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Abstract 

Finite fields have important applications in number theory, algebraic geometry, Galois the­

ory, cryptography, and coding theory. Recently, the use of finite field arithmetic in the 

area of cryptography has increasingly gained importance. Elliptic curve and El-Gamal 

cryptosystems are two important examples of public key cryptosystems widely used to­

day based on finite field arithmetic. Research in this area is moving toward finding new 

architectures to implement the arithmetic operations more efficiently. 

Two types of finite fields are commonly used in practice, prime field GF(p) and the 

binary extension field GF(2m). The binary extension fields are attractive for high speed 

cryptography applications since they are suitable for hardware implementations. Hardware 

implementation of finite field multipliers can usually be categorized into three categories: 

bit-serial, bit-parallel, and word-level architectures. The word-level multipliers provide 

architectural flexibility and trade-off between the performance and limitations of VLSI 

implementation and I/O ports, thus it is of more practical significance. 

In this work, different word level architectures for multiplication using binary field are 

proposed. It has been shown that the proposed architectures are more efficient compared to 

similar proposals considering area/delay complexities as a measure of performance. Prac­

tical size multipliers for cryptography applications have been realized in hardware using 

v 



ABSTRACT 

FPGA or standard CMOS technology, to similar proposals considering area/delay com­

plexities as a measure of performance. Practical size multipliers for cryptography appli­

cations have been realized in hardware using FPGA or standard CMOS technology. Also 

different VLSI implementations for multipliers were explored which resulted in more effi­

cient implementations for some of the regular architectures. The new implementations use 

a simple module designed in domino logic as the main building block for the multiplier. 

Significant speed improvements was achieved designing practical size multipliers using the 

proposed methodology. 
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Chapter 1 

Introduction 

Finite field is a set of finite elements where one can add, subtract, multiply, and divide such 

that properties of associativity, distributivity, and commutativity are satisfied [25]. Finite 

fields have important applications in error control coding and cryptography [29]. 

Two different types of finite field are commonly used in practice: prime field ¥p, and the 

binary field F2™. Binary field is an extension of the prime field, F2 , which contains 2m el­

ements. Binary fields are attractive for high speed cryptography applications since they are 

suitable for hardware implementation [18]. For applications to elliptic curve cryptography, 

binary field sizes are required to be at least 160 bits respectively [18]. 

In F2™, addition is nothing but exclusive-oring of two binary vectors. Multiplication is 

more complicated, while division or inversion can be broken down into a series of consec­

utive multiplication operations [ 11 ], [41 ]. In practice, the finite field multiplier becomes the 

key arithmetic unit for any system based on finite field computations. 

Efficiency of finite field multiplication depends on the choice of the basis to represent 

field elements. Bases that have been used for realizing finite field multipliers include poly-

1 



1. INTRODUCTION 

nomial basis, normal basis (NB), dual bases, triangular basis, redundant representation or 

redundant basis, and their variations (i.e., shifted polynomial basis) [18, 33, 16, 10, 7, 38, 

44, 17, 8]. 

In this work, we are mainly interested in normal basis and redundant representation, 

since squaring operation can be achieved by reordering the element coefficients which is 

free in hardware. Free squaring operation can be used to speed up the exponentiation 

operation by repeated squaring and multiplication [14]. 

In normal basis, the complexity of multiplication is measured with the multiplication 

matrix [30]. For a binary extension field, the multiplication matrix entries are either zero or 

one, and the number of ones inside the multiplication matrix is referred to as normal basis 

complexity. The normal basis in GF(2m) for which the complexity achieves its minimum, 

2m — 1, is referred to as the optimal normal basis (ONB). Two types of optimal normal 

bases have been found which are referred to as type I and type II optimal normal basis [30]. 

Reordered normal basis is referred to as a certain permutation of a type II optimal normal 

basis [12], [44]. 

Redundant representation is especially interesting because it not only offers almost free 

squaring as normal basis does, but also eliminates modular operation for multiplication. 

The main idea for multiplication using redundant representation is to embed a field in a 

larger ring and perform the multiplication there [44]. The ring used here has a simple 

structure and is referred to as a cyclotomic ring, such that the modular operation can be 

saved in a multiplication operation. Since embedding a field is not unique, each field ele­

ment in the ring can be presented in more than one way, so the representation contains a 

certain amount of redundancy. 

The main drawback for the redundant representation is that it uses more bits to repre­

sent a field element, where the number of representation bits depends on the size of the 

cyclotomic ring. For the class of fields F2m such that there exist a type I optimal normal 

basis (ONB), the number of bits required for a redundant representation of a field element 

2 



I. INTRODUCTION 

is m + 1. Also, for the class of fields F2™ such that there exist a type II optimal normal 

basis (ONB), the number of bits required for a redundant representation of a field element 

is 2m + 1. 

Hardware implementation of finite field multipliers can usually be divided into three 

categories. In the first category there are bit-level or bit-serial multipliers [22],[1],[15],[11]. 

A bit-level multiplier takes m clock cycles to finish one multiplication in a binary field of 

size m. The multipliers in this class are considered to have low power consumption, occupy 

a small area of silicon, and operate slowly for large field sizes. The second category are bit-

parallel or full-parallel multipliers [35],[24],[20],[43]. A full parallel multiplier takes one 

clock cycle to finish one field multiplication. These multipliers are not usually economical 

for implementation since they require large silicon area and high bandwidth for input and 

output ports. 

The third category are word-level or digit-level finite field multipliers, which are the 

most commonly implemented in practice [12],[44],[22],[32],[31],[36],[37]. A word-level 

multiplier takes w clock cycles, 1 ^ w ^ m, to finish one multiplication operation in F2™. 

The value of w can be selected by designer to set the trade off between area and speed 

according to the application. Decreasing the value of w will result in faster and larger 

multipliers while increasing w will make smaller and slower multipliers. Note that bit-

level and full parallel multipliers can be viewed as special cases of word-level multipliers 

for w = m and w = 1 respectively. 

1.1 Summary of Contributions 

In this work, different word-level architectures for multiplication using binary field are pro­

posed. It has been shown that the proposed architectures are more efficient compared to 

similar proposals considering area/delay complexities as a measure of performance. Prac­

tical size multipliers for cryptography applications have been realized in hardware using 

3 



1. INTRODUCTION 

FPGA or standard CMOS technology. Also, different VLSI implementations for multi­

pliers were explored, which resulted in more efficient implementations for some of the 

regular architectures. The new implementations use a simple module designed in domino 

logic as the main building block for the multiplier. Significant improvements were achieved 

designing practical size multipliers using the proposed methodology. 

1.2 Outline of the Thesis 

The rest of this thesis is organized as follows. Chapter 2, is a brief review of finite filed 

theory. After covering basic definitions and elementary properties such as group, ring and 

field, bases for finite fields are presented. Normal basis and redundant basis representation 

with their arithmetic operations are discussed in detail. Type I and II optimal normal basis, 

which are two important classes of normal basis, and their relationship with redundant 

representation are also discussed in this chapter. 

Chapter 3 discusses two new high speed bit-serial word-parallel, or comb style finite 

field multipliers. The first proposal utilizes redundant representation for any binary field, 

and the other uses a reordered normal basis for the binary field where there exists a type 

II optimal normal basis. The proposed redundant representation architecture has a smaller 

critical path delay compared to the previous methods, while its complexity remains ap­

proximately the same. The proposed reordered normal basis multiplier has a significantly 

smaller critical path delay compared to the previous methods using the same basis or nor­

mal basis. FPGA implementation results of the proposed multipliers are compared to those 

of the previous methods using the same basis, confirming that the proposed multipliers 

allow for a much higher clock rate. 

Chapter 4, presents a novel serial-in parallel-out finite field multiplier using redundant 

representation. It is shown that the proposed architecture has either significantly lower 

complexity and comparable critical path delay, or significantly smaller critical path delay 

4 



1. INTRODUCTION 

and comparable complexity, in comparison to the previously proposed architectures using 

the same representation. For the class of fields such that there exists a type I optimal normal 

basis, the proposed multiplier compares favorably to the normal basis multipliers. A digit-

level version for the new multiplier is also presented in this chapter. 

In Chapter 5, a high speed word-level finite field multiplier in F2m using redundant 

representation is proposed. For the class of fields such that there exists a type I optimal 

normal basis, the new architecture has significantly higher speed compared to previously 

proposed word-level architectures using either normal basis or redundant representation 

at the expense of moderately higher area complexity. One of the unique features of the 

proposed word-level multiplier is that the critical path delay is not a function of the field 

size, nor the word size. It is also shown that the new multiplier out-performs all other 

multipliers in the comparison when considering the product of area and delay as a measure 

of performance. VLSI implementation of the proposed multiplier in a 0.18fim CMOS 

process is also presented as a module for an elliptic curve processor. 

In Chapter 6, two high speed word-level finite field multipliers using reordered normal 

basis are proposed, where reordered normal basis is referred to as a certain permutation of 

type II optimal normal basis. Complexity comparison shows that the proposed architectures 

are faster than all the previously presented architectures in the open literature using either a 

type II optimal normal basis or a reordered normal basis at the expense of moderately higher 

complexity. One unique feature of the new word-level architectures is that the critical 

path delay is not a function of the word size or the field size. This enables the proposed 

multipliers to operate at very high clock rate regardless of the word or field size. Such high 

speed word-level multipliers are expected to have applications in public key cryptography, 

i.e. elliptic curve cryptosystems. 

Chapter 7 presents a high speed VLSI implementation of a 233-bit Serial-In Parallel-

Out finite field multiplier. The proposed design performs multiplication using a reordered 

normal basis; a permutation of a type II optimal normal basis. The multiplier was imple-

5 



1. INTRODUCTION 

mented in a .18 /im TSMC CMOS technology using multiples of a domino logic block. 

The domino logic design was simulated, and functioned correctly up to a clock rate of 

1.587 GHz, yielding a 99% speed improvement over the static CMOS' simulation results, 

while the area was reduced by 49%. This multiplier's size of 233 bits is currently rec­

ommended by the National Institute of Standards and Technology (NIST) in their Elliptic 

Curve Digital Signature Standard (ECDSS), and is used in practice for binary field multi­

plication in Elliptic Curve Cryptosystems. 

Finally some concluding remarks and future work are presented in Chapter 8. 

6 



Chapter 2 

Mathematical Preliminaries 

This chapter briefly reviews the mathematical background on finite fields. It starts with 

reviewing basic definitions such as group, ring, and field, and then covers more advanced 

topics such as bases and arithmetic operations. Normal basis and redundant representation 

with their arithmetic operations are discussed in detail. The relationship between different 

classes of normal basis and redundant representation is also discussed in this chapter. For a 

more detailed review of finite fields and their applications readers are referred to [25, 29,26] 

2.1 Groups, Rings and Fields 

Definition 2.1.1. [25] A group (G, *) is a set G together with a binary operation * on G 

such that the following three properties hold: 

1. The binary operator * is associative; that is, for any a,b,c € G, 

a* (b * c) = (a*b) * c 

1 
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2. There is an identity (or unity) element e in G such that for all a G G, 

a*e = e* a = a. 

3. For each a G G, there exist an inverse element a - 1 in G such that 

a * a - 1 = a - 1 * a = e. 

If for all a, 6 G G , a * b = b * a, then G is referred to as an abelian or commutative group. 

A group with finite number of elements is referred to as a finite group. 

Definition 2.1.2. [25] A ring (r, +, *) is a set R together with two binary operations, de­

noted by + and * , such that the following three properties hold: 

1. R is an abelian group with respect to +. 

2. The binary operator * is associative, which means for all a,b,c G R 

(a * b) * c = a* (b* c). 

3. The distribution law holds, which means for all a,b,c G R 

a*(b + c) = a*b + a*c and (b + c)*a = b*a + c*a. 

The identity element of the abelian group R with respect to + is called the zero element, 

while the identity element with respect to * (if it exist) is called the identity element. A ring 

is called commutative if the binary operator * is commutative. 

Definition 2.1.3. [25] Afield (/, +, *) is a set F together with two binary operations, de­

noted by + and * , such that the following two properties hold: 

1. F is a commutative ring under + and *. 

2. Nonzero elements of F from a group with the binary operation *. 

A field with a finite number of elements is referred to as a finite field. The order of a finite 

field is the number of elements in the field. There exists a finite field F of order q if and 
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only if q is a prime power, that is q = p m where p is a prime number referred to as a 

the characteristic of F and m is a positive integer [18]. For any prime power q, there is 

essentially only one finite field of order q. This means that any two finite fields of order q 

are structurally the same, except that the labeling used to represent the field elements may 

be different. We say that any two finite fields of order q are isomorphic, and denote such a 

field by Fq™ or GF(qm) (GF stands for Galois Field, in honor of Evariste Galois, a French 

mathematician who is known for his work on the theory of equations and abelian integrals). 

2.2 Binary Field and Bases 

For a finite field F with order of q = pm, if m = 1 then the field is referred to as a prime 

field. If m > 2, then the finite field is referred to as an extension field. Finite fields of order 

q = 2m are called binary fields or characteristic-two finite fields. 

An important factor that has an important effect on finite field arithmetic efficiency is 

the basis used to represent the field elements. Common bases used in practice are polyno­

mial basis (PB) and normal basis (NB) [25],[33]. Polynomial basis is probably the most 

popular basis which has been widely used for hardware and software implementations [18]. 

Normal basis, on the other hand, is advantageous for hardware implementation since the 

squaring operation can be implemented at no cost. Free squaring operations can be used to 

speed up the exponentiation operation by repeated squaring and multiplication [14],[2]. 

Recently, a method of redundant representation of field elements has attracted atten­

tion [42, 7, 38, 44]. The idea here was to use the minimal cyclotomic ring in which the 

current field can be embedded in, and perform the field arithmetic operations in the ring. 

Advantages of using redundant representation not only include the free squaring opera­

tion offered by this method but also its 'basis' elements form a cyclic group, and thus the 

modulo reduction step can be avoided carrying out the field multiplication operation. 
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2.2.1 Normal Basis and Its Arithmetic in ¥2™ 

2.2.1.1 Normal Basis Representation 

Theorem 2.2.1. [25] Let P(x) be a degree m irreducible polynomial over F2m whose m 

roots {/?, /32, • • • , ft2™ } are linearly independent in F2m. Then these m roots form a basis 

in F2™ which is referred to as normal basis. 

It is well known that there always exists a normal basis for the finite field F2m for all pos­

itive values of m [25]. Assume that f3 G F2m is an element such that / = {/?, /?2,/32 , ••• ,(32m~ * 

is a normal basis, then element A G F2™ can be represented as: 

m—1 

A = J ^ Oi/?2' = a0/9 + axp
2 + a2p

2' + ••• + v i f " ' • 
i=0 

The main advantage of normal basis representation is that, element A can be squared by 
m—1 

a simple right circular shift on its coordinates, A2 = V^ a(j+i)/32\ where (i + 1) denotes 
i=0 

that i + 1 is to be reduced modulo m. This property for normal basis comes from the fact 

that Z?2"1 = /?, and is used to speed up exponentiation by use of the square and multiply 

algorithm [18]. 

2.2.1.2 Normal basis multiplication 

Let field elements A,BE F2m be represented with respect to (w.r.t.) the normal basis 
771—1 777—1 

/ = {/?, /?2, •. • , /32"1"1} as A = J2 aiP21 a n d B = Yl biPV> resPectively. Then the 
i=0 j=Q 

product of A and B can be given by 

777—1 ro— 1 m—lm—1 

C = A-B = YJYJ ̂ iPP E E * W2°" V- (2-D 
i=0 j = 0 i=0 j=0 

Define t^ G F2 to be the coefficient of (52 in the expansion of the product f3(5T when 

represented w.r.t. I [30], 
777—1 

/?/?21 = $> , f e /? 2 \ (2.2) 
fe=0 

10 
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Then it follows from (2.2) that 

m—1 m—1 m—1 

fc=0 fc=0 fc=0 

The last step in (2.3) follows from the proper substitution on the subscript k. Substituting 

(3(32{i~i] in (2.1) using (2.3) 

TO— 1 771 — 1 TO—1 771— 1 TO— 1 TO— 1 

C = E E a ^ ( E kj-iHk-i)(32k) = J ] E E ^¥(j-*),(fc-*y • (2-4) 
i=0 j = 0 fe=0 i=0 j = 0 fc=0 

Then the coefficients of the product C w.r.t. the NB / can be given by 

771—1 771— 1 TO— 1 

C = E c * y ' where Cfe = E E Uitykj-iUk-i)- (2-5) 
fc=0 i=0 j = 0 

Also note that from eqn (2.5) and after proper substitution on i and j , we can compute Ck+\ 

with 
771—1 777—1 TO—1 771—1 

Cfe+i = 2^t E aib^{i-i),{k-i+i) = 2 ^ E a(*+i)^0'+i)*0'-i),(fc-»)- (2.6) 

Eqn (2.6) shows that Q + 1 can be computed by applying the same formula used to compute 

Ci, if the coefficient vectors of A and B are cyclically shifted by one. 

To obtain the values of t^-^^k-i), a matrix T = [£;,„] is created where row I corresponds 

to the coefficients in the expansion of the product /3/?2 and the column n corresponds to 

the coefficients of/32" in the expansion of the products (3f32 , I = 0,1,... ,m — I. 

Matrix T is referred to as the multiplication table for the normal basis in this thesis. 

Note that in [30] the same multiplication table was denoted by To while matrices Tk,k = 

1,2,... ,m — 1, were defined for the expansion of 01 (32 . It also should be noted that other 

matrices Ti:i = 1,2, ...,m — l i n [30], can be generated from T0 and circular row/column 

shifting. In this thesis we use only one multiplication matrix T when deriving the formula 

for computing Cj, i = 0 , 1 , . . . , m — 1. 

Let the number of nonzero entries in T be denoted by CN- It can be seen from equations 

(2.5) and (2.6) that the product coefficient Ck can be computed by summing up exactly CN 

11 
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terms. Thus, the generation of each ck requires CN multiplication operations in F 2 and 

CJV — 1 addition operations in F2. 

CN is referred to as the complexity of a normal basis and it has been shown that CN > 

2m - 1 [30]. When CN = 2m - 1 for a NB, it is called an optimal normal basis (ONB). 

Since computations in the optimal normal basis are minimized, these bases are of high 

importance for cryptographic applications. A type II ONB corresponds to the case where 

no row or column in T contains more than two nonzero entries. 

Example 1 Consider the finite field F2s. The root (3 of the irreducible polynomial P(x) = 

x5 + x4 + x3 + x + l generates a normal basis 1 = {/3,/32,/32 ,/32 ,/32 }. The multiplication 

table T can be found as 

0 1 0 0 0 

0 0 1 0 1 

T = 0 1 1 1 0 

1 1 0 0 1 

0 1 0 1 0 

The closed form solution for multiplication can be easily found from (2.5) as follows: 

Ci — bidi+s + bi+1(ai+2 + ai+4) + bi+2{ai+1 + ai+4) + 

h+3{ai + ai+4) + bi+4(ai+i + a;+2 + ai+3 + ^+4). 

(2.7) 

2.2.2 Redundant Basis and its Arithmetic in F2»> 

2.2.2.1 Redundant Representation 

Let p be a primitive nth root of unity in some extension field of F2 (/3n = 1). The splitting 

?(«) S-(n) field of /3 is called the nth cyclotomic field and denoted by F^1'. Elements in F2"'' can be 

represented in the form 

A = a0 + a1P + 02/?2 + • • • + On-i/S"-1, at G F2, i = 0,1, ,n — 1. (2.8) 

12 
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Let F2m be a field that can be embedded in F2 • The following theorem characterizes 

the relationship between m and n . 

Theorem 2.2.2. [25] Let n be an odd positive integer. Then, F2™ is contained in Fj if and 

only if m divides the multiplicative order of 2 mod n. 

For a given F2m we are particularly interested in F2 with the minimal value of n 

such that F2m can be embedded in F2 • Obviously, field element A e F2™ can also be 

represented with (2.8). Note that 1 + /3 + j32 + • • • + /3""1 = 0 and the representation 

of A is not unique. For example, the two n-tuples (a0, ax, • • • , ara_i) and (a0 + 1, ai + 

1, • • • , on_i + 1) represent the same element A. By slightly abusing the terminology, the 

set [1, /?, /?2, • • • 1 /3"-1] is denoted as redundant basis (RB) for F2m [44]. Also note that the 

elements of a RB form a cyclic group of order n and 

P-F = < 
1 i = n — 1. 

2.2.2.2 Redundant Basis Multiplication 

Let field elements A,Be F2™ be represented with respect to the RB i i = [1, /?, / ? 2 , . . . , /3n_1] 

as 
n—1 n—1 

4 = $ ^ Oi/3* and 5 = J ] 6;/?\ 
i = 0 i = 0 

respectively, where ai: 6j G F2 , i = 0,1, • • • , n — 1. Note that n ^ m + 1 and /?n = 1. Then 

it follows (3% • B = X^=o \j-i)$K where (j — z) denotes that j — i is to be reduced modulo 

n. The product of field elements A and B can be given by [44] 

7i—l n—1 ra—1 

,4 • B = 5>(/3< • B) = £ * ( £ ^ ) . 
j = 0 i = 0 j = 0 

n—1 71—1 Ti—1 n—1 

j = 0 j = 0 j = 0 i = 0 

13 
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T l - 1 

If we define A • B = C = J ^ Cj/3
j, then Cj can be given by 

j=0 

n - l 
ci = ] C aAi-i)i j = 0 ,1 , . . . , n - 1. (2.9) 

2.2.2.3 Redundant Basis and Normal Basis 

As mentioned before, when the complexity of normal basis multiplication is minimized the 

normal basis is referred to as optimal normal basis. Optimal normal basis representations 

are classified as Type I or Type II. Since computations in the optimal normal basis are 

minimized, these bases are of high importance for cryptographic applications. For the class 

of fields where there exist a type I ONB, the size of the Redundant Basis representation is 

almost the same as that of the NB as shown in 2.2.3. Also for the class of fields where 

there exist a type II ONB, the size of the Redundant Basis representation is almost twice of 

that of the NB as shown in 2.2.4. Note that the complexities of redundant basis multipliers 

for the class of fields that there exist a type II ONB can be greatly reduced by applying a 

symmetry property in redundant representation which is shown in 2.2.5. 

Remark 2.2.3. [44] If there is a type I optimal normal basis in F2™, then F2m is contained 

in F 2
m + ', so there is a redundant basis of size m + 1 for F2m. 

Remark 2.2.4. [44] If there is a type II optimal normal basis in F2™, then F2™ is contained 

in F2
 + , so there is a redundant basis of size 2m + 1 for F2™. 

Remark 2.2.5. Assume that there exists a Gauss period of type (m, A;) over F2 . Then / = 

[1, /3, P2,..., /?"_1] is a redundant representation basis for F2™ over F2 , where n = mk + 1. 

Let A G F2m and A = (ao, ai,..., an_i) with respect to / . Assume k ^ 2 is even, then 

ak = an-k , for k = 1, 2 , . . . ,n - 1. (2.10) 

Proof: This is a direct result from Lemma 2 in [44] by noting that the redundant basis 

I and the basis 74 used in [44] satisfy / = 1 U I4. 
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Chapter 3 

Comb Architectures for Finite Field 

Multiplication in F™ 

3.1 Introduction 

For applications to elliptic curve and ElGamal public key cryptography, binary field sizes 

are required to be at least 160 and 1000 bits respectively [18]. A full bit-parallel finite field 

multiplier in these fields could be difficult to implement using current VLSI technology 

and also inefficient when considering that the width of the system data bus is usually much 

smaller than the size of the field. Whereas a bit-serial finite field multiplier in F2™ usually 

requires m clock cycles to perform one operation which is too slow, hybrid architectures 

offer moderate complexity and relatively high speed. 

There are at least two types of hybrid architectures: bit-parallel word-serial and bit-

serial word-parallel (or comb style). One important difference between the two types of 
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architectures is that the throughput1 of a bit-parallel word-serial architecture is proportional 

to the word size whereas the throughput of a comb style architecture is proportional to the 

reciprocal of the word size. This difference makes a comb style architecture attractive 

where both high throughput and small word size are required. For example, a comb style 

architecture would sustain a higher throughput compared to a bit-parallel word-serial one, 

if word size is chosen to be smaller than the square root of the field size m. 

One important factor that affects the finite field computation efficiency is the choice of 

the basis. A few types of bases have been utilized for construction of finite field multipliers, 

which include polynomial basis [27], normal basis [22], dual basis [3], triangular basis [19] 

and redundant representation or redundant basis [7, 44, 23]. The advantage of redundant 

basis is that all the basis elements form a cyclic group, so that computation of modulo 

reduction can be saved in multiplication operation. 

The idea of using redundant representation was first introduced in [7], where arithmetic 

of F2™ is performed in the ring F2[a;]/(a;,^ — 1). In [7], n is chosen as the minimal value such 

that an irreducible polynomial of degree m is a factor of xn — 1. This representation is called 

polynomial ring basis representation. It was later found in [44] that the value of n can be 

reduced further while having F™ embedded in F2[x]/(a;n — 1). It has been proved in [44] 

that the value for n is optimal when F;, is the cyclotomic field of F™. When a type II 

optimal normal basis exists in F™, it is found in [12, 44] that a reordered normal basis can 

be derived from the redundant basis such that this reordered normal basis not only offers 

free squaring operation but also avoids modulo reduction step in a multiplication operation. 

In this chapter, we propose two new bit-serial word-parallel or comb style multipliers, 

one using redundant representation and the other using reordered normal basis. It is shown 

that the proposed redundant representation multiplier has smaller critical path delay and 

thus can operate much faster compared to the previous similar methods. The proposed re­

ordered normal basis multiplier also has significantly smaller critical path delay compared 

1 Here we refer to throughput as the number of operations per one clock cycle. 
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to most of recent similar multipliers using reorder normal basis or normal basis. Note by 

choosing the word size equal to one or the field size m the proposed multiplier would have 

a bit-serial or a full bit-parallel architecture. We have also implemented the proposed mul­

tipliers using FPGA and the results show that the proposed multipliers are faster than the 

ones presented in [44] by 66 and 81 percent respectively. 

The organization of the rest of this chapter is as follows: Section 2 is a brief review of 

redundant basis, reordered normal basis and their multiplication operations. New hybrid 

multipliers using redundant basis and reordered normal basis are proposed in Sections 3 

and 4, respectively. The complexities of the proposed multipliers are also compared to 

other previous articles in these sections. FPGA implementations of different word size 

multipliers are presented in Section 5, and a few concluding remarks are given in Section 6. 

3.2 Preliminaries on Finite Field Bases and Arithmetic in 

3.2.1 Redundant Representation and Multiplication 

Let xn — 1 be a polynomial defined over F2 . Then the splitting field of xn — 1 is called nth 

cyclotomic field, denoted by F2 . Let F2™ be a field which can be embedded in Fj . Then 

the following theorem characterizes the relationship between n and m. 

Theorem 3.2.1. Let n be an odd positive integer. Then, F2™ is contained in F2 if and only 

if m divides the multiplicative order of 2 mod n. 

Proof: This is a special case of the theorem in [44]. • 

We are particularly interested in F2 with the minimal value of n which F2™ can be 

embedded in. Let f3 belong to some extension field of F2 and be a primitive nth root of 

unity. Then F2 can be generated by (3 and elements of F2 can be represented by 

A = a0 + axp + a2p
2 + ••• + a n _i /T~\ at e F2, i = 0,1, • • • , n - 1. (3.1) 
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Such representation of A is not unique since 1 + (3 + /32 + • • • + j3n l = 0. we call (3.1) 

the redundant representation of A, or by slight abuse of the term 'basis', we call the set 

[1, (3,(32,..., (3n~l\ a redundant basis for any subfield of F2
n) [44]. 

One advantage of using redundant basis for finite field arithmetic is that the modulo 

reduction step can be avoided for multiplication operation. This is due to the fact that the 

redundant basis elements form a cyclic group of order n and 

P-P={ 
1 i = n — 1. 

Consider the redundant basis for F2m over F2: 

/ ! = [l,/3,/32,.. -,/6f—1]. 

Let A = (a0, a i , . . . , a„_i), B = (b0, h,..., 6„_i) G F2m be represented with respect to 

(w.r.t.) h, where at, hi G F2 . The multiplication operation can be given by [44]: 

ra-l 

A-B.= C = Y,CjP, A 

3=0 

where 

ci = ]C aAi-i)> j = 0,1, . . . , n - 1. (3.2) 
i =0 

Note that (j — i) denotes that j — z is to be reduced modulo n. 

3.2.2 Reordered Normal Basis Representation and Multiplication 

Theorem 3.2.2. [12] Let (3 be a primitive (2m + l) s t root of unity in F2m and 7 = (3 + -4 

generates a type II optimal normal basis. Then {ji,i = 1,2,.. . , m} with li = (3% + ~ki = 

^ + p2m+i-i^ j = i? 2 , . . . , m, is also a basis in F2m. 

It has been shown that the basis {7*, i = 1,2,.. . , m} is a permutation of the normal 

basis {-f2\ i = 0 , 1 , . . . , m — 1} [44]. We denote the basis I2 = [71,72, • • •, 7m] as the 

reordered normal basis following [44]. 
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Reordered normal basis not only offers free squaring but also can avoid modulo reduc­

tion step in a multiplication operation. Multiplication using the reordered normal basis can 

be described as follows. Define 

A J i mod 2m + 1, if 0 ^ i mod 2m + 1 ^ m, 
s(i) = < 

I 2m + 1 — i mod 2m + 1, otherwise. 

Let A = ( a i , . . . , aTO), B = (&i,..., bm) G F2™ w.r.t. I2, and 60 = 0, then the product 

coefficients are given by [12, 44] 

cj =^ai(b4j+i) + bs(j-i)), j = l,2,...,rn. (3.3) 

where Cj is defined by 
m 

3.3 Proposed Hybrid Multiplier Using Redundant Repre­

sentation 

3.3.1 Bit-serial word-parallel multiplication algorithm 

From (3.2) it can be seen that one product bit Cj is a sum of n terms where each term is a 

partial product bit aj&y-j). Let w denote the word size. Write the subscript of a* in (3.2) 

as i = kw + £, k = 0 , 1 , . . . , \n/w] — 1 and t = 0 , 1 , . . . , w — 1. Replace i in (3.2) with 

kw + t 

CJ = X ] C akw+(b(j~kw-t), j = 0 , 1 , . . . , n - 1. (3.4) 

Let 
[n/u/| —1 

cf} = X I akw+eb(j-kw-£), £ = 0,l,...,w-l. (3.5) 
fe=0 

Then (3.4) becomes 
li; —1 

ci = Z) c f ' J = 0 , l , . . . , n - 1 . (3.6) 
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•™-\n/w\-l — a[n/w]w-l a\n/w\w-2 • • • a{\n/w\-\)w 

Ax = 0,2w-i &2W-2 • • • aw 

Aft = dw-l aw-2 • • • a0 

A[w - 1] A[w-2] . . . i4[0] 

Figure 3.1: Words vs. comb style inputs 

Clearly, if cy>,£ = 0,1,... ,w - 1, j = 0,1,... ,n- 1, can be computed and implemented 

in one clock cycle, then it takes only w clock cycles to obtain Cj for j = 0 , 1 , . . . , n — 1. 

Clearly a multiplication carried out with (3.5) and (3.6) requires a comb style input A 

while input B has a much more complex format. Input operand A can be represented with 

\n/w] words 

A = 0'\n/w\w-la\nlw]w-2 • • • a(\n/w\-l)w ••• 0"w-law-2 • • • a0 
v v < s v ' 

= A\n/w-\_\ ... AQ, 

where each word Ai = aiw+w-iaiW+w-2 • • • «™ contains w bits. Note if w can not divide 

n then the most significant word A^n/W^_i of A would contains some zero bits at its most 

significant bit positions. Let the comb inputs from A be denoted by A[w — l},A[w — 

2 ] , . . . , -<4[0]. Fig. 3.1 shows how the comb inputs can be obtained from the words of the 

input operand A. It can be seen that 

A[£] = a(\n/w]-.1)w+iatfn/w-]-2)w+e • • -cte, fori = 0,1,... ,w - 1. 

Define B^[£] such that 

B^>[£] = b(j-^n/w]-i)w-e)b(j-(in/w]-2)w-e) • • -b(j-e)-

Note that 5O+1) [£] is a leftward circular shift of B^ [£] by one bit. 
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Let the inner-product between two n-tuple vectors X and Y be given by 

n - l 

XQY = ^2xiyi, 
i=0 

where X = {XQX\ • • • x„_i), Y = {yoyi • • • yn-i) and Xi, y* € F2 . Then it follows from 

(3.4), 
w—1 

01 = ^ 2 ^ 0 BU)W> J = 0,l,...,n-1. 
1=0 

The algorithm for comb style multiplication using redundant representation is given below. 

Algorithm 1. Comb style multiplication using redundant basis 

Input: A{£\,B^[£] 

Output: Cj 

1. For j = 0 to n — 1 

2. Cj = 0; 

3. For^ = 0 t o w ; - 1 

4. Cj = Cj + A[i\QB^[i\; 

3.3.2 Comb style multiplication architecture 

A comb style multiplication architecture can be developed from Algorithm 1. Operand A is 

available at input in a comb style, i.e., A[£] is available at £th cycle, for £ = 0 , 1 , . . . , w — 1. 

Operand B is stored in a circular shift register from which B^ [£], j = 0 , 1 , . . . , n — 1 can 

be read from in cycle £. A combinatorial circuit module consisting of \n/w~\ AND gates 

and \n/w] XOR gates is designed to generate the inner-product A[£] 0 B^ [£] in one clock 

cycle. 

In the first clock cycle the input bits are A[0] = a([-n/u,]_i)u,a(|-n/l(,]_2)tu... a0 and by the 

end of cycle the contents of registers Cj are A[0] 0 5^')[0]. In the second clock cycle the 

input bits are A[l] and by the end of cycle the contents of Cj are A[0] 0 B^[0] + A[l] 0 

B^ [1]. In the wth clock cycle the input bits are A[w — 1]. Note that an input bit whose index 
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exceeds n — 1 should be replaced by a zero bit. By the end of the wth cycle the contents of 

registers Cj are 
w—\ 

Cj = J2 A[Z\ 0 B^li], for j = 0,1, . . . , n - 1. 
e=o 

Clearly, w clock cycles are required to finish one multiplication operation. 

The output bits Cj is produced with an accumulation circuits after w cycles. A comb 

style redundant basis multiplier for F24 is shown in Fig. 3.2, where n = 5 and we choose 

w = 2. The multiplier architecture discussed so far is a least-significant-bit (LSB) first 

version, where the multiplier takes operand A in the order of ^4[0], A[l],..., A[w — 1]. A 

most-significant-bit (MSB) first version of comb style multiplication algorithm can also be 

developed by changing line 3. in Algorithm 1 to 

3. For £ = w — 1 to 0 step — 1 

A MSB first version of the comb style redundant basis multiplier for F24 is shown in 

Fig. 3.3. 

Figure 3.2: Proposed comb style redundant basis multiplier for F24 (LSB first) 
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Figure 3.3: Proposed comb style redundant basis multiplier for F24 (MSB first) 

3.3.3 Architecture complexities and comparison 

Architectural complexity and gate counts for the proposed multiplier along with similar 

previous proposals are shown in Table 3.1. In the table the delay of a two-input AND gate 

is denoted by TA and the delay for an n-input XOR gate is approximated by [log2 n\Tx-

The first row of the table shows the complexity result of the hybrid multiplier previously 

proposed in [44], where w denotes the number of parallel modules. If we set the value of w 

for the hybrid multiplier in [44] to be approximately equal to \m/w~\ in the proposed multi­

plier, then the complexities and the number of clock cycles for the two multipliers are about 

the same except the critical path delay, where the proposed multiplier has significantly less 

critical path delay than the one in [44]. 

Multipliers 

Hybrid [44] 

Proposed 

Basis 

redundant 

redundant 

#AND 

WW 

n\n/w~\ 

#XOR 

(n — l)w 

n\n/w] 

# Reg(bits) 

2n 

2n 

# Cycles 

\n/w\ 

w 

Critical Path Delay 

TA+\\og2n-\Tx 

TA+\\og2\n/w-]]Tx 

Table 3.1: Complexities comparison between hybrid redundant basis multipliers 
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Note that the comb style input does not cause any problem. Assume that a point ad­

dition/doubling is the basic operation for an elliptic curve system and a finite field expo­

nentiation is the basic operation for an ElGamal system. There are dozens of finite field 

multiplications, squarings and/or additions required to complete one basic operation [18]. 

Consider a system where finite field addition and squaring operations are performed by 

bit-parallel structures and multiplication operations are performed by the proposed multi­

plier. Since all the sum or product bits are available at the same time, it does not make any 

difference in what order the input coefficients are fed into the multiplier. 

3.4 Proposed Hybrid Multiplier Using Reordered Normal 

Basis 

3.4.1 Bit-serial word-parallel multiplication algorithm 

It can be seen from (3.3) that Cj is a sum of m terms where each term is a partial product 

bit aj6y_j). Let w denote the word size. Write the subscript of a» in (3.3) as i = kw + £, 

k = 0 , 1 , . . . , \m/w\ — 1 and 1= 1,2,... ,w. Replace i in (3.3) with kw +1. 

w \m/w\ — l 

Cj = 2_j 2-^t akw+e(bs(j+kw+e) + bs(j-kw-e)), (3.7) 

1=1 k=0 

for j = 1 , . . . , m. Let 

\m/w~\ — 1 

Cj = 2_^ akw+i{bs{j+kw+t)+bs(j-kw-e.))-, 
k=0 

for £ = 1, 2 , . . . , w. If Cj can be implemented and computed in one clock cycle, then it 
w 

takes only w clock cycles to obtain Cj = YJ cj . 
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Let A[£], B{1] [£] and B^ [£} be denned respectively by 

A[£] 

B_ [£] = b(j~(\m/w-]-i)w-e)b(j-(\m/w]-2)w-i) • •-b(j-e), and 

?(i) 
B+ M = b(j+dm/w-]_1)w+e)b(j+(im/w-]_2)w+e) • • • %+^)> f ° r ^ = 1) 2, .it;. 

Then it follows from (3.7), 
w 

c3=J2A^Q(B-)^ + B+)^^ 3 = 1,2,...,m. (3.8) 
e=i 

The algorithm (LSB first) for comb style multiplication using reordered normal basis is 

given below. A MSB version of this algorithm is also available by changing line 3. 

Algorithm 2. Comb style multiplication using reordered normal basis (LSB first) 

Input: A[£\,B^[£\,B^[i]) 

Output: Cj 

1. For j = 1 to m 

2. Cj = 0; 

3. For£ = 1 to w 

4. cj=cJ + A[g\Q(B^[e\ + B^[£\); 

3.4.2 Bit-serial word-parallel multiplier architecture 

Similar to the redundant basis multiplier proposed in the previous section, a comb style 

multiplication architecture can be developed from Algorithm 2. Operand A is available 

at input in comb style, i.e., A[£] available at £th cycle, £ = 0 , 1 , . . . , w - 1. Note that the 

circular shift register to store B is (2m — 1) bits which is almost double the size of operand 

B. The initial contents of this (2m— l)-bit shift register have to be carefully arranged so that 

each of the following clock cycle both B_ [£] and B+ [£], j = 0 , 1 , . . . , n — 1, can be read 

from the register. A combinatorial circuits network is used to generate the inner-product 

A[£] 0 (B{1] [£] + B{i] {£}) in each clock cycle. 
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Figure 3.4: Proposed comb style multiplier in F2e using reordered normal basis (LSB first) 

For the LSB first version of the multiplier architecture, by the end of the first clock 

cycle the contents of registers Cj are A[0] 0 (S_ [0] + B+ '[0]). By the end of the second 

cycle the contents of Cj are ,4[0] © (#ij)[0] + BJ - ) [0 ] ) + A[l] © (B^[i\ + B^[l]). By the 

end of the u/th clock cycle the contents of registers Cj are 

w — 1 

Cj = J2 AM 0 (B-]W + B^W), for j = 0,1,..., n - 1. 

An MSB version of the multiplier can also be easily developed similar to the one presented 

in Section 3. 

Fig. 3.4 shows such a multiplier architecture for Fj when w = 2. Note that b0 = 0. 

Output registers are initialized as zero and after \m/w] = 3 clock cycles they should 

contain the product bits Ci, C2, • . . , c§. 
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3.4.3 Architecture complexities and comparison 

The architecture complexities of the proposed hybrid multiplier using reordered normal 

basis are shown in Table 3.2, where optimal normal basis type II is denoted by ONB II and 

reordered normal basis is denoted by RNB. Complexities for some previously proposed 

hybrid multipliers using reordered normal basis and normal basis are also listed in the table. 

Note that most of the previous proposals are bit-parallel word-serial (BPWS) or digit-level 

architectures whereas the proposed architecture is bit-serial word-parallel (BSWP). Also 

note that we use d to denote the word (digit) size for BPWS multipliers and w to denote the 

word size for the proposed BSWP architecture. 

In order to make comparisons of different styles of architectures on a fair background, 

we assume that all the architectures take the same number of clock cycles to complete one 

multiplication operation. It means the value of w for the proposed multiplier is equal to 

\m/d~\ for all the previous proposals shown in table. 

Multipliers 

MO [41] 

AEDS [36] 

XEDS [36] 

w-SMPO 1 [37] 

w-SMPO II [37] 

Hybrid [44] 

Proposed here 

Basis 

ONB II 

ONB II 

ONB II 

ONB II 

ONB II 

RNB 

RNB 

Style 

BPWS 

BPWS 

BPWS 

BPWS 

BPWS 

BPWS 

BSWP 

#AND 

(2m - \)d 

(m - d /2 + l / 2 ) d 

(2m — n)d 

rn + (Lm/2J + \)d 

m + md 

md 

m\m/w~\ 

#XOR 

(2m - 2)d 

(3m - d-2)d 

(2m - d /2 - 3 /2)d 

(2m - l )d 

( m + Lm/2J)d 

(2m - \)d 

2 m [ m / i u ] 

#Cycl 

\m/d~\ 

f m / d ] 

\m/d] 

\m/d\ 

\m/d~\ 

\m/d~\ 

w 

Critical Path Delay 

TA+ r i ° g 2 ( 2 m - !)1TX 
TA + ( 1 + \log2(m)-\)Tx 

TA + ( 1 + r i o g 2 ( " i ) l ) T X 

2 T ^ + ( 3 + r i o g 2 ( d - 1)1 )TX 

2 T A + ( 3 + r i o g 2 ( d - 1)1 )TX 

TA + ( 1 + ["l°g2»*»l)Tx 

TA + ( 1 + r iog 2 ( r»n / ' " l + l ) 1 ) T x 

Table 3.2: Complexity comparison of hybrid multipliers using reordered normal basis or 

normal basis 

Fact 3.4.1. Assume that m > 4. Also assume that all multipliers shown in Table 3.2 are 

neither bit-serial nor full bit-parallel architectures and they take the same number of clock 

cycles to complete one multiplication. Then the proposed BSWP multiplier has the smallest 

critical path delay among all the multipliers listed in Table 3.2. 

Proof: Since w > 2 the following inequality holds, \m/w\ < \m/2] < (m + l ) /2 . 
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Also because m > 4, it follows 2m — 1 = m + m — 1 > m + 3. Then, 

TA + (l+\log2(\m/w-]+l)-])Tx < TA + (l+\log2-^-])Tx 

= TA + \log2(2m-l)]Tx (3.9) 

It is assumed that w = \m/d~\, sow > m/d. Then we have d > m/w or d > \m/w~\ (*.• 

d is an intger). Also we assumed that d>2, which follows 

4d = d + 3d> \m/w] + 6 > \m/w~\ + 5, 

or 

4 ( d - 1) > \m/w\ + 1. 

It follows 

2TA + (3 + riog2(o! - l)] )TX > TA + {1 + riog2 4(d - 1)] )TX 

> TA + (l + riog2([m/H + l)l)Tx (3-10) 

Also note from (3.9) that 

TA + {l+\\og2m\)Tx = TA+\log22m]Tx 

> TA+\log2(2m-l)]Tx 

> TA + (l+\log2(\m/w] + l)])Tx (3.11) 

Summarizing from (3.9), (3.10) and (3.11), we can conclude that the proposed BSWP 

multiplier has the smallest critical path delay among all the multipliers listed in Table 3.2. 

• 

The number of AND gates for the proposed multiplier is also the smallest except for 

AEDS [36] which uses much more XOR gates. The number of XOR gates for the proposed 

multiplier is moderate, smaller than that of AEDS [36] and w-SMPO II [37] but higher than 

thatofXEDS[36]. 
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3.5 FPGA Implementations 

The proposed multipliers have been implemented in FPGA. For the comparison purpose, 

some of the previous proposals are also implemented using the same FPGA technology. 

Considering the large number of gates involved in the proposed multipliers for a binary 

field of size with practical significance, we used Altera Stratix FPGA family to implement 

the multipliers. 

FPGA implementation results of comb style redundant basis multiplier for n = 211 is 

shown in Table 3.3, along with the results for the hybrid redundant basis multiplier in [44]. 

We deliberately choose different values of w for the two multipliers such that w for the 

proposed multiplier is equal to \n/w~\ for the multiplier in [44]. This setting allows the 

two multipliers to take the same number of clock cycles to complete one multiplication 

operation. In fact, we set w = 16 for the proposed multiplier and w = 14 or n/w = 16 

for the multiplier in [44]. It can be seen from Table 3.3 that the proposed multiplier uses 

slightly more logic elements but has a much lower critical path delay than the multiplier 

in [44]. 

We have implemented the comb style reordered normal basis multiplier for F2209 and 

w = 16. For comparison purpose, the hybrid reordered normal basis multiplier in [44] has 

also been implemented with FPGA, where w is chosen as 14 such that \n/w] = 16. The 

implementation results are shown in Table 3.4. It can be seen that the proposed multiplier 

not only uses sightly fewer logic elements but also has a much lower critical path delay. 

It can be seen from Tables 3.3 and 3.4 that the speed improvements are 66% and 81%, 

respectively. 

Multiplier 

PISO [44] 

Proposed 

Field Size (n) 

211 

211 

# Logic Elements 

2185 

2321 

Critical Path Delay 

6.25ns 

3.77ns 

# Clock Cycles 

16 

16 

Table 3.3: Comparison of FPGA implementations of hybrid redundant basis multipliers 
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Multiplier 

PISO [44] 

Proposed 

Field Size 

209 

209 

# Logic Elements 

3625 

3558 

Critical Path Delay 

7.96ns 

4.40ns 

# Clock Cycles 

16 

16 

Table 3.4: FPGA implementation results for hybrid reordered normal basis multipliers 

3.6 Conclusions 

Two new bit-serial word-parallel or comb style finite field multipliers, one using redundant 

representation and the other using reordered normal basis, have been proposed. The hy­

brid architecture gives the designer the ability to set the trade off between area and speed. 

Architectural complexities of the proposed multipliers compare favorably to the previously 

proposed architectures of similar type. The two proposed multipliers have also been imple­

mented in FPGA. The hardware implementation results show that the proposed multipliers 

have much lower critical path delays thus allowing much faster operating clock rates. The 

proposed architectures are suitable for high speed cryptographic applications such as ellip­

tic curve cryptography. 
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Chapter 4 

A New Finite Field Multiplier Using 

Redundant Representation 

4.1 Introduction 

In [44], a redundant representation was derived from the minimal cyclotomic ring. The 

idea here was to use the minimal cyclotomic ring in which the current field can be embed­

ded in, and the field arithmetic operations are performed in the ring. Advantages of using 

redundant representation include that this method not only offers free squaring operation 

as a normal basis does but also its 'basis' elements form a cyclic group and thus modulo 

reduction step can be avoided in field multiplication operation. Two different types of bit-

serial multipliers using redundant representation have been proposed. One is parallel-in 

serial-out (PISO) and the other is serial-in parallel-out (SIPO) [44]. In this chapter, a novel 

SIPO multiplier architecture is proposed. Compared to the previous SIPO architecture, the 

proposed multiplier has significantly lower complexity while having the same critical path 
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delay. Compared to the previous PISO multiplier, the proposed architecture has signifi­

cantly smaller critical time delay while using same number of gates and registers. For a 

class of fields that there exists a type I optimal normal basis (ONB), it is also shown that the 

proposed multiplier has lower complexity and smaller critical path delay than the recently 

proposed NB multipliers. 

The organization of the rest of the chapter is as follows. Redundant representation and 

its multiplication are reviewed in Section 2. A brief overview of previously proposed bit-

serial redundant representation multipliers is also given in this section. A new algorithm 

and architecture for bit-serial redundant representation multiplication is proposed in Sec­

tion 3. Complexity comparison is made in Section 4. In Section 5, a digit-level version of 

the proposed multiplier is presented. A few concluding remarks are made in Section 6. 

4.2 Preliminaries 

4.2.1 Redundant Representation 

Let (5 be a primitive nth root of unity in some extension field of F2 . The splitting field of [5 

is called the nth cyclotomic field and denoted by F2 • Elements in F2 can be represented 

in the form 

A = a0 + a1/3 + a2/32 + • • • + On-i/T -1 , <n G F2, i = 0,1, • • • , n - 1. (4.1) 

Let F2m be a field that can be embedded in F2 '. The following theorem characterizes 

the relationship between m and n . 

Theorem 4.2.1. [25] Let n be an odd positive integer. Then, F2m is contained in F2 if and 

only if m divides the multiplicative order of 2 mod n. 

For a given F2m we are particularly interested in Fg with the minimal value of n 

such that F2m can be embedded in F2 . Obviously, field element A G F2m can also be 

represented with (4.1). Note that 1 + j3 + (32 + • • • + P71"1 = 0 and the representation 
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of A is not unique. For example, the two n-tuples (a0, ai, • • • , a„_i) and (a0 + 1, oi + 

1, • • • , a„_i + 1) represent the same element A By slightly abusing the terminology, the 

set [1, /?, /?2, • • • , /3n_1] is denoted as redundant basis (RB) for F2m [44]. 

4.2.2 Redundant Basis Multiplication 

Let field elements A,BE F2™ be represented with respect to (w.r.t.) the RB Ix = 

[1,0,/J2 , . . . , /?1-1] as 
Ti—l n — 1 

A = ]T Oi/3* and 5 = J ] 6;/3\ 
j = 0 i = 0 

respectively, where a,, fej £ F2, i = 0,1, • • • , n — 1. Then it follows f3l • B = Y^j=a fyj-j)/^> 

where (j — z) denotes that j — iis to be reduced modulo n. The product of field elements 

A and B can be given by [44] 

n—1 n—1 n—1 

j=0 j=0 i=0 

7 1 - 1 

If we define A • 5 = C = J ] cj/^> then 

Cj can be given by 
3=0 

7 1 - 1 

C J = ] C a*bU-i)i j = 0 , 1 , . . . , n - 1. (4.2) 
i=0 

4.2.3 An Overview of Bit-Serial RB Multipliers 

At least two types of bit-serial RB multipliers have been proposed, as shown in Fig. 4.1 [44]. 

One is SIPO type and the other is PISO type. The PISO multiplier uses fewer registers but 

has a longer critical path delay. A complexity comparison between these previous two 

multipliers and the proposed one will be made in the next section. 
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> 

bn-1 K-2 b, bo 

an-l. - • a0 

j = n-l ,n-2 1,0 

(a) PISO (b) SIPO 

Figure 4.1: Previously proposed bit-serial RB multipliers 

4.3 Proposed SIPO Multiplier 

4.3.1 A New Bit-Serial RB Multiplication Algorithm 

Let a,j and bj, j = 0 , 1 , . . . , n — 1 be given as in Section 2. A new algorithm to compute 

RB multiplication can be shown as follows. 

Algorithm 3. Bit-serial RB multiplication [MSB first] 

Input: a,j,bj,j = 0 , 1 , . . . , n — 1 

Output: Cj, j = 0,1,... ,n — 1 

1. Initialization: CJ = 0, for j = 0 , 1 , . . . , n — 1. 

2. For k = 1 To n 

For j = 0 To n — 1 

4. 
(fc) (fc-i) , , $ = c^._1}' + a{j)bn-k; 

(n) 

The final value Cj } = Cjforj = 0,1,. . . , n — 1. 

(4.3) 
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Proof of correctness of Algorithm 3: 

It follows from (4.3), 

c) = c\3^ + a{j)b0 

> " 2 ) = c,._ 2) + ay_i)6i + a{j)k 'o 

= cj"-3) + a0-2) 62 + ay- i )6 i + a{j)b0 

= cf)n) + ay+i-njft,,-! + • • • + %•_!)&! + a ( j )6. 

c ( 0 ) 

0 

n-1 
+ ^Oy_ i ) 6 i . (4.4) 

Note that c\'_, = 0 from Step 1 of Algorithm 3, then we have 

n—1 n—X 
cf] = ^2 a(j-i)h = Yl aAi-i)- (4-5) 

i=0 i=0 

The last step in (4.5) comes from proper substitution of subscripts. Compare (4.5) and 

(4.2), it follows 4 n ) =c,-. • 

4.3.2 Multiplier Architecture 

An architecture to realize Algorithm 3 is proposed and shown in Fig. 4.2. Every bit of 

operand A should be available throughout the multiplication operation, while operand B 

is available in bit-serial fashion with the MSB first. The contents of the n-bit registers are 

initialized as zero. The registers are circularly connected and interleaved with XOR gates, 

where the XOR gates perform the addition operation expressed in (4.3). At each clock 

cycle, the registers cyclically shift and take on new values from the outputs of the XOR 

gates. At clock cycle k, the content of register Rj is Cj '. It takes n clock cycles for the 

multiplier to finish one operation. 

Table4.1 shows the contents ofthe registers at the end ofith clock cycle, i = 1, 2, • • • ,n. 

At the end of multiplication, the registers RQ, R U • • • , Rn-i, will respectively contain the 
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b0-bl b„-2-b»-l-

"O—KO al~*® . an2~*® an-l—•<•) 

X R« X Ri X R«2 X R"i 

I—Kfl-H I >®-*\ h*- • • • KB—H I KB-H h»i 

Figure 4.2: Proposed serial-in parallel-out RB multiplier (MSB first) 

product coefficients c0, Ci, • • • , c„_i. 

\ C y c . A 

* 0 

R, 

Rn-2 

Rn-1 

1 

aob„-i 

a,b„., 

a„-2b„„i 

a„-ib„., 

2 

a„-ib„-i + a<t>„-2 

a0b„_, + a,b„_2 

an-3b„-l + Qn-2bn-2 

a„-2b„-i + a„-ib„.2 

k 

"ob(„.k) + a„.,b(„.k+l) + - + au,k)bn_, 

aib(„.Q + a0b(„^+l) + - + a(2.k)b„.i 

a„-2b{„.k) + a„.3b{„.k+l) + - + a(„.,.k)b„.i 

<>n-A»-*) + a»-2b(„-k+i) + - + a(„.k)b„.i 

n 

a0b0 + a„_ib, + — + atbn_i 

aib0 + a0bl + ••• + a2b„_i 

a„.2bg + a„.3bi + ••• + a„.;A„.; 

"n-ibo + Qn^bj + •" + d0b„.i 

,(fe) Table 4.1: Register contents Cj during a multiplication operation 

A least-significant-bit (LSB) first version of the proposed multiplier is shown in Fig. 4.3, 

which has applications where the least significant bits of operand B are available before the 

other parts of the operand. Note that the proposed MSB first and LSB first versions have 

the same complexities and critical path delays. 

bn-l-b„-2---bl •*<) 

a„i —*© «„-; —»<•) , ai —M3 ao —*© 

X R»i X R*2 X R> X R» 

T*—©H h © H h- • • • — *—©H V © H _ 

Figure 4.3: Proposed serial-in parallel-out RB multiplier (LSB first) 

36 

file:///Cyc.A


4. A NEW FINITE HELD MULTIPLIER USING REDUNDANT REPRESENTATION 

4.4 Complexity Comparison 

4.4.1 Comparison to Other RB Multipliers 

Compared to the two previous architectures [7, 44], the proposed one has a more regu­

lar structure. Moreover, the new multiplier has significantly lower complexity or smaller 

critical path delay compared to the previous RB multipliers, as shown in Table 4.2. The 

proposed architecture is shown in the row at the bottom of the table. Compared to the 

SIPO [44], the proposed multiplier requires only half number of registers while incurs 

about the same critical path delay. Compared to the PISO [44], the new architecture uses 

about the same number of gates and registers but has a significantly smaller critical path 

delay. 

Architecture 

PISO [7, 44] 

SIPO [44] 

Proposed SIPO 

# of AND 

n 

n 

n 

#ofXOR 

n - 1 

n 

n 

# of registers 

n + 1 

2n 

n 

Critical path delay 

TA+\log2 n]Tx 

TA + TX 

TA + TX 

Table 4.2: Complexities comparison between bit-serial RB multipliers 

For example, let m = 268 and we find that the minimal value of n is 269. Then 

the proposed RB multiplier requires 269 fewer flip-flops compared to the SIPO multiplier 

presented in [44] while they both have the same critical path delay. Compared to the PISO 

RB multiplier presented in [44] which has a critical path delay TA + R0g2 269] Tx = 

TA + 9TX, the proposed multiplier has a much less critical path delay at TA + Tx • 

4.4.2 Comparison to Normal Basis Multipliers 

A comparison of the proposed RB multiplier to other bit-serial NB multipliers when there 

exists a type I ONB is shown in Table 4.4.2. It can be seen that the proposed multiplier has 

the lowest complexity in terms of the number of XOR gates and registers. The proposed 
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architecture has also the smallest critical path delay. Note that the new RB multiplier 

requires m + 1 instead of m clock cycles to finish a multiplication operation. 

Conversion between RB and NB is simple for certain classes of fields where both RB 

and NB are generated by the same Gauss Period [44]. For example, for the class of fields 

that there exists a type I ONB, RB elements (except the element '1') are a permutation of 

the NB elements. Let R and N be RB and NB for the class of fields that there exists a type 

I ONB, respectively. Then 

R = {̂ }?=o = {1. A P\ • • •, P71-1}, and N = K}™^1 = {/?, / 3 2 , . . . , jT" }, 

where (3 is a nth primitive root of unity or Gauss Period of type (m, 1) and n = m + 1. It 

follows by noting /?n = 1 

Since 2 is a generator of the multiplicative group Z^, there always exists a unique i € 

{1, 2 , . . . , n — 1} for a given j such that i = (2J). 

Multiplier 

Massey-Omura [22] 

I M O [ l l ] 

Beth-Golmann [4] 

Geiselmann-Gollmann [15] 

Feng [9] 

Agnew [37] 

6-SMPOI [36] 

b-SMPOII [36] 

Proposed 

#AND 

2 m - 1 

m 

m 

m 

2m — 1 

m 

LfJ + i 
m 

m + 1 

#XOR 

2m - 2 

2m - 2 

2 m - 1 

m + L f J 
3 m - 2 

2 m - 1 

2 m - 1 

m+Lf J 
m + 1 

# Registers 

2m 

2m 

2m 

3m 

3 m - 2 

3m 

3m 

3m 

m + 1 

Critical Path Delay 

T j 4 + ( l + r i o g 2 m l ) T x 

T / i + ( l + r i o g 2 m l ) T x 

T A + 2TX 

TA + STX 

TA + 4 T X 

TA + 2TX 

TA + 3TX 

TA + 3 T X 

TA + TX 

#Cyc. 

m 

m 

m 

m 

m 

m 

771 

m 

m + 1 

Basis 

NB 

NB 

NB 

NB 

NB 

NB 

NB 

NB 

RB 

Table 4.3: Complexities comparison between the proposed RB multiplier and bit-serial NB 

multipliers when there exists a type I optimal normal basis. 
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4.5 Proposed Digit-Level SIPO Multiplier 

4.5.1 A New Digit-Level RB Multiplication Algorithm 

(k) 

For given j , CJ accumulates one term a,jb(n-k) during clock cycle k according to (4.3) in 

Algorithm 3. Certain parallelism can be introduced to Algorithm 3 so that the bit-serial RB 

multiplication can be speed up. The proposed digit-level SIPO algorithm facilitates that c^ 

accumulates w terms during clock cycle k and thus the multiplication can be completed in 

[n/u;] clock cycles for positive integer w and 1 < w < n. 

Algorithm 4. Digit-level RB multiplication 

Input: <ij,bj,j = Q,l,...,n—l 

Let w be an integer such that 1 < w < n, also let bj = Oforj = — 1 , . . . , n — \-]w. 

Output: Cj, j = 0 , 1 , . . . , n — 1 

1. Initialization: c^ = 0, for j = 0 , 1 , . . . , n — 1. 

2. For k = 1 To \n/w~\ 

3. For j = 0 To n — 1 

w—1 

i =0 

(fc) _ (fc-1) . V ^ U (A &\ 
C{j + [n/w]) ~ C{j + \n/w~\-l) + / J

 aU + \n/w]+i\n/w'])On-k-i\n/w'\ , V?*-0) 

The final value c^ff^ = Cjforj = 0,1, 

39 



4. A NEW FINITE FIELD MULTIPLIER USING REDUNDANT REPRESENTATION 

Proof of correctness of Algorithm 4: 

It follows from (4.6) that 

w—1 
( f c) I _ (\n/w]-l) .ST*- u 

C{j+\n/w\)\k=\n/w'\ — C<j+^niw-\_X) + / J
a(j+\n/w-\+i[n/w~\)On-[n/w~}-i\n/w-\ 

i=0 
w — 1 

_ (\n/w]-2) ST^ i 
~ (J+\n/w\-2) ' / j aU+[n/w] +i\n/w~\)°n-[n/w]-i\n/w] 

i=0 
w—1 

a(j+(\n/w~]-l)+i\n/w'\)Vn-(\n/w1\-l)-i\n/w~] 

i=0 

w-l \n/w~\ — \ 

= C0') + Z-^ \ ^ a(j+i\n/w]+l>+l)bn-i\n/w-\~e~l 
i=0 1=0 
n-1 

= CT +^2a(J+h+l)bn-h-l (4.7) 
n=o 
n-1 

(4.9) 
i=0 

Equation (4.7) uses substitution of i-y = i\n/w\ + 1 and equation (4.8) uses substitution of 

i = n — i\ — 1. The final step (4.9) comes from Step 1 of Algorithm 4 and equation (4.2). 

a 

4.5.2 Proposed Digit-Level RB Multiplier 

Fig. 4.4 shows a hybrid SIPO architecture of RB multiplication when w = 2. In this 

case, the input operand B is divided into two parts, each of size |~n/2] bits. All the 

registers are initialized to zero. At the end of clock cycle k the contents of RjS are 

Cj '. It takes \n/2] clock cycles for the multiplier to complete one operation. At the 

end of \n/2\ clock cycles, the product coefficients c 0 , c i , . . . , cn_i reside in Registers 

R(\ni2\),R{\n/2\+i), •••, R{\n/2\+n-i), respectively. 
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2 2 

0.b0 Vj.i„j 
2 2 

Figure 4.4: Proposed hybrid SIPO RB multiplier (LSB first) 

4.5.3 Complexity Comparison to Previous RB Multipliers 

Table 4.4 shows the complexity comparison for our proposed digit-level multiplier with 

the other existing digit-level multiplier proposed in [44], in terms of number of gates and 

latches as well as the critical path delay. First row of this table shows the hybrid Parallel-In 

Serial-Out multiplier (Hybrid PISO) containing [^] parallel modules which was proposed 

in [44], and the second row presents our proposal. It is clear that our proposal has always 

a smaller critical path delay than the previous architecture. For small values of w the 

proposed architecture requires even less number of gates than the hybrid PISO, but for the 

large values of w the hybrid PISO has a lower gate complexity. 

Multiplier 

Hybrid PISO [44] 

proposed 

#AND 

«r-i 
urn 

#XOR 

1 w ! 

wn + w + 1 

#Reg. 

"+rsi 
n 

Critical Path Delay 

7U + (riog2nl)T;t 

TA + (\log2w + l])Tx 

# Clock Cyc. 

r-i 
r-i 
1 w ' 

Table 4.4: Complexities Comparison Between Digit-Level RB Multipliers 

4.5.4 Complexity Comparison to Previous NB Multipliers 

A complexity comparison of the proposed digit-level RB multiplier to some popular NB 

multipliers for a class of fields that there exists a type I ONB is given in Table 4.5. It can 

be seen that the proposed architecture uses the fewest registers and has the smallest critical 

path delay. The number of XOR and AND gates used for the new RB multiplier is also 
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comparable to the lowest number of gates required by the NB multipliers. Note that the 

proposed multiplier may need one more clock cycle to complete one multiplication than 

the NB multipliers listed in Table 4.5 when m is a multiple of w. 

Multiplier 

WLMO [22] 

IMO [11] 

AEDS [36J 

XEDS [36] 

m-SMPOI [37] 

tu-SMPOII [37] 

proposed 

# AND 

w(2m - 1) 

turn 

(w + 1) f 
w(m — 1) + m 

2f± +m + w + 1 

wm + m + w + 1 

wm + w 

#XOR 

w(2rn - 2) 

w(2m - 2) 

(iu + l ) ( f m - 2) + l 

(tu + l ) ( m - 1) 

a j | m + m + „ _ i 

wm + m + TJJ — 1 

w m + m + w + 1 

#Reg. 

2m 

2m 

2m 

2m 

3m 

3m 

m + 1 

Critical Path Delay 

TA + {1+ r i o g 2 m l ) T x 

T A + ( l + r i o g 2 m l ) T x 

T A + ( l + r i o g 2 m l ) T x 

TA + (1+ r i o g 2 m l ) r x 

ITA + ( 3 + r i ° g 2 ( ™ - l ) D T x 

2TA + ( 3 + [ l o g 2 ( ^ - 1)1 )TX 

TA + (\\oS2w + l^)Tx 

#Cyc. 

fm/iwl 

\m/w~\ 

\m/w~\ 

[m/u i ] 

[m/u ; ] 

fm/ iu] 

T ( m + l ) / i u ] 

Basis 

NB 

NB 

NB 

NB 

NB 

NB 

RB 

Table 4.5: Complexities comparison between digit-level architectures: the proposed RB 

multiplier versus some NB multipliers for a class of fields that there exists a type IONB 

4.6 Conclusions 

A new SIPO finite field multiplier using redundant representation has been proposed. It 

has been shown that the multiplier compares favorably to the previous proposals in terms 

of complexity or critical path delay. For a class of fields that there exists a type I ONB, the 

proposed multiplier has significantly lower complexity compared to previously proposed 

NB multipliers. Digit-level version of the new multiplier has also been presented and its 

complexities compare favorably to other type I ONB multipliers. The new architecture 

accommodates inputs of MSB first and LSB first fashions. It is expected that the proposed 

multiplier has application in elliptic curve and ElGamal cryptography. 
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Chapter 5 

A High Speed Word Level Multiplier in 

¥2m Using Redundant Representation 

5.1 Introduction 

Hardware implementation of finite field multipliers usually can be categorized into three 

categories. The First category are bit level multipliers [22],[1],[15],[11]. A bit level multi­

plier takes m clock cycle to finish one multiplication in a binary field of size m. The second 

category are full parallel multipliers [35],[24],[20],[43]. A full parallel multiplier takes one 

clock cycle to finish one field multiplication. 

The third category are word level or digit level finite field multipliers which are the 

most commonly implemented in practice [12],[44],[22],[32],[31],[36],[37]. A word level 

multiplier takes w clock cycles, 1 ^ w ^ m, to finish one multiplication operation in F2m. 

The value of w can be selected by designer to set the trade off between area and speed 

according to the application. Decreasing the value of w will result in faster and larger 
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multipliers while increasing w will make smaller and slower multipliers. Note that bit level 

and full parallel multipliers can be viewed as special cases of word level multipliers for 

w — m and w = 1 respectively. 

In this chapter, a new word level finite field multiplier in F2™ using redundant represen­

tation is proposed. For the class of fields that there exists a type I ONB, we show that the 

new architecture is much faster compared to previously proposed word level architectures 

using either NB or redundant representation. It is also shown that for the class of fields the 

new multiplier out-performs all the other multipliers when considering the product of area 

and delay as a measure of performance. One of the unique features of the proposed word 

level multiplier is that the critical path delay is not a function of the field size nor the word 

size. This enables the architecture to operate at very high speed even for large field sizes or 

large word sizes. 

The organization of this chapter is as follows: Section 2 is a brief review of redundant 

representation and multiplication. In sections 3 and 4, a new word level algorithm and 

architecture for multiplication in redundant representation is proposed, respectively. The 

architectural complexities of the proposed multiplier are compared to other similar previ­

ous proposals in section 5. A few concluding remarks are given in section 6. 

5.2 A Brief Review of Redundant Representation and Its 

Arithmetic in F2^ 

5.2.1 Redundant Basis for F2™ 

Let K be a field and f(x) G K[x] be a polynomial defined over K. Then the field that 

contains all the roots of f(x) is called the splitting field of the polynomial f{x). The 

splitting field of xn — 1 is called the 71th cyclotomic field, denoted by K^ [44]. Let /? be a 
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primitive nth root of unity. Then K^ is generated by (3 over K and elements in K can be 

represented in the form 

A = a0 + oi/3 + a2/3
2 H + a n _i / r _ 1 , a* G A". 

Thus the set [1, (3,/32,..., /3™-1] acts as a basis for K^n\ Since 1 + (3 + (32 + • • • + /3"- 1 = 0 

the representation of A is not unique. So, by sightly abusing the terminology, we call the 

set [1, (3, (32,..., /J"-1] redundant basis (RB) for any subfield of ATH 

We are particularly interested in the following case: Let K be the binary field F2 and 

K^ be a cyclotomic field that F2™ can be embedded in. The following theorem character­

izes the relationship between m and n. 

Theorem 5.2.1. [25] Let n be an odd positive integer. Then, F2m is contained in F2 if and 

only if m divides the multiplicative order of 2 mod n. 

Remark 5.2.2. If there is a type I Optimal Normal Basis in F2 , then F2 is contained in 

F^m+1) , so there is a RB of size m + .1 for F £m). 

5.2.2 Redundant Basis Multiplication in F2"< 

Consider the RB for F2™ over F2: 

/= [ l , / 3 , / ? 2 , . . . , / 3 " - 1 ] . 

Let field elements A, B G F2m to be represented with respect to / : 

n—1 n—1 

A = £>/?, £ = £&,•/?', 
i=0 j=0 

where ai}bj G F2, i, j = 0 , 1 , . . . , n — 1. Note that /?" = 1. Then multiplication of 5 by /?' 

using the RB / can be given by 

n— 1 Ti—1 

i=o j=o 
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where (j — i) denotes that j — i is, to be reduced modulo n. Then the product of field 

elements A and B can be given by 

n—1 n—1 ra—1 

A • 5 = J > ( / ? • B) = £ (X^O-i))/^'- (5.1) 
i = 0 j = 0 j = 0 

ra-1 

If we define A • B = C = J ^ c ^ ' , then Cj can be given by 
A 

j = 0 

n - 1 
ci = 5Z aAj-i)i j = 0,1,..., n - 1. (5.2) 

i=0 

5.3 Proposed Word Level Multiplication In RB 

From (5.2) it can be seen that one product bit Cj is a sum of n partial product bits aj6y_j). If 

each partial product bit is to be calculated at one clock cycle, the multiplier will take n clock 

cycles to finish one multiplication operation which is the case for the bit level architecture 

[44]. 

Let w denote the word size. Then the operand A in RB can be represented in k = \n/w\ 

words: 

A = a^ai... aw_i aw ... a,2w~i aiw • • • d(k-i)w • • • a n - i 0 . . . 0. 
v v "• „ ' v v • 

A0 ^1 A f c_! 

Or A = Ylh=o AhPhw, where Ah = J27=o ahw+ePe- Note that a, = 0 if the subscript i is 

greater than ra — 1. Replace i in (5.2) with hw + £: 

w—l k~-l 

Cj = ] P ^2 ahw+eb(j-hw-e), j = 0 , 1 , . . . , n - 1. (5.3) 

Define new signal de
h j as follows 

ctp = 0 and 
/ (5.4) 

dhj = dh,j 1] + ahw+eb(j-hw-e) for£ = 0,l,...,w-l. 
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Then it follows from (5.4) 

w—\ 

^h,j ~2_^ahw+(^{J-hw-e)- ( ^ ) 

Compare (5.3) with (5.5), it follows 

9 = i k y 1 5 - <5-6> 
h=0 

An algorithmic form for word level multiplication using RB can be given as follows. 

Algorithm 5. Word level RB multiplication algorithm 

Input: A = (A0,..., Afc_i), B = {B0,..., B^), both w.r.t. RB. 

Output: C = A x B = ( c 0 , . . . , cn_i) also w.r.t. RB 

1. Initialization: k = \m/w], and <ij~. = 0 for h = 0 ,1 ,2 , . . . , k — 1 and j = 0 , 1 , . . . , n — 1 

2. For all values of j = 0 ,1 ,2 , . . . , n — 1, compute 

3. For all values of h = 0 , 1 , . . . , k — 1, compute 

4. For ^ = 0 To w - 1 

5. dhj = dhj + ahw+t[b(j-hw-e)] 

6. End For 

/ i=0 

8. End For 

9. End For 

5.4 Proposed Word Level Multiplier Architecture in RB 

5.4.1 Multiplier Architecture 

Based on the algorithm proposed in the last section, a new word level architecture for RB 

multiplication is presented and shown in Fig. 5.1. The architecture includes, from top to 

bottom, one n-bit circular shift register R, a permutation/expansion module with n-bit input 
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and kn-bit output, a layer of kn AND gates, a layer of kn XOR gates, kn flip-flops, and n 

A;-input binary tree networks of XOR gates. 

R 

Ai=«2»*i «,,+/• a „ 

Ak-l ak*-l '•••• a(k-l)K+l • a(k-l) 

Figure 5.1: Proposed high speed word level multiplier 

Note that the layer of kn AND gates, the layer of kn XOR gates and the kn flip-

flops form kn accumulation units in parallel, which are responsible for the accumulation 

operation in Step 5 of Algorithm 5. These kn accumulation units are divided into n groups 

with each group containing k units. The parallel structure of n groups corresponds Steps 2 

and 9 and the structure of k units in each group corresponds to Steps 3 and 8 in Algorithm 5. 

The iteration shown in Steps 4 and 6 of the algorithm requires the architecture to take w 

clock cycle to complete one multiplication operation. 
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At first, let us look at the part of the circuit (framed by the dashed lines) that generates 

Co, which is denoted by Mo. There are k accumulation units and they are numbered from 

left to right as h, h = 0 , 1 , . . . , k — 1. The contents of flip-flop h during clock cycle £ 

are denoted as <rh0. Before clock cycle zero all the k flip-flops are initialized as zero, 

<4t o = 0,h = 0,1,... ,k — 1. During clock cycle £, accumulation unit h performs dh \ = 

dh~Q + ahw+eb(-hw-e) and the content of the flip-flop is <rh \. During clock w — 1, flip-flop 

h contains d™Q . The fe-input XOR gate is used to generate the output CQ = ^2hZJ dj^0~ . 

Now consider accumulation unit h at Mj. During clock cycles 0 , 1 , . . . , w — 1, the 

accumulation unit takes inputs ahw, ahw+1,..., ahw+w_x from A, and b(j-hw), b(j-hw-i), • • • 

>b(j-hw-w+i)) from B, respectively. For example, during clock cycle £, accumulation unit 

h takes inputs ahw+t and b^-hw-e) and performs operation df^ = df^^ + ahw+eb^_hw_e). 

From the above discussion we can observe the following: 

Fact 5.4.1. For any accumulation unit, let the inputs be ail from A and bj1 from B during 

clock cycle £, then the input is ail+i from A and fe^n-i) from B during clock cycle £+1. 

Also note that at clock cycle £ = 0 the input bit from A to accumulation unit h is 

ahw, h = 0,1,... ,k — 1, which is the least significant bit of the word Ah from A. Then it 

can be seen from Fact 5.4.1 that inputs from operand A can be organized into k words and 

word h inputs to accumulation unit h in a bit serial fashion with the least significant bit first. 

Inputs from operand B can be organized as an n-bit circular shift register and a permuta­

tion/expansion module as shown in Fig. 5.1. The shifting direction of R should conform 

with Fact 5.4.1 and the permutation/expansion module can be explained as follows: during 

clock cycle 0, the output of the P/E module that inputs to accumulation unit h in Mj should 

be connect to b(j-hw) in R. 

Let the critical path of the architecture be denoted by Tcp. Then Tcp is decided by the 

accumulation unit, which is Tcp = T& + Tx, where TA and Tx denote the time delays 

caused by one AND gate and one XOR gate, respectively. Note that after w clock cycles 

the product bits are not generated until it takes another time delay of [ log2 k\ Tx caused by 
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a fc-input XOR gate. In order to let the architecture outputs Cj hold stable for a desired time, 

two options are available for the multipliers to act during the time spent for the final addition 

of the partial products. In the first option, the multiplier clock should be stopped after w 

clock cycles and the outputs can be read from the output ports after the addition delay 

which can be measured approximately beforehand. This style requires an extra counter to 

disable the input clock to the flip flops after w clock cycles. The advantage of this method 

is that it can save dynamic power consumption during the final addition. 

The second option is to pad zero input bits for the input words for operand A after the 

w clock cycles. This will eliminate the need for stopping the clock signal of the multiplier 

and does not require extra circuitry. The output product bits can be read from the output 

ports after certain number of clock cycles immediately following w cycles. Assuming that 

the clock period is chosen to be the critical path delay Tcp = TA+TX, and let the number of 

extra clock cycles besides w be denoted by wex. Then the total number of the clock cycles 

required for a multiplication operation is w + wex, where wex can be obtained as follows 

\\og2k]Txi _ r\log2k]Tx-
wPr. = T 

-* cp 

(5.7) 
TA + TX 

Note that wex zero bits need to be appended at the end of each input word from A. 

5.4.2 Architecture Complexities 

The area and delay complexity of the proposed design can be easily determined from 

Fig. 5.1. The circular shift register R contains n flip-flops. The P/E module is nothing 

but a rewiring of lines. There are n modules Mj,j = 0 , 1 , . . . , n — 1, where each module 

contains k AND gates, k XOR gates, k flip-flops, and a fc-input XOR gate that is equivalent 

to k — 1 (two-input) XOR gates. In total the proposed architecture requires kn AND gates, 

(2k - l)ra XOR gates, and (k + l )n flip-flops. 
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5.4.3 An example 

An example of the proposed word level RB multiplier for F24 is shown in Fig. 5.2. Note 

n = m + 1 = 5 since there exists a type I ONB in F24. Let the two operands be given as 

A = (a4, CI3, a2 ,01, a0) and £? = (64, 63,62, &i, &o)- Choose IU = 3 and the operand A is 

divided into two words A0 = (a2, ai, a0) and vli = (0, a4, a3). 

Figure 5.2: Word level (w = 3) multiplier in F24 with the padded zero bits for the input 

(the second option) 

The critical path delay is Tcp = TA + TX and it takes w + wex = 3 + wex clock cycles 

to complete one multiplication, where wex can be obtained from (5.7) by noting k = 2 

wP 
= \TX/Tcp\ = \TX/(TA+TX)] = 1. 

Note that wex = 1 zero bit should be appended at the end of each input word A0 and A\. 

The proposed architecture contains n = 5 module M and each module M contains k = 
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Cyc 

£ 

- 1 

0 

1 

2 

3 

Table 5.1: Contents o f the flip-flops in the proposed multiplier in F24 

Content d^ of flip-flop h in module Mj 

d{l) 

"0,0 
0 

ao&o 

a0&o 

+12164 

a0b0 

+a\b4 

+a2b4 

a0&o 

+O1&4 

+02&4 

"1,0 

0 

03^2 

fl3&2 

+0461 

a3&2 

+O461 

a3b2 

+a 4&i 

"0,1 

0 

a0&i 

a 0 6i 

+ a i & 0 

a 0 6i 

+ai&o 

+a2&4 

a0bi 

+aib0 

+0264 

d(e) 
"1,1 

0 

a3&3 

0363 

+a4b2 

a3b3 

+a4b2 

a3b3 

+a4b2 

"0,2 

0 

aob2 

Oo &2 

+ a i 6 i 

a0&2 

+ a i 6 i 

+O2&0 

ao&2 

+0161 

+02^0 

dW 
"1,2 

0 

a3&4 

03&4 

+a4&3 

a3&4 

+a 4 b 3 

a364 

+a4&3 

d{£) 
"0,3 

0 

ao&3 

ao&3 

+ a i 6 2 

a0&3 

+ a i 6 2 

+a2foi 

ao&3 

+ a i 6 2 

+0261 

"1,3 

0 

03^0 

a3b0 

+0464 

a3&o 

+ 0 4 64 

a3b0 

+a4b4 

"0,4 

0 

a0b4 

a0b4 

+aib3 

a0b4 

+aib3 

+a2b2 

a0b4 

+0163 

+a2b2 

d{e) 
"1,4 

0 

a 3 6 i 

a 3 b i 

+0460 

a3fei 

+0460 

a 3 6i 

+a4^o 

[n/io] = 2 accumulation units. Let the content of the flip-flop rh in Mj during clock cycle 

£ be dh j . During clock cycle — 1, all the flip-flops are initialized as zero. During clock cycle 

£, it follows from (5.4) that the flip-flop r^ in Mj contains drhj = drhj + ahw+(b(j_hw-£). 

Table 5.1 shows drhj for £ = 0,1, 2,3. Note that the flip-flop contents do not change during 

the last cycle due to the fact that the input from A are zero bits. 

If cycle I = 0 is counted as the first clock cycle, then the final product can be read out 

during cycle t = 3. During clock cycle £ = 2, the flip-flops contain dh 
(w-l) 

< ! - A s 
(2) soon as the contents of the flip-flops are updated as dhj, the XOR network at the output 

end performs summation operation to obtain the product bits following (5.6) 

Co = 

C\ = 

c2 = 

C3 = 

c4 = 

- d{2) + d(2) 

- "0,0 * ui,o> 

- d{2) + d{2) 

- u01 -t- alx, 

- d{2) + d{2) 

~ u0,2 ' ul,2> 

- d ( 2 ) +J ( 2 ) 

- U 0 3 -f U l i 3 , 

- d{2)+d{2) 
~ a 0,4 1 "1,4-

(5.8) 
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The time delay caused by (5.8) is Tx and less than one clock cycle, so the total multipli­

cation delay for the multiplier is four clock cycles. The multiplier requires kn = 10 AND 

gates and (2k - l)n = 15 XOR gates, and (k + l)n = 15 bit flip-flops. Note that the 

contents of flip-flops during cycle 2 are shown in Table 5.1, the final output product bits 

can be given following (5.8), 

c0 = a0b0 + a1bi + a2b3 + a3b2 + a4&i, 

ci = a06i + axb0 + a264 + a363 + a462, 

c2 = a0b2 + a1b1 + a2b0 + a364 + a463, 

c3 = a0b3 + ai&2 + a2bi + a3b0 + a464, 

c4 = a064 + ai&3 + a2b2 + a3bi +a 4 6 0 . 

5.4.4 Word Level Architecture with MSB First 

A most significant bit (MSB) first version of the multiplier architecture is also presented 

and shown in Fig. 5.3, where the MSB of each word from the operand A inputs to the 

system first. The k words each of w bits from A can be obtained as follows. 

A = 0 . . . Oao . . . an_(fc_i)u,_i... an_2w_\ an-2w ... an_„,_i an~w ... an-i 
-• . — : — • — ' v v " v ' 

AQ Ak-2 -Afc-i 

Note that the shift direction of the circular shift register R is different from that in Fig. 5.1. 

The MSB version of the architecture has the same complexities and time delay as the LSB 

version (Fig. 5.1). 

5.5 Complexity Comparison 

5.5.1 Comparison to Other Word Level RB Multipliers 

Complexity of the proposed multiplier and similar word level redundant basis multipliers 

compared in table 5.2. It can be seen from the table that the proposed design has the 
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At_, =a„_k , <J„,,. „„..a, 

Figure 5.3: Proposed high speed word level multiplier (MSB First) 

smallest critical path delay and multiplication delay between all similar proposals. As can 

be seen from the table, the critical path delay of the proposed architecture is not a function 

of the word size or the filed size and is always equal to TA + Tx. 

Table 5.2: Complexity comparison for word level redundant basis multipliers 
Multiplier 

PISO [44] 

Comb [31] 

ASH [32] 

Proposed RB 

#AND 

kn 

kn 

kn 

kn 

#XOR 

fc(n - 1) 

kn 

kn + n 

(2k - l)n 

#Reg 

n 

2ra 

n 

[k + l)n 

Critical Path Delay (Tcp) 

TA + riog2 n]Tx 

TA + l"log2(fc + 1)1 T x 

TA+riog2(fc + l ) l T x 

TA + TX 

Multiplication Delay 

wTcp 

wTCp 

wTcp 

wTcp+ riog2fc"|Tx 
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5.5.2 Comparison to Other Word Level NB and RB Multipliers When 

There Exists A Type IONB 

Type I ONB is probably the most popular and the most efficient class of NB that is used for 

realization of NB multipliers in the literature. For this class of fields, the size of the RB is 

almost the same as that of the NB as shown in Remark 1 in Section 2. Complexity of the 

proposed multiplier and similar proposed architectures for a class of field that there exist a 

type I ONB are shown in Table 5.3. The complexities for area and delay are the result of 

substitution of n with m + 1, according to remark 1. 

Table 5.3: Are-Delay Complexity comparison for different architectures where there exist 

a type I ONB 
Multiplier 

WLMO [22] 

IMO[U] 

AEDS [36J 

XEDS [36] 

TO-SMPOI [37] 

tu-SMPOII [37] 

PISO [44] 

Comb [31] 

ASH [32] 

Proposed 

Basis 

ONBt 

ONBt 

ONB I 

ONB I 

ONB I 

ONB I 

RB 

RB 

RB 

RB 

# AND 

k(2m - 1) 

km 

(* + I)TT 
fc(m — 1) + m 

fc^+m+fc+l 

km + m + k + 1 

km. + k 

km + k 

km + k 

km + k 

#XOR 

k(2m - 2) 

k(2m - 2) 

(fe+ l ) ( § m - 2) + 1 

(fe + l ) ( m - l ) 

3k^-+k + m - l 

km + k -f- m — 1 

km 

km + k 

km + k + m + 1 

(2fe - l ) ( m + I) 

#Reg 

2m 

2m 

2m 

2m 

3m 

3m 

m + 1 

2m + 2 

m + 1 

(fc + l ) ( m + 1) 

Critical Path Delay (T c p ) 

TA + ( 1 + r i o g 2 " » l ) T x 

TA + ( 1 + r i o g 2 m l ) T x 

TA + ( 1 + n°g,2™-~\)Tx 

TA + (1 + p o g 2 m])Tx 

2TA+(3+ r i o g 2 ( f c - 1)1 )TX 

2 T A + ( 3 + n ° g 2 ( f c - 1)1 )TX 

TA+ r iog 2 (m + l ) l T x 

TA + riog2(fe + i ) i r x 

TA + r i o g 2 ( f e + l ) l T x 

TA+TX 

Multiplication Delay 

wTcp 

wTcp 

wTcp 

wTcp 

»v 
wTcp 

VJTCP 

u>Tcp 

v;Tcp 

wTop + r iog 2fc" |T x 

For the purpose of illustration we have tabulated the area-delay complexity for the pro­

posed architectures with the previously proposed multipliers in Table 5.4. The field size is 

chosen as m = 268 where there exists a type I ONB. Number of parallel modules is selected 

to be k = 8,16,32 which represent practical-size multipliers for VLSI implementations. 

The following assumptions are made in Table 5.4: The VLSI area of an XOR gate and 

a flip-flop are assumed to be twice and three times of the area of an AND gate respectively 

1. It is also assumed that the area of an AND gate is 1. The row Area Cost in Table 5.4 

represents the sum of the number of AND gates, twice the number of XOR gates and three 

JIn a typical CMOS VLSI realization, an AND gate can be implemented with 6 transistors, while an XOR 

gate and one flip-flop can be implemented with 12 and 16 transistors, respectively [40]. 
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Table 5.4: Complexity comparison of word level type I optimal NB or RB multipliers in 

F2268 for different values of w, k. 
Multiplier 

WLMO [22] 

IMO[ll] 

AEDS [36] 

XEDS [36] 

tu-SMPOI [37] 

tu-SMPOII [371 

PISO [44] 

Comb [31] 

ASH [32] 

Proposed 

WLMO [22] 

IMO[U] 

AEDS [36] 

XEDS [361 

tu-SMPOI [37] 

tu-SMPOII [37] 

PISO [44] 

Comb [31] 

ASH [32] 

Proposed 

WLMO [22] 

IMO[ll] 

AEDS [36] 

XEDS [36| 

tu-SMPOI [37] 

tu-SMPOII [37] 

PISO [44] 

Comb [32] 

ASH [32] 

Proposed 

Basis 

ONBI 

ONBI 

ONBI 

ONBI 

ONBI 

ONBI 

RB 

RB 

RB 

RB 

ONBI 

ONBI 

ONBI 

ONBI 

ONBI 

ONBI 

RB 

RB 

RB 

RB 

ONBI 

ONBI 

ONBI 

ONBI 

ONBI 

ONBI 

RB 

RB 

RB 

RB 

w, k 

3 4 , 8 

17, 16 

9,32 

#AND 

(NA) 

4280 

2144 

1206 

2404 

1349 

2421 

2152 

2152 

2152 

2152 

8560 

4288 

2278 

4540 

2429 

4573 

4304 

4304 

4304 

4304 

17120 

8576 

4422 

8812 

4589 

8877 

8608 

8608 

8608 

8608 

#XOR 

4272 

4272 

3601 

2403 

3491 

2419 

2144 

2152 

2421 

4035 

8544 

8544 

6801 

4539 

6715 

4571 

4288 

4304 

4573 

8339 

17088 

17088 

13201 

8811 

13163 

8875 

8576 

8608 

8877 

16947 

#Register 

(JVfl) 

5 3 6 

5 3 6 

5 3 6 

5 3 6 

8 0 4 

8 0 4 

269 J 

5 3 8 

2 6 9 

2421 

5 3 6 

5 3 6 

5 3 6 

5 3 6 

8 0 4 

8 0 4 

2 6 9 

5 3 8 

2 6 9 

4573 

5 3 6 

5 3 6 

5 3 6 

5 3 6 

8 0 4 

8 0 4 

2 6 9 

5 3 8 

2 6 9 

8877 

Area Cost 

(NA + 2NX + 3NR) 

14432 

12296 

10016 

8818 

10743 

9671 

7247 

8070 

7801 

17485 

27256 

22984 

17488 

15226 

18271 

16127 

13687 

14526 

14257 

34701 

52904 

44360 

32432 

28042 

33327 

29039 

26567 

27169 

27169 

69133 

Delay Cost 

(TA = 1,TX = 2 ) 

34TA + 340TX = 714 

34TA + 340TX = 714 

34TA + 340T X = 714 

34TA + 4 0 T X = 714 

68T.4 + 204T X = 476 

6 8 7 A + 204T X = 476 

34TA + 306TX = 646 

34TA + 136T X = 306 

34T A + 136T X = 306 

34T A + 3 7 T X = 108 

17TA + 170TX = 357 

17TA + 170TX = 357 

17TA + 170T X = 357 

17TA + 170TX = 357 

34T A + 119TX = 272 

34T A + 119TX = 272 

17TA + 153TX = 323 

17T,4 + 8 5 T X = 187 

17TA + 8 5 T X = 187 

17TA + 2 1 T X = 59 

9 T A + 9 0 T X = 189 

9 T A + 9 0 T X = 189 

9TA + 9 0 T X = 189 

9TA + 9 0 T X = 189 

18TA + 7 2 T X = 162 

18TA + 71TX = 162 

9TA + 8 1 T X = 171 

9 T A + 5 4 T X = 1 1 7 

9 T A + 5 4 T X = 1 1 7 

9TA + 14T X = 37 

Area X Delay 

10304448 

8779344 

7151424 

6296052 

5113668 

4603396 

4681562 

2469420 

2387106 

1888380 

9730392 

8205288 

6243216 

5435682 

4969712 

4386544 

4420901 

2716362 

2666059 

2047359 

9998856 

8384040 

6129648 

5299938 

5398974 

4704318 

4542957 

3210246 

3178773 

2557921 

times the number of registers. The delay for an XOR gate is assumed to be twice of that 

for an AND gate [5]. If the delay of an AND is assumed to be 1, the row Delay Cost in 

Table 5.4 represents the multiplication delay in terms of times of the delay of an AND gate. 

Compared to the other architectures the proposed architecture has much smaller delay 

cost at expense of modestly higher area cost. Note that both area and delay are the objec­

tives to minimize for a word level multiplier, and decreasing one is usually at the expense of 

increasing the other. In Table 5.4 we also used area-delay product to show the balance be­

tween the changes of area cost and delay cost, which is given at the last column in the table. 
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Table 5.5: Normalized Complexity Comparison of Different Word Size Multipliers in F2268 

Multiplier 

WLMO [22] 

IMO[ll] 

AEDS [361 

XEDS [36] 

TO-SMPOI [37] 

TO-SMPOII [37] 

PISO [44] 

Comb[31| 

ASH [32] 

Proposed 

TO = 34, k = 8 

Relative 

Area 

8 2 % 

7 0 % 

5 7 % 

5 0 % 

6 1 % 

5 5 % 

4 1 % 

4 6 % 

4 4 % 

100% 

Relative 

Delay 

661% 

661% 

661% 

6 6 1 % 

440% 

440% 

598% 

283% 

283% 

100% 

Relative 

Area x Delay 

545% 

464% 

378% 

333% 

270% 

243% 

247% 

130% 

126% 

100% 

w = 17, k = 16 

Relative 

Area 

7 8 % 

6 6 % 

5 0 % 

4 3 % 

5 2 % 

4 6 % 

3 9 % 

4 1 % 

4 1 % 

100% 

Relative 

Delay 

605% 

605% 

605% 

605% 

461% 

461% 

547% 

316% 

316% 

100% 

Relative 

Area X Delay 

475% 

400% 

304% 

265% 

242% 

214% 

215% 

132% 

130% 

100% 

w = 9, k = 32 

Relative 

Area 

7 6 % 

6 4 % 

4 6 % 

5 0 % 

4 8 % 

4 2 % 

3 8 % 

3 9 % 

3 9 % 

100% 

Relative 

Delay 

510% 

510% 

510% 

510% 

437% 

437% 

462% 

316% 

316% 

100% 

Relative 

Area x Delay 

390% 

327% 

239% 

207% 

211% 

189% 

177% 

125% 

124% 

100% 

It can be seen that for all three word sizes, the area-delay-product for the new multiplier is 

much smaller than all the previously proposed architectures listed in the table. 

If the area-delay-product for the proposed multiplier is one, then the relative values of 

the area-delay-product for some previously proposed architectures are listed in Table 5.5. 

IT can be seen from the table that the area-delay-product for the new multiplier is at most 

80% of that of the any other ones for given values of w and k in the table. 

5.6 Conclusions 

A high speed word level finite field multiplier using RB has been proposed. The proposed 

architecture is significantly faster compared to previously proposed architectures at the 

expense of moderately higher area complexity. For the class of fields that there exists 

a type I ONB, the proposed multiplier performs much faster than other word level NB 

multipliers available in open literature. It was shown that the new multiplier excels all 

the other multipliers in comparison when considering the product of area and delay as a 

measure of performance. 
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Chapter 6 

High Speed Word Level Multipliers in 

GF{2m) Using Reordered Normal Basis 

6.1 Introduction 

An important factor that has great effect on finite field arithmetic efficiency is the basis 

used to represent the field elements. Common bases used in practice are polynomial basis 

(PB) and normal basis (NB) [25],[33]. Polynomial basis is probably the most popular ba­

sis which has been widely used for hardware and software implementations [18]. Normal 

basis on the other hand is advantageous for hardware implementation since squaring oper­

ation can be implemented at no cost. Free squaring operation can be used to speed up the 

exponentiation operation by repeated squaring and multiplication [14],[2]. 

Since addition operation can be implemented simply by exclusive or and inversion op­

eration with repetitive squaring and multiplication, multiplication operation is considered 

to be the main operation for systems using normal basis. In normal basis, complexity 
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of multiplication is measured with the multiplication matrix [30]. For a binary extension 

field the multiplication matrix entries are either zero or one and the number of ones inside 

the multiplication matrix is referred to as normal basis complexity. The normal basis in 

GF(2m) for which the complexity achieves its minimum , 2ra — 1, is referred to as the 

optimal normal basis (ONB). Two types of optimal normal bases have been found which 

are referred to as type I and type II optimal normal basis [30]. Reordered normal basis is 

refereed to as a certain permutation of a type II optimal normal basis [12], [44]. 

In this work two new word-level finite field multipliers using a reordered normal basis 

are presented. It is shown that the proposed architectures are faster than all the previously 

presented architectures in the open literature using either a type II optimal normal basis 

or a reordered normal basis at the expense of moderately higher complexity. One unique 

feature of the new word-level architectures is that the critical path delay is independent of 

the word size or the field size. This enables the proposed multipliers to operate at very high 

clock rate regardless of the word size or the field size. 

The organization of this chapter is as follows. Reordered normal basis and multipli­

cation using this basis are briefly reviewed in Section 2. In Sections 3 and 4, two new 

word-level multipliers using reordered normal basis are respectively proposed. Architec­

tural complexity comparison of proposed architectures with similar proposals are presented 

in Section 5. Finally some concluding remarks are given in Section 6. 

6.2 A Brief Review of Reordered Normal Basis and Its 

Arithmetic in GF(2m) 

6.2.1 Reordered Normal Basis 

The idea of reordered normal basis was first proposed by Gao and Vanstone in [12] and 

was later used to design several multiplier architectures in [44]. 
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Theorem 6.2.1. [12] Let /? be a primitive (2m + l) s t root of unity in GF(2m). Then 7 = 

P + j3~x generates a type II optimal normal basis. The ordered set {71, i = 1,2,. . . , m} 

with 7̂  = /? + /?-' , also forms a basis in GF(2m) . 

It has been shown that the basis [71,72, • • •, 7m]1 is a permutation of the normal basis 

[l2 > 72 ) • • •, 72"1 ] [12], and it is referred to as the reordered normal basis following [44]. 

Define function s(i) which maps the set of integers to the set { 0 , 1 , . . . , m} as fol­

lows [12, 44]: 

( 

s(i) = 
i mod 2m + 1, if 0 ^ i mod 2m + 1 ^ m, 

(6.1) 
2m + 1 — 1 mod 2m + 1, if m < i mod 2m + 1 ^ 2m. 

The following lemmas will be useful either to facilitate reordered normal basis arithmetic 

or to derive a reordered normal basis from a given type II ONB. Note that all the results in 

the lemmas have been already stated in [12]. 

Lemma 6.2.2. Let (3 and 7 be defined as in Theorem 6.2.1. Then 7* = 7^) for any integer 

i. 

Proof: Consider the following two cases and note that (3 is a primitive (2m + l) s t root 

ofunityinGF(2m) . 

• Case 1: If 0 ^ i mod 2m + 1 ^ m, then 

7 . = ft + 0-* = ft mod 2m+1 + p-V mod 2™+!) = /?*« + /3"«(0 = 7 s ( i ) . 

• Case 2: If m < i mod 2m + 1 ^ 2m, then 

7* = Pl + P~' 
ni mod 2m+l i /o—i mod 2m+l 

a—(2m+l—i mod 2m+l) , p2m+l—i mod 2m+l 

= / r s W + /?s(j) = 7sW. 

1 We use [ • • • ] to denote an ordered set. 
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a 

Lemma 6.2.3. Given a type II optimal normal basis I' = [7 2 0 ,7 2 1 , . . . , 72"1-1]. Then the 

reordered normal basis I = [71,72, • • •, 7m] is a permutation of the basis elements of / ' , 

and the permutation function is decided by 

I2' =7s(2»), i = 0, l , . . . , m - 1. 

Proof: It follows Lemma 6.2.2 that 

72 ' = (32% + p'2' = 72« = 78(2«) for i = 0 , 1 , . . . , m - 1. 

• 

Lemma 6.2.4. For all i,j = l,2,...,m, we have 

7i7j 7s(i+j) + 7s(i-j)-

Proof: 

7i7i = (/r + z r W + zr'') 

= 7i+j + 7»-j 

Note that the last step comes from Lemma 6.2.2. • 

6.2.2 Reordered Normal Basis Multiplication 

Assume that A and B are two arbitrary elements in GF(2m) represented with respect to 

(w.r.t) reordered normal basis / = [71,72, • • •, 7m], 

m m A = Y1aai and B = ^2biii-
i = l i = l 
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Their product C is represented with respect to the same basis C = Y1T=\ c*7»- Assuming 

7o = 0 and b0 = 0, then following Lemma 6.2.4 jjB, j = l,2,...,m, can be given by [12] 

m 

i=l 
m 

= ^2bihs(i+j) + is{i-j)] 
i = l 
m 

= X^(*+i) + bs(i-j)H- (6-2) 
i = i 

The last step in (6.2) comes from proper substitution of the subscripts. The product C can 

be obtained as follows. 

C = A-B 

771 

= J2a^B 

m m 
= 5Z a3 ^2^+1) + bs(i-j)hi 

3=1 i=l 
m m 

= Yl ( Yl ai[&s(*+i) + 6«(*-J')])T<' 

Then we have [44] 
m 

ci = Y2, ai t^+J) + ^(i-*)]' i = 1, 2 , . . . , m. (6.3) 

6.3 Proposed High Speed Word Level Multiplier type One 

Using Reordered Normal Basis 

6.3.1 Word-level multiplication algorithm using reordered normal ba­

sis 

Let w denote the word size and k = \m/w] be the number of words required for repre­

senting a field element in GF(2m). Write the subscript j of a3- in (6.3) as j = gw + £ for 
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g = 0 , 1 , . . . , k — 1 and £ = 1,2,... ,w, and replace j in (6.3) with gw +1: 

fc—1 w 

c* = / _, / J agw+i[bs(i+gw+e) + ^(i-gw-^)]- (6.4) 
g=o e=i 

Note that the coordinates for the operand A and B will be zero if their subscript exceeds 

m. Define signal d\j, i = 1, 2 , . . . , m and g = 0 , 1 , . . . , k — 1, as 

dfl = 0 and 
'9 _ (6.5) 

4fi = dtg l) + <V>+#s(i+s™+<0 + bs{i_gW_i)\ for ^ = 1, 2 , . . . , w. 

Then it follows from (6.5) 
w 

(6.6) 

Compare (6.4) with (6.6) it follows 

^ = E<e 
5=0 

An algorithm for word-level multiplication using reordered normal basis can be given 

as follows. 

Algorithm 6. Word-level reordered normal basis (RNB) multiplication algorithm I 

Input: A = ( a i , . . . , am), B = (pi,..., bm), both w.r.t. RNB, 

and the word size w, 1 < w < m 

Output: C = Ax B = (ci,...,cm) also w.r.t. RNB 
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1. Initialization: k = \m/w], and d\g = 0 for i = 1,2,. . . , m and g = 0 , 1 , . . . , k — 1 

2. For all values of i = 1,2,... ,m, compute 

3. For all values of g = 0 , 1 , . . . , k — 1, compute 

4. For I = 1 To w 

5. <iig = dig + aSu,+46s(;+g™+^) + &s(i-s™-*)] 

6. End For 

3=0 

8. End For 

9. End For 

6.3.2 Multiplier Architecture 

A high speed word-level reordered normal basis multiplier can be built based on Algo­

rithm 6, which is referred to as word-level reordered normal basis type I (WL-RNB I) and 

is shown in Fig. 6.1. 

From the top to the bottom, the architecture contains a (2m + 1)-bit circular shift regis­

ter, the Expansion/Permutation module, one layer of XOR gates, one layer of AND gates, 

one layer of accumulation units, and one layer of XOR gate networks. 

Step 5 of Algorithm 6 can be implemented using one XOR gate, one AND gate and 

one accumulation unit as shown in the block of dashed lines in Fig. 6.1. The accumulation 

unit requires one XOR gate and one flip-flop. Steps 2 and 3 of Algorithm 6 require totally 

m x k such accumulation units in m groups with each group containing k units. Step 7 of 

Algorithm 6 shows that each c*, i = 1, 2 , . . . , m, is a sum of k terms which are the outputs 

of the k accumulation units after w clock cycles. A fc-input XOR gate or a binary tree of 

k — 1 two-input XOR gates is used to produce the final output d as shown at the bottom in 

Fig. 6.1. 

The input operand A is required to be fed into the multiplier in a comb style. Let A be 

divided into k words, with each word of w bits. Then, in the first clock cycle the inputs 
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W • - • a(k-l)w+2' "(k-l)wH 

Figure 6.1: Proposed word-level high speed multiplier using reordered normal basis 

are the first bit of every word, ai, aw+\, a2w+i,..., d(k-i)w+i- For the second clock cycle 

the inputs are a2, aw+2, ci2w+2, • • • > U(k-i)w+2- Finally in the wth clock cycle the inputs are 

aw, aiw, a3w,..., akw. Note that if the subscript of an input bit exceeds m then it is replaced 

by a zero bit. 

The input operand B is stored in a (2m + l)-bit circular shift register R, and from there 

the input bits are fed into Permutation/Extension module. Suppose that the (2m+l)-bit cir­

cular shift register R is initially loaded as, from the top to bottom, bQ, bi, b2,..., bm, bm, 6m_i, 
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6m_2,... ,h as shown in Fig. 6.1. Note from (6.1) that s(i) 

0,1 ,2 , . . . ,2m, or 

fy) = bs(0) — bs(2m+l) 

s(2m + 1 — i) for i = 

b\ = bs(1 '»(i) = b. s(2m) 

= b 

bm-i 

s(m) 

^s(m+l) 

•?s(m+2) 

^ ( m + l ) 

= b 

= b 

s(m) 

's{m— 1) 

frl = frs(2m) = bs(\) 

Then register i? can be viewed as two virtual (2m + 1)-bit registers Ri and R2 as shown in 

Fig. 6.2(b): From the top to the bottom, one (R{) contains 6s(o), 6s(i), bs(2), • • •, fcs(2m), and 

the other (i?2) contains bs{2m+1), fcs(2m), bs{2m-i),-.., 6s(i) • 

k 

~n &0 

6/ 
; 

bm 

bm 

bm-i 

'. 

b2 

bi 

1 

R 

(a) 

/?, 

(b) 

i 

1 

bs(0) 

bS(i) 

• 

bs(m) 

bs(m+i) 

bs(m+2) 

; 

bs(2m-l) 

bs(2m) 

_ l 

i k 

^ 
bs(2m+l) 

b$(2m) 

'. 

bs(m+I) 

bs(m) 

bs(m-l) 

• 

bs(2) 

bs(i) 

I 

R-

Figure 6.2: Viewing the (2m + l)-bit circular shift register R as two virtual (2m + l)-bit 

circular shift registers R\ and R2 

The following two lemmas are useful for description of the Permutation/Expansion 
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module. 

Lemma 6.3.1. If the content of the ith bit (the bit at top as bit zero) of Ri is given as 

r[ I = bs(h) at the clock cycle £ for some integer h, then its contents will be r[ ^ = fr^-i) 

at the next clock cycle. 

Proof: The contents of Rj starting from the top bit at clock cycle £ can be any (2m + 1) 

consecutive bits in the sequence 

bs(0), &s(l) > • • • > bs(2m), K(0): &s(l) > • • • > bs(2m) > &s(0) i ^ s ( l ) , • • • j &s(2m), • • • • 

So it is obvious r[ ^ = bs^-i) if h > 0. If h = 0 then rj t- = 6s(2m). The lemma follows 

by noting that bs{2m) = K(-i) from (6.1). • 

Lemma 6.3.2. If the content of the ith bit of R2 is given as r2 \ = bs(h) a t the clock cycle £ 

for some integer h, then its contents will be r21
+ = &s(/i+i) a t the next clock cycle. 

Proof: The contents of R2 starting from the top bit at clock cycle £ can be any (2m + 1) 

consecutive bits in the sequence 

bs(2m+l), bs(2m) j • • • > &s(l) > O s ( 2 m + l ) > ^ s (2m) j • • • j ^ s ( l ) j ^ s ( 2 m + l ) > ^s (2m) j • • • j &s ( l ) , • • • • 

So it is obvious r^/" = &s(M-i) if h ^ 2m + 1. If /i = 2m + 1 then r^- = &s(i). The 

lemma follows by noting that bs^ — bs(2m+2) from (6.1). D 

For given i and g in dig as in (6.5), every clock cycle the variable in the function s(-) in­

creases by one in bs(i+gw+e), and decreases by one in bs^gw^^. So following Lemmas 6.3.1 

and 6.3.2 the input bs^i+gw+e) is connected to bit (i+gw+£) of R2 while the input bs^gw-e) 

is connected to bit (i - gw — £) of R^. Then it is easy to see that Expansion/Permutation 

is just a reordering and copying module which does not contain any gates. This module 

accepts 2m + 1 inputs from the circular shift register and provides 2A:m outputs for the 

layer of XOR gates. 

The critical path for the proposed multiplier contains one AND gate and two XOR gates 

as shown in the block formed by dashed lines in Fig. 6.1. Let TA and Tx respectively denote 
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the delay of a two-input AND gate and a two-input XOR gate, Then critical path delay is 

Tcp = TA + 2TX. Note that the critical path delay depends on neither the field size m nor 

the word size w. It is worth to point out that the binary tree of k — 1 XOR gates is not part of 

the critical path since the k summation for the Cj outputs has to be calculated only once at 

the end of the multiplication. Consequently, the product bits are not immediately available 

following w clock cycles. Instead a time delay of amount about equal to Tex = |~log2 k]Tx 

has to be spent before the product bits are generated at the output ends. 

Two options are available for the multipliers to act during the time spent for the final 

addition of the partial products. In the first option, the multiplier clock should be stopped 

after w clock cycles and the outputs can be read from the output ports after the addition de­

lay which can be measured approximately beforehand. This style requires an extra counter 

but can save dynamic power consumption during the final addition. 

The second option is to enter zero input bits for input A once the w clock cycles are 

over. This will eliminate the need for stopping the clock signal of the multiplier and does 

not require extra circuitry. The output product bits can be read from the output ports af­

ter certain number of clock cycles immediately following w cycles. The exact number 

clock cycles required for a multiplication operation can be computed beforehand, which is 

(assuming that the clock period is chosen to be the critical path delay T.) 

-\log2 k]Tx-

TA + 2TX 

For example, when m = 233 and w = 32, k — \m/w\ = 8. Then the product bits 

are available after a time delay of Tex = |~log2 k]Tx = STX following w = 32 clock 

cycles. Since the extra time delay Tex = 4TX is less than twice of the critical time delay 

Tcp = TA + 2TX (assuming that TA ~ Tx/2 and the system clock period is chosen to be 

the critical time delay)2 , in practical implementation the product bits can be read out after 

w + 2 = 34 clock cycles while two zero bits have to be appended to every input word for 

2In a typical CMOS VLSI realization, the delay of an AND gate is about half of that of an XOR gate [5]. 

w + 
ip. 

T. 
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the operand A. In the rest of the chapter, we assume that the second option is adopted for 

the multiplier. 

6.3.3 Architecture complexities 

The area and delay complexity of the proposed design can be determined from Fig. 6.1. 

From the top to the bottom, the complexity of each part of multiplier can be obtained as 

follows. The circular shift register R contains 2m + 1 flip-flops. Expansion/Permutation 

module does not contain any gates or flip-flops. There are respectively mk gates in the 

layers of XOR gates and AND gates. The number of accumulation units is also mk, which 

each contains one flip-flops and one XOR gate. The m binary trees of XOR gates at the 

bottom consists of in total m(k — 1) XOR gates. The complexities can be summarized as 

follows: 

#AND 

km 

#XOR 

(3k — \)m 

# Registers 

(k + 2)m + 1 

6.3.4 An example 

A proposed word-level multiplier in GF(23) using reordered normal basis is shown in 

Fig. 6.3. The word size is chosen to be w = 2 and then k = \m/w\ = 2. The critical path 

delay is Tcp = TA + 2Tx • It takes w + 1 = 3 clock cycles to complete one multiplication, 

since one extra cycle is needed due to the time delay caused by the XOR gate at the output 

ends. Correspondingly, a zero bit has to be appended to the end of each of the two input 

words for the operand A so that the contents of the flip-flops in the accumulation units 

remain unchanged during the last clock cycle. 
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Figure 6.3: Architecture of WL-RNB I in GF(23) with w = k = 2 

6.4 Proposed High Speed Word Level Multiplier Type Two 

Using Reordered Normal Basis 

6.4.1 Word-level multiplication algorithm using reordered normal ba­

sis 

Let w, k, g, and £ be defined as in Subsection III.A. It follows from (6.4) 

fc—1 w 

g=0 (=1 

fe —1 w w 

— 2_^ 2_^ agw+ebs(i+gW+e) + 2_^ agw+^s(i-gw-e) • (6.7) 
g=0 1=1 1=1 
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Define signals d\c^ and e-j , i = 1, 2 , . . . , m, g = 0 , 1 , . . . , k — 1, for I = 1, 2 , . . . , w, as 

follows 

«S - =» 
" i ,3 — ai,g + «gu;+£O s( j+ g u ,+^) 

«S = o 
J!) - PV-V 
Ki,g — Ki,g 

gw+t"s(i—gw~£ 

Then it follows from (6.8) 

d M _ 
9 

» 
-"1,9 

Compare (6.7) with (6.9) it follows 

fe-i 

/ _, agw+ebs(i+gw+£), 
e=i 

w 

/ J
 agw+(Ps(i-gw-C) • 

e=i 

fe-i fc-i 
» 

••,g ' 

(6.8) 

(6.9) 

3=0 3=0 3=0 

An algorithm form for a high speed word-level multiplication is shown as follows. 

Algorithm 7. Word-level reordered normal basis (RNB) multiplication algorithm II 

Input: A = (a,i,..., am), B = (bj,..., bm), both w.r.t. RNB, 

and the word size w, 1 < w < m 

Output: C = A x B = ( c ! , . . . , c m ) also w.r.t. RNB 
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Initialization: k = \m/w], and df^g = 0, ef^ = 0 

for i = 1,2,... ,m andg = 0 , 1 , . . . , k — 1 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

For all values of i = 1, 2 , . . . , m, compute 

For all values of g = 0 , 1 , . . . , k — 1, compute 

For £ = 1 To w By Step One 

• M J ( * - 1 ) , . 

"i,ff — ai,g + <V«+^0s(i+s™+^ 

ei,g — ei,g + agw+£t>s(i-gw-l) 

End For 
fe-i fc-i 

^ = E«+EeS} 
9=0 3=0 

End For 

End For 

6.4.2 Multiplier architecture 

A word-level multiplier following Algorithm 7 using RNB, which is referred to as WL-

RNB II, is shown in Fig. 6.4. It can be seen that the architecture is similar to that of 

WL-RNB I. The (2m + l)-bit circular shift register and the Expansion/Permutation module 

are the same for the two architectures. 

The main difference between the two multiplier architectures lies within the blocks of 

dashed lines respectively shown in Fig. 6.1 and Fig. 6.4. In the dashed block of WLM-RNB 

I shown in Fig. 6.1, the two bits of operand B are first added together and then the sum 

multiplies one bit of A to produce a partial product bit. The partial product bit is then fed 

into the accumulation unit. After w clock cycles the content of the accumulation unit along 

with those of the other k — 1 accumulation units is fed into the XOR network to generate 

one product bit c*. 

The dashes block of WL-RNB II has the same inputs of two bits of B as that of WL-

RNB I. Each input bit is first multiplies one bit of A to produce a partial product bit. The 

partial product bit is then fed into the accumulation unit. After w clock cycles the content 
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R 

a a-,, a 

ai^„ a / z - - / l w + ? ' a j 'kw u(k-l)w+2 • u(k-l)w+l 

Figure 6.4: Proposed word-level high speed multiplier using reordered normal basis 

of the accumulation unit along with those of the other 2k — 1 accumulation units is fed into 

the XOR network to generate one product bit a. Note that the critical path for WL-RNB II 

contains only one AND and one XOR gate, which is shorter than that of WL-RNB I by one 

XOR gate. The final XOR gate network for generating ct has 2k inputs, twice of the XOR 

network in WL-RNB I. So the final product bits are available after an extra time delay of 

about \log2(2k)]Tx immediately follow w clock cycles. 

6.4.3 Architecture complexity 

The area and delay complexity of the proposed design can be determined from Fig. 6.4. 

Registers are presented in two parts of the design, first part is the circular shift register, 
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R, which contains 2m + 1 flip-flops. The second part is the one bit flip-flops that hold 

the partial sum of the output product bits, which their number is equal to 2km since each 

output bit uses 2k flip-flops. The total number of two-input AND gates is equal to 2km 

since each output product bit uses 2k two-input AND gates. XOR gates exist in two parts 

of the architecture. The first part is XOR gates that follow the AND gates. For each output 

product the number of these two-input XOR gates is equal to 2k which is the same as 

the number of AND gates. For rn output products, totally 2km of these two-input XOR 

gates exist. The second part is the 2/c-input XOR gates which exist for each of the output 

product bits. The equivalent number of two-input XOR gates to implement these 2fc-input 

XOR gates is equal to 2{k — \)m. Consequently The equivalent number of two-input XOR 

gates in the architecture is equal to (4fc — l)ra. So the complexities can be summarized as 

follows: 

#AND 

2km 

#XOR 

\km — m 

# Registers 

2km + 2m + 1 

The critical path delay is Tcp = TA + TX. Similar to WL-RNB I, the product bits are 

not immediately available following w clock cycles. Instead a time delay of amount about 

equal to Tex = [log2 2k]Tx has to be spent before the product bits are generated at the 

output ends. If the clock period is chosen to be equal to the critical path delay, the total 

number of clock cycles for completing a multiplication is 

, rriog22fcirx1 
w+ -T^TT' 

Take again the example of m = 233 and w = 32, k = \m/w~\ = 8. Then the product 

bits are available after a time delay of |"log2 2k]Tx = 4TX following w = 32 clock cycles. 

Since the extra time delay Tex = 4TX is about three times of the critical time delay Tcp = 

Tx + TA, in practical implementation the product bits can be read out after w + 3 = 35 

clock cycles while three zero bits have to be appended to the end of each input word from 

A to keep the contents of the flip-flops of the accumulation units unchanged during the last 

three clock cycles. 
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6.4.4 An example 

0,0, a,, a 

0,0,0,a 

Figure 6.5: Architecture of WLM-RNB-II in GF(23) with w = k = 2 

A diagram of WL-RNB-II in GF(23) is shown in Fig. 6.5. The word size is chosen to 

be w = 2 and then k = \m/w\ = 2. The critical path delay is Tcp = TA + TX. Since a 

binary tree of 4 XOR gates is used at the output ends to generate the final product bits Ci 

which has a time delay of 2TX, two extra clock cycles following w clock cycles are needed 

before the product bits are available at the output ends. Correspondingly, two zero bits have 

to be appended to each of the two input words for the operand A so that the contents of the 

flip-flops in the accumulation units remain unchanged during the last two clock cycles. 

6.5 Comparisons 

Complexity comparison between the proposed multipliers and some other multipliers in the 

literature is made and shown in Table 6.1. Since a reordered normal basis is a permutation 

of a type II ONB, it should be interesting to have complexity comparison of the proposed 

75 



6. HIGH SPEED WORD LEVEL MULTIPLIERS IN GF(2M) USING REORDERED NORMAL BASIS 

reordered normal basis multipliers to some popular NB multipliers for the class of fields 

that there exists a type II ONB. These architectures are shown in the top six rows in the 

table. The table also includes two previously proposed word-level reordered normal basis 

multipliers as shown in rows seven and eight. 

The first row of Table 6.1 represents the word-level Massey-Omura (WLMO) multi­

plier which uses k identical bit-level Massey-Omura multipliers [22], while the second row 

shows the improved Massey-Omura multiplier (IMO) [11]. The AND-efficient digit-serial 

(AEDS) and XOR-efficient digit-serial (XEDS) multipliers proposed in [36] are shown at 

the third and fourth rows of the table. Fifth and sixth rows of the table represent respec­

tively the word-level sequential multipliers with parallel output type I and type II, which 

were recently reported in [37]. 

The seventh row of the table shows the Hybrid PISO architecture proposed in [44] 

with k levels of pipelining and the eighth row gives the Comb Style architecture recently 

proposed in [31]. The last two rows of the table present the proposed architectures WL-

RNB I and WL-RNB II. 

As can be seen the critical path delays (Tcp) of the proposed architectures are indepen­

dent of the field size m or the word size w, and much smaller than any other previously 

proposed word-level architectures shown in the table. Note that the gain in the clock speed 

is at the expense of using significantly more flip-flops for both WL-RNB I and WL-RNB 

II and more VLSI gates for WL-RNB II. 

The last column (Multiplication Delay) of Table 6.1 represents the time it takes to 

complete one multiplication operation for a multiplier. Note that proposed multipliers 

need some extra time (flog2 k]Tx or |~log2 2k]Tx) besides w clock cycles. If the system 

clock period is chosen as the critical path delay, to complete one multiplication operation 

WL-RNB I would take w + [ r ^ g * ] clock cycles while WL-RNB II would require 

w+ r r ' r j+?J x ] clock cycles. 

For the purpose of illustration we have tabulated the area-delay complexity for the pro-
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Table 6.1: Complexities comparison 
Multiplier 

WLMO [22] 

IMO[ll] 

AEDS [36] 

XEDS [36] 

tu-SMPOI [37] 

UJ-SMPOII [37] 

PISO [44] 

Comb Style [31] 

WL-RNB I 

WL-RNB II 

Basis 

ONBII 

ONBII 

ONBII 

ONBII 

ONBII 

ONBII 

RNB 

RNB 

RNB 

RNB 

#AND 

k(2m - 1) 

km 

k(m - \k + J) 
k(2m - k) 

fe(lf J + l ) + m 
km + m 

km 

km. 

km 

1km 

#XOR 

k(2m - 2) 

fc(2m - 2) 

k(3m - k - 2) 

k(2m - | fc _ 2 ) 

k(2m - 1) 

k(m+[!f j ) 

k(2m - 1) 

2km 

2km 

(4k - l ) m 

#Reg 

2m 

2m 

2m 

2m 

3m 

3m 

2 m + 1 

3m + 1 

(k + 2)m + I 

2(k + l ) m + 1 

Critical Path Delay (T c p ) 

T A + ( l + r i o g 2 m l ) T x 

T A + ( 1 + [log2 m ] ) T x 

T A + ( l + r i o g 2 m 1 ) T x 

T A + ( 1 + r i o g 2 m l ) T x 

2 T A + (3 + r i o g 2 ( f e - l ) l ) T x 

2 T A + ( 3 + r i ° g 2 ( f e - 1)1 ) T X 

T A + ( 1 + r i o g 2 m l ) T x 

TA + (1+ r i o g 2 ( f e + l ) l ) T x 

TA + 2 T X 

TA+TX 

Multiplication Delay 

uiTcp 

wTcp 

wTcp 

uiTcp 

wTcp 

wTcp 

wTcp 

wTap 

™Tcp + r i oE2 *1 Tx 

wTcp + r i o g 2 2 f c ! T x 

posed architectures with the previously proposed multipliers in Table 6.2. The field size is 

chosen as m = 233 because the field GF(2233) is both one of the few recommendations by 

National Institute of Standards and Technology (NIST) [34] and a field where there exists 

a type II ONB or a reordered normal basis. Word sizes of 16,32 and 64 bits are adopted 

which represent some typical bus width for a general processor or an embedded computer 

system. 

The following assumptions are made in Table 6.2: The VLSI area of an XOR gate and a 

flip-flop are assumed to be twice and three times of the area of an AND gate respectively3. 

It is also assumed that the area of an AND gate is 1. The row Area Cost in Table 6.2 

represents the sum of the number of AND gates, twice the number of XOR gates and three 

times the number of registers. The delay for an XOR gate is assumed to be twice of that 

for an AND gate [5]. If the delay of an AND is assumed to be 1, the row Delay Cost in 

Table 6.2 represents the multiplication delay in terms of times of the delay of an AND gate. 

Compared to the other architectures the proposed architectures have much smaller de­

lay cost at expense of modestly higher area cost. Note that both area and delay are the 

objectives to minimize for a word-level multiplier, and decreasing one is usually at the ex­

pense of increasing the other. In Table 6.2 we also used area-delay product to show the 

balance between the changes of area cost and delay cost, which is given at the last column 

3In a typical CMOS VLSI realization, an AND gate can be implemented with 6 transistors, while an XOR 

gate and one flip-flop with set/reset inputs can be implemented with 12 and 16 transistors, respectively [40]. 
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Table 6.2: Complexity comparison of word-level type II optimal normal basis or reordered 

)imal basis 
Multiplier 

WLMO [22]e 

IMO[ll] 

AEDS [36J 

XEDS [36] 

tu-SMPOI [37] 

tu-SMPOII [37] 

PISO [44] 

Comb Style [31] 

WL-RNBI 

WL-RNB II 

WLMO [22] 

IMO[ll] 

AEDS [36] 

XEDS |36] 

m-SMPOI [37] 

lu-SMPOIl [37] 

PISO [441 

Comb Style [31] 

WL-RNB I 

WL-RNB II 

WLMO [22] 

IMO[ll] 

AEDS [36] 

XEDS [36] 

IU-SMPOI [37] 

m-SMPOII [37] 

PISO [44] 

Comb Style [31] 

WL-RNB I 

WL-RNB II 

multi 

Basis 

ONBII 

ONBI1 

ONBII 

ONBII 

ONBII 

ONBII 

RNB 

RNB 

RNB 

RNB 

ONBII 

ONBII 

ONBII 

ONBII 

ONBII 

ONBII 

RNB 

RNB 

RNB 

RNB 

ONBII 

ONBII 

ONBII 

ONBII 

ONBII 

ONBII 

RNB 

RNB 

RNB 

RNB 

)liers in u^C 
w, k 

16, 15 

32 ,8 

64 ,4 

#AND 

6975 

3495 

3390 

6765 

1988 

3728 

3495 

3495 

3495 

3990 

3720 

1864 

1836 

3664 

1169 

2097 

1864 

1864 

1864 

3728 

1860 

932 

926 

1848 

701 

1165 

932 

932 

932 

1864 

2*°°) 1 
#XOR 

6960 

6960 

10230 

6855 

6975 

5235 

6975 

6990 

6990 

13747 

3712 

3712 

5512 

3684 

3720 

2792 

3720 

3728 

3728 

7223 

1856 

1856 

2772 

1850 

1860 

1396 

1860 

1864 

1864 

3495 

or dine 
#Register 

466 

466 

466 

466 

699 

699 

467 

700 

3962 

7457 

466 

466 

466 

466 

699 

699 

467 

700 

2331 

4159 

466 

466 

466 

466 

699 

699 

467 

700 

1399 

2331 

rent values or u, 
Area Cost 

(NA + 2NX + 3JVH) 

22293 

18813 

25248 

21873 

18035 

16295 

18846 

19575 

29361 

53855 

12542 

10686 

14258 

12430 

10706 

9778 

10705 

11420 

16313 

30651 

6970 

6042 

7868 

6946 

6518 

6054 

6053 

6460 

8857 

15847 

, fc . 
Delay Cost 

(TA = 1, Tx = 2) 

16TA + 144TX = 304 

16T A + 144T X = 304 

16T A + 144T X = 304 

16T A + 144T X = 304 

32T A + 112T X = 256 

3 2 T A + 112T X = 256 

16TA + 144T X = 304 

16TA + 8 0 T X = 176 

I 6 T 4 + 3 6 T X = 88 

I 6 T 4 + 2 1 T X = 58 

32T A + 288T X = 608 

32T A + 288T X = 608 

32T A + 288T X = 608 

32T A + 288T X = 608 

64T A + 192T X = 448 

64T A + 192T X = 448 

32T A + 288T X = 608 

32T A + 160T X = 352 

32TA + 6 7 T X = 166 

32T A + 3 6 T X = 104 

64T A + 576T X = 1216 

64T A + 576T X = 1216 

64T A + 576T X = 1216 

64T A + 576T X = 1216 

128TA + 320T X = 768 

128TA + 320T X = 768 

6 4 T A + 567T X = 1198 

64T A + 256T X = 576 

64T A + 130T X = 324 

64T A + 6 7 T X = 198 

Area X Delay 

6777072 

5719152 

7675392 

6649392 

4616960 

4171520 

5729184 

3445200 

2583768 

3123590 

7625536 

6497088 

8668864 

7557440 

4796288 

4380544 

6508640 

4019840 

2707958 

3187704 

8475520 

7347072 

9567488 

8446336 

5005824 

4649472 

7251494 

3720960 

2869668 

3137706 

in the table. It can be seen that for all three word sizes, the area-delay-product for both 

the new multipliers is much smaller than all the previously proposed architectures listed 

in the table. In fact, the area-delay-product for WL-RNB I is only 75%, 67%, and 77% 

of the previously proposed multiplier with smallest area-delay-product, Comb Style [31], 

for word sizes 16,32, and 64, respectively. WL-RNB II has a slightly higher area-delay-

product than WL-RNB I, but the former has the highest speed among all the multipliers 

listed in the table. 
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6.6 Conclusions 

Two high speed word-level finite field multipliers in GF(2m) using reordered normal basis 

are presented. Architectural complexity comparison and numerical examples show that the 

new architectures are faster compared to other similar proposals using either NB or RNB 

for the same class of fields. One unique feature of the proposed architectures is that the 

critical path delay of the multiplier is not a function of the field size or the word size which 

is the case for the previously proposed word-level multipliers. The high speed nature of 

the multipliers makes them suitable for high speed public-key cryptography applications 

where fast finite field multipliers in large fields are needed. 
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Chapter 7 

High Speed VLSI Implementation of a 

Multiplier Using Redundant 

Representation 

7.1 Introduction 

Finite field arithmetic has important applications in number theory, algebraic geometry, and 

cryptography, particularly in public key cryptography [25, 6]. Elliptic curve and El-Gamal 

cryptosystems are two important examples of public key cryptosystems based completely 

on finite field arithmetic [28, 6]. Two types of finite fields are commonly used in practice, 

prime field F p and the binary field F2">. Binary field is an extension of the prime field, 

F2, which contains 2™ elements. Binary fields are attractive for high speed cryptography 

applications since they are suitable for hardware implementation [28, 18]. 

The efficiency of finite field multiplication depends on the choice of the basis to repre-
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sent field elements. Few bases have been proposed in literature, including the polynomial 

basis, normal basis (NB), dual bases, triangular basis, and redundant representation, or 

redundant basis [18, 44, 37, 16]. 

Redundant representation is especially interesting because it not only offers an almost 

free squaring operation, but also eliminates modular operation for multiplication. The main 

concept for multiplication using redundant representation is to embed a field in a larger 

ring and perform the multiplication in the ring [44]. Since embedding a field is not unique, 

each field element in the ring can be represented in more than one way, such that the 

representation contains certain amount of redundancy. 

The main drawback for the redundant representation is that it uses more bits to repre­

sent a field element, where the number of representation bits depends on the size of the 

cyclotomic ring. If a type I optimal normal basis (ONB) exists in W2™, the number of bits 

required for a redundant representation of a field element is m + 1. 

In this chapter, a new VLSI implementation for a finite field multiplier using redun­

dant basis is proposed. Simulation of the final post place-and-route layout shows that the 

multiplier can be clocked up to 1.82 GHz, which is 143% faster than the static CMOS im­

plementation of the same design with a Virtual Silicon standard cell logic library. Also, 

the proposed design occupies nearly 16% less silicon area compared to the static CMOS 

implementation. 

Improvements for the new VLSI implementation comes from the fact that the selected 

multiplier has a very regular architecture and can be implemented completely with multi­

ples of one simple building block. This block, x-module, is made out of one XOR gate, one 

AND gate, and a flip-flop. The AND-XOR function is achieved with a domino logic cell, 

and the flip-flop is selected to possess a negative edge triggered, zero hold time, D-flipflop; 

properties which are required to properly latch the output data of the domino logic cell. 

In our VLSI implementation, we have selected an input size of 197 bits, which is in 

the practical range for cryptography applications [18, 6]. The proposed multiplier design 
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is intended to be used inside an elliptic curve processor, consequently, it was designed as a 

macro module without any I/O pads. 

The organization of the rest of the chapter is as follows: Section 2 is a brief review of 

redundant basis representation, multiplication and multiplier architectures. In section 3, the 

design and implementation of the x-module is discussed. Section 4 presents the implemen­

tation of a large size multiplier using the x-module as the main building block. Section 5 

examines the static CMOS implementation of the multiplier. In section 6, comparisons be­

tween different VLSI implementations are presented. A few concluding remarks are given 

in section 7. 

7.2 A Brief Review of Redundant Basis and its Arithmetic 

inF2« 

7.2.1 Redundant Basis for F2« 

Let K be a field, and f(x) G K[x] be a polynomial defined over K. Then the field that 

contains all the roots of f(x) is called the splitting field of the polynomial f(x). The 

splitting field of xn — 1 is called the nth cyclotomic field, denoted by K^. Let (3 be a 

primitive nth root of unity. Then K^ is generated by fJ over K and elements in K can be 

represented in the form 

A = a0 + at/3 + a2p
2 + ••• + a„_i/3n_1, a* e K. 

Thus the set [1, (3,(32,..., /3n_1] can be viewed as a basis for K^ [13, 14]. Since 1 + 0 + 

P2 + • • • + (3n~l = 0, the representation of A is not unique. For example, the two n-tuples 

(CLQ, CLI, ..., a„_i) and (1 — a®, 1 — a\,..., 1 — an_i) represent the same element A. So, the 

basis [1, /?, / ? 2 , . . . , P71"1] is called redundant basis for any subfield of K^n\ Note that the 
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elements in the redundant basis form a cyclic group of order n and 

1 i = n — 1. 

7.2.2 Redundant Basis Multiplication in F2« 

Consider the redundant basis in F2™ over F2: 

/= [ l , / 3 , /3 2 , . . . , / 3 " - 1 ] . 

Let field elements A,B£ F2m to be represented with respect to / : 

A = a0 + axp + a2p
2 + h a ^ ^ " " 1 , 

where aj, 6j G F2 , i = 0 , 1 , . . . , n — 1. Note that n > m + 1 and the sets of coefficients 

{aj} and {6;} are not unique. Also note that (3n = 1. Then multiplication operation using 

the redundant basis / can be given by 

(?-B = b0f3
i + b1(3

i+1 + --- + bn_i + --- + bn_1p
i-1 

= bn-i + &„-i+i/3 + ••• + boP' + ••• + bn-i-xP71'1 

n-\ 

3=0 

where (j — i) denotes that j — z is to be reduced modulo n. Then the product of field ele­

ments A and B can be given by 
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n - l 

A-B = ^ T o ^ - B ) 
j=0 
n—1 n—1 

i=0 j=0 

n—1 n—1 

= E(E°^(^))^- c7-1) 

n - l 

If we define A • B = C = J ^ c ^ ' , then Cj can be given by 

n - l 
ci = E a«%-*)' J = 0,1, . . . , n - 1. (7.2) 

j = 0 

7.2.3 Redundant Basis and Normal Basis 

Normal basis is the most popular basis for hardware implementations of finite field arith­

metic since the squaring operation in normal basis is simply a cyclic shift of the coordinates 

of the elements [25]. The complexity of multiplication under normal basis is minimized for 

two subclasses of normal basis referred to as optimal normal basis type I and II, which is 

the main reason that they are often used in practice to implement cryptosystems [30],[33]. 

For the class of fields where there exists a type I optimal normal basis, redundant basis 

elements (except the element '1') are a permutation of the optimal normal basis elements 

[44]. Due to this property, an (m + l)-bit redundant basis multiplier can be employed as 

an m-bit optimal normal basis type I multiplier. This property was used to select the size 

of the multiplier, so that it can perform operations over optimal normal basis type I. 
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7.2.4 Multiplier Architecture in Redundant Basis 

Different architectures have been proposed for multiplication in redundant basis [44],[32], 

all of which realize (7.2). In this work, we are mainly interested in an architecture recently 

proposed in [32], which is shown in Fig. 7.1. 

* » . * ; >>„-!• b„-i-

X. R° X R' X R«2 X R"-i 

I—K5-H I •©-*! !-»• • • • •@-H I •©-*L_r~*i 

Figure 7.1: High Speed Serial Multiplier in Redundant Basis 

In their architecture, all bits of the operand A should be held constant throughout the 

multiplication operation, while operand B is available in bit-serial fashion. The contents 

of the n flip-flops should be initialized to zero, while the n output bits of the multiplier can 

be read from the flip-flops after n clock cycles. 

The main advantage of this architecture is its small critical path delay, which is equal to 

the delay of one XOR gate in addition to the delay of one AND gate. The high regularity of 

the architecture's structure is another major advantage. It has been proven that the architec­

ture shown in Fig.7.1 has the smallest critical path delay, and the smallest area compared 

to all other similar multipliers [32]. 

Kb, *„, 

x-module 

(«) iP) 

Figure 7.2: (a) x-module Block Detail (b) Multiplier Composed of x-module Blocks 

The aforementioned multiplier can be modeled as a series of connected blocks com­

posed of one XOR gate, one AND gate and a flip-flop. We refer to this block as x-module. 
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The detailed view of the x-module block, and the multiplier composed of a series of x-

module blocks is shown in Fig. 7.2. 

7.3 Design of the Multiplier Main Building Block (x-module) 

Reducing the delay of the AND-XOR function in the x-module will result in an increased 

multiplication speed. One way to do so is to implement the critical path made out of one 

AND gate, and one XOR gate in domino logic, [40]. However, careful considerations must 

be taken into account when designing such circuits [39]. 

The schematic of the implemented domino AND-XOR function is shown in Fig. 7.3. 

As shown, the design is quite simple, consisting of 18 transistors. Transistor PI acts as the 

pull-up network, charging the node Q during the precharge state. Transistors N2-8 form the 

pull down network responsible for discharging node Q when the appropriate combinations 

of inputs exist. N2-8 connect to the evaluate transistor, N9, which opens a path to ground 

during the evaluate phase. Transistor P3 is the keeper, reducing the charge leakage effect 

at node Q. 

Transistors P0 and NO create the output NOT stage, providing the output current drawn 

from the module. Three NOT gates also exist in the module (which are not shown in figure), 

which generate the complements of the module inputs. 

The final layout for the domino logic block is shown in Fig 7.4. The height for the 

layout was set to be the same as the height of the standard cell technology from which the 

D-flipflop was selected: 16.50 /im. The total area for the x-module layout was measured to 

be equal to 108.24 iim2. 

The flipflop used in the design of the x-module was selected from the Virtual Sili­

con CMOS library. Care was taken to select an appropriate flip-flop to interface with our 

domino-logic cell. A negative-edge triggered flip-flop was needed to maximize the time 

available for the domino cell to evaluate. Furthermore, it was required to have a hold-time 
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^ O U T 

Figure 7.3: AND - XOR Function in Domino Logic 

• *l ' • ! "*l3 JJSLA ' 

9 
• * * "K 

Figure 7.4: Layout for the AND-XOR Function in Domino Logic 

less than or equal to zero, as the domino cell's output becomes invalid immediately after 

the falling edge of the clock. 
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7.4 Design of a Practical Size Multiplier Using the x-module 

For our multiplier, we have selected an input size of 197 bits for two main reasons. First, 

the size is in the practical range for cryptography applications [18]. Second, there exists 

an optimal normal basis type I for the field size of 196, for which our multiplier would be 

applicable [33]. 

The design has been carried out with Virtuoso Layout Editor and the Cadence Schematic 

Composer. The design process began by replicating 196 x-module blocks, and connecting 

them serially. 14 blocks were used in each row, which set the total number of rows needed 

to 14. One extra x-module block was placed along the side bringing the total to 197. 

Also, 14 buffers were selected from the standard CMOS library and carefully connected 

to generate the clock tree for the multiplier. Input B, was also connected to tree structures 

of appropriately sized buffers. Other inputs were also correctly buffered to enable high 

performance while complying with loading requirements. The final layout for the proposed 

design is shown in Fig. 7.5, its size was measured to be 481.97 /jm x 125.49 \im. 

Figure 7.5: Proposed 197 Bit Multiplier Layout 

The final layout of the multiplier including all parasitic capacitances was simulated 

with Cadence's Analog Environment using Spectre. The circuit performed correctly up to 

a clock rate of 1.82 GHz. Simulation waveforms for the clock frequency of 1.72 GHz are 

shown in Fig. 7.6. In this figure, the first two rows represent the buffered inputs a, and b 

to the x-module, and the third row represents the third input, c, which is connected to the 

previous x-module's output. The fourth and fifths rows are the voltage at nodes Q and P of 
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the x-module (shown in Fig. 7.3), while the sixth row indicates the output of the D-flipfiop, 

which is the output of the x-module. Finally, the last row shows the clock output of the 

clock tree as it enters the x-module. 

Figure 7.6: Post Place-and-Route Simulation Result of the Proposed 197 Bit Multiplier, 

from top to bottom: input A, input B, input C, node Q, node R, x-module out, clock 

7.5 Design of Practical Size Multiplier Using static CMOS 

We began the static CMOS design process by writing the parametrized C code to generate 

the VHDL code describing the multiplier hardware. Using this method, different size mul­

tipliers are easily generated by changing parameters in the C code. The generated VHDL 

code was synthesized afterwards to a gate-level netlist using Synopsys' Design Compiler. 

Next, the gate-level netlist was used for partitioning, placement and routing the multiplier 

module using Cadence Encounter; the clock tree was also generated using Encounter's 

Clock Synthesizer. 
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The post Place-and-Route area of the multiplier was 72083.85 /im2 which could be 

clocked up to 748 MHz. The total number of standard cells used was 987, while achieving 

a maximum gate density of 80%. The final layout for the static CMOS multiplier in shown 

in Fig. 7.6. 

Figure 7.7: Static CMOS 197 Bit Multiplier Layout 

7.6 Different VLSI implementation Comparisons 

Comparison between the two VLSI implementations are shown in Tab. 7.1. The first row 

of the table presents the static CMOS implementation from section 7.5, and the second row 
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represents the proposed design using our x-module. As shown, the clock rate increase is 

143%, while the area reduction is 16% for the proposed design compared to static CMOS. 

Table 7.1: Complexity Comparison between Two VLSI implementations for a 197 Bit 

Multiplier 

Architecture 

Static CMOS 

Proposed design 

Area 

72083.85 \im2 

60482.41 nm2 

Clock Frequency 

748 MHz 

1.82 GHz 

7.7 Conclusions 

A new VLSI implementation for a 197 bit finite field multiplier was presented. The pro­

posed design employs a main building block designed in domino logic. The speed improve­

ment was measured to be 143% in comparison to static CMOS implementation, while area 

reduction was 16%. The post place-and-route design was successfully simulated up to a 

clock rate of 1.82 GHz. Our proposed design has applications in public key cryptography, 

especially elliptic curve cryptosystems where high speed, large size multipliers are needed. 
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Chapter 8 

High Speed Implementation of a SIPO 

Multiplier Using Reordered Normal Basis 

8.1 Introduction 

Polynomial basis is the most widely used basis for hardware and software implementation. 

Normal basis, on the other hand, is more suitable for hardware implementation due to the 

simplicity of the squaring operation. In normal basis, the squaring operation is achieved 

via circular-shifting the element coefficients, which can be implemented in hardware at a 

very small cost. This leads to a similarly low cost / high speed squaring operation that can 

be used to accelerate the exponentiation operation by repeated squaring and multiplication 

via the Fermat theory [14], [21]. 

There exists two sub-classes of normal basis for which the complexity of the multiplica­

tion is minimized. These two classes are referred to as optimal normal basis (ONB) type I 

and II, which are particularly attractive for cryptography applications [30]. Many different 
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architectures have been proposed for multiplication using these two classes of finite fields 

such as in [37, 15, 9, 36]. Reordered normal basis is referred to as a certain permutation of 

a type II optimal normal basis [44, 12]. 

Not all field sizes are suitable for cryptography applications. According to different 

standards, different field sizes have been selected based on their suitability for cryptography 

applications. In this work we have selected the field size of 233, which is recommended 

in the NIST standard for elliptic curve digital signature standard [34]. There exist a type II 

optimal normal basis according to the IEEE standard for public key cryptography for this 

field size as well [33]. 

In this work, a new VLSI implementation for a Serial-In Parallel-Out finite field multi­

plier using a reordered normal basis is presented. It is shown that the new implementation 

operates at a much higher speed than a static CMOS implementation of the same archi­

tecture, while significantly reducing the area. This performance advantage is the result of 

implementing the design as a series connection of a simple block designed and optimized 

in domino logic, which has a smaller delay/area compared to the equivalent static CMOS 

realization. 

The organization of this chapter is as follows: Reordered normal basis and multipli­

cation using this basis are briefly reviewed in Section 2. In section 3, the design and 

implementation of the xax-module which is the main building block of the multiplier, is 

discussed. Section 4 presents the implementation of a 233-bit multiplier using the xax-

module as the main building block. Section 5 examines the static CMOS implementation 

of the same multiplier. In section 6, comparisons between different VLSI implementations 

are presented. A few concluding remarks are given in section 7. 
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8.2 A Brief Review of Reordered Normal Basis and Its 

Arithmetic in ¥2m 

8.2.1 Reordered Normal Basis Definition 

Theorem 8.2.1. [12] Let /3 be a primitive (2m + l) s t root of unity in F2™ (j32m+1 = 1) and 

7 = (3 + /?_ 1 generates a type II optimal normal basis. Then {7,, i = 1,2,.. . , m} with 

7 i = pi + p-* = ft + / ? 2 m + 1 - \ i = 1, 2 , . . . , TO, is also a basis in F2™. 

It has been shown that the basis {7*, i = 1, 2 , . . . , m} is actually a permutation of the 

normal basis {'j2\i = 0 , 1 , . . . , m — 1} [44]. We denote the basis I2 = [71,72, • • •, 7m] as 

the reordered normal basis following [44]. Note that reordered normal basis not only offers 

free squaring but also can avoid modulo reduction step in a multiplication operation. 

8.2.2 Reordered Normal Basis Multiplication 

Assume that A and B are two arbitrary elements in F2™ represented with respect to re­

ordered normal basis / = [71,72, • • •, 7m] and C = A.B, 

m m m 

A = ]P aai , B = ̂ 2 hli > C = ̂ 2 Cili-
2 = 1 2 = 1 2 = 1 

To facilitate multiplication, function s(i) has been defined, mapping set of integers to the 

set{0, 1 , . . . , 2 T O + 1 } [44]. 

A I i mod 2m + 1, if 0 < i mod 2m + 1 ^ m, 
s(i) = I 

I 2m + 1 — i mod 2m + 1, otherwise. 
Next compute jjA where 1 ^ j ^ TO, 

m m 

liA = Ti J ] ai7i = J ] a'b^(i+i) + 7»(<-i)]- (8-1) 
i = i i = i 

And also note that [44], 
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Then 

22 ai • hs{i+j) + ls{i-j)} = 22[as{i+j) + as^j)] • 7J. 

C = A $ > 7 j -
3 = 1 

E». 
j -1 

771 

E*. 
• 1 = 1 

m 

E». 
771 1 

,-(7j-.A) 

m 

771 

?^2[as(i+j) + 
•i=i 

m 

+ ls 

as(i-

(i-j)\ 

J)H 

j= l i = l 

(8.2) 

Note that it was assumed that a0 = 0 [44]. The value for Q can be calculated as follows: 

m 

Ci = ) ^bj[as(i+j) +as(j_i)], 

i = i 
m 

= ^2aAbs(i+j) + bs(j-i)]^ i = l,2,...,m. (8.3) 

8.2.3 A Review of Existing Architectures for ONB Type II Multiplica­

tion 

As mentioned in the previous section, ONB type II and reordered normal basis represen­

tation of an element are simple permutations of each other. Therefore, reordered normal 

basis multipliers can be used as optimal normal basis type II multipliers and vice versa. 

Many different architectures have been proposed for multiplication in normal basis. The 

complexity of different multipliers available in open literature are listed in table 8.1. 
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Multiplier 

MO [22] 

I M O [ l l ] 

GG[15] 

Feng [9] 

Agnew [1] 

XEDS [36] 

AEDS [36] 

w-SMPOI [37] 

tu-SMPOII [37] 

PISO [44] 

SIPO [44] 

#AND 

2 m - 1 

m 

m 

2 m - 1 

m 

2 m - 1 

m 

LfJ + i 
TO 

m 

m 

#XOR 

2 m - 2 

2 m - 2 

3 m - 1 
2 

3 m - 2 

2 m - 1 

2 m - 2 

3m — 3 

3m 

m+LfJ 
2 m - 1 

2m 

# flip-flops 

2m 

2m 

3m 

3 m - 2 

3m 

2m 

2m 

3m 

3m 

2 m + 1 

3 m + 1 

# Clock Cycles 

m 

m 

m 

m 

m 

m 

771 

m 

m 

m 

m 

Critical Path Delay 

TA + ( r i o g 2 ( 2 m - l ) l ) T x 

TA + (l + riog2ml)Tx 

TA + 3TX 

TA + ATX 

TA + 2TX 

TA + (\[og2(2m-l)])Tx 

TA + (\[OS2(2m-l)-])Tx 

TA+3TX 

TA + 3TX 

TA + (1 + log2 m ) T x 

TA + 2 T X 

Basis 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Normal 

Reordered 

Reordered 

Table 8.1: Complexities Comparison Between Type II ONB / Reordered Normal Basis 

Multipliers 

In this table the first row represents the famous Massey-Omura normal basis multiplier, 

and the second row represents the improved version proposed by Gao and Sobelman. The 

third row shows the architecture proposed by Geisellman and Gollman, which exploits the 

symmetry property of the normal basis. The fourth and the fifth rows list the architec­

tures proposed by Feng and Agnew respectively. The next two rows represent Reyhani's 

architecture XOR Efficient Digit Serial and AND Efficient Digit Serial multipliers, while 

the next two rows show the Sequential Multipliers with Parallel Output type I and II, also 

proposed by Reyhani. The last two rows list the Serial-In Parallel-Out and Parallel-In 

Serial-Out reordered normal basis multipliers recently proposed by Wu. As can be seen 

from the table, the Agnew architecture (fifth row) and Serial-In Parallel-Out architecture 

(last row) have the smallest critical path delay compared to other architectures. 

In this work, we are mainly interested in the SIPO architecture proposed by in [44]. 

Our interest is mainly due to two specific properties of the architecture. First, the critical 

path delay is the minimum among all other architectures, except the Agnew architecture, 

which has similar complexity. Second, the architecture has a very regular structure which 

greatly simplifies the VLSI implementation. 
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8.3 Design of A Practical Size Multiplier Using xax-module 

8.3.1 Multiplier Size Selection 

According to [6], to provide a sufficient level of security, the field size is required to be at 

least 160 bits for an elliptic curve cryptosystem. Some fields have been recommended by 

different standards for use, while others were banned. In this work, we have selected the 

field size of 233 for three reasons. First, it is in the range suitable for Elliptic Curve Cryp­

tography. Second, there exists a type II ONB representation, meaning that the reordered 

normal basis also exists [33]. Finally, the field size is recommended by the National In­

stitute of Standards and technology (NIST) as their Digital Signature Standard (DSS) in 

the Elliptic Curve Digital Signature algorithm (ECDSA). A few other field sizes were also 

recommended by the standard, but the field size of 233 is the only one such that there exist 

a type II ONB. 

8.3.2 Selected Multiplier Architecture 

Figure 8.1: Serial-In Parallel-Out Reordered Normal Basis Multiplier 
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{") (b) 

Figure 8.2: xax-module and the SIPO Multiplier Composed of xax-module 

The SIPO multiplier proposed in [44] is shown in Fig. 8.1. The architecture has been 

redrawn in Fig. 8.2 to show its regularity, and to showcase the fact that it can implemented 

as a serial connection of a single module; it is shown in the figure inside the box. This 

module, which is made out of three flip-flops, two XOR gates and an AND gate is referred 

to as an xax-module. The two XOR gates, in addition to the AND gate, create the critical 

path of the multiplier. One way to reduce the critical path delay is to implement the XOR-

AND-XOR function using domino logic [40]. However, careful consideration should be 

taken into account when designing such circuity [39]. The 23 3-bit multiplier can be made 

by replicating the xax-module once for every bit of the multiplier, and serially connecting 

them together. 

8.3.3 Design and Implementation of the xax-module 

The schematic shown in Fig 8.3 implements the XOR-AND-XOR function in domino 

logic; it is responsible for implementing the function ((61 © b2) • a) (Be). We have reduced 

the number of transistors in the architecture, while maintaining the same functionality, by 

using the schematic shown in Fig. 8.4 for our implementation. In this figure, the design is 

quite simple, consisting of 17 transistors (as opposed to 21 in the original design). 

In Fig. 8.4 transistor PI acts as the pull-up network, charging the node Q during the 

precharge state. Transistors N2-13 form the pull down network responsible for discharging 
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node Q when the appropriate combinations of inputs exist. N2-13 connect to the evaluate 

transistor, Nl, which opens a path to ground during the evaluate phase. Transistor P2 is the 

keeper, reducing the charge leakage effect at node Q. 

Transistors PO and NO create the output NOT stage, providing the output current drawn 

from the module. Four NOT gates also exist in the module (not shown in the figure), which 

generate the complements of the xax-module's inputs. 

Figure 8.3: XOR-AND-XOR Function Implementation in Domino Logic 

The final layout for the domino logic block is shown in Fig 8.5. Note that this figure is 

rotated 90 degrees to the left for better readability. The three large vertical stripes, from left 

to right, are VDD, VSS, and VDD wires. The section on the left are the four NOT gates 

used to create the complements of the inputs, while the section on the right implements 

the schematic shown in Fig. 8.4. The height for the layout was set to be three times the 

height of a standard-cell: 19.962 /im, since three D flip-flops were to be connected to each 

domino cell. The total area for the xax-module, including the area of three D flip-flops, 

was measured to be 449.18 fxm2. The area of the domino-cell on its own is 198.86 /jm2. 

99 



8. HIGH SPEED IMPLEMENTATION OF A SIPO MULTIPLIER USING REORDERED NORMAL BASIS 

Figure 8.4: A New XOR-AND-XOR Function Implementation in Domino Logic 

The flipflop used in the design of the xax-module was selected from the Virtual Sili­

con CMOS library. Care was taken to select an appropriate flip-flop to interface with our 

domino-logic cell. A negative-edge triggered flip-flop was needed to maximize the time 

available for the domino cell to evaluate. Furthermore, it was required to have a hold-time 

less than or equal to zero, as the domino cell's output becomes invalid immediately after 

the falling edge of the clock. 

8.3.4 Design and Implementation of the 233-bit Multiplier Using the 

xax-module 

The block diagram design of the 233-bit multiplier is shown in Fig. 8.6. As can be seen, 

the main part of multiplier architecture can be implemented by connecting the xax-modules 
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Figure 8.5: Layout for the XOR-AND-XOR Function in Domino Logic 

serially. We have used 13 xax-modules in each row, for a total of 18 rows to create the 

complete multiplier. This row/column distribution was chosen to give the design an even 

aspect ratio, which is typically desirable when floorplanning. There exists one additional 

flip-flop, which holds 60 in Fig. 8.6, that needs to be added to the design. 

We have added one extra xax-module, referred to as the load-module in Fig. 8.6, which 

is used to load the coefficients of input 6 serially into the multiplier when the load signal 

is enabled. In order to achieve this, we have connected the a input of the load-module 

to the load enable signal, and the c input to the external input, Extint. Input 61 of the 

load-module was connected to the output of the previous stage and, input 62 was shorted 

to ground. Since the xax-module implements the function ((61 © 62) • a) © c), the output 

of the load-module would be ((I nt .input • load) © Ext-input). This can then be used to 
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13 xax-modules 
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Figure 8.6: Block Diagram of the 233-bit Multiplier 

load the coefficients of operand B into the circular shift register. Table 8.2 tabulates the two 

combinations that can be used to load the data into the multiplier. When the load signal is 

" 0", the output of the xax-module would be equal to the Extinput, and when load is " 1" 

and ExtJnput is " 1", the shift register acts as the circular shift register. 

Table 8.2: load-module nput/Output Characteristics 

Load 

0 

1 

ExtJnput 

ExtJnput 

0 

IntJnput 

X 

IntJnput 

Output 

ExtJnput 

IntJnput 

A tree-structure of similarly-sized buffers was used to generate the clock tree for the 

multiplier's clock signal. The same was done for the input a, since it is a high fan out net 

that connects to every xax-module in the design. The full layout of the multiplier is shown 
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Figure 8.7: 233-bit Proposed Multiplier Layout 

in Fig. 8.7. 

The final layout of the multiplier including all parasitic capacitances was simulated 

in Cadence's Analog Environment using Spectre. The circuit performed correctly up to 

a clock rate of 1.587 GHz. Simulation voltage waveforms for the clock frequency of 

1.54 GHz are shown in Fig. 8.5. 

In this figure, the first row is the buffered input a. Rows two, three, and four show the 

signals 61, 62, and c as they exit the xax-module's flip-flops and enter the XOR-AND-XOR 

function's inputs. Row five is the output of the xax-module (node R), while row six is the 

voltage at node Q in Fig. 8.4. Finally, row seven shows the multiplier's clock waveform as 
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it exits the buffer-tree and enters the xax-modules. All 16 possible input combinations of 

a, 61, b2, and c, were tested and verified to give the correct output when determining the 

maximum operating frequency. 

0-J/1_lnput_a_intefr.al1 , 

^^N =^N N^N 

.Q-jj/J_output_cL-

2.fr-J'$_XAX_°uiJnput_ 

Figure 8.8: Post Place-and-Route Simulation Result of the Proposed 233-bit Multiplier, 

from top to bottom: input a, input 61, input 62, input c, node R, node Q, clock 

8.4 Design of the 233-bit Multiplier Using Static CMOS 

The static CMOS multiplier implements the same functionality as the domino logic design. 

Similar to the domino-logic design, the static CMOS version also incorporates a load-

module (implemented in static CMOS) to serially load an external input into the multiplier. 

We began the static CMOS design process by writing the parametrized C code to gener­

ate the VHDL code describing the multiplier in hardware. Using this method, different size 
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multipliers are easily generated by changing parameters in the C code. The VHDL code 

was simulated using Cadence's NCSim to confirm that the architectural code was func­

tioning correctly. Afterwards, the VHDL code was synthesized to a gate-level netlist using 

Synopsys' Design Compiler. Compilation parameters were always chosen to maximize the 

operating frequency of our design; the critical path delay at this stage was 1.11 ns. 

Next, the generated gate-level netlist was simulated again using Cadence's NCSim to 

confirm that the functionality did not change during the synthesis stage. Then the verified 

gate-level netlist was used for partitioning, placement, and routing using Cadence's En­

counter; the clock tree was also generated using Encounter's Clock Synthesizer. The worst 

negative slack calculated by Encounter after the place-and-route steps was reported to be 

0.145 ns, bringing the total critical path delay to 1.255 ns. 

The post place-and-route area of the multiplier was 216737.136/zm2 which could be 

clocked up to 796 MHz. The total number of standard cells used was 1965, while achieving 

a maximum gate density of 80%. The final layout for the static CMOS multiplier is shown 

in Fig. 8.5. 

8.5 A Comparison of Different VLSI Implementations 

Comparison between the two VLSI implementations are shown in table 8.3. The first row 

of the table presents the static CMOS implementation from section 8.4, and the second row 

represents the proposed design using our xax-module. As shown, the clock rate increase is 

99%, while the area reduction is 49% for the proposed design compared to static CMOS. 

If we define area times delay as a performance metric, we can conclude that our pro­

posed design is almost four times more efficient than the static CMOS design. 
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Figure 8.9: Static CMOS 233-bit Multiplier Layout 

Table 8.3: Complexity Comparison Between Two VLSI Implementations for a 233-bit 

Architecture 

Static CMOS 

Proposed design 

Area 

216737.136/xm2 

109644.819 fim2 

Clock Frequency 

796 MHz 

1.587 GHz 

8.6 Conclusions 

A new VLSI implementation for a 233-bit finite field multiplier was presented. The pro­

posed design employs a main building block designed in domino logic. The speed im­

provement was measured to be 99% in comparison to static CMOS implementation, while 
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area reduction was 49%. The final design was successfully simulated up to a clock rate 

of 1.587 GHz. Our design's field size is currently recommended by the NIST standard in 

their Elliptic Curve Digital Signature Standard, rendering it a desirable building block in 

elliptic curve cryptosystem designs. 
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Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

Finite field is a set of finite elements where one can add, subtract, multiply, and divide such 

that properties of associativity, distributivity, and commutativity are satisfied. Finite fields 

have important applications in error control coding and cryptography. Two different types 

of finite field are commonly used in practice: prime field Fp, and the binary field F2m. Bi­

nary field is an extension of the prime field, F2 , which contains 2m elements. Binary fields 

are attractive for high speed cryptography applications since they are suitable for hardware 

implementation. In F2™, addition is nothing but the exclusive-oring of two binary vec­

tors. Multiplication is more complicated, while division or inversion can be broken down 

into a series of consecutive multiplication operations. In practice, the finite field multiplier 

becomes the key arithmetic unit for any system based on finite field computations. 

Efficiency of finite field multiplication depends on the choice of the basis to represent 

field elements. Bases that have been used for realizing finite field multipliers include poly-
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nomial basis, normal basis (NB), dual bases, triangular basis, redundant representation or 

redundant basis, and their variations (i.e., shifted polynomial basis). 

In normal basis, the complexity of multiplication is measured with the multiplication 

matrix. For a binary extension field, the multiplication matrix entries are either zero or 

one, and the number of ones inside the multiplication matrix is referred to as normal basis 

complexity. The normal basis in GF(2m) for which the complexity achieves its minimum, 

Ira — 1, is referred to as the optimal normal basis (ONB). Two types of optimal normal 

bases have been found which are referred to as type I and type II optimal normal basis. 

Hardware implementation of finite field multipliers can usually be divided into three 

categories. In the first category there are bit-level or bit-serial multipliers. A bit-level 

multiplier takes m clock cycles to finish one multiplication in a binary field of size m. The 

multipliers in this class are considered to have low power consumption, occupy a small area 

of silicon, and operate slowly for large field sizes. The second category are bit-parallel, 

or full-parallel multipliers. A full parallel multiplier takes one clock cycle to finish one 

field multiplication. These multipliers are not usually economical for implementation since 

they require a large silicon area and high bandwidth for input and output ports. The third 

category are word-level or digit-level finite field multipliers, which are the most commonly 

implemented in practice. A word-level multiplier takes w clock cycles, 1 ^ w ^ m, to 

finish one multiplication operation in F2™. The value of w can be selected by designer to 

set the trade off between area and speed according to the application. Decreasing the value 

of w will result in faster and larger multipliers while increasing w will make smaller and 

slower multipliers. Note that bit-level and full parallel multipliers can be viewed as special 

cases of word-level multipliers for w = m and w = 1 respectively. 

In this thesis, a number of high speed word-level architectures for finite field multi­

plication have been proposed. Most of the proposed architectures have been implemented 

in hardware, using FPGA or standard CMOS platforms. It has been shown that proposed 

word-level architectures are more efficient compared to optimal normal basis type I or type 
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II architectures for the classes of field in which they exist. 

Also, different VLSI implementations for finite field multipliers were explored, which 

resulted in more efficient implementations for some of the regular architectures. The new 

implementations use a simple module designed in domino logic as the main building block 

for the multiplier. Significant improvements were achieved while designing practical sized 

multipliers using the proposed methodology. 

9.2 Future Work 

More research can be conducted in finding more efficient algorithms and architectures for 

finite field multiplication in optimal normal basis type I or type II classes of fields. Spe­

cial attention should be paid to full parallel architectures for two primary reasons. First, 

advances in VLSI design now allow for large parallel systems to be realized as a chip. 

Secondly, the need for faster multipliers to further increase the encryption and decryption 

processes is of greater importance as more data must be encrypted. Note that the main chal­

lenges in designing such multipliers would be in managing the power and I/O requirements, 

which are different from word-level architectures. 

Further research efforts should be devoted to other classes of normal basis, including 

the Gaussian normal basis types III, and IV These classes of fields are considered to be 

the most efficient, after optimal normal basis types I and II, for cryptography applications. 

Some examples of this are the binary field sizes of 163 and 409 which are recommended 

by National Institute of Standards and Technology for elliptic curve cryptography. 

Another research area worth exploring is low power VLSI design and implementation 

of the bit-level multiplier architectures. The low power and small area requirements of 

such designs makes them attractive candidates for resource-constrained applications such 

as smart cards, cellular phones, and personal digital assistants. 
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