
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2008 

Improved Bluetooth Key Exchange using Unbalanced RSA Improved Bluetooth Key Exchange using Unbalanced RSA 

Saif Rahman 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Rahman, Saif, "Improved Bluetooth Key Exchange using Unbalanced RSA" (2008). Electronic Theses and 
Dissertations. 7892. 
https://scholar.uwindsor.ca/etd/7892 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7892?utm_source=scholar.uwindsor.ca%2Fetd%2F7892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Improved Bluetooth Key Exchange 
Using Unbalanced RSA 

by 

Saif Rahman 

A Thesis 
Submitted to the Faculty of Graduate Studies through the Department 

of Electrical and Computer Engineering in Partial Fulfillment of the 
Requirements for the Degree of Master of Applied Science at the 

University of Windsor 

Windsor, Ontario, Canada 
2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-47043-5 
Our file Notre reference 
ISBN: 978-0-494-47043-5 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



© 2008 Saif Rahman 

All Rights Reserved. No Part of this document may be reproduced, 
stored or otherwise retained in a retrieval system or transmitted in any 
form, on any medium by any means without prior written permission 
of the author 



Author's Declaration of Originality 

I hereby certify that I am the sole author of this thesis and that no part of 

this thesis has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe 

upon anyone's copyright nor violate any proprietary rights and that any ideas, 

techniques, quotations, or any other material from the work of other people 

included in my thesis, published or otherwise, are fully acknowledged in 

accordance with the standard referencing practices. Furthermore, to the extent 

that I have included copyrighted material that surpasses the bounds of fair 

dealing within the meaning of the Canada Copyright Act, I certify that I have 

obtained a written permission from the copyright owner(s) to include such 

material(s) in my thesis and have included copies of such copyright clearances to 

my appendix. 

I declare that this is a true copy of my thesis, including any final revisions, 

as approved by my thesis committee and the Graduate Studies office, and that 

this thesis has not been submitted for a higher degree to any other University or 

Institution. 

IV 



Abstract 

In this thesis, a new protocol is proposed for the Bluetooth Key Exchange. The 

proposed key exchange will make use of a public-key algorithm as compared to 

the currently existing key exchange which only uses symmetric ciphers. The 

public-key algorithm to be used is a modified version of the RSA algorithm called 

"Unbalanced RSA". The proposed scheme will improve on the currently existing 

key exchange scheme by improving the security while trying to minimize 

computation time. The proposed protocol will also improve on a recent work 

which used the Diffie-Hellman algorithm for Bluetooth key exchange. In using the 

Diffie-Hellman algorithm the security was increased from the original Bluetooth 

key exchange but the computation time and difficulty of computations was also 

increased. Two Bluetooth devices that are trying to communicate can have a 

wide range of processor speeds and the use of the Diffie-Hellman protocol can 

cause a large delay at one user. The use of Unbalanced RSA in the proposed 

protocol will aim to remedy this problem. The aim of the proposed protocol is to 

eliminate the security risks from the original Bluetooth key exchange and also 

address the computation time issue with the enhanced Diffie-Hellman key 

exchange. 

v 



Dedication 

First and foremost, I would like to dedicate this thesis to my parents who have 

provided me with unconditional support throughout this process. Without their 

support and guidance, completing my degree would have been a much more 

difficult task. I would also like to dedicate this thesis to my brother (Zia), sister 

(Saba), brother-in-law (Naveed), and my nephew (Saad). All of whom have been 

a great source of motivation and inspiration. Finally, I would like to thank all of my 

friends and extended family. 

VI 



Acknowledgement 

I would like to thank my advisor, Dr. Huapeng Wu, for his patience and 

encouragement during the difficult times, as well as for his insights and 

suggestions that helped to enhance my research skills. Dr. Wu's constructive 

feedback contributed greatly towards the completion of this thesis. I would also 

like to thank Dr. Jessica Chen and Dr. Mitra Mirhassani for their valuable views 

and comments. 

Vll 



Table of Contents 

Author's Declaration of Originality iv 

Abstract v 

Dedication vi 

Acknowledgement vii 

List of Tables xi 

List of Figures xii 

Abbreviations xiii 

1. Introduction 1 

2. An Overview on Bluetooth Privacy and Key Exchange 5 

2.1 An Overview of Bluetooth 5 

2.2 Bluetooth Security 7 

2.2.1 Security Services 7 

2.2.2 Key Types 8 

2.2.3 Key Generation 8 

2.2.4 Initialization Key 10 

2.2.5 Unit Key 10 

2.2.6 Combination Key 10 

2.2.7 Master/Temporary Key 12 

2.3 Bluetooth Key exchange 12 

2.3.1 Attacks on Bluetooth Key Exchange 14 

2.4 Summary 18 

3. Recent Work on Bluetooth Key Exchange 19 

3.1 Security Enhancement Using DH scheme 19 

3.2 Security Analysis 23 

viii 



3.3 Problems in Recent Work for BT Key Exchange 24 

3.4 Summary 25 

4. RSA and its Modified Version 26 

4.1 RSA 26 

4.2 "Unbalanced RSA" 27 

4.3 RSA and "Unbalanced RSA" Security Analysis 29 

4.4 Application of Unbalanced RSA 30 

4.5 Summary 31 

5. Proposed Bluetooth Key Exchange with Unbalanced RSA 32 

5.1 The Proposed Protocol 32 

5.1.1 Phase 1 33 

5.1.2 Phase 2 34 

5.1.3 Phase 3 35 

5.2 Security analysis 36 

5.3 Comparing the Three Protocols 38 

5.4 Summary 42 

6. Simulation Results and Analysis 43 

6.1 Simulation Results 43 

6.2 Analysis of Results 45 

6.3 Summary 47 

7. Conclusions 48 

Appendix A: Maple code for BT Key Exchange using URSA 51 

A.1: System Setup 51 

A.2: Phase 1 Testing 51 

A.3: Phase 2 Testing 52 

A.4: Phase 3 Testing 52 

Appendix B: Maple code for BT Key Exchange using RSA 53 

B.1: System Setup 53 

B.2: Phase 1 Testing 53 

B.3: Phase 2 Testing 54 

B.4: Phase 3 Testing 54 

ix 



Appendix C: Maple code for BT Key Exchange using DH 55 

C.1: System Setup 55 

C.2: Phase 1 Testing 55 

C.3: Phase 2 Testing 56 

C.4: Phase 3 Testing 56 

References 57 

VITAAUCTORIS 61 

x 



List of Tables 

1.1 Bluetooth Security Modes 2 

4.1 RSA entities 26 

5.1 Proposed protocol entities 33 

5.2 Comparing three key exchange protocols 39 

6.1 Delay for DH, RSA, and URSA schemes (n=1024 bits) 44 

6.2 Delay for DH, RSA, and URSA schemes (n=2048 bits) 44 

6.3 Encryption time delay and ratio (RSA and URSA schemes) 46 

6.4 Decryption time delay and ratio (RSA and URSA schemes) 46 

XI 



List of Figures 

2.1 BT Key Generating Algorithm E2 9 

2.2 Generation of BT encryption key 9 

2.3 Generation of BT Unit Key 10 

2.4 Generation of BT Combination Key 11 

2.5 Generation of BT Master Key 12 

2.6 Bluetooth Key Exchange 13 

2.7 Passive eavesdropping attack on Bluetooth Key exchange 15 

2.8 Man-in-the-middle attack on BT Key Exchange 17 

3.1 Enhanced BT Key exchange using DH Phase 1 20 

3.2 Enhanced BT Key exchange using DH Phase 2 and 3 22 

4.1 RSA Algorithm 27 

5.1 Enhanced BT Key exchange using URSA Phase 1 34 

5.2 Enhanced BT Key exchange using URSA Phase 2 and 3 35 

5.3 Original BT key exchange messages 40 

5.4 Enhanced "Unbalanced RSA" Key Exchange Messages 41 

5.5 Enhanced Diffie-Hellman Key exchange messages 41 

xu 



Abbreviations 

ACO 

AES 

BD1 

BD2 

BT 

DH 

IEEE 

IDBD1 

IDBD2 

IR 

MAC 

MD5 

RSA 

URSA 

WLAN 

Authenticated Ciphering Offset 

Advanced Encryption Standard 

Bluetooth Device 1 

Bluetooth Device 2 

Bluetooth 

Diffie-Hellman Key Exchange 

Institute of Electrical and Electronics Engineers 

Address of BD1 

Address of BD2 

Infrared Technology 

Message Authentication Code 

Message Digest 5 

Rivest, Shamir, Adelman (Public-Key Encryption) 

"Unbalanced RSA" 

Wireless Local Area Network 

Xlll 



1. Introduction 

Wireless network communication has been paid more and more attention 

during the past decade since it makes it much easier to access a network 

compared to its wired counterparts. On one hand, wireless networks can provide 

great convenience for the people in communication; one the other hand, it 

proposes a tougher task of network security since it also make it much easier for 

an attacker to intercept a message transmitted in wireless. There are many types 

of wireless networks, for example, wireless LAN (WLAN), wireless MAN (WMAN), 

wireless PAN (WPAN), and ad hoc wireless network. In this thesis, the security of 

WPAN is our main concern. 

In recent years the Wireless Personal Area Network or WPAN has 

become a popular method for two devices in close proximity to exchange 

information. The WPAN consists of technologies such as Infrared (IR), Bluetooth, 

UWB, and Zigbee. When PAN first became popular IR technology was the 

popular way to exchange information between two wireless devices [1]. Infrared 

technology uses wireless technology in devices that convey data through IR 

radiation. IR technology is used for short and medium range communication. 

Many devices operate in the "line-of-sight mode", which means that the two 

devices must have a straight line of sight between them. This is not very helpful 

for people who are always on the move. Another mode for infrared devices is 

called the scatter mode where a device does not have to be in direct sight of the 

device but has to be in the same room or just outside the room with a door open. 

Another limitation of IR technology is that its signal cannot pass through walls so 

it cannot communicate between two different rooms in a house. Nowadays 

Infrared is being phased out of devices in exchange for Bluetooth (BT) 

1 



technology. BT technology improves on the mobility of infrared devices by 

allowing users to be farther away and in different rooms when they are 

exchanging information. Bluetooth can allow devices to be up to 100 meters 

away and still be able to connect to one another [2]. It also allows for a data 

transmission rate of up to 3 megabits per second. Overall, Bluetooth is a good 

solution to the problems faced by infrared technologies and that is why it is taking 

over as the predominant technology for wireless file transfer. 

Over the past few years the number of Bluetooth users has increased 

rapidly. From 2003 to 2006, the number of Bluetooth users has nearly doubled 

every year going from 125 million to 1 billion users as predicted by the November 

2006 issue of SDA magazine and [3]. The number of Bluetooth equipped devices 

keeps increasing. In 2009, 80% of mobile phones will be Bluetooth enabled [4]. 

According to Microsoft, in 2008, greater than 54% of all laptops that are shipped 

are equipped with Bluetooth technology. As of right now Bluetooth is not really 

being used for exchanging very vital information. As more powerful devices 

become equipped with Bluetooth, it will be used to exchange important 

information and therefore there needs to be no uncertainty in the security of 

Bluetooth. Bluetooth security right now is acceptable for the way it is being used 

but as Bluetooth is being used to exchange secretive information, the security 

needs to be improved. 

Security in Bluetooth is a major issue and failure to use proper security 

measures can cause several problems for Bluetooth users. First of all, the 

Bluetooth standard describes three modes of security which are shown in Table 

1.1 [5]. Modes 2 and 3 require two devices to complete the pairing process 

whereas mode 1 does not require it. 

Security Mode 

1 

2 

3 

Description 

No Security. 

Service Level Security. 

Link Level Security. 

Table 1.1: Bluetooth Security Modes 

2 



Failure to employ a proper mode of security can lead to several vulnerabilities in 

the Bluetooth device. These vulnerabilities are listed below [5]: 

• Sensitive data is available for browsing 

• An attacker can use a compromised telephone to make calls 

• Denial of Service attacks can be launched against the compromised 

device 

• Address lists can be downloaded 

• Malware can be installed for later infection of other devices, including 

network attached systems 

• An attacker can install malware with the intent to gain ongoing control of 

the device 

To combat these vulnerabilities several different approaches can be taken. 

First of all one should not operate Bluetooth Devices in Mode 1 because no 

security is provided. Also when Bluetooth is not being used, turn it off so that it is 

not discoverable. Turn it on when trying to connect to somebody. An easy way to 

ensure that the device is safe is to minimize the distance between it and the other 

Bluetooth device. It is also a good idea to install anti-virus software to keep you 

safe from Malware. These Bluetooth vulnerabilities have already been addressed 

and users for the most part are aware of them and can combat them. Some types 

of attacks on Bluetooth however use complex methods to obtain confidential 

information. These attacks are known as passive eavesdropping, active 

eavesdropping, and bluedumping. These attacks occur during the key exchange 

operation and obtain the link keys so that the attacker can decrypt all information 

sent form one device to the other. In [6] the author agrees that eavesdropping 

attacks are a major problem in current Bluetooth security. The key exchange 

scheme proposed in this Thesis will help to fight against these attacks. 

The scheme proposed in this Thesis uses public-key cryptography during 

the Bluetooth key exchange to provide better security while also trying to 

minimize the time delay. The proposed scheme will help to protect against the 

3 



common key exchange attacks of passive eavesdropping, active eavesdropping, 

and bluedumping because of the use of public-key cryptography. The proposed 

algorithm uses a slightly modified version of the RSA algorithm which has 

considerably smaller time delay than other public-key algorithms while still 

providing a high level of security. 

The next chapter reviews the existing Bluetooth Privacy and key exchange 

schemes. Chapter 3 revisits previously proposed work on the Bluetooth key 

exchange using public-key cryptography. Chapter 4 reviews the RSA algorithm, 

and introduces a modified version of RSA known as "Unbalanced RSA". The new 

protocol using Unbalanced RSA is proposed in chapter 5. This chapter will also 

discuss the security aspects of the proposed protocol. Chapter 6 will go over in 

detail the simulation results and also provides analysis on these results. 

Conclusions and ideas for future work are given in the final chapter. 

4 



2. An Overview on Bluetooth 
Privacy and Key Exchange 

IEEE 802.15 is a working group of the IEEE 802, which specializes in 

Wireless Personal Area Networks. This chapter focuses on the security portion of 

the IEEE 802.15 standard and more specifically on the Key exchange. 

2.1 An Overview of Bluetooth 

Bluetooth was created by Ericsson in 1994 to essentially replace wired 

networks. In 1998 another step was taken and a Bluetooth special interest group 

(SIG) was formed, the founders were from Ericsson, IBM, Intel, Toshiba and 

Nokia [7]. By the year 2004 Bluetooth was already supported by over 2100 

companies all over the world [8]. Bluetooth allows devices to connect and 

exchange information without any wires or external devices. The only 

requirement is that the device is Bluetooth enabled. Bluetooth has many different 

uses and is used in a variety of devices such as cell phones, laptops, printers, 

headsets, video games etc. The introduction of Bluetooth has been quite 

revolutionary and actually helps people in everyday life. The use of Bluetooth 

enabled headsets, allows people to connect the headset to their phone so they 

can take calls even while driving without getting distracted from the road. 

Bluetooth does of course have a limited range and the range is not that of a 

WLAN. However, depending on the class of the device being used the range can 

be quite good. For example, for a Bluetooth headset, a large range is not 

required therefore a class 2 or 3 device can be used which can provide up to 10 

meter range. However, for a laptop, a larger range is required so a class 1 device 

with 100m range would be appropriate [9]. Prior to Bluetooth, Infrared technology 

5 



was commonly used to exchange information between two wireless devices. This 

technology proved to be quite rudimentary when compared to Bluetooth. With IR 

technology, the two devices usually had to have a direct line of sight to one 

another or there couldn't be any walls or other obstacles between them [10]. 

Once Bluetooth was introduced IR technology was quickly faded out. 

Another wireless service that has constantly been compared to Bluetooth 

is Wireless internet (WLAN). Wireless internet or Wi-Fi is very common these 

days and is standard in laptops. Bluetooth is different from Wi-Fi in that it does 

not require any external products in order to be used. The only requirement is 

that the two devices have the Bluetooth technology and can connect to one 

another and exchange information. The similarity between Bluetooth and Wi-Fi is 

that they are both used in households and offices. Wi-Fi covers a wider range 

than Bluetooth, whereas Bluetooth is less expensive and has lower power 

consumption [11]. In general, Bluetooth is efficient for exchanging small files or 

documents when two devices are in close proximity of one another. 

Security concerns play a major role in Bluetooth technology. The goal of 

Bluetooth security is to allow devices to connect to one another and/or exchange 

information without being compromised. In the early years of Bluetooth, there 

were some very lethal attacks such as bluejacking, bluesnarfing, or bluebugging 

which enabled attackers to use the Bluetooth device without the user's 

knowledge [12]. However, security patches have been used to remedy these 

problems [13]. In recent years Bluetooth security has become a more serious 

issue as it is being used to exchange confidential information. The main issue is 

the key exchange process where an attacker can use passive/active 

eavesdropping or bluedumping attack to obtain secret keys. Once an attacker is 

able to obtain the secret keys he/she will be able to decrypt all information being 

sent between the two Bluetooth devices. These attacks will be discussed in a 

later section and how they can be used to obtain the secret keys. The next 

section will go over the initial stages of Bluetooth security. The third section will 

review the Bluetooth key exchange process as well as the attacks possible on the 

key exchange. 

6 



2.2 Bluetooth Security 

The Bluetooth Security process consists of Key generation and 

Initialization followed by encrypting and sending of messages. The initialization 

process is the fundamental base of Bluetooth security because that is where the 

secret keys are created and exchanged. The focus of this thesis will be on the 

first three parts of the initialization process and more specifically the key 

exchange. The initialization process consists of five steps [14]: 

1) generation of initialization key 

2) generation of link key 

3) link key exchange 

4) authentication 

5) generation of encryption key 

The first three steps of the initialization process make up the key exchange and 

that is where the main focus will be. Prior to discussing the initialization process a 

brief discussion on Bluetooth security services will be provided. 

2.2.1 Security Services 

Bluetooth provides five different kinds of security services using different 

kinds of mechanisms. The five security services provided by Bluetooth are 

authentication, access control, data confidentiality, data integrity, and non-

repudiation. Authentication is provided through a challenge-response scheme in 

which the claimant is asked to prove its knowledge of the secret key using a 

symmetric cipher. The authentication procedure uses the AES candidate 

SAFER+ as its base and modifies it to fit the needs of Bluetooth [14]. Access 

control is provided to Bluetooth through the use of PIN numbers entered in the 

devices. When two devices are trying to connect to one another it is required that 

they each enter the same PIN in their devices so that it is known that these 

devices want to be matched with one another. If the same PINs are not entered 

into the devices they will not be allowed to connect to one another. Data 

7 



confidentiality is provided through an encryption scheme. The encryption of the 

payload information is done by a stream cipher. The key stream generator will 

generate and stream through the key which will then be XORed with the plain text 

or cipher text depending on whether encryption or decryption is being performed. 

In order to make sure data integrity is maintained Bluetooth has many error 

codes which will occur if there is any problem with the two devices that are trying 

to communicate. These error codes are used to inform the parties if the message 

could not be delivered for some reason. The errors will let the parties know what 

problem has occurred so that they can fix it and resend the data. The unique 

address of each Bluetooth device provides accountability in terms of the last 

security service, non-repudiation. 

2.2.2 Key Types 

There are four different key types that can be used as an authentication 

key, encryption key, or initialization key. The four different key types [14] are 1) 

Combination key (K1-2, K2-i), Unit Key (Kunit), Temporary Key (Kmaster), and 

Initialization key (Kit1it). The unit key Kunit is derived solely from information from 

Bluetooth Device 1. The combination Key is derived from information in both 

Bluetooth Device 1 (BD1) and Bluetooth Device 2 (BD2). The master key Kmaster 

will be used during the session currently in progress and it will replace the original 

link key temporarily. The initialization key is used during the initialization process 

before any combination or unit keys have been defined or exchanged. 

Initialization key is derived from a PIN code and a device address. The PIN can 

be a fixed number that came with the device or can be selected by the user and 

entered into both devices that are trying to connect to one another. 

2.2.3 Key Generation 

For authentication purposes there are two different algorithms used for 

generating keys. In figure 2.1 both these algorithms are shown as well as their 

inputs and outputs. When trying to generate a unit key or combination key the E21 

function is used, this will produce a 128-bit key using a 128-bit random number 

8 



and 48-bit address. When trying to generate an initialization key or a master key 

the E22 function is used, this will produce a 128-bit key from a 128-bit random 

number and an L octet user PIN. 

L' 

RAND 

ADDR 

Model 

y h 

/ > 
128 

/ . 
/ * 
48 

•t^i 

1 

y 128 

r 

PIN' 

RAND 

/ 
/ 

8L' 

/ 
/ 

128 

Mode 2 

^ 2 2 

y 
128 

Key Key 

Figure 2.1: BT Key Generating Algorithm E2 [14] 

Figure 2.2 shows how the encryption key is generated using the E3 algorithm. 

The E3 algorithm produces 128-bit key using a 128-bit random number, a 96-bit 

Cipher offset, and the 128-bit link key. 

_RAND 

COF 

.Link Key 

128 
/ 

/ 

96 
/ 

/ 

128 
/ 

/ 

E3 

128 - " 
1 ' 

Kc 

Figure 2.2: Generation of BT encryption key [14] 

9 



2.2.4 Initialization Key 

The initialization key is generated using the E22 algorithm. This algorithm 

takes as input the device address, PIN code, length of PIN (in octets), and a 

random number. During each authentication process a new random number will 

be issued to provide better security. It is also possible to do mutual authentication 

so that each device knows exactly who it is communicating with. Once a 

successful authentication has been completed an auxiliary parameter, the 

authenticated ciphering offset (ACO) will be computed and the ACO will be used 

for ciphering key generation. 

2.2.5 Unit Key 

To generate a unit key the only information that is needed is from 

Bluetooth Device 1 (BD1). Figure 2.3 below shows how BD1 will send the unit 

key to BD2 so that they can communicate with each other. As can be seen from 

the figure, BD1 will generate Kunit and then XOR with the initialization key so that 

Kunit is not transported in the clear. Although this is a very simple encryption it 

does provide some type of security. Once the encrypted key reaches BD2, it will 

decrypt the key by XORing it with the initialization key to obtain Kunit, which 

means that this key will always be used by BD2 when it is trying to communicate 

with BD1. 

K. nit 

Kfc K*, 

• ^ 
-* K, nit 

Figure 2.3: Generation of BT Unit Key [14] 

2.2.6 Combination Key 

When generating a combination key it is slightly more complicated than 

generating a unit key because both Bluetooth Device 1 (BD1) and Bluetooth 

Device 2 (BD2) need to be involved in the generation and they both need the 

10 



others information. Figure 2.4 below gives a diagrammed version of the steps 

that need to be taken in order to create a combination key K1-2. Firstly, BD1 will 

create its part of the combination key AK_Ki by inputting a random number 

(AK_RANDi) and the address of BD1 (BD_ADDR1) into the E21 algorithm. Once 

BD1 has created A K J ^ it will create C1 by XORing AK_RAND! and the 

initialization key. Once this is completed BD1 will send C1 to BD2. On the other 

side BD2 will be calculating AK_K2 and C2 using another random number 

(AK_RAND2), device address of BD2 (BD_ADDR2), and the initialization key 

(Kinit). Once BD2 completes its calculations it will send C2 to device BD1. Once 

BD1 receives C2 it can calculate AK_RAND2 by taking C2 and XORing it with Kinit. 

Now that BD1 knows AK_RAND2 it can calculate AK_K2 by putting AK_RAND2 

and BD_ADDR2 into the E2i algorithm. BD1 now has AK_K2, it can calculate the 

combination key which is done by XORing AK_Ki with AK_K2 to obtain K-i-2. 

Device B does exactly the same thing to calculate AK_Ki and then it will XOR 

AK_Ki and AK_K2 to obtain K2_i which is the same as Ki_2. The combination key 

is by far the commonly used method to obtain a Bluetooth link key. 

BDl BD2 

AK_K2=E2i(AK_RAND2, BD_ADDR2) 
C2 = AK_RAND2 XOR KM, 

A K _ R A N D I = Ci XOR K 

AK_Ki=E2i(AK_RANDA, B D _ A D D R A ) 
K2 . I = AK_Ki XOR AK_I<2 = K1.2 

Figure 2.4: Generation of BT Combination Key [14] 

AK_Ki=E2,(AK_RAND,, BD_ADDR,) 
Q = AK_RANDi XOR K ^ 

AK_RAND2 = C2 XOR Kinit 

AK_K2=E2i(AK_RAND2, BD_ADDR2) 
Ki_2 = AK_Ki XOR AK_K2 

11 



2.2.7 Master/Temporary Key 

The process for generating a master key for the current session is a little 

bit simpler than that for a combination key. When the master (BD1) wants to 

create a master key and deliver it to BD2 it follows the steps outlined in Figure 

2.5 below. The figure shows that Bluetooth Device 1 will first calculate Kmaster by 

using the E22 algorithm with inputs of 2 random numbers and the length of the 

random number in octets. The next step is for BD1 to send a random number to 

BD2. This number is used to calculate a value called the overlay, which is 

obtained by inputting the link key, the random number and the length of the 

random number into the E22 algorithm. BD1 will also calculate this overlay and 

then the overlay and the master key will be XORed together to form C. The value 

C will be sent to BD2 and it can now XOR the overlay it calculated with the value 

C that was sent in order to obtain Kmaster. 

BDl BD2 

Kmas,er = E22(RAND1,RAND2,16) 

OVL = E22(K,RAND,16) 
C = OVLXORKm aster 

OVL = E22(K,RAND,16) 

K „ B = OVLXORC 

Figure 2.5: Generation of BT Master Key [14] 

2.3 Bluetooth Key exchange 

The Bluetooth key exchange combines the first three steps of the key 

generation and initialization process. It includes the generation of an initialization 

key by both devices, the generation of link keys, and the exchange of link keys. 

12 



Figure 2.6 shows these three steps together in one diagram. This is the entire 

process which will be replaced with the proposed protocol. 

BT Device 1 BT Device 2 

Enters PIN 

Generates Rink-RND 

Kini, = E22(Rini., PIN, L) 

Generates R i=RND 
CA — Ri XOR Kinit 

R2—C2 XOR Kinit 
Ki=E2 i(Ri, IDBD1) 
K2=E2i(R2, IDBD2) 

K1.2 = Ki XOR K2 

Enters PIN 

Ki n i t=E 2 2(Ri n i t ,PIN !L) 

Generates R2=RND 
C B = R 2 XOR Kinit 

Ri—Oi XOR Knit 
K2=E21(RAND2 , IDBD2) 
Ki=E2i(Ri, IDBD1) 
Jv2-i = ^-1 -X.OK. 1V2 

Figure 2.6: Bluetooth Key Exchange 

The first step in the Bluetooth key exchange scheme is for the two users to 

enter the agreed upon PIN into each of their respective devices. Once the PINs 

have been entered into the devices, the two devices connect to one another. 

These two devices will be called Bluetooth Device 1 (BD1) and Bluetooth device 

2 (BD2). BD1 will generate a random number Rinit using a random number 

generator. Rinit will be used to generate the initialization key. Once BD1 generates 

Rinit it will send it to BD2. Now that both devices have Rinit they can calculate the 

initialization key (Kinit) using the E22 function. The input to the E22 function will be 

the Rinit, PIN, and L (length of PIN), which will produce the output Kinit- Once both 

devices have obtained the Kinit they have to begin the process for exchanging the 

Link Key. BD1 and BD2 will generate the random numbers R1 and R2 

respectively. The next steps are almost the same as generating a combination 

key. BD1 and BD2 will generate C1 and C2 respectively by XORing the 

13 



initialization key with the random numbers they generated. BD1 will then send Ci 

to BD2 and BD2 will send C2 to BD1. Using C2, BD1 will obtain R2 and similarly 

BD2 will obtain Ri. Both devices now have Ri and R2 as well as IDBD1 and 

IDBD2. They each generate Ki (Ki=E2i(Ri, IDBD1)) and K2 (K2=E2i(R2, IDBD2)). 

By XORing Ki and K2, they have each obtained the shared link key. 

2.3.1 Attacks on Bluetooth Key Exchange 

In the early years of Bluetooth technology, several flaws were found in its 

implementation. These flaws were known as bluejacking, bluesnarfing, and 

bluebugging. Bluejacking is the sending of unwanted messages through 

Bluetooth to Bluetooth-enabled devices such as mobile phones and laptops [15]. 

Bluesnarfing allows users to access the information on a wireless device through 

a Bluetooth connection. Bluebugging allows a user to take control of the victim's 

Bluetooth enabled phone to make calls or send text messages. Bluesnarfing and 

Bluejacking are illegal in most countries and these attacks are usually only 

possible on older Bluetooth-enabled devices as the newer devices have updated 

software to avoid these problems. 

Although these problems were of concern back then they have for the 

most part been taken care of. However, there is still one major problem that 

needs to be addressed. This major problem is the transfer of confidential 

information. With the pairing scheme in place right now, it would not be difficult 

for a person to eavesdrop (passively or actively) on a connection between two 

Bluetooth devices and obtain the link key. In [16] it was noted that Bluetooth had 

three major vulnerabilities: 1) Spoofing through keys, 2) Spoofing through 

address, and 3) PIN Length. The key exchange plays a major role in trying to 

counter these vulnerabilities and with the system in place now it is not too difficult 

to attack. In [17], [18], [19], [20] it is documented the use of only a PIN as secret 

entity is not sufficient to provide total security and a better pairing scheme is 

needed. In the near future it will be necessary for Bluetooth to provide better 

security. 

14 



Passive Eavesdropping 

If a person is trying to send confidential information through Bluetooth, a 

passive eavesdropper would only need to find out the PIN both devices are using 

in order to be able to decrypt the messages being sent back and forth. Let's start 

at the very beginning. In order for the two devices to connect they need to 

establish a PIN that they both enter into their devices. Usually these PINs are 4 

digit numbers and therefore are not that difficult to figure out. If an eavesdropper 

is able to obtain this PIN he can follow through all the Bluetooth security steps to 

obtain the encryption key that is going to be used. A figure of a passive 

eavesdropping attack is shown in Figure 2.7. 

BT Device 1 

Enters PIN 

Generates Rinit=RND 
Kinit = E22(Rini,, PIN, L) 

Generates R i=RND 
CA = R I XOR Kinit 

R 2 =C 2 XORK i n i , 
Ki=E 2 i (Ri ,ADDRi) 
K2=E2 i (R2 ,ADDR2) 

K1-2 = Ki XOR K2 

Rin 

Connected 

BT Device 2 

Enters PIN 

BTAttacker 

Ric 

Ci 

Kinit =E22(Rattk, PIN, L) 

Generates R 2 =RND 
CB —R2 XOR Knit 

R i=C,XORKi„ i t 

K2=E21(R2,ADDR2) 
Ki=E 2 i (Ri ,ADDRi) 
K2.1 = Ki X O R K2 

Figure 2.7: Passive eavesdropping attack on Bluetooth Key exchange 

The steps an eavesdropper would use are as follows: 

1. Obtain PIN by guess or obtaining from use 

2. intercept random number sent from one Bluetooth device to another 

3. Use random number to derive initialization key through the E22 function 

15 



4. Use initialization key and combination key format to obtain random 

numbers from both Bluetooth device users 

5. Use random numbers to derive the portions of the authentication key 

from both users (AK_K=E2i(RAND, ADDR)) 

6. Use AK_Ki and AK_K2 to obtain the link key (K|ink = AK_Ki XOR 

AK_K2) 

7. eavesdroppers can put link key through authentication scheme to 

obtain SRES and compare it with the SRES of the Bluetooth devices 

8. The link key is then put through E3 function along with the COF and a 

random number to obtain the ciphering key 

9. The ciphering key is input to the payload key generator 

10. The payload key is then input to the key stream generator and the key 

stream is generated 

11. The eavesdropper can now use the key stream and XOR it with the 

cipher text to obtain all the plaintext. 

Active Eavesdropping 

An active eavesdropper is similar to a passive eavesdropper with one 

exception; an active eavesdropper will actually go in and alter messages being 

sent from one user to the other. An active eavesdropper will alter messages so 

that it seems as though the BT users are communicating with the right person but 

actually there is an attacker intercepting their messages and altering them. Figure 

2.8 below shows that two Bluetooth devices are trying to create a combination 

key. However there is an attacker intercepting the messages and altering them to 

make it seem like the two devices are still communicating with each other. This 

type of attack is also known as the man-in-the-middle attacks. 

In this scheme the attacker starts intercepting the messages after the PINs 

are entered by both users. As the diagram shows, every message that is 

supposed to go from Device 1 to Device 2 is intercepted by the attacker and the 

attacker then sends its own message to device 2. Same thing happens when 

device 2 is sending a message to device 1. All the items that are bolded and 

16 



italicized in the figure are the ones that are manipulated by the attacker. The 

figure shows that the two Bluetooth devices still believe they are speaking to the 

correct person without any interference because they are receiving the proper 

messages. The attacker is the only device with all the proper values and at the 

end after the attacker performs the same process on authentication he/she will be 

able to decrypt any messages exchanges between Device 1 and Device 2. This 

attack also ensures that any message sent from device 1 to device 2 will not be 

decrypted by device 2 since it did not receive the proper values during key 

exchange. In passive eavesdropping however, device 2 is still able to decrypt the 

messages sent by device 1 because none of the information during key 

exchange had been altered. 

BT Device 1 

Enters PIN 

Generates Rinit=RND 
Ki„i, = E22(Rimt, PIN, L) 

Generates R i=RND 
C A = R i X O R K i n i t 

R-2 — Cattk XOR Kinit 
Ki=E 2 1 (R, ,ADDR,) 

K2-^2\{R.2, ADDR2) 
K1-2 = Ki XOR K2 

Connected 

BT Device 2 

Enters PIN 

BT Attacker 

Rin 

C1 

'attk 

Rai 

'attk 

Jfir™>=E22(^„i,PIN,L) 

Generates R2=RND 
CB =R2 XOR KM, 

RI — Cattk XOR Kjxut 
K2=E21(R2,ADDR2) 
A}=E21(Rattk,ADDR,) 
K2.i=KjXORK2 

Figure 2.8: Man-in-the-middle attack on BT Key Exchange 

Passive and Active Eavesdropping (bluedumping) 

A combination of passive and active eavesdropping is called bluedumping. 

This attack causes a Bluetooth device to unload its stored link key to a specific 

device, which forces these two devices to perform their key exchange and 

17 



therefore the attacker has another opportunity to eavesdrop and obtain the pairs 

link key [21]. The process of this attack is quite simple. The attacker will send one 

of the Bluetooth devices a message claiming to be another device and claiming 

to have lost the pairs link key. Once the Bluetooth device receives this message, 

it will reinitiate the key exchange with the other Bluetooth device. This will give 

the attacker an opportunity to see the messages and obtain the link key. Again 

this attack does depend on the attacker being able to obtain the PIN that is 

entered into both BT devices. 

2.4 Summary 

Bluetooth security in the past has been adequate for the users of 

Bluetooth. It provides users with the basic security services of authentication, 

access control, data confidentiality, data integrity, and non-repudiation. The 

current key exchange scheme may not be adequate in the near future as 

Bluetooth becomes commonly used for transferring important and confidential 

information. The key generation and key exchange process can be a weak link in 

the Bluetooth security architecture, which could lead to the leaking of confidential 

information. 

The main objective of an attack on the key exchange portion of Bluetooth 

security is to obtain the link key that is created. The three types of attack 

described above are the main ways to obtain a link key from two unsuspecting 

Bluetooth devices. As can be seen from the above explanations the security of 

the key exchange depends purely on the secrecy of the PIN. Most Bluetooth 

users tend to use easy PINs and therefore making it not too difficult to crack the 

PIN. For example in 2005 it was found that to crack a 4-digit PIN on Pentium IV 

computer took only 0.063 seconds [22]. 

18 



3. Recent Work on Bluetooth Key 
Exchange 

A new proposal was introduced in 2004 to improve the Bluetooth key 

exchange scheme by Selim Aissi, Christian Gehrmann, and Kaisa Nyberg [23]. 

The authors of this protocol were from Intel, Ericsson and Nokia. This protocol 

proposed to use Diffie-Hellman in order to exchange the link keys between two 

Bluetooth devices. This protocol uses Diffie-Hellman and Hash functions to 

enhance the security of the link key while still allowing devices to have user-

friendly PINs. It would provide strong protection against off-line attacks (passive 

eavesdropping), active eavesdropping and bluedumping. 

3.1 Security Enhancement Using DH scheme 

The Diffie-Hellman scheme was first published by Whitfield Diffie and 

Martin Hellman in 1976 [24]. The paper was the first that clearly defined public-

key cryptography. The objective of Diffie-Hellman is to enable two users to safely 

exchange a key that can be used later for encryption of messages. The following 

steps are taken to exchange a key using Diffie-Hellman [25]: 

1. A prime number q is selected and given to both users 

2. a is chosen which is smaller than q; a must be a primitive root of q 

and given to both users 

3. User A selects private key XA 

4. User A calculates public key YA= (aAXA) mod q 

5. User A sends YA to User B 

6. User B selects private key XB 

7. User A calculates public key YB= (QAXB) mod q 

19 



8. User B sends YB to User A 

9. User A generates secret key S = (YB
AXA) mod q 

10. User B generates secret key S = (YAAXB) mod q 

Once these steps are completed both users have the shared secret key S which 

can now be used for encryption of messages the users would like to send to one 

another. The use of private and public keys makes this scheme less susceptible 

to certain types of attacks. 

The Diffie-Hellman enhanced key exchange protocol makes use of 

cryptographic one-way functions and hash functions to protect it from certain 

types of attacks. Although it does increase the number of protocol steps from 3 to 

4, the level of security is increased. The DH protocol consists of two stages the 

registration stage and the key establishment stage. The registration stage 

contains the initial key generation, exchange of identities, and exchange of 

cryptographic verification values [23]. The key establishment stage consists of 

the DH key exchange. [23] The steps of the protocol are shown in Figure 3.1 and 

3.2. 

BDl BD2 

Phase I: 
generates x = DH Key 

computes gx = public key 
Generates K=RND 

Computes C=MAC(K,gx) 
stores x, gx, K, C, IDBD2 

enters PIN 

Stores C, K, IDBD1 

enters PIN 

Figure 3.1: Enhanced BT Key exchange using DH Phase 1 

20 



Phase 1 will take place at Bluetooth Device 1. It starts off with Bluetooth 

device 1 (BD1) generating its private key x. After the generation of its private key, 

BD1 computes the public key gx mod q. BD1 now needs to generate a random 

number for the authentication key (K) which will be used as the key to the MAC 

function. The next step for BD1 is to generate a message digest using a MAC 

function. The message digest is created by using the K as the key and the 

message used to create the message digest is gx. Once all these steps are taken 

care of, BD1 will store x, gx, K, C, and IDBD2. BD1 will securely transfer the 

values of C and K to BD2 using its online interface. User of BD2 will enter these 

values into its device and store them. 

Prior to the beginning of phase 2 several steps need to be taken. First of 

all, both users for the Bluetooth devices need to agree upon a PIN. Once the PIN 

has been agreed upon, the users enter the PINs into their respective Bluetooth 

devices. Once the PINs have been verified, the connection is established. The 

next step is for BD2 to send its address (IDBD2) to BD1. In return, BD1 will send 

a message to BD2 containing its public key (gx) and its address (IDBD1). BD2 will 

now try to compute the same message digest as BD1 by using the key it received 

earlier (K) and the gx it was sent (C = MAC(K,gx)). After the computation, BD2 

will compare the calculated C to the C it has stored. If both values are the same 

then BD2 will send a success message to BD1. 

Phase 2 can now start after the C and C have been confirmed to be the 

same. At the beginning of phase 2, BD2 generates it private key, y. BD2 will now 

use this key to generate its public key (gy mod q). After the calculation of the 

public key, BD2 will compute a key (K') by using the key derivation function 

(KDF). The KDF is simply a hash function which takes as input a variable size 

message and outputs a fixed size message. BD2 will compute K' by using the 

authentication key (K' = KDF(K)). BD2 will finally calculate the link key using all 

the values it has. The link key is also calculated by using the key derivation 

function (KLink = KDF(PIN,S, C K, IDBD1, IDBD2)). After all these steps have 

been completed, BD2 sends a message to BD1 containing gy and EK(K,IDBD2). 

21 



EK(K,IDBD2) is simply an XOR encryption function that is encrypting K and 

IDBD2 using K' as the key. At the conclusion of this step phase 2 is finished. 

BDl BD2 

Phase III: 
Computes S=gxy =DH Shared 

Computes K'=KDF(S) 
Computes Klink=KDF (PIN,S, C K, 

IDBD1,IDBD2) 
Decrypts received EK(S,IDBD2) 

if decrypted K = stored K then 
accept KLink 

Establish Connection 

BD2 Sends IDBD2 

BDl Sends gx, IDBD1 

Success (C=C) 

BD2 sends gy, 
Er(S,IDBD2) 

Computes C = MAC(K,gx) 
Compares C and C 

Phase II: 
Generates y=RND=DH Key 
Computes S=gxy =DH Shared 
Computes K'=KDF(S) 
Computes Kiink=KDF (PIN.S, C 
K,IDBD1,IDBD2) 

Figure 3.2: Enhanced BT Key exchange using DH Phase 2and 3 

Phase 3 begins with BD1 computing K' in the same way that BD2 did (K' = 

KDF(K)). After the calculation of K', BD1 will generate the link key once again in 

the same manner as BD2 (KLink = KDF(PIN,S, C K, IDBD1, IDBD2)). The final 

calculation for BD1 is to decrypt the message that was sent by BD2 

(E(c(K,IDBD2)) to recover the value of K. When BD1 recovers the value of K it will 

compare it to the stored value of K it has. If the stored value of K matches the 

decrypted value of K then BD1 will accept the value of Kunk-

22 



3.2 Security Analysis 

The Diffie-Hellman protocol was proposed in order to avoid the security 

risks present in the original Bluetooth key exchange scheme. As was mentioned 

earlier, the main security threats were passive eavesdropping, active 

eavesdropping, and bluedumping. 

In the passive eavesdropping attack, the attacker will not be changing any 

messages. They will just be trying to obtain the link key by observing the 

messages being sent from one device to the other. In the Diffie-Hellman protocol, 

the only entities that are exchanged publicly are gx, gy, IDBD1, IDBD2, 

EK(S,IDBD2), and a success signal. The information that an attacker needs to 

obtain the link key is PIN, S, C K, IDBD1, and IDBD2. An eavesdropper would be 

able to obtain IDBD1 and IDBD2 by simply listening to the conversation. The PIN 

of course is again a problem. The attacker needs to be able to guess the PIN 

somehow because there is no real way to calculate it unless you go through all 

possibilities. The shared secret S is also a problem because the attacker will 

need to find out either user 1's or user 2's private key in order to calculate S. 

Since these values are generated randomly, it would be quite difficult. The 

values of C and K are usually exchanged between the two devices right when 

they discover one another and an attacker would have to be present and waiting 

for these devices to connect to be able to get these values. Another option would 

be for the user to enter the values of C and K to the second BT device using 

human operable interface [23]. This way it would not be possible for the hacker to 

obtain these values. The Diffie-Hellman enhanced protocol would completely 

eliminate the possibility of an off-line attack by using the Diffie-Hellman Key 

Exchange and Hash functions. 

The active eavesdropping attack would have a greater chance of success 

in this protocol. However, it would be quite difficult. The main issue in the man-in-

the-middle attack would be the discovery of the values of C and K and then using 

those values to manipulate the DH public key to match those values. Of course, 

first and foremost, if the attacker is unable to obtain the PIN then the attack will 

be useless. In the DH protocol when BD1 sends gx to BD2, an active 

23 



eavesdropper would intercept this and for a successful attack would need to find 

another public key that would give the same value of C. If somehow the attacker 

is able to obtain the values of K and C, this would become much easier. The 

values of K and C are exchanged very early and again the attacker would have to 

be present as soon as the two devices discover one another. Another precaution 

would be for BD1 to send the K and C to BD2 using its output interface and the 

user of BD2 would enter the information into the device using the human 

operable interface [23]. With these precautions although it is possible for a man-

in-the-middle attack to work, it is highly unlikely. 

Bluedumping, as was explained earlier, is a combination of active and 

passive eavesdropping [21]. The main portion of this attack relies on initiating a 

new key exchange and then listening to the messages being exchanged. The 

attacker will force the two devices to discard their link keys and start a new key 

exchange. However, it is not necessary for the devices to change any of the 

values they used previously. If new values are not created for everything, then 

the attacker will have an even smaller chance of obtaining the link key because 

the K and C values do not need to be transferred from one device to the other. If 

new values of K and C are used again it will be quite difficult for the attacker to 

obtain these if they are being entered into the Bluetooth device using the human 

operable interface. At the end the success of the bluedumping attack depends on 

the same factors as the passive eavesdropping attack. 

3.3 Problems in Recent Work for BT Key Exchange 

Although it does provide better security than the original Bluetooth key 

exchange, there are some issues with this protocol that could make it undesirable 

for some users. As the protocol diagram shows, each user is required to carry out 

the same amount of computation which can be a problem when one device has a 

processor that is much slower or smaller than the other. For example, if a laptop 

is communicating with a handheld device (cell phone, PDA, etc.), this protocol 

could cause significant delay at the handheld device end and the laptop would 

just have to wait. Another issue would be the increased amount of computations, 

24 



each user is to perform two modular exponentiations during each key exchange 

again this would cause significant delays at the end of the handheld device. The 

result of these problems would be significant delay for the users with slower or 

less powerful processors which is quite tedious for the user that is trying to 

communicate with them. 

3.4 Summary 

The Diffie-Hellman protocol was able to address some of the issues with 

the original Bluetooth key exchange scheme. This protocol was able to provide 

high security against the passive eavesdropping, active eavesdropping, and 

bluedumping attacks. Although this is a very good feature, it did suffer from some 

undesirable features as well. The Diffie-Hellman key exchange protocol will 

require each Bluetooth device to perform two exponentiations, which will greatly 

increase the difficulty of calculations required as well as the computation time. 

Another issue would be that smaller and slower processors have to perform 

exactly the same computations as their powerful counterparts, which can cause 

an even longer delay. In the next chapter another algorithm is introduced called 

"Unbalanced RSA" which addresses the problems related to the Diffie-Hellman 

protocol. 

25 



4. RSA and its Modified Version 

This chapter will first go over the basics of the RSA algorithm followed by 

an explanation of the modified version of RSA called "Unbalanced RSA". Finally 

the security features of both RSA and Unbalanced RSA will be reviewed. 

4.1 RSA 

RSA was publicly described the first time in 1977 in a paper written by 

Rivest, Shamir, and Adleman for Communications of the ACM [26]. RSA has 

become the most popular approach to public-key encryption. The RSA algorithm 

consists of five main entities shown in the table below. 

Entity 

n 

p. q 

e 

d 

Description 

Modulus (public) 

Prime factors of modulus n (private) 

Public key (public) 

Private Key (private) 

Tab e4.1: RSA entities 

The RSA algorithm is shown in Figure 6.1 on the next page. The figure shows the 

basic idea on how RSA works. One user (User A) will select two prime numbers p 

and q. Using those numbers he will calculate its public and private key. User A 

will then broadcast its public key so User B can obtain it. User B will select a 

message and encrypt it using User A's public key (e) then send the cipher text to 

User A. User A will decrypt the ciphertext using its private key to obtain the 

message. 

26 



Key Generation 

Select p, q 

Calculate n = p x q 

Calculate 0(n) = (p-1)(q-1) 

Select integer e 

Calculate d 

Public key 

Private key 

p and q are prime 

gcd(<Kn),e)=1;Ke<<|>(n) 

e*d=1 mod <|>(n) 

KU = {e,n} 

KR = {d,p,q} 

Encryption 

Plaintext: 

Ciphertext: 

M <n 

C = Me mod n 

Decryption 

Ciphertext 

Plaintext: 

C 

M = Cd mod n 

Figure 4.1: RSA Algorithm [27] 

4.2 "Unbalanced RSA" 

"Unbalanced RSA" (URSA) was introduced in a paper called "RSA for 

paranoids" by Adi Shamir in 1995 [28]. In 1995, a modulus size of 512 bits for 

RSA started to become considerably insecure. However, if the modulus size was 

increased some problems could arise. Firstly, by increasing the modulus size, the 

computation complexity and delay would rise very quickly and thus make it 

difficult to choose a modulus size that is efficient and will provide long term 

security. For example, if an RSA encryption operation with a 1024 bit modulus 

takes 1 second, then the same encryption operation with a 5120 bit modulus on 

the same processors would take approximately 2 minutes. Unbalanced RSA will 

27 



allow people to increase the modulus size to improve security without any time 

penalty. Unbalanced RSA can also be used to keep the modulus size the same 

and decrease the computation time when compared to RSA. 

In the explanation of "Unbalanced RSA" a modulus size of 1024 bits will be 

used as an example as this value is considered a common value for RSA 

modulus. In normal RSA the prime factors for such a modulus would be 512 bits 

each. In Unbalanced RSA however, the two prime factors p and q are 256 and 

768 bits in length respectively. This difference in the size of the prime factors is 

what is being referenced in the name "Unbalanced RSA". A later discussion will 

show why a 1024 bit modulus and its factors of size 256 and 768 in Unbalanced 

RSA are still as secure as normal RSA with its 512 bit factors. 

RSA is usually used to exchange keys for symmetric cryptosystems 

therefore the cleartexts that are being encrypted are usually quite short. Looking 

at the earlier example of p which was 256 bits, it is very unlikely that someone 

would use RSA to exchange a key greater than 256 bits. Even three keys for 

3DES require only 168 bits [28]. An assumption can be made that the cleartext 

that needs to be encrypted is in the range of 0 to p. 

When comparing RSA to Unbalanced RSA one only needs to consider the 

decryption operation because the encryption operation remains the same in both 

cases. In normal RSA, decryption is performed by M = Cd mod n. In Unbalanced 

RSA, decryption is by performed M = Cd mod p. If RSA decryption and 

Unbalanced RSA decryption is compared it will show that the moduli are 1024 

bits and 256 bits respectively. Using these two moduli it can be shown that the 

decryption in RSA will take (1024/256)3=64 times longer than that of URSA [28]. 

The decryption process of Unbalanced RSA is based on the use of the 

Chinese Remainder Theorem (CRT). In normal RSA when trying to decrypt the 

ciphertext using CRT is the most efficient way to do so [29]. The process is split 

up to calculate Mi=Cd mod p and M2 = Cd mod q, where p and q are of the same 

size. For the URSA case where p is 256 bits and q is 768 bits, the calculation of 

M2 would take (768/256)3 = 27 times as long as the calculation of Mi. The 

purpose of this discussion was to show there is no need to calculate the much 

28 



more expensive M2. Since the size of the message M is smaller than p, it can be 

concluded that M-i is simply equal to M. This would mean that there is no need to 

calculate the much more expensive M2 in order to retrieve the original message. 

4.3 RSA and "Unbalanced RSA" Security Analysis 

RSA security is mainly dependant on the ability of an attacker to factor the 

modulus n into its prime factors, p and q. These days a normal accepted value of 

an RSA modulus is 1024 bits making the two prime factors 512 bits each. There 

are two types of factoring algorithms that can be used on the modulus of RSA. 

The first type of algorithm is one whose running time depends on the size of the 

factors (Type 1) and the second type of algorithm is one whose running time 

depends on the size of the factored number, n (Type 2). 

The fastest factoring algorithm which depends on the size of the factors is 

the elliptic curve method. This method was invented by Lenstra in 1987 [30], it 

was an improvement on the p-1 method put forward by Pollard [31]. The 

asymptotic running time of this method is exp(0((ln(p))°5- (lnln(p))05)) [28]. 

However, the basic operations of this method are very slow. In 1995 the largest 

factor ever found using the elliptic curve method was 145 bits long. The largest 

factor ever found so far using ECM was 67 digits long [32]. According to Paul 

Zimmerman, using the elliptic curve method should find factors 70 digits long by 

2010 and 85 digits long by 2018 [33]. Therefore, in the near future, it will be very 

unlikely the elliptic curve method will be able to find factors 256 or 512 bits long. 

Factoring algorithms that depend on the size of the factored number are 

much faster because they can use a variety of mathematical techniques. The 

best algorithm of this type is called the general number field sieve. This method 

consists of a sieving step and a matrix step [34]. This algorithm has an 

asymptotic complexity of exp(0((ln(n))1/3- (\n\r\(n))m)) and is said to be able to 

factor a 512 bit modulus 10,000 - 15,000 MlPS-years (1 MlPS-years is about 

31.5 trillion instructions) [28]. 

Since RSA was introduced all major factorizations of the modulus have 

been achieved by the algorithms depending on the size of the modulus. It can be 

29 



assumed that this trend will continue in the future. The earlier example has 

Unbalanced RSA with the modulus size 1024 bits and the size of p is 256 bits, 

whereas RSA has n being 1024 bits and p being 512 bits. By looking at the 

results of these factoring algorithms it is safe to say that the sizes chosen for the 

URSA entities provide the same level of security as the RSA entities. Since the 

largest factored numbers using ECM is 67 digits long, the p value which 256 bits 

in "Unbalanced RSA" is just as safe as the 512 bit value of RSA. The second type 

of algorithm depends on the size of the modulus and since both RSA and 

Unbalanced RSA have a modulus size of 1024 bits, they are equally secure to 

this type of algorithm. 

By looking at these facts one can say that the "Unbalanced RSA" 

algorithm can be kept as secure as regular RSA if certain conditions are met. If 

the modulus, n, of both algorithms is of the same size then RSA and URSA will 

not be susceptible to a type 2 algorithm because the size of their moduli is the 

same. Now since Unbalanced RSA uses the prime factor p as its decryption 

modulus, the size of the factor should be greater than 67 digits. This is because 

that largest factor found using a type 1 algorithm is 67 digits long. As long as 

these conditions are met, using Unbalanced RSA should not compromise the 

security when comparing it to normal RSA. 

4.4 Application of Unbalanced RSA 

Unbalanced RSA has been proposed to be applied to other wireless 

areas. In [35], [36], it is proposed to use Unbalanced RSA for authentication and 

key distribution in Wireless Local Area Networks. Public-key cryptography needs 

to be used in WLAN because it also suffers from the same security threats as 

Bluetooth (passive and active eavesdropping) [37]. The main idea of this 

proposal was for the client and server in the communication to exchange 

certificates and a shared secret key. The first step is for the client to send its 

certificate to the server, the server will verify the certificate authority's signature 

on the certificate and if approved it will move forward. The server will generate a 

random secret key and encrypt it with the client's public key. This ciphertext 

30 



would be sent to the client along with the server's certificate. The client will now 

verify the server's certificate and if approved will decrypt the ciphertext to obtain 

the secret key. Once both the client and server have the secret key a finished 

message is sent from client to server. This protocol using Unbalanced RSA 

addresses the flaws in key-distribution and authentication in the 802.11 standard 

and also reduces the time delay for key-distribution. 

4.5 Summary 

In this chapter the "Unbalanced RSA" algorithm was introduced to show its 

advantages over RSA and Diffie-Hellman. The purpose of "Unbalanced RSA" is 

to decrease the size of decryption modulus in order to reduce computation time, 

while providing the same security level. For example, it was shown that the 

decryption process for "Unbalanced RSA" was 64 times shorter than that of RSA 

when both have a modulus of 1024 bits. "Unbalanced RSA" can also be used to 

greatly increase the security level, by increasing the size of n, while keeping the 

same computation time as RSA. Another advantage of "Unbalanced RSA" is that 

it can be used to let slower and smaller processor do the decryption portion of the 

algorithm so that they don't have to deal with the large modulus size. 

31 



5. Proposed Bluetooth Key 
Exchange with Unbalanced RSA 

In this chapter the proposed protocol will be introduced. "Unbalanced 

RSA" will be applied to the Bluetooth Key exchange in order to improve the 

security from the original Bluetooth scheme and reduce computation time and 

reduce the number of exponentiations from the Diffie-Hellman protocol. The first 

section will describe the proposed protocol in detail using its three separate 

phases. The next section will describe how the security features of the protocol 

defend against the common key exchange attacks discussed earlier. Lastly the 

three key exchange protocols in various fields will be compared. 

5.1 The Proposed Protocol 

First of all, there are two scenarios that can take place during Bluetooth 

communication. The first scenario is when both devices have human operable 

interfaces or there can be a communication between two devices one of which 

has no human operable interface. The device with no human operable interface 

should have a suitable output interface so that it can display important values to 

the other device. The public keys and message digest are securely transferred to 

each device at the very beginning of the connection between the two devices. 

The proposed protocol consists of three messages being exchanged 

between Bluetooth Device 1 (BD1) and Bluetooth Device 2 (BD2). Other than 

these messages there are several calculations that take place at each device. 

There are some variables and abbreviations that will be used during this 

discussion. In Table 5.1 below are descriptions of all these items. 

32 



e2, d2 

n 

p. q 

Hash 

MAC 

RND 

Public key, Private key pair for BT device 2 

Modulus used for RSA 

prime factors of modulus n 

MD5 Hash function 

Message authentication code. Input is secret 

key and message, output is MAC 

Random number generator 

Table 5.1: proposed protocol entities 

The public key of BD2 is used only by BD1. BD1 will perform an encryption 

function; BD2 will perform a decryption function. Both devices need to perform 2 

Hash functions and 1 MAC function. Only BD1 will need to generate random 

numbers using the random number generator. Figure's 5.1 and 5.2 show the 

protocol along with all its steps divided into 3 phases. 

5.1.1 Phase 1 

First and foremost, the public key of BD2 is given to BD1 secretly as soon 

as the two devices decide to connect to one another but prior to the entry of the 

PIN. So for example when BD1 discovers BD2 as soon as BD1 chooses to 

connect to BD2 and BD2 accepts, the public key of BD2 (e and n) is sent to BD1. 

Phase 1 (Figure 5.1) of the protocol takes place before the users enter the PINs 

into both BT devices. Phase 1 mainly consists of operations/calculations that do 

not require values from BD2. BD1 will firstly generate a 128-bit random number 

(K) to use as the initialization key. This key will then be encrypted using the public 

key of BD2 (C = (KAe2) mod n). A message digest is calculated using the 

initialization key (K) and the ciphertext C. This message digest will be used later 

for authentication. Once all these values are calculated, BD1 will store K, H, C, 

33 



and e2. The message digest is secretly sent to the user of BD2. BD2 will store the 

value of H to use at a later time for authentication. Once these operations are 

finished both users have agreed to a PIN and enter the PIN into their respective 

Bluetooth enabled devices. 

BDl BD 2 

Phase I: 
generates K=RND 

computes C=(KAe2) mod n 
computes H=MAC(K, C) 

stores K, H, C, e2 

stores H 

enters PIN enters PIN 

Figure 5.1: Enhanced BT Key exchange using URSA Phase 1 

5.1.2 Phase 2 

After the PINs have been entered, two messages need to be exchanged 

between the users to enable further calculations. BD2 will send its 48-bit address 

to BD1 and BD1 in return will send its address along with the ciphertext, C. Once 

these messages have been exchanged, phase 2 of the protocol can begin. 

Phase 2 takes place entirely on the side of BD2. Firstly, BD2 will decrypt the 

ciphertext to obtain the initialization key. As can be seen in Figure 5.2, the 

decryption process is done by using modulus p hence "Unbalanced RSA" is 

being used. After decrypting the ciphertext, BD2 will compute an H' using the 

random key K which was just decrypted and the ciphertext, which was just 

delivered to it following Phase 1. Once H' is calculated, BD2 will then compare 

this value to the H that it was given during the end of phase 1. If H and H' are the 

same, then BD2 knows that it is communicating with BD1 and no changes have 

34 



been made to the messages being sent. If H and H' did not match BD2 would 

simply shut down the communication and the key exchange would be cancelled 

at that point. Once the message digests match, then the initialization key is used 

to create another key, K'. This key is generated by using the initialization key (K) 

as input to the MD5 hash function. This K' is then XORed with H' and the address 

of BD2 and this value is sent to BD1. The last step in phase 2 is to generate the 

link key which will be used later to obtain an encryption key. The link key, K|ink, is 

generated by entering several values into the MD5 Hash function. The inputs to 

the Hash function are the PIN, K, H, IDBD1, and IDBD2. As can be seen, all 

these values are very important to the generation of the link key and a small error 

in any one of them will cause the devices to have two different link keys. That is 

why these values all need to be checked to ensure their correctness. 

BDl BD2 

Phase III: 
computes K'=Hash (K) 

Store K' 
KLink=Hash(PIN,K,H,IDBD 1, 

IDBD2) 
Recovers K' from (K' XOR H' 

XORIDBD2) 
compares recovered K' to stored K' 

if K'=Stored K' then Accept KLink 

Establish Connection 

BD2 Sends IDBD2 

BDl Sends C, IDBD1 

BD2 sends (K' XOR H' 
XOR IDBD2) 

Phase II: 
decrypts C: K=(CAd2) mod p 
computes H'=MAC(K,C) 
compares H and H' to confirm 
BDl's identity 
computes K'=Hash (K) 
BD2 computes (K' XOR H' XOR 
IDBD2) 
KLi„k=Hash(PIN,K>H,IDBD 1 ,IDB 
D2) 

Figure 5.2: Enhanced BT Key exchange using URSA Phase 2 and 3 

5.1.3 Phase 3 

Phase 3 is also shown is Figure 5.2 and will begin prior to the message 

being sent by BD2 to BD1 containing the (K' XOR H' XOR IDBD2) value. The first 

step in phase 3 is to generate the same K' as was done in phase 2. This was 

35 



done by placing the initialization key (K) into the hash function. Once the K' is 

calculated then BD1 can go on and generate the link key. Once again, this is 

done in the same manner as BD2 where the values of the PIN, K, H, IDBD1, and 

IDBD2 are used as input to the hash function and the output is K|ink- The next 

step in phase 3 is to recover the value of K' from the message that was sent by 

BD2 earlier. This is done by XORing the message with H and IDBD2. Once K' is 

recovered, BD1 will check to see if the K' that was recovered from the message 

is the same K' that was calculated earlier through the hash function. If they are 

the same then BD1 knows that BD2 received the proper value of the initialization 

key or else they could not calculate the same K'. After having gone through the 

entire protocol, both devices know they have the correct values so they can now 

accept the K|ink value and continue with the security process after the key 

exchange. 

5.2 Security analysis 

The proposed protocol possesses many of the same security properties as 

the Diffie-Hellman protocol. The proposed protocol provides high security against 

the common attacks of passive eavesdropping, active eavesdropping and 

bluedumping. As explained earlier the proposed protocol will exchange certain 

values (H and public keys) secretly prior to the entry of the PIN. The combination 

of public-key cryptography as well as HASH/MAC functions provides enough 

security for the near future. 

The passive eavesdropping attack would be almost useless against this 

protocol. As explained earlier certain values are exchanged secretly before entry 

of the PIN. Even if these values were to somehow get compromised a passive 

eavesdropping attack would still be almost impossible. In order to have a 

successful passive attack the attacker would need to obtain the values of H, K, 

PIN, IDBD1, and IDBD2. The values of IDBD1 and IDBD2 can be obtained by 

listening to the messages sent by BD1 and BD2 to one another. The other 

information an attacker would be able to gather is the value of the ciphertext, C, 

and the value of (K' XOR H XOR IDBD2). An attacker will not be able to obtain 

36 



the value of the initialization key K from C because it can only be properly 

decrypted with the private key of BD2. Since the attacker cannot obtain K it 

therefore cannot obtain K' because in order to get K', K is to be entered into to 

the Hash function. K' is needed to be able to recover the value of H from the 

message of (K' XOR H' XOR IDBD2). Then the attacker still has the issue of 

somehow finding out the PIN value. One can see that passive eavesdropper 

would have an almost impossible time trying to obtain these values so that he 

could put them into the Hash function to get the link key. 

An active eavesdropping attack has a better chance of success than a 

passive one but still will have a difficult time. The success of the active 

eavesdropping attack will mainly depend on the attacker being able to get the 

right value for the message digest. Since the value of H and e is exchanged prior 

to PIN entry is extremely difficult for the attacker to retrieve these. Even if the 

attacker can somehow obtain these values, the attacker has to be anticipating 

when the devices will choose to make a connection. But since the attacker is 

focusing on the Bluetooth exchange it will be difficult to obtain the public keys and 

H. The attacker will intercept the message being sent from BD1 to BD2 which 

contains the value of C. Now the attacker needs to ensure that the value of C it 

will send to BD2 has the same MAC value as H using K as the key. The attacker 

will have no knowledge of the values of H or K making it very unlikely he/she can 

produce a C having the same message digest value. If the attacker sends an 

incorrect value of C to BD2 then it will cause BD2 to shut down the key exchange 

because it will know someone is altering the messages. If the attacker does find 

out the value of C then there is still the problem of finding the PIN and the 

initialization key. In order for an active eavesdropping attack to succeed, the 

attacker will need to find out all of these values, which will make it quite difficult 

as shown in the discussion above. 

The bluedumping attack is somewhat of a combination between passive 

and active eavesdropping. An attacker will send a message to a Bluetooth device 

pretending to be another device and claiming to have lost the link key the devices 

shared. This will force the two devices to reinitiate the link key exchange [21]. 

37 



However, once the two devices start the key exchange, the attacker becomes a 

passive eavesdropper and therefore can only listen to the messages being sent. 

Again the two devices will exchange values prior to PIN entry using their 

interfaces and in some cases may not need to exchange these values if they do 

not wish to renew them. The attacker now faces the same problems as the 

passive eavesdropping attack and therefore it will be highly unlikely that the 

attacker can obtain the link key in the end. 

As one can see, the Unbalanced RSA enhanced Bluetooth key exchange 

protocol has not lost any security features when compared to the enhanced 

Diffie-Hellman Key exchange protocol. Both protocols can fend off the three main 

key exchange attacks by using their public-key systems and hash functions. In 

the simulation section, Unbalanced RSA and Diffie-Hellman will be compared to 

see if the proposed protocol can outperform the DH protocol in terms of 

computation time. 

5.3 Comparing the Three Protocols 

Table 5.2 compares the original Bluetooth key exchange, the Diffie-

Hellman protocol and the proposed protocol ("Unbalanced RSA") in several 

different areas. 

The first row compares the three protocols in terms of their security 

strength. When the description of the original key exchange scheme was given it 

was shown how it is quite susceptible to the common attacks of passive 

eavesdropping, active eavesdropping, and bluedumping [16]. On the other hand 

the Diffie-Hellman [23] and proposed protocols were shown to have very high 

security against these attacks by using one-way cryptographic functions and 

hash functions. Therefore, the security strength of the original scheme is low 

while the other two protocols have high security strength. 

The entities that are kept secret by each protocol also differ. The original 

scheme will keep only the PIN as the secret everything else will be sent to the 

other device in plaintext. The Diffie-Hellman protocol will keep the PIN secret as 

well as the shared secret key S using Diffie-Hellman. This protocol will also keep 

38 



the message digest a secret along with the key used to create it. The 

"Unbalanced RSA" protocol will keep the PIN secret as well as the key 

exchanged using RSA, just like the Diffie-Hellman protocol the message digest 

and its key should also be kept secret. 

Security 

Strength 

Secret Entities 

Computation 

Time (delay) 

Protocol Steps 

Original Scheme 

Low 

PIN 

Adequate 

3 

Diffie -Hellman 

High 

PIN,S 

Inadequate 

4 

"Unbalanced 

RSA" 

High 

PIN, Kmit 

Adequate 

3 

Table 5.2: Comparing three key exchange protocols 

The computation time will be related to how difficult the computations are 

for each protocol. The original scheme has relatively simple computations. In the 

original key exchange scheme only symmetric ciphers are used, more specifically 

SAFER+. SAFER+ was a candidate for the advanced encryption standard (AES) 

eventually losing out to Rjindael after three years of testing [38]. The reason for 

the use of SAFER+ was its practical implementation in hardware [39]. The Diffie-

Hellman protocol will have a relatively high computation time because of all the 

modular exponentiations being done on both sides. In the case of the DH 

enhanced protocol it would require four modular exponentiations in the entire 

protocol all with the same size modulus [25]. The proposed protocol should be 

closer to the original scheme in terms of computation time. The encryption and 

decryption portion of the protocol should take the most time. Usually encryption is 

much faster than decryption in RSA however, with the "Unbalanced RSA" version 

the decryption time will be considerably smaller and should make the 

computation time adequate. If one of the devices in a Bluetooth communication is 

a much smaller processor the Diffie-Hellman protocol would cause an even larger 

39 



delay, the Unbalanced RSA protocol can cure that problem. The Diffie-Hellman 

protocol and the proposed protocol will be simulated for the computation time. 

BT Device 1 BT Device 2 

Rinit 

Ci 

c2 

Figure 5.3: Original BT key exchange messages 

The last comparison between these three protocols is made in terms of the 

protocol steps. In the original protocol only 3 messages are exchanged between 

the two Bluetooth devices during the key exchange as shown in Figure 5.2. 

Figure 5.3 shows the number of messages needed to be exchanged in the 

proposed protocol using "Unbalanced RSA". The diagram shows that the 

proposed protocol only uses 3 messages as well, same as the original Bluetooth 

key exchange scheme. The proposed protocol is therefore increasing the security 

from the original Bluetooth key exchange protocol without changing the number 

of protocol steps needed. 

Figure 5.4 shows that the Diffie-Hellman protocol requires 4 messages to 

be exchanged, in order to complete the protocol. The Proposed protocol requires 

only 3 messages as can be seen in Figure 5.3 to be exchanged in order for the 

protocol to be completed. In the end the proposed protocol does not even 

increase the number of protocol steps in order to increase the security, whereas 

the Diffie-Hellman protocol increases the security same as the proposed protocol 

but needs to add one extra protocol step. Although this may not make a huge 

40 



difference in the overall design of the key exchange it does increase the 

complexity and will also increase the overall delay of the process. 

BT Device 1 BT Device 2 

BD2 sends IDBD2 
* 

BD1 sends C, IDBD1 
2 • 

BD2 sends (K' XOR 
H' XOR IDBD2) 

4 

Figure 5.4: Enhanced "Unbalanced RSA" Key Exchange Messages 

BT Device 1 BT Device 2 

BD2 sends IDBD2 
« 

BD1 sends gx, IDBD1 
» 

Success (C=C) 
4 

BD2 sends gy, EK>(S, 
IDBD2) 

4 

Figure 5.5: Enhanced Diffie-Hellman Key exchange messages 

Comparing these three key exchange protocol in these four fields shows 

how successful they are. The "Unbalanced RSA" protocol is better than the Diffie-

41 



Hellman protocol in terms computation time, and the number of protocol steps. 

These two protocols do however provide high security strength and have the 

same number of secret entities. The Unbalanced RSA protocol provides higher 

security strength than the original key exchange scheme and also keeps more 

entities a secret. They both have an adequate computation time and the same 

number of protocol steps. The only area where the Unbalanced RSA protocol 

would suffer is when it is compared to the original key exchange in terms of how 

complex the operations are in each protocol because the proposed protocol uses 

a public-key system, whereas the original scheme uses a much simpler 

symmetric cipher. 

5.4 Summary 

This chapter introduced the new protocol using the "Unbalanced RSA" 

Algorithm. The goal of the proposed protocol was similar to that of applying 

Unbalanced RSA to WLAN [35], [36], which was to improve security while trying 

to minimize delay. The proposed protocol provides better security features than 

the original scheme when related to the common key exchange attacks. The 

proposed protocol also improves the previously discussed Diffie-Hellman protocol 

by having a lower computation time. This protocol will require each user to 

perform only one modular exponentiation. Also the powerful processor can take 

care of the encryption because it has to handle the entire modulus while the other 

processor can take care of the decryption because it only needs to handle the 

prime factor, p. The next chapter will compare the Diffie-Hellman protocol, the 

proposed protocol, and an RSA protocol in terms of their time delay. As the 

complexity of the operations in the protocol and the computation time are related, 

some vital information should be obtained from the simulations run on these key 

exchange protocols. 

42 



6. Simulation Results and Analysis 

The simulation was performed to check and see how long each protocol 

would take to go through its phases. Simulation results were performed on the 

Diffie-Hellman protocol, the "Unbalanced RSA" protocol, and a protocol exactly 

the same as the proposed protocol but using RSA. The simulation was performed 

for modulus sizes of 1024 bits and 2048 bits. In the URSA protocol, the size of p 

when n is 1024 bits was 256 bits, making q 768 bits. When n was 2048 bits, the 

size of p was 512 bits, making q 1536 bits. The reason for choosing these values 

was because as shown in [32], [33] they should be secure for the foreseeable 

future. The modular exponentiation was performed using the square-and-multiply 

method as it is one of the most popular methods to use. Simulation was 

performed using MAPLE version 11 on a laptop with a core duo processor with a 

2GB RAM and 2GHz clock frequency. The codes for the simulations are provided 

in the appendices along with comments to explain how they work. 

6.1 Simulation Results 

The simulation results were performed in phases as shown in the 

diagrams for the protocols earlier. In the Diffie-Hellman protocol phase 1 consists 

of a modular exponentiation and a MAC function; Phase 2 consists of two 

modular exponentiations and two hash functions; and finally Phase 3 consists of 

two hash functions. In the RSA/Unbalanced RSA protocol Phase 1 consists of an 

encryption operation and a MAC function; Phase 2 consists of a decryption 

operation, a MAC function, and two hash functions; and lastly Phase 3 consists of 

two hash functions. 

43 



The results for the running time of these phases are shown in Table 

6.1(n=1024 bits) and Table 6.2(n=2048 bits). The results show the amount of 

time taken to perform calculations for the entire phase and in brackets it shows 

how much of the time of the phase is consumed by the main operation, which in 

these cases was the modular exponentiation. These results will be discussed in 

more detail later to ensure their validity. 

DH 

RSA 

URSA 

Phase I 

(main opr.) 

3.68 ms 

(3.46 ms) 

.048 ms 

(.045 ms) 

.048 ms 

(.045 ms) 

Phase II 

(main opr.) 

9.02 ms 

(8.76 ms) 

3.75 ms 

(3.725 ms) 

.064 ms 

(.0589 ms) 

Phase III 

(main opr.) 

5.3 ms 

(4.98 ms) 

6.4 MS 

(6.4 MS) 

6.4 ps 

(6.4 MS) 

Table 6.1: Delay for DH, RSA, and URSA schemes (n=1024 bits) 

DH 

RSA 

URSA 

Phase I 

(main opr.) 

18.6 ms 

(18.5 ms) 

.425 ms 

(.421 ms) 

.425 ms 

(.421 ms) 

Phase II 

(main opr.) 

48.5 ms 

(48 ms) 

32.9 ms 

(32.6 ms) 

.562 ms 

(.552 ms) 

Phase III 

(main opr.) 

28.2 ms 

(28.1 ms) 

6.4 ps 

(6.4 MS) 

6.4 MS 

(6.4 MS) 

Table 6.2: Delay for DH, RSA, and URSA schemes (n=2048 bits) 

44 



By looking at the results in the two tables above, one can clearly see the 

advantages "Unbalanced RSA" has over the other two protocols. As explained in 

the chapter on "Unbalanced RSA", decreasing the size of one factor does not 

compromise the security of the algorithm and therefore the tables provide an 

accurate way to compare the protocols [28]. The calculations in each phase were 

explained earlier and by looking at the results one can see that Unbalanced RSA 

is clearly superior to the other two algorithms when it comes to computation time. 

The Diffie-Hellman protocol is clearly the least efficient protocol for either 

modulus size. The amount of time it takes in each phase is much greater than 

that of RSA or "Unbalanced RSA". The comparison of RSA and "Unbalanced 

RSA" is a little bit tricky as in both protocols; Phase 1 and Phase 3 delays are 

exactly the same. Phase 1 and Phase 3 is where the encryption and hash 

functions take place. However, when looking at phase 2, Unbalanced RSA's 

efficiency is much greater than that of RSA. Taking all these results into account, 

one can say the "Unbalanced RSA" is the best choice when one needs a 

combination of security and efficiency. 

6.2 Analysis of Results 

The simulation results can be tested by comparing them with Shamir's 

discovery that the time delay of a RSA computations grows cubically with the size 

of the modulus [28]. Table 6.3 shows the results for the encryption process and 

how their time delay ratio compares to that of Shamir's theory. First of all one 

should take note that the table shows RSA and Unbalanced RSA have the same 

time delay. This is not an error because as mentioned earlier, the encryption 

operation does not change between RSA and "Unbalanced RSA". In theory, 

when the size of the modulus changes from 1024 bits to 2048 bits, the time delay 

should be about (2048/1024 )3=8 times slower. As the table shows the tested time 

is about 9.3 times slower which is quite a good estimate when compare to 

Shamir's theory. 

45 



RSA 

Unbalanced 

RSA 

n = 1024 bits 

.045 ms 

.045 ms 

n = 2048 bits 

.421 ms 

.421 ms 

Ratio 

(Theory) 

9.3 

(8) 

9.3 

(8) 

Table 6.3: Encryption time delay and ratio (RSA and URSA schemes) 

Table 6.4 shows the results of the decryption process and compares the results 

to Shamir's theory. As mentioned in the beginning of the chapter, when the 

modulus is 1024 bits, the p value for URSA is 256 bits, and when the modulus is 

2048 bits, the p value for URSA is 512 bits. According to Shamir, when n is 1024 

bits, Unbalanced RSA decryption should be (1024/256)3=64 times faster than that 

of RSA. In the simulation, results showed Unbalanced RSA to be 63 time faster 

than RSA. When n is 2048 bits Unbalanced RSA decryption should also be 

(2048/512)3=64 times faster than that of RSA. In the simulation, with modulus 

being 2048 bits, results showed Unbalanced RSA decryption to be 59 times 

faster than RSA. By looking at these results and comparing them to Shamir's 

theoretical results, it can be deduced that the results obtained are valid and make 

sense. 

RSA 

Unbalanced RSA 

Ratio: RSA/URSA 

(Theory) 

n = 1024 bits 

3.725 ms 

0.0589 ms 

63 

(64) 

n = 2048 bits 

32.6 ms 

.552 ms 

59 

(64) 

Table 6.4: Decryption time delay and ratio (RSA and URSA schemes) 

46 



6.3 Summary 

This chapter displayed and analyzed the results achieved when the Diffie-

Hellman protocol, the proposed protocol, and the RSA protocol were simulated. 

By looking at the results it is clear to see that the proposed protocol that uses 

Unbalanced RSA has the lowest computation time. The differential between the 

proposed protocol and the Diffie-Hellman protocol is enormous whereas 

differential between the proposed protocol and RSA is smaller. This is due to the 

fact that the only difference that occurs between the proposed protocol and the 

RSA protocol is in Phase 2 of the protocol (decryption). Even with this fact, by 

looking at just the phase 2 portion of the simulation Unbalanced RSA is much 

better than the RSA protocol. The results were validated by showing that they 

adhere to Shamir's theory that the RSA computation time is proportional to the 

size of the modulus cubed. The results presented in this chapter were obtained 

on a laptop and should be considered useful for Bluetooth on laptops only. The 

use of the proposed protocols on handhelds would require further investigation 

and testing. The next chapter will state some conclusions to the thesis and also 

discuss some future work that could be considered for this area. 

47 



7. Conclusions 

In this thesis, the problems with IEEE 802.15 standard in terms of key 

exchange have been reviewed. New suggestions to the key exchange scheme 

and their problems have also been reviewed. The problem of exchanging keys 

reliably in a Bluetooth network is very critical. The IEEE standard key exchange 

tends to have several security issues when it comes to common attacks 

(passive/active eavesdropping, bluedumping). The Enhancement to the key 

exchange which uses Diffie-Hellman [23] aimed to help fix these security issues. 

The Enhancement using Diffie-Hellman however also had its own problems with 

computation time and complex calculations. 

In order to find a middle ground between security and efficiency between 

two Bluetooth devices, a new protocol is proposed here for Bluetooth key 

exchange. The proposed protocol uses a modified version of RSA called 

"Unbalanced RSA". If Unbalanced RSA is used, the goal of providing security and 

efficiency can be achieved. By using Unbalanced RSA the computation time can 

be reduced because in this algorithm the decryption process is done modulo p, 

not modulo n as in regular RSA. This fact alone should greatly improve its 

efficiency over the Diffie-Hellman protocol. The changing of the modulus for 

decryption can affect the security level if one is not careful. There are certain 

conditions that need to be met in order for Unbalanced RSA to have the same 

security level as regular RSA. 

Even though Unbalanced RSA reduces the size of the prime factor p and 

uses it as the modulus for decryption, this does not decrease the security level 

when compared to normal RSA. A modulus can be divided up into its factors 

using two different types of algorithms. The first is dependent upon the size of the 

48 



factored number n and the other is dependent upon the size of the factors. Since 

the size of n does not change from RSA to Unbalanced RSA, the first type of 

algorithm will not make a difference. The second type of algorithm has only found 

factors up to 67 digits so far [32] and is estimated to find 85 digits in the year 

2018 [33]. Looking at these facts it is safe to assume that a p size of 256 bits is 

still safe for a few years and if needed can even be increased slightly when it is 

needed. 

By using detailed descriptions and simulations, it was shown that the 

proposed protocol using Unbalanced RSA is the best combination of security and 

efficiency out of the three protocols. It was shown that the original Bluetooth key 

exchange was susceptible to the common key exchange attacks whereas the two 

modified version could defend against these attacks. So the original scheme was 

deemed to be insecure when compared to the enhanced schemes. The Diffie-

Hellman enhanced protocol and the Unbalanced RSA enhanced protocol were 

simulated to check their computation time. At the end, the Unbalanced RSA 

protocol was better in terms of computation time than the Diffie-Hellman protocol. 

In summary, the proposed key exchange protocol using Unbalanced RSA 

was able to increase the security strength when compared to the original 

Bluetooth key exchange. It was also able to decrease the computation time when 

compared to the enhanced Diffie-Hellman Key exchange. The use of 

cryptographic one-way functions and hash functions allows the Unbalanced RSA 

key exchange to provide high security against the common key exchange 

attacks. The Diffie-Hellman enhanced protocol and the proposed protocol using 

Unbalanced RSA are quite similar in terms of their layout. However, a closer look 

reveals that the DH enhanced protocol requires twice as many modular 

exponentiations than the proposed protocol. Also, one can see the Unbalanced 

RSA enhancement keeps the same number of protocol steps as the original key 

exchange whereas the DH enhancement increases the number of protocol steps. 

The proposed protocol turns out to be a suitable replacement to the 

original key exchange scheme and to the Diffie-Hellman enhanced key exchange 

protocol. The proposed protocol did perform up to the expectations on the laptop 

49 



on which it was simulated. The results obtained from the simulation are relevant 

to laptops and cannot easily be converted to results on handheld processors. It 

would be a good idea to implement this proposed protocol on different types of 

processors so that it can be seen if this protocol as efficient for other types of 

processors. It would be wise to include various types of commercially available 

processors for handheld devices as well as other devices, as a greater number of 

handhelds come equipped with Bluetooth. The use of elliptic curve cryptography 

in Bluetooth security should also be explored. These suggestions can be treated 

as future work after this thesis. 

50 



Appendix A: Maple code for BT 
Key Exchange using URSA 

A.1 : System Setup 

M1 := (rand(2A256))(); 
M2 := (rand(2A768))(); 
P := nextprime(MI); 
Q := nextprime(M2); 
n := P*Q; 
n2:=(P-1)*(Q-1); 
e :=2 1 e +1 ; 
isprime(e); 
gcd(e,n2); 
d := eval(1/e mod n2); 
IDBD1 := (rand(2A48))(); 
IDBD2 := (rand(2A48))(); 

A.2: Phase 1 Testing 

st := time(): 
fori from 0 by 1 to 100 do 
K:=(rand(2A128))(); 
C := K&Ae mod n; 
end do; 
time()-st 

This loop will see how long it takes to run phase 1 of the proposed scheme 100 

times. He result obtained from this must be divided by 100 to get the actual result 

to run phase 1 once. Phase 1 includes 1 exponentiation and 2 random number 

generations. 

// generates random integer of size 256 bits 
// generates random integer of size 768 bits 
//finds next prime number after M1 
// finds next prime number after M2 
//Multiplies P and Q to obtain modulus n 
//generates the toitent function 
// sets public key value 
// check to make sure e is prime 
//check to see if e is relatively prime to n2 
//evaluate value of d using modular arithmetic 
// address for Bluetooth device 1 
// address for Bluetooth device 2 

51 



A.3: Phase 2 Testing 

st := time(): 
with(StringTools): 
for i from 0 by 1 to 75 do 
C := K&Ae mod p; 
K' = Hash(K); 
KLink = Hash(PIN,K,H,IDBD1 ,IDBD2); 
end do; 
time()-st 

This loop will see how long it takes to run phase 2 of the proposed scheme 75 

times. Since the decryption process will take longer than the encryption we used 

a smaller loop. Phase 2 includes 1 exponentiation and 2 hash functions. 

A.4: Phase 3 Testing 

st := time(): 
with(StringTools): 
for i from 0 by 1 to 1000 do 
K" := Hash(K); 
KLink := Hash(PIN,K,H,IDBD1,IDBD2); 
end do; 
time()-st 

This loop will see how long it takes to run phase 3 of the proposed scheme 1000 

times. We needed to greatly increase the size of the loop because the hash 

functions take very little time to execute. Phase 3 includes 2 hash functions. 

52 



Appendix B: Maple code for BT 
Key Exchange using RSA 

B.1: System Setup 

M1 := (rand(2A512))(); 
M2 := (rand(2A512))(); 
P := nextprime(MI); 
Q := nextprime(M2); 
n := P*Q; 
n2:=(P-1)*(Q-1); 
e :=2 l 6 + 1; 
isprime(e); 
gcd(e,n2); 
d := eval(1/e mod n2); 
IDBD1 := (rand(2M8))(); 
IDBD2 := (rand(2A48))(); 

B.2: Phase 1 Testing 

st := time(): 
fori from 0 by 1 to 100 do 
K := (rand(2A128))(); 
C := K&Ae mod n; 
end do; 
time()-st 

This loop will see how long it takes to run phase 1 of the RSA key exchange 

scheme 100 times. The result obtained from this must be divided by 100 to get 

the actual result to run phase 1 once. Phase 1 includes 1 exponentiation and 2 

random number generations. 

// generates random integer of size 256 bits 
// generates random integer of size 768 bits 
//finds next prime number after M1 
// finds next prime number after M2 
//Multiplies P and Q to obtain modulus n 
//generates the toitent function 
// sets public key value 
// check to make sure e is prime 
//check to see if e is relatively prime to n2 
//evaluate value of d using modular arithmetic 
// address for Bluetooth device 1 
// address for Bluetooth device 2 

53 



B.3: Phase 2 Testing 

st := time(): 
with(StringTools): 
for i from 0 by 1 to 20 do 
K := C&Ad mod n; 
K' := Hash(K); 
KLink := Hash(PIN,K,H,IDBD1,IDBD2); 
end do; 
time()-st 

This loop will see how long it takes to run phase 2 of the RSA Key exchange 

scheme 20 times. Since the decryption process will take longer than the 

encryption we used a smaller loop. Phase 2 includes 1 exponentiation and 2 

hash functions. 

B.4: Phase 3 Testing 

st := time(): 
with(StringTools): 
for i from 0 by 1 to 1000 do 
K' := Hash(K); 
KLink:= Hash(PIN,K,H,IDBD1 JDBD2); 
end do; 
time()-st 

This loop will see how long it takes to run phase 3 of the RSA key exchange 

scheme 1000 times. We needed to greatly increase the size of the loop because 

the hash functions take very little time to execute. Phase 3 includes 2 hash 

functions. 

54 



Appendix C: Maple code for BT 
Key Exchange using DH 

C.1: System Setup 

q1 := (rand(2A1024))(); //generates random 1024 bit number 
q := nextprime(q1) // next prime number after q1 for 

modulus 
XA := (rand(2A512))(); //generates user A private key 
XB := (rand(2A512))(); //generates user B private key 
IDBD1 := (rand(2A48))(); //User A address 
IDBD2 := (rand(2A48))(); //User B address 

for g from 50 to 1000 while a <> q-1 do //selects range from which to get g 
with(numtheory); 
i := order(g, q); //finds the proper g as primitive root 
g; //displays alpha value 
end do; 

C.2: Phase 1 Testing 

st := time(): 
fori from 0 by 1 to 100 do 
XA:=(rand(2A512))(); 
YA := ALPHA&AXA mod q; 
K:=(rand(2A128))(); 
end do; 
time()-st 

This code will run Phase 1 of the enhanced security using DH. This loop 

calculates the time needed to run this phase 100 times. Phase 1 includes 2 

random number generations and 1 exponentiation. 

55 



C.3: Phase 2 Testing 

st := time(): 
with(StringTools): 
for i from 0 by 1 to 20 do 
YA:=(rand(2A512))(); 
YB := ALPHA&AXB mod q; 
S := YB&AXA mod q; 
K' = Hash(S); 
KLink := Hash(PIN,K,H,S,IDBD1,IDBD2); 
end do; 
time()-st 

This code will run Phase 2 of the enhanced security using DH. This loop 

calculates the time needed to run this phase 20 times. Phase 2 includes 2 

exponentiations, 1 random number generation and 2 hash functions. 

C.4: Phase 3 Testing 

st := time(): 
with(StringTools): 
for i from 0 by 1 to 100 do 
YA := (rand(2A512))(); 
S := YA&AXB mod q; 
K' = Hash(S); 
KLink := Hash(PIN,K,H,S,IDBD1,IDBD2); 
end do; 
time()-st 

This code will run Phase 3 of the enhanced security using DH. This loop 

calculates the time needed to run this phase 100 times. Phase 3 includes 1 

exponentiation and 2 Hash functions. 

56 



References 

[1] M. Krolak and M. Novak, "An Introduction to Infrared Technology: 
Applications in the Home, Classroom, Workplace, and Beyond ...," 
Technical Report, Trace R&D Center, University of Wisconsin, Madison, 
Wl, 1995. 

[2] M. Bialoglowy, "Bluetooth Security Review, Part 2," SecurityFocus, May 
2005, Web publication available at: http://www.securityfocus.com/ 
infocus/1836. 

[3] A. Edlund, "Bluetooth Wireless Technology - 2005 Update," in Business 
Briefing: Wireless Technology 2005, 2005, pp. 28-30. 

[4] "Bluetooth Wireless Technology Becoming Standard in Cars", Technical 
Report, Bluetooth Special Interest Group, February 2006, Web 
Publication available at: http://www.bluetooth.com/Bluetooth/Press/SIG/ 
Test_1.htm. 

[5] T. Olzak, "Secure your Bluetooth wireless networks and protect your 
data," White Paper, TechRepublic: A Resource for IT professionals, 
December 2007. 

[6] P. Suri and S. Rani, "Bluetooth Security - Need to Increase the 
Efficiency in Pairing," in IEEE Souteast Con, 2008, pp. 607-609. 

[7] C. Schwaderer, "History, technology, and product for Bluetooth," 
Technical Report, CompactPCI Systems, March 2001. 

[8] P. Wells, "What is Bluetooth?," in IEEE Potentials, Volume 23, Issue 5, 
December 2004, pp. 33-35. 

[9] "Bluetooth Range in Relation to Different Power Classes," Technical 
Report, Palo Wireless: Bluetooth Resource Center, March 2000, Web 
publication available at: http://www.palowireless.com/INFOTOOTH/ 
knowbase/general/10.asp. 

57 

http://www.securityfocus.com/
http://www.bluetooth.com/Bluetooth/Press/SIG/
http://www.palowireless.com/INFOTOOTH/


[10] J. Kahn and J. Barry, "Wireless Infrared Communications," in 
Proceedings of the IEEE, Volume 85, Issue 2, February 1997, pp. 265-
298. 

[11] M. Mahn, "Bluetooth and Wi-Fi," Technical Report, Socket 
Communication Inc., March 2002. 

[12] D. Dagon, T. Martin, and T. Starner, "Mobile Phones as Computing 
Devices: The Viruses are coming!," in IEEE Pervasive Computing, 
Volume 3, Oct-Dec 2004, Issue 4, pp. 11-15. 

[13] "Bluetooth Security," 2008, Bluetomorrow: The comprehensive guide to 
everything Bluetooth related, Web Publication available at: 
http://www.bluetomorrow.com/content/section/177/281/. 

[14] IEEE 802.15, IEEE standard for Wireless Personal Area Networks 
(WPAN), IEEE, 2005. 

[15] G. Legg, "The Bluejacking, Bluesnarfing, Bluebugging Blues: Bluetooth 
Faces Perception of Vulnerability," Techonline, April 2005, Web 
publication available at: http://www.wirelessnetdesignline.com/ 
showArticle.jhtml?articlelD=192200279. 

[16] C. Hager and S. Midkiff, "An analysis of Bluetooth security 
Vulnerabilities," in IEEE Wireless communication and networking, 
Volume 3, March 2003, pp. 1825-1831. 

[17] M. Jakobsson, S. Wetzel: "Security Weaknesses in Bluetooth," in 
Proceedings of the RSA Conference 2001, San Francisco, USA, April 8-
12 2001. 

[18] T. Karygiannis and L. Owens, " Wireless Network Security, 802.11, 
Bluetooth and handheld devices," NIST special publication 800-48, 
November 2002. 

[19] Vainio, Juha, "Bluetooth Security", May 2000, Technical Report available 
at: http://www.niksula.cs.hut.fi/~jiitv/bluesec.html. 

[20] D. Kugler, "Preventing Tracking and 'Man in the Middle' Attacks on 
Bluetooth Devices," Proceedings of Financial Cryptography, 2003, pp. 
149-161. 

[21] V. Kostakos, "WiFi and Bluetooth Vulnerabilities," Cityware: Urban 
Design and Pervasive systems, January 2008. 

58 

http://www.bluetomorrow.com/content/section/177/281/
http://www.wirelessnetdesignline.com/
http://www.niksula.cs.hut.fi/~jiitv/bluesec.html


[22] Y. Shaked and A. Wool, "Cracking the Bluetooth PIN," School of 
Electrical Engineering Systems, May 2005, Technical Report available 
at: http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/. 

[23] S. Aissi, C. Gehrmann, K. Nyberg, "Proposal for Enhancing Bluetooth 
Security using an Improved Pairing mechanism," in Bluetooth All-Hands 
Meeting, April 19-23, 2004. 

[24] W. Diffie and M. Hellman, "New Directions in Cryptography," in IEEE 
Transactions on Information Theory, Volume 22, Issue 6, November 
1976, pp. 644-654. 

[25] W. Stalling, Network Security Essentials, New Jersey: Prentice Hall, 
2002. 

[26] S. Robinson, "Still Guarding Secrets after Years of Attacks, RSA Earns 
Accolades for its Founders," in SIAM News, Volume 36, Number 5, June 
2003. 

[27] W. Stallings, Cryptography and Network Security: Principles and Practice 
Third Edition, New Jersey: Prentice Hall, 2003. 

[28] A. Shamir, "RSA for Paranoids," RSA Laboratories' Cryptobytes, Volume 
1, Number 3, Autumn 1995. 

[29] A.V. Sarad, "Application to Chinese Remainder Theorem," Technical 
Report, AU-KBC Research Center, 2005. 

[30] H. Lenstra, "Factoring integers with elliptic curves," Annals of 
Mathematics, Vol. 126, pp. 649 - 673, 1987. 

[31] P. Montgomery, "Speeding the Pollard and elliptic curve methods of 
factorization," Mathematics of Computation, 48(177), pp. 243 - 264, 
1987. 

[32] P. Zimmerman, "50 Largest factors found by ECM," Inria Lorraine, 
Nancy, France, 2006, Web Publication available at: 
http://www.loria.fr/~zimmerma/records/top50.html. 

[33] P. Zimmerman, "The Elliptic Curve Method," Inria Lorraine, Nancy, 
France, April 2003, Web Publication available at: 
http://www.loria.fr/~zimmerma/papers/ecm-entry.pdf. 

59 

http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/
http://www.loria.fr/~zimmerma/records/top50.html
http://www.loria.fr/~zimmerma/papers/ecm-entry.pdf


[34] G. Meulenaer, F. Gosset, G. Meurice de Dormale, J. Quisquater, "Integer 
Factorization Based on Elliptic Curve Method: Towards Better 
Exploitation of Reconfigurable Hardware," in IEEE Symposium on Field-
Programmable Custom Computing Machines, 23-25 April 2007, pp. 197-
206. 

[35] Z. Zheng, K. Tepe, H. Wu, "Applying Unbalanced RSA to Authentication 
and Key Distribution in 802.11", CWIT 2005, June 5-8th, 2005, Montreal, 
Quebec. 

[36] Z. Zheng, "A New Protocol with Unbalanced RSA for Authentication and 
Key Distribution in WLAN," M.S. thesis, University of Windsor, Windsor, 
On, Canada, 2004. 

[37] Z. Longjun, H. Wei, Z. Dong, and C. Kefei, "A Security Solution of WLAN 
on Public Key Cryptosystem," in 11th International Conference on 
Parallel and Distributed Systems, Volume 2, 20-22 July 2005, pp. 422-
426. 

[38] C. Sanchez-Avila & R. Sanchez-Reillo, "The Rijndael Block Cipher (AES 
Proposal): A Comparison with DES," in IEEE 35th International Carnahan 
Conference on Security Technology, 8-10 April 2002, pp. 229-234. 

[39] B. Schneier, "Performance comparison of the AES Submissions," 
Technical Report, Counter Pane Internet Security Inc., August 2000. 

60 



VITA AUCTORIS 

Saif Rahman was bom in 1983 in Doha, Qatar. He graduated from the American 

School of Doha High School in 2001. From there he went on to the University of 

Windsor where he obtained a B.App.Sc degree in Electrical Engineering in 2005. 

He is currently a candidate for a Master's degree in Electrical Engineering at the 

University of Windsor and hopes to graduate in the summer of 2008. 

61 


	Improved Bluetooth Key Exchange using Unbalanced RSA
	Recommended Citation

	ProQuest Dissertations

