 
1.70 

10.16 
264.4 
0.08 
3.86 
0.45 
0.11 
1.78 
4.83 
0.85 
5.01 
2.22 
0.64 
3.78 
0.73 
5.24 
1.18 
3.67 
0.55 
3.62 
0.54 

0.33 
0.50 
0.84 
0.68 
0.94 
18.06 
22.50 
1.65 

111.87 
0.78 
1.05 
0.61 
34.64 

64-43.839' 
49°56.668' 

496117 

48.6 

0.65 

15.42 

13.59 
0.19 
8.84 
10.40 
2.13 

0.15 

0.05 
0.99 

56 

46 

262 

252 

56 

227 

1.4 

88.5 
19.5 
32.6 
0.61 
0.36 
17.6 
0.06 
3.69 
0.18 
0.10 
1.33 
3.87 
0.59 
3.36 
1.41 
0.53 
2.31 
0.46 
3.24 
0.75 
2.32 
0.35 
2.36 
0.36 

0.38 
0.59 
0.79 
0.90 
1.05 

23.58 
10.80 
1.67 

120.46 
0.50 
1.05 
0.69 
23.24 

64°43.849' 
49°56.814' 

496118 

48.3 

0.61 

15.25 

12.84 

0.21 
8.47 
13.13 
1.08 

0.05 

0.04 
0.95 

57 

50 

278 

395 

58 

2 3 9 

3.4 

53.8 
19.3 
31.2 
0.50 
1.25 
8.9 

0.03 
2.87 
0.12 
0.04 
1.04 
3.00 
0.51 
3.04 
1.34 
0.50 
2.25 
0.45 
3.23 
0.74 
2.34 
0.34 
2.32 
0.34 

0.30 
0.49 
0.78 
0.88 
0.99 
25.06 
14.28 
1.62 

117.00 
0.57 
1.08 
0.65 
21.44 

64°43.904' 
49°56.527' 

496123 

52.2 

0.98 

14.23 

13.58 

0.21 
6.46 
11.21 
0.80 

0.26 

0.08 
0.48 
4 8 

4 8 

327 

138 

4 8 

139 

1.3 

104.5 
26.4 
52.3 
1.15 
0.05 
33.5 

0.09 
5.62 
0.31 
0.09 
2.46 
6.53 
1.05 
5.61 
2.14 
0.72 
3.54 
0.66 

4.59 
1.01 
3.15 
0.46 
3.06 
0.46 

0.54 
0.72 
0.93 
0.79 
0.98 
14.56 
12.34 
1.98 

112.06 
0.54 
1.06 
0.72 

35.45 

64°43.953' 
49°56.600' 

485404 

50.0 

1.61 

13.87 

15.62 

0.23 
6.62 
9.41 
2.15 

0.26 

0.19 
0.62 
46 

42 

327 

133 

43 

74 

8.4 

93.4 
28.0 
90.8 
3.68 
2.35 
112.5 

0.23 
3.70 
0.81 
0.19 
3.93 
11.79 
1.92 
9.94 
3.27 
1.18 
4.55 
0.76 
5.14 
1.09 
3.22 
0.47 
3.10 
0.46 

0.85 
0.76 
1.18 
0.93 
1.03 
8.64 
15.92 
3.25 

106.04 
0.84 
1.11 
1.04 

50.83 

64°43.813' 
49°55.612' 
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Goup-3 amphibolites Goup-4 amphibolites Ultramafic amphibolites 

Si02 (wt.%) 

Ti02 

A1203 

Fe203 

MnO 
MgO 
CaO 
Na20 

K 20 

P205 

LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 
C i 

Co 
Ni 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

(La/Yb)cn 
(La/Sm)cn 
(Gd/Yb)cn 
(Eu/Eu*)cn 
(Ce/Ce*)cn 

Al203/Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
IREE 

North 
West 

485415 

52.3 

1.09 

18.27 

10.06 
0.20 
4.37 
9.60 
3.89 

0.17 

0.05 

0.45 
46 

50 
321 
233 
67 
180 
2.6 

74.4 
16.0 
56.1 
2.31 
0.12 
42.7 
0.16 
2.14 
0.42 
0.11 
2.81 
7.65 
1.19 
5.81 
1.95 
0.82 
2.65 
0.46 
3.11 
0.67 
2.01 
0.30 
1.86 
0.28 

1.02 
0.91 
1.15 
1.10 
1.01 

16.77 
14.88 
3.51 

116.41 
0.86 
1.17 
1.17 

31.56 

64°44.062' 
49°56.298' 

496122 

48.7 

0.50 

16.56 

10.71 
0.21 
9.93 
10.96 
2.07 

0.32 

0.04 

1.23 
65 

42 
216 
301 
54 

279 
62.6 
123.6 
10.5 
21.2 
1.01 

13.65 
51.0 
0.07 
10.45 
0.15 
0.04 
1.38 
3.92 
0.58 
3.09 
1.12 
0.40 
1.56 
0.29 
1.91 
0.42 
1.24 
0.18 
1.17 
0.18 

0.79 
0.78 
1.08 
0.92 
1.05 

32.99 
14.14 
2.01 

142.17 
0.90 
0.80 
0.86 
17.43 

64°43.891' 
49°57.609' 

485410 

52.9 

0.91 

13.73 

10.61 
0.23 
6.23 
11.40 
3.33 

0.50 

0.17 

0.65 
54 

47 
304 
405 
43 
123 
3.7 

154.4 
21.1 
62.0 
2.66 
0.08 
190.8 
0.17 
12.62 
1.98 
0.50 
11.79 
24.67 
3.34 
14.85 
3.73 
1.16 
4.13 
0.64 
4.08 
0.82 
2.42 
0.34 
2.26 
0.32 

3.51 
1.99 
1.48 
0.91 
0.95 

15.17 
15.56 
2.94 
87.51 
0.22 
0.58 
0.72 

74.57 

64°43.623' 
49°55.941' 

496115 

55.1 

0.86 

14.83 

10.63 
0.13 
6.79 
7.25 
4.00 

0.24 

0.12 

1.06 
56 

31 
214 
255 
41 
128 
6.4 

129.0 
15.9 
82.7 
2.74 
1.42 
92.3 
0.15 
3.60 
1.75 
0.30 
2.42 
11.47 
1.61 
8.59 
2.79 
0.87 
3.19 
0.50 
3.14 
0.63 
1.79 
0.24 
1.58 
0.24 

1.03 
0.55 
1.63 
0.89 
1.40 

17.22 

17.81 
5.21 

62.47 
0.54 
1.18 
0.88 

39.04 

64°43.764' 
49°56.692' 

485426 

52.4 

0.21 

5.67 

9.11 
0.13 
21.83 
10.12 
0.54 

0.02 

0.01 
3.02 
83 

21 
82 

12347 
83 

1211 
LDL 
28.4 

4.7 
12.4 
0.37 
0.08 
4.6 

0.02 
0.99 
0.15 
0.26 
2.11 
4.01 
0.43 
1.75 
0.43 
0.20 
0.62 
0.12 
0.82 
0.19 
0.59 
0.09 
0.61 
0.10 

2.33 
3.11 
0.82 
1.16 
1.01 

26.60 
15.16 
2.67 

102.91 
0.26 
1.01 
0.86 
12.07 

64°44.903' 
49°53.261' 

485427 

52.7 

0.21 

5.59 

8.96 
0.14 
21.29 
10.54 
0.59 

LDL 

0.01 

2.69 
82 

19 
80 

12146 
82 

1160 
LDL 
29.5 

4.7 
11.4 
0.39 
0.06 
4.9 

0.03 
0.90 
0.12 
0.43 
2.76 
6.05 
0.67 
2.47 
0.51 
0.26 
0.67 
0.13 
0.84 
0.19 
0.59 
0.09 
0.56 
0.09 

3.32 
3.42 
0.96 
1.37 
1.07 

27.27 

13.57 
2.41 

107.91 
0.28 
0.71 
0.79 
15.89 

64°44.903' 
49°53.261' 

485430 

46.4 

0.44 

12.68 

11.52 

0.22 
15.52 
11.44 
1.46 

0.30 

0.03 

1.75 
73 

26 
136 
1953 
67 

469 
11.6 
28.0 
10.1 
32.7 
1.09 
3.05 
55.4 
0.08 
1.83 
0.36 
0.13 
3.38 
7.12 
0.95 
4.39 
1.31 
0.47 
1.64 
0.30 
1.96 
0.40 
1.29 
0.17 
1.11 
0.17 

2.05 
1.62 
1.19 
0.99 
0.95 

28.77 

13.61 
3.22 
80.93 
0.40 
0.95 
0.74 
24.67 

64=44.900' 
49°53.466' 

485431 

53.4 

0.10 

3.98 

6.84 

0.12 
22.59 
12.42 
0.56 

0.04 

LDL 

2.69 
87 

12 
48 

6534 
81 

1479 
LDL 
47.0 

2.6 
7.2 

0.15 
0.10 
33.7 
0.01 
5.02 
0.06 
0.02 
0.22 
0.84 
0.11 
0.62 
0.25 
0.08 
0.41 
0.07 
0.49 
0.10 
0.33 
0.05 
0.34 
0.05 

0.44 
0.56 
0.99 
0.77 
1.32 

37.94 

11.38 
2.81 
87.36 
0.54 
1.29 
0.73 
3.95 

64=44.900' 
49°53.466' 

485433 

44.2 

0.30 

7.40 

11.99 

0.18 
25.58 
10.02 
0.33 

LDL 

0.02 

6.35 
81 

26 
116 

10711 
93 

1162 
0.3 

178.2 
7.0 
16.0 
0.47 

0.23 
12.4 
0.04 
5.98 
0.07 
0.03 
0.64 
1.91 
0.31 
1.74 
0.66 
0.23 
0.97 
0.18 
1.30 
0.28 
0.89 
0.13 
0.90 
0.14 

0.48 
0.62 
0.87 
0.88 
1.03 

24.75 
12.37 
2.30 

111.91 
0.92 
1.05 
0.79 
10.29 

64=44.940' 

49°53.402' 

485434 

45.7 

0.39 

11.48 

12.41 

0.15 
19.22 
9.57 
0.93 

0.15 

0.03 
3.81 
75 

31 
127 

7020 
98 

1064 
8.4 

30.7 
6.5 

22.9 
0.70 
2.49 
33.8 
0.04 
5.38 
0.19 
0.24 

21.39 
42.49 
4.73 
16.70 
2.53 
0.91 
1.62 
0.24 
1.33 
0.27 
0.81 
0.12 
0.79 
0.14 

18.35 
5.31 
1.67 
1.37 
1.02 

29.23 

15.86 
3.51 

102.73 
0.14 
0.25 
0.89 

94.05 

64°44.94( 
49°53.40: 
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Ultramafic amphibolites Calc-silicate rocks 

Si02 (wt.%) 

Ti0 2 

A1203 

Fe203 

MnO 
MgO 
CaO 

Na20 

K 2 0 

P2O5 
LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 

Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

(La/Yb)cn 
(La/Sm)cn 
(Gd/Yb)cn 
(Eu/Eu*)cn 
(Ce/Ce*)cn 

Ako3mo2 
Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
£REE 

North 
West 

485435 

46.5 

0.31 

9.46 

12.28 

0.20 
21.18 
9.52 

0.50 

0.05 

0.02 
4.34 
77 

33 
139 

11378 
90 

734 
0.5 
85.5 
7.8 
18.9 
2.56 
0.07 
16.1 
0.55 
2.53 
0.06 
0.08 
2.54 
6.45 
0.89 
3.79 
0.98 
0.52 
1.19 
0.20 
1.49 
0.31 
0.95 
0.15 
1.01 
0.16 

1.69 
1.62 
0.95 
1.47 
1.03 

30.34 
4.66 
2.44 
98.92 
2.64 
0.68 
0.73 

20.64 

64°44.943' 
49°53.379' 

485436 

45.4 

0.67 

15.22 

9.63 

0.23 
24.10 
4.51 

0.24 

LDL 

0.02 
7.74 
83 

50 
232 
1222 
98 

397 
1.7 

27.4 
19.9 
32.6 
0.71 
0.88 
9.2 

0.04 
2.14 
0.28 
0.34 

73.82 
139.74 
14.90 
49.77 
6.84 
3.32 
5.21 
0.72 
4.17 
0.87 
2.58 
0.36 
2.25 
0.33 

22.06 
6.78 
1.87 
1.70 
1.01 

22.65 
16.42 
1.64 

123.70 
0.06 
0.12 
0.50 

304.87 

64M4.959' 
49°53.375' 

485437 

50.8 

0.47 

10.92 

9.28 

0.16 
15.53 
10.36 

2.39 

0.04 

0.02 
2.00 
77 

36 
176 

4698 
85 
860 
1.1 

221.1 
3.6 

23.5 
0.76 
0.32 
37.0 
0.04 
5.85 
0.08 
0.08 
0.89 
2.18 
0.35 
1.77 
0.56 
0.43 
0.66 
0.13 
0.78 
0.16 
0.51 
0.07 
0.41 
0.07 

1.47 
1.00 
1.29 
2.17 
0.94 

23.44 
17.42 
6.48 

118.86 
1.13 
1.65 
1.90 
8.94 

64°44.962' 
49°53.313' 

499742 

49.3 

0.36 

8.38 

11.51 

0.20 
19.07 
9.43 

1.39 

0.28 

0.03 
2.04 
77 

27 
147 

1862 
77 
819 
20.9 
112.0 
10.7 
24.3 
0.99 
10.41 
61.2 
0.09 
3.61 
0.75 
0.22 
3.24 
7.78 
1.01 
4.39 
1.15 
0.30 
1.43 
0.27 
1.78 
0.38 
1.24 
0.18 
1.28 
0.21 

1.70 
1.76 
0.90 
0.71 
1.04 

23.19 

11.49 
2.28 
89.18 
0.26 
0.75 
0.67 

24.64 

64°44.878' 
49°53.758' 

499743 

49.2 

0.36 

8.30 

11.59 

0.20 
18.91 
9.78 
1.44 

0.19 

0.03 
1.91 
76 

28 
149 

1896 
77 
820 
6.0 

112.6 
9.7 

27.7 
0.94 
3.10 
19.4 

0.09 
3.21 
0.87 
0.23 
3.30 
8.26 
0.94 
3.98 
1.08 
0.31 
1.37 
0.24 
1.66 
0.36 
1.10 
0.16 
1.10 
0.17 

2.02 
1.93 
1.00 
0.77 
1.13 

22.82 
10.72 
2.86 

78.82 
0.23 
0.94 
0.73 

24.02 

64°44.878' 
49°53.758' 

496110* 

55.1 

0.90 

16.16 

8.21 

0.15 
2.40 
16.20 

0.73 

0.02 

0.08 
1.42 
37 

37 
317 
250 
29 
141 
1.1 

320.1 
19.4 
60.1 
2.05 
0.10 
11.5 
0.15 
10.12 
0.67 
0.16 
4.72 
11.44 
1.65 
7.82 
2.42 
1.25 
3.09 
0.54 
3.56 
0.75 
2.23 
0.32 
2.12 
0.31 

1.50 
1.23 
1.18 
1.40 
0.99 

17.92 
13.46 
3.09 
89.92 
0.47 
0.97 
0.83 

42.21 

64°44.453' 
49°52.106' 

496111* 

54.4 

0.87 

16.36 

7.65 

0.13 
2.37 
17.23 

0.91 

0.03 

0.08 

2.52 
38 

41 
279 
375 
43 
198 
0.2 

204.4 
17.9 
55.1 
2.11 
0.08 
8.1 

0.16 
4.96 
0.70 
0.16 
4.58 
11.77 
1.66 
7.97 
2.35 
0.80 
3.03 
0.52 
3.48 
0.71 
2.12 
0.30 
1.95 
0.29 

1.58 
1.22 
1.26 
0.91 
1.03 

18.75 

13.16 
3.08 

94.92 
0.48 
0.89 
0.83 

41.52 

64°44.460' 
49°52.433' 

496113* 

57.0 

0.89 

16.35 

5.71 

0.11 
2.03 
14.99 

2.73 

0.14 

0.07 

2.32 
41 

45 
305 
208 
46 

209 
0.7 

197.0 
13.4 
46.9 
1.64 
0.06 
27.0 
0.12 
3.30 
0.34 
0.19 
2.80 
7.45 
1.13 
5.61 
1.83 
0.67 
2.28 
0.40 
2.60 
0.53 
1.54 
0.22 
1.39 
0.20 

1.36 
0.96 
1.33 
1.01 
1.01 

18.30 

13.54 
3.49 

114.30 
0.69 
1.02 
1.12 

28.68 

64°44.338' 
49°54.278' 

499717* 

47.4 

0.64 

15.67 

11.43 

0.23 
2.87 

21.51 
0.11 

LDL 

0.11 

1.38 
33 

29 
305 
245 
40 
239 
0.2 

321.3 
30.2 
37.6 
1.54 
0.06 
12.5 
0.11 
15.62 
0.36 
0.18 
5.82 
14.06 
2.09 
10.64 
3.49 
1.24 
4.79 
0.78 
4.94 
1.01 
2.84 
0.38 
2.29 
0.32 

1.71 
1.05 
1.69 
0.93 
0.97 

24.55 

13.88 
1.25 

101.91 
0.43 
0.43 
0.42 

54.70 

64°44.458' 
49°52.393' 

496112 

46.5 

0.69 

12.55 

8.30 

0.35 
6.32 

24.76 
0.29 

0.12 

0.06 

1.15 
60 

36 
215 
168 
45 
189 
12.0 

112.2 
15.1 
39.4 
1.41 
5.50 
16.4 
0.11 
2.30 
0.31 
0.16 
2.73 
7.17 
1.10 
5.53 
1.75 
0.56 
2.16 
0.39 
2.59 
0.56 
1.74 
0.24 
1.67 
0.25 

1.10 
0.98 
1.05 
0.88 
1.00 
18.15 
12.34 
2.62 

105.30 
0.62 
0.89 
0.88 

28.43 

64°44.402' 
49°53.298' 
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Calc-silicate rocks 

Si02 (wt.%) 

Ti02 

A1203 

Fe203 

MnO 
MgO 
CaO 
Na20 

K 20 

P2O5 

LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 
Cr 

Co 
Ni 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

(La/Yb)cn 
(La/Sm)cn 
(Gd/Yb)cn 
(Eu/Eu*)cn 
(Ce/Ce*)cn 
Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
IREE 

North 
West 

485411 

54.4 

0.87 

16.36 

7.65 
0.13 
2.37 
17.23 
0.91 

0.03 

0.08 
2.52 
38 

23 
77 
73 
16 
71 
6.3 

113.6 
19.3 
43.4 
0.17 
11.63 
18.0 
0.04 
3.71 
0.21 
0.02 
0.65 
3.00 
0.71 
4.44 
1.91 
0.30 
2.76 
0.51 
3.49 
0.76 
2.33 
0.34 
2.22 
0.34 

0.20 
0.21 
1.01 
0.40 
1.07 

18.75 
4.89 
2.25 

120.53 
0.19 
1.04 
0.84 
23.76 

64°43.691' 
49°55.570' 

499718 

46.5 

0.17 

2.46 

9.02 
0.64 
10.57 
30.42 
0.16 

0.02 

0.03 
6.21 
70 

6 
41 
47 
11 
29 
0.2 

55.6 
4.7 
8.6 

0.54 
0.37 
3.5 
0.04 
2.55 
0.13 
0.13 
0.89 
1.64 
0.21 
1.04 
0.33 
0.18 
0.46 
0.08 
0.59 
0.15 
0.49 
0.07 
0.46 
0.08 

1.30 
1.70 
0.80 
1.43 
0.91 
14.71 

12.30 
1.84 

116.15 
0.65 
1.03 
0.96 
6.68 

64°44.564' 
49°51.967' 

485439 

50.6 

0.24 

5.86 

7.90 
0.30 
9.77 

25.00 
0.18 

0.07 

0.05 
1.96 
71 

23 
123 

6415 
90 

976 
7.5 

1773.8 
4.9 
11.4 
0.62 
0.46 
67.4 
0.04 

22.27 
0.17 
0.05 
1.51 
2.77 
0.38 
1.82 
0.53 
0.32 
0.74 
0.13 
0.92 
0.21 
0.61 
0.09 
0.57 
0.09 

1.78 
1.78 
1.05 
1.56 
0.88 

24.13 

15.09 
2.33 

128.07 
0.51 
0.81 
0.90 
10.70 

64°44.859' 
49°53.752' 

485440 

48.7 

0.31 

7.68 

8.94 
0.34 
8.89 

24.59 
0.52 

0.06 

0.03 
1.67 
66 

23 
151 

8290 

106 
1152 
9.7 

1182.9 
6.8 
16.3 
1.43 
8.84 
60.2 
0.06 
19.12 
0.23 
0.06 
1.69 
3.49 
0.47 
2.10 
0.68 
0.22 
0.91 
0.16 
1.19 
0.29 
0.94 
0.14 
0.94 
0.16 

1.2.1 
1.55 
0.78 
0.84 
0.94 
25.17 

24.17 
2.38 

112.41 
0.94 
0.95 
0.89 
13.38 

64°44.859' 
49°53.752' 

499715 

43.4 

1.84 

15.98 

10.88 
0.16 
3.30 

24.23 
0.09 

LDL 

0.11 
1.09 
38 

36 
332 
1035 

66 
714 
0.6 

336.5 
50.3 
90.6 

42.54 
0.34 
11.7 
7.01 
12.47 
1.14 
1.91 
9.77 

21.92 
3.12 
14.76 
5.48 

1.81 
6.99 
1.20 
7.86 
1.64 
5.05 
0.77 
5.21 
0.75 

1.26 
1.12 
1.09 
0.89 
0.96 
8.70 
6.07 
1.80 

121.63 
5.19 
0.70 
0.77 
86.33 

64°44.279' 
49°53.227' 

499716 

49.8 

1.80 

1.03 

14.94 

0.33 
8.48 

23.25 
0.33 

0.06 

0.01 
0.01 
53 

62 
129 
168 
81 

416 
14.3 
55.6 
26.1 
113.4 
22.39 
0.38 

285.5 
1.79 
5.52 
0.88 
1.81 
6.85 

20.76 
3.08 
14.33 
3.76 
1.52 
4.38 
0.72 
4.68 
0.98 
2.96 
0.44 
3.21 
0.52 

1.44 
1.15 
1.10 
1.14 
1.09 

0.57 
12.53 
4.35 

95.40 
3.72 

1.08 
1.26 

68.19 

64°44.339' 
49°52.738' 

499740 

45.6 

0.31 

12.17 

11.18 

0.27 
6.70 

23.51 
0.16 

0.06 

0.03 
1.42 
54 

26 
203 
1780 

100 
1391 
0.6 

1991.8 
7.6 

25.8 
3.21 
0.28 
12.9 
0.05 

35.85 
0.56 
0.16 
1.77 
3.45 
0.47 
2.34 
0.89 
1.21 
1.20 
0.21 
1.41 
0.29 
0.85 
0.12 
0.79 
0.12 

1.51 
1.25 
1.23 
3.58 
0.92 

38.98 
58.84 
3.39 

72.66 
1.31 
1.25 
0.73 
15.10 

64°44.878' 
49°53.758' 

499741 

48.7 

0.72 

7.25 

8.59 

0.34 
9.49 

24.51 
0.25 

0.11 

0.01 
0.80 
69 

52 
139 

1863 

152 
2292 
0.8 

1302.9 
3.4 

30.6 
12.36 
0.30 
62.9 
0.14 

31.35 
0.33 
0.61 
1.45 
2.78 
0.38 
1.62 
0.46 

0.22 
0.54 
0.10 
0.70 
0.15 
0.47 
0.07 
0.50 
0.08 

1.97 
1.97 
0.89 
1.32 
0.90 
10.03 

85.61 
9.00 

141.61 
7.28 
2.47 
3.45 
9.52 

64°44.878' 
49°53.758" 

496105 

49.1 

0.33 

6.15 

13.02 

0.38 
8.66 

22.07 
0.15 

0.09 

0.04 

0.36 
57 

22 
138 
88 
55 
138 
0.7 

39.9 
8.5 

27.9 
1.37 
0.33 
5.5 

0.07 
3.77 
0.16 
0.05 
0.98 
2.76 
0.40 
2.11 
0.82 
0.23 
1.19 
0.21 
1.37 
0.30 
0.91 
0.13 
0.86 
0.13 

0.77 
0.75 
1.12 
0.70 
1.06 

18.78 
19.96 
3.27 

70.44 
1.40 

1.48 
0.79 
12.40 

64°44.253' 
49°52.855' 

485471 

54.5 

0.43 

10.64 

8.87 

0.26 
5.79 
18.83 
0.46 

0.15 

0.04 
0.66 
56 

29 
174 
229 
46 
110 
14.5 
68.9 
13.1 
18.1 
1.31 
1.05 
53.9 
0.04 
4.13 
0.20 
0.06 
1.40 
3.59 
0.53 
2.59 
0.92 
0.34 
1.57 
0.29 
2.15 
0.48 
1.43 
0.21 
1.47 
0.22 

0.64 
0.95 
0.87 
0.86 
1.00 

24.47 
30.38 
1.38 

143.88 
1.01 
0.82 
0.70 
17.19 

64°44.814' 
49°51.504' 
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Table 2.2. (Continued) 

Avarage Pillow basalts a 

Si02 (wt.%) 

Ti02 

AI2O3 
Fe 2 0, 
MnO 
MgO 
CaO 
Na20 

K 2 0 

P 2 0 5 

LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

(La/Yb)cn 
(La/Sm)cn 
(Gd/Yb)cn 
(Eu/Eu*)cn 
(Ce/Ce*)cn 
Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
ZREE 

North 
West 

Pillow rims 

48.5 

0.55 

14.19 

12.31 
0.23 
9.51 
12.79 
1.66 

0.17 

0.04 

0.92 
60 

44.5 
224 

328.97 
74.14 

249.12 
3.77 

85.80 
14.01 
33.2 
1.12 
0.47 

49.72 
0.09 
4.36 
0.68 
0.15 
2.32 
6.07 
0.86 
4.19 
1.36 
0.46 
2.01 
0.37 
2.49 
0.55 
1.62 
0.24 
1.59 
0.24 

0.98 
1.07 
1.02 
0.85 
1.04 

25.65 

13.07 
2.37 
99.82 
0.36 
0.97 
0.74 
24.37 

64°44.906' 
49°51.827' 

Outer pillows 

55.7 

0.54 

14.47 

8.41 
0.18 
6.45 
12.40 
1.68 

0.13 

0.04 

1.17 
60 

43.8 
227 

307.09 
60.88 

233.49 
2.33 
86.93 
13.19 
31.4 
1.20 
0.12 

43.07 
0.08 
4.49 
0.69 
0.24 
3.09 
7.43 
1.01 
4.61 
1.37 
0.50 
1.99 
0.35 
2.42 
0.52 
1.57 
0.23 
1.53 
0.23 

1.36 
1.41 
1.05 
0.93 
1.02 

26.71 
14.23 
2.38 

103.36 
0.33 
0.87 
0.75 

26.84 

64°44.906' 
49°51.827' 

Inner Pillow 

52.1 

0.53 

14.08 

8.34 

0.21 
4.59 
19.59 
0.51 

0.01 

0.04 

0.91 
52 

43.5 
213 

721.71 
66.27 

325.18 
2.22 

94.14 
12.25 
30.3 
1.16 
0.53 
21.89 
0.08 
6.57 
0.63 
0.23 
2.84 
6.57 
0.90 
4.28 
1.33 
0.50 
1.86 
0.34 
2.35 
0.50 
1.49 
0.22 
1.46 
0.22 

1.31 
1.34 
1.03 
0.98 
0.99 

26.83 
14.00 
2.47 

103.82 
0.35 
0.89 
0.76 

24.86 

64°44.906' 
49°51.827" 
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Table 2.3. Selected compositional values and inter-element ratios for 
the least altered amphibolites and stage-II calc-silicate rocks. 

Mg-number 

Si02(wt.%) 
Fe203 

MgO 
CaO 

Zr (ppm) 
Ni 
Sc 
Cr 
2REE 

(La/Yb)cn 
(La/Sm)cn 
(Gd/Yb)cn 

Al203/Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 

(Eu/Eu*)cn 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 

Mafic 
amphibolites 

37-64 

48-57 
7.1 -19 
4.6 - 8.3 
9.2-14.7 

32-95 
70 - 274 
35-47 

104 - 2030 
26-62 

0.81-1.11 
0.77- 1.22 

1.0-1.2 

6.4-29.1 
12.8-17.1 
2.1-3.7 

65.7 -176.3 

0.9-1.1 
0.4-0.7 
0.8-1.2 
0.7- 1.1 

Ultramafic 
amphibolites 

73-83 

46-53 
9.0-11.6 
15.5-21.8 
9.4-11.4 

11-33 
469-1211 

19-28 
1862-12347 

12-25 

1.7-3.3 
1.6-3.4 
0.8-1.2 

22.8 - 28.8 
10.7-15.2 
2.3 - 3.2 
79-108 

0.7 - 1.4 
0.2 - 0.4 
0.7-1.0 
0.7 - 0.9 

Stage-II 
calc-silicates 

33-71 

43-57 
5.7-14.9 
2.0-10.6 
15.0-30.4 

9-113 
29 - 2292 

6-62 
47 - 8290 

7-86 

0.2-2.0 
0.2-2.0 
0.8- 1.7 

0.6 - 39 
4.9 - 86 
1.3-9.0 
70 - 144 

0.4-3.6 
0.2-7.3 
0.4-2.5 
0.4-3.45 
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CHAPTER 3 

Geochemistry and tectonic origin of Mesoarchean oceanic crust in the Ujarassuit 

and Ivisaartoq greenstone belts, SW Greenland 

3.1. Introduction 

Archean greenstone belts are composed dominantly of volcanic rocks and include a 

significant fraction of siliciclastic, volcaniclastic, and chemical sedimentary rocks 

(Condie, 1994). Basaltic lava flows are prevalent and are commonly associated with felsic, 

intermediate, and ultramafic volcanic rocks. The lithogeochemical diversity of Archean 

greenstone belts is the product of complex igneous and sedimentological processes 

operating in a wide variety of tectonic settings either at intra-oceanic or intra-continental 

environments (Eriksson and Catuneanu, 2004). Accordingly, it has been suggested that 

greenstone belts may represent the volcanic remnants of Archean intra-oceanic island arcs, 

mid-ocean ridges, large igneous provinces, and intra-continental rifts (Bickle et al., 1994; 

Ohta et al., 1996; Polat et al., 1998; Polat and Kerrich, 2001; Hartlaub et al., 2004; 

Sandeman et al., 2004; Thurston and Ayres, 2004; Kusky, 2004). The recognition of 

intra-oceanic Archean greenstone belts is of fundamental importance because they 

provide invaluable information on the geodynamic origin of the Archean oceanic crust. In 

addition, given that oceanic volcanic rocks are less susceptible to crustal contamination 

than greenstone belts deposited on continental crust, they also provide information on 

thermal and geochemical characteristics of the Archean mantle (Bennett et al., 1993; Ohta 

et al., 1996; Pollack, 1997; Kerrich et al, 1999; Polat et al., 1999; Komiya et al., 2004; 

Condie, 2005a). However, the intra-oceanic origin of Archean greenstone belts is 

controversial because their original stratigraphic relationships and primary geochemical 



79 

signatures have been variably modified during hydrothermal alteration, regional 

metamorphism, polyphase deformation, and plutonism (Fryer et al., 1979; Gruau et al., 

1992; Lahaye et al., 1995; Wilkins, 1997; Polat et al., 2003; Weiershauser and Spooner, 

2005). 

The Nuuk region in southern West Greenland comprises several early to late Archean 

(3850-2800 Ma) tectono-stratigraphic terranes assembled into a single block in the late 

Archean (Friend et al., 1988; 1996; Nutman et al., 1989; McGregor et al., 1991; Friend 

and Nutman, 2005; Garde, 2007). The diachronous accretion of allochtonous terranes in 

the Nuuk region is one of the best documented examples of Archean collisional orogeny 

(Nutman and Friend, 2007). The collisional tectonic model proposed for the Nuuk region 

suggests that some greenstone belts may represent relict fragments of Archean ocean 

floor accreted onto continental crust during the closure of Archean ocean basins in the 

late stages of a Wilson cycle (cf. Casey and Dewey, 1984; §engor, 1990). High-grade 

middle- to lower-crustal rocks are exposed in the Nuuk region at present. Therefore, the 

volcanic stratigraphy of most supracrustal belts is incomplete given that the uppermost 

crustal levels have been removed by erosion (Garde, 2007). Nevertheless, the region 

includes significant remnants of Mesoarchean intra-oceanic volcanic suites represented 

by rare island arc complexes (ca. 3071 Ma) in Qussuk and Bjorneeen (Garde, 2007) and 

incomplete fragments of supra-subduction zone oceanic crust (ca. 3075 Ma) in the 

Ivisaartoq greenstone belt (Polat et a l , 2007,2008). 

The geochemical characteristics of metavolcanic rocks in the Ivisaartoq belt have 

been investigated by Polat et al. (2007, 2008) and Ordonez-Calderon et al. (2008). 

However, no modern geochemical studies have been conducted in supracrustal rocks of 

the Ujarassuit Nunaat area to the NNW of the Ivisaartoq belt (Fig. 3.1). These rocks are 
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unofficially named as the Ujarassuit greenstone belt in this study. The Ujarassuit 

greenstone belt is dominated by hornblende-rich amphibolites with a basaltic composition 

(Fig. 3.1). The belt also includes volumetrically minor basaltic andesites, andesites, 

picrites, boninites, and volcanoclastic sedimentary rocks which are now, respectively, 

plagioclase-rich amphibolites, serpentinites, actinolite-tremolite-rich amphibolites, 

cummingtonite-rich amphibolites, biotite schists, and quartzitic gneisses (Table 3.1). This 

diverse lithological association provides an excellent opportunity to investigate Archean 

volcanogenic processes and geodynamic depositional environments. 

In this contribution, we report new high-precision major and trace element data for 34 

samples of metavolcanic rocks in the Ujarassuit greenstone belt with the following 

objectives: (1) to assess the effects of high-grade metamorphism and postmagmatic 

alteration on the primary geochemical signatures; (2) to investigate source characteristics 

and mantle processes; (3) to understand the geodynamic origin; and (4) for inter-

comparison with well studied metavolcanic rocks of the Ivisaartoq and Qussuk belts 

(Garde, 2007; Polat et al., 2007, 2008; Ordonez-Calderon et al., 2008). In addition, new 

geochemical data have been reported for 13 samples from metavolcanoclastic-

sedimentary rocks in the Ivisaartoq and Ujarassuit greenstone belts to understand their 

provenance and to provide additional constraints on the depositional setting of these 

supracrustal belts. 

3.2. Geological setting and field characteristics 

Structural and U-Pb zircon geochronological studies have shown that the Nuuk 

region is composed of several Eo- to Neoarchean (3850-2800 Ma) tectono-stratigraphic 

terranes (Fig. 3.1) bounded by amphibolite facies mylonites (Friend et al., 1987, 1988, 
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1996; Nutman et al., 1989; McGregor et al., 1991; Crowley, 2002; Friend and Nutman, 

2005). These allochtonous terranes comprise associations of tonalite-trondhjemite-

granodiorite (TTG) orthogneisses and fragments of greenstone belts (Black et al., 1971; 

Moorbath et al., 1973; McGregor, 1973; Bridgwater et al., 1974; McGregor and Mason, 

1977; Chadwick, 1990; Nutman et al., 1996; Garde, 2007; Polat et al., 2007). The region 

has undergone multiple phases of deformation and metamorphism at upper amphibolite 

facies conditions, which appears to be related to several episodes of terrane accretion 

operating between 2710 and 2960 Ma (Friend and Nutman, 1991; Friend et al., 1996; 

Friend and Nutman, 2005). 

The Ivisaartoq greenstone belt is located within the ca. 3070-2970 Ma Kapisilik 

terrane (Fig. 3.1) (Chadwick, 1985, 1990). A minimum depositional age of ca. 3075 Ma 

has been constrained by U-Pb zircon geochronology in felsic volcaniclastic-sedimentary 

rocks (Friend and Nutman, 2005; Polat et al., 2007). The belt comprises a sequence of 

metamorphosed pillow basalts, with minor intercalations of picrites, gabbros, and 

volcaniclastic-sedimentary rocks (Chadwick, 1985, 1990; Polat et al., 2007, 2008). The 

Ivisaartoq belt has been subdivided into two lithotectonic groups (Chadwick, 1990). The 

upper group is less deformed than the lower group and contains primary magmatic 

features including pillow lavas (Fig. 3.2a), cumulate textures, and volcanic breccia 

(Chadwick, 1990; Polat et al., 2007, 2008). These primary features are rare in the lower 

lithotectonic group, which is more deformed. The base of the lower group includes a ca. 

500 m thick unit of biotite schists and quartzitic gneisses interpreted as volcaniclastic-

sedimentary rocks (Chadwick, 1990; this study) (Fig. 3.1). Biotite schists are the most 

abundant rock type (Table 3.1). Layers of quartzitic gneisses up to 1 m thick are locally 

intercalated. Despite strong deformation and penetrative foliation, the biotite schists 
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preserve rounded felsic cobbles 5 to 20 cm in length (Fig. 3.2b-c). In addition, a few 

layers of hornblende-rich amphibolites (up to 50 cm thick) parallel to the prevalent 

foliation are intercalated within this volcaniclastic-sedimentary unit. 

The Ujarassuit greenstone belt appears to be the northern continuation of the 

Ivisaartoq belt (Fig. 3.1) (Hall and Friend, 1979; Chadwick, 1990; Friend and Nutman, 

2005). The belt is less than 1 km wide owing to strong tectonic attenuation. Tonalite-

trondhjemite-granodiorite plutons, now TTG-gneisses, intrude into the Ujarassuit 

greenstone belt. These TTG-gneisses have yielded Mesoarchean U-Pb zircon ages 

between 3070 and 2972 Ma (Friend and Nutman, 2005; Hollis et al., 2006a). These ages 

have been interpreted as the age of the magmatic event, and provide a minimum 

depositional age that is comparable with the ages reported for the Ivisaartoq greenstone 

belt (Friend and Nutman, 2005; Polat et al., 2007). 

The Ujarassuit greenstone belt is dominated by hornblende-rich amphibolites (Table 

3.1). They display homogenous or layered appearance at outcrop scale owing to 

variations in the abundance of plagioclase and hornblende. Primary volcanic features are 

not preserved. The contacts between amphibolites and orthogneisses are partially 

delimited by high grade mylonites (Fig. 3.2d-e) up to 0.5 m in thickness. The surrounding 

orthogneisses are strongly migmatitic (Fig. 3.2f) and include amphibolite xenoliths (Fig. 

3.2g), which in some locations preserve evidence for an earlier tectonic foliation (Hollis 

et al., 2006b; this study). Amphibolites are also variably migmatitic. The proportion of 

quartzo-feldspathic leucosome increases towards the contacts with the orthogneisses (Fig. 

3.2h). The amphibolites are complexly folded indicating that the belt has experienced 

polyphase deformation (Fig. 3.3a-d). Plagioclase-rich amphibolites, serpentinites, and 

actinolite-tremolite-rich amphibolites are locally intercalated with hornblende-rich 
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amphibolites (Table 3.1). The serpentinites and actinolite-tremolite-rich amphibolites 

(hereafter ultramafic rocks) occur as discontinuous boudinaged lenses 1 m to 1 km in 

length (Fig. 3.3e). They are strongly altered (Table 3.1), and rarely contain fresh olivine 

and clinopyroxene. Metagabbros with relict igneous textures are locally preserved. Biotite 

schists and quartzitic gneisses are minor components of the Ujarassuit greenstone belt 

(Fig. 3.3f). They occur as 0.5 to 1 m thick layers intercalated with hornblende-rich 

amphibolites. In some areas, this intercalation forms packages up to 30 m thick. Although 

no primary sedimentary structures are preserved in the Ujarassuit belt, biotite schists are 

petrographically similar to those exposed in the lower volcaniclastic-sedimentary unit of 

the Ivisaartoq greenstone belt (Chadwick, 1990). Cummingtonite-rich amphibolites are 

rare. They are intercalated with hornblende-rich amphibolites and ultramafic rocks. 

The Ujarassuit greenstone belt displays evidence for postmagmatic hydrothermal 

alteration, which is indicated by localized concordant calc-silicate rocks and rusty layers 

of pyrite-bearing quartz-rich rocks (Fig. 3.3g-h). The calc-silicate rocks are parallel to the 

regional foliation, and have been affected by recumbent folding (Fig. 3.3c). These rocks 

are composed of diopside, epidote, and garnet. Similar calc-silicate layers in the 

Ivisaartoq belt have been ascribed to high temperature metasomatism coeval with the 

prograde stage of the regional metamorphism (Polat et al., 2007; Ordonez-Calderon et al., 

2008). 

3.3. Structural characteristics of Ujarassuit greenstone belt 

The internal structural characteristics of the Ujarassuit greenstone belt and its 

structural relationships with the surrounding TTG-gneisses were investigated (Fig. 3.4). 

The belt exhibits evidence for at least three major phases of ductile deformation at upper 
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amphibolite facies metamorphic conditions (cf. Hall and Friend, 1979; Friend and 

Nutman, 1991; Hollis et al., 2006b). The earliest deformation event (Di) is indicated by 

relict rootless folds (Fi), which folded an earlier tectonic foliation (Si) (Fig. 3.3a). The Si 

foliation is locally preserved in amphibolite xenoliths within the orthogneisses. A second 

phase of deformation (D2) transposed Si into parallelism with the regional S2 foliation. D2 

deformation resulted in tight F2 isoclinal and recumbent folds (Fig. 3.3b-c). Felsic 

leucosome in migmatitic amphibolites and calc-silicate layers are folded around F2 

recumbent folds (Figs. 3.2h and 3.3c). The latest phase of ductile deformation (D3) is 

characterized by upright F3 folds that refolded and reoriented earlier tectonic structures 

(Fig. 3.3d). 

The orientations of D2 and D3 structures in the supracrustal rocks and TTG-gneisses 

are conformable (Fig. 3.4). In the western flank of the belt, the 7c-fold axis (182723°) 

calculated from poles to S2 foliations display a similar orientation to those of small-scale 

parasitic isoclinal F2 fold axes with mean attitude of 171744° (Fig. 3.4a-b). In the eastern 

flank, isoclinal F2 fold axes display comparable mean attitude (151736°) to those in the 

western flank (Fig. 3.4e). However, poles to S2 foliations plot along a major circle with a 

rc-fold axis (79755°) oblique to F2 (Fig. 3.4d-e). In the east the belt is more attenuated and 

changes its direction from NS to NW which has been interpreted to reflect large-scale 

fold superposition during late Archean upright folding (see Hall and Friend, 1979). 

Accordingly, the oblique 71-fold axis likely represents interference patterns owing to 

moderately plunging F3 upright folds. 

Mineral stretching lineations are defined by preferred orientation of hornblende, 

quartz ribbons, and stretched garnet. Lineations (L2) in the western flank (155744°) 

parallel F2 axes, and therefore they may have been developed during D2 deformation and 
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reoriented during F3 folding (Fig. 3.4b-c). In contrast, mineral lineations (L3) in the 

eastern flank possess a mean attitude (34759°) that is closer to the inferred F3 Jt-axis (Fig. 

3.4f). This suggests that L3 lineations were likely formed during D3 deformation. The 

prevalence of L3 lineations and dominant east dipping direction of S2 foliations imply that 

strong tectonic attenuation and more intense strain in the eastern flank of the Ujarassuit 

greenstone belt resulted from D3 deformation (Fig. 3.1). 

3.4. Petrography 

The mineralogical characteristics and interpreted protoliths of different rock types are 

presented in Table 3.1. The primary igneous mineralogy and sedimentary textures are not 

preserved. These rocks consist of amphibolite facies metamorphic assemblages with 

penetrative foliation. 

Hornblende-rich amphibolites (Fig. 3.5a) are composed of hornblende (60-70 %), 

plagioclase (20-35 %), quartz (5-10 %), and accessory (< 2%) minerals such as zircon, 

apatite, magnetite, and titanite. Garnet, biotite, and cummingtonite are locally present. 

Biotite generally replaces hornblende and garnet. 

Cummingtonite-rich amphibolites are rare (Fig. 3.5b; Table 3.1). They are rich in 

cummingtonite (40-50%) and poor in hornblende (< 5%). They contain minor amounts of 

anthophyllite (up to 10%), and abundant quartz (10-15%) and plagioclase (30-50%). 

Cummingtonite-rich amphibolites are spatially associated with ultramafic rocks. 

Plagioclase-rich amphibolites are rare (Table 3.1). They contain less hornblende (10-

20%), but more plagioclase (60-70%) and quartz (5-15 %) than hornblende-rich 

amphibolites. 
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Ultramafic rocks are composed of hydrated metamorphic assemblages giving rise to 

variable mineralogical compositions (Fig. 3.5c; Table 3.1). They include serpentine, talc, 

actinolite, tremolite, and rarely cummingtonite. Some ultramafic rocks (498257 and 

498262) are composed mainly of weakly serpentinized olivine (Fig. 3.5d) and 

clinopyroxene with characteristic mesh texture. 

Biotite schists are composed of quartz (15-40%), plagioclase (50-70%), and biotite 

(10-30%) (Fig. 3.5e; Table 3.1). Accessory minerals may include garnet (<3%), epidote, 

magnetite, and titanite. Some samples (498242 and 498243) contain muscovite (< 5%) 

and microcline (5%). Cummingtonite, anthophyllite, and hornblende occasionally occur 

in amounts up to 15% (sample 498292 and 498297). Tourmaline (2%) was found only in 

biotite schists from the Ivisaartoq greenstone belt (Fig. 3.1). 

Quartzitic gneisses were found only in the Ivisaartoq belt (Table 3.1). They are fine­

grained and consist of quartz (70%), plagioclase (10%), biotite (10-15%), and muscovite 

(5-20%o) (Fig. 3.5f). Locally, they contain garnet (2%) and hornblende (3%). Accessory 

minerals include magnetite, rare tourmaline, and significant amounts of fine-grained 

zircon. 

3.5. Analytical methods and sampling 

Samples were pulverized using an agate mill in the Department of Earth and 

Environmental Sciences of the University of Windsor, Canada. Major elements and some 

trace elements (Sc and Zr) were analyzed on a Thermo Jarrel-Ash ENVIRO IIICP-OES 

in Activation laboratories Ltd. (ATCLABS) in Ancaster, Canada. The samples were 

mixed with a flux of lithium metaborate and lithium tetraborate, and fused at 1000 °C in 

an induction furnace. The molten beads were rapidly digested in a solution of 5% HNO3 
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containing an internal standard, and mixed continuously until complete dissolution. Loss 

on ignition (LOI) was determined by measuring weight loss upon heating to 1100 °C over 

a three hour period. Totals of major elements are 100 ± 1 wt% and their analytical 

precisions are 1-2% for most major elements (Table 3.2). The analytical precisions for Sc 

and Zr are better than 10%. 

Transition metals (Ni, Co, Cr, and V), REE, HFSE, and LILE were analyzed on a 

high-sensitivity Thermo Elemental X7 ICP-MS in the Great Lakes Institute for 

Environmental Research (GLIER), University of Windsor, Canada, following the 

protocols of Jenner et al. (1990). Sample dissolution was conducted under clean lab 

conditions with doubly distilled acids. Approximately 100-130 mg of sample powder was 

used for acid digestion. Samples were dissolved in Teflon bombs in a concentrated 

mixture of HF-HNO3 at a temperature of 120 °C for 3 days and then further attacked with 

50% HNO3 until no solid residue was left. Hawaiian basalt standards BHVO-1 and 

BHVO-2 were used as reference materials to estimate analytical precisions (Table 3.2). 

Analytical precisions are estimated as follows: 3-10% for REE, Y, Nb, Ta, Rb, Sr, Cs, Ba, 

and Co; 10-20% for Ni, and Th; and 20-30% for U, Pb, V, and Cr. 

Major element analyses were recalculated to 100 wt.% anhydrous basis for inter-

comparisons. Chondrite and primitive mantle reservoir compositions are those of Sun and 

McDonough (1989) and Hofmann (1988), respectively. The Eu (Eu/Eu*), Ce (Ce/Ce*), 

Nb (Nb/Nb*), Ti (Ti/Ti*), and Zr (Zr/Zr*) anomalies were calculated with the following 

equation after Taylor and McLennan (1985): 

A/A* = AN/([(BN)(CN)]1/2 

Where 

A/A* = Element anomaly 
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AN = Chondrite normalization for Eu and Ce anomalies, and primitive mantle 

normalization for Nb, Ti, and Zr anomalies. 

BN and CN = Neighboring immobile elements as follow: Sm and Gd for Eu/Eu*; 

La and Pr for Ce/Ce*, Th and La for Nb/Nb*, Nd and Sm for Zr/Zr*, and Tb and 

DyforTi/Ti*. 

Mg-numbers (%) were calculated as the molecular ratio of Mg2+/(Mg2+ + Fe2+) where 

Fe2+ is assumed to be 90% of the total Fe. 

3.6. Geochemistry 

3.6.1. Amphibolites 

Hornblende- and cummingtonite-rich amphibolites show a basaltic composition on 

the Zr/Ti versus Nb/Y diagram (Figs. 3.6 and 3.7; Table 3.1). They have been subdivided 

into four major groups on the basis of their chondrite- and primitive mantle-normalized 

trace element patterns (Fig. 3.8a-h; Table 3.3). Groups 1, 2, and 3 are hornblende-rich 

amphibolites. They show similar mineralogical composition and can only be 

distinguished on the basis of their trace element characteristics. In contrast, Group 4 

amphibolites are cummingtonite-rich amphibolites (Table 3.1). 

Hornblende-rich amphibolites (Groups 1-3) possess Zr/Y ratios (Zr/Y = 1.5-4.6) 

similar to those of modern tholeiitic basalts (Zr/Y = 1.3-3.1) (see Barrett and MacLean, 

1994). They have Mg-numbers ranging from 44 to 67 and variable concentrations of SiC>2 

(47.2-54.8 wt%), Ti02 (0.4-1.2 wt%), Fe203 (9.9-15.7 wt%), A1203 (13.1-16.3 wt%), 

MgO (5.6-11.3 wt%), Zr (18-67 ppm), and ZREE (13.1-41.2 ppm) (Fig. 3.7, Table 3.3). 

Groups 1-3 amphibolites in the Ujarassuit belt, and Groups 1-3 amphibolites in the 

Ivisaartoq belt (Ordonez-Calderon et al., 2008), display collinear trends for major 
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elements, HFSE, REE, and transition metals on variation diagrams of Zr indicating 

comparable compositions (Table 3.3). However, in the Ujarassuit belt they have slightly 

lower concentrations of Ni (59-190 ppm) than those in the Ivisaartoq belt (74-279 ppm) 

(see Ordofiez-Calderon et al., 2008). They show variable Eu (Eu/Eu* = 0.63-1.06), Zr 

(Zr/Zr* = 0.94-1.63), and Ti (Ti/Ti* = 0.59-0.94) anomalies on chondrite- and primitive 

mantle-normalized diagrams (Fig. 3.8). 

Group 1 amphibolites occur in the eastern and western flanks of the Ujarassuit 

greenstone belt (Fig. 3.8a-b). This amphibolite group displays near-flat REE patterns 

(La/Snicn == 0.77-1.14; Gd/Ybcn = 1.10-1.21) and negative Nb anomalies (Nb/Nb* = 0.60-

0.79). These trace element characteristics are similar to those shown by well preserved 

pillow basalts in the Ivisaartoq greenstone belt (Polat et al., 2007). In addition, Group 1 

amphibolites in this study are compositionally similar to the least altered Group 1 

amphibolites in the Ivisaartoq greenstone belt (Ordofiez-Calderon et al., 2008). 

Group 2 amphibolites occur in the western flank of the Ujarassuit greenstone belt 

(Fig. 3.8c-d). The trace element patterns of this group of amphibolites are characterized 

by depleted LREE (La/Smcn = 0.53-1.02) and slightly fractionated HREE (Gd/Ybcn = 

0.68-0.95) patterns. In addition, they show pronounced negative Nb (Nb/Nb* = 0.32-

0.67) anomalies. The trace element patterns of Group 2 amphibolites are comparable with 

those of Group 3 amphibolites in the Ivisaartoq greenstone belt (Ordofiez-Calderon et al., 

2008) and amphibolites in the Qussuk greenstone belt in the Akia terrane (Garde, 2007). 

Group 3 amphibolites occur in the western flank of the Ujarassuit belt (Fig. 3.1). 

They exhibit depleted LREE patterns (La/Sm^ = 0.69-0.84; Gd/Ybcn = 0.96-1.22) and 

lack significant Nb (Nb/Nb* = 0.92-1.15) anomalies (Fig. 3.8e-f). The trace element 
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patterns of this group of amphibolites are comparable to those of average modern N-

MORB (Hofmann, 1988). 

Relative to Groups 1-3 amphibolites, cummingtonite-rich amphibolites (Group 4) 

have higher Si02 (50.9-53.7 wt%), MgO (10.8-13.1 wt%), and Mg-numbers (67-76) 

(Table 3.3), and lower CaO (7.2-9.5 wt%), Fe203 (6.9-10.8 wt%), Ti02 (0.26-0.33 wt%), 

Zr (20-29 ppm), and SREE (15.9-19.8 ppm) (see Tables 3.3 and 3.5). They possess high 

Ni (124-178 ppm), Cr (99-765 ppm), and Sc (27-46 ppm) contents. Group 4 amphibolites 

possess higher Al203/Ti02 (44-71), lower Ti/Zr (55-97), and comparable Nb/Ta (14-21) 

ratios than those of Group 1-3 amphibolites (Table 3.5). They display enriched LREE 

(La/Smcn = 1.64-2.42) patterns and flat to fractionated HREE (Gd/Ybcn = 0.57-1.01) 

patterns (Fig. 3.8g-h). In addition, Group 4 amphibolites have pronounced negative Nb 

(Nb/Nb* = 0.28-0.42) and Ti (Ti/Ti* = 0.59-0.74) anomalies, and minor positive Eu 

(Eu/Eu* = 1.01-1.24) anomalies. 

Plagioclase-rich amphibolites have higher contents of Si02 (55.3-67.4 wt%) than 

Group 1-4 amphibolites (Tables 3.3 and 3.5). On Zr/Ti versus Nb/Y diagram they straddle 

the field of basalts and andesites (Fig. 3.6). In addition, they exhibit Zr/Y (5.9-15.9) ratios 

comparable with those of transitional (Zr/Y = 4.5-7.0) and calc-alkaline (Zr/Y > 7.0) 

volcanic rocks (see Barrett and MacLean, 1994). They have variable Mg-numbers (48-62) 

and Zr (87-146 ppm) contents (Table 3.3). Relative to Groups 1-3 amphibolites, they 

possess comparable concentrations of Ti02 (0.57-1.0 wt%), lower Fe2C>3 (3.5-13.4 wt%), 

HREE (7.6-11.5 ppm), Sc (11-18 ppm), and V (86-152 ppm), and higher contents of Th 

(1.2-4.8 ppm) and LREE (74.9-94.2 ppm). On chondrite- and primitive mantle-

normalized diagrams (Fig. 3.9a-b), they exhibit fractionated LREE and HREE patterns 
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(La/Smcn = 1.78-3.21; Gd/Ybcn = 2.61-3.12), pronounced negative Nb anomalies (Nb/Nb* 

= 0.21-0.55), and slight negative Eu anomalies (Eu/Eu* = 0.87-0.93). 

3.6.2. Ultramafic rocks 

Ultramafic rocks have high MgO (19.7-39.1 wt%) contents and loss-on-ignition (LOI 

= 1.5-10.3 wt%) values that are consistent with hydrated ultramafic lithologies (Table 3.1 

and 3.3). Relative to Groups 1-3 amphibolites, they have lower concentration levels of 

CaO (0.5-9.5 wt%), A1203, (3.8-9.4 wt%), Ti02 (0.11-0.42 wt%), Zr (4.2-20.7 ppm), and 

SREE (2.4-17.2 ppm) and higher Ni (658-2212 ppm), Cr (2377-6312 ppm), and Co (74-

130 ppm) contents. On chondrite- and primitive mantle-normalized diagrams (Fig. 3.9c-

d) they display variably depleted to slightly enriched LREE (La/Snicn =0.65-1.83) and 

fractionated to flat HREE (Gd/Ybcn == 0.47-1.32) patterns. Ultramafic rocks show negative 

Nb anomalies (Nb/Nb* = 0.31-0.94) and variable Eu (Eu/Eu* = 0.34-1.03), Zr (Zr/Zr* = 

0.84-3.29), and Ti (Ti/Ti* = 0.8-1.59) anomalies. 

3.6.3. Biotite schists and quartzitic gneisses 

Biotite schists have large variations of Si02 (53.2-72.4 wt%), MgO (1.3-8.4 wt%), 

Fe203 (2.5-10.2 wt%), Ti02 (0.32-0.92 wt%), and Al203 (12.6-24.0 wt%) contents (Fig. 

3.7) (Table 3.4). Niobium and SREE (54-342 ppm) display positive correlations with Zr 

(108-253 ppm) (Fig. 3.7). They have relatively high concentrations of transition metals Ni 

(53-328 ppm), Sc (7-37 ppm), Cr (51-753 ppm), and V (49-187 ppm), which are 

comparable to those of Groups 1-3 amphibolites (Table 3.5). On the Zr/Ti versus Nb/Y 

diagram, they plot in the field of andesites and basaltic andesites (Fig. 3.6). On chondrite-

and primitive mantle-normalized diagrams, they display fractionated REE patterns with 
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high La/Snic„ (1.94-10.08) and Gd/Ybc„ (0.79-4.64) ratios (Fig. 3.10a-d). In addition, they 

display pronounced negative Nb (Nb/Nb* = 0.02-0.51), Eu (Eu/Eu* = 0.58-0.95), and Ti 

(Ti/Ti* = 0.42-0.82) anomalies, and negative to positive Zr (Zr/Zr* = 0.70-1.81) 

anomalies. 

Quartzitic gneisses in the Ivisaartoq belt are silica rich (SiC>2 = 72.0-81.6 wt%). 

Relative to the biotite schists, they are enriched in Zr (237-702 ppm) and EREE (288-409 

ppm), and depleted in A1203 (10.9-11.7 wt%), MgO (0.5-1.6 wt%), Ti02 (0.15-0.61 wt%), 

and transition metals (Ni, Co, and Sc < 15 ppm) (Table 3.5). They have Zr/Ti and Nb/Y 

ratios similar to those of rhyolites and dacites (Fig. 3.6). On chondrite and primitive 

mantle normalized diagrams (Fig. 3.10e-f), they display slightly fractionated REE 

patterns (La/Snicn = 1.11-1.47; Gd/Ybcn = 0.80-1.75). In addition, they possess 

pronounced negative Nb (Nb/Nb* = 0.38-0.48), Eu (Eu/Eu* = 0.40-0.53), and Ti (Ti/Ti* 

< 0.1) anomalies, and negative to positive Zr (Zr/Zr* = 0.78-1.43) anomalies. 

3.7. Discussion 

3.7.1. Relationship between deformation and metamorphism 

The juxtaposition of Eo- to Neoarchean (3850-2800 Ma) allochtonous terranes of the 

Nuuk region occurred during several collisional events that is reminiscent of 

Phanerozoic-style continent-continent collisional orogens (Friend et al. 1987, 1988; 

Nutman et al. 1989; Crowley et al., 2002; Friend and Nutman, 2005; Nutman et al , 2004; 

Nutman and Friend, 2007). In the Ujarassuit greenstone belt, the effects of collisional 

tectonics are well indicated by high-grade mylonites (Fig. 3.2d-e), migmatitic TTG-

gneisses and amphibolites (Fig. 3.2f-h), strong ductile tectonic attenuation and 

transposition (Fig. 3.3a-c), and complete obliteration of primary depositional features. 
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Relict Di structures likely formed during ca. 2960 Ma amphibolite facies 

metamorphism, which appears to be related to the collision of the Isukasia and Kapisilik 

terranes (Friend and Nutman, 2005; Nutman and Friend, 2007). The orientations of F2 

isoclinal folds and L2 mineral stretching lineations (Fig. 3.4) in the Ujarassuit greenstone 

belt are remarkably similar to those reported in the tectono-stratigraphic terranes to the 

southwest of the studied area (Friend and Nutman, 1991). Therefore, it is likely that D2, 

and the subsequent D3 deformation, occurred in the late Archean during or after the final 

amalgamation of the different tectono-stratigraphic terranes of the Nuuk region between 

2650 and 2600 Ma (see Nutman and Friend, 2007). 

3.7.2. Assessing element mobility in amphibolites 

It is widely accepted that the concentration of HFSE (Nb, Ta, Th, Zr, Ti), REE 

(mainly Gd-Lu), and transition metals (Ni, V, Cr, Sc, Co) is not significantly changed 

during sea floor hydrothermal alteration and regional metamorphism (Hart et al., 1974; 

Condie et al., 1977; Ludden and Thompson, 1979; Ludden et al., 1982; Middelburg et al., 

1988; Ague, 1994; Arndt, 1994; Staudigel et al., 1996; Alt, 1999; Polat and Hofmann, 

2003). However, some studies have shown that high-temperature alteration and high-

grade metamorphism can modify the concentrations of those normally 'immobile' 

elements (Rubin et al., 1993; Van Baalen, 1993; Tilley and Eggleton, 2005; Galley et al., 

2000; Jiang et al., 2005; Ordonez-Calderon et al., 2008). In the Ujarassuit greenstone belt, 

the occurrence of high-temperature calc-silicate alteration, sulphide-bearing quartz-rich 

layers (Fig. 3.3g-h), and migmatites (Fig. 3.2f-h) suggest that the near-primary 

geochemical signatures of volcanic rocks could have been disturbed. 



94 

Several studies have shown that partial melting of amphibolites produces andesitic to 

tonalitic melts in equilibrium with restitic amphibolites rich in garnet (e.g. Hartel and 

Pattison, 1996; Storkey et al., 2005). For example, restitic amphibolites in the Harts 

Range Meta-Igneous Complex, central Australia, display near-flat LREE patterns and 

systematic enrichment of HREE (Lu up to 100 x chondrite) with increasing compatibility 

in chondrite-normalized diagrams (Storkey et al., 2005). These geochemical 

characteristics result from preferential retention of the heavier REE in garnet during 

partial melting. Accordingly, low modal abundance of garnet (0 to 2%), absence of 

quartzo-feldspathic segregations in the sampled outcrops, and lack of significant 

enrichment of HREE (Fig. 3.8) indicate that Groups 1-4 amphibolites are not the residues 

after partial melting. 

Group 1 amphibolites (Fig. 3.8a-b) in the Ujarassuit greenstone belt are 

geochemically similar to least altered pillow basalts and Group 1 amphibolites in the 

Ivisaartoq greenstone belt (Polat et al., 2007; Ordofiez-Calderon et al., 2008). The 

presence of well preserved pillow lavas (Fig. 3.2a) and relict igneous clinopyroxene in the 

Ivisaartoq belt has allowed reliable identification of near-primary magmatic geochemical 

signatures (Polat et al., 2007, 2008). Therefore, the coherent near-flat REE patterns and 

negative Nb-Ta anomalies in Group 1 amphibolites (Fig. 3.8a-b) likely reflect the near-

primary magmatic geochemical signature. 

Group 2 amphibolites display depleted LREE patterns (Fig. 3.8c-d) similar to those 

reported in ca. 3071 Ma amphibolites (metabasalts) of the Qussuk peninsula in the Akia 

terrane (Garde, 2007), and Group 3 amphibolites of the Ivisaartoq belt (Ordofiez-

Calderon et al., 2008). There are two alternative explanations for these trace element 

patterns. First, LREE may have been lost during amphibolite facies metamorphism (e.g., 
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Ordonez-Calderon et al., 2008). Second, Group 2 amphibolites retain their magmatic 

geochemical signatures (cf. Garde, 2007). It is noteworthy that amphibolites with stronger 

LREE depletion (La/Ybcn < 0.70) possess the most pronounced negative Ti anomalies 

(Ti/Ti* < 0.75) (Fig. 3.11). It is unlikely that this anomaly is related to fractionation of 

Fe-Ti oxides given the positive correlation of Ti with Zr (Fig. 3.7). Mineralogical studies 

have revealed that titanite and hornblende accounts for large amounts of the LREE, Ti, Th, 

Nb, and Ta in amphibolites (Mulrooney and Rivers, 2005; Storkey et al., 2005). It is 

possible that breakdown of hornblende and titanite during high-grade metamorphism 

could have caused losses of LREE, Nb, and Ta, resulting in LREE-depleted patterns and 

more pronounced negative Nb-Ta anomalies (Fig. 3.8c-d). In the Ivisaartoq belt, there is 

evidence for meter-scale mobility of LREE, Nb and Ta, and to a minor extent Ti, during 

the prograde stage of regional metamorphism (Ordonez-Calderon et al., 2008). However, 

the pronounced negative Ti anomalies could also indicate residual amphibole in the 

mantle source. Geochemical studies of Mesozoic volcanic complexes indicate that 

fractional crystallization increases the EREE concentration and may result in progressive 

flattening of LREE patterns (e.g., Green et al., 2006). It is unlikely that Groups 1 and 2 

amphibolites (Fig. 3.8) are related by fractionation given that they possess comparable 

concentrations of MgO, Zr, HREE, Ni, Cr, and Sc (Tables 3.3 and 3.5). Although we 

cannot rule out a primary origin for the trace element characteristics of Group 2 

amphibolites, their geochemical similarity to well documented altered amphibolites in the 

Ivisaartoq belt and field evidence for high-temperature alteration (Fig. 3.3g-h) suggest 

that the trace element patterns of Group 2 amphibolites resulted from postmagmatic 

element mobility. 
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Group 3 amphibolites (Fig. 3.8e-f) have trace element patterns very similar to those 

of average modern N-MORB (Hofmann, 1988). The consistent parallelism of trace 

element patterns, lack of pronounced anomalies of Ce and Eu, and the absence of calc-

silicate alterations indicate that they retain near-primary geochemical compositions. 

Group 4 amphibolites do not display evidence for silicification, calc-silicate alteration, 

or anomalous enrichment of major elements such as SiC>2, CaO, Na20, or K2O (Table 3.3, 

Fig. 3.7). Thus, their low abundance of HFSE and REE is not the result of trace element 

dilution owing to metasomatism. In addition, several samples (498228, 498239, and 

498248) collected along a traverse of approximately 8 km (Fig. 3.1) display remarkably 

similar trace element patterns (Fig. 3.8g-h). Therefore, we suggest that Group 4 

amphibolites have retained their primary geochemical signatures. Accordingly, their low 

Ti and Zr contents, enriched LREE patterns, sub-chondritic Gd/Ybcn ratios, negative Nb-

Ta anomalies, and high Al203/Ti02 ratios (44 to 71) are consistent with a boninite-like 

geochemical signature (cf. Fallon and Crawford 1991; Polat et al., 2002; Smithies et al., 

2004; Manikyamba et al., 2005). It is noteworthy that cummingtonite-rich amphibolites 

(Group 4) display lower concentrations of CaO and Fe203 and higher concentration of 

MgO than hornblende-rich amphibolites (Groups 1-3). The low content of CaO may have 

favored metamorphic reactions resulting in cummingtonite as opposed to hornblende, 

given that this mineral is a Ca-poor Mg-rich amphibole (cf. Evans and Ghiorso, 1995; 

Smith and Phillips, 2002). 

Plagioclase-rich amphibolites exhibit crossed LREE patterns that are likely the result 

of LREE mobility (Fig. 3.9a-b). However, their transitional to calc-alkaline compositions 

(Zr/Y > 5.0) and overall enrichment of LREE and HFSE (mainly Th, Nb, Ta, and Ti) are 

consistent with basaltic andesite and andesite precursors (Fig. 3.6). 



97 

3.7.3. Origin of ultramafic rocks 

Ultramafic rocks display mineralogical evidence for advanced serpentinization (Fig. 

3.5c-d). Therefore, it is likely that the variations of LREE patterns are the result of 

postmagmatic alteration (Fig. 3.9c-d). Heavy REE, however, display coherent parallel 

patterns on chondrite normalized diagrams, and therefore may have remained immobile 

during alteration. It is noteworthy that two samples (498257 and 498262) with fresh 

olivine and low degrees of serpentinization display trace element patterns and transition 

metal concentration (Table 3.3) similar to those of least altered ultramafic rocks with 

picritic composition in the Ivisaartoq greenstone belt (Polat et al., 2007, Ordonez-

Calderon et al., 2008). 

Picrites are olivine-rich high-MgO rocks with > 12 wt% MgO (Le Bas, 2000). They 

are strongly porphyritic and may contain more than 50 vol% of olivine crystals (cf. 

Cameron, 1985, Kamenetsky et al , 1995; Rohrbach et al., 2005). Their high modal 

abundance of olivine appears to be the result of accumulation of olivine crystallized from 

primary picritic melts and xenocrysts disaggregated from the upper mantle owing to high 

degrees of partial melting (cf. Boudier, 1991; Rohrbach et al., 2005). In this study, most 

ultramafic rocks have extremely low contents of CaO (0.49-2.85 wt%) at very high 

concentrations of MgO (33 to 39 wt%) implying that olivine, rather than clinopyroxene, 

was the prevalent cumulate phase (Tables 3.3 and 3.5; Fig. 3.7). Strongly porphyritic 

picritic lavas in the Troodos ophiolite and Kamchatka, with 40 to 70 vol% olivine, show 

similar low CaO contents (< 3.6 wt%) at ca. 34 to 36 wt% MgO (cf. Cameron, 1985; 

Kamenetsky et al., 1995). Geochemical studies of olivine and associated melt inclusions 

in Mesozoic-Cenozoic picrites have shown that the primary melts are ultramafic in 
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composition, rather than basaltic, with 13 to 24 wt% MgO (Kamenetsky et al., 1995; 

Rohrbach et al., 2005). Sample 498210 possesses higher CaO (9.5 wt%) at lower MgO 

(19.7 wt%) content suggesting less entrained cumulate olivine, and therefore likely 

represents near-melt composition. In the Ivisaartoq belt, pillow basalts and picritic rocks 

display different initial 8Nd values ruling out a consanguineous origin through fractional 

crystallization (Polat et al., 2007, 2008). Accordingly, ultramafic rocks (Fig. 3.3e; Table 

3.1) in the Ujarassuit greenstone belt are interpreted to represent picritic cumulates. 

3.7.4. Biotite schists and quartzitic gneisses: sedimentary versus metasomatic origin 

Recognition of sedimentary protoliths in Archean high-grade terranes is not easy 

because metamorphism and multistage deformation have obliterated the primary 

sedimentary features (e.g., Fedo, 2000; Fedo and Whitehouse, 2002; Bolhar et al., 2005; 

Cates and Mojzsis, 2006; Manning et al., 2006). In the Ivisaartoq belt, evidence for 

siliciclastic or volcaniclastic-sedimentary origin is suggested by relict felsic cobbles set in 

a biotite-rich matrix (Fig. 3.2b-c). However, given the lack of well preserved sedimentary 

features, the biotite schists and quartzitic gneisses could also represent the 

metamorphosed equivalents of metasomatized basalts, or intermediate to felsic volcanic 

rocks. 

Although mass changes owing to hydrothermal alteration can concentrate or dilute 

the composition of immobile elements (e.g., Al, Ti, Nb, Y, REE, Sc, and Ni), the inter-

element ratios may remain relatively constant carrying information on the composition of 

the protolith (cf. Winchester and Floyd, 1977; Finlow-Bates and Stumpfl, 1981; MacLean 

and Kranidiotis, 1987; MacLean, 1990). For example, Zr/Ti and Nb/Y ratios in biotite 

schists and quartzitic gneisses (Fig. 3.6) are consistent with andesitic to rhyolitic 
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composition. Relative to Groups 1-4 amphibolites, biotite schists and quartzitic gneisses 

display different covariations of TiC>2, HREE, and Sc on variation diagrams of Zr (Fig. 

3.7) ruling out amphibolite protoliths (c.f. MacLean and Barret, 1993; Ague, 1994; Roser 

and Nathan, 1997). Therefore, it is unlikely that these rocks represent metamorphosed 

alteration zones developed in basaltic rocks. 

The chemical index of alteration (CIA) is a parameter widely used to quantify the 

degree of weathering of sediment sources (Nesbitt and Young, 1984; Fedo et al., 1995; 

Nesbitt et al., 1996). Biotite schists and quartzitic gneisses possess CIA values (47 to 67) 

comparable or slightly higher than those of unweathered igneous rocks (38 to 51) but 

lower than average Archean shales (ca. 76) (Condie, 1993) (Fig. 3.12a; Table 3.4). The 

characteristic low CIA values and moderate AI2O3 content (12 to 24 wt%) strongly 

suggest that quartzitic gneisses and biotite schists may represent volcanic flows or 

immature volcaniclastic-sedimentary rocks with scarce clay minerals in their modal 

composition. In addition, most samples plot across the predicted weathering trends for 

andesitic and granitic rocks in the A-CN-K diagram (Fig. 3.12a). This type of 

compositional trend in sedimentary rocks has been interpreted to indicate mixing of 

detrital sediments derived from various sources (McLennan et al., 1993, 2003). 

Mixing of detrital sediments can also be monitored using inter-element ratios of 

transition metals (e.g., Cr, Co, and Sc) against HFSE (e.g., Th and Zr) and LREE (Condie 

and Wronkiewicz, 1990; Hofmann, 2005). These elements are excellent tracers of source 

composition because of their contrasting concentrations in mafic and felsic rocks and 

immobile behavior during alteration. Accordingly, biotite schists and quartzitic gneisses, 

in the Ujarassuit and Ivisaartoq belts, plot along a linear array defined by basaltic and 

granitic end members on the Co/Th versus La/Sc diagram (Fig. 3.12b). This diagram also 
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shows significant compositional overlap between biotite schists and amphibolites with 

andesitic composition of the Qussuk Peninsula (Garde, 2007). However, biotite schists 

and quartzitic gneisses possess higher La/Sc ratios than andesites suggesting a felsic 

component in their provenance (Fig. 3.12b). It is clear that the La/Sc ratios appear to 

indicate that the felsic component in quartzitic gneisses is more differentiated than the 

average early Archean (> 3.5 Ga) upper continental crust (Condie, 1993; Taylor and 

McLennan, 1995). This component may be represented by highly fractionated calc-

alkaline granites and rhyolites. The presence of fractionated granitic sources is also 

implied by increasing negative Eu-anomaly (cf. Taylor et al., 1986) with decreasing 

Co/Th ratios (Fig. 3.12c). 

On the Th/Sc versus Zr/Sc diagram (Fig. 3.12d), biotite schists also display a source-

controlled compositional trend that reflects mafic through felsic source rocks. In contrast, 

the quartzitic gneisses possess higher Zr/Sc ratios (36 to 155) relative to the biotite schists 

(4.5 to 18) (Fig. 3.12d). High Zr/Sc ratios in modern sediments have been interpreted as 

evidence for zircon addition owing to sedimentary sorting (McLennan et al., 1993, 2003). 

Quartzitic gneisses have high contents of modal zircon and large concentrations of Zr (up 

to 702 ppm) which may indicate zircon accumulation (Table 3.4). However, their 

enrichment in REE and Th (Fig. 3.10e-f), and pronounced negative Ti anomalies 

resemble the geochemical characteristics of Archean high-silica rhyolites (SiCh > 74 

wt%; Zr up to 680 ppm) reported in the Superior Province, Canada (Thurston and Fryer, 

1983; Kerrich et al., 2008). 

The evidence discussed above indicates that biotite schists represent immature 

volcaniclastic-sedimentary rocks, most likely graywackes, derived from poorly weathered 

intermediate to felsic sources and minor volcanic debris sourced from contiguous basaltic 
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rocks (Table 3.1). These immature sedimentary rocks generally occur at convergent 

margins and normally represent first-cycle sedimentary deposits (e.g., Cox et al., 1995). 

In contrast, major and trace elements (Figs. 3.6 and 3.12b-d) suggest that quartzitic 

gneisses represent compositionally more mature volcaniclastic-sedimentary rocks, quartz-

rich arkoses, sourced from felsic rocks. In the absence of zircon age data, the high Zr/Sc 

ratios (Fig. 3.12d) have two possible explanations. First, quartzitic gneisses may represent 

reworked volcaniclastic-sedimentary rocks derived from Mesoarchean highly-fractionated 

rhyolites. Strong acidic hydrothermal alteration of felsic source rocks could have 

produced residual detritus enriched in Si02 and Zr (e.g., Sugitani et al., 2006). Second, 

high SiC>2 and Zr contents may reflect sedimentary reworking and recycling of older 

continental rocks as has been indicated for the enrichment of Zr in modern turbidites 

(McLennan et al., 1990). This would imply that the Ivisaartoq greenstone belt likely 

formed close to continental crust. 

3.7.5. Petrogenesis, mantle processes, and geodynamic setting 

Groups 1-4 amphibolites do not exhibit compositional variations indicating mixing 

trends with average Archean upper continental crust (e.g., Fig. 3.13a-b). They possess 

low Ce/Yb ratios (Fig. 3.13b) reminiscent of primitive lavas erupted in intra-oceanic arcs 

such as Tonga-Kermadec and South Sandwich Islands (Hawkesworth et al., 1993; 

Hawkins, 2003; Pearce, 2003). The fault-bounded contact between orthogneisses and 

amphibolites (Fig. 3.2d-e), and amphibolite xenoliths within some orthogneisses (Fig. 

3.2g) suggest that volcanic rocks were not erupted over an underlying continental 

basement. These field and geochemical characteristics indicate that volcanic rocks likely 

formed in an intra-oceanic setting. 
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Phanerozoic volcanic rocks erupted at active continental margins and intra-oceanic 

island arcs show characteristic negative Nb-Ta anomalies in primitive mantle normalized 

diagrams (Kelemen et al., 2003). The distinctive trace element characteristics of primitive 

arc lavas reflect partial melting of the mantle wedge, which is variably metasomatized as 

the oceanic lithosphere is subducted and experiences dehydration and partial melting 

(Pearce and Peate, 1995; Becker et al., 2000; Schmidt and Poli, 2003). Accordingly, the 

negative Nb-Ta anomalies in arc magmas result from inefficient transfer of HFSE 

elements, relative to Th and LREE, from slab-derived fluids into the mantle wedge. 

Groups 1 and 2 amphibolites (Fig. 3.8a-d) display negative Nb-Ta anomalies and 

consistently plot in the field of volcanic arc lavas on the Th/Yb versus Nb/Yb diagram 

(Fig. 3.13a) (Pearce and Peate, 1995; Pearce, 2008). They are interpreted as island arc 

tholeiites (IAT). 

Given the low solubility of Th in slab-derived aqueous fluids, and its low 

concentration in the depleted mantle, the enrichment of Th in intra-oceanic arc lavas (Fig. 

3.13a) appears to require refertilization of the mantle wedge with hydrous melts derived 

from subducted siliciclastic sediments and oceanic crust (Plank and Langmuir, 1993; 

Hawkesworth et al., 1997; Becker et al., 2000; Kelemen et al., 2003; Dilek et al., 2007; 

Klimm et al., 2008). A sedimentary component fluxed into the mantle source of the 

Ivisaartoq belt pillow basalts appears to be indicated by variable initial eNd values (+0.30 

to +3.10), which have been interpreted as evidence for recycling of older continental crust 

via subduction (Polat et al., 2008). In the Archean, melting of the slab may have been 

more common than in the modern Earth owing to higher mantle temperatures and hotter 

lithospheric plates (Martin, 1999; Schmidt and Poli, 2003; Dilek and Polat, 2008). 
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Therefore, crustal input into the mantle wedge via subduction may have been significant 

in the Archean (cf. Pearce, 2008). 

High-Mg Group 1-3 amphibolites (MgO > 8.0 wt%) show much higher Fe2C>3 (11.1-

13.4 wt%) than modern N-MORB (9.8 to 11.6 wt%) and primitive IAT (8.9-10.6 wt%) 

(Hofmann, 1988; Kelemen et al., 2003). They are also depleted in HREE and HFSE 

(mainly Ti, Zr, Nb, and Ta) compared to modern N-MORB (Fig. 3.8a-f). These 

geochemical characteristics suggest the following processes: 1) Archean tholeiites 

resulted from larger degrees of partial melting relative to modern tholeiites; 2) the 

Mesoarchean mantle beneath the Ivisaartoq-Ujarassuit greenstone belts was more 

depleted than the source of modern N-MORB (see Polat et al., 2007), and 3) conservative 

behavior of HFSE and HREE in slab fluxes. 

A strongly depleted Mesoarchean sub-arc mantle implies an earlier history of partial 

melting before arc initiation, possibly associated with Archean sea floor spreading (cf. 

Ohta et al., 1996; Furnes et al., 2007). It is noteworthy that Group 3 amphibolites do not 

exhibit the negative HFSE anomalies that characterize subduction-related magmas (Fig. 

3.8e-f). Instead, their trace element patterns resemble those of Archean (3.1 to 3.3 Ga) 

mid-ocean-ridge basalts (A-MORB) from the Pilbara Craton (Ohta et al., 1996) and 

modern N-MORB (Hofmann, 1988). Accordingly, Group 3 amphibolites may represent 

relict pre-arc A-MORB-like oceanic crust, trapped during the initiation of subduction, 

formed at a mid-ocean ridge or back-arc spreading system. Or alternatively, they may 

have formed during an episode of arc rifting (cf. Dilek and Flower, 2003). 

In Group 4 amphibolites, high MgO (10.8-13.0 wt%) and Cr (99-765 ppm), and low 

Ti02 (0.26-0.33 wt%), Zr (20.3-28.6 ppm), and HREE (HREE 1.9 to 3.2 x primitive 

mantle) contents are consistent with models for boninite generation by high degrees of 
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partial melting of a refractory mantle source (Sun and Nesbitt, 1978; Bloomer and 

Hawkins, 1987; Crawford et al., 1989; Pearce et al., 1992; Kim and Jacobi et al., 2002; 

Dilek et al., 2007). In addition, the LREE enriched patterns (La/Snicn = 1.8 to 2.4) and 

negative Nb-Ta anomalies (Fig. 3.8g-h) suggest that the depleted mantle wedge was 

metasomatized by fluids and possibly melts fluxed from the subducting slab, prior to or 

during partial melting (cf. Taylor and Nesbitt, 1988; Bedard, 1999). Boninites in modern 

arcs may form in the forearc, owing to forearc extension during the early stages of 

subduction (Stern and Bloomer, 1992; Kim and Jacobi, 2002; Reagan et al., 2008). They 

may also be erupted in the back-arc, as the back-arc spreading center propagates into the 

volcanic arc and interact with slab derived fluids (Deschamps and Lallemand, 2003). 

If the depleted LREE patterns of Group 2 amphibolites (Fig. 3.8 c-d) are primary 

rather than reflecting alteration patterns (see Garde, 2007; Ordonez-Calderon et al., 2008), 

they may represent depleted IAT. In the Caribbean island arc, Cretaceous LREE-depleted 

IAT and boninites were erupted in the forearc setting as a result of seafloor spreading 

during the earliest stages of arc development (cf. Viruete et al., 2006). 

In the Ujarassuit and Ivisaartoq belt the absence of voluminous intermediate to felsic 

rocks is also consistent with an immature stage of arc development. Plagioclase-rich 

amphibolites (Table 3.1) with basaltic andesites and andesite compositions are rare. 

Nonetheless, they display negative Nb-Ta anomalies, enriched LREE, and fractionated 

HREE (Gd/Ybcn = 2.6-3.1) patterns (Fig. 3.9a-b) consistent with a subduction zone 

geochemical signature and deep melting (> 80 km) with residual garnet in the source (cf. 

Johnson, 1994; Hirschmann and Stolper, 1996; van Westrenen et al., 2001; Kelemen et al., 

2003). Despite their LREE enrichment, plagioclase-rich amphibolites possess comparable 

Ti02 and slightly lower HREE contents relative to Groups 1-2 amphibolites (Table 3.3; 
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Figs. 3.8-3.9). Therefore, they are not related by fractional crystallization. Instead, the 

high Mg-numbers (48-62) and high contents of Th, Nb, LREE, and transition metals 

suggest that intermediate rocks likely formed through interaction between melts derived 

from hydrated basaltic slab and the sub-arc mantle (e.g., Defant and Drummond, 1990; 

Martin, 1999; Smithies, 2000; Condie, 2005b; Martin et al., 2005). 

High contents of MgO (> 19 wt%) and transition metals (Cr = 2377-6312 ppm, Ni = 

658-2200 ppm), and low concentrations of REE (HREE 0.6 to 2.0 x primitive mantle) and 

HFSE (< 0.4 wt% TiOa) in ultramafic rocks are consistent with picritic composition (Fig. 

3.9c-d; Table 3.1). Mesozoic-Cenozoic picrites have formed in various geodynamic 

settings including, but not limited to, mid-ocean ridges, oceanic plateaus, and island arcs 

(Kerr et al., 1996; Perfit et al., 1996; Thompson et al, 2001). The least altered ultramafic 

rocks (498262 and 498257), however, possess the characteristic LREE-enriched patterns 

and negative Nb-Ta anomalies of island arc picrites in the lesser Antilles, Solomon, New 

Hebrides, and Kamchatka (e.g., Eggins, 1993; Kamenetsky et al., 1995; Woodland et al., 

2002; Schuth et al., 2004). Therefore, the geochemical characteristic of picritic rocks in 

the Ujarassuit greenstone belt suggest that they formed by large degrees of partial melting 

of depleted sub-arc mantle. Least altered picritic cumulates in the Ivisaartoq belt display 

large positive initial 8Nd values (+4.21 to +4.97) consistent with long-term depletion of the 

Ivisaartoq sub-arc mantle (Polat et al., 2007, 2008). It is worth noting that modern 

subduction-related picrites appear to be restricted to intra-oceanic settings (Rohrbach et 

al., 2005). 

The lithogeochemical association of I AT (Groups 1-2 amphibolites), transitional to 

calc-alkaline basaltic andesites and andesites (plagioclase-rich amphibolites), arc-like 

picrites, and boninite-like rocks (Group 4 amphibolites) is consistent with a supra-
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subduction zone tectonic setting for the Ujarassuit and Ivisaartoq greenstone belts (Figs. 

3.8 and 3.9; Table 3.1). Given that picrites and boninites are the products of large degrees 

of partial melting, their occurrence in modern island arcs is related to strong thermal 

anomalies in the mantle wedge. Subduction of young, hot oceanic lithosphere, spreading-

ridge subduction, subduction initiation across fracture zones, and suprasubduction zone 

extension appear to explain the unusual high-temperatures in the sub-arc mantle (e.g., 

Stern and Bloomer, 1992; Kim and Jacobi, 2002; Hall et al., 2003; Deschamps and 

Lallemand, 2003; Schuth et al., 2004; Ishizuka et al., 2006; Dilek et al., 2007). 

Accordingly, we postulate that the volcanic rocks in the Ujarassuit and Ivisaartoq 

greenstone belts likely represent Mesoarchean oceanic crust formed either in the forearc 

or back-arc region (Fig. 3.14) (see Polat et al., 2007, 2008). 

3.7.6. Collisional orogenesis of the Nuuk region and implications for Archean ophiolites 

The Phanerozoic-like continental collisional tectonics proposed for the Nuuk region 

(Friend and Nutman, 2005; Nutman and Friend, 2007) predicts the existence of 

convergent margins and marginal basins in the Archean record. Intra-oceanic terranes 

may have been trapped into colliding continents during the closure of Archean ocean 

basins in a similar fashion to Tethyan ophiolites in the Mediterranean region (Dewey, 

2003; Sengor, 1990; Flower, 2003; Dilek and Flower, 2003; Sengor and Natal'in, 2004; 

Dilek et al., 2007). 

Suprasubduction zone oceanic crust displays various petrological characteristics that 

record complex events during its formation including progression from mid-ocean ridge, 

subduction initiation, intra-arc volcanism, slab rollback, arc rifting, and back-arc basin 

opening (Stern and Bloomer, 1992; Shervais, 2001; Dilek and Flower, 2003; Flower, 
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2003; Dilek et al., 2007). The Ujarassuit greenstone belt is composed dominantly of 

metamorphosed IAT which are spatially and temporally associated with N-MORB-like 

basaltic rocks (Group 3 amphibolites), boninites, picrites, andesites, and volcaniclastic-

sedimentary rocks, implying that the belt likely contains upper-most crustal components 

of Mesoarchean forearc or backarc oceanic crust. A similar tectonic setting was proposed 

for volcanic rocks in the Ivisaartoq belt (Polat et al., 2007, 2008), and the discovery of 

boninites in this study substantiates this interpretation. However, if the high contents of 

Zr in quartzitic gneisses from the Ivisaartoq belt resulted from recycling of older Archean 

felsic crust (Fig. 3.12d), the Ivisaartoq belt may have formed close to a continental block. 

Immature volcaniclastic-sedimentary rocks (biotite schists) in the Ivisaartoq and 

Ujarassuit greenstone belts were derived mostly from nearby felsic to intermediate intra-

arc volcanic complexes and deposited onto adjacent basaltic oceanic crust (Fig. 3.14). 

These Mesoarchean volcanic arc complexes, however, appear to be missing from the 

geological record in the study area. Nevertheless, uppermost crustal components from a 

contemporaneous 3071 Ma island arc complex is well preserved at Qussuk and Bj0rne0en 

in the Akia terrane (Garde, 2007). This relict volcanic arc complex is composed of 

metamorphosed andesitic volcanic rocks erupted on top of more primitive basaltic crust 

with geochemical characteristics similar to those of Group 2 amphibolites in the 

Ujarassuit greenstone belt. The exposure of deep crustal structures in the Ujarassuit 

greenstone belt suggests that the uppermost crustal rocks have been removed by erosion. 

This may well explain the absence of intra-arc complexes which may have been located at 

shallower crustal levels (cf. Garde, 2007). 

Comparable geochronological, lithological, and geochemical characteristics of 

metavolcanic and metavolcaniclastic-sedimentary rocks in Ujarassuit and Ivisaartoq belts 
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suggest that they likely represent volcanic suites formed along the same Mesoarchean 

convergent margin. Therefore, the Ivisaartoq and Ujarassuit greenstone belts are 

interpreted to represent dismembered fragments of Mesoarchean supra-subduction zone 

oceanic crust. Accordingly, the Nuuk region appears to include scattered fragments of 

incomplete Mesoarchean ophiolites formed at different paleogeographic settings (forearc, 

intra-arc, and back-arc) along and across a supra-subduction zone. 

3.8. Conclusions 

The following conclusions are drawn based on the field characteristics and 

geochemical signatures of metavolcanic and metavolcaniclastic-sedimentary rocks from 

the Mesoarchean Ivisaartoq and Ujarassuit greenstone belts: 

1. These belts are dominated by metamorphosed IAT (Table 3.1). Basaltic andesites, 

andesites, picrites, boninites, and volcaniclastic-sedimentary rocks are a minor 

component. These lithological and geochemical characteristics suggest an immature 

island arc origin for the Ujarassuit and Ivisaartoq greenstone belts (Figs. 3.8-3.10; 

Table 3.1). In addition, the presence of boninite-like rocks spatially associated with 

picritic cumulates indicates that the Ujarassuit greenstone belt likely represents 

obducted fragments of Mesoarchean forearc or back-arc oceanic crust. 

2. In the Ujarassuit greenstone belt, recognition of the stratigraphic relationships 

between subduction-related rocks including IAT, boninites, and picrites, and rare N-

MORB-like tholeiites (Group 3 amphibolites) are obscured by late Archean polyphase 

deformation (Figs. 3.8-3.9; Table 3.1). Accordingly, the protolith of Group 3 

amphibolites may well represent pre-arc oceanic crust formed at mid-ocean ridges or 
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back-arc spreading centers (e.g., Leat and Larter, 2003); or alternatively it may have 

formed during an episode of arc rifting. 

3. The following geochemical evidence indicates that the Mesoarchean mantle beneath 

the Ivisaartoq-Ujarassuit greenstone belts was heterogeneous, more depleted in trace 

elements than modern depleted upper mantle, and variably metasomatized by slab-

derived fluids: (1) Groups 1-4 amphibolites (Figs. 3.8-3.9) have lower abundance of 

REE and HFSE (mainly Ti, Zr, Nb, and Ta) than modern average N-MORB 

(Hofmann, 1988); (2) contrasting geochemical patterns of mafic and ultramafic rocks; 

(3) low-Ti high-Mg rocks (boninites and picrites) indicative of refractory mantle 

sources; and (4) primitive mantle-normalized diagrams with negative Nb and Ta 

anomalies, flat LREE patterns, and enrichment of Th relative to HFSE and HREE. 

4. Biotite schists display major and trace element characteristics resembling immature 

volcaniclastic-sedimentary rocks (graywackes) derived from mixtures of poorly 

weathered (CIA = 47 to 67) andesitic to rhyolitic sources (Fig. 3.12a-d). In addition, 

high concentrations of transition metals (Ni up to 328 ppm) suggest that sedimentary 

rocks also contain volcanic debris derived from local ultramafic to mafic rocks. Felsic 

to intermediate detritus was likely sourced from distal volcanic arc edifices (Fig. 3.14), 

given that supracrustal belts are dominated by mafic rocks. Voluminous felsic to 

intermediate volcanic sequences are not represented in the area, and therefore appear 

to haven been eroded away. This could be related to the present level of erosion in the 

Nuuk region which exposes mainly middle to lower crustal rocks (see Garde, 2007). 

5. Quartzitic gneisses in the Ivisaartoq greenstone belt have high contents of Si02, Zr, 

and SREE, high Zr/Sc ratios, and low concentrations of transition metals indicating a 

felsic provenance (Figs. 3.10e-f and 3.12). These geochemical characteristics may 
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have been inherited from highly-fractionated Mesoarchean rhyolites; or alternatively, 

recycling of older continental crust may have resulted in significant zircon addition 

(cf. McLennan et al., 1990; 2003). Given the oceanic origin of volcanic rocks, the 

later would imply that the Ivisaartoq volcanic rocks were erupted in the proximity of 

older Archean continental crust (cf. Polat et al., 2007, 2008). 

6. The new field and geochemical data presented in this contribution and those of 

previous studies (Garde, 2007; Polat et al., 2007, 2008) have revealed that the Nuuk 

region comprises several dismembered fragments of Mesoarchean arc-backarc-forearc 

system. These include intra-arc volcanic complexes in Qussuk and Bjorneoen (Garde, 

2007), and forearc or backarc complexes in the Ujarassuit and Ivisaartoq greenstone 

belts. This is consistent with the allochtonous terrane model whereby the closure of 

Archean ocean basins in the last stage of a Wilson cycle would have trapped Archean 

oceanic crust into the colliding continents (Friend and Nutman, 2005; Nutman and 

Friend, 2007). Future studies may reveal scattered volcanic complexes formed at 

different paleogeographic locations (e.g., back-arc basins) along and across a regional 

Mesoarchean supra-subduction zone. 
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Figure 3.1. Geological map of the Ivisaartoq and Ujarassuit greenstone belts with approximate 

sample locations (Modified from Friend and Nutman, 2005 after Chadwick and Coe, 1988). 

Structural measurements and sampling of metavolcanic and metasedimentary rocks were conducted 

in the eastern and western flanks of the Ujarassuit greenstone belt. The lower metasedimentary unit of 

the Ivisaartoq greenstone belt was also sampled. 
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Figure 3.2. (See next page for Figure caption) 
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Figure 3.2. Field photographs of various rock types in the Ivisaartoq (a-c) and Ujarassuit (d-h) 

greenstone belts, (a) Pillow basalts from the Ivisaartoq belt, (b-c) Relict felsic cobbles in biotite 

schists of the Ivisaartoq greenstone belt, (d-e) Asymmetric and transposed folds in mylonites at 

the contact between TTG-gneisses and amphibolites. (f-g) Migmatitic TTG-gneisses, close to the 

contact with amphibolites, with large xenolithic inclusions of amphibolites. (h) Migmatitic 

amphibolites affected by recumbent F2 folding. 
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Figure 3.3. (See next page for Figure caption) 
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Figure 3.3., Field photographs of various rock types in the Ujarassuit greenstone belt, (a) Rootless 

Fi isoclinal fold transposed into the prevalent regional S2 foliation, (b-c) F2 Recumbent folds in 

amphibolites. Calc-silicate alterations have been affected by F2 recumbent folding, (d) Outcrop-

scale F3 upright folds in amphibolites. (e) Serpentinized olivine-rich ultramafic rocks with lens-

shaped geometry, (f) Biotite schists with small-scale F2 isoclinal folds, (g-h) Calc-silicate and 

pyrite-bearing quartz-rich layers hosted by hornblende-rich amphibolites. 
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a Western Flank Eastern flank 

Figure 3.4. Equal-area lower hemisphere stereographic projections for the western (a-c) and eastern 

(d-f) flanks of the Ujarassuit greenstone belt. Stars represent: F2 (a) and F3 (d) rc-fold axes defined by 

great circles through pole to foliations; average small-scale isoclinal F, fold axis (b and e); and 

average L2 (c) and L3 (f) mineral stretching lineations. 
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Figure 3.5. Photomicrographs of metavolcanic and metasedimentary rocks (see Table 3.1). (a) 

Hornblende-rich amphibolites (Groups 1-3 amphibolites). (b) Cummingtonite-rich amphibolites 

(Group 4 amphibolites). (c) Serpentinized olivine-rich ultramafic rock, (d) Unaltered olivine-rich 

ultramafic rock (see also Fig. 3.3e). (e) Biotite schist with accessory garnet, (f) Fine-grained 

quartzitic gneiss with abundant muscovite and minor biotite. Plane polarized light for (a-b) and (e), 

and crossed polarized light for (c-d) and (f). Abbreviations: Bt, biotite; Cum, cummingtonite; Grt, 

garnet; Hbl, hornblende; Ms, muscovite; PI, plagioclase; Qtz, quartz. 
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Figure 3.6. Zr/Ti versus Nb/Y classification diagram for metavolcanic rocks (amphibolites) in the 

Ujarassuit greenstone belt (Table 3.1). Metasedimentary rocks (biotite schists and quartzitic 

gneisses) are also plotted for intercomparisons. Compositional fields revised by Pearce (1996) 

after Winchester and Floyd (1977). 
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Figure 3.7. Variation diagrams of Zr versus selected major and trace elements for metavolcanic 

and metasedimentary rocks (Table 3.1). Arrows represent the deduced magmatic trends for 

metavolcanic rocks in the Ivisaartoq greenstone belt (see Ordonez-Calderon et al., 2008). 
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Figure 3.8. Chondrite- and primitive-mantle normalized diagrams for homblende-rich (Groups 1-

3) and cummingtonite-rich (Group 4) amphibolites in the Ujarassuit greenstone belt. 

Amphibolites were divided into groups according to the total trace element abundance, the 

presence or absence of Nb-Ta anomalies, and the degree of depletion of LREE. Chondrite 

normalization values from Sun and McDonough (1989). Primitive mantle normalization values 

and average geochemical composition of modern N-MORB from Hofmann (1988). 
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Figure 3.9. Chondrite- and primitive-mantle normalized diagrams for (a-b) Plagioclase-rich 

amphibolites with basaltic andesite and andesite geochemical composition, (c-d) ultramafic rocks 

(Table 3.1). Normalization values as in Figure 3.8. 
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Figure 3.10. Chondrite- and primitive-mantle normalized diagrams for metasedimentary rocks, 

(a-b) Biotite schists in the western flank of the Ujarassuit greenstone belt, (c-f) Biotite schists and 

quartzitic gneisses in the lower metasedimentary unit of the Ivisaartoq belt. Normalization values 

as in Figure 3.8. 
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Figure 3.11. Ti/Ti* versus La/Ybcn diagram for Groups 1-3 amphibolites in the Ujarassuit 

greenstone belt. Group 1 and 3 amphibolites from the Ivisaartoq belt are compositionally similar, 

respectively, to Groups 1 and 2 in this study (see Ordonez-Calderon et al., 2008). This diagram 

illustrate that amphibolites with stronger negative anomalies of Ti are more depleted in LREE 

(see Chapter 3.7.2). 
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Figure 3.12. Ternary weathering diagram (a) and selected trace element ratios (b-d) for biotite schists 

and quartzitic gneisses from the Ivisaartoq and Ujarassuit greenstone belts. The ternary diagram is 

plotted in molecular proportions of A1203 (A)-CaO*+Na20 (CN)-K20 (K) where CaO* represents the 

amount ofCaO in the silicate fraction (Nesbit and Young, 1982,1984;Fedoetal., 1995). The scale for 

the chemical index of alteration (CIA) is illustrated to the left (McLennan and Murray, 1999). 

Numbered stars represent the following reservoir compositions: 1 = average oceanic island arc 

tholeiitic basalt (Kelemen et al., 2003); 2 = average andesite (Kelemen et al., 2003); 3 = average > 3.5 

Ga upper continental crust (Condie, 1993); 4 = average Archean calc-alkaline granite (Kemp and 

Hawkesworth, 2003). In the ternary diagram: AS = Archean shale; arrows parallel to the A-CN side 

represent the predicted weathering trend for intermediate to felsic protoliths (stars 2-4); arrow 5 

represent the trend of extremely weathered rocks, and arrow 6 the trend of sediments affected by 

potassium metasomatism. Groups 1-3 amphibolites are those in this study and Group 1 amphibolites 

in the Ivisaartoq belt (Ordonez-Calderon et al., 2008). Plagioclase-rich amphibolites, with an 

andesitic geochemical composition, are from this study and those from the Qussuk greenstone belt 

(Garde, 2007). 
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Figure 3.13. (a) Th/Yb versus Nb/Yb diagram showing the fields of modern MORB-OIB and 

volcanic arc arrays (see Pearce and Peate, 1995 and Pearce, 2008). (b) Ce versus Yb diagram with 

the compositional field for oceanic and continental arc basalts from Hawkesworth et al. (1993). 

The composition of least altered Group 1 amphibolites from the Ivisaartoq greenstone belt was 

plotted for intercomparisons (see Ordonez-Calderon et al., 2008). Average composition of modern 

N-MORB and Archean (> 3.5 Ga) upper continental crust (A-UCC) after Hofmann (1988) and 

Condie (1993), respectively. 
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Figure 3.14. Schematic block diagram (not to scale), across a hypothetical intra-oceanic subduction 

zone setting, illustrating the proposed geodynamic origin of the Ujarassuit greenstone belt. The 

polarity of subduction is arbitrary. The protoliths of metavolcanic rocks in this study are interpreted to 

have been erupted either in the forearc or back-arc region. Biotite schists represent volcaniclastic-

sedimentary rocks with a mixed provenance, which includes detritus derived from the erosion of 

felsic to intermediate arc volcanic and plutonic rocks, and local detritus derived from mafic to 

ultramafic volcanic rocks in the forearc or back-arc. 
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Table 3.1. Mineralogical characteristics and interpreted protoliths for the main rock types discussed in this study 

Lithology 

Hornblende-rich amphibolites 
(Groups 1-3 amphibolites) 

Mineralogical composition 

Hornblende + plagioclase + 
quartz + zircon + titanite + 
apatite ± magnetite ± garnet ± 
biotite ± cummingtonite 

Protolith 

Basaltic rocks. Groups 1-2 amphibolites 
represent island arc tholeiites (IAT). 
Group 3 amphibolites represent rare N-
MORB-like tholeiites 

Cummingtonite-rich amphibolites 
(Group 4 amphibolites) 

Cummingtonite ± anthophyllite 
± hornblende + plagioclase + 
quartz ± biotite ± magnetite 

Boninite-like rocks 

Plagioclase-rich amphibolites 
Hornblende + plagioclase + 
quartz + zircon + titanite + 
apatite ± magnetite ± biotite 

Transitional to calc-alkaline basaltic 
andesites and andesites 

Serpentinized olivine-rich rocks and 
actinolite-tremolite-rich amphibolites 
(Ultramafic rocks) 

Serpentine + talc + actinolite + 
tremolite + magnetite ± 
cummingtonite ± olivine ± 
clinopyroxene ± magnetite 

Olivine-rich pricritic cumulus 

Biotite schists 

Biotite + plagioclase + quartz + 
magnetite ± garnet ± epidote ± 
titanite ± muscovite ± 
microcline ± hornblende ± 
cummingtonite ± anthophyllite 
± tourmaline 

Immature volcanoclastic graywackes 
derived from mafic to felsic source rocks 

Quartzitic gneisses 

Quartz + plagioclase + biotite + 
zircon + muscovite ± garnet ± 
hornblende ± magnetite ± 
tourmaline 

quartz-rich arkoses derived from felsic 
source rocks 



Table 3.2. Measured and recommended major and trace element concentrations for USGS standards W-
2, BIR-1, BHVO-1, and BHVO-2 

W-2 BIR-1 

Si02 (wt%) 
Ti02 

A1203 

Fe203 

MnO 
MgO 
CaO 
Na20 
K20 

P205 

Total 

Sc (ppm) 
Zr 

Recommended 

52.68 
1.06 
15.45 
10.83 
0.17 
6.37 
10.86 

2.20 
0.63 
0.14 

99.89 

36.0 
94.0 

Measured 

(n = 5) 

52.11 
1.07 
15.23 
10.74 
0.17 
6.34 
10.87 
2.24 
0.62 

0.15 
99.54 

35.3 
88.0 

RSD 

(%) 
1.4 
0.8 
0.9 
0.8 
1.3 
0.3 
0.5 
1.2 
1.9 

9.8 
0.9 

2.7 
4.0 

Recommended 

47.92 
0.96 
15.50 
11.30 
0.18 
9.70 
13.30 
1.82 
0.03 

0.02 
100.26 

44.0 
18.0 

Measured 
(n = 5) 

47.92 
0.97 
15.56 
11.32 
0.17 
9.65 
13.23 
1.84 

0.03 

0.03 
100.70 

43.8 
13.3 

RSD 

(%) 
0.9 
1.1 
1.2 
0.8 
1.7 
0.6 
0.2 
0.4 

21.7 
18.2 
0.6 

1.1 
9.5 

BHVO-1 BHVO-2 

V (ppm) 
Cr 
Co 
Ni 
Ga 
Rb 
Sr 
Y 
Zr 
Hf 
Nb 
Cs 
Ba 

Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

Recommended 

28 
179 
4.4 
19 

0.13 
139 

1.2 
2.6 
1.1 

16 
39 
5.4 
25 
6.4 
2.06 
6.4 

0.96 
5.2 

0.99 

0.33 
2.0 
0.29 

Measured 
(n=12) 

298.2 
149.6 
45.1 
148.7 
65.3 
9.1 

395.2 
23.3 
160.0 
4.2 
15.2 

0.10 
129.3 

1.0 
2.2 
1.4 
0.4 
15.0 
37.7 
5.3 

23.9 
6.0 
2.01 
6.3 

0.90 
5.2 

0.95 
2.5 

0.32 
1.9 

0.26 

RSD 

(%) 
22.4 

21.5 
9.7 
17.4 
3.6 
3.4 
2.2 
3.2 

6.9 
6.9 
4.5 
9.8 
5.0 

4.2 
21.8 
7.1 

23.6 
4.4 
4.8 
5.1 
4.9 
5.1 
4.0 
4.8 
3.2 
4.8 
5.1 
4.2 
5.6 
4.6 
4.6 

Recommended 

317 
280 
45 
119 

9.8 
389 
26 

172 
4.1 

18 

130 

1.4 

1.2 

15 
38 

25 
6.2 

6.3 
0.90 

1.04 

2 
0.28 

Measured 
(n=18) 

308.4 

213.7 
44.3 
152.0 
65.2 
8.8 

379.2 
22.7 

155.7 
4.1 

14.5 
0.1 

130.4 

1.0 
1.7 
1.8 
0.4 

14.8 
37.3 
5.3 

24.1 
6.0 
2.0 
6.3 

0.90 
5.1 

0.94 
2.5 

0.32 
1.9 

0.27 

RSD 

(%) 
22.6 
30.4 
7.9 
9.8 
4.0 
5.5 
9.8 
8.0 

9.8 
8.7 

9.5 
8.9 
5.4 

7.2 
21.9 
18.4 
15.9 

5.0 
4.5 
5.1 
4.9 
5.2 
2.6 
3.5 

5.4 
4.4 
4.2 
4.6 
6.2 
6.3 
5.6 

RSD = Relative standard deviation expressed as a percentage (%). 
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Table 3.3. Major (wt,%) and trace element (ppm) concentrations and significant element ratios for metavolcanic rocks 

Group 1 amphibolites ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Group 2 amphibolites 

Si02 (wt.%) 

Ti02 

A1203 

Fe203 

MnO 

MgO 

CaO 
Na20 

K 20 
p2o5 

LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 

Cr 

Co 
Ni 

Ga 

Rb 

Sr 
Y 
Zr 

Nb 
Cs 

Ba 

Ta 

Pb 
Th 

U 
La 

Ce 
Pr 

Nd 

Sm 

Eu 

G d 

Tb 
Dy 

Ho 
Er 
Tm 

Yb 
Lu 

La/Ybc„ 

La/Stric 
Gd/Ybon 

(Eu/Eu*)cn 

(Ce/Ce*)cn 

Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 

(Nb/Nb*)pm 

(Zr/Zr*)pm 
(Ti/Ti*)pm 
EREE 

North 

West 

498237 
49.3 

0.96 
15.58 

12.73 
0.19 

7.99 

10.72 

2.43 

0.06 
0.08 

0.66 

55 

38 
266 

238 

46 
147 

35 

2 

78 
19.8 

54.2 
1.70 
0.20 

25.38 
0.11 

1.90 
0.46 

0.25 
2.68 
7.42 

1.21 

6.11 

2.18 

0.83 
3.02 

0.51 
3.51 

0.77 
2.23 
0.33 

2.15 
0.32 

0.84 

0.77 
1.14 

0.98 

0.99 

16.19 

15.75 
2.74 

106.36 

0.63 
1.04 

0.92 
33.26 

64°53.566' 
50°12.867' 

498259 
52.5 

1.00 

13.57 

13.23 
0.20 

6.84 

11.08 
1.23 

0.30 
0.08 

0.58 

51 

51 
307 

211 

47 

79 

33 
6 

88 
20.9 

53.2 
2.08 
0.17 

28.83 
0.15 

2.64 

0.41 

0.13 
3.50 
9.19 

1.35 

6.87 

2.16 

0.82 
3.26 

0.59 
3.68 
0.78 

2.42 
0.36 

2.39 
0.36 

0.99 

1.02 
1.10 

0.94 

1.02 

13.60 

13.84 
2.55 

112.55 
0.71 
0.97 

0.87 
37.72 

64°55.080' 
50°12.317' 

498271 
47.9 

0.70 
14.60 

12.67 
0.20 

11.20 

10.17 

1.90 

0.61 

0.05 

1.78 

64 

28 
206 

196 

68 
433 

32 
23 

65 
14.4 

44.9 
1.49 
2.77 

57.91 
0.08 

4.92 
0.35 

0.11 

2.91 

7.23 
1.07 

5.35 

1.61 

0.62 

2.16 

0.39 
2.61 

0.57 
1.56 
0.23 

1.58 
0.22 

1.24 

1.14 

1.11 

1.02 

0.98 

20.97 

18.69 
3.12 

92.92 

0.60 

1.07 

0.88 
28.11 

64°51.480' 

49°59.689' 

498273 
52.5 

0.61 

13.55 
10.08 
0.20 

7.00 

14.30 
1.56 

0.19 
0.04 

0.58 

58 

35 
227 

603 

48 
120 

29 
4 

111 
13.3 
35.3 

1.15 
0.12 

35.85 

0.06 

5.45 
0.19 

0.12 

1.91 
5.29 

0.81 

4.18 

1.42 

0.54 
2.00 

0.35 
2.37 
0.53 
1.53 
0.21 

1.40 
0.22 

0.92 

0.85 
1.16 

0.98 

1.02 

22.37 

18.52 
2.66 

102.77 

0.77 
1.01 

0.86 
22.75 

64°53.002' 

49°56.825' 

498274 
50.5 

0.76 

15.30 
12.14 
0.19 

7.99 

11.24 

1.63 

0.18 

0.06 

1.50 

57 

38 
237 
244 

50 
156 

34 
4 

160 

16.3 
45.2 

1.33 
0.22 

46.44 

0.09 

6.84 

0.19 

0.07 

2.58 
7.06 
1.04 

5.53 

1.66 

0.60 

2.59 

0.43 
3.00 

0.63 
1.78 
0.27 

1.73 
0.27 

1.00 
0.98 

1.21 

0.88 

1.04 

20.01 

15.63 
2.77 

101.37 

0.78 
1.04 

0.86 
29.18 

64°52.855' 
49°57.233" 

498278 
51.6 
0.94 

13.83 
13.10 
0.20 

7.42 

11.38 

1.25 

0.21 

0.07 

0.46 

53 

48 
305 
257 

48 
89 

32 
3 

72 

20.0 
58.1 

1.96 
0.33 

21.09 

0.12 

3.76 
0.44 

0.14 

3.39 
8.68 

1.30 

6.68 

2.19 

0.80 
3.19 
0.53 

3.69 
0.81 
2.35 
0.34 

2.14 
0.33 

1.06 

0.97 

1.20 

0.92 

0.99 
14.70 

16.18 
2.90 
97.18 

0.65 
1.06 

0.86 
36.42 

64°53.398' 
50° 1.744' 

498281 
49.2 

1.00 

14.70 
13.11 
0.21 

7.13 

11.88 

2.41 

0.26 

0.08 

0.53 

52 

39 
282 
187 

52 

135 

38 
5 

128 

21.0 
57.1 

2.00 
0.29 

43.51 

0.14 

5.87 

0.33 

0.99 

3.21 

8.82 
1.31 

7.02 

2.37 

0.81 
3.19 

0.57 

3.79 
0.83 
2.40 
0.35 

2.26 
0.33 

0.96 

0.85 

1.14 

0.91 

1.04 

14.69 

14.80 
2.72 

105.07 

0.79 
0.98 

0.87 
37.27 

64°50.941' 
49°59.203' 

498206 
50.1 
0.66 

14.90 

12.28 
0.21 

7.13 

12.08 

1.81 

0.79 

0.05 
1.24 

54 

47 
279 
307 

54 
171 

41 
56 

101 

18.7 
44.1 

0.47 
1.30 

91.84 

0.03 

6.09 

0.08 

0.19 

1.21 
3.04 
0.54 

2.78 
1.29 

0.47 
2.15 
0.42 

2.97 
0.70 
2.12 
0.32 
2.14 
0.32 

0.38 
0.59 

0.81 

0.87 

0.91 
22.50 

15.29 
2.36 
89.92 

0.62 
1.63 

0.76 
20.47 

64°50.962' 
50°12.649' 

498211 

47.2 
1.01 

16.15 
15.71 
0.24 

6.34 

10.28 

2.81 

0.13 

0.09 

0.35 

44 

48 
297 
143 

52 
78 

41 
4 

94 

29.5 
60.1 

1.21 
0.16 

31.73 
0.08 

3.27 

0.29 

0.08 

2.46 

6.70 
1.02 

5.55 
2.05 

0.78 
3.58 
0.67 

4.85 
1.06 
3.39 
0.51 

3.31 
0.53 

0.50 

0.75 

0.87 

0.88 

1.02 

15.91 

15.07 
2.03 

101.20 
0.58 
1.25 
0.72 

36.46 

64°50.885' 
50°12.389' 

LDL = Lower than detection limit. 

Metavolcanic rocks with sample number < 498270 belong to the Western flank of the Ujarassuit greenstone belt. 

Metavolcanic rocks with sample number > 498270 belong to the Eastern flank of the Ujarassuit greenstone belt. 
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Table 3.3. (Continued) 
Group 2 amphibolites Group 3 amphibolites 

Si02 (wt.%) 
Ti02 

A120, 

Fe203 

MnO 
MgO 

CaO 
Na 20 

K 2 0 

P205 

LOI (%) 

Mg-number (%) 

Sc (ppm) 
V 

Cr 
Co 

Ni 
Ga 

Rb 

Sr 
Y 

Zr 

Nb 

Cs 

Ba 
Ta 

Pb 
Th 

U 

La 
Ce 

Pr 
Nd 

Sm 
Eu 

Gd 

Tb 
Dy 
Ho 
Er 

Tm 

Yb 

Lu 

La/Ybcn 

La/Smc 
Gd/Ybcn 

(Eu/Eu*)cn 

(Ce/Ce*)cn 

Al203 /Ti02 

Nb/Ta 

zr/Y 
Ti/Zr 

(Nb/Nb*)pm 
(Zr/Zr*)pm 

(Ti/Ti*)pm 
EREE 

North 

West 

498218 
48.1 
0.65 

16.03 
12.94 

0.20 

8.66 

10.28 
2.70 

0.35 

0.07 
1.08 

57 

43 
240 

244 

48 
149 

36 
7 

77 
19.2 

36.3 

0.75 

0.26 

51.91 
0.05 

5.15 
0.43 

0.15 

1.59 
3.74 

0.58 
3.08 

1.27 
0.50 

2.07 

0.43 
3.03 
0.72 

2.18 
0.32 

2.33 
0.35 

0.46 

0.79 
0.72 

0.94 

0.94 

24.78 

14.68 

1.89 
106.91 
0.37 
1.28 

0.72 

22.19 

64°50.202' 

50°12.887' 

498219 
49.3 
0.72 

14.93 
13.26 

0.21 

8.44 

10.37 
2.30 

0.44 

0.05 
0.97 

56 

54 

285 

301 

45 

100 

36 

11 

83 
21.4 
31.5 

0.77 
0.48 

55.65 
0.06 

6.22 

0.43 
0.24 

2.20 
5.20 

0.74 

3.66 

1.36 

0.55 
2.35 

0.49 
3.54 
0.82 

2.45 

0.37 

2.45 
0.38 

0.60 

1.02 
0.77 
0.94 

0.98 
20.73 

13.36 
1.47 

137.11 
0.32 
0.99 

0.70 
26.54 

64°51.000' 

50° 11.826' 

498224 

48.6 
0.62 

15.80 
12.04 

0.21 

7.88 

12.47 

1.84 

0.50 

0.06 
1.01 

56 

44 

251 

263 
53 

150 

32 

18 
87 

19.5 
31.5 

0.59 
0.46 

36.29 
0.05 

5.29 

0.10 
0.11 

1.89 
4.74 

0.62 

3.58 

1.28 

0.48 
2.28 

0.45 

3.18 
0.73 

2.23 
0.32 

2.22 

0.35 

0.57 

0.92 

0.83 
0.85 

1.05 
25.39 

12.43 
1.62 

118.35 

0.56 
1.03 

0.67 
24.34 

64°49.455' 

50°13.696' 

498227 

54.0 
0.65 
13.09 

9.85 

0.21 

6.61 

14.07 

1.30 

0.19 

0.05 
1.84 

57 

40 

244 

351 

39 
138 

29 
6 

47 
15.2 
30.6 

0.78 
0.22 

33.84 
0.06 

1.54 

0.16 
0.18 

1.57 
4.32 

0.66 

3.30 

1.31 
0.54 
2.04 

0.39 

2.61 
0.59 

1.71 
0.24 

1.73 

0.26 

0.61 

0.75 

0.95 
1.00 

1.02 
20.24 

13.70 

2.01 
126.89 

0.63 
1.03 

0.82 
21.26 

64°51.388' 

50°11.513' 

498241 

54.8 
0.45 

16.27 
11.68 

0.14 

7.36 

7.72 

1.50 

0.02 

0.04 

LDL 

56 

52 

292 

37 

50 
59 

30 
1 

36 
17.4 
23.0 

0.68 

0.07 

11.62 
0.04 

2.05 

0.13 
0.20 

1.50 
4.30 

0.70 

3.15 
0.92 

0.26 
1.71 

0.36 

2.72 
0.62 

2.03 
0.30 

2.05 
0.32 

0.49 

1.02 

0.68 
0.63 

1.01 
35.97 

16.45 

1.33 
117.81 
0.62 
0.94 

0.59 
20.92 

64°52.912' 

50°13.083' 

498244 

50.1 
0.66 

15.87 
11.31 

0.20 

5.55 

13.63 

2.62 

0.06 

0.05 

2.87 

49 

47 

234 

238 

58 
161 

30 
1 

94 
19.5 
36.9 

0.69 
0.10 

13.90 

0.03 

2.73 

0.22 
0.48 

1.45 

3.91 

0.61 

3.22 
1.32 

0.60 
2.26 

0.47 

3.17 
0.73 
2.24 

0.33 

2.30 

0.35 

0.43 

0.69 

0.79 
1.06 

1.00 

23.93 

20.10 

1.89 
107.74 

0.49 
1.25 

0.69 
22.96 

64°52.715' 
50°13.213' 

498256B 

49.2 
0.40 

13.81 
11.12 

0.21 

11.26 

12.47 

1.32 

0.14 

0.03 
1.21 

67 

54 

224 

618 

57 
159 

25 
4 

37 
12.5 
18.2 

0.31 
0.42 

18.10 

0.02 

2.37 

0.05 
0.04 

0.68 

1.84 

0.29 

1.72 

0.80 

0.24 
1.42 

0.28 

2.12 
0.47 

1.41 
0.22 

1.43 

0.22 

0.32 

0.53 

0.80 
0.68 

1.00 

34.71 

16.71 

1.46 
130.89 

0.67 
1.09 

0.66 

13.14 

64°54.985' 
50°12.391' 

498229 

48.1 
0.80 

16.24 

12.70 

0.22 

8.39 

10.62 

2.79 

0.13 

0.06 
1.28 

57 

40 

247 
263 

54 
190 

34 

5 
69 

16.4 
45.7 

1.35 

0.21 

32.57 

0.09 
7.40 

0.11 
0.23 

2.14 

6.15 

1.00 

4.85 
1.77 

0.68 
2.43 
0.44 

2.88 
0.60 

1.85 
0.27 
1.80 

0.26 

0.80 

0.76 

1.10 
1.01 

1.01 

20.38 

14.80 

2.79 
104.45 

1.15 
1.09 

0.91 
27.12 

64°51.485' 
50° 11.446' 

498235 

51.2 
0.79 

14.60 

11.31 
0.21 

6.26 

13.90 

1.30 

0.34 

0.06 

1.20 

52 

50 

285 

319 

45 
138 

33 

12 
50 

18.9 
42.5 

1.39 

0.75 

17.95 

0.07 
6.57 

0.15 
0.07 

1.72 

4.58 
0.74 

4.02 

1.56 

0.61 
2.50 

0.46 

3.10 
0.72 

2.07 
0.30 

2.11 

0.33 

0.55 

0.69 

0.96 
0.95 

0.98 

18.51 

20.55 

2.25 
111.19 

1.11 
1.19 

0.84 

24.83 

64-51.711 
50°11.921 



Table 3.3. (Continued) 
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Group 3 amphibolites Group 4 amphibolites Plagioclase-rich amphibolites 

Si02 (wt.%) 

Ti02 

A120, 
Fe 20 3 

M n O 

M g O 

C a O 

Na20 

K 2 0 

P 2 0 5 

LOI (%) 

Mg-number (%) 

Sc (ppm) 
V 

Cr 

Co 

Ni 

Ga 

R b 

Sr 

Y 

Zr 

N b 

Cs 

B a 

T a 

P b 

T h 

U 

La 

C e 

Pr 

N d 

S m 

E u 

G d 

T b 

D y 

H o 

E r 

T m 

Y b 

L u 

LaA'b^ 

La/Sm^ 

Gd/Yb„ 

(Eu/Eu*)cn 

(Ce/Ce*)cn 
Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 

(Nb/Nb*)pm 
(Zr/Zr*)pm 

(Ti/Ti*)pm 
2REE 

North 
West 

498260 

49.0 
1.01 

15.62 
12.50 

0.20 
8.29 

10.81 

2.39 

0.14 

0.08 

0.28 

57 

42 

2 6 4 

251 

51 

166 

37 

1 

136 

20.0 
57.3 
1.77 
0.11 

41.61 

0.12 

2.68 
0.24 

0.08 

2.55 
7.31 

1.15 
6.17 

1.99 

0.68 
3.12 

0.53 
3.59 
0.76 

2.26 
0.33 
2.07 
0.33 

0.83 

0.80 
1.22 

0.84 

1.03 
15.47 

15.11 
2.87 

105.70 

0.93 
1.14 

0.94 
32.85 

64°54.142' 

50°13.996' 

498261 
50.5 

1.20 
15.54 
12.75 
0.20 
6.33 

10.41 

2.51 

0.41 

0.10 

0.07 

50 

45 

323 

219 

45 

100 

55 

6 

104 

23.6 
67.2 
2.54 

0.18 

173.98 

0.17 

6.20 

0.32 
0.11 

3.37 
9.57 

1.53 
7.75 

2.53 

0.97 
3.65 

0.62 
4.29 

0.94 

2.69 
0.39 

2.50 
0.38 

0.91 

0.84 

1.18 

0.98 

1.01 
12.90 

14.76 
2.85 

107.46 

1.00 

1.06 

0.94 
41.21 

64°53.816' 
50° 15.656' 

498265 
49.0 
1.00 

15.55 
13.37 

0.19 
9.34 

9.09 

2.16 

0.18 

0.07 

1.37 

58 

41 

277 

238 

4 8 

155 

36 

11 

44 

20.3 
55.4 

1.79 
1.39 

38.00 

0.13 
1.84 

0.26 
0.13 

2.42 
7.18 

1.11 
6.06 

2.08 

0.80 
3.09 

0.54 
3.58 
0.80 

2.25 
0.33 
2.23 
0.32 

0.73 

0.73 
1.12 

0.96 

1.06 
15.55 

14.15 
2.74 

108.13 
0.92 

1.09 

0.92 
32.79 

64-53.785' 
50°15.157' 

498228 
53.3 
0.32 

15.19 
10.45 
0.21 
10.75 

7.58 
1.87 

0.32 

0.04 

2.68 

67 

4 6 

223 

4 5 6 

47 

124 

29 

10 

74 

12.6 
22.5 
0.46 

1.27 

50.48 

0.03 
12.71 

0.10 
0.36 

2.06 
4.19 

0.55 
2.52 
0.68 

0.31 
1.30 

0.24 
1.97 
0.44 

1.43 
0.22 

1.52 
0.25 

0.91 

1.91 

0.70 

1.01 

0.94 
47.32 

16.10 
1.79 

85.56 

0.42 

1.20 

0.59 
17.68 

64°51.483' 
50°11.420' 

498239 
53.7 
0.33 

15.83 
10.57 
0.14 
10.85 
7.17 

1.33 

0.02 

0.04 

0.44 

67 

45 

232 

3 7 9 

50 

125 

27 

2 

91 

11.9 
22.0 

0.51 
0.40 

18.07 

0.03 
11.22 

0.29 
0.23 

1.88 
3.71 

0.43 
1.94 
0.57 

0.28 
1.16 

0.24 
1.85 
0.44 

1.41 
0.21 

1.55 
0.25 

0.82 

2.08 

0.61 
1.07 

0.99 
47.34 

18.89 
1.84 

91.01 

0.28 

1.47 
0.64 

15.92 

64°52.959' 
50°13.087' 

498248 

52.0 
0.33 

14.63 
10.81 

0.17 
13.06 
7.32 

1.63 
0.04 

0.03 

1.48 

71 

41 

233 

765 

57 

178 

26 

2 

67 

12.1 
20.3 
0.36 

0.53 

28.51 
0.02 

6.91 

0.14 

0.16 

1.78 
3.75 

0.48 

2.18 
0.68 

0.34 
1.04 

0.23 
1.87 
0.44 

1.40 

0.20 
1.48 
0.23 

0.81 
1.64 

0.57 
1.24 

0.97 
44.41 

16.81 
1.69 

97.12 

0.29 
1.17 

0.64 
16.11 

64°54.043' 
50°13.027' 

498264 

50.9 
0.26 

18.61 
6.86 
0.13 
10.84 

9.47 

2.63 

0.23 

0.04 

1.50 

76 

27 

124 

99 

44 

167 

28 

12 

106 

7.3 

28.6 

0.83 
1.75 

27.69 
0.04 

4.77 

0.37 
0.10 

3.33 
6.12 

0.83 

3.61 
0.86 

0.36 

1.08 

0.17 
1.19 
0.27 
0.84 

0.13 
0.87 
0.14 

2.58 
2.42 

1.01 
1.15 

0.89 
71.25 

20.77 

3.93 
54.81 
0.30 

1.13 

0.74 
19.80 

64°53.799' 
50°15.778' 

498209 

67.4 
0.57 

14.75 
3.47 
0.05 
2.83 
6.70 

3.82 

0.16 

0.21 

0.34 

62 

11 

86 

132 

16 

63 

47 

4 

372 

9.2 

145.7 
4.92 

0.98 
127.10 

0.35 
4.89 

4.80 
1.07 

18.18 
47.04 

5.05 

19.35 
3.56 

1.00 

3.02 

0.35 
1.92 
0.33 

0.95 
0.12 
0.78 
0.12 

15.64 

3.21 

3.12 

0.93 

1.18 

25.70 

14.25 

15.87 
23.61 
0.21 

1.23 

0.89 
101.76 

64°50.855' 
50°12.627' 

498279 

55.3 
1.00 

10.59 
13.42 
0.25 
6.34 

11.29 

0.95 
0.74 

0.12 

0.98 

4 8 

18 

152 

229 

56 

130 

35 

11 

411 

14.7 
86.6 
5.20 
0.31 

63.15 

0.33 

11.29 

1.23 
0.96 

11.85 

33.16 
4.51 

19.97 
4.20 

1.18 

4.10 

0.56 
3.04 
0.57 

1.49 
0.22 
1.27 
0.20 

6.29 
1.78 

2.61 
0.87 

1.09 

10.55 

15.73 
5.90 

69.50 
0.55 

0.66 
0.98 

86.33 

64°53.795' 
50°03.025' 
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Table 3.4. Major (wt.%) and trace element (ppm) concentrations and significant element ratios for metasedimentary rocks 

Ujarassuit belt, Western flank Ivisaartoq belt, lower metasedimentary unit 

Si02 (wt.%) 

Ti0 2 

A1203 

Fe203 

MnO 
MgO 
CaO 
Na20 
K 2 0 

P 2 O 5 

LOI (%) 
Mg-number (%) 
CIA (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Ga 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

La/Ybc„ 

La/Sm^ 
Gd/Ybcn 

(Eu/Eu*)cn 
(Ce/Ce*)cn 
Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
SREE 

North 
West 

Biotite schists 

498226 
62.8 

0.50 

16.15 
6.36 
0.12 
3.75 
4.09 
3.16 

2.95 

0.12 
1.67 
54 
51 

16 
110 
115 
24 
75 
68 

381 
205 
12.0 
108 
2.78 
13.01 
272 
0.19 
19.37 
3.24 
1.07 

12.53 
20.91 
2.33 
8.86 
1.97 
0.58 
2.15 
0.32 
1.90 
0.39 
1.14 
0.16 
1.02 
0.16 

8.31 
3.99 

1.71 

0.86 
0.93 
32.04 
14.46 
8.99 

28.00 
0.18 
1.81 
0.82 
54.43 

64°51.359" 
50°11.553' 

498230 

53.1 

0.50 
24.04 

4.60 
0.07 
4.23 
7.70 
4.71 
0.99 

0.02 
2.49 
65 
51 

13 
57 
141 
20 
114 
47 
76 

378 
9.3 
253 
3.06 
2.12 
156 
0.17 

32.71 
26.88 
1.92 

100.07 
155.26 
17.00 
53.40 
6.24 
1.29 
4.40 
0.45 
2.02 
0.34 
0.92 
0.13 
0.77 
0.15 

87.95 
10.08 

4.64 

0.75 
0.91 

48.13 
17.97 
27.23 
11.82 
0.02 
0.97 
0.67 

342.43 

64°51.446' 
50° 11.409' 

498231 
69.2 

0.36 

15.42 
2.82 
0.04 
1.25 
3.82 
3.97 

2.97 
0.14 

1.99 
47 
49 

11 
71 
94 
21 
272 
120 
115 
136 
11.0 
115 
4.09 
0.87 
654 
0.25 

31.62 
9.63 
2.23 

43.87 
71.33 
7.85 

26.82 
4.03 
0.90 
3.24 
0.40 
2.12 
0.38 
1.08 
0.15 
0.91 
0.15 

32.61 
6.83 

2.89 
0.76 
0.93 

42.92 
16.05 
10.49 
18.73 
0.08 
0.77 
0.50 

163.23 

64°51.446' 
50°11.409' 

498242 

72.4 
0.32 

14.51 
2.53 
0.04 
1.34 
2.80 
2.96 

2.99 
0.14 

1.33 
51 
53 

7 
49 
51 
14 
57 
150 
74 

281 
7.1 
126 
3.94 
2.82 
886 
0.27 
37.66 
13.51 
2.62 

40.53 
73.91 
7.28 

23.70 
3.23 
0.75 
2.35 
0.27 
1.33 
0.24 
0.71 
0.11 
0.59 
0.09 

46.04 

7.89 

3.21 
0.84 
1.04 

45.54 
14.39 
17.79 
15.18 
0.07 
1.01 
0.68 

155.10 

64°52.912' 
50° 13.083' 

498243 

71.5 
0.35 

14.81 
2.54 
0.04 
1.62 
2.84 
2.94 

3.20 

0.13 
1.27 
56 
46 

10 
64 
73 
31 
108 
138 
83 
214 
7.8 
113 
3.38 
3.25 
786 
0.21 
56.11 
9.83 
2.09 

31.36 
57.21 
5.92 
19.57 
2.95 
0.69 
2.24 
0.31 
1.55 
0.30 
0.80 
0.10 
0.69 
0.10 

30.52 
6.68 

2.62 

0.82 
1.01 

41.86 
16.11 
14.60 
18.73 
0.08 
1.04 
0.65 

123.80 

64°52.912' 
50°13.083' 

Biotite schists 

498292 

58.1 
0.92 

15.29 

10.17 
0.17 
8.40 
3.56 
2.67 

0.61 

0.11 
0.83 
62 
58 

37 
187 
753 
52 

328 
54 
16 

334 
16.4 
166 
6.24 
2.00 
168 
0.42 
12.00 
2.52 
0.59 
14.85 
34.45 
4.58 
19.43 
4.80 
1.46 
4.59 
0.63 
3.51 
0.69 
1.99 
0.32 
2.57 
0.40 

3.89 
1.94 

1.44 

0.95 
1.01 

16.60 
14.92 
10.10 
33.25 
0.41 
1.20 
0.79 
94.27 

64°43.597' 
49°58.033' 

498293 

71.2 
0.82 

12.83 

7.13 
0.10 
2.44 
1.29 
2.36 

1.68 

0.13 
1.49 
40 
62 

17 
117 
121 
19 
67 
81 
49 
106 

26.8 
200 

10.89 
5.07 
346 
0.71 
12.67 
4.32 
14.63 
17.38 
40.61 
5.04 

21.57 
4.87 
0.97 
4.77 
0.73 
4.80 
1.15 
3.80 
0.62 
4.89 
0.77 

2.39 
2.24 

0.79 
0.62 
1.05 

15.69 
15.39 
7.44 

24.57 
0.51 
1.36 
0.56 

111.98 

64°43.597' 
49°58.033' 

498295 

70.7 
0.80 

12.59 

6.95 
0.09 
3.11 
1.39 
2.66 

1.57 

0.11 
1.23 
47 
60 

21 
125 
129 
19 
53 
75 
48 
95 

33.4 
237 

10.89 
6.25 
295 
0.72 
10.15 
3.80 
0.95 

21.31 
48.66 
6.26 

26.96 
6.64 
1.26 
6.69 
0.96 
6.23 
1.36 
4.54 
0.72 
5.29 
0.86 

2.71 
2.02 

1.02 

0.58 
1.02 

15.84 
15.03 
7.11 

20.10 
0.49 
1.24 
0.42 

137.73 

64°43.394' 
50°00.442' 

498297 

59.9 
0.63 

16.38 

6.89 
0.14 
4.23 
5.11 
4.86 

1.66 
0.20 

1.21 
55 
47 

18 
134 
131 
25 
93 
155 
49 
175 
12.2 
122 
3.58 
4.10 
922 
0.23 

46.06 
7.03 
0.96 

38.37 
76.47 
8.43 

31.40 
4.82 
1.14 
3.93 
0.46 
2.50 
0.47 
1.32 
0.17 
1.09 
0.16 

23.69 
5.01 

2.91 
0.80 
1.02 

26.10 
15.81 
10.03 
30.77 
0.09 
0.70 
0.75 

170.72 

64°43.527' 
49°59.737' 

The chemical index of alteration CIA = 100(Al2O3/[Al2O3+Na2O+K2O+CaO*]) is calculated in molar proportions where CaO* represents CaO 

only in silicates (see Nesbitt and Young, 1984; Fedo et al., 1995). 



Table 3.4. {Continued) 

Si02 (wt.%) 
Ti02 

A1203 

Fe203 

MnO 
MgO 
CaO 

Na 20 

K 2 0 

P 2 0 5 

LOI (%) 
Mg-number (%) 
CIA (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Ga 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 

Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

La/Ybcn 

La/Sm,,n 

Gd/Ybcn 

(Eu/Eu*)cn 
(Ce/Ce*)cn 
Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
2REE 

North 
West 

Ivisaartoq belt, lower metasedimentary 

Quartzitic gneisses 

496101 
77.7 

0.28 
11.73 

2.83 

0.05 
0.62 
1.92 

2.57 

2.22 

0.04 
0.98 
30 
54 

4 
LDL 
LDL 

1 
7 

88 
57 
37 

140.4 
618 

12.22 
2.95 
278 
0.87 
7.60 
4.51 
1.00 

29.93 
78.51 
11.13 
54.02 
17.00 
3.13 

22.52 
4.10 
27.18 
5.85 
17.89 
2.67 
17.90 
2.61 

1.13 

1.11 
1.02 
0.49 
1.04 

42.01 
14.06 
4.40 
2.71 
0.43 
1.43 
0.03 

294.43 

64 "43.420' 
50-00.013' 

498294 
76.3 
0.32 

11.42 

5.12 
0.05 
0.75 
0.90 

3.29 

1.79 

0.04 

0.85 
22 
56 

7 
LDL 
LDL 

1 
5 

93 
48 
40 

103.9 
702 

19.89 
5.65 
303 
0.70 
14.58 
7.86 
1.50 

56.96 
130.78 
19.03 
86.48 
24.30 
3.33 

27.38 
4.13 
23.35 
4.37 
12.37 
1.83 

12.64 
1.98 

3.03 

1.47 
1.75 
0.40 
0.96 

36.18 
28.50 
6.76 
2.70 
0.38 
1.07 
0.04 

408.95 

64°43.597' 
49°59.045' 

unit 

498296 
72.0 
0.61 

10.89 

8.02 
0.10 
1.58 
3.13 

2.50 

0.97 

0.15 
0.46 
28 
51 

12 
LDL 
LDL 

5 
9 

76 
20 
50 

143.6 
438 

13.08 
2.07 
230 
0.90 
4.95 
4.99 
0.96 

39.08 
88.34 
12.95 
60.36 
17.81 
3.60 

23.94 
4.10 

26.90 
5.65 
16.40 
2.52 
16.70 
2.45 

1.58 

1.38 
1.16 
0.53 
0.95 
17.92 
14.58 
3.05 
8.32 
0.38 
0.93 
0.07 

320.82 

64°43.568' 
49°59.516' 

498299 
81.6 
0.16 

11.09 

1.41 
0.02 
0.46 
0.69 

1.63 

2.88 

0.02 

1.17 
39 
61 

2 
LDL 
LDL 

1 
4 
74 
77 
25 

102.3 
237 

15.25 
4.68 
266 
1.04 

11.77 
7.84 
1.44 

21.02 
137.97 
9.04 

39.15 
11.46 
1.79 

12.43 
2.51 
18.37 
4.20 
13.36 
1.93 

12.60 
1.83 

1.12 

1.15 
0.80 
0.46 
2.41 

70.58 
14.70 
2.31 
3.98 
0.48 
0.78 
0.03 

287.67 

64°43.391' 
50°00.856' 
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Table 3.5. Summary of significant geochemical characteristics and trace 
element ratios for metavolcanic and metasedimentary rocks 

Si02 (wt%) 

Ti02 

A1203 

Fe203 

MgO 
CaO 

Zr (ppm) 
Ni 

Cr 
EREE 

Al203/Ti02 

Ti/Zr 
Nb/Ta 
Zr/Y 

La/Ybcn 

La/Sm,.,, 

Gd/Ybcn 

(Eu/Eu*)cn 
(Nb/Nb*)pm 
(Ti/Ti*)pm 
(Zr/Zr*)pm 

Group 1 
amphibolites 

48-53 

0.6-1.0 
13.6-15.6 

10.1-13.2 
6.8-11.2 
10.2-14.3 

35-58 
79-433 
187-603 
23-38 

14-22 
93-105 
14-19 

2.6-3.1 

0.84-1.24 
0.77-1.14 

1.10-1.21 

0.88-1.02 
0.60-0.79 
0.86-0.92 
0.97-1.07 

Group 2 
amphibolites 

47-55 
0.4-1.0 

13.1-16.3 
9.9-15.7 
5.6-11.3 
7.7-14.1 

18-60 
59-171 
37-618 
13-37 

16-36 
90-137 
12-20 
1.3-2.4 

0.32-0.61 
0.53-1.02 

0.68-0.95 

0.63-1.06 
0.32-0.67 
0.59-0.82 

0.94-1.63 

Group 3 
amphibolites 

48-51 
0.8-1.2 

14.6-16.2 
11.3-13.4 
6.3-9.3 
9.1-10.8 

43-67 
100-190 
219-319 
25-41 

13-20 
105-111 
14-21 

2.3-2.9 

0.55-0.91 
0.69-0.84 

0.96-1.22 

0.84-1.01 
0.92-1.15 
0.84-0.94 
1.06-1.19 

Group 4 
amphibolites 

51-54 

0.26-0.33 
14.6-18.6 
6.9-10.8 
10.8-13.1 
7.2-9.5 

20-29 
124-178 
99-765 
16-20 

44-71 
55-97 
16-20 

1.7-3.9 

0.81-2.58 
1.64-2.42 

0.57-1.01 

1.01-1.24 
0.28-0.42 
0.59-0.74 
1.13-1.47 
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Table 3.5. {Continued) 

Si02 (wt%) 
Ti02 

A1203 

Fe203 

MgO 
CaO 

Zr (ppm) 
Ni 
Cr 
SREE 

Al203/Ti02 

Ti/Zr 
Nb/Ta 
Zr/Y 

La/Ybcn 

La/Sin,.,, 

Gd/Ybcn 

(Eu/Eu*)cn 
(Nb/Nb*)pm 

(Ti/Ti*)pm 
(Zr/Zr*)pm 

Plagioclase-rich 
amphibolites 

55-67 
0.6-1.0 

10.6-14.8 
3.5-13.4 
2.8-6.3 
6.7-11.3 

87-146 
63-130 
132-229 
86-102 

10-26 
24-70 
14-16 

5.9-15.9 

6.29-15.64 
1.78-3.21 

2.61-3.12 

0.87-0.93 
0.21-0.55 

0.89-0.98 
0.66-1.23 

Ultramafic rocks 
(picritic cumulus) 

42-49 
0.1-0.4 

3.8-9.4 
8.3-15.5 
19.7-39.1 
0.5-9.5 

4-21 
658-2212 

2377-6312 
2.4-17.2 

11-45 
102-151 

8-18 
1.3-3.6 

0.31-2.48 

0.65-1.83 
0.47-1.32 

0.34-1.03 
0.31-0.94 

0.80-1.59 
0.84-3.29 

Biotite 
schists 
53-72 
0.3-0.9 

12.6-24.0 
2.5-10.2 
1.3-8.4 
1.3-7.7 

108-253 
53-328 
51-753 
54-342 

17-48 
12-30 
14-18 

7.1-27.2 

2.39-87.95 
1.94-10.08 
0.79-4.64 

0.58-0.95 
0.02-0.51 

0.42-0.82 
0.70-1.81 

Quartzitic 
gneisses 

72-82 
0.2-0.6 

10.9-11.7 
1.4-8.0 

0.5-1.6 
0.7-3.1 

237-702 
4.1-8.7 

<30 
288-409 

18-71 
2.7-8.3 
14-29 

2.3-6.8 

1.12-3.03 
1.11-1.47 
0.80-1.75 

0.40-0.53 
0.38-0.48 

0.03-0.07 
0.78-1.43 
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CHAPTER 4 

The Neoarchean 2800-2840 Ma Store greenstone belt, SW Greenland: Field and 

geochemical evidence for an intra-oceanic supra-subduction zone geodynamic 

setting 

4.1. Introduction 

The Nuuk region in southern West Greenland comprises several Eo- to Neoarchean 

(3850-2800 Ma) tectono-stratigraphic terranes assembled into a single super-terrane 

during prolonged continent-continent collisional events taking place between 2960 and 

2650 Ma (Friend et al., 1988; 1996; Nutman et al., 1989; McGregor et al., 1991; Friend 

and Nutman, 2005; Nutman and Friend, 2007). Terrane amalgamation resulted in 

polyphase regional amphibolite-granulite facies metamorphism and multi-stage ductile 

deformation (Nutman and Friend, 2007). The allochtonous terranes are dominated by 

Archean tonalite-trondhjemite-granodiorite (TTG) associations and include small 

fragments of greenstone belts < 5 km in width. The accretion of allochtonous terranes in 

the Nuuk region is one of the best documented examples of an Archean collisional 

orogeny (Nutman and Friend, 2007). The collisional orogenic model proposed for the 

Nuuk region has important implications for the geodynamic origin of Archean greenstone 

belts (cf. Nutman and Friend, 2007). In Phanerozoic collisional orogens, supra-subduction 

zone ophiolites have been obducted into continents during the progressive closure of 

ocean basins (Dilek and Flower, 2003; Flower and Dilek, 2003; Pearce, 2003; §engor and 

Natal'in, 2004). Therefore, the tectonic terrane model suggests that some greenstone belts 

from the Nuuk region may represent the Archean analogues of Phanerozoic ophiolites (cf., 

De Wit, 2004). Or alternatively, they may also represent remnants of continental flood 



161 

and rift volcanic sequences deformed during collisional tectonics (cf. Bickle et al., 1994; 

Hunter et al., 1998; Bleeker, 2002; Thurston, 2002; Hartlaub, et al, 2004; Shimizu et al., 

2005). 

Recent field and geochemical investigations in the region have shown that the 

Mesoarchean (3070-3075 Ma) Ivisaartoq, Ujarassuit, and Qussuk greenstone belts display 

lithological and geochemical characteristics that are characteristic of Phanerozoic intra-

oceanic subduction zone geodynamic settings (Garde, 2007; Polat et al., 2007, 2008; 

Ordonez-Calderon et al., 2008a,b). These characteristics include: 1) pyroclastic andesites 

in the Qussuk belt (Garde, 2007); 2) epidosites in pillow basalts in the Ivisaartoq belt 

(Polat et al., 2007) resembling those recovered from modern sea-floor hydrothermal 

systems in the Tonga-Kermadec forearc (cf. Banerjee et al., 2000); 3) amphibolites with 

basaltic composition and pronounced negative Nb-Ta anomalies in primitive mantle-

normalized diagrams (Polat et al., 2007; 2008; Ordonez-Calderon et al., 2008a,b); 4) 

ultramafic rocks with geochemical composition similar to those of island arc picrites; and 

5) boninite-like rocks in the Ujarassuit greenstone belt (Polat et al., 2007; 2008; Ordonez-

Calderon et al., 2008a,b). The above lithological-geochemical associations suggest that 

the central Nuuk region comprises dismembered fragments of Mesoarchean supra-

subduction zone oceanic crust (Garde, 2007; Polat et al., 2007, 2008; Ordonez-Calderon 

et al., 2008a,b). 

The Neoarchean (2800-2840 Ma) Store greenstone belt consists of metamorphosed 

basalts, ultramafic rocks, anorthosites, and siliciclastic sedimentary rocks. These 

lithological characteristics are broadly similar to those of the Mesoarchean Ivisaartoq and 

Ujarassuit greenstone belts. The geochemical characteristics and geodynamic setting of 

the Store volcanic and sedimentary rocks are not well understood. Accordingly, we report 
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new high precision major and trace element data for 17 samples of metavolcanic rocks 

and 12 samples of metasedimentary rocks from the Store belt to investigate its 

petrogenesis, geodynamic setting of origin, and sedimentary provenance. The new field 

and geochemical data are compared with those reported for the Mesoarchean greenstone 

belts in the Nuuk region to understand Meso- to Neoarchean magmatic and 

sedimentological processes. 

4.2. Regional geology and field characteristics 

The Nuuk region consists of several Eo- to Neoarchean (3850-2800 Ma) tectono-

stratigraphic terranes bounded by folded amphibolite facies mylonites (Friend et al., 1987, 

1988, 1996; Nutman et al., 1989; McGregor et al., 1991; Crowley, 2002; Friend and 

Nutman, 2005). These allochtonous terranes comprise TTG-gneisses, gabbro-anorthosite 

complexes, and fragments of greenstone belts (Black et al., 1971; Moorbath et al., 1973; 

McGregor, 1973; Bridgwater et al., 1974; McGregor and Mason, 1977; Chadwick, 1990; 

Nutman et al., 1996; Garde, 2007; Polat et al., 2007). Terrane accretion was diachronous 

and appears to have taken place between ca. 2960 and 2600 Ma resulting in polyphase of 

deformation and metamorphism (Friend and Nutman, 1991; Friend et al., 1996; Friend 

and Nutman, 2005; Nutman and Friend, 2007). 

The Store greenstone belt is the oldest component of the ca. 2825-2780 Ma Tre 

Bredre terrane (Fig. 4.1). The precise age of the belt is not well constrained. However, 

zircons in volcaniclastic-sedimentary rocks indicate maximum depositional ages between 

2800 and 2840 Ma (Hollis, 2005; Knudsen et al., 2007; Nutman et al., 2007). The belt 

was metamorphosed at upper amphibolite facies conditions between 2650 and 2600 Ma 

(Hollis, 2005; Nutman et al., 2007). The thickest section of the belt is exposed in central 
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Store Island where the belt is folded into synformal and antiformal structures that are 

overturned to the west towards the terrane boundary (Fig. 4.1). The Store greenstone belt 

comprises a sequence of amphibolites (metabasalts) interleaved with a ca. 100 to 200 m 

thick unit composed of garnet-biotite schists and quartzitic gneisses (metavolcaniclastic-

sedimentary rocks) (Fig. 4.1). The amphibolites are finely layered and isoclinally folded 

(Fig. 4.2a). They are commonly intercalated with garnet-biotite schists at outcrop scale 

(Fig. 4.2b). The amphibolites in the uppermost part of the belt contain relict pillow 

structures (Hollis et al., 2004). The Store greenstone belt shows evidence for superposed 

folding (Fig. 4.2b-d). Lenses of serpentinized ultramafic rocks are abundant at the top of 

the sequence. The base of the tectono-stratigraphic sequence of the belt is intruded by a 

metagabbro-meta-anorthosite complex (Figs. 4.1 and 4.2e). Tectonic transposition and 

multi-stage folding (Fig. 4.2c) have obliterated the primary characteristics of the contact 

between the Store greenstone belt and the surrounding TTG-gneisses. However, in the 

northern part of the belt, it is intruded by the ca. 2825 Ma Ikkatoq gneisses of the Tre 

Bredre terrane (Hollis et al., 2004). In contrast, at some localities thrust sheets of the 

Eoarchean Fasringehavn terrane truncate the stratigraphic sequence of the belt. In addition, 

the Store greenstone belt has undergone several stages of postmagmatic alteration 

resulting in calc-silicate metasomatism, silicification, quartz veining (Fig. 4.2f), and gold 

mineralization (see Juul-Pedersen et al., 2007). The hydrothermal event associated with 

gold mineralization appears to have taken place at ca. 2635 Ma at upper amphibolite 

facies metamorphic conditions (see Knudsen et al., 2007; Nutman et al., 2007). 
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4.3. Petrography 

The studied rock types rarely preserve primary igneous mineralogy or sedimentary 

textures. They consist mostly of amphibolite facies metamorphic assemblages with well 

developed tectonic foliation. 

Amphibolites are composed mainly of hornblende (60-70 %), plagioclase (20-35 %), 

and quartz (5-10 %) (Fig. 4.3a-b). They also include accessory (< 2%) minerals such as 

zircon, apatite, magnetite, and titanite. Garnet, biotite, and actinolite are locally present. 

Biotite is a retrograde metamorphic mineral and generally replaces hornblende and garnet. 

Ultramafic rocks are strongly altered to serpentine (> 90%) (Fig. 4.3c). These rocks 

occasionally preserve relict igneous cumulus texture consisting of serpentinized coarse­

grained olivine, orthopyroxene, and clinopyroxene. Talc, actinolite, tremolite, and 

magnetite are also common alteration minerals. Ultramafic rocks do not exhibit evidence 

for spinifex texture. 

Garnet-biotite schists (Fig. 4.3d-e) are composed mainly of quartz (20-30%), 

plagioclase (40-50%), garnet (5-20%), biotite (10-20%), sillimanite (0-10%), and 

hornblende (0-10%). Accessory minerals may include epidote, kyanite, magnetite, titanite, 

and zircon. 

Quartzitic gneisses (Fig. 4.3f) consist of quartz (50-70%), plagioclase (10-20%), 

biotite (5-15%), muscovite (0-10%), and K-feldspar (0-5%). They sometimes contain 

garnet (2%). Accessory minerals include magnetite, zircon, and epidote. 

4.4. Analytical methods 

Samples were pulverized using an agate mill in the Department of Earth and 

Environmental Sciences of the University of Windsor, Canada. Major elements and some 
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trace elements (Sc and Zr) were analyzed on a Thermo Jarrel-Ash ENVIRO IIICP-OES 

in Activation laboratories Ltd. (ATCLABS) in Ancaster, Canada. The samples were 

mixed with a flux of lithium metaborate and lithium tetraborate, and fused at 1000 °C in 

an induction furnace. The molten beads were rapidly digested in a solution of 5% HNO3 

containing an internal standard, and mixed continuously until complete dissolution. Loss 

on ignition (LOI) was determined by measuring weight loss upon heating to 1100 °C over 

a three hour period. Totals of major elements are 100 ± 1 wt.% and their analytical 

precisions are of 1-2% for most major elements. The analytical precisions for Sc and Zr 

are better than 10%. 

Transition metals (Ni, Co, Cr, and V), REE, HFSE, and LILE were analyzed on a 

high-sensitivity Thermo Elemental X7 ICP-MS in the Great Lakes Institute for 

Environmental Research (GLIER), University of Windsor, Canada, following the 

protocols of Jenner et al. (1990). Sample dissolution was conducted under clean lab 

conditions with double distilled acids. Approximately 100-130 mg of sample powder was 

used for acid digestion. Samples were dissolved in Teflon bombs in a concentrated 

mixture of HF-HNO3 at a temperature of 120 °C for 3 days and then further attacked with 

50% HNO3 until no solid residue was left. Hawaiian basalt standards BHVO-1 and 

BHVO-2 were used as reference materials to estimate precision and accuracy. Analytical 

precisions are estimated as follows: 3-10% for REE, Y, Nb, Ta, Rb, Sr, Cs, Ba, and Co; 

10-20% for Ni, and Th; and 20-30% for U, Pb, V, and Cr. 

Major element analyses were recalculated to 100 wt.% anhydrous basis for inter-

comparisons. Chondrite and primitive mantle reservoir compositions are those of Sun and 

McDonough (1989) and Hofmann (1988), respectively. The Eu (Eu/Eu*), Ce (Ce/Ce*), 
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Nb (Nb/Nb*), Ti (Ti/Ti*), and Zr (Zr/Zr*) anomalies were calculated with the following 

equation after Taylor and McLennan (1985): 

A/A* = AN/([(BN)(CN)]1/2 

Where 

A/A* = Element anomaly 

AN = Chondrite normalization for Eu and Ce anomalies, and primitive mantle 

normalization for Nb, Ti, and Zr anomalies. 

BN and CN = Neighboring immobile elements as follow: Sm and Gd for Eu/Eu*; 

La and Pr for Ce/Ce*, Th and La for Nb/Nb*, Nd and Sm for Zr/Zr*, and Tb and 

Dy for Ti/Ti*. 

Mg-numbers (%) were calculated as the molecular ratio of Mg2+/(Mg2+ + Fe2+) where 

9-4-

Fe is assumed to be 90% of the total Fe. 

4.5. Geochemistry 

4.5.1. Amphibolites 

Amphibolites consistently plot in the field of basaltic rocks on Zr/Ti versus Nb/Y 

diagram (Fig. 4.4). They possess Zr/Y ratios (Zr/Y = 1.7-3.9) within the range of those of 

modern tholeiitic basalts (Zr/Y = 2.0-4.5) (see Barrett and MacLean, 1994) (Table 4.1). 

Amphibolites of the Store and the Ivisaartoq-Ujarassuit greenstone belts display near-

collinear trends of major elements, HFSE, and REE on variation diagrams of Zr 

indicating comparable compositions (Table 4.1; Fig. 4.5). They have Mg-numbers 

ranging from 41 to 61 and variable concentrations of SiC>2 (43.1-55.3 wt%), TiC>2 (0.6-2.5 

wt%), Fe203 (9.5-19.7 wt%), A1203 (9.9-15.6 wt%), MgO (4.7-14.1 wt%), Zr (30-150 

ppm), LREE (20-101 ppm), and Ni (59-262 ppm). Amphibolites in the Storo belt possess 
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lower concentrations of Cr (45-211 ppm) than those of the Ivisaartoq-Ujarassuit 

counterparts (Cr = 104-2030 ppm). 

On chondrite- and primitive mantle-normalized diagrams, most amphibolites in the 

Storo belt exhibit coherent near-flat to slightly enriched LREE (La/Smcn = 0.91-1.48) and 

relatively flat HREE patterns (Gd/Ybcn = 1.0-1.28) (Fig. 4.6a-b). They display consistent 

negative Nb anomalies (Nb/Nb* = 0.34-0.73), and negative to positive anomalies of Eu 

(Eu/Eu* = 0.67-1.18), Zr (Zr/Zr* = 0.74-1.19), and Ti (Ti/Ti* = 0.75-1.14) (Fig. 4.6a-b). 

In addition, they possess sub-chondritic Al203/Ti02 (6.1-19.9) and Nb/Ta (13.7-16.2) 

ratios, and sub- to super-chondritic Ti/Zr (67-136) (Table 4.1). The above geochemical 

characteristics and trace element patterns are similar to those displayed by well preserved 

pillow basalts and least altered Group 1 amphibolites of the Ivisaartoq and Ujarassuit 

greenstone belts (see Polat et al., 2007; Ordonez-Calderon et al., 2008a,b). 

A few amphibolites display different and more variable trace element patterns than 

those described above (Fig. 4.6c-d). These include strongly depleted to strongly enriched 

LREE patterns (La/Smcn - 0.47-4.81), slightly fractionated HREE (Gd/Ybcn = 0.77-1.26), 

pronounced-negative to near-absence anomalies of Nb (Nb/Nb* = 0.41-0.95), and strong 

negative to positive Eu anomalies (Eu/Eu* = 0.55-3.25). Amphibolites with strong LREE 

depletion (sample 493126; Fig. 4.6c-d) display similar trace element patterns to those of 

altered Group 3 and Group 2 amphibolites in the Ivisaartoq and Ujarassuit greenstone 

belts, respectively, and amphibolites in the Qussuk greenstone belt, northwest of Store 

(Garde, 2007; Ordonez-Calderon et al., 2008a). 
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4.5.2. Ultramafic rocks 

Sample 493124 (Fig. 4.3c) was collected from a serpentinized ultramafic body that 

extends for approximately 2 km along the belt. This rock possesses low CaO (5.1 wt%), 

A1203, (7.14 wt%), Ti02 (0.40 wt%), Zr (35.5 ppm), and EREE (11.3 ppm), and high 

contents of MgO (31.9 wt%), Ni (1173 ppm), and Cr (1575 ppm) (Table 4.1). On 

chondrite- and primitive mantle-normalized diagrams (Fig. 4.6c-d) this sample displays a 

flat REE pattern (La/Smcn =1.08; Gd/Ybcn = 0.98), lack of Nb (Nb/Nb* = 1.09) and Eu 

(Eu/Eu* = 0.99) anomalies, and exhibits pronounced positive Zr (Zr/Zr* = 2.11) and Ti 

(Ti/Ti* = 1.32) anomalies. 

4.5.3. Garnet-biotite schists and quartzitic gneisses 

Garnet-biotite schists straddle the compositional fields of basalts and andesites on the 

Zr/Ti versus Nb/Y diagram (Fig. 4.4). They possess variable concentrations of SiC>2 

(48.8-66.9 wt%), MgO (1.96-4.68 wt%), Fe203 (5.7-16.8 wt%), Ti02 (0.82-2.64 wt%), 

AI2O3 (14.9-23.2 wt%), Zr (102-250 ppm), and high concentrations of Ni (26-154 ppm), 

Sc (13-58 ppm), Cr (7-166 ppm), and V (62-452 ppm) (Table 4.2; Fig. 4.5). On 

chondrite- and primitive mantle-normalized diagrams, the garnet-biotite schists display 

LREE enriched patterns (La/Smcn = 1.38-3.23) and near-flat to fractionated HREE 

patterns (Gd/Ybcn =1.05-2.24) (Fig. 4.7a-b). In addition, they exhibit pronounced negative 

anomalies of Nb (Nb/Nb* = 0.25-0.61), and negative to positive Eu (Eu/Eu* = 0.56-1.22), 

Zr (Zr/Zr* = 0.79-1.56), and Ti (Ti/Ti* = 0.52-1.87) anomalies. 

Quartzitic gneisses in the Stor0 greenstone belt have high concentrations of Si02 

(82.5-87.4 wt%). Relative to the gamet-biotite schists, they are depleted in AI2O3 (6.3-8.6 

wt%), MgO (0.68-1.19 wt%), Ti02 (0.22-0.45 wt%), Zr (60.7-74.2 ppm), SREE (60.1-
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45.9 ppm), and transition metals (Ni < 50 ppm) (Table 4.2). They have Zr/Ti and Nb/Y 

ratios similar to those of andesites and basaltic andesites (Fig. 4.4). On chondrite and 

primitive mantle normalized diagrams, they display enriched LREE and fractionated 

HREE patterns (La/Smcn = 3.17-3.79; Gd/Ybcn = 1.45-5.06) (Fig. 4.7c-d). In addition, 

they possess pronounced negative Nb (Nb/Nb* = 0.15-0.17) and Ti (Ti/Ti* =0.68-0.79) 

anomalies, shallow-negative Eu anomalies (Eu/Eu* = 0.77-1.02), and positive anomalies 

of Zr (Zr/Zr* = 1.01-1.30) (Fig. 4.7c-d). 

4.6. Discussion 

4.6.1. Element mobility in metavolcanic rocks 

The Store greenstone belt has undergone high-grade metamorphism, and a complex 

history of hydrothermal alteration indicated by calc-silicate metasomatism, silicification, 

shear-zone hosted quartz veins (Fig. 4.2f), and high-temperature (> 300 °C) amphibolite-

facies gold mineralization (see Juul-Pedersen et al., 2007; Knudsen et al., 2007; Nutman 

et al., 2007). This processes appear to have resulted in significant major and trace element 

mobility. To circumvent the geochemical effects of metamorphism and hydrothermal 

alteration, most geochemical studies of Archean greenstone belts rely on the systematics 

of HFSE (Th, Nb, Ta, Zr, and Ti), REE (La-Lu), and transition metals (Ni, Sc, V, Cr, and 

Co), given that these group of elements are relatively immobile under various geological 

conditions (Hart et al., 1974; Condie et al., 1977; Ludden and Thompson, 1979; Gelinas 

et al., 1982; Ludden et al., 1982; Middelburg et al., 1988; Ague, 1994; Arndt, 1994; 

Staudigel et al., 1996; Alt, 1999; Polat and Hofmann, 2003; Polat et al., 2003; Masters 

and Ague, 2005). However, numerous studies have also indicated that HFSE and REE 

may be mobile under high-temperature magmatic, metamorphic, and hydrothermal 
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alteration conditions (Giere, 1990; Rubin et al., 1993; Van Baalen, 1993; Valsami-Jones, 

1997; Tilley and Eggleton, 2005; Galley et al., 2000; Jiang et al., 2005; Ordonez-

Calderon et al., 2008a). 

In the Stor0 belt, most amphibolites display coherent and near-parallel trace element 

patterns on chondrite- and primitive mantle-normalized diagrams (Fig. 4.6a-b). Samples 

with the lowest concentrations of trace elements (IREE < 13 x chondrite) possess higher 

Mg-numbers (55-61) than those with larger contents of trace elements (SREE > 19 x 

chondrite, Mg-numbers = 41-53). These geochemical variations are commonly exhibited 

by unaltered Phanerozoic volcanic rocks and reflect various degrees of fractional 

crystallization (e.g., Green et al. 2006). In addition, HFSE (e.g., Ti and Nb), transition 

metals (e.g., Sc), and REE exhibit excellent correlation with Zr on variation diagrams 

(Fig. 4.5). Therefore, amphibolites with flat to slightly enriched LREE patterns (Fig. 4.6a-

b) are interpreted to preserve their near-primary magmatic geochemical signatures. 

In contrast, altered amphibolites display trace element patterns that are not parallel to 

those of the least altered counterparts (Fig. 4.6c-d; Table 4.1). For instance, strong 

silicification of sample 485492 (SiC>2 = 82.9 wt%) resulted in significant dilution of major 

and trace element contents (e.g., T i d = 0.12 wt%; Ni = 9.3 ppm) and a U-shape REE 

pattern. In the Ivisaartoq greenstone belt, the U-shape REE patterns of Group 2 

amphibolites appear to have resulted from strong HFSE and REE mobility during 

regional prograde metamorphism (see Ordonez-Calderon et al., 2008a). 

Amphibolites with depleted LREE patterns (Fig. 4.6c-d; samples 493109, 493114, 

and 493126) are compositionally similar to Group 2 and Group 3 amphibolites in the 

Ujarassuit and Ivisaartoq belts, respectively, and amphibolites in the Qussuk belt in the 

Akia Terrane (see Garde, 2007; Ordonez-Calderon et al., 2008a,b). Given that these 
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amphibolites do not exhibit evidence for significant major element metasomatism (e.g., 

silicification or calc-silicate alteration) their origin is controversial. In Qussuk peninsula 

they have been interpreted to retain their near primary magmatic geochemical signatures 

(Garde, 2007). In contrast, in the Ivisaartoq and Ujarassuit greenstone belts the depleted 

LREE patterns have been ascribed to trace element mobility during regional amphibolite 

facies metamorphism (Ordofiez-Calderon et al., 2008a,b). Geochronological evidence 

renders unlikely a cogenetic link among metavolcanic rocks in those greenstone belts. 

Nonetheless, the compositional resemblance may reflect a similar origin. For example, in 

those belts, amphibolites with larger depletion of LREE (La/Ybcn < 0.70) display the most 

pronounced negative Ti anomalies (Ti/Ti* = < 0.70) (cf. Ordofiez-Calderon et al., 2008b). 

These geochemical characteristics may reflect either breakdown of Ti- and LREE-bearing 

minerals (e.g., hornblende and titanite) during high-grade metamorphism, or alternatively, 

a primary magmatic signature derived from a depleted mantle source with residual 

amphibole after partial melting. In the Store belt, amphibolites with depleted LREE 

patterns occur randomly within the same outcrops of amphibolites with near-flat LREE 

patterns (e.g., samples 493108 and 493109). This suggests that LREE may have been 

remobilized and therefore amphibolites with depleted LREE patterns (Fig. 4.6c-d) are not 

taken into account for petrological and geodynamic interpretations. 

4.6.2. Provenance for metasedimentary rocks 

Relative to the amphibolites, garnet-biotite schists and quartzitic gneisses display 

independent covariation trends of TiC>2 and HREE on variation diagrams of Zr (Fig. 4.5), 

and different inter-element ratios of HFSE, REE, and transition metals (Fig. 4.8). 

Therefore, it is unlikely that garnet-biotite schists and quartzitic gneisses represent the 
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metamorphosed products of hydrothermally altered (e.g., intense silicification or 

sericitisation) basaltic rocks (cf. Knudsen et al., 2007). 

Strong deformation (Fig. 4.2b-d) and high-grade metamorphism have obliterated 

primary sedimentary structures. Nevertheless, a volcaniclastic-sedimentary protolith is 

suggested by the presence of detrital zircons ranging in age from 3180 to 2830 Ma (Hollis, 

2005; Knudsen et al., 2007; Nutman et al., 2007). This indicates a wide range of felsic 

source rocks and recycling of older continental crust. 

The contribution of felsic source regions to the protolith of garnet-biotite schists and 

quartzitic gneisses is also evident in normalized trace element patterns with strongly 

enriched incompatible elements (mainly Th, LREE, and Zr), relative to HREE and Y (Fig. 

4.7). In addition, moderate to high concentrations of transition metals (Ni up to 153 ppm) 

also suggest that mafic igneous rocks were significant source rocks. Inter-element ratios 

of transition metals against HFSE and LREE clearly display geochemical trends that are 

consistent with mixing of detritus derived from felsic and mafic end members (Fig. 4.8) 

(cf. Condie and Wronkiewicz, 1990; Hofmann, 2005). 

During weathering of source rocks, CaO, Na20, and K2O are progressively removed 

into solution whereas AI2O3 remains immobile (Nesbitt and Young, 1984). Accordingly, 

the chemical index of alteration (CIA = 100[Al2O3/ (A1203 + CaO* + Na20 + K20)]), 

where CaO* is CaO in the silicate fraction, measures the residual enrichment of AI2O3 in 

the detrital component. Therefore the CIA is widely used as a parameter that quantifies 

the degree of weathering of the source rocks (Nesbitt and Young, 1984; Fedo et al., 1995; 

Nesbitt et al., 1996). Experimental and empirical studies have shown that chemical 

weathering normally result in geochemical trends that parallel the A-CN side of the A-

CN-K diagram (Fig. 4.9) (Nesbitt and Young, 1984; Nesbitt and Markovics, 1997; 
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Nesbitt, 2003; McLennan et al., 2003). Gamet-biotite schists and quartzitic gneisses do 

not follow the predicted weathering trends but rather straddle the trends for mafic to felsic 

source rocks (Fig. 4.9). The scattering on the A-CN-K diagram may be the result of 

several processes including post-depositional mobility of Ca, Na, and K, geochemical 

fractionation owing to sedimentary sorting of the clay and sand fraction, and mixing of 

detritus derived from mafic to felsic source rocks (see McLennan et al., 1993; Nesbitt et 

al., 1996, 1997; McLennan et al., 2003). Although mobility of Ca, Na, and K, likely 

occurred during metamorphism, the scattered pattern in the A-CN-K diagram is consistent 

with mixing of mafic to felsic detritus (Figs. 4.8 and 4.9), and different clay/sand ratios in 

the sedimentary protoliths as is indicated by large variations in the AI2O3 contents (Table 

4.2). 

Garnet-biotite schists and quartzitic gneisses possess CIA values (50 to 71; one 

sample with 81) moderately higher than those of unweathered igneous rocks (38 to 51), 

but lower than average Archean shales (ca. 76) (Condie, 1993) (Fig. 4.9; Table 4.2). The 

low CIA values, moderate AI2O3 contents (14.9 to 23.2 wt%), and inter-element ratios 

(Figs. 4.8 and 4.9) strongly suggest those rocks were derived from mafic to felsic source 

rocks that experienced low rates of chemical weathering. Garnet-biotite schists are 

interpreted to represent compositionally immature graywackes whereas the quartzitic 

gneisses likely represent more mature quartz-rich arkoses. 

Detrital zircons of 3180 Ma, in quartzitic gneisses and garnet-biotite schists, suggest 

erosion of old continental rocks (Knudsen et al., 2007). However, zircons with ages 

between 2880 and 2830 Ma, close to the age of the belt, appear to be the dominant 

population (Knudsen et al., 2007). Therefore, zircon geochronology and the geochemical 

evidence presented in this study indicate that the protolith of quartzitic gneisses and 
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garnet-biotite schists in the Store greenstone belt contain detritus derived from 

Mesoarchean continental rocks, and reworked felsic to mafic Neoarchean volcaniclastic 

detritus. Given the dominant basaltic composition of the Store belt, the felsic source rocks 

were likely distal relative to the belt. 

4.6.3. Petrogenesis and geodynamic origin of metavolcanic rocks 

In amphibolites, positive correlation of REE, Nb, and Th, and negative correlation of 

AI2O3, MgO, and transition metals (Sc, V, Ni, Co, Cr) with increasing Zr contents are 

consistent with fractionation of olivine, pyroxene, and plagioclase (Fig. 4.5). In addition, 

Ti02 increases with Zr contents suggesting that Fe-Ti oxides (ilmenite and 

titanomagnetite) were not significant mineral phases during fractionation. The sub-

parallel near-flat enrichment of trace element patterns (La/Ybcn = 0.91-1.48) on chondrite-

and primitive mantle-normalized diagrams (Fig. 4.6) indicate that fractionation took place 

without significant contamination with upper continental crust rocks. This is also 

consistent with field evidence indicating fault bounded contacts between amphibolites 

and TTG-gneisses (Fig. 4.1). Therefore, the basaltic protoliths of the amphibolites in the 

Store greenstone belt were likely erupted in an intra-oceanic tectonic setting. 

Amphibolites display pronounced negative Nb-Ta anomalies on primitive-mantle 

normalized diagrams (Fig. 4.6) which is consistent with a subduction zone geochemical 

signature (Saunders et al., 1991; Hawkesworth et al., 1993; Kelemen et al., 2003). They 

consistently plot within the field of Phanerozoic subduction-related volcanic rocks on the 

Th/Yb versus Nb/Yb diagram (Fig. 4.10). These characteristics indicate that the Store 

greenstone belt formed in a supra-subduction zone geodynamic setting. 
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Ultramafic rock 493124 possesses high MgO (31.9 wt.%), Ni (1173 ppm) and Cr 

(1575 ppm) concentrations, and Mg-number (86) indicating a cumulate picritic 

composition (cf. Le Bas, 2000). These geochemical characteristics are similar to 

ultramafic rocks in the Ivisaartoq and Ujarassuit greenstone belts which have been 

interpreted as island arc picrites (Polat et al., 2007, 2008; Ordonez-Calderon et al., 

2008a,b). The ultramafic rock in this study, however, lacks the distinctive negative Nb-Ta 

anomaly of island arc picrites (cf. Eggins, 1993; Kamenetsky et al., 1995; Schuth et al., 

2004; Rohrback et al., 2005). In the Ivisaartoq and Ujarassuit belts, only the least altered 

ultramafic rocks with relict igneous mineralogy preserve the negative Nb-Ta anomalies 

(Polat et al., 2007, 2008; Ordonez-Calderon et al., 2008a,b). Postmagmatic element 

mobility of LREE and Th, relative to Nib and Ta, resulted in variable negative to positive 

Nb-Ta anomalies (Polat et al., 2007, 2008; Ordonez-Calderon et al., 2008a,b). Given the 

strong serpentinization of sample 493124 (Fig. 4.3c), it is likely that the original 

magmatic trace element signature has been obliterated. In the Store belt, the spatial 

association of the ultramafic rocks (Fig. 4.1) and amphibolites with subduction zone 

geochemical signatures suggests that the ultramafic rocks represent Archean island arc 

picrites. 

Less fractionated amphibolites (MgO > 8 wt%) exhibit lower concentrations of 

HREE and HFSE (mainly Nb, Ta, Zr, and Ti), relative to average modern N-MORB 

(Hofmann, 1988) (Fig. 4.6a-b). These trace element characteristics are also exhibited by 

primitive Phanerozoic island arc tholeiites (IAT) (e.g., Maury et al., 1992; Kelemen et al., 

2003). Fluid fluxing from the downgoing slab lowers the solidus temperature of the 

mantle wedge and induces high melt production rates (e.g., Maury et al., 1992; 

Hawkesworth et al., 1993; Pearce and Peate, 1995). Accordingly, the lower 
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concentrations of HFSE and HREE in arc magmas, relative to N-MORB, result from 

larger degrees of partial melting in subduction zones than in mid-ocean ridge settings. 

However, studies of mantle xenoliths in arc magmas from the western Pacific island arcs 

have shown that the sub-arc mantle may be more depleted in trace elements (HFSE and 

HREE) than depleted upper mantle at mid-ocean ridges (e.g., Dick and Bullen, 1984; 

Maury et al., 1992; Arai et al., 2007; Ishimaru et al., 2007; Arai and Ishimaru, 2008). The 

degree of depletion of the sub-arc mantle depends on the partial melting history before arc 

inception and during arc development. Therefore, the low concentrations of HFSE and 

HREE in modern IAT result from a combination of processes including large degrees of 

flux melting in a depleted sub-arc mantle. 

Amphibolites of the Store belt are enriched in Fe203 (Fe203 = 12.0-17.8 wt% at IVIgO 

> 8 wt%) relative to modern N-MORB (9.8 to 11.6 wt%) and primitive IAT (8.9-10.6 

wt%) at similar MgO contents (Hofmann, 1988; Kelemen et al., 2003). These 

compositional differences between Archean and Phanerozoic tholeiitic basalts have been 

previously documented and have been attributed to larger degrees of partial melting in an 

Archean mantle that was at least 120 °C hotter than the modern upper mantle (e.g., 

Glikson, 1971; Nisbet and Fowler, 1983; Ohta et al., 1996; Pollack, 1997). Given the 

immobile behavior of Nb and Yb in slab-derived fluids, the Nb/Yb ratios of tholeiitic 

basalts reflect the degree of depletion of incompatible elements in the mantle source (cf. 

Hawkesworth et al, 1993; Pearce and Peate, 1995; Becker et al., 2000; Schmidt and Poli, 

2003; Pearce, 2008). Less fractionated amphibolites in the Store greenstone belt possess 

slightly lower Nb/Yb ratios (0.55-0.76 versus 0.90 in N-MORB) than average N-MORB 

(see Hofmann, 1988). Accordingly, the major and trace element characteristics of these 

rocks suggest large degrees of partial melting of a depleted sub-arc mantle. In addition, 
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the flat HREE patterns indicate shallow melting (< 80 km) and absence of residual garnet 

in the mantle source (cf. Johnson, 1994; Hirschmann and Stolper, 1996; van Westrenen et 

al., 2001). 

4.7. Implications and conclusions 

The Neoarchean (2800-2840 Ma) Storo greenstone belt possesses comparable 

lithological and geochemical characteristics to those of the Mesoarchean (3075 Ma) 

Ivisaartoq and (3070 Ma) Ujarassuit greenstone belts (Polat et al., 2007; 2008; Ordonez-

Calderon et al., 2008a,b). These include: 1) amphibolites with an island arc tholeiitic 

(IAT) geochemical composition, 2) intercalations of ultramafic cumulates (metapicrites), 

3) metamorphosed gabbro-anorthosite complexes at the base of the tectono-stratigraphic 

sequence, and 4) reworked metavolcaniclastic-sedimentary rocks with mixed felsic to 

mafic provenance. The Storo greenstone belt, however, does not include boninite-like 

rocks. 

In southern West Greenland, the spatial and temporal association of amphibolites 

(IAT), metapicrites, and metagabbro-meta-anorthosite complexes has been interpreted as 

fragments of Archean oceanic crust (Windley et al., 1981; Weaver et al., 1982; Ashwal 

and Myers, 1994; Polat et al., 2008; Windley and Garde, 2008). On the basis of field, 

geochronological, and geochemical evidence from the Ivisaartoq belt, Polat et al. (2008) 

proposed that the Archean oceanic crust may have consisted of a lower layer of cumulate 

gabbro and anorthosites, and an upper layer of basaltic to ultramafic flows. The intra-

oceanic origin of the Ivisaartoq and Ujarassuit greenstone belts has also been 

substantiated by the recognition of boninites (Ordonez-Calderon et al., 2008b). In the 

Storo greenstone belt, the geochemical characteristics of metavolcanic rocks and 
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structural contacts between orthogneisses and supracrustal rocks are consistent with an 

intra-oceanic subduction zone oceanic crust. Therefore, lithological and geochemical 

similarities between the Storo and the Ivisaartoq-Ujarassuit greenstone belts suggest 

broadly similar petrologic processes in the generation of Meso- to Neoarchean supra-

subduction zone oceanic crust. These processes include: 1) hot subduction zones, likely 

owing to subduction of young and hot oceanic lithosphere or spreading-ridge subduction; 

2) large degrees of partial melting; 3) heterogeneous depleted- to strongly refractory-

mantle; 4) metasomatism of the sub-arc mantle with slab-derived fluids and melts prior to 

or during partial melting; and 5) supra-subduction zone extension. 

Despite the dominant mafic-ultramafic composition of the Storo greenstone belt, 

metavolcaniclastic-sedimentary rocks display geochemical evidence for mixing of mafic 

and felsic detritus (Fig. 4.8). Low CIA values (Fig. 4.9) and the presence of a significant 

population of ca. 2830 to 2880 Ma detrital zircons (see Hollis, 2005; Nutman et al., 2007) 

suggest that the more differentiated siliciclastic components represent reworked mildly-

weathered felsic to intermediate volcanic-plutonic detritus. These source rocks may have 

been part of more mature Neoarchean island arc complexes which are not represented in 

the geologic record. In the Ivisaartoq and Ujarassuit greenstone belts, the source rocks for 

felsic to intermediate detritus also appear to have been eroded away (Ordonez-Calderon et 

al., 2008b). Nonetheless, the occurrence of a rare mature ca. 3071 Ma island arc complex 

in the Qussuk greenstone belt, Akia Terrane, supports the coexistence of subduction zone 

basalts and felsic to intermediate volcanic arc complexes (Garde, 2007). 

Given that mature island arcs have thicker and less dense crust than juvenile arcs, 

more evolved arc complexes may have been thrust into the uppermost crustal levels 

during the prolonged collisional tectonics of the Nuuk region (Bridgwater et al., 1974; 
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Friend et al., 1988; Nutman et al., 1989; Friend and Nutman, 2005; Nutman and Friend, 

2007). The Nuuk region exposes high-grade amphibolite-granulite facies metamorphic 

rocks which clearly suggest that at least 15 km of the uppermost crust have been eroded 

away. Therefore, the absence of mature volcanic arc sequences in the region may be 

explained by the present level of erosion (see Garde, 2007; Ordonez-Calderon et al., 

2008b). In contrast, other Archean granite-greenstone terranes in the Superior Province, 

eastern Yilgarn Craton, and the Baltic shield, consist of low-grade greenschist facies 

metavolcanic rocks, clearly indicating that the uppermost crustal levels have not been 

deeply eroded (cf. Ludden and Hubert, 1986; Ludden et al., 1986; Lafleche et al., 

1992a,b; Kimura et al., 1993; Polat et al., 1998; Puchtel et al., 1998, 1999; Smithies et al., 

2007; Barley et al., 2008). In the Nuuk region, high-grade greenstone belts are less than 5 

km in width. In contrast, low-grade greenstone belts may be more than 20 km wide (op. 

cit.). Accordingly, the high-grade metamorphic rocks of the Nuuk region represent the 

roots of an Archean collisional orogen and therefore a significant portion of the 

supracrustal stratigraphy has been removed by erosion. 

The presence of quartz-rich metasedimentary rocks and old detrital zircons (> 3000 

Ma) sourced from Mesoarchean continental rocks (see Hollis, 2005; Knudsen et al., 2007) 

do not invalidate the oceanic origin of the belt, but rather provide additional constraints 

for its geodynamic origin. For instance, Knudsen et al. (2007) suggested that the Store 

belt formed in a back-arc setting close to old continental crust. However, in the SW 

Pacific Ocean island arcs, turbidity currents have transported continental sediments, 

derived from New Zealand, into the Tonga-Kermadec arc (Graham et al., 1997). 

Therefore, a juvenile arc or forearc geodynamic origin cannot be rule out for the Store 

greenstone belt. 
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Figure 4.2. Field photographs of rock types in the Storo greenstone belt, (a) Tight isoclinal folds in 

amphibolites. (b) Intercalation of amphibolites and garnet-biotite schists, (c) Superposed folds on 

garnet-biotite schists, (d) Tightly folded quartzitic gneisses, (e) Amphibolites intruded by 

anorthosites. (f) Garnet-bearing altered amphibolites with abundant quartz-veins. 
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Figure 4.3. Photomicrographs of various rock types in the Stora greenstone belt, (a-b) 

Amphibolites. (c) Serpentinized ultramafic rock, (d) Garnet-biotite schists, (e) Garnet-biotite schists 

with fibrous sillimanite. (f) Quartzitic gneisses with accessory garnet and sillimanite. Abbreviations: 

Bt, biotite; Grt, garnet; Hbl, hornblende; Sil, sillimanite; PI, plagioclase; Qtz, quartz. Plane polarized 

light for (a-b) and (d-f), and crossed polarized light for (e). 
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Figure 4.4. Zr/Ti versus Nb/Y classification diagram for metavolcanic (amphibolites) and 

metavolcaniclastic-sedimentary (garnet-biotite schists and quartzitic gneisses) rocks in the Store 

greenstone belt. Compositional fields revised by Pearce (1996) after Winchester and Floyd (1977). 
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Figure 4.5. Variation diagrams of Zr versus selected major and trace elements for metavolcanic 

(amphibolites) and metavolcaniclastic-sedimentary (garnet-biotite schists and quartzitic gneisses) 

rocks. Arrows represent the deduced magmatic trends for metavolcanic rocks in the Ivisaartoq 

greenstone belt (see Ordonez-Calderon et al., 2008a). 



202 

Amphibolies 

C Altered rocks 

i i i i 

100 j 

- 10 • 

e 
« 
8 1 -. 
4> 

> 

PH 

E 

-485491 
-• 493125 
-0—485493 
-0 493110 

N-MORB 

-• 485497 
-O 485489 
-0 485494 
-O 493111 

« 493112 
O 485490 
O—493108 
O 493120 

i — i — i — i — r -

La Ce Pr Nd Sm Eu Gd TbDy Ho Er Tm Yb Lu 

Ta La Pr Zr Eu Tb Dy Er Yb Y 
0 . 1 H — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — r -

Th Nb Ce Nd Sm Gd Ti Ho Tm Lu Sc 

Figure 4.6. Chondrite- and primitive-mantle normalized diagrams for metavolcanic rocks in the 

Storo greenstone belt, (a-b) Least altered amphibolites. (c-d) Altered amphibolites and 

serpentinized ultramafic rock (493124). Chondrite normalization values from Sun and 

McDonough (1989). Primitive mantle normalization values and average geochemical composition 

of modern N-MORB from Hofmann (1988). 
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Figure 4.7. Chondrite- and primitive-mantle normalized diagrams for metavolcaniclastic-

sedimentary rocks in the Stora greenstone belt, (a-b) Garnet-biotite schists, (c-d) Quartzitic 

gneisses. Normalization values as in Figure 4.6. 
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Figure 4.8. Selected trace element ratios for metavolcaniclastic-sedimentary rocks (garnet-biotite 

schists and quartzitic gneisses) in the Store greenstone belt. Arnphibolites (metabasalts) are those 

from Store, Ivisaartoq, and Ujarassuit greenstone belts (see Ordofiez-Calderon et al, 2008a,b). 

Arnphibolites with an andesitic geochemical composition are those from Qussuk and Ujarassuit 

greenstone belts (Garde, 2007; Ordofiez-Calderon et al., 2008b). Numbered stars represent the 

following reservoir compositions: 1 = average oceanic island arc tholeiitic basalt (Kelemen et al., 

2003); 2 = average andesite (Kelemen et al , 2003); 3 = average > 3.5 Ga upper continental crust 

(Condie, 1993); 4 = average Archean calc-alkaline granite (Kemp and Hawkesworth, 2003). 
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Figure 4.9. Ternary A-CN-K diagram for metavolcaniclastic-sedimentary rocks (garnet-bioite 

schists and quartzitic gneisses) from the Store greenstone belt. The ternary diagram is plotted in 

molecular proportions of Al2()3 (A)-CaO*+Na,0 (CN)-K20 (K) where CaO* represents the amount 

of CaO in the silicate fraction (Nesbitt and Young, 1982, 1984; Fedoetal., 1995). The scale for the 

chemical index of alteration (CIA) is illustrated to the left (McLennan and Murray, 1999). Numbered 

stars as in Figure 4.8. AS = Archean shale; arrows parallel to the A-CN side represent the predicted 

weathering trend for intermediate to felsic protoliths (stars 2-4); arrow 5 represent the trend of 

extremely weathered rocks, and arrow 6 the trend of sediments affected by potassium metasomatism. 
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Figure 4.10. Th/Yb versus Nb/Yb diagram showing the fields of modern MORB-OIB and 

volcanic arc arrays (see Pearce and Peate, 1995 and Pearce, 2008). Less altered amphibolites from 

the Store, Ivisaartoq, and Ujarassuit greenstone belts plot in the field of modern subduction-

related volcanic rocks. Amphibolites from the Ivisaartoq and Ujarassuit greenstone belt after 

Ordonez-Calderon et al. (2008a,b). Average composition of modern N-MORB and Archean (> 

3.5 Ga) upper continental crust (A-UCC) after Hofmann (1988) and Condie (1993), respectively. 



Table 4.1, Major (wt.%) and trace element (ppm) concentrations and significant element ratios for metavolcanic rocks in the 

Storfl greenstone belt. 
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LDL = Lower than detection limit 
*Serpentinized ultramafic rocks. Other samples are least altered and altered mafic amphibolites 
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Table 4.1. (Continued) 

Least altered amphibolites Altered amphibolites and ultramafic rocks 

Si02 (wt.%) 
Ti02 

Al2Os 

Fe203 

MnO 
MgO 
CaO 
NajO 

K 20 

P2O5 
LOI (%) 
Mg-number (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Ga 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

La/Ybcn 

La/Smcn 

Gd/Ybc„ 

(Eu/Eu*)cn 
(Ce/Ce*)cn 

Al203 /Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
EREE 

North 
West 

493110 
52.5 
1.80 

13.61 
12.54 

0.22 
5.61 
10.71 
2.69 

0.18 
0.16 

0.22 
47 

42 
223 
54 
46 
81 
44 
2.1 
91 

33.8 
107.1 
4.58 
LDL 
25.02 
0.28 
4.57 
1.03 
0.40 
7.91 

21.58 
2.87 
13.85 
4.11 
1.43 
5.29 
0.93 
6.28 
1.31 
3.92 
0.56 
3.64 
0.55 

1.46 

1.21 

1.18 
0.94 
1.09 

7.56 
16.17 
3.17 

100.78 
0.65 
0.99 
0.95 

74.24 

64°24.496' 
51°05.636' 

493111 
51.5 
1.15 

15.46 
12.17 
0.19 
6.84 
9.84 
2.47 

0.21 

0.19 
0.65 
53 

34 
121 
96 
36 
94 
45 
2.7 
109 
27.9 
60.6 
2.30 
0.07 
39.42 
0.15 
5.44 
0.57 
0.48 
5.70 
13.93 
2.13 
10.40 
3.20 
1.20 
4.27 
0.75 
5.12 
1.09 
3.21 
0.48 
3.12 
0.50 

1.23 

1.12 

1.11 
0.99 
0.96 

13.49 

15.38 
2.17 

113.41 
0.52 
0.74 
0.75 

55.09 

64°24.220' 
51°05.628' 

493120 
53.8 
1.67 

13.66 

11.96 
0.34 
4.74 
12.95 
0.62 

0.07 

0.23 

0.27 
44 

37 
347 
84 
46 
72 
40 
1.2 
100 

40.1 
149.7 
5.87 
0.06 
16.86 
0.39 
4.07 
1.54 
0.39 
11.38 
27.33 
3.87 
17.80 
5.06 
1.65 
6.63 
1.12 
7.23 
1.54 
4.53 
0.64 
4.18 
0.64 

1.83 

1.41 

1.28 
0.87 
0.99 

8.20 
15.04 
3.73 
66.75 
0.57 
1.10 
0.75 

93.58 

64°25.475' 
51 "00.900' 

485492 
82.9 
0.12 
5.80 

3.60 
0.06 
1.67 
4.80 
0.99 

LDL 
0.04 

0.37 
48 

4 
48 

LDL 
10 
9 
16 
1.8 
64 
2.9 
5.0 

0.39 
0.52 
13.25 
0.02 
14.35 
0.07 
2.27 
2.16 
3.10 
0.36 
1.35 
0.28 
0.35 
0.38 
0.07 
0.43 
0.09 
0.33 
0.05 
0.35 
0.06 

4.18 

4.81 

0.89 
3.25 
0.84 

46.75 
16.32 
1.72 

147.48 
0.41 
0.57 
0.91 
9.37 

64°24.530' 
51°05.621' 

493109 
48.7 
1.76 

13.65 
16.13 
0.23 
6.67 
10.16 
2.24 

0.14 
0.26 

0.12 
45 

41 
203 
52 
48 
98 
44 
2.2 
187 
30.5 
114.4 
4.18 
LDL 
31.75 
0.27 
6.75 
0.87 
0.37 
3.67 
11.88 
2.05 
10.96 
3.73 
1.26 
5.04 
0.86 
5.75 
1.18 
3.54 
0.51 
3.23 
0.49 

0.76 

0.62 

1.26 
0.89 
1.04 

7.76 
15.19 
3.75 
92.24 
0.95 
1.25 
1.01 

54.16 

64°24.486' 
51°05.656' 

493114 
53.0 
1.37 

13.31 

14.76 
0.21 
5.81 
9.09 
1.97 

0.27 
0.24 

0.34 
44 

42 
148 
25 
34 
59 
47 
4.5 
71 

59.6 
101.9 
3.99 
LDL 
20.25 
0.26 
4.32 
1.57 
0.47 
7.18 

23.43 
3.60 
18.97 
6.42 
1.38 
8.95 
1.55 

10.78 
2.30 
7.16 
1.02 
6.87 
0.99 

0.70 

0.70 

1.05 
0.55 
1.11 

9.69 
15.61 
1.71 

80.78 
0.48 
0.65 
0.43 

100.60 

64°24.245' 
51°05.597' 

493126 
52.2 
0.59 

13.66 

12.03 
0.19 
8.45 
10.26 
2.37 

0.19 

0.05 

0.53 
58 

54 
351 
80 
50 
82 
34 
2.6 
78 

18.0 
30.3 
0.52 
0.05 

20.04 
0.04 
1.51 
0.14 
0.12 
0.93 
2.84 
0.47 
2.79 
1.24 
0.46 
2.07 
0.43 
2.99 
0.69 
2.20 
0.34 
2.18 
0.33 

0.29 

0.47 

0.77 
0.87 
1.03 

23.00 
13.52 
1.69 

117.30 
0.59 
1.14 
0.67 
19.95 

64°25.851' 
51°01.340' 

493124* 
44.3 
0.40 
7.14 

10.68 

0.15 
31.87 
5.05 
0.42 

LDL 

0.02 

6.88 
86 

28 
149 

1576 
97 

1173 
15 
2.4 
24 
5.6 

35.5 
1.00 
0.26 
0.88 
0.08 
2.33 
0.12 
0.03 
1.13 
3.03 
0.44 
2.12 
0.66 
0.24 
0.82 
0.15 
0.99 
0.22 
0.66 
0.10 
0.68 
0.10 

1.12 

1.08 

0.98 
0.99 
1.04 

17.68 
13.32 
6.35 
68.12 
1.09 
2.11 
1.32 

11.34 

64°25.604' 
51°01.661' 



Table 4.2. Major (wt.%) and trace element (ppm) concentrations and significant element ratios for metavolcaniclastic-sedimentary rocks in 

the Stor0 greenstone belt. 

Garnet-biotite schists 

Si02 (wt.%) 

Ti02 

A1203 

Fe203 

MnO 
MgO 
CaO 
Na 20 

K , 0 

P205 

LOI (%) 
CIA (%) 
Mg-number (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Ga 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

La/Ybcn 

La/Smcn 

Gd/YbM 

(Eu/Eu*)cn 
(Ce/Ce*)cn 
Al203/Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
XREE 

North 
West 

485495 

55.3 

2.32 
20.46 

11.49 

0.18 
2.42 
3.80 
2.83 

1.04 

0.15 
0.13 
62 
29 

49 
404 
93 
26 
61 

80.5 
37.2 
93.9 
37.4 
159 
6.66 
4.07 

220.91 
0.45 
14.01 
2.65 
0.74 
15.89 
36.71 
4.80 
20.79 
5.22 
1.60 
6.11 
1.02 
6.98 
1.50 
4.61 
0.70 
4.72 
0.71 

2.27 

1.91 

1.05 
0.87 
1.01 
8.83 
14.87 
4.26 
87.14 
0.42 
1.07 
1.11 

111.35 

64°24.538' 
51°05.671' 

485496 

52.8 

2.23 
18.78 

14.19 
0.24 
3.27 
6.89 
0.77 

0.62 

0.20 
0.10 
57 
31 

37 
452 
105 
41 
87 

88.3 
20.1 
89.5 
36.9 
104 
6.20 
2.65 

212.64 
0.38 
8.59 
1.72 
0.45 
10.02 
24.39 
3.39 
15.59 
4.57 
1.64 
5.78 
1.02 
6.69 
1.43 
4.43 
0.65 
4.32 
0.65 

1.56 

1.38 

1.08 
0.97 
1.01 
8.42 
16.34 
2.82 

128.26 
0.61 
0.86 
1.09 

84.57 

64°24.494' 
51°05.695' 

493106 
52.2 

0.85 
21.77 

10.53 

0.10 
4.41 
2.71 
3.98 

3.43 
0.06 
0.79 
59 
45 

34 
257 
166 
42 
154 

117.2 
300 

282.7 
18.1 
102 
5.27 

30.94 
422.90 

0.38 
20.61 
3.85 
1.71 

19.25 
41.50 
5.07 
19.72 
4.16 
1.24 
3.83 
0.56 
3.30 
0.66 
1.90 
0.28 
1.84 

0.27 

7.04 

2.91 

1.68 

0.95 
1.01 

25.65 
13.92 
5.63 

49.94 
0.25 
0.79 
0.80 

103.58 

64°24.455' 
51°05.641' 

493107 
48.8 

2.64 
21.98 

12.53 

0.18 
2.23 
3.88 
4.76 

2.75 

0.22 
0.55 
56 
26 

58 
275 
50 
31 
73 

113.5 
196 

115.4 
21.5 
220 
8.36 

23.18 
320.32 

0.56 
23.74 
2.64 
4.48 
14.47 
35.24 
4.49 
19.91 
4.91 
1.76 
4.88 
0.74 
4.39 
0.89 
2.63 
0.39 
2.61 
0.39 

3.74 

1.85 

1.51 

1.10 
1.05 
8.33 
14.97 
10.22 
71.91 
0.55 
1.56 
1.87 

97.71 

64°24.470' 
51°05.609' 

493116 
50.3 

1.62 
16.49 

16.75 

0.24 
4.68 
4.90 
0.67 
4.08 

0.24 
0.80 
54 
36 

25 
153 
13 
31 
50 

135.5 
162 
67.6 
22.7 
145 
7.22 
7.21 

529.98 
0.44 
9.83 
3.12 
0.56 
16.97 
41.37 
5.02 

20.07 
4.05 
1.23 
4.05 
0.67 
4.24 
0.88 
2.57 
0.36 
2.42 
0.35 

4.72 

2.63 

1.35 

0.93 
1.08 
10.17 
16.39 
6.41 

66.78 
0.40 
1.13 
1.24 

104.26 

64°25.305' 
51 "00.249' 

493117 
60.5 

1.02 
15.92 

9.16 

0.16 
3.77 
4.71 
0.95 
3.53 

0.23 
0.86 
54 
45 

18 
63 
7 

21 
41 

189.0 
140 
77.4 
28.9 
250 
9.81 
4.68 

823.57 
0.62 
9.03 
4.83 
0.85 

39.19 
82.56 
10.30 
41.13 
7.62 
1.72 
6.89 
1.03 
5.77 
1.10 
3.07 
0.40 
2.49 
0.35 

10.59 

3.23 

2.24 

0.73 
0.99 
15.62 
15.82 
8.63 

24.47 
0.29 
0.99 
0.53 

203.63 

64°25.305' 
51°00.277" 

493121 

55.3 

0.99 
18.52 

15.50 

0.16 
2.70 
2.33 
3.48 
0.94 

0.06 
LDL 

63 
26 

27 
177 
64 
20 
49 

62.4 
37.1 
161.0 
32.2 
180 
7.45 
1.98 

196.97 
0.50 

23.22 
4.91 
0.98 

22.76 
49.66 
5.97 

23.48 
4.70 
1.98 
5.27 
0.98 
6.04 
1.23 
3.38 
0.48 
3.05 
0.43 

5.03 

3.05 

1.40 

1.22 
1.03 
18.77 
14.98 
5.60 

32.81 
0.29 
1.20 
0.52 

129.40 

64°25.525' 
51°01.033' 

493122 
59.6 

1.43 
23.24 

8.30 

0.13 
2.70 
0.40 
0.85 
3.22 

0.09 
1.30 
81 
39 

42 
224 
65 
21 
60 

138.7 
101 
41.5 
13.0 
284 

11.05 
4.74 

568.21 
0.59 
8.84 
6.59 
1.58 

27.18 
60.58 
7.27 

28.39 
5.82 
0.94 
4.50 
0.60 
3.01 
0.57 
1.82 
0.28 
2.06 
0.33 

8.88 

2.93 

1.76 

0.56 
1.04 

16.24 
18.78 
21.77 
30.23 
0.34 
1.54 
1.37 

143.34 

64°25.541' 
5 TO 1.020' 

493123 
67.0 

0.82 
14.89 

5.67 

0.11 
1.96 
4.49 
3.55 
1.31 

0.19 
0.27 
50 
41 

13 
84 

LDL 
15 
26 

83.5 
61.8 

205.0 
22.9 
249 

11.06 
4.34 

291.73 
0.71 
7.14 
3.81 
1.69 

23.87 
62.31 
7.04 

27.41 
5.75 
1.29 
5.02 
0.75 
4.36 
0.86 
2.50 
0.36 
2.26 
0.33 

7.12 

2.61 

1.80 

0.74 
1.16 

18.17 
15.56 
10.88 
19.71 
0.47 
1.39 
0.58 

144.11 

64°25.539' 
51°00.698' 

The chemical index of alteration CIA = 100(Al2O3/[Al2O3+Na2O+K2O+CaO*]) is calculated in molar proportions where CaO* represents 

CaO only in silicates (see Nesbitt and Young, 1984; Fedo et al., 1995). 



Table 4.2. (Continued) 

Quartzitic gneisses 

Si02 (wt.%) 

Ti0 2 

A1203 

Fe203 

MnO 
MgO 
CaO 
Na20 

K 2 0 

P 2 0 5 

LOI (%) 
CIA (%) 
Mg-number (%) 

Sc (ppm) 
V 
Cr 
Co 
Ni 
Ga 
Rb 
Sr 
Y 
Zr 
Nb 
Cs 
Ba 
Ta 
Pb 
Th 
U 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 

Laffb,, 

La/Smcn 

Gd/Ybcn 

(Eu/Eu*)cn 
(Ce/Ce*)cn 
Al203/Ti02 

Nb/Ta 
Zr/Y 
Ti/Zr 
(Nb/Nb*)pm 
(Zr/Zr*)pm 
(Ti/Ti*)pm 
EREE 

North 
West 

485499 

87.4 
0.22 

6.27 
2.45 
0.03 
0.68 
1.01 
0.62 

1.27 
0.04 
0.46 
60 
35 

5 
23 
16 
5 
10 

61.0 
36.0 
40.6 
4.3 
60.7 
1.49 
2.22 

275.02 
0.11 
5.59 
1.77 
0.76 
9.62 
19.47 
2.25 
8.36 
1.60 
0.47 
1.35 
0.16 
0.83 
0.17 
0.54 
0.07 
0.47 
0.08 

13.72 

3.79 

2.31 

0.98 
1.01 

27.88 
13.55 
14.02 
22.18 
0.15 
1.16 
0.79 

45.44 

64°24.472' 
51°05.760' 

493101 

85.6 
0.25 
6.34 

3.27 
0.02 
0.79 
0.86 
0.77 

2.07 

0.05 
0.75 
56 
32 

7 
22 
21 
17 
50 

89.7 
51.9 
90.5 
3.8 

74.2 
1.73 
2.74 

443.20 
0.17 
16.10 
2.08 
4.36 
9.03 
19.67 
2.30 
8.89 
1.79 
0.55 
1.52 
0.21 
1.03 
0.16 
0.37 
0.04 
0.24 
0.03 

24.97 

3.17 

5.06 

1.02 
1.04 

25.42 
10.02 
19.50 
20.17 
0.16 
1.30 
0.68 

45.86 

64°24.472' 
51°05.760' 

493104 

82.5 
0.45 
8.60 

4.74 
0.07 
1.19 
0.85 
0.69 

0.84 

0.04 
0.61 
71 
33 

12 
50 
31 
7 
14 

54.2 
29.4 
85.8 
11.2 
71.9 
1.93 
2.39 

206.64 
0.13 
8.63 
1.83 
0.56 
11.55 
23.82 
2.84 
11.27 
2.20 
0.56 
2.21 
0.32 
2.03 
0.44 
1.27 
0.18 
1.23 
0.19 

6.32 

3.29 

1.45 

0.77 
1.00 

19.16 
15.06 
6.43 
37.41 
0.17 
1.01 
0.71 
60.12 

64°24.455' 
51°05.687" 
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CHAPTER 5 

Conclusions and Implications 

5.1. Effects of multistage alteration on the original magmatic geochemical 

fingerprints 

Most Archean greenstone belts have undergone a prolonged and complex history of 

postdepositional hydrothermal alteration. Alteration may occur in a wide variety of 

geological conditions including sea-floor hydrothermal alteration, regional metamorphism, 

and late stage felsic plutonism (Gruau et al., 1992; 1996; Lahaye et al., 1995; Polat et al., 

2003; Terabayashi et al., 2003; Weiershauser and Spooner, 2005). These geological 

processes cause variable changes in the original geochemical characteristics of volcanic 

rocks in greenstone belts. Precise determination of the original magmatic geochemical 

signatures can only be done through a detailed investigation of the postmagmatic 

geochemical changes. Therefore, understanding of how and to what extent the original 

geochemical fingerprints of igneous rocks in greenstone belts were modified by 

hydrothermal alteration, metamorphism, and deformation is fundamental in Archean 

geology. In high-grade granite-greenstone terranes, like the Nuuk region in SW 

Greenland, evaluating alteration is crucial in understanding the magmatic and tectonic 

evolution of greenstone belts, given that the original stratigraphic and structural 

relationships have been obscured during polyphase metamorphism and deformation. I 

have addressed the alteration issue by taken a holistic approach, integrating knowledge of 

the regional geology, field observations, detailed petrographic analysis, and high 

precision whole-rock major and trace element geochemical data. This thesis has made a 

significant contribution by providing evidence that alteration processes may form trace 
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element patterns that resemble those of unaltered Phanerozoic volcanic rocks formed in 

various geodynamic environments (Chapter 2) (Ordonez-Calderon et al., 2008). Therefore, 

investigation of the alteration history is the first important step in understanding the 

geochemical and tectonic evolution of high-grade Archean greenstone belts. The most 

important results concerning the metasomatic history of the Meso- to Neoarchean 

Ivisaartoq, Ujarassuit, and Store greenstone belts are: 

• In the Ivisaartoq belt (see Chapter 2), well preserved pillowed lavas show field 

evidence for seafloor hydrothermal alteration (see also Polat et al., 2007; Ordonez-

Calderon et al., 2008). This alteration resulted in the formation of epidosites (stage-I 

calc-silicate alteration) in pillow cores and inter-pillow breccia (Fig. 2.3a-b). Major 

elements (MgO, CaO, Fe203, Na20, and K20), LILE (e.g., Rb, Sr, Ba, and Pb), and 

LREE (mainly La, Ce, and Eu) were significantly remobilized during this alteration 

event. In contrast, the concentrations of HREE and HFSE (Th, Nb, Ta, Zr, and Ti) 

were not changed (Fig. 2.1 la-b). 

• In the Ivisaartoq belt (see Chapter 2), metavolcanic rocks were also affected by a 

second stage of calc-silicate alteration. This metasomatic alteration occurred along 

shear zones developed during the regional amphibolite facies metamorphism. Calc-

silicate rocks are of strata-bound appearance and consists of diopside + garnet + 

epidote + plagioclase + quartz + titanite ± vesuvianite ± calcite ± actinolite ± scheelite. 

In addition to strong mobility of major elements and LILE, the stage-II calc-silicate 

alteration also modified the original magmatic geochemical composition of LREE, 

MREE, and HFSE (mainly Th, Nb, and Ta) (Figs. 2.10 and 2.12). In contrast, 

transition metals remained relatively immobile during this metasomatic event. 



213 

• An interesting finding was the recognition of a cryptic alteration in mafic and 

ultramafic amphibolites (metabasalts and metapicrites) from the Ivisaartoq belt 

(Chapter 2). This alteration did not cause major element metasomatism, and therefore 

altered and less altered samples are not easily identified using mineralogical criteria 

(e.g., calc-silicates, silicification, chloritization, etc). Altered amphibolites occur 

along high strain zones and are spatially associated with stage-II calc-silicate rocks, 

suggesting that they formed during regional amphibolite facies metamorphism. Most 

trace elements were remobilized, including the LREE, MREE, and HFSE (Th, Nb, Ta, 

and Ti). The cryptic alteration produced trace element patterns that resemble those of 

Phanerozoic boninites, mid-ocean-ridge basalts (N-MORB), and LREE-depleted 

island-arc tholeiites (Fig. 2.8c-h) (see also Ordonez-Calderon et al., 2008). 

• In the Ujarassuit, Store, and Qussuk greenstone belts (Fig. 1.1), amphibolites with 

depleted LREE patterns and negative Nb-Ta anomalies are geochemically similar to 

Group 3 amphibolites (with cryptic alteration) in the Ivisaartoq belt (Fig. 2.8e-f; 3.Be­

ds and 4.6c-d) (cf. Garde, 2007; Ordonez-Calderon et al., 2008). Like the Ivisaartoq 

counterpart, those belts exhibit evidence for significant metasomatic alteration, high-

grade metamorphism, and strong ductile deformation. Therefore, it is likely that the 

LREE were depleted during high-grade metamorphism, as has been well documented 

in the Ivisaartoq belt (Ordonez-Calderon et al., 2008). 

5.2. Evidence for relict Meso- to Neoarchean suprasubduction zone oceanic crust 

The intra-oceanic or intra-continental origin of Archean greenstone belts is one of the 

most debated issues and fundamental problems to be resolved in Archean geology (Bickle 
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et al., 1994; Ridley et al., 1997; Hamilton, 1998, 2003; Bleeker, 2002; De Wit, 2004; 

Eriksson et al., 2004; Eriksson and Catuneanu, 2004; Thurston and Ayres, 2004; Polat 

and Kerrich, 2006). This is because interpretations regarding the magmatic evolution of 

greenstone belts, geochemical characteristics of their mantle source, recognition of 

Archean oceanic crust, and geodynamic models for the origin of Archean granite-

greenstone terranes, ultimately rely on precise understanding of the depositional 

environment in which Archean volcanic rocks were erupted. Resolving that essential 

problem is complicated, given that the original stratigraphic relationships and volcanic 

facies are normally obliterated during high-grade metamorphism and ductile deformation. 

I investigated the issues mentioned above by carefully integrating, outcrop- to belt-scale 

field and structural observations, petrographic analysis, and whole rock major and trace 

element geochemistry of a wide variety of metamorphosed volcanic rocks from the 

Ivisaartoq, Ujarassuit, and Store greenstone belts (Fig. 1.1). The most important results 

are: 

• The following field and geochemical characteristics indicate an intra-oceanic 

origin for the Ivisaartoq, Ujarassuit, and Store greenstone belts: (1) epidosites in 

pillow basalts from the Ivisaartoq belt are reminiscent of those recovered from 

modern sea-floor hydrothermal systems in the Tonga-Kermadec forearc (cf. Polat 

et al., 2007; Ordoftez-Calderon et al., 2008; Banerjee et al., 2000) (Fig. 2.3a-b); 

(2) the contact between greenstone belts and older orthogneisses is bounded by 

high-grade mylonites (Fig. 3.2d-e); (3) in a given tectono-stratigraphic terrane, 

the TTG-gneisses intrude into the supracrustal rocks and contain amphibolite 

xenoliths with an earlier tectonic foliation (Fig. 3.2g); (4) amphibolites do not 
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display geochemical trends indicating that their volcanic protoliths were 

contaminated with felsic crustal rocks (Figs. 3.13 and 4.10). 

• Field and geochemical characteristics of amphibolite rocks in the Ujarassuit and 

Ivisaartoq greenstone belts indicate different volcanic protoliths including pillow 

basalts, picrites, boninites, and andesites (Chapters 3 and 4). These rocks display 

near-flat to enriched LREE patterns and pronounced negative Nb-Ta anomalies in 

primitive mantle-normalized diagrams, which is consistent with a subduction 

zone geochemical signature (Figs. 3.8 and 3.9). Amphibolites with a basaltic 

composition consistently plot in the field of volcanic arc rocks on the Th/Yb 

versus Nb/Yb diagram (3.13a). Therefore, the Ujarassuit and Ivisaartoq 

greenstone belt were formed in an intra-oceanic suprasubduction zone setting. In 

addition, the occurrence of boninites, picrites, and epidosites suggests that the 

Ivisaartoq and Ujarassuit greenstone belts represent a fragment of Archean 

forearc or back-arc oceanic crust. Similar geochemical signatures in mafic and 

ultramafic rocks from the Storo greenstone belt also suggest a suprasubduction 

zone origin. 

• The geochemical characteristics of ultramafic to mafic rocks in this study indicate 

that the Meso- and Neoarchean mantle was geochemically heterogeneous, more 

depleted in trace elements than modern depleted upper mantle, and experienced 

significant metasomatism owing to slab derived components. The above 

characteristics are also common in the sub-arc mantle from the western Pacific 

island arcs (e.g. Maury et al., 1992; Arai et al., 2007; Ishimaru et al., 2007; Arai 

and Ishimaru, 2008). 
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5.3. Missing felsic to intermediate volcanic arc rocks: Evidence from 

metasedimentary rocks 

The primary geochemical characteristics of siliciclastic sedimentary rocks are 

controlled by a number of factors including source rock composition, intensity of 

chemical weathering, mixing of multi-source detritus, hydrodynamic sorting, sediment 

recycling, and diagenesis (Argast and Donnelly, 1987; Nesbitt and Young, 1989; 

Johnsson, 1993; Korsch et al., 1993; McLennan et al., 1993, 2003; Fedo et al., 1995; 

Nesbitt et al., 1996; Fralick and Kronberg, 1997; Nesbitt, 2003; Kiminami and Fujii, 

2007). Those factors are ultimately controlled by the tectonic setting of deposition 

(Dickinson and Suczek, 1979; Bhatia, 1983; Bhatia and Crook, 1986). Siliciclastic rocks 

normally include detritus derived from large geographic areas, providing important 

information about the paleogeography and the geochemical characteristics of upper 

crustal rocks being eroded during the time of sedimentation (e.g. Haughton et al., 1991). 

In complexly metamorphosed and deeply eroded terranes, metasedimentary rocks may 

contain the only source of information about sediment source rocks, which are no longer 

preserved in the geological record. In this study, I have assessed the geochemical 

characteristics of metasedimentary rocks in the Ujarassuit, Ivisaartoq, and Storo 

greenstone belts (Chapters 3 and 4), to investigate their provenance and to constraint the 

tectonic setting of origin of these belts. The most significant results are: 

• In the Ujarassuit, Ivisaartoq, and Store greenstone belts, biotite schists and 

quartzitic gneisses represent metamorphosed volcaniclastic-sedimentary rocks 

(Figs. 3.2; 3.3; 3.5; 4.2; and 4.3). These rocks display low chemical indexes of 

alteration (CIA = 46-71) indicating poorly weathered source rocks (Figs. 3.12a 
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and 4.9). Trace element ratios of Co/Th, La/Sc, Th/Sc, and Zr/Sc show 

covariations suggesting a mixed-provenance of detritus derived from felsic, 

intermediate, and mafic source rocks (Figs. 3.12 and 4.8). The majority of detrital 

zircons in metasedimentary rocks have yielded U-Pb ages that are similar to the 

age of volcanic rocks within the same greenstone belt (Nutman et al., 2004; Hollis 

et al., 2006; Knudsen et al., 2007). Therefore, the protoliths of metasedimentary 

rocks are interpreted to represent first-cycle sediments derived from mafic to 

felsic volcanic rocks, or their intrusive equivalents. However, a minor population 

of detrital zircons (< 5%) is older than the associated greenstone volcanism (op. 

cit). This suggests that those belts were deposited relatively close to older 

continental rocks. 

• The intermediate and felsic source rocks are not represented in the geological 

record. Meso- to Neoarchean greenstone belts in the area are dominated by 

metabasaltic rocks. The Qussuk belt, however, comprises a significant proportion 

of amphibolites with andesitic composition which have been interpreted as 

remnant of a volcanic arc complex (Garde, 2007). Those magmatically more 

evolved complexes are not common in the region. Therefore, with the exception 

of the Qussuk belt, their existence appears to be recorded only in the 

metasedimentary rocks. 

5.4. Implications for Meso- to Neoarchean crustal evolution in the Nuuk region 

The processes by which the early continental crust was formed are still contentious. 

There are two complementary models: the island arc and the oceanic plateau models (e.g., 

Taylor, 1967; Moorbath, 1977; Schubert and Sandwell, 1989; Abbott, 1996; Albarede, 
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1998; Condie, 1999; Kelemen et al., 2003; Mueller and Nelson, 2004; Pirajno, 2007). The 

island arc model suggests that most of the continental crust was formed at subduction 

zones. This model is supported by geochemical estimates, which show that the bulk 

continental crust has a high-Mg andesitic composition, and exhibits enrichment of 

incompatible elements (e.g., Th, Rb, Ba, Cs, and LREE), pronounced negative Nb-Ta 

anomalies, and relatively flat HREE patterns in primitive mantle-normalized diagrams (cf. 

Kelemen et al., 2003; Kemp and Hawkesworth, 2003; Rudnick and Gao, 2003). These 

trace element characteristics are remarkably similar to those of subduction-related 

igneous rocks. However, given that island arcs are dominated by basaltic rocks (e.g., 

Kelemen et al., 2003), a bulk crust with andesitic composition can only be produced by 

significant intracrustal differentiation processes. These include: remelting of basaltic 

crust; fractional crystallization of mafic melts; mixing of mafic to felsic magmas; and 

delamination of mafic to ultramafic lower crustal rocks (Taylor and McLennan, 1995; 

Rudnick and Fountain, 1995; Rudnick and Gao, 2003). In contrast, the oceanic plateau 

model suggests that the buoyant thick-crust of oceanic plateaus is the major precursor of 

the continental crust. In this model, the basaltic crust of oceanic plateaus is transformed 

into bulk andesitic continental crust through intracrustal melting and subduction inception 

along their margins (Abbott, 1996, Condie, 1997, 1999, 2001; Albarede, 1998). Such 

processes are currently seen in the Solomon and Antilles island arcs, which are developed 

along the southern margin the Ontong-Java Plateau, and the eastern edge of the Caribbean 

Plateau, respectively (Condie, 2001). However, intra-crustal melting of oceanic plateaus 

can also take place in environments not related to subduction. For instance, in Iceland, 

partial melting of amphibolite facies basaltic crust has produced calc-alkaline rhyolites 

and dacites with negative Nb-Ta anomalies (see Jonasson et al., 1992). 
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An Archean example of plume-related crustal growth includes the 3.53-3.17 Ga east 

Pilbara terrane in Western Australia. In this greenstone belt, plume-related komatiites and 

basalts were erupted in three major episodes at 3.53-3.43, 3.35-3.29, and 3.27-3.24 Ga 

(Van Kranendonk et al., 2007a,b; Smithies et al., 2007a). Intracrustal melting of basaltic 

rocks and fractionation of basaltic melts gave rise to significant TTG and granite 

magmatism (Hickman, 2004; Champion and Smithies, 2007; Van Kranendonk et al., 

2004, 2007a,b; Smithies et al., 2007a,b). Accordingly, crustal growth in the east Pilbara 

craton does not appear to involve Phanerozoic-like subduction processes. In contrast, the 

2.9 Ga Sumozero-Kenozero greenstone belt in the Baltic shield, comprises a lower 

stratigraphic unit of mafic to ultramafic oceanic-plateau volcanic rocks, which are 

intruded and overlaid by an upper unit of mafic to felsic subduction-related volcanic 

rocks (Puchtel et al., 1999). In the 2.7 Ga Wawa-Abitibi greenstone belts in the southern 

Superior province of Canada, oceanic plateau- and subduction-related volcanic rocks 

were tectonically imbricated owing to subduction-accretion processes (see Mueller et al., 

1996; Polat et al., 1998; Polat and Kerrich, 2001). Therefore, plume and arc magmatism 

in the Archean contributed significantly to the generation and differentiation of the 

continental crust. 

In contrast to the above Archean greenstone belts, the results presented in this thesis 

indicate that plume-related magmatism was not significant in the Meso- to Neoarchean 

evolution of the Nuuk region. Instead, rock associations such as boninites, picrites, island 

arc tholeiites, and andesites are consistent with crustal growth by accretionary processes 

at subduction zone settings. The Meso- to Neoarchean accretionary history of the Nuuk 

region covers a time span of approximately 400 Ma (Nutman and Friend, 2007). In a 

comparable period of time (630 to 245 Ma), subduction-accretion processes formed a 
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collage of unrelated crustal blocks and suprasubduction zone ophiolites, giving rise to the 

Altaid orogenic system in central Asia (§engor, 1990; §engor and Natal'in, 2004). 

Therefore, this study leads to the conclusion that Phanerozoic-like subduction processes 

may well explain the collisional history and crustal evolution of the Nuuk region. This 

resulted in the formation, accretion, and fragmentation of Meso- to Neoarchean ophiolites. 
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Appendix B: Table Bl with structural data 

Attached in the next page is Table Bl with the structural data for foliations, lineations, 

and isoclinal fold axis in the western and eastern flanks of the Ujarassuit greenstone belt. 
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Table B. 1 (Continued) 

Lithology 

Lineations, Western flank 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Orthogneiss 
Amphibolite 
Orthogneiss 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 

Lineations, Eastern flank 

Amphibolite 
Amphibolite 
Metagabbro 
Orthogneiss 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 

Mylonite 
Amphibolite 
Orthogneiss 
Orthogneiss 
Orthogneiss 

North 

64°53.523' 
64°53.593" 
64-53.634' 
64°53.433' 
64°53.424' 
64°53.061' 
64°52.992' 
64°52.768' 
64°53.170' 
64°54.142' 
64°53.956' 
64°53.816' 
64°53.799' 
64°53.785' 
64°53.633' 
64°53.587' 
64°53.608' 
64°50.827* 
64°50.772' 
64°50.713' 
64°50.587' 
64°50.161' 
64°48.973' 
64°53.576' 
64°53.452' 
64°53.291' 
64°53.956' 
64°54.949' 
64°54.983' 
64°55.006* 
64°54.948' 
64°54.954' 
64°54.942' 
64°53.465' 
64°53.536" 
64°53.762' 

64°51.364' 
64°51.480' 
64°51.802' 
64°53.111' 
64°52.998' 
64°53.002' 
64°52.879* 
64°52.855' 
64°53.297' 
64°53.390" 
64°53.421' 
64°52.942' 

64°52.955' 
64°50.941' 
64°51.458' 
64=52.215' 
64°52.310' 

West 

50°14.389' 
50°14.282' 
50° 14.298' 
50°14.522' 
50°14.585' 
50°15.166' 
50°15.171' 
50°14.819' 
50°14.231' 
50°13.996' 
50°14.912' 
50°15.657' 
50°15.778' 
50°15.157' 
50° 16.067' 
50°16.173' 
50°16.374' 
50°12.510' 
50°12.629' 
50°12.490' 
50°12.569' 
50°13.010' 
50° 14.124' 
50°12.875' 
50°12.965' 
50°12.961' 
50°12.896' 
50°12.514' 
50°12.425' 
50°11.584' 
50°10.337' 
50°09.947' 
50°09.082' 
50°15.698' 
50° 15.769' 
50°15.745' 

49°59.898' 
49°59.689' 
49°59.603' 
49°56.566' 
49°56.497' 
49°56.826" 
49°57.143' 
49°57.233' 
49°57.515' 
49°57.856' 
49°58.250' 
49°59.761' 

50°00.658' 
49°59.203' 
49°59.485' 
49°59.885' 
49°59.789' 

Strike 

140 
148 
150 
154 
144 
144 
136 
150 
160 
102 
150 
132 
134 
132 
144 
146 
156 
182 
180 
190 
172 
188 
182 
148 
160 
133 
152 
182 
120 
142 
162 
167 
152 
151 
142 
141 

100 
40 
16 
20 
288 
40 
320 
310 
50 
52 
50 
20 

30 
40 
24 
42 
42 

Dip angle 

42 
40 
42 
40 
40 
38 
48 
52 
50 
60 
46 
38 
42 
44 
30 
32 
32 
36 
36 
52 
46 
32 
32 
68 
42 
70 
63 
62 
52 
63 
21 
18 
40 
38 
35 
37 

50 
40 
52 
60 
76 
60 
66 
70 
58 
52 
74 
52 

40 
74 
60 
44 
50 



Table B.l (Continued) 
Lithology 

Lineations, Eastern flank 
Amphibolite 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 

Mylonite 
Mylonite 

Orthogneiss 
Orthogneiss 
Orthogneiss 

Isoclinal fold axis, Western flank 

Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Biotite schist 
Orthogneiss 
Amphibolite 
Amphibolite 
Amphibolite 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Orthogneiss 
Amphibolite 
Orthogneiss 
Orthogneiss 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Orthogneiss 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Amphibolite 
Orthogneiss 
Orthogneiss 
Orthogneiss 

Isoclinal fold axis, Eastern flank 

Orthogneiss 
Orthogneiss 
Amphibolite 
Amphibolite 
Orthogneiss 
Amphibolite 
Orthogneiss 
Amphibolite 

North 

64°51.355' 
64°51.335' 
64°52.640' 
64°52.631' 
64°52.415' 
64°52.350' 
64°52.580' 
64°52.620' 
64-52.961' 
64°53.090' 

64°51.203' 
64°51.063' 
64°51.264' 
64°49.820' 
64°51.170' 
64-51.359' 
64°51.882' 
64°52.959' 
64°52.693' 
64°53.974' 
64°53.501' 
64°53.634' 
64°53.643' 
64°53.515' 
64°53.170' 
64°53.799' 
64°53.606' 
64°53.696' 
64°51.200' 
64°51.228' 
64°51.185' 
64°51.065' 
64°50.206' 
64°50.967' 
64°49.823' 
64°48.973' 
64°51.362' 
64°51.807' 
64°53.291' 
64°53.009' 
64°53.956' 
64°53.993' 
64°54.983' 
64°54.878' 

64°51.735' 
64°51.425' 
64°51.316' 
64°51.302' 
64°51.382' 
64°51.355' 
64°51.308' 
64°51.029' 

West 

50°01.319' 
50°01.440' 
49°59.516' 
49°59.596' 
50°00.137" 
50°00.201' 
50°00.222' 
50°00.097' 
49°59.915' 
49°59.049' 

50°12.205' 
50°12.192' 
50°12.200' 
50°12.840' 
50° 12.260' 
50°11.553' 
50°12.557' 
50°13.087' 
50°13.178' 
50°12.924' 
50°14.442' 
50°14.298' 
50°14.263' 
50°14.359' 
50°14.231' 
50°15.778' 
50°16.074' 
50°16.398' 
50°12.203' 
50°12.191' 
50°12.182' 
50°12.195' 
50°12.872' 
50°11.783' 
50°12.836' 
50°14.124' 
50° 11.554' 
50° 12.630' 
50°12.961' 
50° 13.076' 
50°12.896' 
50°12.946' 
50° 12.425' 
50° 10.657' 

50°00.139' 
50°00.355' 
50°00.142' 
50°00.103' 
50°00.383' 
50°01.319' 
50°01.515' 
50°00.904' 

Strike 

150 
240 
50 
32 
48 
30 
24 
24 
22 
50 

180 
188 
160 
208 
188 
190 
174 
150 
174 
151 
140 
144 
162 
162 
156 
152 
154 
150 
190 
150 
183 
182 
174 
220 
196 
199 
188 
206 
133 
174 
196 
150 
178 
168 

148 
140 
110 
186 
160 
138 
136 
194 

Dip angle 

28 
30 
50 
44 
52 
54 
50 
52 
60 
60 

28 
28 
22 
38 
20 
50 
30 
32 
40 
50 
38 
42 
40 
44 
50 
50 
24 
32 
30 
38 
29 
29 
52 
72 
38 
32 
78 
68 
70 
53 
42 
50 
64 
52 

30 
20 
38 
28 
30 
42 
44 
40 
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