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ABSTRACT 

Al-Si alloys intended for use in engine components must operate under ultra-mild 

wear (UMW) conditions to fit an acceptable amount of wear during a typical vehicle life. 

This study simulated surface damage in a UMW regime on five chemically etched Al-Si 

alloy surfaces using a pin-on-disc tribometer at low loads (0.5-2.0 N) under boundary 

lubricated conditions. The five alloys contained 11 to 25 wt.% Si and differed in matrix 

hardness, silicon particle morphology, and size. The mechanisms leading to the UMW 

damage and the role that the matrix hardness and microstructure play on said mechanisms 

were studied. Quantitative measurement methods based on statistical analysis of particle 

height changes and material loss from elevated aluminum using a profilometer technique 

were developed and used to asses UMW. 

The Greenwood and Tripp's numerical model was adapted to analyze the contact 

that occurred between Al-Si alloys with silicon particles protruding above the aluminum 

and steel balls. The estimation of the real contact pressure applied to the silicon particles 

was used to rationalize the damage mechanisms. 

The UMW mechanisms consisted of i) abrasive wear on the top of the silicon 

particle surfaces; ii) sinking-in of the silicon particles; iii) piling-up of the aluminium 

around sunken-in particles and vi) wear of the aluminium by the counterface, which 

eventually led to the initiation of UMW-II. Increasing the size or areal density of silicon 

particles with small aspect ratios delayed the onset of UMW-II by providing resistance 

against the silicon particles sinking-in and the aluminum piling-up. The UMW wear rates, 

however, began to decrease after long sliding cycles once an oil residue layer supported 

by hardened ultra-fine subsurface grains formed on the deformed aluminium matrix. The 
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layer formation depended on the microstructure and applied load. Overall experimental 

observations suggested that Al-11% Si with small silicon particles exhibited optimal 

long-term wear performance. 
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Comparison of real contact pressure with Hertzian pressure distributions applied on the 
five tested alloys at 2.0 N. (a) Dimensionless plot, and (b) dimensional plot. 
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Variations of the maximum real contact pressure applied for the five tested alloys with 
normal load. 
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Plot of the dimensionless separation distance with radial distance showing the effect of 
area density of silicon particles on the separation distance in Al-11% Si -F. 

Fig. 4.19 144 
Comparison of real contact pressure distributions applied on the Al-11% Si-F alloys 
with different Si particle area density at 0.5 N. 
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Variations of the maximum real contact pressure with normal load applied to the Al-
11% Si-F alloy with different Si particle area density. 

Fig. 4.21 145 
Variations of real contact radius with normal load on the five alloys tested. 

Fig. 5.1 159 
Variation of the maximum contact pressure exerted on the particles with the normal 
load. 

Fig. 5.2 160 

The distribution (frequency) of surface topography of Al-12% Si at various sliding 
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cycles. At each sliding cycle, the first peak (with lower height (um)) represents the Al 
surface and the second peak (with larger height (um) is particle elevation. 

Fig. 5.3 160 
Change in the Si particle height projected above the Al matrix in Al-12% Si with the 
sliding cycles. 

Fig. 5.4 161 

Surface damage in Al-12% Si after sliding for 103 cycles: (a) 3-D surface profilometer 
image; (b) backscattered SEM image of the same area as (a), and (c) surface 
profilometer scanned along the horizontal line (AA') indicated in (a) and (b). The 
dimension of the area shown is 246 urn x 187 um. 
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EDS spectrum showing the composition of (a) the material around the sunken-in 
silicon particles taken form the indicated area, X and (b) the matrix aluminum taken 
from the area of Y. 
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Surface damage in Al-12% Si after sliding for 5 x 103 cycles: (a) 3-D surface 
profilometer image; (b) backscattered SEM image of the same area as (a). The 
dimension of the area shown is 246 urn x 187 um. 

Fig. 5.7 164 
Surface damage in Al-12% Si after sliding for 104 cycles: (a) 3-D surface profilometer 
image; (b) backscattered SEM image of the same area as (a).The dimension of the 
area shown is 246 jam x 187 urn. 
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Surface damage in Al-12% Si after sliding for 5 x 104 cycles: (a) Backscattered SEM 
image; (b) 3-D surface profilometer image of the same area as (a); (c) Surface 
profilometer scanned along the horizontal line (AA') indicated in (a) and (b). The 
dimension of the area shown is 246 urn x 187 um. 
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Cross-sectional FIB secondary image of the wear track showing Al matrix pile up 
around the Si particle. 

Fig. 5.10 167 

Cross-sectional TEM image of the wear track showing dislocation networks in the 
aluminum around the sunken-in Si particle. 

Fig. 5.11 168 
The distribution (frequency) of surface topography of Al -11% Si-C at various sliding 
cycles. At each sliding cycle, the first peak (with lower height (um)) represents the Al 
surface and the second peak (with larger height (um) is particle elevation. 

Fig. 5.12 168 

Change in the Si particle height projected above the Al matrix in Al-11% Si-C with the 
sliding cycles. 
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Fig. 5.13 169 
Surface damage in Al-11% Si-C after sliding for 104 cycles: (a) 3-D surface 
profilometer image; (b) Backscattered SEM image of the same area as (a); (c) Surface 
profilometer scanned along the horizontal line (AA') indicated in (a) and (b). The 
dimension of the area shown is 246 um x 187 um. 

Fig. 5.14 170 

Surface damage in Al-11% Si-C after sliding for 5 xlO4 cycles: (a) 3-D surface 
profilometer image; (b) Backscattered SEM image of the same area as (a). The 
dimension of the area shown is 246 urn x 187 um. 

Fig. 5.15 171 

Surface damage in Al-11% Si-C after sliding for 105 cycles: (a) 3-D surface 
profilometer image; (b) Backscattered SEM image of the same area as (a).The 
dimension of the area shown is 246 (am x 187 um. 

Fig. 5.16 172 
Schematic representation of ultra mild wear mechanisms in eutectic 
Al-Si alloys (with soft matrix), (a) Cross-sectional view of a Si particle with height h 
on an etched surface prior to wear; (b) Particle sinking-in and Al matrix piling up 
during sliding; (c) Micro-scratching of piled-up aluminum. 

Fig. 5.17 173 
Variation of the maximum contact pressure with Si particle size in the range of 20 to 
120 um at 0.5 N. Matrix hardness (667 MPa) of the alloy was assumed equivalent to 
that of Al-11% Si-C. 

Fig. 5.18 174 

Surface damage in Al-18.5% Si after sliding for 3 x 105 cycles: (a) Secondary SEM 
image; (b) 3-D surface profilometer image of the same area as in (a); (c) Surface 
profilometer scanned along the horizontal line (AA') indicated in (a) and (b). WT is the 
wear track, SD is the sliding direction. 

Fig. 5.19. 175 

Surface damage in Al-18.5% Si after sliding for 6 x 105 cycles: (a) secondary SEM 
image; (b) 3-D surface profilometer image of the same area as (a), and (c) surface 
profilometer scanned along the horizontal line (AA') indicated in (a) and (b). 

Fig. 5.20 176 

The distribution (frequency) of topographical features on the contact surface of 
Al-18.5% Si with the sliding cycles. 

Fig. 5.21 176 

Variation of the mean silicon particle height with sliding cycles, showing that silicon 
particle elevation does not change with sliding distance in Al-18.5% Si. 

Fig. 5.22 177 

Variations of the mean silicon particle height with sliding cycles in Al-12% Si, Al-11% 
Si-C, and Al-18.5% Si. 
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Fig. 5.23 177 
Variation of the maximum contact pressure on the particles in Al-18.5% Si with the 
normal load. 

Fig. 6.1 217 

Variation of the maximum real contact pressures applied on Al-11% Si-C and Al-11% 
Si-F with the normal load. 

Fig. 6.2 217 
Plot of volume loss with the sliding cycles for Al-11% Si-C. The plots at 0.5, 1.0, and 
2.0 N with zero volume loss were shifted vertically for clarity. 

Fig. 6.3 219 

Evolution of surface damage in Al-11% Si-C with sliding cycles at 0.5 N. (a) 3-D 
surface profilometer image after at 5 x 102 cycles; (b) Secondary SEM image at 5 x 104 

cycles showing Si particle fracture; (c) 3-D surface profilometer image at 5 x 104 cycles 
showing aluminum pile-up. The view in inset 'X' is the same with the SEM image in 
(b); (d) Backscattered SEM image after sliding for 3 x 105 cycles; (e) Backscattered 
SEM image after sliding for 6 x 105 cycles. WT is the wear track, SD is the sliding 
direction. 
Fig. 6.4 221 

Surface damage in Al-11% Si-C at 2.0 N: (a) Backscattered SEM image after sliding 
for 5 x 102 cycles; (b) Backscattered SEM image after sliding for 1.5 x 103 cycles; (c) 
Backscattered SEM image after sliding for 10 cycles; (d) Secondary SEM image after 
sliding for 6 x 105 cycles; (e) High magnification backscattered SEM image taken from 
the inset 'X' in (d). 

Fig. 6.5 222 

Plot of volumetric loss with the sliding cycles for Al-11% Si-F. The plots at 0.5, 1.0, 
and 2.0 N with zero volume loss were shifted vertically for clarity. 

Fig. 6.6 223 

3D surface profilometer image taken from the contact surface of Al-11% Si-F after 
stopping the sliding tests at (a) 5 x 10', (b) 1.5 x 10 and (c) 5 x 10 cycles at 0.5 N. 

Fig. 6.7 224 

Surface damage in Al-11% Si-F after sliding for 5 x 104 cycles at 0.5 N: (a) 
Backscattered SEM image; (b) High magnification backscattered SEM taken form the 
inset 'X' in (a); (c) 2-D surface profilometer scanned along the horizontal line (AA) 
indicated in (a). 

Fig. 6.8 225 

Surface damage of Al-11% Si-F after sliding for 6 x 105 cycles at 0.5 N: (a) Secondary 
SEM image; (b) High magnification secondary SEM image taken from the inset 'X' in 
(a), and (c) High magnification backscattered SEM image taken from the inset 'Y' in 
(a). 

Fig. 6.9 226 

Surface damage in Al-11% Si-F after sliding for 103 cycles at 2.0 N: (a) Backscattered 
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SEM image; (b) High magnification backscattered SEM image taken from the inset 'X' 
in (a); and (c) 3-D surface profilometer image. 

Fig. 6.10 228 
Surface damage in Al-11% Si-F after sliding for 6 x 105 cycles at 2.0 N: (a) Optical 
image showing the wear track covered by dark coloured layer; (b) Secondary SEM 
image taken from the inset 'X' in (a); (c) AFM image taken from the inset 'X' in (a). 

Fig. 6.11 229 

Cross-sectional FIB secondary image of the wear track (a) overview, and (b) detail of 
inset 'X' in (a) showing the oil residue layer generated on the contact surface. 

Fig. 6.12 230 

Cross-sectional TEM image of the wear track showing ultra-fine aluminum grains 
around the particles. 

Fig. 6.13 231 

Survey XPS spectrum taken from the black colored layer on the contact surface of Al-
11% Si-F after sliding for 6 x 105 cycles at 2.0 N. 

Fig. 6.14 232 

XPS spectra of (a) Abp, and (b) Si2P taken from the black coloured layer on the contact 
Surface of Al-11% Si-F after sliding for 6 x 105 cycles at 2.0 N. 

Fig. 6.15 234 

The distribution frequency of surface topography on the Al-11% Si-C surfaces at 
various sliding distance at (a) 0.5 N, (b) 1.0 N, and (c) 2.0 N. 

Fig. 6.16 234 

Change in the silicon particle height projected above the aluminum matrix with the 
sliding cycles in Al-11% Si-C at applied loads of 0.5, 1.0, and 2.0 N. 

Fig. 6.17 236 

The distribution frequency of surface topography on the Al-11% Si-F surfaces at 
various sliding cycles at (a) 0.5 N, (b) 1.0 N, and (c) 2.0 N 

Fig. 6.18 236 

Change in the silicon particle height projected above the aluminum matrix with the 
sliding cycles in Al-11% Si-F at applied loads of 0.5,1.0, and 2.0 N. 

Fig. 6.19 238 

Schematic illustration of the surface damage evolution in Al-Si alloys in the UMW 
regime, (a) Si particles carry the applied load leading to the wear of the top Si surfaces; 
(b) Local plastic deformation in the forms of Si particle sinking-in and aluminum 
piling- up around the sunken-in Si particles leading to the reduction in local aluminum 
grain size; (c) Formation of an oil residue layer supported by ultra-fine aluminum 
grains. 

Fig. 6.20 239 

Optical images showing surface damage on the worn surface of Al-11% Si- C: (a) Low 
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magnification image; (b) High magnification image from the inset in (a) after sliding 
for 2 xlO6 cycles 2.0 N. 

Fig. 6.21 240 
Optical images showing surface damage on the worn surface of Al-11% Si-F: (a) 
Low magnification image; (b) High magnification image from the inset in (a) after 
sliding for 2 x 106 cycles 2.0 N. 

Fig. 6.22 241 

(a) Secondary SEM image, (b) high magnification back scattered SEM image of inset 
'X' in (a), and (c) 3-D surface profilometer image showing surface damage on the top 
surfaces of silicon particles inside the wear track of Al-25% Si after sliding 104 

cycles 0.5 N. 

Fig. 6.23 242 

(a) Secondary SEM images, (b) high magnification back scattered SEM image of inset 
'X' in (a), and (c) 3-D surface profilometer image showing surface damage on the top 
surfaces of silicon particles inside the wear track of Al-25% Si after sliding for 6 x 105 

cycles 0.5 N. 

Fig. 6.24 244 

(a) Secondary SEM image, (b) high magnification back scattered SEM image of inset 
in (a), (c) 3-D surface profilometer image, and (d) high magnification 3-D surface 
profilometer image of inset in (c) showing the evolution of surface damage in Al-
25% Si, after sliding for 5 x 104 cycles at 1.0 N. 

Fig. 6.25 245 

The percentage of fractured Si particles inside the wear tracks at 0.5 and 1.0 N as a 
function of sliding cycles. 

Fig. 6.26 246 

(a) Secondary SEM image, (b) high magnification back scattered SEM image of inset 
in (a), and (c) 3-D surface profilometer image showing the evolution of surface 
damage in Al-25% Si, after sliding for 6 x 105 cycles at 1.0 N. 

Fig. 6.27 247 

Surface damage in Al-25% Si after sliding for 104 cycles at 2.0 N: (a) Secondary SEM 
image;(b) High magnification back scattered SEM image of inset in (a); (c) 3-D 
surface profilometer image showing slight damage on aluminum matrix. 

Fig. 6.28 249 
Surface damage in Al-25% Si after sliding for 5 x 104 cycles at 2.0 N :(a) Secondary 
SEM image; (b) High magnification back scattered SEM image of inset in (a); (c) 3-D 
surface profilometer image; (d) 2-D surface profile scanned along the horizontal line 
(AA') indicated in (c) showing the material loss. 

Fig. 6.29 250 

Surface damage in Al-25% Si after sliding for 6 x 105 cycles at 2.0 N: (a) Secondary 
SEM image of the surface; (b) High magnification back scattered SEM image of the 
inset in (a) showing the wear track sparsely covered by a little amount of dark coloured 
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layer; (c) Cross-sectional FIB secondary image of the wear track taken from the inset in 
(a) showing the oil residue layer generated locally on the contact surface. 

Fig. 6.30 251 

The indentation displacement -load curves of the oil residue layer formed on the worn 
surface after sliding for 6 x 105 cycles at 2.0 N and aluminum matrix. 

Fig. 6.31 253 
The distribution frequency of surface topography on the Al-25% Si surfaces at various 
sliding cycles at (a) 0.5 N, (b) 1.0 N, and (c) 2.0 N 

Fig. 6.32 253 

Change in the silicon particle height projected above the aluminum matrix with the 
sliding cycles. 

Fig. 6.33 254 

Variation of the volumetric wear loss with the sliding cycles for the Al-25% Si. The 
plots at 0.5, 1.0, and 2.0 N with zero volume loss were shifted vertically for clarity. 

Fig. 6.34 255 

Real contact pressure distribution applied to Al-25% Si at 0.5N, 1.0 N, and 2.0 N. The 
matrix hardness of the alloy is 1,090 MPa. 

Fig. 6.35 255 

Variation of the maximum real contact pressure applied on Al-25% Si and Al-11% Si-
F. 

Fig. 6.36 256 

Comparisons of (a) change in the silicon particle height projected above the aluminium 
matrix and (b) variation of the volumetric wear loss with the sliding cycles in Al-11%-
F Si and Al-25% Si. All the plots at 0.5, 1.0, and 2.0 N with zero volume loss were 
shifted vertically for clarity. 

Fig. 6.37 257 

(a) 3-D surface profilometer image of the ball surface sliding against Al-11% Si-F for 
2 xlO6 cycles, and (b) 2-D surface profile scanned along the horizontal line (AA) 
indicated in (a). 

Fig. 6.38 258 

(a) 3-D surface profilometer image of the ball surface sliding against Al-25% Si for 
2 xlO6 cycles, and (b) 2-D surface profile scanned along the horizontal line (AA') 
indicated in (a). 

Fig. 6.39 259 

Variation of COFs of Al-25% Si and Al-11% Si-F with sliding cycles at 2.0 N. 
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NOMENCLATURE 

The parameters are listed in the order as they appear in the equations listed in the text. 

hmia = the minimum lubricant film thickness 

cr* = the r.m.s roughness of the two surfaces (a*2 = Rql +Rqi ) 

h • 
X = severity of asperity interactions in lubricated sliding ( - ° T - ) 

G 

E* = the composite elastic modulus of two contact surfaces 

EM_SI = the elastic modulus of Al-Si alloys and given by 

EAi-Si = Esi^si^EAl(\-wSi) 

wSi = the weight fraction of silicon phase 

vAi-si = m e Poisson's ratio of Al-Si alloys 

R = the radius of the counterface ball 

a and rj0 = viscosity constants of oil 

a »(0.6 + 0.965 log10 rj0) x 10"8 

Rqi - the r.m.s roughness values for the top surface measured 

Rq2 = the r.m.s roughness values for the bottom surface measured 

dN= the expected number of contacts 

dAr - the real area of contact 

"^ = an element of surface 

dP = the total load 

z = the silicon particle height 

Rp = the equivalent curvature radius of the silicon particle tips 

(|)(z) = the height distribution function 

F0(/i) = parabolic cylinder function, n = 0 

F\{h) = parabolic cylinder function, n =1 

F3/2(h)= parabolic cylinder function, n = 3/2 

TJ = the density of the silicon particles 
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Tjdi// = the number of silicon particles per unit area The term 

JJ(RP(T) = the area density of the silicon particles (measured using quantitative 

metallography) 

(j = the standard deviation of silicon particle height 

p(r) = the apparent contact pressure distribution 

u = the separation of the nominal surfaces at the position of a particular particle 

w{r) = the displacement of the nominal surfaces at r 

h = dimensionless separation of the nominal surfaces at the position of a particular 

particle (u/a) 

K(<^) - the complete elliptic integral of the first kind of modulus ̂  

* 
w = dimensionless displacement (w I a) 

* 
u ~ dimensionless displacement (u/a) 

d = dimensionless separation ( d I <J ) 

p - radial distance (r I -JlRa) 

p* = dimensionless pressure (p /(E* V<x / 8i?)) 

jj, = surface parameter which is related with particle distribution, size, and density 

q\p) = the Hertzian pressure 

q* (0) = the maximum Hertzian contact pressure 

a* = the effective contact radius 

T = the dimensionless total load 

W - the actual load 

Pr = is real contact pressure (dP I dAr)) 
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CHAPTER 1 INTRODUCTION 

The growing demand to improve fuel economy, triggered by concerns about 

energy usage and global warming has a significant effect on the selection of the materials 

used for the automotive industry [1-2]. In this respect, lightweight materials, in particular, 

300 series Al-Si alloys are experiencing increasing use in the manufacturing of engine 

components. Their high strength to weight ratio, good formability, good corrosion 

resistance and recycling potential make these alloys an ideal choice [3]. 

Considerable efforts have been made to understand the sliding wear properties of 

Al-Si alloys. Most laboratory-scale wear tests revealed that Al-Si alloys display complex 

tribological behaviour even when tested under dry sliding conditions. One common 

observation is that they all show two distinct wear regimes, namely "mild wear" (MW) 

and "severe wear" (SW). The wear rates in the MW regime fall between 10"4 and 10"3 

mm /m, while SW rates were greater than 10 mm7m, typically 10" to 1. The transition 

between these regimes is abrupt and tends to coincide with a specific combination of 

testing conditions. The wear micro-mechanisms that control each regime's wear rates are 

significantly different. MW rates are primarily controlled by surface oxidation, plastic 

deformation and material transfer, while SW rates are typically a result of large-scale 

plastic deformation and metallic melting. The MW regime is further divided into two sub-

regimes; the first mild wear regime (MW-1) is attributed to oxidative wear, and the 

second mild wear regime (MW-2) is primarily related to delamination wear [4-6]. While 

wear rates are stable in the MW regime, an accelerated increase in wear rates is observed 

in the SW regime, and as a result of seizure, a catastrophic form of tribological failure 
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always follows. Therefore neither wear rates, nor the mechanisms that control them can 

be extrapolated to the other. 

MW, when observed under laboratory conditions, roughly simulates the sliding 

wear of automotive components that operate under dry contact—such as brake assemblies 

or a piston-engine bore system (in the case of a cold start, where oil starvation may lead 

to metal-on-metal contact). Metal-to-metal contact and scuffing in Al-Si alloys is closely 

related to SW [7-8] —one of the extreme cases that should be considered in tribological 

design. 

Most of the sliding surfaces in engines operate in an environment that includes 

engine oil in order to reduce friction and wear. Lubrication is often characterized as 

hydrodynamic, mixed or boundary lubrication depending on the magnitude of r\v/P, 

where r\ is the viscosity of the lubricant, v is the sliding speed, and P is the applied load. 

In a hydrodynamic regime, the two sliding surfaces are completely separated by the 

lubricant film, and the applied load is carried by the film. No solid-to-solid contact should 

occur. Accordingly, in this region, friction is essentially caused by the shearing of the 

film, prompting an extremely low coefficient of friction with no wear and no surface 

damage. Hydrodynamic lubrication generally happens when the sliding surfaces are 

smooth and idealized (minimal surface roughness), the sliding speed is high and the 

normal load is small. 

Mixed lubrication starts when the fluid film between the two sliding surfaces 

becomes thinner. In this regime the applied load is carried by both the fluid film and the 

asperities on the solid surfaces. Mixed lubrication is characterized by a sharp rise in the 

coefficient of friction as nv/P decreases. When the nv/P drops to a sufficiently low value, 

the lubrication regime transitions to a boundary lubrication region where the coefficient 
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of friction reaches a maximum value. 

In a boundary lubrication regime, the fluid film has been squeezed out of the 

interface, the load, therefore, is carried by the surface asperities rather than by the 

lubricant. But the friction and wear behaviours under boundary lubricated conditions are 

not the same as those observed in dry sliding conditions. Generally, the solid films that 

are formed on one or both surfaces through a chemical absorption, a physical absorption, 

or a tribo-chemical reaction play a key role in the friction and wear in a boundary 

lubrication regime. Friction and wear in boundary lubricated conditions does not 

primarily depend on bulk material properties, but rather on the film properties and the 

mechanisms by which the films are generated, as well as the detachment and reformation 

of the films [9]. Many engineering applications like piston-cylinder bore assemblies and 

transmissions run in the boundary lubrication regime. 

A more general concern is the actual lubricated tribological performance of 

piston-cylinder bore assemblies for extended durability applications. Wear should not 

exceed a few nanometers per hour for the long-term durability of cylinder bore surfaces, 

as revealed in radiotracer experiments run in conventional cast-iron engines [10]. 

Accordingly, lightweight Al-Si alloys used in engine components must be able to satisfy 

the same durability conditions. 

Extremely minimal wear rates define a new regime in which wear rates are 

typically smaller than 10"6 mm3/m or at least an order of magnitude smaller than the MW 

range. This regime can be referred to as the ultra-mild wear (UMW) regime, and is not 

readily simulated under laboratory conditions. The wear rates tend to be below the 

sensitivity limits of mass, volume and dimensional change measurements used to measure 

wear rates in MW and SW. Furthermore, no obvious surface damage occurs in the UMW 
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regime that could be considered comparable to what results from plastic deformation and 

material transfer [11], so new experimental techniques must be developed to quantify the 

damage in UMW. 

These difficulties have made laboratory-scale research on UMW in Al-Si alloys 

almost non-existent compared to the large body of studies conducted on MW and SW. 

UMW is believed to have been first achieved in an A 390 (Al-18.5% Si) under an argon 

atmosphere against 52100 steel [12] using a block-on-ring configuration. However, this 

environment did not simulate engine conditions, and the low wear rates could not be 

maintained for a long sliding distance. Dienwiebel et al. [13] performed a study on an Al-

Si cylinder bore surface running under the similar working and loading conditions but 

using a novel measurement technique radionuclide-technique (RNT) for ultra low wear, 

Auger electron spectroscopy (AES) and focus ion beam (FIB). Results addressing the 

microstructural changes induced by the corresponding sliding wear at the contact surface 

and subsurface adjacent to the contact surface were far from comprehensive, and 

additional research in this area is needed. 

The main purpose of this research is to simulate the surface damage that occurs to 

Al-Si engine components under normal running conditions—(UMW) regime—by 

performing laboratory-scale wear tests on Al-Si alloys at light loads and under boundary 

lubricated conditions. The UMW regime is defined as surface damage accompanied by 

zero material loss, or immeasurable material loss, at least not measurable using a 

conventional mass loss-based measurement. Our experimental observations show that, 

like the MW regime identified in Al-Si alloys, the UMW regime can be divided into three 

sub-regimes. The first UMW sub-regime, designated as UMW-I, is characterized by zero 

material loss from the aluminum matrix, with only the top Si particle surface suffering 
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abrasive wear. Fracture and fragmentation of silicon can occur in UMW-I. Sinking-in of 

silicon particles into the aluminum matrix is also often observed in UMW-I, this can lead 

to piling up of aluminum around the sunken-in material. Material loss becomes 

measurable from the elevated aluminum matrix in the second UMW sub-regime (UMW-

II). The third sub regime of UMW is designated as UMW-III and has two characteristic 

features: the material loss decreases and an oil residue layer forms on the contact surface 

after sliding long cycles. A new methodology that uses an optical surface profilometer to 

detect morphological changes on the contact surfaces was developed and used to 

quantitatively evaluate the damage to the silicon particles and very small wear rates from 

the aluminum matrix. The wear rates are controlled by mechanisms that differ from those 

encountered in high wear regimes, so it is essential to examine the micro-mechanisms that 

lead to the UMW wear damage. This is achieved using a series of analytical 

microscopical measurements, which helps to determine the metallurgical basis of UMW. 

A full understanding of the contact that occurs between solids is required to 

comprehend adhesion, friction, lubrication, and wear, all of which have motivated 

extensive theoretical studies. For rough solids, two major methods employed to gain such 

an understanding are FEM and numerical analysis, following the Greenwood and 

Williamson's model [14-15]. Contact mechanics-related studies on Al-Si alloys have 

rarely been reported. In this research, all Al-Si alloy surfaces are chemically etched to 

expose the top portions of silicon particles, and hence, apply the load directly on the 

silicon particles—a configuration that is expected to simulate actual engine bore surfaces. 

Estimating the contact pressure applied to the exposed Si particles is crucial in 

order to gain a realistic understanding of the way they respond mechanically to the 

applied load. To achieve this, the Greenwood and Tripp's numerical contact model, 
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which considers silicon particles as load-carrying "asperities", is adapted to estimate the 

real contact pressure—taking into account the silicon particle height distribution and size. 

The contact mechanics analysis establishes the pressure distributions, estimates the 

maximum contact pressures applied on the Si particles, and hence, facilitates an 

understanding of the reasons behind the observed damage processes, such as the 

embedding of particles into the matrix, or their fracture. 

This study considers commercial and experimental cast alloys containing different 

silicon amounts (11 to 25 wt. % Si), matrix hardnesses, Si particle morphologies and 

sizes. A selection of Al-Si alloys with different matrix hardnesses and microstructures is 

intended to establish correlations between their sliding wear performance and specific 

silicon and aluminum property details. 

This dissertation is organized in the following way: Chapter 2 provides a 

literature survey on: i) the sliding wear properties of Al-Si alloys under dry sliding 

conditions; ii) the sliding wear characteristics of Al-Si alloys under lubricated conditions; 

and iii) the wear damage of engine components. Chapter 3 gives the details of the 

materials tested, followed by descriptions of the experimental procedures developed to 

achieve UMW, including the pin-on-disc machine, wear test conditions, and the 

procedures used to evaluate the test results. Chapter 4 analyzes the contact pressure 

applied to the protruded silicon particles by adapting Greenwood and Tripp's numerical 

model. Chapter 5 identifies UMW mechanisms using a binary Al-Si alloy, then examines 

the effects of matrix hardness and microstructure (in terms of silicon particle morphology 

and size) on said mechanisms. Chapter 6 illustrates surface damage evolution with 

sliding cycles and applied loads to capture the transition from UMW-I to UMW-II and 

finally to UMW-III. The mechanisms and microstructural effects responsible for these 
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transitions are identified through the examination of the evolution of sliding-wear induced 

microstructural changes at the contact surface and adjacent to the contact surface in Al-Si 

alloys during the surface damage process in UMW. Chapter 7 summarizes and concludes 

the dissertation. 
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CHAPTER 2 LITERATURE SURVEY 

2.1. Introduction 

The first section of this chapter reviews the current literature on the wear 

characteristics of Al-Si alloys under dry sliding conditions, with a brief introduction of 

how Al-Si alloys are currently used for combustion engine components followed by a 

review of the wear mechanisms. The review consists of a summary of wear regimes, the 

formation of tribolayers, and the effect of silicon percentage and morphology on Al-Si 

alloy wear properties. A summary of dry sliding tests performed under laboratory 

conditions to determine wear regimes (mild and severe wear) is also provided. The 

second section of this chapter reviews the literature on Al-Si alloy sliding wear behaviour 

under lubricated conditions. This section includes a review of engine lubricants and an 

explanation of the major additive, ZDDP's effect on wear reduction. The third section of 

this chapter introduces internal combustion engine wear damage and reviews the current 

literature on aluminum engine-related wear—including an introduction to the major 

surface preparations for Al-Si engine surfaces. 

2.2. Dry Sliding Wear Behaviour of Aluminum Silicon Alloys 

2.2.1. Engine-Grade Al-Si Alloys and Their Properties 

The use of lightweight materials like titanium, cast Al-Si and magnesium alloys, 

as well as aluminum-based composites is becoming popular in motor vehicles and other 

types of transportation. However, these lightweight materials tend to exhibit poor wear 

resistance, and so the aerospace industry uses sophisticated coatings to prevent the wear 
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of their lightweight components. In order for wear resistant components to benefit the 

automotive industry, they must be affordable in high volume production. This has been 

attempted using low-carbon steel thermal-sprayed coatings on Al-Si cylinder bore 

surfaces [16], as well as by using aluminum-based MMC's to make engine components 

[17]. The costs associated with these lightweight material processing techniques, 

however, remain too high. Casting new wear resistant Al-Si alloys, therefore, is the 

optimal choice for replacing traditional cast iron engine components to reduce fuel 

consumption and improve a vehicle's environmental emission performance. 

Al-Si alloys can be divided into three categories based on silicon percentage— 

eutectic, hypoeutectic, and hypereutectic. The Al-Si binary system shown in Fig. 2.1 

forms a eutectic at 12.6 wt% silicon at 577°C [18]. Aluminum alloys with 5-20 wt% 

silicon are commonly used, and hypoeutectic alloys—such as 319 and A3 80—contain 5-

10 wt% Si, which is below the eutectic composition, while hypereutectic alloys like A 

390 have 14-20 wt% Si—with silicon percentages that fall above eutectic compositions. 

The very low solubility of silicon in an aluminum means that Al-Si alloys contain 

virtually pure aluminum and silicon as either a primary or eutectic phase, depending on 

whether the silicon percentage is greater or less than the eutectic point (12.6% Si) and the 

cooling rate, and the concentration of modifiers. Commercial Al-Si alloys often contain 

major alloying elements like Cu, Fe, Mn and Mg. Table 1 lists the compositions of three 

commercial Al-Si alloys, 380, 319, and A 390. Fe generally exists as an impurity that is 

considered detrimental to the mechanical properties of aluminum alloys due to the 

precipitation of AlsFeSi. Therefore, manganese is added to the Al-Si alloy to promote the 

formation of Ali5(Mn,Fe)3Si2, which has a compact morphology and does not initiate 

cracks in cast Al-Si alloys to the same extent as AlsFeSi. Copper and magnesium are 
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often added as alloying elements to increase the strength and hardenability of Al-Si 

alloys, through precipitation hardening during an aging treatment. Magnesium also 

reduces the detrimental effects of impurities like iron. The impurities and alloying 

elements partly go into solid solution in the matrix and partly form intermetallic phases 

during solidification [19]. 

Fig. 2.2 [19] illustrates the typical microstructures for these three casting Al-Si 

alloys. Si particles appear as platelets or needle-like in hypoeutectic Al-Si alloys 380 and 

319, while hypereutectic A 390 contains both the block-like primary Si phase and platelet 

or needle-like eutectic Si particles. Commercial Al-Si alloys usually also have 

intermetallic compounds like Ali5(Fe, Mn)3Si2, AlsMggCuaSig and CuAk as secondary 

phases (indicated in Figure 2.2). 

Typical mechanical properties of these three alloys summarized in Table 2.2 

indicated that the mechanical properties especially ductility are dependent on the silicon 

percentage in Al-Si alloys, which influences the microstructure of the alloys [20]. The 

silicon particle size, morphology, and distribution can be improved by different 

processing technique, heat treatment, or by the addition of grain refiners and modifiers 

such as sodium, phosphorus, and rare earth elements, such as strontium [19]. This will be 

reviewed in Section 2.2.6. 

Hypoeutectic Al-Si alloys boast excellent casting properties, thermal conductivity 

and machinability [20]—the main reasons these kinds of Al-Si alloys (319 and A 380 

series) have seen extensive use in the automotive industry as cylinder blocks, cylinder 

heads, and pistons [21] Hypoeutectic Al-Si alloys also exhibit poor wear and scuffing 

resistance, however, so that engine blocks made from hypoeutectic Al-Si alloys must be 

paired with cast iron cylinder liners [22]. The cast iron liners found in aluminum engine 
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blocks add unwelcome weight that, in turn, decreases thermal conductivity and increases 

production costs. The development of linerless Al-Si engine blocks with higher Si content 

is expected to solve this problem. Fig. 2.3 shows an example of one of GM's linerless 

engine blocks made from an Al-Si alloy containing 12 wt.% Si. 

Cast hypereutectic Al-Si alloys, like cast A3 90 with 16-19 wt% Si, developed by 

General Motors Corporation for the Chevrolet Vega engine blocks in the early 1970s [1, 

23, 24]—have demonstrated excellent wear resistance. The block surfaces were etched 

with 10% NaOH so that silicon particles would protrude above the aluminum surface— 

reducing wear damage to the aluminum matrix. Hypereutectic Al-Si alloys, however, 

experience deterioration of both castability and machinability due to the large, unevenly 

distributed primary silicon particles (unavoidable in hypereutectic alloys) [25]. With this 

in mind, extensive efforts have been made to reduce primary silicon particle size, as well 

as to improve their distribution using special processing techniques—such as powder 

metallurgy (PM) and spray forming—to improve the distribution of fine, primary silicon 

particles in hypereutectic Al-Si alloys. 

The PM process, which includes the atomization of molten metal followed by hot 

extrusion or hot isostatic pressing and sintering [26], is one method of producing 

hypereutectic Al-Si alloys with a high silicon percentage that showcase a refined and 

homogenous dispersion of hard silicon particles in comparison with cast components. 

Honda uses a rapidly solidified PM aluminum alloy containing 17% Si, 5% Fe, 3% Cu, 

1% Mg and 0.5% Mn to manufacture cylinder liners for motorcycle engines. It is the 

finely dispersed hard Si particles, as well as the intermetallic compounds embedded in the 

aluminum matrix, that give this alloy increased wear resistance [27]. Casellas et al. [28] 

studied the microstructural effects of the PM technique on the wear resistance of Al-Si 
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alloys containing 14% Si using a pin-on-disc machine. The authors reported that PM 

produced Al-Si alloys exhibited slightly higher wear resistance than similar cast Al-Si 

alloys. Kiyota et al. [29] developed a series of Al-Si alloys using PM processes with a 

silicon percentage that varied from 10 to 30% and incorporated the following elements: 5-

15 wt% nickel, 3-15 wt% iron or 5-15 wt% manganese. Hot-extruded PM products have 

finely dispersed silicon particles with a size <15 jam, and intermetallics with a size <20 

um. The authors concluded that Al-Si parts produced by the power metallurgical method 

exhibited superior high-temperature properties that made them suitable for use as cylinder 

liner material in aluminum cylinder blocks. Even though Al-Si alloys produced using the 

PM process exhibit good wear resistance, this production method is sophisticated, which 

makes it difficult to meet automotive industry productivity requirements—due to the 

complicated shapes of engine components. 

The spray forming process is another way of addressing low ductility and limited 

workability problems caused by the distribution of coarse and non-uniform primary Si 

particles. In this technique, the melt is atomized by a high-pressure gas jet to generate a 

spray of micron-sized droplets that are subsequently deposited on a stationary or movable 

substrate and left to consolidate into an ingot, as illustrated in Fig. 2.4a. The ingot is then 

formed into tubing that can be cut into cylinder liners by an extrusion process. The spray 

compacted billets are then extruded into tubes and machined to achieve the final 

dimensions of the cylinder liner inserts [30-31]. The effects of rapid solidification during 

spray deposition lead to chemical and microstructural homogeneity, combined with a 

refinement in grain size and second phase particle size [32, 33]. PEAK, a German 

company, introduced the spray forming process to make a hypereutectic Al-Si alloy with 
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a composition of Al-25% Si-4%Cu-Mg (wt%), which is called SILITEK. Fig. 2.4b shows 

that the silicon particles in SILITEK are fine and distributed uniformly. Spray formed 

Al-Si alloy cylinder liners made from SILITEK have been used in Daimler-Benz 

automotive engines [30, 34]. 

In summary, hypoeutectic Al-Si alloys have excellent castability and 

machineablity, but exhibit poor wear resistance. Hypereutectic Al-Si alloys processed by 

the above mentioned special techniques, on the other hand, demonstrate much better wear 

resistance with improved machinability and castability thanks to the uniformly distributed 

small silicon particles. Both spray forming and the PM process, however, require special 

techniques and several distinctive intermediate steps—compared to conventional casting 

processes. The cost associated with spray forming and PM is high, so providing 

lightweight Al-Si alloys with the required wear resistance, castability, machinability and 

cost affordability continues to be a challenge for the automotive industry. 

2.2.2. Wear Regimes 

Lim and Ashby [35] constructed an empirical wear map for steel-on-steel by 

summarizing the wear rate and wear mechanism data for steel included in the literature, 

then modeling with a theoretical analysis to calibrate the experimental data (Fig. 2.5). In 

this plot, the wear rate is normalized by dividing by the worn surface nominal apparent 

contact area (An). The pressure is normalized by dividing by nominal apparent contact 

area of the wearing surface (A„) and the room temperature hardness (Ho), and the sliding 

velocity is normalized by dividing by the velocity of heat flow (the ratio of the radius of 

the circular nominal contact area, ro, to the thermal diffusivity, a). The result is a more 

global diagram of how materials in relative motions behave when they encounter different 
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sliding conditions—providing relationships between various dominant wear mechanisms 

that occur under different sliding conditions, as well as anticipated wear rates. Figure 2.5 

illustrates the three wear regimes—ultra-mild wear (UMW), mild wear (MW) and severe 

wear (SW)—that appear when steel slides against steel counterfaces under dry sliding 

conditions. 

"Mild wear" (MW) and "severe wear" (SW) have been the two most frequently 

reported wear regimes in Al-Si alloys sliding against a steel counterface under dry-sliding 

conditions [4, 36-39]. MW generally occurred at a relatively low applied load, with the 

MW regime's wear rate falling between 10"4 and 10"3 mm3/m while severe wear occurred 

at a high load, high temperatures and high sliding velocity—prompting a volumetric wear 

loss rate of > 10" mm /m. Fig. 2.6 indicates that the transition between mild (oxidative) 

and severe (metallic) wear generally occurred when the applied normal load was above 

30-100 N [4]. A closer look at the results presented in Fig. 2.6 reveals that the transition 

from MW to SW occurs at 30 N in the binary alloy Al-16% Si. The transition load 

increased to approximately 80 N in the alloy Al-16% Si containing 2% Cu, but when 1% 

Ni and 1% Fe were added to the Al-16% Si-Cu, the transition load increased only 

slightly. As the literature survey presented in Section 2.2.1 explained, Cu is generally 

added to Al-Si alloys to increase their matrix hardness through precipitation hardening— 

suggesting that the transition load increased alongside the matrix hardness. The effect of 

Si percentage on transition load will be reviewed in Section 2.2.5. On the other hand, 

Zhang and Alpas [38] reported the transition from MW to SW was dependent on both the 

applied normal load and the sliding speed (Fig. 2.7)—occurring at a lower load with an 

increasing sliding speed. For example, the transition load of 230 N at 0.4 m/s decreased to 

9.0 N when the sliding speed was increased to 5.0 m/s. The study also showed that the 
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transition from mild to severe wear was related to the surface contact temperature, so that 

when the bulk surface temperature (Tb) exceeded the critical temperature (0.4 Tm), severe 

wear occurred (where Tm is the melting temperature of the alloy). It also infers that 

transition load is affected by matrix hardness, specifically the material softening caused 

by recrystallization at high loads and high sliding speeds. 

It is well known that a material's tribological properties are often influenced by 

test conditions like humidity, atmosphere and sliding counterfaces [40-41], but most of 

the previous Al-Si alloy experiment results were achieved in ambient air sliding against 

an iron-based counterface. Changing the experimental conditions is also expected to 

change the sliding wear behaviour of Al-Si alloys. Elmadagli et al. [6] studied the sliding 

wear behaviour of A390 (18.5% Si), Al-25% Si and 383 (8% Si) using a ring-on-block in 

a controlled, dry air environment (5% RH). The authors reported that the transition from 

mild to severe wear existed in all the alloys tested under testing conditions, but that two 

wear sub-regimes—i.e. the first and second mild wear sub-regimes—were identified in 

the three tested alloys (Fig. 2.8). There was a short transition from 35 to 60 N between 

these two sub-regimes, which were differentiated by a wear rate transition from 80 to 

250%. In addition, the wear rate for the mild wear regime was stable, increasing linearly 

with an increase in sliding distance, while the wear rate for the severe wear regime was 

unstable, showing an exponential increase with sliding distance. The above differences in 

the wear rates might be taken to be the reason for existence of two distinctive wear 

regimes in Al-Si alloys. 

Elmadagli and Alpas [12] also explored the effects of counterface and atmosphere 

on the sliding wear behaviour of Al-18.5% Si by changing the atmosphere, humidity and 

counterface. A new wear regime called ultra-mild wear—in which the wear rate was an 
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order of 10"5 mm3/m—was achieved in Al-Si alloy at loads below 10 N when the sliding 

tests were performed on the Al-18.5% Si in an argon atmosphere sliding against a 52100 

steel counterface. Ultra-mild wear was also achieved when sliding tests were conducted 

in dry air (5% RH) but against a DLC-coated steel counterface (Fig. 2.9). The wear rate 

for the ultra-mild wear regime was an order of magnitude lower than that measured for 

the mild wear regime at loads below 10 N. A similar UMW regime was reached in a 

study performed by Zhang and Alpas [17] in a 2024 Al reinforced with 20% AI2O3 

particles when the test was run at a sliding speed of 0.1 ms'1 and a normal load of 0.5 N 

(Fig. 2.10). This suggests that Si and AI2O3 particles tend to carry applications at low 

sliding speeds and loads to prevent the aluminum from being damaged. It might also be 

attributed to the constraint effect of load carrying hard particles on subsurface plastic 

deformation under sliding contact at low loads. 

2.2.3. Wear Mechanisms 

As the review presented above indicates, mild and severe wear display a 

significant difference in wear rate. This can be understood by identifying the mechanisms 

operating in the different wear regimes. An examination of the worn surfaces paired with 

a characterization of the wear debris is both crucial and instructive for identifying wear 

mechanisms. Extensive studies have been performed to identify the wear mechanisms of 

Al-Si alloys under dry sliding conditions [36-37, 42-44]. The mechanisms that operate in 

dry sliding wear of Al-Si alloys have been summarized in wear mechanism maps by 

Antoniou and Subramanian [45], and Liu [46] by adopting a similar approach to Lim and 

Ashby [35], using wear rate and wear mechanism data for aluminum alloys from 

literature (Fig.2.11). As Fig. 2.11 illustrates wear mechanisms identified in Al-Si alloys 
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consist of oxidative wear, delamination wear, severe plastic deformation wear and 

seizure. At low applied loads and sliding speeds, the dominant wear mechanism was the 

oxidation of Al-Si alloys. While delamination or metallic wear—the formation of metallic 

debris—was the dominant SW mechanism. However, conflict exists regarding Al-Si alloy 

wear mechanisms in the MW regime. Such controversy can be attributed to the fact that a 

range of different alloy compositions were tested using experimental procedures perfected 

by various researchers. 

A Study performed by Clarke and Sarkar [39] on an Al-6.2% Si revealed that 

mutual material transfer between the two contact surfaces was an important feature of all 

sliding wear regimes. This material transfer mostly occurred to the Al-Si alloys due to its 

lower yield stress. They suggested that a shear transfer mechanism was dominant in both 

wear regimes. The authors proposed that delamination was the dominant mechanism in 

the mild wear regime of eutectic and hypereutectic alloys. Asperity interaction, gross 

plastic deformation and ductile fracture were the major mechanisms that prompted 

seizure conditions. 

Biswas et al. [36] proposed that mild wear was characterized by the in situ 

formation of a protective, iron-rich, compacted layer while severe wear was initiated 

when the protective layer was removed by plastic deformation at the subsurface. Similar 

observations were made by Shivanath [5] in the dry sliding of hypereutectic, eutectic and 

hypoeutectic alloys against a steel counterface in the mild wear regime. 

Two wear mechanisms, oxidative and metallic wear, were identified by Beeseley 

and Eyre [43] in the dry sliding of aluminum alloys containing 1-8% Cu and zinc. 

Oxidative wear occurred at low applied loads and was characterized by the formation of 

protective surface films, which were observed on both the Al-Si surface and the 
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counterface. But the films were broken up at the onset of severe wear by the plastic 

deformation at high load and sliding speed. Microprobe analysis revealed that in the case 

of aluminum sliding against iron, the surface films consisted of oxides and an Al/Fe 

intermetallic compound. Wear occurred firstly by oxidation of the asperities and then 

secondly by fracture and compaction of the oxidized wear debris into this layer. Beeseley 

and Eyre's [43] definition of the oxidative wear process is supported by Razavizadeth and 

Eyre [42]. Metallic wear became the dominant wear process at the higher applied loads. 

The Al-Si alloy surfaces were characterized by plastic deformation and fracture, and 

significant transfer of material between the sliding surfaces and wear debris formation. 

The large amount of plastic deformation and higher wear rate prevented the formation of 

an oxide layer. 

However, Antoniou and Borland [44] reported that oxidation did not play a 

significant role in the mild wear of Al-Si alloys. While a dark surface layer and a 

subsurface deformation region with silicon particle fragmentation and fine equiaxed 

debris were observed, their examination did not reveal the presence of iron oxide and Al-

Fe intermetallic compounds. The authors proposed that mechanisms that operated at low 

loads could be categorized as deformation, compaction and fracture while ones that 

operated at high loads featured debris that was predominantly formed by a ductile shear 

mechanism, namely, at higher applied loads a delamination wear mechanism was 

inferred. The observations made by Reddy et al. [47] supported those of Antonio and 

Borland [44], the worn surface was characterized by the formation of an iron-rich 

compacted debris layer at low loads but the presence of oxidation film. Wear debris 

formed in this regime was a result of abrasion and cracking of this protective layer. 

SEM observations of the worn surfaces of a wrought aluminum alloy (6061 Al) 
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under unlubricated conditions conducted by Zhang and Alpas [38] revealed the presence 

of two types of wear debris—fine equiaxed particle debris (0.5 -5.0 in diameter) and 

large, plate-like debris—in the mild wear regime. They suggested that the fine equiaxed 

particles agglomerated further—forming dark aggregates. EDS and XRD analysis showed 

that the wear debris particles consisted of an aluminum oxide phase with a partly 

amorphous structure and elemental iron. With this in mind, the authors proposed that mild 

wear was caused by the delamination or spalling of the mechanically mixed layers— 

which were discontinuous—allowing fresh metal-to-metal contact that prompted 

oxidation and iron transfer to occur concurrently. The worn surfaces in the severe wear 

regime had a shiny, metallic appearance that indicated heavy surface and subsurface 

damage. Cross-sectional SEM studies performed below the worn surfaces suggested that 

the thin, plate-like wear debris generated in the severe wear regime were not a result of 

the delamination of a mechanically mixed layer. This debris was caused by the direct 

detachment of bulk aluminum due to subsurface crack initiation and propagation. The 

authors suggested that the thick, plate-like wear debris observed in the severe wear 

regime was attributed to thermal softening, because the flash temperature reached a 

critical value of 0.4Tm (where Tm is the melting temperature of the alloy). 

Wilson and Alpas [48] systematically investigated the effects of testing conditions 

on wear mechanisms in an A356 alloy sliding against 52100 steel using a block-on-ring 

testing machine in an ambient air atmosphere. A wear mechanism map was then 

constructed (Fig. 2.12). Applied test loads and sliding speeds varied from 0.2 to 400N and 

0.1 to 5 m/s, respectively. They found that when the flash temperature (Tj) exceeded a 

critical value, a mild wear transition from mechanical mixing/oxidation wear to 

delamination wear occurred. The debris generated in the mixing/oxidation wear regime 
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was black and powdery in nature. While metallic flake or plate debris was produced in the 

delamination wear regime. But Fig» 2.12 indicates that the wear rates in the delamination 

regime are similar to those in the mixing/oxidation regime. It infers that the onset of 

metallic transfer is not necessarily associated with high wear rates in Al-Si alloys. The 

authors proposed that the heavily sheared, plate-like delamination wear debris produced 

at a critical sliding speed and flash temperature was attributed to non-isothermal type 

shear localization in the alloy. 

Elmadagli and Alpas [49] illustrated how sliding wear in both mild wear sub-

regimes (MW-1 and MW-2) was prompted by the formation of tribolayers. The authors 

found that tribolayers formed in MW-1 at a faster rate with a more significant amount of 

material transfer than the tribolayers formed in MW-2. This suggests that higher wear 

rates in the MW-2 regime were due to the easy spallation of thick tribolayers generated in 

MW-2, as well as the extrusion of exposed aluminum surfaces over the tribolayer. Wilson 

and Alpas [48] also observed that two sub-regimes existed in the mild wear regime of an 

A356 alloy sliding against 52100 steel. The mechanisms operating in these sub-regimes 

differed—from a mixing/oxidation sub-regime at low speeds where the worn surfaces 

were covered by tribolayers to a sub-regime where delamination at higher speeds led to 

the removal of material next to the contact surfaces. 

Elmadagli and Alpas [12] used EDS to examine the worn surfaces and sub 

surfaces of Al-18.5% Si generated in a UMW regime, UMW was reached under two test 

conditions—an argon atmosphere and sliding against a DLC-coated counterface in air. 

Their results indicated that the surface layer's composition changed from iron-rich 

transfer films to aluminum-rich tribolayers when the sliding distance was increased. The 

iron-rich layer was hard and brittle, and exhibited easy spallation. The authors attributed 
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the decrease in UMW wear rate to the continuous coverage provided by the aluminum-

rich layer. The analysis of the worn surface generated in air while sliding against a 

graphitic DLC-coated counterface revealed no iron-rich oxidized tribolayer, and the 

corresponding wear rates and the coefficient of friction were lower than those obtained 

for the tests against an uncoated 52100 steel counterface. 

The UMW obtained by Zhang and Alpas [17] for 6061 Al-20 vol.% A1203 sliding 

against SAE 52100 bearing steel exhibited a different scenario. The authors reported that 

at 3.0 N and a sliding speed of 0.2 m/s, the worn surface exhibited AI2O3 particulates 

standing proud of the aluminum matrix. The exposed particulates caused abrasive damage 

to the steel counterface during sliding, and the worn steel fragments were then transferred 

to the composite surface to form a protective, iron-rich transfer layer that tended to 

oxidize—producing a reddish-brown Fe2C>3. The iron-oxide also featured a low friction 

coefficient, providing an in situ lubricating effect. This type of inconsistent identification 

of UMW mechanisms in the two sliding contact systems might be attributed to different 

matrix compositions, mechanical behaviours between Si particles and AI2O3, testing 

atmospheres and the counterfaces used in the two studies. 

2.2.4. Tribolavers 

The finely-mixed tribolayer usually formed on the wear tracks has been named the 

mechanical mixed layer (MML). The MML exhibits a different chemical composition and 

material structure compared to the material away from the surface. It arises from plastic 

deformation, material transfer and mechanical mixing induced by sliding contacts [50, 

51]. As a result, investigations of the transfer, mixing and associated chemical and 

mechanical processes that occur during the dry sliding of Al alloys and other ductile 
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materials have been given great attention. Longitudinal SEM and TEM observations of 

cross-sections of worn surfaces, in addition to micro-hardness measurements for the 

subsurface have been the most commonly used methods for investigating tribolayers [51-

52]. Tribolayers have been commonly observed on contact surfaces generated in the mild 

wear regime of aluminum-based composites, and Al-Si alloys, when they slid against a 

steel counterface in an ambient environment [5, 36, 43, 50-55]. Controversy surrounds the 

exact composition of UMW layers. 

Longitudinal SEM observations of worn surfaces of A3 56 Al-10% SiC-4% Gr and 

A356 Al-5% Al203-3% Gr performed by Riahi et al. [55] revealed that a protective 

tribolayer was formed at nearly all sliding speeds and loads in mild wear regimes for both 

composites. EDS analysis revealed that the topmost part of the tribolayer consisted of 

iron-rich layers, while the rest was made up of fractured SiC and A^Ni particles and thin 

graphite films with a thickness of about 30-50 urn and which were elongated over long 

distances in the direction of sliding. The average microhardness of the tribolayers was 

considerably higher than that of the bulk material, and their formation increased the 

surface hardness significantly—playing an important role in delaying the mild-to-severe 

wear transition in aluminum matrix composites. They also showed, however, that 

abrasive wear caused by the fractured hard intermetallic and ceramic particles in the 

tribolayers acted as either two- or three-body abrasives against the steel counterface— 

increasing the severity of scuffing. 

Li and Tandon [52, 56-57] systematically characterized the MML that was 

generated during the sliding wear of an A356 Al-Si casting alloy by using SEM, TEM, 

XRD and Mossbauer spectroscopy techniques. SEM observations of collected wear 

debris revealed two types of morphology—ultrafine equiaxed particles at low loads and a 
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mixture of fine equiaxed particles and plate-like flakes at high loads. EDS analysis 

revealed that the ultrafine structure consisted of the original materials—a-Al and a-Fe— 

from counterface materials. They reported that the debris contained a significant amount 

of iron, and that the amount of elemental iron in the debris increased with an increasing 

load—inferring more material transfer from the counterface. The elemental iron was 

mostly present in the aggregates with ultrafine particles. The formation of the plate-like 

debris particles was attributed to the detachment of the MML from the worn surface of an 

Al alloy and the Al composite. They proposed that the MML was formed by an extensive 

mechanical mixing process—such as fracture, fragmentation and repeated transfer and 

compaction—that occurred between two contact surfaces during sliding wear. 

Elmadagli and Alpas [12, 49] conducted investigations on the worn subsurfaces of 

Al-18.5% Si sliding against 52100 at 10 N in a controlled dry air environment (5% RH), 

as well as in an argon atmosphere. Cross-sectional SEM observations revealed that a 

tribolayer was usually present on the worn surfaces generated under various testing 

conditions. The tribolayer and the damage zone below it, however, varied with the testing 

conditions. Their results indicated that iron transfer from the steel counterface to the 

silicon particles on the contact surfaces initiated the formation of tribolayers. Li and 

Elmadagli [58] characterized the tribolayer generated during dry sliding tests in air and 

argon atmospheres by using SEM, electron probe micro-analyzer (EPMA), focused ion 

beam (FIB) and TEM. They discovered that the tribolayer that formed in air contained 

significant amounts of iron, aluminum and oxygen, while a much less significant amount 

of oxygen and iron were detected in the tribolayer formed in argon. The microstructures 

of the tribolayer formed under the two test conditions shown in Fig. 2.13 proved to be 

different. The authors reported that the tribolayer that formed in air was severely 
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fractured, and they attributed its brittleness to the high amount of oxygen. The tribolayer 

formed in argon, however, contained amorphous oxides mixed with ultra fined-grain 

aluminum (100 nm) and silicon, which reduced the A3 90 wear rates under such testing 

conditions. They also found that the aluminum beneath the tribolayer was refined in both 

test conditions, due to severe subsurface plastic deformation. 

These contradictory characterizations of the chemical composition of the 

tribolayer formed in the MW regime might be a result of different testing conditions like 

humidity or the applied loads used in the various studies. 

It must be emphasized that except for the change in the tribolayer's composition, 

the aluminum grain size in this layer is refined significantly, which are caused by large 

scale plastic deformation during sliding contacts of ductile materials with counterfaces. 

Hammerbergs et al. [59] confirmed these kinds of microstructural changes using 

molecular dynamics simulations from one pure, single crystal of copper sliding against 

another. Such significant changes in material microstructure and composition are 

expected to increase the wear resistance of ductile materials like aluminum alloys once 

the layer is formed on contact surfaces. 

2.2.5. The Effect of Silicon Percentage on the Wear of Al-Si Alloys 

An increase of silicon was traditionally expected to improve the wear resistances 

of aluminum alloys in the mild wear regime. Numerous experimental observations have 

indicated that the transition load at which wear changed from mild to severe increased 

along with an increase in silicon content [4, 60-62]. Silicon is also considered as an anti­

seizure agent [61]. However, a unanimous conclusion regarding the role of silicon content 

on the wear resistance cannot be drawn from previous results on dry sliding. This can be 
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attributed to the range of test conditions used by various researchers—from geometry, 

sliding speed and applied load to microstructures and environment. 

Bai Pramila and Biswas [62] reported that Si additions (4 to 24% Si) improved the 

wear resistance of Al-Si alloys, but that no linear relationship between wear rate as a 

function of Si content was ever found. Observations made by Shivanath et al. [4], 

however, regarding the wear of sand and chill cast Al-Si binary alloys (4 - 20% Si) 

showed that the MW rate (oxidative wear rate) was generally independent of silicon 

content or silicon particle size. The Al-Si alloys containing approximately 12% Si 

exhibited the highest wear rates. 

These findings were contradicted in a study published by Clarke and Sarkar [63], 

where it was reported that the wear resistance of Al-Si alloys increased with the increase 

of the silicon percentage up to a near eutectic composition (13 wt% Si), then the wear rate 

increased along with the Si percentage thereafter (Fig. 2.14). This suggested that— 

regarding wear and load-carrying capability—a near-eutectic alloy would be ideal. They 

reported that hypereutectic alloys exhibited poor wear resistance compared with 

hypoeutectic alloys, and it was concluded that the beneficial effect of silicon was to 

decrease the propensity to seizure. High silicon alloys, however, wore down even hard 

steel counterfaces. Similar results were reported by Mohammed et al. [64] when they 

investigated the wear of Al-Si alloys containing 3-22% Si sliding against steel under dry 

sliding conditions. The results indicated that the adhesive wear rate in aluminum alloys 

was reduced by the addition of silicon until a minimum value close to eutectic 

composition had been reached. The further addition of silicon increased the wear rate. 

However, Andrew et al. [61] showed that the wear rate decreased considerably when the 

volume fraction of the primary silicon phase was increased. 
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Wang et al. [65] investigated the effect of Si content on the dry sliding wear 

behaviours of spray-deposited Al-Si alloys containing 12, 20 and 25% Si using a pin-on-

disk machine at normal loads of 8.9, 17.8, 26.7 and 35.6 N. Their results indicated that at 

a low load (8.9 N), the wear rate of the spray-deposited Al-Si alloy decreased with an 

increase in Si content, and the dominant wear mechanism was oxidative wear. At a high 

load (35.6 N), the spray-deposited Al-20Si exhibited wear resistance that was superior to 

the Al-25Si and Al-12Si alloys, with a dominant wear mechanism of delamination and 

third-body abrasion. This suggested that the wear resistance did not increase linearly 

along with the increase in silicon percentage. An optimum silicon percentage is expected 

in Al-Si alloys, so too many silicon particles might cause more abrasive wear to the 

counterface that, in turn, increases the wear of the Al-Si alloys. 

Elmadagli and Alpas [6] initially conducted a parametric study of the relationship 

between the microstructure and wear resistance of Al-Si alloys in a controlled air 

atmosphere (5% RH) using pair wise comparisons. Pair wise comparisons generally refer 

to any process that compares entities in pairs to judge which of each pair is preferred, or 

displays a greater amount of some quantitative property. In order to use this method, two 

alloys were selected, in which only one microstructural feature showed significant 

difference. The sliding wear tests were performed on three commercial Al-Si alloys, die 

cast 383 (9.5 wt.% Si), A390 (18.5 wt.% ) and a spray-cast alloy with 25 wt% Si, all in a 

controlled dry atmosphere. The as-cast 383 was solution-treated at 480 °C for 36 hours in 

order to change the Si particle shape and hardness while maintaining the other parameters 

within a reasonably close range. A power-law relationship between wear rate, W, and 

applied load, L, was established 
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W = CL" (2.1) 

where C and n were the wear coefficient and the wear exponent,, respectively. It proved 

that increasing the silicon percentage from 9 to 25% slightly reduced wear coefficients, 

but increased the transition load of the first mild wear sub-regime by 140%. 

It should be noted that Si particles and aluminum matrix have significantly 

different mechanical properties. The Si particles in Al-Si alloys are supported by the 

aluminum matrix, making the mechanical response of Si particles to the applied load 

important for understanding the wear behaviours of Al-Si alloys, especially at low applied 

loads (helpful for understanding contradictory findings reported by various researchers). 

The way Si particles mechanically respond to applied loads will change accordingly 

based on different testing procedures, matrix compositions (matrix hardnesses) and a 

variety of processing techniques for producing a range of Si particle sizes and 

morphologies in Al-Si alloys. 

2.2.6. The Effect of Silicon Particle Morphology on the Wear of Al-Si Alloys 

The silicon particle morphology in an Al-Si alloy changes in relation to the silicon 

percentage and processing techniques used to develop it. Eutectic Si particles are 

generally needle-like or platelet like, while primary Si particles are block-like [19]. 

Sodium, sulfur, phosphorous and rare earth elements like Sr are traditionally used to 

modify eutectic and coarse primary Si particle morphology by influencing the nucleating 

and growth processes of coarse Si particles [66-68]. Si particle morphology also can be 

modified by increasing cooling speed of casting and solution heat treatment. Elmadagli 

[69] modified the silicon particle shape in the 383 alloy by solution heat treatment at 

480°C for 36 hours and followed with a hot water quenching at 80°C. After the solution 
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heat treatment and water quenching, the 383's needle-like Si particles with a sphericity of 

0.2 were forced into round shapes with a sphericity of 0.5. Extensive studies of the effect 

of Si particle morphology on the wear of Al-Si alloys have been conducted, and they 

indicate that Al-Si alloys with spheroidized Si particles (smaller aspect ratio) exhibit 

better wear resistance in the MW regime, namely, at relatively low applied loads, in 

comparison with the Al-Si alloys with large aspect ratio Si particles [69-73]. 

Pair wise comparison performed by Elmadagli and Alpas [6] for a 383 alloy with 

9.5 % Si indicated that a decreasing silicon particle aspect ratio reduced the wear 

coefficient of the first mild wear sub-regime, C/, and increased the load, Li, at which the 

transition from MW-1 to MW-1I initiated. C and L were described in Equation 2.1 

(Section 2.2.5). When the aspect ratio was reduced from 3.75 to 1.98 by solution heat 

treatment at 480 °C for 36 hours, C/ was decreased by 25% and L] was increased by 25%. 

Riahi et al. [71-72] investigated the scuffing resistances of two eutectic Al-Si 

alloys, etched by 10% NaOH, containing 12% Si but with different morphologies. The 

results showed that the alloy containing smaller aspect ratio second particles exhibited 

better scuffing resistance. The authors attributed this to the different fracture behaviours 

of the two types of secondary Si-rich particles. They found that the Si-rich particles with 

larger aspect ratios were more likely to be fractured at their roots, while the particles with 

smaller aspect ratios tended to fracture from their edges. The fracture behaviour of Si-rich 

particles with different morphologies found in Al-Si alloys that had been subjected to 

sliding contact was analyzed using a flexure formula. The authors derived an equation to 

compute the maximum tensile stress, incorporating the coefficient of friction at the root of 

a Si-rich phase with a rectangular shape: 
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^ ^ W ^ (22) 

where <rmax is the maximum tensile stress at the root of the Si-rich particle with an 

aluminum matrix, // is the coefficient of friction, / is the thickness of a particle with a 

rectangular shape, Hm is the matrix hardness measured and hpk is the height of the 

protruded particle section. At a given applied load of 0.1 N, //=0.1, t =3 urn and when 

the particle stood proud of the matrix by 7.5 um, the estimated (Tmax could reach as high 

as 2.35 GPa. But in Equation 2.2 the factor of a particle shape—aspect ratio is not 

included—the conclusion that the particles with smaller aspect ratios exhibited smaller 

<7max in comparison with the particles with larger aspect ratios cannot be drawn 

accordingly. An equation to calculate the critical particle thickness, tc, was obtained by 

combining the fracture toughness of the particles with Equation 2.2: 

I -,1/2 

3.2V?/vV^(//^) (2.3) 

where Krc is the fracture toughness of the Si-rich particles and 2c represents the semi­

circular cracks formed by the Vickers indenter. Following this equation, the particle with 

t < tc—namely with a larger aspect ratio—will be subjected to fracture. 

2.2.7. Summary of Literature on the Dry Sliding Wear of Al-Si Alloys 

The literature survey presented above indicates that extensive laboratory-scale 

studies have been performed on Al-Si alloys in an effort to understand their sliding wear 

characteristics under dry sliding conditions—circumstances that tend to belong to "mild" 

and "severe" wear regimes. The main results can be summarized as follows: 
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1. Two different wear regimes occur when Al-Si alloys slide against iron-based 

counterface materials. "Mild" wear is characterized by a relatively low wear rate 

as well as the formation of tribolayers, the oxidation of aluminum, material 

transfer and back transfer. "Severe" wear is characterized by a high wear rate, 

severe plastic deformation of the contact surface, material transfer and high 

contact surface temperature. "Ultra-mild" wear is reached when sliding tests are 

performed under special test conditions, like a changing environmental 

atmosphere and a variety of counterface materials. 

2. The worn surfaces of Al-Si alloys—obtained after sliding tests are performed in a 

mild wear regime—feature a tribolayer, a mixture of transferred materials, 

fragmented Si particles, oxidized aluminum and iron and plastically deformed 

aluminum with ultra-fine grain sizes. The presence of these elements significantly 

affects the wear resistance of Al-Si alloys. 

3. The wear resistance of Al-Si alloys is also affected by silicon content, which is 

also related to testing conditions. It is generally accepted that the transition load to 

severe wear increases with the Si content. 

4. Al-Si alloys with small aspect ratio Si particles exhibit better wear resistance in 

the mild wear regime in terms of wear rate and transition load. Decreasing the Si 

particle aspect ratio or increasing the Si particle sphericity prompts a decrease in 

the wear rate and an increase in the transition load. 

Under normal running conditions, however, engine components in cylinder block 

assemblies operate under lubricated conditions, so that a comprehensive understanding 

the sliding wear behaviours of Al-Si alloys under lubricated conditions—especially under 

engine oil or lubricants containing additives used in engine oil—is essential to better use 
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Al-Si alloys as engine components. 

2.3. Wear Properties of Al-Si Alloys under Lubricated Conditions 

2.3.1. Engine Lubricant and Its Additives 

A formulated automotive engine lubricant commonly contains base oil and a 

mixture of various additives intended to work in internal combustion engine chambers— 

and are subjected to a wide range of fuels. Engine lubricant is used to minimize wear, 

improve efficiency and prolong engine life [74]. The additives in engine oil act as 

defoamers, viscosity improvers, flash-point depressants, antiwear and extreme pressure 

additives, detergents and dispersants. Tribologists continue to focus on creating new, 

more environmentally responsible engine additives that meet the increasingly tight 

requirements of ecological emissions. 

Due to extreme working condition, the engine lubricants interact with the 

combustion products, which results in their contamination and oxidation in addition to the 

formation of deposits on contacting and rubbing surfaces that lead to corrosion and wear. 

The most effective class of antiwear and antioxidant additive used in engine oil has been 

zincdialkyl(aryl)-dithiophopshates or ZDDPs (Fig. 2.15) [75]. So far, extensive research 

has been performed using a wide range of surface analytical techniques like XPS, infra­

red absorption spectroscopy (IR spectroscopy) and X-ray absorption near edge (XANES) 

technique [76-77] to better understand the lubrication properties of ZDDPs, including the 

chemical characterization of ZDDP films. XPS is a quantitative spectroscopic technique 

that measures the elemental composition, chemical and electronic states of the elements 

from the surface of a material. XPS spectra are obtained by irradiating a material with a 

beam of aluminum or magnesium X-rays from the top 1 to 10 nm of the material being 
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analyzed in ultra-high vacuum (UHV) conditions. IR spectroscopy is a measurement that 

involves collecting absorption information and analyzing it in the form of a spectrum. The 

frequencies at which absorptions of IR radiation ("peaks" or "signals") occur can be 

correlated directly to bonds within the compound being analyzed—making it useful for 

identifying organic and organometallic molecules. XANES is also a type of absorption 

spectroscopy that quantitatively determines the composition of a mixture of species while 

remaining strongly sensitive to the chemical information— valence, charge transfer and 

the oxidation state of the absorbing atom. It covers a region of x-ray absorption spectrum 

with ~ 50 eV of the absorption edge [77-78]. 

The majority of rubbing systems that have been investigated are steel and cast 

iron, and ZDDP has proven beneficial in preventing wear in these systems [79]. It is a 

widely accepted belief that ZDDPs breaks down in the combustion chamber to create 

sacrificial films through a tribo-chemical reaction under high temperature and pressure— 

characteristics that are responsible for minimizing the asperity contact that eventually 

leads wear. This film is commonly referred to as an antiwear film, and is composed of 

various amounts of zinc, phosphorous, sulfur and oxygen [80]. The effect of ZDDP on 

aluminum alloys, however, is not clear. 

2.3.2. Sliding Wear Properties of Al-Si Alloys Under Lubricated Conditions 

A minimal amount of investigation has been performed on the lubrication of Al-Si 

alloys—compared to the research efforts made to understand the wear properties of Al-Si 

alloys under dry sliding conditions. Some of the research focused on the tribology of Al-

Si alloys under fully formulated engine oil lubricated conditions or a polymer-based 

lubricant [13, 81-83], while the majority tested whether or not ZDDP also acts as an anti-
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wear additive in Al-Si alloys [84-89]. 

Timmermans et al. [81] studied the wear behaviour of a hypereutectic P/M Al-Si 

alloy sliding against steel under fully lubricated conditions with SAE 15W50 engine oil 

as a lubricant. The tests were conducted at 150°C and the wear test data indicated that the 

wear volume of the tested alloy was reduced by using engine oil as a lubricant. The 

presence of engine oil ingredients on the worn surface was examined, indicating that the 

engine oil used during testing effectively protected the surfaces from wear damage. Hu et 

al. [82] used XPS, FT-IR and thermal gravimetric (TG) analyses to investigate the tribo-

chemical behaviour of Al-Si alloys with 12% Si sliding against itself while lubricated by 

ethyleneglycol and amines that included ethanolamine, ethylenediamine and 

triethylenetetramine. The authors found that triethylenetetramine displayed the best anti-

wear ability in the Al-Si alloy tested when it was sliding against itself, while the amines 

exhibited superior anti-wear performance when compared with ethyleneglycol. Wear tests 

performed by Das et al. [83] on a eutectic Al-Si alloy (12.3% Si) in boundary lubricated 

conditions, however, indicated that the engine oil with additives reduces friction, but 

increases wear compared with base oil. 

The reported results on the lubrication effect of ZDDP on Al-Si alloys are 

contradict and far from comprehensive. Wan et al. [84] investigated the wear properties 

of an aluminum alloy containing ~ 0.5% Si sliding against steel under boundary 

lubricated conditions with base oil plus a mixed alkyl-chain ZDDP—with a concentration 

that varied up to 5%—as lubricants. The study showed that the coefficient of friction was 

not altered by an increase in the concentration of ZDDP while an increase in wear rate 

occurred at 5% ZDDP concentration. They concluded that ZDDP does not improve the 

wear properties of aluminum alloys because the films formed tend to be fragile and easily 
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displaced. The authors suggested that chemical corrosive wear is the dominant 

mechanism for the tested aluminum alloy. Similar observations were reported by Neville 

et al. [85]. The authors showed that addition of ZDDP or MoDTC did not show an 

obvious antiwear effect, as neither the coefficient of friction, nor wear of Al-23% Si 

rubbed against cast iron at 100°C was much different than the behavior of the same Al-Si 

alloy rubbed in base oil. 

The following research information indicates that ZDDP can act as an anti-wear 

additive for Al-Si alloys. Kawamura et al. [86] performed sliding wear tests on A390 

(with ~ 18% Si) under drip-supplied lubricated conditions using paraffinic base oil with 

phosphate, phosphite and ZDDP additives. The worn surfaces were examined by electron 

probe microanalysis (EPMA). The authors found that all the tested additives exhibited 

good anti-wear properties, regardless of the type of alkyl group used. Konishi et al. [87] 

conducted wear tests on self-mated A390 tribo-pairs under fully-flooded lubricated 

conditions of mineral oil containing 2 wt.% ZDDP and synthetic base oil using a pin-on-

disk tester. The study revealed that the base oil was important to the performance of the 

ZDDP, and that the wear rate was reduced by one to two orders of magnitude when 

ZDDP was added to the base oil compared to testing with the base oil alone. Most 

importantly, they found zinc, phosphorous and sulfur present on the worn surface, which 

they attributed to the formation of a protective film containing ZDDP. Fuller et al. [88] 

tested A6061 sliding against A6061 and A390/A390 while lubricated with base oil 

containing 1.2 wt.% ZDDP using a reciprocating cylinder-on-block tribometer at loads 

that varied between 30 and 100N at 60°C. The examination of the wear scars using 

XANES analysis revealed the presence of sulfur and phosphorous—decomposed from the 

ZDDP. The authors firstly found that the ZDDP tribo-films formed on the aluminum 
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alloys are essentially identical (chemically) to those formed on steel—polyphosphate 

structure—but their generation only occurs after an extended rubbing period (30+ 

minutes). Similar findings were achieved by Nicholls et al. [89]. They also used XANES 

spectroscopy to investigate the ZDDP films generated on the sliding surfaces of 

A319/A319 and A319/52100 steel in boundary lubricated conditions. The P L-edge and P 

K-edge spectra obtained from said XANES analysis (Fig. 2.16) reveals that the films 

formed on the A6061 and A319 aluminum are very similar to that formed on steel, with a 

strong peak at 2152 eV being representative of polyphosphate glass. Zn4PeOi9, is also 

present in the wear scars of aluminum alloys. The authors found three other species in the 

wear tracks—a phosphide, unreacted ZDDP and the linkage isomer—all of which varied 

with rubbing time. They also learned that an increase in rubbing time applied to the 

A319/52100 steel series increased the amount of polyphosphate and unreacted ZDDP 

while the LI species and phosphide decreased. The authors attributed this to the beneficial 

effect of silicon particles, which provide a rigid surface, on the formation of an anti-wear 

film—namely polyphosphate. This was further verified by the results obtained from 

lubricated wear tests performed by Nicholls et al. [90] on A390 (containing > 18% Si) 

under conditions similar to a cylinder/bore system. The tests were conducted at 60 N with 

a corresponding Hertzian contact pressure of 264 MPa at 60°C using MCT-10 base oil 

with 1.2 wt.% commercial ZDDP concentrate. They found that oxides of both aluminum 

and silicon, as well as a fairly thick zinc polyphosphate film, formed on the surface of 

A390 after sliding tests. X-PEEM micro-chemical analysis and AFM and SEM imaging 

showed that ZDDP anti-wear pads tended to form on the silicon surfaces, and these pads 

were similar to those formed on steel. The modulus of the anti-wear pads was measured 

using a nano-indentation tester, and the results showed that the films formed on the A390 
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and Steel surfaces were identical. These promising results provide new insight into the 

lubrication process of Al-Si alloys with a high Si percentage and encouraging a better 

understanding of wear damage in Al-Si alloys working under conditions similar to a 

cylinder/bore engine component. 

The controversy about ZDDP's anti-wear effect on Al-Si alloys suggests that XPS 

is not sensitive enough to detect the tribochemical reaction film that forms on the Al-Si 

alloys, and tribo-film formation mechanisms in Al-Si alloys are yet to be better 

understood. It is also important to note that the anti-wear effects of ZDDP usually appear 

to be obvious in hypereutectic Al-Si alloys at high testing temperatures or during 

extended periods. 

2.4. Engine Component Wear Damage 

2.4.1. Brief Introduction to Friction and Wear in Automotive Engines 

Fig. 2.17 provides a schematic view of the reciprocating internal combustion 

engine [2]—the most important motor vehicle component. Friction loss accounts for 

approximately 40% of the total energy consumption developed by an automotive engine 

[91]. If powertrain friction loss is the only consideration, then it is the piston and piston 

ring assembly that contribute the most to the total engine friction and wear in a 

powertrain system. It is estimated that the sliding of the piston rings and piston skirt 

against the cylinder wall amounts to approximately 50 to 70% of the cylinder block 

assembly's friction loss within a powertrain system [92]. As a result, extensive theoretical 

and experimental investigations have been performed to understand and evaluate the wear 

damage sustained by an engine block assembly [93]. The principal factors influencing the 

wear of an engine block assembly are—engine working parameters like speed, 
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temperature, load and frequency and engine lubricant conditions like gas cleanliness, 

corrosion, surface finish and lubricant quantity [94]. Abrasive wear, corrosive wear and 

scuffing are considered the three most serious wear types sustained by engine blocks. 

Abrasion occurs when hard particles present on two moving surfaces. These 

particles scratch the softer surface, ultimately prompting material removal. This type of 

abrasive wear causes multiple problems, from dimensional changes to leakage and low 

engine efficiency. The two most common types of abrasive wear are two-body and three-

body abrasion. Two-body abrasion occurs when a rough, hard surface slides against a 

relatively soft opposing surface—damaging the soft surface by plowing or 

micromachining. Three-body abrasion occurs when hard, rough particles become trapped 

between two sliding surfaces [95]. In such a situation the greater the difference in 

hardness between the particles and the contact surface, the more easily the contact surface 

is damaged. 

Corrosion is defined as a destructive process prompted by chemical or 

electrochemical reactions. Corrosion happens at the anode with either the release of 

hydrogen gas or the formation of hydroxyl ions at the cathode. These hydroxyl ions may 

react with metal ions that have been dissolved at the anode to form metal hydroxides or 

hydrated oxides [96]. Internal combustion engine components—as well as the engine oil 

itself—are subject to moisture accumulation caused by natural condensation. The oil film 

deteriorates during long running periods when accumulated moisture interacts with the 

surface beneath the oil. The engine surface corrodes when accumulated moisture in the 

engine oil reacts with deposits in the same oil that developed previously during engine 

operation—causing pitting and, finally, material loss. The synergistic effect of wear and 

corrosion is, however, detrimental even in engineering applications—especially in cases 
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where corrosion is also responsible for the wear of metallic components like piston rings 

and cylinder walls. Generally, the total wear rate when corrosion is present is larger than 

in dry conditions because of the combined action of mechanical and electrochemical 

mechanisms [97]. 

Scuffing is usually characterized by a dramatic friction increase and rapid rise in 

temperature that accelerates lubricant degradation—causing the two scuffed surfaces to 

vibrate noisily or even seizure. With this in mind, scuffing is considered the most 

problematic type of engine damage. Cylinder block assembly—especially between the 

piston ring and the cylinder bore—is where scuffing is most commonly observed in 

automotive engines [7]. While scuffing mechanisms are not fully understood due to the 

complexity of the material systems involved, as well as the diversity of machine operation 

conditions, it is generally accepted that scuffing at the contact surface is either the result 

of lubrication breaking down or of the contact surface reaching a critical temperature. 

Scuffing and its prevention are subject to operating conditions and the physical and 

chemical interactions of the rubbing system—including the duration, the materials, the 

surface preparation and the lubricants in the working system [8]. 

2.4.2. Review of the Literature on Al-Si Engine Related Wear 

With the increased use of Al-Si alloys as engine components, issues regarding the 

friction and wear of engine components made from Al-Si alloys have been given great 

attention. Ye et al. [98] investigated the scuffing resistance of A390 (KS 281.IP for 1.91 

Saturn L-4 engines) without coating, with a nickel-phosphorus plated coating with 4 vol% 

boron nitride particles (NNC), a tin plating, or a polyamideimide-based CPC with about 

15 vol.% graphite particles (D-10). They used a piston-scuffing apparatus that simulates 
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the relative motion between piston and cylinder. The study also observed the effect of 

piston skirt surface texture and cylinder bore surface roughness on contact between the 

two parts, as well as investigating the microstructures and morphological features of 

surface and near-surface materials. During the course of the study, severe plastic flow, 

cracking that followed the direction of motion, spalling and the transfer of mutual 

materials were all observed. The authors reported that aluminum transfer to the liner 

surface was predominant during mutual material transfer. They attributed the final macro-

scuffing of the piston material to surface strength deterioration prompted by local high 

temperature, plastic deformation and fatigue cracks found in the substrate. Using both the 

tin plating and the NCC-coating together did not significantly improve scuffing 

resistance. 

Yu [11] conducted a failure analysis of scuffed, linerless Al-Si automotive engine 

blocks subjected to sliding wear. Five types of wear damage were identified—'Virgin 

area', 'Normal wear', 'burnishing wear, 'Comet area (Abrasive wear)' and 'Severe wear' 

(Fig. 2.18). The virgin area found on a cylinder bore surface has the same surface 

morphology as the new bore surface. The only damage observed in the virgin area was 

the fracture of the secondary phases. Compared with the virgin area, the normal wear 

zone differed in reflectivity and depth of particle fracture. The virgin area appeared highly 

reflective, while the normal wear zone was dull and mottled—suggesting that a film 

might be covering the contact surface in a normal wear zone. The silicon particles near 

the contact surface were fractured to 7 um, but no obvious topographical changes were 

detected in either the virgin or the normal wear zone. Both comets and burnishing wear 

were characterized by abrasive scratches on the contact surfaces that related to the 

scratching of the hard particles trapped between the piston skirt and the cylinder bore. 
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Examinations of the surfaces and subsurfaces revealed that severe wear in the form of 

scuffing was caused by the direct contact of aluminum on aluminum—which was related 

to severe plastic deformation, fracture and the mixing of hard particles. The authors 

proposed that a suitable piston skirt design would prevent severe wear. 

Yu's identification of wear damage helped explain Al-Si engine wear. If severe 

wear is prevented by precise design, normal wear would become the only acceptable 

cylinder block assembly wear damage under long running durations. Without measurable 

material loss from the contact surfaces, wear rates cannot be depicted using conventional 

mass or volume loss-based rates. Quantitative representation of the wear in this condition 

requires a novel approach. 

Scherge et al. [99] introduced the fundamental radionuclide-technique (RNT) and 

applied it to the investigation of engine component wear behaviours. The RNT illustrated 

in Fig. 2.19—including the concentration method and the difference method—is 

considered suitable for mechanical systems with low wear rates. The location of 

suspected wear is radioactively labeled via bombardment with heavily charged particles. 

Consequently, the time dependence of wear is determined by radiation emitted by 

activated material. RNT provides the advantage of continuous observation and 

progressive wear measurements taken from the machine parts in service, without having 

to stop or disassemble the machine. RNT is highly sensitive—capable of resolving wear 

rates as low as 0.1/nm/h or 1 ug/h. Scherge et al. [99] measured the material removal rate 

using RNT for a water-cooled, four-cylinder diesel engine with a variety of oils and a 

range of cylinder wall temperatures under hot test operations (maximum speed at full 

load). The wear rates seen in the cylinder liner around the top dead center position for the 

top piston ring (the critical wear zone for diesel engines) when tested below 150 °C under 
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different formulated oils with a variety of viscosities were below 500 |j.g/h. 

Dienwiebel et al. [13] used RNT to measure the wear rate of an AISi cylinder bore 

made from an AlSil7Cu4Mg alloy operating in fully formulated engine oil (Fuchs Titan 

5W30). The results revealed a wear rate of approximately 10 to 20 nm/h—depending on 

the loading conditions. The material loss measured by Dienwiebel et al. [13] was 

consistent with that measured by Schneider et al. [10] from cylinder bore surfaces in 

spark-ignition (SI) engines. The authors used a radiotracer method that measured the wear 

rate at 2 to 20 nm per running hour—an acceptable amount of wear for the typical 

vehicle's service life. Acceptable wear of the cylinder bore radius in automotive engines 

during a typical vehicle life of 150,000 km running at 50km/h is < 50 um. It follows that 

the corresponding material loss rate should not exceed 1 xlO"13 m/rev or 16 nm/h. 

Dienwiebel et al. [13]—apart from measuring the AISi cylinder bore's material 

loss using novel techniques—used FIB and AES to examine the worn surface of an 

AlSil7Cu4Mg engine block after said block had been operating in fired dynamometer 

testing conditions for approximately 250 hours over the engine's full speed and torque 

range. The authors reported the presence of a surface layer consisting of a mixture of 

embedded Si particles and an aluminum matrix. The study also observed that the 

aluminum between the embedded Si particles appeared to be plastically deformed— 

suggesting that even though the material removal rate is low in normal running 

conditions, material surfaces are not free of damage at the microscopic level. The authors 

attributed these phenomena to friction-induced dispersion hardening. But the authors did 

not consider the mechanical behaviour of Si particles under sliding contact. The micro-

structural changes induced by the normal wear of Al-Si alloy engine bores were far from 

comprehensive. 
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In addition, similar to results obtained from sliding tests under lubricated 

conditions that used engine oil as a lubricant [81], AES elemental composition analysis 

detected engine oil elements like Ca, O, C and P on the worn cylinder bore surface. While 

these preliminary observations provide important information about the wear damage 

suffered by AISi cylinder bore surfaces, the surface damage mechanisms themselves— 

operating under conditions similar to the rubbing that occurs between piston ring or 

piston skirt and cylinder bore surfaces—are far from clear. Additional systematic 

laboratory-scale studies are expected. 

2.4.3. Surface Preparation of Al-Si Engine Component Surfaces 

Fig.2.20 shows a SEM image taken from an ALUSIL engine block surface [100]. 

This illustrates how Al-Si alloys are used in tribological applications; silicon particles 

stand proud of the aluminum matrix, and hence, carry the load. Surface preparation 

techniques for cylinder bores in linerless Al-Si engine blocks can delay or speed the 

development of wear resistant surfaces [1, 22]. Chemical -etching and mechanical honing 

are the two most common techniques used to prepare the surfaces of Al-Si cylinder 

bores—exposing the silicon particles that, in turn, lead to the carrying of the applied load. 

The conventional chemical-etching technique involves each cylinder bore being 

machined and honed to the desired dimensions, followed by the application of a chemical 

etchant (10% NaOH) to the bore surfaces to remove some of the aluminum matrix and 

expose the silicon phases [22]. This treatment creates a surface in which hard silicon 

particles carry the load so that there is no contact between the piston rings/skirt and the 

soft aluminum matrix during engine operation. 

The mechanical surface preparation method serves as an alternative to the role of 
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chemical-etching in improving cylinder bore wear resistance. Mechanical reduction is 

followed by a polishing process similar to most honing operations—with the exception 

that the conventional hone stone is replaced by a tool that consists of an abrasive 

(typically diamond) embedded in a polymer matrix. The soft matrix allows the hard 

abrasive to yield as it contacts hard phases on the bore surface, yet it is stiff enough to 

allow some cutting action against the softer aluminum. The surface topography created by 

a conventional bore honing process followed by a "mechanical reduction" process is 

similar to that of surfaces prepared by chemical-etching. 

At present, published reports on the effects of chemical-etching (10% NaOH) and 

finishing on the wear properties of Al-Si alloys remain limited. Riahi et al. [71-72] 

investigated the effect of chemical-etching conditions on the scuffing resistance of 

eutectic Al-Si alloys—varying the etching time from 5 to 7 minutes. The authors found 

that etching times lasting longer than 7 minutes resulted in the weakening of the 

particle/matrix bonding due to the excessive dissolution of matrix material around the 

particles. This weakening of particle/matrix bonding prompted particles to detach from 

the contact surface during sliding—resulting in decreased scuffing resistance. They 

recommended that optimum etching times for the tested Al-Si alloys lay between 5 and 7 

minutes. Information comparing of the two types of surface preparation has not been 

reported yet, leaving it uncertain which surface preparation would provide the optimum 

surface for the wear resistance of Al-Si alloys. 

2.4.4. Remarks 

The literature survey above indicates that under normal running conditions—for 

durability applications—the majority of wear damage experienced by engine cylinder 
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bore surfaces can be classified as normal wear. Engine bore surfaces do not surfer from 

obvious surface damage or material loss. Accordingly, Al-Si alloys intended for use 

making engine components—like cylinder block assemblies—must be able to operate in 

the ultra-mild wear regime under similar loading conditions [11-12]. Most of the previous 

laboratory scale tests on Al-Si alloys conducted in "mild" and "severe" wear regimes, and 

usually tested at high loads under dry sliding conditions, therefore, are more applicable to 

oil starvation or seizure conditions. In addition, the application of Al-Si alloys in an 

automotive engine is that Si particle should stand proud of aluminum matrix to prevent 

aluminum from being damaged. But this was not taken into account in previous studies 

on sliding wear behaviours of Al-Si alloys. Almost all the tests have been conducted on 

relatively smooth Al-Si alloy surfaces or the authors did not even mention about the 

surface preparation. 

While the mechanical behaviour of Si particles during sliding contact has hardly 

been considered in previous studies, Al-Si alloys can be categorized into two component 

materials and Si particles exhibit a significant difference in their mechanical properties 

compared to the aluminum matrix. It follows that the mechanical response of the Si 

particles to the applied load and the interface between the Si particles and the aluminum 

matrix should both be taken into account and the pressure applied to the Si particles in Al-

Si alloys must be estimated in order to fully comprehend the realistic role that Si particles 

play. 

It should also be emphasized that wear processes are nonlinear, and many 

different mechanisms can be responsible for wear phenomena in various wear regimes. 

This suggests that knowing what controls wear rates in the mild wear regime does not 

help explain the wear mechanisms that operate in the ultra-mild regime. Conventional 
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mass loss-based wear measurement techniques are not suitable to evaluate UMW in 

laboratory conditions due to the very small amount of material loss. It takes long period 

of time for the detectable quantities of mass loss to occur during the wear testing. 

Studying the progression of UMW under laboratory conditions is more challenging than 

studying mild and severe wear regimes, so a new methodology must be developed to 

evaluate UMW. 
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Table 2.1. Chemical compositions for the three major commercial casting Al-Si alloys 

[20]. 

Alloy 

319 

380 

A390 

%Si 

5.5-6.5 

7.5-9.5 

16-18 

%Cu 

3-4 

3-4 

4-5 

%Fe 

1 

1.3 

0.5 

%Mg 

0.1 

0.1 

0.45-0.65 

%Mn 

0.5 

0.5 

0.1 

%Ni 

0.35 

0.5 

-

%Zn 

1.0 

3.0 

0.1 

%Ti 

0.25 

-

0.2 

Table 2.2. Typical mechanical and thermal properties of the three alloys [20] 

Alloy 

A390 

380 

319 

Tensile 
strength 
(MPa) 

275 

310 

250 

Yield strength 
(MPa) 

180 

150 

165 

Elongation 
(%) 

<1 

3.5 

2.0 

Hardness 
(HB) 

100 

75 

80 

Thermal 
conductivity 

(W/m.K) 

0.32 

0.26 

0.27 
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Fig. 2.1. Aluminum-Silicon binary phase diagram [18]. 
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(c) 

Fig. 2.2. Typical microstructures of (a) hypoeutectic 319, (b) hypoeutectic 319 , and 

(c) Hypereutectic A 3 90 alloy [19]. 

Fig. 2.3. Illustration of a linerless engine block made from an eutectic Al-Si alloy 
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Fig. 2.4. (a) A schematic of Osprey™ spray casting process, and (b) and the microstructure 
of a spray formed hypereutectic Al-Si Alloys (with 21% Si) [30]. 
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Fig. 2.5. Wear mechanism map for steel [35]. 
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Fig. 2.6. Variations of wear rate of four Al-Si alloys with normal load [4]. 
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Fig. 2.7. Variation of wear of 6061 aluminum with normal load at different 
sliding speeds (configuration: ring-on-block, at ambient air) [38]. 
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Fig. 2.8. Variation of wear of Al-Si alloys with normal load (configuration: ring-on-block, 
under controlled dry air environment) [6]. 
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Fig. 2.9. Variation of wear of A3 90 with normal load showing the effects of environment 
atmosphere and counterface on wear resistance (Test geometry: ring-on-block, 
counterface: SAE 52100 steel) [12]. 
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Fig. 2.10. Variations of wear rate with load for A16061-Al2O3p MMCs containing 10 and 20 vol.% 
A1203 reinforcement, as well as the unreinforced alloy [17]. 
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Fig. 2.11. Quantitative wear map for aluminum and aluminum alloys sliding against a steel 
counterace showing contours of constant wear rates and wear mechanism [46]. 
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Fig. 2.12. Wear map of A3 56 worn against SAE 52100 steel (configuration: 
ring-on-block, in ambient air (Units of the wear rates shown in the map are 
10-4mm3/m)[48]. 
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Fig. 2.13. Backscattered SEM images of Tribolayer generated after sliding wear (a) in argon 
atmosphere, and (b) in dry air (5% RH) [12]. 
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Fig. 2.14. Variation of wear rates of Al-Si alloys sliding against a hard steel 
bush at a speed of 1.96 m/sec and at a load range of 1 to 2.5 Kg [63]. 
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Fig. 2.15. The structure of ZDDP. The R group dictates whether it is an alky- or 
aryl-dithiophosphate [75]. 
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Fig. 2.16. XANES spectra of model compounds and the ZDDP anti-wear films 
formed on the coupon of different Al-Si alloy and steel couples, (a) P L-edge, 
and (b) P K-edge spectra [89]. 
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Fig. 2.17. Main engine components in an internal combustion engine [2]. 
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Fig. 2.18. Stereographic photos of the two major and minor surfaces with the indications 
of different wear zone [11]. 
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Fig. 2.19. A schematic illustration of RNT technique used to measure engine the wear 
that occurs to automotive engines [99]. 

Fig. 2.20. SEM image showing the Si particles stand proud of aluminum matrix on 
the ALUSIL engine surface [100]. 
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CHAPTER 3 MATERIALS AND EXPERIMENTAL 

PROCEDURES 

3.1. Introduction 

In this chapter, the materials tested and the methodology employed in the analysis 

are described. The sliding wear tests were intended to simulate the surface damage that 

occurs to engine components under normal running conditions, corresponding to the 

UMW regime. The micromechanisms leading to UMW damage, as well as the 

miscrostructual factors controlling the UMW mechanisms, were systematically 

investigated. 

Section 3.2 describes the compositions and hardness of the Al-Si alloys. Section 

3.3 presents the microstructure, the secondary phases identified, and silicon particle sizes 

and morphology. Section 3.4 describes all the efforts made to achieve the UMW regime. 

This section starts with dry sliding tests performed on sand cast eutectic Al-11% Si-C and 

T6 treated Al-11% Si-C using a ring-on-block machine in ambient air and a humid 

atmosphere (Section 3.4.1). The sliding wear tests conducted using a pin-on-disk 

tribometer under lubricated conditions, including the test machine, testing procedures, 

lubrication conditions, and sample preparation, for the wear tests employed to simulate 

the UMW regime are explained in Section 3.4.2. 

Section 3.5 describes the procedures developed for the evaluation of the wear test 

results, including the quantitative determination of the surface damage to silicon particles 

and aluminum. Finally, Section 3.6 explains the analytical methods employed in the 

characterization of the worn surface and subsurface microstructures. 
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3.2. Al-Si Alloys Tested and Their Properties 

The alloys tested in this research included a binary eutectic Al-Si alloy (Al-12% 

Si, sand cast), two eutectic Al-Si alloys (Al-11% Si, sand cast with different cooling 

speeds, both are T 7 treated), a hypereutectic alloy (Al-18.5% Si, sand cast), and a spray 

formed hypereutectic alloy (Al-25% Si). The T 7 heat treatment was a solution treatment 

at 490°C for 6 hours then a quench in forced air to less than 90°C, cooling at between 80 

and 100 degree C /min; followed by aging at 240°C for 4 hours. The alloys were provided 

by General Motors Research and Development Center in Warren, Michigan, USA 

(referred as GM R&D Center hereafter in the text) and were used as received. Chemical 

compositions, in weight %, of the alloys tested are listed in Table 3.1. A Brinell hardness 

tester was used to measure the bulk hardness of the alloys with a 10 mm diameter ball and 

at a load of 500 kg. A microhardness tester, Buehler Micromet II® (Model 1600-9000) 

with a square-base diamond pyramid indenter (136 ° tip angle) was used to measure the 

aluminum matrix hardness. The indentation load applied was 10 g. The bulk and matrix 

hardnesses of tested alloys are listed in Table 3.2. Each value in Table 3.2 represents an 

average of at least 10 indentations performed on each sample. 

3.3. Microstructures of the Al-Si Alloys Tested 

All the samples for the microstructural examination were prepared with 

conventional grinding and polishing techniques. The samples were wet ground with 180, 

240, 400, 600, 1200, and 2400 SiC emery papers successively on a rotating polishing 

machine. After the final grinding, the samples were polished using 3 and 1 um diamond 

suspension, the final polishing was performed using 0.1 um diamond suspension. The 

etching for the microstructural observations was performed by immersing the samples 
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into Graff-Sargent solution, which consisted of 84 ml H 2 0 , 15 ml HNO3, 0.5 ml HF, and 

3 g Cr03 for 5 seconds. Quantitative metallographic measurements of the silicon particle 

size were conducted on an optical microscope, Axiovert 25, equipped with image analysis 

software. The quantitative microstructual measurements included measurement of the 

maximum silicon particle length and width. The particle length was determined by 

measuring the maximum length of each particle parallel to the maximum length, and the 

particle width was determined by measuring the widest distance across each particle in a 

direction perpendicular to the direction of the maximum length. About 250 silicon 

particles were used in these measurements and the results were summarized in the form of 

a histogram showing the distribution of the silicon particle size. Other measurements of 

the Si particle morphology included the aspect ratio, sphericity, and area density. The 

aspect ratio is defined as the average particle length divided by average particle width, 

and the sphericity is defined by 

Sphericity = (3.1) 
perimeter 

The sphericity values range between zero and one, in which a value of one 

corresponds to a perfect circle. The more contours a particle has in its perimeter, the 

lower the sphericity value it has. The area density of Si particles is defined by the 

percentage of total area of Si particles divided by the total area analyzed. The average 

area density was obtained from 8 to 10 measurements from each alloy. 

3.3.1. Microstructure of the Al-12% Si Alloy 

The optical micrograph shown in Fig. 3.1 illustrates the morphology and the 

distribution of the silicon particles as well as the intermetallic phases in Al-12% Si. The 
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silicon particles in Al-12% Si were plate-like. The histograms in Figs. 3.2 a and b show 

the maximum silicon particle length and width. The average value of the maximum 

silicon particle length in Al-12% Si was 86 ± 50 um, and the average width was 4 ± 2 urn 

(Fig. 3.2). The silicon aspect ratio was 21 in Al-12% Si. The sphericity measured with the 

image analysis software was 0.2 ± 0.1. The average areal density of silicon particles was 

0.1 ± 0.1. In this alloy, only trace amount of intermetallic phase, Ali5(Fe,Mn)3Si2 was 

identified, as the EDS spectrum shown in Fig. 3.3. The Ali5(Fe,Mn)3Si2 intermetalhcs 

appeared to be coarse and script type. 

3.3.2. Microstructures of the Two AI-11% Si Alloys 

Figure 3.4 presents the morphology and the distribution of the silicon particles, as 

well as the intermetallic phases in the two alloys. Dramatic differences in the alloy 

microstructures can be observed, this is due to the differences in the cooling rates of the 

casting. The alloy with coarse plate-like silicon particles was designated as Al-11% Si-C, 

and the one with small silicon particles was designated as Al-11% Si-F. The histograms 

in Figs. 3.5 and 3.6 show the maximum silicon particle length and width in the two 

alloys. The average value of the maximum silicon particle length in Al-11% Si-C was 93 

± 46 urn, and the average width was 8 ± 2 (am (Figs. 3.5 a and 3.6 a). The average 

maximum silicon particle length in Al-11% Si-F was 6 ± 3 um, and the average particle 

width was 3.40 ± 1.80 um (Figs. 3.5 b and 3.6 b). Therefore, the silicon aspect ratio was 

12 in Al-11% Si-C and 2 in Al-11% Si-F. The mean sphericity of the silicon particles in 

Al-11% Si-C was 0.2 ± 0.1 and 0.6 ± 0.2 in Al-11% Si-F. The average areal densities of 

silicon particles in Al-11% Si-C and Al-11% Si-F were 0.1 ± 0.1 and 0.1 ± 0.1, 

respectively. The phases in the two alloys, identified using SEM with EDS, were similar, 
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i.e., eutectic Si, 6-AI2CU, and Ali5(Fe, Mn)3Si2. The alloys also had small amounts of 

Al5Cu2Mg8Si6. The spectra for AI2C11, and Al5Cu2Mg8Si6 are presented in Figs. 3.7 a and 

b. The Ali5(Fe, Mn^Siz intermetallic phase also had a script-type morphology. 

3.3.3. Microstructure of the Al-18.5% Si Alloy 

The optical micrograph in Fig. 3.8 shows the microstructure of the Al-18.5% Si, 

where large (polyhedral) primary silicon particles can be seen. Si particle sizes in terms of 

maximum length and width are summarized in Fig. 3.9. The results indicated that the 

maximum length = 68 ± 32 urn (Fig. 3.9 a), and the average particle width of silicon was 

36 ± 16 urn (Fig. 3.9 b). The silicon particle aspect ratio was therefore 2 ± 0.4. The 

sphericity of the Si particles in the alloy measured as 0.5 ± 0.2. The average areal density 

of silicon particles was 0.2 ± 0 . 1 . The main intermetallic phases were Al15(Fe,Mn)3Si2 

and CuAl2. A small amount of Al5MgsCu2Si6 was also detected. 

3.3.4. Microstructure of the Al-25% Si Alloy 

Al-25%Si samples were cut from the liner insert of a Mercedes engine block. The 

microstructure of Al-25% Si is shown in Fig. 3.10 a, where small silicon particles with an 

equiaxed shape and a uniform distribution can be seen. The average value of the 

maximum silicon particle length in the alloy was 8 ± 2 um, and the average width was 5 ± 

2um (Fig. 3.11). Therefore, the aspect ratio of the alloy was 2 ± 0.7. The average value of 

the sphericity of the alloy was measured as 0.6 ± 0.3. The average areal density of silicon 

particles was 0.3 ± 0.1. The intermetallic phases identified were CuAh and 

Al5Cu2MggSi6, which also appeared to be equiaxed and in the average size of 4.0 um, as 

shown in high magnification optical image in Fig. 3.10 b. 
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3.3.5. Summary of the Microstructural and Hardness Analysis of the Tested Alloys 

Optical micrographs presented in Fig. 3.12 show the microstructures of the five 

Al-Si alloys at the same magnification. The microstructures of the alloys in terms of 

silicon particle size, morphology, and distribution were different. The results of the 

matrix hardnesses and quantitative metallographic analysis for the five alloys are 

summarized in Table 3.3 for comparison. It can be seen that the silicon particle 

morphology in Al-12% Si and Al-11% Si-C were similar; they appeared to be plate-like 

and had similar silicon particle length, and sphericity. But the matrix of Al-11% Si-C was 

much harder than that of Al-12% Si. The Al-11% Si-C and Al-11% Si-F had similar 

matrix hardness, but the Si particle size and morphology in the two alloys were 

dramatically different. Al-25% Si had a similar silicon particle size and morphology with 

Al-11% Si-F, but the silicon particles in Al-25% Si appeared to be more uniformly 

distributed, and the average area density (0.25 ± 0.09) was much higher when compared 

to Al-11% Si-F (0.11 ± 0.1). Al-18.5% Si had block-like large primary Si particles with 

an aspect ratio of 1.9 and sphericity of 0.48 ± 0.22. Al-18.5% had a harder matrix (85) 

than the three eutectic Al-Si alloys. Al-25.5 % had the highest average sphericity value 

(0.52 ± 0.25), area density (0.25 ± 0.09), hardest matrix, and smallest aspect ratio (1.7). 

Al-12% Si had the softest matrix. 

The purpose of selecting the Al-Si alloys with different hardness and 

microstructure is to examine the effects of matrix hardness and microstructure in terms of 

Si particle size, morphology, and distribution on the UMW mechanisms and for 

maintaining UMW-I. Al-12% Si, with the softest matrix, was intended to be tested as the 

model alloy for the identification of the UMW mechanism, then Al-11% Si-C with a 
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similar silicon morphology, but harder matrix was tested to examine the effect of matrix 

hardness on the UMW mechanism. The Al-18.5% Si alloy was tested to examine both 

effects of matrix hardness and a large block-like primary Si on the UMW mechanism. Al-

11% Si-C and Al-11% Si-F, which have comparable hardness and silicon percentage, 

were tested to investigate the evolution of morphological features with the sliding cycles 

and applied load. The microstructural factors in terms of Si particle morphology, size, and 

distribution in the controlling the transition from UMW-I to the UMW-II regime and the 

propensity of the formation an oil residue layer leading to the attainment of UMW-III , 

namely, the stabilization of UMW were examined. Al-25% Si was tested to examine the 

effects of matrix hardness, Si particle distribution, namely, the area density, in delaying 

the onset of the UMW-II regime, and stabilization of the UMW (facilitating the initiation 

of UMW-III). 

3.4. Achieving UMW 

Systematic investigations of the sliding wear of Al-Si alloys performed by Eyre 

and Shivanath et al. [4, 5] and Elmadagli and Alpas [6] showed that mild wear (MW) 

involved an over all plastic deformation of Al-Si alloys, and a huge amount of material 

transfer, or back transfer, at the contact surfaces. Therefore, the wear tracks generated in 

the MW regime showed gross indentation deformation, and MW generally yielded 

significant material loss, with a magnitude of > 10"5 mm3/m. 

The testing procedures to achieve UMW were, therefore, selected to prevent the 

contact surfaces from experiencing significant macroscopic plastic deformation, i.e., 

indentation deformation, material transfer, and measurable material loss. 
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3.4.1. Dry Sliding Tests 

As received sand cast Al-11% Si-C and T6 heat treated Al-11% Si-C intended to 

increase the matrix hardness were tested using a ring-on-block machine sliding against 

52100 steel at a broad range of applied loads from 0.5 to 200 N to obtain a general view 

of the wear progression in these eutectic Al-Si alloys under dry sliding conditions. The T6 

treatment was performed at 480°C solution treated for 8 hours and then aging treated at 

193°C for 8 hours. After the T6 treatment, the hardness of the alloy increased to 92 HB. 

The description of the ring-on-block machine can be found in reference [69]. 

Fig. 3.13 presents a summary of the wear rate plots of Al-11% Si-C and T6 

treated Al-11% Si-C with applied load in ambient air, and also Al-11% Si-C sliding 

against cast iron tested under a humid air atmosphere of RH 44%. The wear rates in Fig. 

3.13 were measured with a conventional weight loss based method, by measuring the 

sample weight before and after each wear test. The difference in the weight before and 

after each wear test was then converted into a volumetric loss using the density of the 

alloy (2.7 g/cm3). Like most Al-Si alloys reported so far, a variation of wear rates of Al-

11% Si-C and T6 treated Al-11% Si-C with applied load can be divided into two regimes, 

i.e., 'mild wear' with a wear rate range between 5.29 x 10"5 mm3/m and 6.89 x 10~3 

mm3/m, and 'severe wear' with a wear rate range from 6.89 x 10"3 mm3/m to 2.01 x 10"2 

mm /m. Similar to the experimental observations made by Elmadagli et al. [6], the mild 

wear regime could be further divided into two sub-regimes as shown in Fig.3.13. A short 

transition regime from 20 to 35 N existed for the tested alloys between these two regimes. 

In comparison with Al-11% Si-C, the T6 treated alloy exhibited better wear resistance in 

the mild wear regime, the wear rates of T6 treated was about 16% lower than those of Al-
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11% Si-C without T6 treatment at each load tested in the mild wear regime. The transition 

load to the second mild wear sub regime was also delayed by 5 N. The worn surfaces 

generated from all the sliding tests showed obvious indentation deformation, and material 

transfer. 

The testing condition was changed by increasing atmosphere humidity to 44%, 

and using cast iron as counterface to further decrease wear rates from the Al-11% Si 

surfaces to reach the expected UMW regime. The wear rate from the contact surface of 

Al-11% Si-C sliding against cast iron in humid air in the load range of 0.5 to 2.0 N 

decreased by 50 % in comparison with that measured in ambient air with a humidity of 

RH 10%o (Fig. 3.13). This can be attributed to the graphite in the cast iron counterface, 

which absorbs water vapor under high relative humidity and has an anti-wear effect. 

However, the wear rate abruptly increased when the load was greater than 3 N. At 3.0 N, 

the wear rate was 6.39 xlO"4 mnrVm, which was 40 % higher than that the wear rate 

measured at the same load in dry air. At 7.0 N, the wear rate measured from the alloy 

surface sliding against cast iron in humid air was 5.25 xlO" mm /m, which was close to 

the wear rates obtained in dry air at 120 N. Similar observations were made by Elmadagli 

et al. [12] on A 390 (18.5% Si), which was tested in an argon atmosphere and against 

DLC coated counterfaces. This infers that the maintaining the low wear rate under dry 

sliding conditions is difficult. This is probably because all the test conditions used do not 

facilitate the formation of a stable tribolayer, immediate damage to the aluminum matrix 

starts when the applied load increases. 

The material loss rates measured from the Al-11% Si-C alloy sliding against cast 

iron under a humid atmosphere with RH 44% still belonged to mild wear and severe 

wear. Therefore, performing laboratory test with different procedures was necessary to 
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reach the UMW regime. This is given in the Sections 3.4.2 through 3.4.5. 

3.4.2. Lubricated Sliding Tests 

In order to simulate surface damage that occurs to Al-Si engine components under 

normal running conditions, corresponding to the UMW regime, all the sample surfaces 

were etched, and the tests were conducted under lubricated conditions, with engine oil as 

the lubricant. The Al-Si samples had a surface area of 25 mm x 25 mm x 5 mm. The tests 

were done under constant loads of 0.5, 1.0, and 2.0 N for between 5 x 102 and 6 x 105 

sliding cycles. A sliding speed of 50 mm/s was used. 

3.4.2.1. Sample Preparation for the Wear Tests 

3.4.2.1.1. Etching Treatment 

Following the conventional practice for Al-Si alloys in tribological applications, 

such as engine bores, all samples to be subjected to sliding wear tests in this work were 

prepared using a chemical etching technique. The purpose of chemical etching is to 

eliminate direct contact of the aluminum matrix with the counterface by leaving the 

silicon particle peaks standing proud of the aluminum surface. The polished surfaces were 

etched in a 10% NaOH solution for 180 s, to expose the top portions of the silicon 

particles and make them protrude above the aluminum matrix, following the procedure 

proposed by Riahi et al. [71-72]. They showed that longer etching times (> 420 s) resulted 

in the easy detachment of particles from the contact surfaces during sliding, and therefore, 

reduced the scuffing resistance. 

3.4.2.1.2. Sample Surface Morphology 
An optical surface profilometer (WYKO NT-1100) was used to examine the 
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silicon particle morphology of the etched surface and to determine a particle height 

distribution. Typical three dimensional surface profilometer images of a section of the 

etched five Al-Si alloy surfaces are shown in Fig. 3.14. A statistical analysis in the form 

of a histogram was adopted to determine the average Si particle heights. The histograms 

were plotted with the software provided with the WYKO NT 1100 profilometer. The 

elevation profile of the aluminum matrix in areas adjacent to these Si particles was also 

determined (Fig. 3.15). It can be seen that both the aluminum matrix and Si particles on 

the surfaces to be subjected to sliding wear are not the same height, but varied 

approximately in the form of Gaussian curves. The separation distance between the 

aluminum peak and silicon particle peak is the average Si particle height on the surfaces 

before wear tests. The average silicon particle heights on the initial surfaces were 

determined from about 100 to 350 silicon particles depending on the silicon particle size, 

distribution in the tested alloys, and magnification used. Table 3.4 list the average height 

of silicon particles on the five etched Al-Si alloys before the sliding tests. 

3.4.2.2. Description of Tribometer 

All the sliding wear tests were conducted on a pin-on-disc type wear testing 

machine (CSM tribometer, Switzerland). Fig. 3.16 a shows the general view of the 

experimental set-up. The sample holder, filled with engine oil, is shown in Fig. 3.16 b, 

and the contact geometry, ball-on-disk, is shown in Fig. 3.16 c. The tribometer is 

connected to a computer that controls the sliding speed. The friction force is measured by 

a built-in strain gauge from the very small deflections of the friction arm. The test 

duration can be set by the total number of revolutions, sliding distance, or time elapsed. In 

this research, the test duration was set by the total number of revolutions, i.e., the number 
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of sliding cycles. The tests were run between 5 x 1 0 and 6 x 1 0 sliding cycles. 

A standard test routine was established and followed for each test. First the pin 

was polished, cleaned with acetone, and installed in corresponding holders attached to the 

tribometer. The polishing of pins is described in Section 3.4.2.3. Then, the diameter of 

the sliding track was adjusted by turning the knob which moves the friction arm 

horizontally. The friction arm is built with a position sensing capacity so that the sliding 

track diameter can be displayed on the computer. Both the friction arm and disc holder 

were leveled horizontally using a pocket level (Starrett® EDP 50570) for precise loading. 

The test load was applied on top of the pin holder. After all the test information (load 

applied, sliding speed, test duration) were keyed into the computer program, the test was 

started. 

3.4.2.3. Counterface Materials 

In this research, all the Al-Si alloys were tested against 6 mm diameter AISI 

52100 grade steel balls with the following composition (wt%): 0.98 to 1.1 % C, 0.25 to 

0.45 % Mn, 0.15 to 0.30 % Si, 1.30 to 1.60 % Cr, and the balance is Fe. All the balls were 

polished using 0.1 urn diamond suspension on a polishing machine. During the polishing 

process, the pin was rotated evenly from left to right and back to forth to prevent the tip 

of the ball from being flattened. The initial r.m.s roughness value after the polishing was 

measured with an optical surface profilometer as 0.06 um. The hardness of the steel balls 

was measured with a microhardness tester as HV25 = 700 at an indentation load of 25 g. 

3.4.2.4. Lubrication Condition 

Tests were conducted using SAE 5W-30 grade synthetic engine oil (Mobil). As 
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the following analysis shows, the tests were done under boundary lubricated conditions. 

The ratio (A) of minimum lubricant film thickness, hmin, to the r.m.s roughness of the 

two surfaces, a*, in contact defines the severity of asperity interactions in lubricated 

sliding 

h 
2 mm 

<7* (3.2) 

hmia can be estimated using [101] 

hmin =lJ9R0A1a0A\0MU0M(E*)^nW-007 

Where E* = 59 GPa, is the composite elastic modulus, calculated using 

(3.3) 

E* 
[l-(^/-a)2],[l-(^)2] 

& Al-Si ^ steel 

(3.4) 

Al-Si alloys are considered as a two component material with Si particles as 

reinforcements. The composite elastic modulus, EAI_Si, is, therefore, calculated using 

EA,-Si = Est Wst + EAI (1 - wsi) (3-5) 

where w& designates the weight fraction of silicon phase. vAl_Si =vSiwSj +vM(l-wSj)is 

the Poisson's ratio of Al-Si alloys, [/is the sliding speed (50 mm/s), Wis the normal load 

(0.5, 1.0, and 2.0 N), and R is the radius of the counterface ball (3mm), a and tjo are 

viscosity constants of the oil and are related to each other by the following relationship 

[102] 

« « (0.6 + 0.965 log1 0770)xl(T8 (3.6) 

Table 3.5 lists the parameters used for the calculation of hmin. a* is calculated using 
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where Rqi and Rq2 are the r.m.s roughness values for the Si particle surfaces and steel ball 

surface measured with a surface profilometer, since for the current system the contact is 

made between the Si particles and steel ball. hmin and the corresponding A. values were 

calculated using these parameters, and are also listed in Table 3.5. Accordingly, 

calculated X values for the alloys tested at the applied loads of 0.5 to 2.0 N were smaller 

than 1, indicating that all sliding tests satisfied boundary lubricated conditions. It follows 

that direct contact between Si particles and the counterface happens under the current test 

conditions. Si particles inside the contact area, therefore, carry the applied load. 

3.5. Quantitative Measurement of Wear Damage to the Al-Si Alloys 

3.5.1. Quantitative Determination of the Damage to Silicon Particles 

All the initial surfaces were etched to make the silicon particles stand proud above 

the aluminum matrix; quantitative analysis of the silicon particle height change was one 

way to evaluate surface damage in the UMW regime. It was achieved by statistical 

analyses of the surface profilometer images taken from the wear tracks, which show the 

variations of height distributions of the silicon particles with respect to the aluminum 

matrix after stopping the wear tests at various sliding cycles. 

To determine the silicon particle height change with the sliding cycles, a sub-

region including only the wear track was selected from a surface profilometer image after 

sliding for various cycles, as shown in Fig. 3.17. Then from the selected region, a 

histogram showing the silicon particle height distribution with respect the aluminum 

matrix adjacent to these silicon particles was determined. The average silicon particle 

height at each sliding cycle was determined from four different evenly spaced locations 

inside the wear track, which totally included about 20 to 30 silicon particles in Al-12% Si, 
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Al-11% Si-C, and Al-18.5% Si. These alloys had large silicon particles. In Al-ll%Si-F 

and Al-25% Si with fine silicon particles, the average silicon particle heights were 

determined from about 200 silicon particles inside the wear tracks. The widths of the 

areas inspected were approximately equal to the wear track widths. 

It should be noted that either embedding of Si particles into aluminum or wear of 

the tops of Si particles changes the Si particle height. The Si particle peak and the 

aluminum matrix peak merge into a single peak, when Si particles are completely 

embedded into the aluminum matrix. Each specific location on the contact surface makes 

contact with the counterface once during each sliding cycle; sinking-in of the Si particles 

into the aluminum matrix is a cumulative process. Therefore, plastic deformation of the 

aluminum matrix around the sunken-in particles, as well as working hardening, will affect 

the Si particle height change data. A sharp decrease followed by a gradual reduction in 

the Si particle height with increasing sliding cycles is expected. 

3.5.2. Measurement of Volumetric Wear from the Aluminum Matrix 

Under the loading conditions used in the sliding experiments neither the mass of 

debris particles nor material loss from the contact surface was large enough to be 

measured using a high sensitivity electronic balance that can measure weights as small as 

10"5 g. This is a typical feature of the ultra-mild wear regime of Al-Si alloys tested using a 

pin-on disc geometry. An alternative method for the estimation of very small quantities of 

volumetric wear loss was developed and used. This method was based on the 

measurement of certain wear features using an analytical optical interference microscope. 

Material loss has been observed to be associated with the formation of long grooves, 

extending on the contact surfaces in the sliding direction and in particular on bulged out 
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portions of the aluminum matrix (aluminum pile-ups). Thus, the volume loss of material 

for a given number of sliding cycles is defined as the cross-sectional area (removed area) 

that falls below the reference position (indentation) of the elevated aluminum matrix 

multiplied by the perimeter of the wear track. The Si particles were not distributed evenly 

in the Al-Si alloys tested, as shown in Fig. 3.12, which made the surface damage inside 

the wear tracks not uniform. Therefore, the cross-sectional area was determined by 

averaging 24 measurements from different locations along the entire wear track. More 

specifically, Fig. 3.18 illustrates the method used to measure the volume loss after a given 

number of cycles. After removing the sample tested to a given number of cycles, the 

sample surfaces were cleaned with hexane, then 2-D surface profilometer images were 

taken from eight different, equally spaced locations in the wear tracks, in the order shown 

schematically in Fig. 3.18 a. As an example, Fig. 3.18 b shows half of the wear track 

taken from an Al-25% Si surface after sliding for 3 x 105 cycles, at 2.0 N with the areas 

where the 2-D cross-sectional profilometer images were taken. One of these sections is 

marked as AA' in the top view of the wear track Fig. 3.18 c. As indicated above, three of 

these sections one 50 um above one 50 um below the line AA' were taken. Fig. 3.18 d 

shows the cross-sectional contour taken along AA' in Fig. 3.18 b. Taking the average 

zero value of the instrument as the reference position at each location. The average cross-

sectional area of the wear track at a location, j , was determined by 

~> ;=i ;=i i=\ 

where At is the area below the 0-0 line, which indicates the initial height of elevated 

aluminum matrix, as shown in Fig. 3.18 c. At was measured with the software provided 

with the optical profilometer. k is the total number of At at any given section. The total 
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average cross-sectional area, AT, of the whole wear track was determined by 

where / = 8 (number of the fields examined). The volumetric material loss, V, was 

therefore 

V = 2nRwxAT (3.10) 

where Rw is the radius of the wear track. 

As the contact surface is oxidized or covered with a tribo-layer (an oil residue 

tribo-layer) after longer sliding cycles, some of the scratches formed at low sliding cycles 

might be filled with oxidized fragments or the layer, the average cross-sectional area will 

decrease. This will cause the volumetric loss, V, drop accordingly. 

3.6. Worn Surface Characterization 

Microstructural features of the worn surfaces were examined using a scanning 

electron microscope (JEOL 5800/EDAX and FEI Nano 200F/EDAX) equipped with an 

energy dispersive spectroscope (EDS), and a digital optical microscope (Keyence VHK 

600K). Surface profilometer images were taken using a non-contact optical interference 

microscope. 

Site-specific cross-sectional microstructural observations of the wear tracks were 

performed using a focused ion beam microscope (FIB, FEI Nova 200 at the University of 

Michigan or FEI Nova Nanolab at the University of West Ontario) and a TEM (Philips 

EM430) located at GM R&D Center. First, a cross-sectional slice of approximately 3 mm 

thick was cut from the portion of the wear track. Then the cut section was prepared using 

conventional mechanical pre-thinning for FIB/SEM and TEM investigations. The 
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preparation of the cross-sectional TEM samples was carried out using the H-bar FIB 

milling method [103]. First, a pre-thinned cross-sectional slice (approximately 20 um 

thick and 20 um wide) was mounted onto a TEM grid using an epoxy adhesive and 

allowed sufficient time to cure. The mounted slice was then mechanically polished to less 

than 100 nm to reduce FIB milling time. A platinum layer was deposited on the top 

surface of the sample to prevent beam damage during ion milling. Finally, the polished 

specimen was loaded into a FIB microscope for precise ion beam thinning. During the 

FIB milling process, some cross-sectional images of the area of interest were taken by 

controlling the location of the ion beam to reveal the cross-sectional structure of interest. 

The chemical compositions of the oil residue layer generated during lubricated 

sliding contact were characterized with a PHI-5702 multi-functional X-ray photoelectron 

spectrometer (XPS), using a pass energy of 29.35 eV, an excitation source of Mg-Ka 

radiation (hv = 1253.6 eV), and a take-off angle of 35°. The chamber pressure was about 

3><10"8 Torr. The binding energy of contaminated carbon (Cls: 284.8 eV) was used as a 

basic reference. The morphology of the generated layer was examined using a 

CSPM4000 atomic force microscope (AFM) in tapping mode. 

The mechanical properties of the oil residue layer were evaluated with a MTS Nano 

indenter XP located at GM R&D. The hardness of the worn surfaces where an oil residue 

layer was assumed to be formed was measured and compared with the initial surface from 

recorded load-displacement curves using the analysis methods developed by Oliver and 

Pharr [104]. The indentation depth was set as 200 nm. Four indentation tests were 

performed on each selected field of interest at 50 um apart to obtain an average value of 

the hardness. The test data was processed with the software provided with MTS Nano 

indenter XP. 
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Table 3.1. Chemical compositions in wt % of the Al-Si alloys studied. 

Alloy 

Al-11% Si 

Al-12% Si 

Al-18.5% Si 

Al-25% Si 

%Si 

11.2 

12.1 

18.4 

25.0 

%Cu 

2.2 

0.03 

4.0 

4.0 

%Fe 

0.5 

0.01 

0.23 

0.21 

%Mg 

0.26 

<0.01 

0.57 

1.12 

%Mn 

0.8 

0.01 

0.07 

<0.01 

%Ni 

0.01 

<0.01 

0.02 

<0.01 

%Sr 

0.016 

<0.005 

<0.002 

<0.002 

%Ti 

0.06 

<0.01 

0.05 

0.01 

%Zn 

0.02 

0.01 

0.1 

<0.01 

Bal. 

Al 

Al 

Al 

Al 

Table 3.2. Bulk Hardness and aluminum matrix hardness of the alloys tested 

Alloy 

Bulk Hardness 

(HB) 

Matrix hardness 

(Kgf/mm2) 

Al-11% Si-C 

79 ± 2 

68 ±13 

Al-11% Si-F 

79 ± 2 

67 ± 1 2 

Al-12% Si 

40 ± 2 

50 ± 2.50 

Al-18.5% Si 

97 ± 7 

85 ± 8 

Al-25% Si 

102 ± 4 

110 ± 2 0 
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Table 3.3. Summary of the matrix hardness and quantitative metallurgical measurement 
on Si particle size, morphology, and area density in the five alloys tested 

Alloy 

Al-12% Si 

Al-11% Si-C 

Al-11% Si-F 

Al-18.5% Si 

Al-25% Si 

Matrix 
hardness 

(Kgf/mm2) 

50 ±3 

68 ±13 

67 ±12 

85 ±8 

108 ±20 

The maximum 
Si particle 

length (urn) 

86 ±50 

93 ±46 

6 ± 2 

70 ±30 

8±2 

Aspect ratio 

21 

12 

2 

2 

2 

Sphericity 

0.2 ±0.1 

0.2 ±0.1 

0.5 ± 0.2 

0.5 ± 0.2 

0.5 ± 0.3 

Area density 
(%) 

0.1 ±0.1 

0.1 ±0.1 

0.1 ±0.1 

0.2 ±0.1 

0.3 ±0.1 

Table 3.4. Initial silicon particle height on the five etched Al-Si alloys 

Alloy 

Initial Height 

(urn) 

Al-12% Si 

1.8 ±0.3 

Al-11% Si-C 

1.6 ±0.2 

Al-11% Si-F 

1.7 ±0.3 

Al-18.5% Si 

1.6 ±0.2 

Al-25% Si 

1.8 ±0.4 
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Table 3.5 Parameters used to calculate X and hmi„ in Equations 3.2 and 3.3. (See the text 
for the definition of the terms.) 

Alloy 

Al-12% Si 

Al-11% 

Si-C 

Al-11% 

Si-F 

Al-18.5% 

Si 

Al-25% Si 

Esteei 

(GPa) 

210 

210 

210 

210 

210 

EM 

(GPa) 

70 

70 

70 

70 

70 

(GPa) 

107 

107 

107 

107 

107 

tie 

(mPa.s) 

20°C 

200 

200 

200 

200 

200 

a 

(Pa-1) 

2.82xl0-8 

2.82x10-8 

2.82x10-8 

2.82xl0-8 

2.82x10-8 

Rql 

(um) 

0.06 

0.06 

0.06 

0.06 

0.06 

Rq2 

(um) 

0.15 

0.16 

0.15 

0.16 

0.10 

W 

(N) 

0.5 

1.0 

2.0 

0.5 

1.0 

2.0 

0.5 

1.0 

2.0 

0.5 

1.0 

2.0 

0.1 

0.1 

0.1 

"min 

(um) 

0.088 

0.084 

0.080 

0.088 

0.084 

0.080 

0.088 

0.084 

0.080 

0.088 

0.084 

0.080 

0.088 

0.084 

0.080 

k 

0.54 

0.52 

0.50 

0.51 

0.50 

0.49 

0.54 

0.52 

0.50 

0.51 

0.50 

0.49 

0.73 

0.70 

0.66 
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Fig. 3.3. EDS spectrum showing the Al15(Fe,Mn)3Si2 phase identified in Al-12% Si. 
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(a) 

(b) 

Fig. 3.4. Optical micrographs showing the microstructures in (a) Al-11% Si-C, and 
(b )Al - l l%Si -F . 
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Fig. 3.5, Histograms showing the Si particle length in (a) Al-11% Si-C, and 
(b)inAl-ll%Si-F. 
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Fig. 3.6. Histograms showing the Si particle width in (a) Al-11% Si-C, and (b) in Al-11% Si-F. 
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Fig. 3.7. EDS spectra showing (a) Al2Cu, and (b) Al5Cu2Mg8Si6 identified in Al-11% Si-C and 
Al-ll%Si-F. 
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(a) (b) 

Fig. 3.10. Microstructure of Al-25% Si (a) low magnification optical micrograph, and (b) high 
magnification optical micrograph after etching with 10% NaOH. 
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Fig. 3.11. Histograms showing the Si particle length and width in Al-25% Si. 
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(c) (d) 

Fig. 3.12. Optical micrographs showing the microstructures of (a) Al-12% Si, (b) Al-11% Si-C, 
(c) Al-11% Si-F, (d) Al-18.5% Si, and (e) Al-25% Si at the same magnification. 

93 



1x10-

1x10 .2 

s 
s 

-

O 

1x10 .3 

1x10 .4 : 

1x10" 

: AAI-11%Si-C 

i 0 AI-11%Si-C vs C.I RH 44%; 

- DAI-11%Si-CT6 

i 
i 

i 
i 

i 
II

i 

/ 

o^^ 

1 1 1 1 1 1 1 11 1 1 

SVL 

M W - l A 

1 1 1 1 1 1 | 

sw A 

MW-2 J 

1 1 l l l l l l l 1 1 l l l l l l 

Load (N) 

Fig. 3.13. Variation of wear rate with the applied load showing transition of wear regime 
in Al-11% Si-C under dry sliding conditions. C.I is cast iron, and R.H is relative humidity. 
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0.S0 

0.00 

(e) 

Fig. 3.14. 3-D optical surface profile image showing the etched (a) Al-12% Si, (b) 
Al-ll%Si-C, (c)Al-ll%Si-F, (d) Al-18.5% Si, and (e)Al-25% Si surface. The 
dimension of the area shown in (a) and (b) is 436.3 x 311.2 urn, and that shown in 
(c), (d), and (e) is 1,112 \im x 595 \am. 
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120 

Height (|jm) 

Fig. 3.15. Histograms showing the height distributions of matrix (first peak with lower 
height (um)) and particles ( second peak with larger height (um)) of the five etched 
alloy surfaces (Al-12% Si, Al-11% Si-C, Al-11% Si-F, Al-18.5% Si, and Al-25% Si) 
prior to wear tests. 
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(a) (b) 

(c) 

Fig. 3.16. (a) A photograph showing pin-on-disk tribometer (CSM, Switzerland), (b) a 
photograph showing sample holder with lubricant, and (c) schematic drawing showing 
the contact geometry. 
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(b) 
Fig. 3.17. An illustration of selecting the sub-region from a 2-D surface profilometer image, (a) 
general 2-D surface profile image taken from Al-25% Si surface after sliding to 6x105 cycles at 
0.5 N, (b) selected sub-region. 
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Fig. 3.18. An illustration of the method used to measure volume loss, (a) Schematic 
drawing showing image locations; (b) An optical microscopic image of half of the 
wear track of the contact surface of Al-25% Si; (c) A typical 2-D surface profile image 
taken from a location '1=8' in (b); (d) Cross-sectional profile scanned along AA'in (c). 
WT is wear track. 
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CHAPTER 4 CONTACT PRESSURE ANALYSIS 

4.1. Introduction 

The conventional wisdom for Al-Si alloys used in tribological applications is that 

silicon particles standing proud of the aluminum matrix carry the load [1, 22]. 

Accordingly, all the surfaces to be subjected to sliding wear tests were etched using 10% 

NaOH, which makes silicon particles protrude above the aluminum matrix, and hence 

carry the applied load. The Greenwood and Tripp numerical contact model was adapted 

in this dissertation for analyzing the contacts between the etched Al-Si alloys and 52100 

steel balls. The maximum apparent contact pressures, the maximum real contact pressures 

applied on the alloys tested, the effective contact radius, and the real contact radius were 

estimated. The results are also compared with Hertzian contact theory. 

In Section 4.2 of this chapter, the stress analysis at the contact surface based on 

Hertzian theory and the Greenwood and Tripp numerical model, is introduced. Section 

4.3 compares the current Al-Si alloy system with the Greenwood and Tripp model. This is 

followed by an explanation of all the equations and methodology employed in the 

calculation. Calculation results for the five alloys tested followed by a modification of 

Tabor's criterion and upper-bound calculation using the slip-line field theory, used for 

indentation and plastic deformation, are presented in Section 4.4. 

4.2. Introduction to Stress Analysis at Contact Surfaces 

4.2.1. Hertzian Contact 

Hertz did the pioneering work on analysis of the deformation and pressure at the 
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contact of two elastic solids with geometries defined by quadratic surfaces, and such 

contacts are referred to as Hertzian [105]. Hertzian analysis is based on the following 

assumptions: i) each solid can be considered as an elastic half-space in the proximity of 

the contact region, ii) the surfaces are continuous, smooth, and noncomforming; iii) the 

strains are small; and iv) the surfaces are frictionless. Two solids of general shape (but 

chosen convex for convenience) loaded together are shown in cross-section after 

deformation in Fig. 4.1. The x-y plane is the contact plane. The first point of the contact 

is taken as the origin of the Cartesian coordinate system in which the x-y plane is the 

common tangent plane to the two surfaces, and the z-axis lies along the common normal 

directed positively into the lower solid. The separation between the two surfaces at radius 

r before loading is z; + z2. Under the compression by a normal force W, distant points in 

the two bodies Ti and T2 move toward O, parallel to the z-axis, by vertical displacement, 

respectively. If the solids did not deform their profiles would overlap, as shown by the 

dashed line in Fig. 4.1. The elastic deformation results in displacement of the surface 

outside the footprint, therefore, the contact size is smaller than the overlap length caused 

by the intersection of the dashed lines. When the contact pressure is applied, the surface 

of each solid is displaced parallel to Oz by uA and uz2 (measured positive into each 

solid), relative to the distant points Ti and T2, points Si and S2 become coincident. The 

total displacement, = £, + S2, is called the total interference or normal approach, which is 

defined as the distance by which points on the two solids remote from the deformation 

zone move together under the applied normal load. If the two bodies are solids of 

revolution, then from polar symmetry the contact area will be circular and centered at O. 

For two spheres with radii of Ri and R2 and in solid contact with a normal load of 
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W, the contact area is circular having a radius of a and the contact pressure is elliptical 

with p(r) at a radius in the contact zone. From Hertzian analysis, the pressure distribution 

is 

p(r) = p0{l-(r/a)2}'2 (4.1) 

whereto is the maximum contact pressure and is given by 

3 W ,6WE*\m 

where pm is the mean pressure, and E is composite elastic modulus 

1 _\-v2 l-v 2 

+ 2- (4.3) 

and R is the effective or composite curvature and given by 

1 1 1 ,AA\ 

— = — + — (4.4) 
R i?j R 2 

The parameters E and v are Young's modulus of elasticity and the Poisson's ratio, 

respectively; subscript 1 and 2 refer to the two bodies. 

The contact radius is given by 

a = ^R=WR/3 

IE yAE ' V J 

and the contact area is therefore 

A = m2 =TA8 (4.6) 

K. Johnson [105] found the solution for the stresses between two frictionless 

solids exerted by Hertz pressure. The polar components of the stress field in the surface at 

z = 0, inside the loaded circle (r < a) are, 

<rTl / > o = ^ V / r 2 ){ l - ( l - r 2 /a2r}-(l-r2 la2)"2 (4.7) 
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CTe/jp0=_i-^(o2/r2){l-(l-r2/a2)3/2}-2v(l-r2/«2)1/2 (4.8) 

and outside the circle 

crr/p0=-ae/p0^(l-2v)a2/3r2 (4.9) 

The radial stress is therefore tensile outside the loaded circle, and it reaches its maximum 

at the edge of the circle at r = a. The stress distributions within the two solids with v= 

0.30 are presented in Fig. 4.2. In this figure, the stress produced by an uniform pressure 

acting on a circular area are also shown for comparisons. In the case of axisymmetric 

contact of two spheres exerted by a Hertzian pressure distribution, along the z-axis, ar, oe, 

and az are the principal stresses. The principal shear stress,r, =—|crz-<x,.|; has a 

maximum value of 0.31 po, and lies below the surface at a depth of 0.48 a. Accordingly, 

based on the Tresca criterion, the value of po for yield is given by 

(p0)y= 3.2 k =1.6 Y (4.10) 

Therefore, for the axisymmetric contact of two spheres loaded by a Hertzian pressure 

distribution, plastic deformation is expected to initiate beneath the surface. As the normal 

load is applied to the two contacting bodies, they initially elastically deform according to 

their Young's moduli of elasticity. Plastic deformation may start from one of the two 

solids with the lower hardness. As the normal load is further increased, the plastic zone 

grows until the entire material surrounding the contact has gone through plastic 

deformation. 

4.2.2. Contact at Two Rough Surfaces 

Contact depicted in Section 4.1.1, which is continuous within the nominal contact 

area and zero outside it, is extremely rare in reality. In general, contact between two solid 
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surfaces is not continuous and the contact initiates at discrete contact spots, i.e., the 

asperities on the surfaces, because the real surfaces, irrespective of the method of 

formation, are rough on a microscopic scale. Therefore, the real area of contact is only a 

small fraction of the nominal contact area. Unlike Hertzian contact, asperities are the first 

to come into contact, and hence, deformation initiates in the region of the contact 

asperities as the two surfaces are brought into contact [105]. 

Modeling of the contact of rough surfaces is difficult and has been conducted by 

many researchers [105-107]. Greenwood and Williamson [106] proposed a classical 

statistical model for a combination of elastic and plastic contacts between a plane and a 

nominally flat surface covered with a large number of asperities. In the Greenwood and 

Williamson model, it is assumed that i) surfaces are composed of hemispherically tipped 

asperities with the same radius of curvature, ii) their heights follow a normal, i.e., 

Gaussian distribution about a mean plane. Their elastic-plastic model was defined by two 

topographical parameters: a, the standard deviation of the asperity height distribution, and 

P, the mean radius of curvature of the asperities. A parameter, the plastic index, y/, which 

combines the material and topographical properties of the solids in contact, was proposed 

to predict whether contacts are elastic or plastic. It is defined as 

¥ = (E*IH)J(al/3) (4.11) 

where E is the composite elastic modulus, which is the same as the one used in Hertzain 

theory, and H is the hardness, a is the standard deviation of asperity height, and J3 is the 

mean curvature radius of asperities . The essential point of Greenwood and Williamson's 

model is that the behaviour of rough surfaces is determined by the statistical distribution 

of asperity height, and secondarily by their mode of deformation. Following Greenwood 
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and Williamson's model, when y/ is less than 0.6, plastic deformation could be caused 

only if the surfaces were brought in contact under very large nominal pressure. But when 

y/ exceeds 1.0 plastic flow will occur even at low nominal pressures. 

Greenwood and Tripp [107] extended the Greenwood and Williamson model to 

the contact between a sphere and nominally flat surface covered with a large number of 

asperities as shown in Fig. 4.3. The model was based on the same assumptions as 

Greenwood and Williamson's model, that is, i) the asperity height distribution obeys a 

normal, i.e., Gaussian, distribution, ii) the top of the asperities are spherical, all with the 

same radius of curvature. Following these two assumptions, Greenwood and Tripp 

derived the relation connecting the separation distance between the mean surfaces with 

the pressure created by compressing the asperities through elasticity theory, i.e., Hertzian 

analysis. 

The results of Hertzian analysis for the contact between a sphere with a radius of /? 

and a plane was firstly written in terms of the compliance w, the distance, which points 

away from the deformation zone move together, during deformation, statistic distribution 

of the asperity height, Gaussian distribution was considered. 

The area of contact At and the load Pt are 

At=n0w (4.12) 

where E is the composite elastic modulus and is the same as the one used in Hertzian 

contact. If the separation of the nominal surfaces at the position of a particular asperity is 

u, then there will be a contact at that asperity if its height z is greater than u. The 

probability of this is 
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prob(z>u) = U(z)dz (4.14) 
M 

where ${z) is the probability density function of the distribution of asperity heights. The 

first contact occurs at the highest asperity, the compliance w will equal z-u, and the 

resulting contact area will bex/3(z - u). Therefore, the expected contact area is given by 

oo 

A, = \np{z - u)</>{z)dz (4.15) 
u 

Similarly the expected applied load at this contact is 

00 a 

Pi-=l~E,j3i/2(z-uf2
tf>(z)dz (4.16) 

u 

For an element of area da over which the separation between the nominal surfaces is u, 

and the density of asperities is 77. Then the expected number of contacts dN, the expected 

real contact area dA, and the expected applied load dP occurring within da will be 

dN = ijda \(/){z)dz (4.17) 
u 

oo 

dA = nrifida Uz - u)<f>{z)dz (4.18) 

4 
dP = - fjE*j3,/2da J(z - uf20(z)dz (4.19) 

Introducing standardized variables and describing the asperity height in terms of 

the standard deviation a of the height distribution, the above equations can be written as 

dN = T]daF0(h) (4.20) 

dA = 7irjpadaFx (h) (4.21) 
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dP = - r]E*pV2oV2daFV2 (h) = XdaFm (A) (4.22) 

where X = —T]E*/3ll2cr3'2, and h = ul a 

Fn (h) = J(.v - hfft (s)ds (4.23) 
u 

and <£(s)\s the standardized height distribution, that is, the height distribution scaled to 

make the standard deviation unity. For a Gaussian distribution of heights, 

<f(s) = — ^ e x p ( - - s 2 ) (4.24) 

Taking the force dP on the area da to be equivalent to a uniform pressure p, the pressure 

distribution is given by 

p = AF3/2(u / a) (4.25) 

For the contact between rigid spheres of radii Ri and R2, the relation between separation 

the u and the radial position r is given by 

u = d + r2/2B (4.26) 

where d is the minimum separation and 1 / B = 1 / 7?, +1 / R2. If w(r) is the displacement of 

the nominal surfaces at r, then 

u = d + r21 IB + w(r) + w(0) (4.27) 

and therefore 

p(r) = XFV2 (1 / a\d + w{r) - w(0) + r21 2B}) (4.28) 

From elasticity theory, the displacements are related to the pressure distribution by 

9 °° 
w(r) = ~\p{fr)L{?;)dZ (4.29) 
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where 

L(& = -&(& for|<l 
n 

= —K(l/£) for £>1 
71 

and /C(4:) is an elliptic integral of variable^. 

Introducing dimensionless variables, 

Displacement w* =w/a 

Separation u =ulo, d* =dIa (4.30) 

Radial distance p = rl 

Pressure p l(E* «Ja ISR) 

The equations then become 

p{p) = f*F3l2(<r+p2 + w(p)-w\0)) (4.31) 

QO 

w(p) = \fp\p?)L(OdC (p>0) (4.32 a) 
o 

00 

w(0)=\p\4)dC (4.32 b) 

0 

Q 

Where // = -tjtr^2RRp . 

The self-consistent displacements and pressure distributions were computed by a 

numerical iterative loop using Equation 4.31 to 4.32 and the results were compared with 

Hertzian analysis. The singularity (logarithmic) at £ =1 was removed by a change of 

variable. Let 
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o 

so that ds - L{%)d%. Thus 

oo 

w\p)^\pp\p^{s)ds 
0 

s(£) can be shown to be 

-£ 2S(£) for £< 1 
;r 

-£E(l/£> for £> 1 
n 

Where 5(^)and E(l/^) are elliptic integrals of variable £. 

The calculation results reveal that the classical Hertzian analysis is close to the 

results at high loads for rough surface, and that there is significant difference at low loads 

as shown in Fig. 4.4. Greenwood and Tripp also compared the apparent contact pressure 

with the real contact pressure. In Greenwood and Tripp's model, the real contact pressure 

was defined as the pressure occurring locally over each microcontact, namely, the 

asperities, which really make contact with the counterface. They showed that the 

maximum real contact pressure is much higher than the maximum apparent contact 

pressure. 

4.3. Stress Analysis at the Contacts between Etched Al-Si Alloys and Steel 
Ball 

4.3.1. Adaptation of Greenwood Tripp's Model to Current Contact System 

On the etched surfaces of Al-Si alloys, the summits of silicon particles act as the 

asperities that come in contact with the steel counterface. The contact geometry between 
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the etched Al-Si alloy surface and a steel ball is schematically presented in Fig. 4.5. It 

shows a typical etched surface profile of the tested alloys determined using the optical 

surface profilometer together with a schematic of the counterface tip with radius R 

contacting the protruding silicon particles. Following the Greenwood and Tripp model, 

the silicon particles standing proud of the aluminum matrix surface were considered as 

load carrying asperities in contact with the counterface, and the variations of the silicon 

particle height were fitted to a Gaussian distribution. The actual silicon height distribution 

deviates from a true Gaussian because of the etching procedure, but for this analysis, the 

actual data (as shown in Fig. 4.5) was fitted with a single, pure Gaussian curve. 

For an element of surface, d*¥, which has a total of n silicon particles, the 

expected number of contacts, dN, the real area of contact, dAr and the total load, dP, are 

given as 

dN = n^(z)dz (4.33) 

dAr - miR f°(z-u)j(z)dz (4.34) 

dP = -nE*R1J2 [(z-u)3/20(z)dz (4.35) 

3 

where z is the silicon particle height, and Rp is the equivalent curvature radius of the 

silicon particle tips. The heterogeneous nature of asperity contact in etched Al-Si surfaces 

differs from the original model that treats contacts between the asperities of monolithic 

materials. Here Si particles in contact with the steel are supported by the aluminum 

matrix. Thus, E is the composite elastic modulus of Al-Si and steel calculated using 
Equations 3.4 and 3.5 and <f>(z) is the height distribution function [106]. u is the 

separation of the nominal contact surfaces at the position of a particular silicon particle. 
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Switching to dimensionless variables in the above equations gives 

dN = t?cN'F0(h) (4.36) 

dA = xrjo- Rp d¥Fx (h) (4.37) 

dP = -tj E\Rpo-y/2crd¥F3/2(h) (4.38) 

where TJ is the density of the silicon particles, i.e., the number of silicon particles per unit 

area and thus Tjct¥ = n . The term Tj(Rpcr) in this dissertation represents the areal density 

of the silicon particles (measured using quantitative metallography, as described in 

Section 3.3), while a is the standard deviation of silicon particle height, which was 

obtained by fitting the initial particle height distribution curve in Fig. 3.15 to Gauss 1 

distribution using MATLAB software. As an example, the initial silicon particle height 

profile measured from an etched Al-18.5% Si surface profile is used to illustrate the 

method of obtaining the standard deviation of silicon particles. Firstly, plot the silicon 

particle height distribution, that is, the second peak in the histogram (Fig. 3.15) as shown 

by the dotted curve in Fig. 4.6, then select the fitting type as general Gaussian mode, 

defined as 

/ ( x ) = a1exp(-((x-61) /c1)2 (4.39) 

where ay, bi, and cj are coefficients of the general mode Gauss 1. When compared with 

the general Gaussian distribution function, which is defined as, 

f(x) = . 1 exp(-(x -af 12a2) (4.40) 

where a is the mean value, and a is the standard deviation, ai=\H27za2 , bj is the mean 

value, and c/=v2cr. Therefore, c; 142 is the standard deviation of the silicon particle 
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height. 

The fit is plotted as a solid curve in Fig. 4.6. The fitting confidence bound was 

selected as 95%. After each fitting procedure, all the three coefficients were obtained. 

Table 4.1 lists all the coefficients obtained from the curve fitting of the five tested alloys. 

4.3.2. Apparent Contact Pressure 

The apparent contact pressure describes the combined effect of the force 

transmitted through the individual silicon particles (micro-contact) averaged over each 

area element of the surface. The apparent contact pressure can be referred to as the 

pressure distributed over the contact surface. Thus, the apparent contact pressure 

distribution p(r) is obtained by considering dP applied on the area d*¥ to be equivalent to 

a uniform pressure, and is given by 

p(r) = dPlcW = ^rjE'Rp
mc7V2FV2(h) (4.41) 

where h = u / a, and u = d + r212R + w(r) - w(0), d is the minimum separation, w(r) is 

the displacement of the nominal surfaces at r and given by 

Mr) = -£-\p(fr)L<£)d4 (4.42) 
^ 0 

where 

L(& = -frtf) f o r £ < l 
n 

= —K(l/£) for £ > 1 
n 

and K{^) is an elliptic integral of valuable £,. Fm (h) is the parabolic cylinder function, 

which for a Gaussian distribution is given by 
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j(s-h)mexV(-s2/2)ds. (4.43) 
h 

Introducing dimensionless variables, 

Displacement w*=w/a 

Separation u* =ulcr, d* =dIa (4.44) 

Radial distance p - rHlRa 

Pressure pl(E*\l'aISR) 

The equations then become 

p\p) = pFV2(d* +p2 + w(p) - w\0)) (4.45) 

oo 

w\p) = \pp\p{)L(C)d£ (p>0) (4.46 a) 
o 

w(0) = )p\Z)dC (4.46 b) 

0 

Q 

Where ju ^-jja^2RRp . 

However, the standard deviation of the silicon particle height, a, is only included 

in the expected load dP (Equation 4.38). The area used for the estimation of the apparent 

contact pressure does not consider that the silicon particles in each area of element on the 

contact surfaces are not at the same height. It is, therefore, not reasonable to assume that 

all the particles on the contact surface will make contact with the counterface, and hence, 

carry the applied load uniformly. Practically, the contact only occurs between the 

FmW 
(2*) 1/2 
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particles with the height greater than the separation distance of the nominal contact 

surfaces and the counterface. Hence, the height distribution of the silicon particles as well 

as their size should be taken into account in both the contact area and the expected load to 

calculate the contact pressure applied on Si particles. That is, the real contact pressure is 

more realistic to be used to depict the contact between two rough surfaces. This is given 

in Section 4.3.3. 

4.3.3. Real Contact Pressure 

The real contact pressure, as defined by Greenwood and Tripp [107], describes the 

pressure occurring locally over each micro contact. On etched surfaces of Al-Si alloys the 

counterface is in contact with the silicon particles. The magnitude of contact pressure on 

the silicon asperities is, therefore, determined from the ratio of the total expected load, 

dP, to the real contact area, dAr, i.e., 

Pr=dPldAr (4.47) 

Substituting dAr and dP (Equations 4.37 and 4.38) into Equation 4.47, then 

pr =dP/dAr=(^-)E\(T/Rpy
/2F3/2(h)/F1(h) (4.48) 

From Equation 4.48, it can be seen that the real contact pressure is affected by the 

elastic modulus E , the standard deviation of silicon particle height, er, the silicon particle 

sizes, Rp, and the ratio, F3/2(h)/F/(h). If two alloys have similar values of E and a, the 

silicon particle size and the ratio, F3/2(h)/Fi(h) would be the major factors that influence 

the real contact pressure. The ratio, F3/2(h)/Fi(h), decreases with increasing the separation 

distance, h. Smaller h, that is, greater F3/2(h)/Fi(h) is expected in the alloy with small 

silicon particles than that with large silicon particles. Accordingly, higher contact 
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pressure is expected to apply on the silicon particles in the alloy with small silicon 

particles than that with large silicon particles. When the two alloys have similar silicon 

particle size but different areal density, according to the curve fitting results listed in 

Table 4.1, the alloy with higher areal density showed smaller a. The separation distance, 

h, is greater in the alloy with higher areal density than the one with small areal density. 

Therefore, smaller contact pressure is expected to apply on the silicon particles in the 

alloy with high silicon particle areal density than that with small areal density. However, 

the parameter describing the silicon particle shape, either aspect ratio or sphericity is not 

included in Equation 4.48. This makes comparison of contact stresses in Al-Si alloys 

with different silicon morphologies difficult. 

4.3.4. Numerical Computation Method 

The relation between separation distance and pressure was determined by solving 

Equations 4.45 to 4.46 numerically by following the iterative procedure illustrated in 

Fig. 4.7. The numerical iterative procedure for finding the final pressure distribution 

started with a given // value, specified d value, and an initial guess of displacement, w (p) 

using Equation 4.45. Improved values of the displacement were then calculated from the 

pressure distribution using Equation 4.46. The height distribution function defined in 

Equation 4.43 was integrated numerically using a Gauss quadrature. The quadrature 

a 

integrates a (2m-l)th order polynomial exactly in the form of Int{p(x)* Fun(x))dx, 
b 

where p(x) and Fun(x) are functions, and a and b are integration limits. The calculated 

values were in agreement with the values listed in the table of the reference [108] by 

Greenwood and Tripp. 
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4.4 Calculation Results 

4.4.1. Apparent Contact Pressure 

In order to compare the Greenwood and Tripp calculation results with Hertzian 

theory, similar dimensionless variables are introduced, the Hertzian pressure can be given 

by 

2 / *2\l/2 q{p) = q{m-pilai) 

where q"(0) is the maximum Hertzian contact pressure and is given by 

(4.49) 

4 
<7(0)=-

n 

3T 
—il/3 

a* is the effective contact radius and is calculated using a* - — yr_ 
2 

1/3 

(4.50) 

where T is the 

QO 

dimensionless total load, defined by T - Ylnpp*(p)dp . T is related with the actual load, 
0 

W, by W = —oE'^jlRaT . The parameters used for the computation are listed in Table 

4.2. 

Figs. 4.8 a - c show the dimensionless plots of the apparent contact pressure 

distribution with radial distance occurring on the etched surfaces of the five Al-Si alloys 

at 0.5, 1.0, and 2.0 N calculated by numerically solving Equations 4.45 to 4.46 and 

Hertzian Theory (Equation 4.49). The corresponding dimensional plots are presented in 

Figs. 4.9 a to c, which were obtained by converting both dimensionless apparent pressure 

and radial distance to dimensional values using Equation 4.44. The pressure 

distributions on the etched surfaces are different from the Hertzian pressure distribution. 

The Hertzian pressure distribution falls to zero sharply at a particular radius. With the 
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etched Al-Si surfaces, on the other hand, all the apparent contact pressures became zero at 

infinity. The peak pressures at each load are smaller than those of Hertzian value, and the 

contact areas are larger than Hertzian contact area, which is similar to the results obtained 

by Greenwood and Tripp from the contacts with the composite elastic modulus of 100 

GPa (Fig. 4.4) [107]. 

The maximum apparent contact pressures applied on the five alloys tested vary 

with normal load in the way shown in Fig. 4.10, which is similar to the variation of the 

maximum Hertzian contact pressure with the normal load (Fig. 4.10). Table 4.3 lists the 

maximum apparent contact pressures and Hertzian pressures under the normal loadings 

used in the current experiments. The maximum apparent contact pressures applied on the 

five alloys at each applied load were smaller than those of the maximum Hertzian contact 

pressure. Although the five tested alloys (see Section 3.2) showed different 

microstructure, the maximum apparent contact pressures applied on the five Al-Si alloys 

exhibited slight difference at each load tested. The maximum apparent contact pressures 

applied on the five tested alloys at each applied load decreased in the order of Al-25% Si, 

Al-11% Si-F, Al-18.5% Si, AM2% Si, and Al-11% Si-C. It follows that under the 

conditions tested, the maximum apparent contact pressures and Hertzian contact pressures 

applied on the five alloys are lower than their matrix hardnesses of 1,060, 660, 830, 670, 

and 495 MPa, which were converted from the Hv hardness value in Table 3.2. Therefore, 

the apparent contact pressure, which describes the load carried by the silicon particles 

with a statistical variation in heights within the contact area, might not be suitable for the 

estimation of stress on the etched Al-Si alloys, since the peak pressures are far too low to 

suggest fracture of silicon or plastic deformation of the aluminum matrix. An estimation 

of the real contact pressure, corresponding to the contact pressure applied locally on the 
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exposed silicon particles, is necessary. This is given in Section 4.4.3. 

4.4.2. Effective Contact Radius 

Following the G&T model, an effective contact radius is defined as 

a* = 0.37577 w*(0) (4.51) 

where w (0) and T are the same terms used in Equations 4.45 and 4.50. The variations 

of the effective contact radius of the five Al-Si alloys with normal load calculated using 

* r ni / 3 

Equation 4.51 and a - 0.5|377 2 J for the effective Hertzian contact radius are plotted 

in Fig. 4.11. The effective contact radiuses and Hertzian values on the contact surfaces of 

the five alloys at the tested load of 0.5, 1.0, and 2.0 N are listed in Table 4.4. It follows 

that the effective contact radiuses on the five etched alloy surfaces calculated with G&T 

model were greater than the Hertzian contact radius and the nominal contact radius is 

weakly affected by the microstructures in the form of silicon particle size, distribution. 

4.4.3. Real Contact Pressure 

The variation of the dimensionless separating distance, h, with the radial distance 

was obtained from an each successful numerical iteration. As an example, Fig. 4.12 

presents the plots of h with radial distance, p, in the load range of 0.5 to 3.0 N, obtained 

from the contact between Al-25% Si alloy and 52100 steel balls. For each h, two 

parabolic cylinder functions Fj(h) and Fs/2(h) were calculated using the method described 

in Section 4.3 and then substituted into Equation 4.48 to calculate the real contact 

pressure. The variation of the real contact pressure with the dimensionless separating 

distance, h, presented in Fig. 4.13 indicates that the real contact pressures decreased 

sharply when the separation distance was greater than 9. Therefore, the real contact 
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pressure at the radial distance,/?, where the separating distance of the two nominal contact 

surfaces was greater than 10 was set to zero to reduce calculation time. Both 

dimensionless and dimensional plots of the real contact pressure distribution on the five 

alloys at the normal loads of 0.5, 1.0 and 2.0 N are presented in Figs. 4.14 to 4.16. For the 

tested alloys, the real contact pressures applied on the exposed silicon particles were the 

highest at the centre but diminished with the radial distance. 

For all the alloys, the peak values of the real contact pressure applied on the 

exposed silicon particles varied slightly with the normal load, as shown in Fig. 4.17, due 

to the slow increase of the ratio, F;(/z) /F3/2(h) with increasing the normal load. Table 4.5 

lists the maximum real contact pressures under the normal loadings used in the current 

experiments. The data presented in Fig. 4.17 and Table 4.5 indicates that the maximum 

contact pressures applied to the silicon particles are much higher than the maximum 

apparent contact pressure (Table 4.2) and Hertzian pressure. On the other hand, the real 

contact pressure was more strongly dependent on the alloy microstructure in terms of 

silicon particle size and areal density when compared to the apparent contact pressure. 

The maximum contact pressures applied on the silicon particles in Al-25% Si and Al-11% 

Si-F, with smaller silicon particle size, at each load were significantly higher than those in 

Al-18.5% Si, Al-12% Si, and Al-11% Si-C which have larger silicon particle sizes. The 

three alloys, Al-18.5% Si, Al-12% Si, and Al-11% Si-C, which have similar a magnitude 

of silicon particle sizes, exhibited little difference in the maximum real contact pressures; 

the real contact pressures increased with a decrease of the silicon particle size. The Al-

25% Si and Al-11% Si-F had similar silicon particle size, but the maximum real contact 

pressure applied on Al-25% Si was smaller than on Al-11% Si-F. This can be attributed to 

the difference in the silicon particle areal density. The silicon particles in Al-25% Si were 
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distributed with much smaller interparticle distance (average areal density of 0.25) than 

those in Al-11% Si-F (average value of 0.11). It follows that the real contact pressure falls 

when more silicon particles carry the applied load. In order to confirm this, the contacts 

between Al-11% Si-F, in which silicon particles were distributed with different 

interparticle distances, corresponding to areal densities of 0.01, 0.025, and 0.04 /um2 and 

52100 steel balls at 0.5 N were analyzed. The variations of the dimensionless separation 

of the nominal contacting surfaces, h, used for the calculation of the real contact pressure 

in Equation 4.48, with radial distance at 0.5 N, calculated numerically from the three 

areas are shown in Fig. 4.18. It can be seen that the separation distance, h, at p = 0 

increased with increasing area density of silicon particles. The corresponding 

distributions of the real contact pressure with the radial distance presented in Fig. 4.19 

indicate that the real contact pressures at different areas varied in a similar way with the 

radial distance. The peak pressures occurred at the center of the contact, and decreased 

with the radial distance gradually, then sharply to zero. The value of the real contact 

pressure decreased with increasing the areal density. The maximum real contact pressure 

applied on Al-11% Si-F at the areas with different silicon particle area density increased 

slightly with the applied load, as shown in Fig. 4.20. At 0.5 N, the maximum real contact 

pressures applied on the area with the density of 0.04, 0.025, and 0.01/um2 were 1,677, 

2,492, and 2,631 MPa, respectively. 

4.4.4. Real Contact Radius 

The real contact radius is defined as the radial distance at which the real contact 

pressure decreased to zero. Fig. 4.21 presents the variations of the real contact radius in 

the five alloys with the applied load. In comparison with the distributions of the apparent 
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contact pressure applied on the five alloys shown in Figs. 4.8 to 4.9, the real contact 

pressures were distributed over a larger distance than the apparent contact pressures (Fig. 

4.14 to 4.16). This is attributed to the slow reduction of the ratio, Fi(h) I Fs/2{h) with 

increasing radial distance. The Al-25% Si with high areal density and small silicon 

particles showed the smallest real contact radius. Increasing the silicon particle size and 

interparticle distance between small silicon particles, namely, reducing the areal density 

of small silicon particles, the real contact pressures spread over larger distance. The 

radial distance at which the real contact pressure decreased to zero at each load is 

approximately the same magnitude as the widths of the wear tracks of the alloys tested, 

which were generated after sliding wear tests presented in following chapters. Table 4.6 

lists the estimated real contact radius and the widths of wear tracks of Al-11% Si-F at 

tested loads of 0.5, 1.0, and 2.0 N. Therefore, the real contact pressures were more useful 

in terms of understanding the mechanical behaviour of the silicon particles under the 

tested conditions. 

The use of the Greenwood-Tripp model to estimate the contact pressure may be 

justifiably questioned. The heterogeneous nature of asperity contact in etched Al-Si 

surfaces differs from the original model, which treats contacts between the asperities of 

monolithic materials. Here Si particles in contact with the steel are supported by the 

aluminum matrix. The model also assumes a very specific model for the asperities, i.e., 

that they are spherical with a single radius, and that they are randomly distributed in 

height according to a Gaussian distribution. This is very different from our etched 

surface, which clearly has a bimodal height distribution with acicular random sized 

particles. These differences will skew the absolute numerical results, but will not change 

the trends of how contact pressure varies with roughness, and hence the application of the 
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model is still instructive. 

4.4.5. Prediction of Plastic Deformation for the Current Contact Systems 

In the original model, the contact is made at the surfaces of homogeneous 

materials, and the plastic deformation is expected to initiate from the asperities when the 

real pressure exceeds the yield point of the solid [107]. While for the current contact 

system, etched Al-Si alloys are considered as a two component system, that is, the 

heterogeneous nature of the contact between the Al-Si alloy and the steel must be taken 

into account. The aluminum matrix supported the silicon particles. The hardness or yield 

point of silicon particles is much greater than that of aluminum matrix. Accordingly, the 

pressure carried by the silicon particles is transmitted to the aluminum matrix, and hence 

plastic deformation is expected to start from aluminum matrix adjacent to the load 

carrying particles. 

Tabor [109] proposed that the indentation contact pressure, P = 1.1 Y, is sufficient 

to initiate plastic deformation of a material with a yield strength, Y, when a (hard) 

spherical ball pressing on a flat block. Using the slip-line field theory, an upper-bound 

calculation of a frictionless indentation of a semi-infinite block by a flat punch will 

require P= 2.89 Y to cause yielding [110]. The silicon sinking-in process can be 

considered analogous to plain strain deformation of aluminum block with a narrow punch 

for which the yield pressure for indentation is nearly three times the yield strength of 

aluminum, Pm~ 3 Y. It is well known that the hardness of the material, H, equals to 3 

times of the yield strength, Y [105]. Hence, plastic deformation, in the form of Si particle 

sinking into the aluminum matrix starts, when P approximately equals to the hardness of 

the aluminum matrix. The plastic deformation in the aluminum matrix allows silicon 
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particles to sink into the aluminum, while the aluminum matrix around the sunken-in 

silicon particle would in turn be pushed out, i.e., the formation of pile up, due to the 

conservation of material. 

Comparison of the maximum real contact pressures applied on the five tested 

alloys listed in Table 4.5 with their matrix hardness indicates that the maximum pressures 

applied on Al-25% Si, Al-11% Si-F, and Al-12% Si at the tested loads of 0.5, 1.0, and 2.0 

N exceed theirs matrix hardness of 1,090, 660, and 495 MPa. According to the criterion 

proposed above, local plastic deformation is inevitable for Al-%25 Si, Al-11% Si-F, and 

Al-12% Si at all tested loads. Consequently, sinking-in of the silicon particles into the 

aluminum matrix is expected to happen in these three alloys at 0.5, 1.0 and 2.0 N. While 

the maximum contact pressures applied on Al-18.5% Si and Al-11% Si-C at 0.5 N were 

741, and 654 MPa, which might not be high enough to induce local plastic flow of 

aluminum around the silicon particles in either alloy. Silicon particles are expected to 

carry the load and no sinking-in of silicon particles in these two alloys is expected at 0.5 

N. But at 1.0, and 2.0 N, the maximum pressures exerted on Al-11% Si-C (690 and 731 

MPa) were greater than its matrix hardness of 670 MPa, inferring that local plastic 

deformation around the silicon particles is inevitable in Al-11% Si-C. While application 

of 773 MPa at 1.0 N, and 815 MPa at 2.0 N are still not high enough to cause local plastic 

deformation around silicon particles in Al-18.5% Si. The silicon particles in Al-18.5% Si 

are not expected to sink into the aluminum matrix at all tested loads. These calculation 

results will be used to rationalize the surface damage occurred to the tested alloys in 

UMW regime in the following chapters. 
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Table 4.1. Curve fitting results from the Si particle height profiles of the five alloys 

Alloy 

Al-12% Si 

Al-11% Si-C 

Al-18.5% Si 

Al-11% Si-F 

AI-25% Si 

Curve fitting results 

« i 

3903 

3236 

95.64 

961.7 

2399 

bi 

1.391 

1.229 

1.609 

1.544 

1.295 

Q 

0.110 

0.106 

0.090 

0.112 

0.067 

R-square 

0.97 

0.912 

0.979 

0.765 

0.889 

Table 4.2. Parameters used to calculate the contact pressure 

Alloy 

Al-12% Si 

Al-11% Si-C 

Al-18.5% Si 

Al-11% Si-F 

Al-25% Si 

Composite 
Modulus 
(E\ GPa) 

59 

59 

61 

59 

62 

Particle length 

86 ± 5 0 

93 ± 4 6 

70 ± 3 0 

6 ± 2 

8 ± 3 

Standard 
deviation of 

particle height 
( a , fim) 

0.08 

0.08 

0.06 

0.08 

0.05 

Area density of 
particles 

0.1 ±0.1 

0.1 ±0.1 

0.2 ±0.1 

0.1 ±0.1 

0.3 ±0.1 
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Table 4.3. The maximum apparent contact pressure and Hertzian contact pressure 

Pressure 

(MPa) 

The maximum 

apparent contact 

pressure 

^ \ L o a d 

Alloy ( N ) \ 
Al-12% Si 

Al-ll%Si-C 

Al-18.5% Si 

Al-ll%Si-F 

Al-25% Si 

The maximum Hertzian 
contact pressure 

0.5 

87 

90 

120 

126 

165 

309 

1.0 

138 

143 

210 

185 

247 

403 

2.0 

212 

210 

280 

272 

349 

511 

Table 4.4. The effective contact radius and Hertzian contact radius 

Radius 

(urn) 

The effective 

contact radius 

(G&T) 

^v Load 

Alloy \ ( N ) 

Al-12% Si 

Al-ll%Si-C 

Al-18.5% Si 

Al-ll%Si-F 

Al-25% Si 

The Hertzian contact radius 

0.5 

23 

22 

21 

21 

18 

7 

1.0 

26 

24 

23 

24 

21 

11 

2.0 

29 

28 

27 

28 

24 

15 
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Table 4.5. The maximum real contact pressure and Hertzian contact pressure 

Pressure 

(MPa) 

The maximum real 

contact pressure 

\ . Load 

Alloy \ N ( N ) 

Al-12% Si 
Al-ll%Si-C 

Al-18.5% Si 

Al-ll%Si-F 

Al-25% Si 

The maximum Hertzian 
contact pressure 

0.5 

730 

650 

740 

2493 

1570 

310 

1.0 

770 

690 

773 

2580 

1620 

403 

2.0 

810 

731 

815 

2682 

1672 

511 

Table 4.6. Comparison of estimated real contact radius with the width of wear track of 

Al-ll%Si-F 

Load 

(N) 
Real contact radius 

Gun) 

Width of the wear 
track 

0.5 

136 

146 ±6 

1.0 

141 

152 ±20 

2.0 

147 

160 ±16 
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Fig. 4.1. Schematic of two frictionless solids of general shape in static contact [105]. 

128 



Uniform pressure p 

• 1.0 -0.5 

Hertz pressure 

0 -0.5 -1.0 

°r/Pm 

-1.5 

Fig. 4.2. Stress distributions at the surface and along the z-axis of symmetry caused by 
uniform pressure (left) and Hertzian pressure acting on a circular area of radius a [105]. 
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yV \jW 

Fig. 4.3. Schematic illustration of the contacts between a nominally flat surface and a 
smooth sphere used in Greenwood and Tripp contact model [107], 
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Fig. 4.4. Comparison of pressure distributions with Hertzian theory, (a) At low loads 
pressures are much lower than Hertzian and spread over much larger area; (b) At high 
loads calculated and Hertzian agrees well [107]. 
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Matrix surface 1 

h0.5 |Jm 

25 Mm 

Fig. 4.5. Typical surface profile of the etched Al-Si alloys showing the reference matrix 
surface with particles (Optical surface profilometry trace) including a schematic of the 
counterface. 
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Data... Fitting.., Exclude... Plotting... Analysis... 

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 

Fig. 4.6. An illustration of the fitting of the silicon particle height profile on the 
etched Al-18.5% Si surface to general Gaussian curve. The dotted curve is the 
initial Si particle height distribution on the etched Al-18.5% Si surface, and the 
Solid one shows the fitting curve. 
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Fig. 4.7. Flow chart showing the numerical iterative procedure for the contact analysis. 
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Fig. 4.8. Plot of dimensionless apparent contact pressure and Hertzian contact pressure 
applied to the five alloys with dimensionless radial distance at (a) 0.5 N, (b) 1.0 N, and 
(c)2.0N. 
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Fig. 4.9. Plot of dimensional apparent contact pressure and Hertzian contact pressure 
applied to the five alloys with dimensional radial distance at (a) 0.5 N, (b) 1.0 N, and 
(c) 2.0 N. 
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Fig. 4.10. Variation of the maximum apparent contact pressure and Hertzian pressure 
with normal load applied to the alloys tested. 
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Fig. 4.11. Variation of effective contact radius in the five alloys tested with 
normal load. 
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Radial distance, p 

Fig. 4.12. Plot of the dimensionless separation distance with radial distance at each 
load indicated in the legend box, which was calculated from the contact between 
Al-25% Si and steel ball. 
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Fig. 4.13. Variation of the real contact pressure with the dimensionless separating 
distance, h, obtained from the calculation of the contact between Al-25% Si 
and steel ball at 0.5 N. 
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Fig. 4.14. Comparison of real contact pressure with Hertzian pressure distributions 
applied on the five tested alloys at 0.5 N. (a) Dimensionless plot, and (b) dimensional 
plot. 
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Fig. 4.15. Comparison of real contact pressure with Hertzian pressure distributions 
applied on the five tested alloys at 1.0 N. (a) Dimensionless plot, and (b) dimensional 
plot. 

141 



3000 

2500 

§, 2000 

£ 
% 

£ 
Q. 
jS 1000 
c 
o 
O 

1500 \ 

\ 
\ 

s 

AM 2% Si 
AI-11%Si-C 
AI-18.5%Si 
AI-11%Si-F 
AI-25% Si 
Hertz pressure 

N. 

500 \ 

1 2 

Radial distance, p 

(a) 

3000 

2500 -

CO 

a. 
€§, 2000 • 
£ 
3 
« 1500 • 

£ 
Q. •B 
jS 1000 • 
c 
o 

o 

"N 

V 
\ 

AI-12% Si 
AI-11%Si-C 
AI-18.5%Si 
AI-11 % Si-F 
AI-25% Si 
Hertz pressure 

500 . 

20 40 

Radial distance (|jm) 

(b) 

Fig. 4.16. Comparison of real contact pressure with Hertzian pressure distributions 
applied on the five tested alloys at 2.0 N. (a) Dimensionless plot, and (b) dimensional 
plot. 
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Fig. 4.17. Variations of the maximum real contact pressure applied on the 
five tested alloys with normal load. 
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Fig. 4.20. Variation of the maximum real contact pressure with normal load applied 
to the Al-11% Si-F alloy with different Si particle area density. 
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Fig. 4.21.Variation of real contact radius with normal load on the five 
alloys tested. 
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CHPATER 5 ULTRA-MILD WEAR MECHANISMS IN Al-Si 

ALLOYS 

5.1. Introduction 

In this chapter, UMW wear mechanisms are identified using a combination of 

optical profilometry and scanning electron microscopy. The surface damage 

characteristics of Al-Si alloys in the UMW regime, which was achieved by conducting 

the sliding wear tests at light load of 0.5 N, and under boundary lubricated conditions 

with synthetic engine oil as lubricant, is presented. The propensity of plastic deformation 

for the loaded Si particles in Al-12% Si and Al-11% Si-C, with similar silicon particle 

aspect ratio and size, are compared in Section 5.2. Section 5.3 presents the identification 

of wear mechanisms operating in the UMW regime using Al-12% Si as a model alloy. In 

Section 5.4, the effect of matrix hardness on the UMW mechanism is examined by 

performing sliding wear tests on Al-11% Si-C with similar silicon particle morphology 

and size but harder matrix under the same test conditions. Ultra-mild wear damage 

happened to Al-18.5% Si under the same test conditions is presented in Section 5.5, 

aiming to examine the effect of microstructure on UMW mechanism. 

5.2. Propensity for Plastic Deformation in Al-12% Si and Al-11% Si-C 

The maximum contact pressures applied to Al-12% Si, and Al-11% Si-C varies 

with the applied load in the way shown in Fig. 5.1. The maximum contact pressure on the 

silicon particles in Al-12% Si at the applied test load of 0.5 N used in the current 

experiments is 730 MPa. In the alloy with higher matrix hardness (Al-11% Si-C) the 
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maximum contact pressure applied to the particles is 654 MPa. The maximum contact 

pressures on the two alloys are similar because the silicon particle size, aspect ratio, and 

exposed height are comparable. It follows that the contact pressure applied to Al-12% Si 

exceeded the matrix hardness of 495 MPa, while the contact pressure on Al-11% Si-C 

was slightly lower than its matrix hardness of 670 MPa. Thus, in the Al-12% Si alloy 

there is a higher propensity for the loaded silicon particles to induce plastic flow of 

aluminum in their vicinity as a result of the penetration of the silicon particles into the 

matrix when compared to Al-11% Si-C. Consequently, the silicon particles in Al-12% Si 

are expected to sink into the Al matrix under the load conditions used in the current 

experiments. Experimental evidence for particle sinking-in and aluminum piling-up 

mechanisms is given in Section 5.3. 

5.3. Ultra-mild Wear in Al-12% Si 

5.3.1. Characteristic Features of Damage in Ultra-Mild Wear 

Surface damage in the ultra-mild regime occurred in two ways i) via the reduction 

of silicon particle height, primarily by sinking-in of the hard particles into the soft 

aluminum, and ii) via plastic deformation and the flowing-out of the adjacent aluminum 

matrix in the form of pile-ups at the vicinity of sunken-in silicon particles. These 

mechanisms are described in Sections 5.3.2 and 5.3.3. 

5.3.2. Statistical Evaluation of the Particle Height Reduction Process 

An important aspect of the surface damage process in the Al-Si alloy studied was 

the reduction in the heights of the silicon particles located within the wear tracks. 

Evidence for particle height reduction during ultra-mild wear is given in Figs. 5.2. The 
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initial average silicon particle height of 1.80 um in Al-12% Si rapidly decreased to 0.28 

after sliding for 103 cycles (Fig. 5.2). After sliding for 5 x 103 cycles, the average height 

of the silicon particles projecting above the aluminum matrix was only 0.08 urn. After 

sliding for 104 cycles it was no longer possible to differentiate the locations of silicon 

peak heights from the aluminum surface profile. The reduction in the average silicon 

particle height with the sliding distance is plotted in Fig. 5.3. 

5.3.3. Metallographic Evidence for Particle Sinking-in and Aluminum Pile-up 

Formation 

Metallographic evidence for the particle sinking-in mechanism responsible for 

particle height reduction during sliding wear of Al-12 % Si is given in Figs. 5.4 to 5.7. 

These figures show the back-scattered SEM images taken within the wear tracks of Al-

12% Si, as well as the corresponding 3-D surface profiles constructed from the optical 

profilometer data of the same wear tracks shown in the SEM micrographs. They 

collectively illustrate the evolution of the surface morphology during wear at 0.5 N at 

different stages for the soft eutectic Al-Si alloy after testing to sliding cycles that varied 

between 103 cycles and 5 x 104 cycles. 

The optical profilometer image shown in Fig. 5.4 a obtained after sliding for 103 

cycles indicates that the damage inside the wear track consisted of a reduction in the 

heights of the particles in comparison to those outside the track. The matrix material 

adjacent to the particles became elevated compared to the parts that lay away from the 

particles. The corresponding SEM image in Fig. 5.4 b shows that there was no evidence 

of particle fracture. The particle contact surfaces did not appear to exhibit signs of wear; 

no evidence for particle abrasion can be seen on the contact surfaces of the particles. In 
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fact, the SEM image in Fig. 5.4 b confirms that top surfaces of silicon are smooth and 

free of abrasive scratches. Thus, the particle height decrease was the result of the sinking-

in of silicon particles into the aluminum matrix. To accommodate the downward motion 

of the silicon particles, soft aluminum adjacent to these particles flowed out of the matrix 

to accommodate the indentation made by the particles penetrating into the matrix. 

Consequently, at these locations the matrix became raised above its initial level -i.e. 

aluminum pile-ups were formed around the sunken-in silicon particles. The formation of 

aluminum pile-ups adjacent to most silicon particles can be seen in Fig. 5.4 b. Fig. 5.4 c 

is a 3-D optical surface profilometer image of the same section of the wear track, where 

the same aluminum pile-ups next to the matching silicon particles can be seen. In 

addition, it becomes clear that silicon particles within the wear track have become 

embedded in the aluminum matrix. These particles with reduced elevation within the 

wear track are also indicated in Fig. 5.4 c. The EDS analyses confirmed that the material 

piling-up around the sunken-in silicon particles had the same composition as the 

surrounding matrix material (Fig. 5.5). 

At 5 x 10 cycles, the wear track became wider, and the average height of the 

particles inside the wear track continued to decrease (Fig. 5.6 a). The areas covered by 

aluminum pile-ups adjacent to the particles became larger. The pile-ups in the vicinity of 

the particles, as seen in Fig. 5.6 b, also suggests that the size of the pile-ups is not 

symmetrical, but generally more material tends to accumulate in front of the silicon 

particles along the sliding direction. This can be attributed to the bending of the Si 

particles by the shear stress toward the sliding direction, which results in the matrix ahead 

of the silicon particles being pushed forward in the direction of sliding. The initiation of 

direct contact between the top portion of the aluminum pile-ups and the couterface now 
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leads to the surface damage to these elevated plateaus. Consequently, surface damage in 

the form of longitudinal scratch marks within the wear track started to appear. 

Figs. 5.7 a and b show the evolution of damage within the wear track at 104 

cycles, where the silicon particles became almost totally embedded into the aluminum 

matrix. The longitudinal surface scratches on the pile-ups are continuous. At 5 x 104 

cycles (Figs. 5.8 a to c) the same damage mechanisms continued to operate. An 

additional feature of the damage progress, however, becomes apparent in Fig. 5.8 b, 

where the silicon particles show evidence of fracture and fragmentation. In fact, the 

silicon fracture process began earlier (fractured particles can be seen at 104 cycles in Fig. 

5.8 b. It is conceivable that work-hardening of the aluminum matrix during sliding made 

particle sinking more difficult and thus facilitated particle fracture. The effect of matrix 

hardness on ultra-mild wear can be better understood when the behaviour of the harder of 

the eutectic alloys -the Al-11% Si-C- is investigated in detail (Section 5.4). 

5.3.4. Microstructural Features of the Subsurface Adjacent to the Contact Surface 

Additional evidence for the damage mechanisms in ultra-mild wear explained 

above is provided by the investigation of a cross-section of the wear track prepared using a 

focused ion beam milling (lift-out) technique. A cross-sectional secondary electron FIB 

image of the wear track at 5 x 104 cycles is given in Fig. 5.9. This image shows the 

morphology of a silicon particle embedded within the wear track, and the formation of 

aluminum pile-up around it. Microstructural features around the sunken-in silicon particle 

are presented in the cross-sectional TEM image (Fig. 5.10), which was taken from the 

same area as the FIB image in Fig. 5.9. The silicon particle in the TEM image was pulled 

out during TEM sample preparation. It is noted that aluminum grains in the piled up 
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plateau and the aluminum matrix adjacent to the sunken-in silicon particle are refined to the 

nano-crystalline size. The grain sizes are smaller in the top section (around 120-200 nm) 

than those in a deeper area (300-400 nm). Dislocation networks are also observed in the 

aluminum matrix around sunken-in silicon particles, which indicates a plastic deformation 

zone. This infers that the silicon particle sinking-in leads to extensive plastic deformation 

to the aluminum matrix adjacent to the sunken-in silicon particles, even at 0.5 N. 

5.4. Ultra-mild Wear in A M 1 % Si-C 

5.4.1. Silicon Particle Height Reduction in Al-11% Si-C 

The matrix hardness (670 MPa) of the Al-11% Si-C alloy was 70% higher than that 

of Al-12% Si (495 MPa). Because of this high matrix hardness, the particles in Al-11% Si-

C are not expected to sink-in as readily as those located in the wear tracks of Al-12% Si. 

The stress analysis presented in (Sections 5.2 and 4.4) suggests that, at the test load of 0.5 

N, the contact pressure applied to the silicon particles in Al-11% Si-C- 654 MPa (Fig. 5.1) 

-might not be high enough to press these particles into the matrix. 

Fig. 5.11 presents the histograms showing the variation of silicon particle height 

with respect to the aluminum matrix height with the sliding cycles. The reduction in the 

average silicon particle height with the sliding cycles is plotted in Fig. 5.12. According to 

Figs. 5.11 and 5.12, only a slight decrease in the silicon particle height could be observed 

within the wear tracks of the Al-11% Si-C after sliding for 5 x 103 cycles. The initial 

average silicon particle height of 1.60 jam in the Al-11% Si decreased to 1.53 after 103 

cycles (Fig. 5.12). After sliding for 5 x 103 cycles, the average height of the silicon 

particles projecting above the aluminum matrix was 1.42 urn. After 105 cycles, silicon 
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particles still protruded above the aluminum matrix by 0.81 um. 

5.4.2. Evolution of the Worn Surfaces in Al-11% Si-C 

Figs. 5.13 a to c show the surface damage within the wear tracks of Al-11% Si-C 

after sliding for 104 cycles. A 3-D surface profilometer image shown in Fig. 5.13 a 

illustrates that after sliding for 104 cycles a small number of silicon particles exhibited a 

height decrease. No obvious matrix piling-up could be observed around these silicon 

particles (Fig. 5.13 b). The contact surfaces of the silicon particles within the wear track 

shown in Fig. 5.13 c exhibited microscopic scratches in the sliding direction suggesting 

that they had been subjected to wear. The initial particle sinking-in in this alloy was not as 

prominent as in the Al-12% Si; the particles did show a height reduction in Al-11% Si due 

to wear of the silicon plateaus rather than their sinking into the matrix. 

Pile-ups started to form after 5 x 104 cycles, as shown in Figs. 5.14 a to c. The Si 

particle surfaces within the wear track appeared to be rougher and did not have the polished 

appearance of those outside the wear track. The silicon particles around which pile-ups 

were observed were also found to be fractured and fragmented into smaller sections (Fig. 

5.14 b). This observation infers that the pile-up process and, in turn the silicon particle 

sinking-in, was likely assisted by the fragmentation of large aspect ratio particles to shorter 

segments. Thus, as the sliding process progressed, the particle sinking-in mechanism has 

become prominent even in the alloy with high matrix hardness. Eventually, after sliding for 

105 cycles, silicon particle sinking-in and piling-up of aluminum around the sunken-in 

silicon particles became obvious (Fig. 5.15 a and b). 

5.4.3. Summary and Discussion 
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From the experimental observations made on the worn surfaces of eutectic Al-Si 

alloys, which were presented in previous sections in this chapter, the progression of 

surface damage events in UMW regime was identified to generally consist of the 

following steps: 

i) Wear of the top surfaces of silicon particles by the counterface, 

ii) Embedding of silicon particles into aluminum matrix (or particle sinking-in), 

iii) Plastic deformation of aluminum causing the formation of aluminum pile-ups 

adjacent to the sunken-in silicon particles, 

iv) Wear of the elevated portions of aluminum plateaus by the counterface. 

The main stages of the surface damage process during ultra-mild wear are 

schematically illustrated in Fig. 5.16. However, the alloy with the harder matrix, Al-11% 

Si-C, exhibited less damage in UMW than the softer Al-12% Si. The silicon particles in 

both alloys had a similar aspect ratio and size (Figs. 3.2 to 3.5), indicating that the matrix 

hardness played a key role in the ultra-mild wear resistance. The silicon particle height in 

the Al-12% Si decreased rapidly at the beginning of the sliding process. No wear features 

were observed on the silicon particle plateaus located inside the wear tracks. It was 

difficult to identify step i in Al-12% Si. Aluminum pile-up occurred around the sunken-in 

silicon particles after just sliding for 103 cycles, in order to accommodate the sinking-in 

process and to conserve the plastically deformed volume. After sliding for 5 x 103 cycles, 

scratch marks caused by the counterface appeared on the raised portions of the aluminum 

pile-ups around the sunken-in silicon particles. After sliding for 5 x 10 cycles, silicon 

particles were almost completely embedded in the aluminum matrix. 

On the other hand, silicon particles in the Al-11% Si-C showed signs of wear at 

the early stages of sliding. There was neither a comparable reduction in silicon particle 
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exposure, nor aluminum pile-up formation after sliding for 10 cycles. However, silicon 

particles with large aspect ratio located on the contact surface exhibited evidence of 

fracture, indicating the high propensity of fragmentation for the large aspect ratio silicon 

particles. Based on Equation 4.48, which was used to estimate the real contact pressure 

applied on the Si particles in Chapter 4, the real contact pressure increases with 

decreasing the particle size if other parameters, E , a, are kept constant. Fig. 5.17 shows 

the variation of the maximum contact pressure on the silicon particles with the silicon 

particle size calculated for Al-11% Si-C at the applied load of 0.5 N using Equation 4.48 

in Section 4.3. When silicon particle fracture occurred during the course of sliding, the 

particle size decreased and the maximum contact pressure exerted to the particles 

increased. According to Fig. 5.17, the pressure exerted by the counterface on the exposed 

silicon particles should increase with a decrease in the silicon particle size, exceeding the 

aluminum matrix hardness and prompting local plastic flow around the fractured silicon 

particles in the Al-11%-C Si. The associated matrix pile-up was then observed around the 

fractured silicon particles (Figs. 5.14 - 5.15). Therefore, modifying the silicon particle 

morphology, that is, decreasing silicon particle aspect ratio, is important to prevent silicon 

particles in Al-Si alloys from fracture, leading to the formation of Si particle sinking- in 

and aluminum pile-up. 

The formation of aluminum pile-ups around the sunken-in silicon particles is a 

critical step of the wear mechanism in the ultra-mild wear regime. This is because the 

elevated portions of the soft aluminum matrix became susceptible to permanent sliding 

contact damage inflicted by the counterface, leading to material loss, that is, more severe 

surface damage. Following the definition in Chapter 1, step i to iii belong to UMW-I. 

Hence, this process is the precursor to the wear transition from UMW-I to UMW-II -with 
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wear in the form of mass loss. 

In summary, Step iii is the precursor to the onset of UMW-II, namely, a more 

severe ultra mild wear regime, which accompanied by materials loss in the form of 

abrasive scratches. Capturing the onset of the UMW-II regime in Al-Si alloys will be 

presented in Chapter 6. Therefore, preventing the sinking-in of the load carrying hard 

particles (Step ii) is the critical step in holding up the transition to UMW-II. This is 

expected to be achieved through increasing the matrix hardness and size of the load-

carrying hard particles, and by reducing the aspect ratio of the silicon particles to reduce 

possibility of particle fracture. Therefore, it is conceivable that the use of Al-Si alloys 

with harder matrix and small aspect ratio Si particles, namely Si particles appear to be 

block-like or spherical. The hypereutectic Al-Si alloy, Al-18.5%, with large primary 

silicon particles and harder matrix would be advantageous in reducing wear damage 

under UMW conditions. This premise was tested by performing sliding wear tests on a 

hypereutectic Al-18.5% Si alloy under similar testing conditions that corresponded to 

under UMW regime. This is presented in Section 5.5. 

5.5. Ultra-mild Wear in Al-18.5% Si 

5.5.1. Characteristic Features of UMW Damage in Al-18.5 % Si 

The worn surfaces were periodically observed by SEM and optical surface 

profilometry. Worn surface damage features that developed after sliding for 3 x 106 

cycles are shown in Figs. 5. 18 a-c, and those observed after 6 xlO6 cycles are shown in 

Figs. 5. 19 a-c. Although there was no measurable weight loss in the UMW regime, 

microscopic damage was evident on the alloy's contact surface as described below. 

The SEM image taken from the contact surface of Al-18.5% Si after stopping the 

155 



test at 3 x 106 cycles (Fig. 5.18 a) shows that the top surfaces of the silicon particles 

inside the wear track are worn. Fig. 5.18 b is the corresponding 3-D optical surface 

profilorneter image of the same portion of the wear track. In Fig. 5.18 b wear on silicon 

particles is also evident from the longitudinal surface scratches that are elongated in the 

sliding direction. The cross-sectional profilorneter image taken across the wear track (Fig. 

5.18 c) indicates that scratches were rather shallow and did not penetrate more than a very 

small fraction of the total height of the protruded sections of the silicon particles. At the 

longest sliding distance of 6 x 106 cycles, SEM (Fig. 5.19 a) and surface profilorneter 

images (Fig. 5.19 b and c) reveal that the wear mechanism did not change. Still merely 

the contact surfaces of the silicon particles suffered superficial wear damage. The original 

aluminum and silicon morphology remained virtually unchanged i.e., no particle fracture 

or fragmentation or damage to the aluminum matrix was observed. Therefore, throughout 

the course of the sliding process silicon particles in Al-18.5% Si remained intact and 

effectively protected the aluminum surface from wear. 

5.5.2. Quantitative Determination of UMW Damage in the Al-18.5% Si Alloy 

The distributions of the topographical features on the contact surfaces in the Al-

18.5% Si alloy obtained by analyzing surface profilorneter data are given in Fig. 5.20. 

The change in the elevation of silicon particles with respect to the aluminum surface can 

be estimated from the peaks of the histograms. As stated before in Section 3.4.2 , the 

average initial height of the silicon particles protruding from the aluminum surface in Al-

18.5% Si was 1.60 urn. Measurements made inside the wear track after sliding for 6 xlO5 

cycles showed a very small reduction of 0.14 um in the protruded silicon particle height 

occurred as a result of sliding wear. Accordingly, the UMW damage in Al-18.5 %Si 
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remained confined to superficial scratch damage on the tops of the particles. The 

reductions in silicon particle elevations in Al-18.5 %Si after various sliding distances are 

plotted in Fig. 5.21. The hypereutectic Al-18.5% Si alloy offers effective wear resistance 

and a minimal amount of surface damage under the UMW conditions. Silicon particles in 

this alloy do not sink into the matrix and are successful in shielding etched aluminum 

surface from plastic deformation and permanent damage. 

5.5.3. Discussion 

Experimental observations presented in Section 5.3 showed that the formation of 

aluminum pile-ups around the embedded silicon particle led to more severe damage to the 

aluminum matrix. As a result, the elevated portions of the aluminum matrix become 

susceptible to permanent contact damage inflicted by the counterface leading to material 

loss. Fig.5.22 summarizes the silicon particle height reduction with the sliding cycles in 

the three alloys tested for comparison. It is noted that the silicon particle sinking-in is 

dependent on matrix hardness and silicon particle morphology. Increasing the matrix 

hardness, and using particles with low aspect ratio would improve the load carrying 

ability of the alloys, and thus would prevent surface damage to the aluminum matrix. 

This can be rationalized with the mechanical response of silicon particles to the applied 

load. 

The variation of the maximum contact pressure applied to the particles in Al-

18.5% Si with normal load is shown in Fig 5.23 (Section 4.4). Under the load used in the 

current experiment (0.5 N) the maximum contact pressure on the silicon particles in Al-

18.5% Si is estimated as 741 MPa, which is smaller than its matrix hardness of 834 MPa 

(85 HV). Based on the criterion for the prediction of plastic deformation presented in 
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Section 4.4.5, application of a (maximum) contact pressure of 741 MPa is not likely to 

induce local plastic flow of aluminum around the silicon particles in Al-18.5 % Si. 

Therefore, silicon particles in Al-18.5% Si are expected to carry the applied load at the 

tested load, no plastic deformation in the form of aluminum pile-up induced by the silicon 

particle sinking-in is expected in this alloy. In Al-18.5% Si, neither silicon particle 

sinking-in nor damage to aluminum matrix in the form of plastic deformation and wear 

was observed even after sliding the longest cycle of 6 x 105. Only top surfaces of Si 

particles suffered from abrasive wear, that is, only the first step (Step i) identified in the 

two eutectic Al-Si alloys (Section 5.4) is maintained throughout the UMW regime in Al-

18.5% Si. 

On the other hand, no obvious fracture was observed to the large block-like primary 

Si particles in Al-18.5% Si (Fig. 5.18 and 5.19 ), indicating that block-like primary Si 

particles with aspect ratio of 1.6, which is about 10 times smaller than plate-like Si 

particles in Al-12% Si and Al-11% Si-C, exhibit lower propensity for fracture. Therefore, 

the real contact pressure applied on the Si particles in Al-18.5% Si remains virtually 

unchanged throughout the course of sliding. Accordingly, the hypereutectic Al-18.5% Si 

alloy offers effective wear resistance and a minimal amount of surface damage under the 

UMW conditions. Silicon particles in this alloy do not sink into the matrix and are 

successful in shielding etched aluminum surface from plastic deformation and permanent 

damage. 
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Fig. 5.1. Variations of the maximum contact pressure exerted on the particles with the 
normal load. 
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Fig. 5.2. The distribution (frequency) of surface topography of Al-12% Si at various sliding 
cycles. At each sliding cycle, the first peak (with lower height (urn)) represents the Al surface 
and the second peak (with larger height (urn) is particle elevation. 
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Fig. 5.3. Change in the Si particle height projected above the Al matrix in Al-12% Si with 
the sliding cycles. 
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Fig. 5.4. Surface damage in Al-12% Si after sliding for 10 3 cycles: (a) 3-D surface profile 
image; (b) Backscattered SEM image of the same area as (a); (c) Surface profile scanned along 
the horizontal line (AA1) indicated in (a) and (b). The dimension of the area shown is 246 \im 
x 187 |im; 
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Fig. 5.5. EDS spectrum showing the composition of (a) the material around the sunken-in 
silicon particles taken form the indicated area, X and (b) the matrix aluminum taken from 
the area of Y. 
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(b) 

Fig. 5.6. Surface damage in Al-12% Si after sliding for 5 x 10 3 cycles: (a) 3-D surface 
profile image; (b) Backscattered SEM image of the same area as (a). The dimension of the 
area shown is 246 pirn x 187 yon. 
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Fig. 5.7. Surface damage in Al-12% Si after sliding for 10 4 cycles: (a) 3-D surface 
profile image; (b) Backscattered SEM image of the same area as (a).The dimension 
of the area shown is 246 \im x 187 urn 
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Fig. 5.8. Surface damage in Al-12% Si after sliding for 5 x 104 cycles: (a) Backscattered 
SEM image; (b) 3-D surface profile image of the same area as (a); and (c) Surface profile 
scanned along the horizontal line (AA') indicated in (a) and (b). The dimension of the area 
shown is 246 pirn x 187 u.m. 
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Fig. 5.9. Cross-sectional FIB secondary image (taken by Dr. Meng-Burany) of the wear 
track showing Al matrix pile up around the Si particle. 
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Fig. 5.10. Cross-sectional TEM image (taken by Dr. Meng-Burany) of the wear track 
showing dislocation networks in the aluminum around the sunken-in Si particle. 
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Fig. 5.11. The distribution (frequency) of surface topography of Al -11% Si-C at various 
sliding cycles. At each sliding cycle, the first peak (with lower height (um)) represents the Al 
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Fig. 5.12. Change in the Si particle height projected above the Al matrix in Al-11% Si-C with 
the sliding cycles. 
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Fig. 5.13. Surface damage in Al-11% Si-C after sliding for 10 4 cycles: (a) 3-D surface 
profile image; (b) Backscattered SEM image of the same area as (a); (c) Surface profile 
scanned along the horizontal line (AA') indicated in (a) and (b). The dimension of the 
area shown is 246 îm x 187 \im. 
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Fig. 5.14. Surface damage in Al-11% Si-C after sliding for 5 xlO 4 cycles: (a) 3-
D surface profile image; (b) Backscattered SEM image of the same area as (a). 
The dimension of the area shown is 246 urn x 187 \im. 
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(b) 

Fig. 5.15. Surface damage in Al-11% Si-C after sliding for 105 cycles: (a) 3-D surface 
profile image; (b) Backscattered SEM image of the same area as (a). The dimension of 
the area shown is 246 \im x 187 \im. 
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(a) Cross-sectional view of a Si particle with height h on an etched surface prior 
to wear. 

F 

(b) Particle sinking-in and Al matrix piling up during sliding. 

(c) Micro-scratching of piled-up aluminum. 

Fig. 5.16 Schematic representation of ultra mild wear mechanisms in eutectic 
Al-Si alloys (with soft matrix). 
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Fig. 5.17. Variation of the maximum contact pressure with Si particle size in the range of 20 
to 120 urn at 0.5 N. Matrix hardness (667 MPa) of the alloy was assumed equivalent to that 
ofAl-ll%Si-C. 
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Fig. 5.18. Surface damage in Al-18.5% Si after sliding for 3 x 105 cycles: (a) Secondary 
SEM image; (b) 3-D surface profile image of the same area as in (a); and (c) Surface 
profile scanned along the horizontal line (AA') indicated in (a) and (b). WT is the wear 
track, SD is the sliding direction. 
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Fig. 5.19. Surface damage in Al-18.5% Si after sliding for 6 x 105 cycles: (a) Secondary 
SEM image; (b) 3-D surface profile image of the same area as (a); and (c) Surface 
profile scanned along the horizontal line (AA') indicated in (a) and (b). 
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Fig. 5.20. The distribution (frequency) of topographical features on the contact surface of 
Al-18.5% Si with the sliding cycles. 
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Fig. 5.21. Variation of the mean silicon particle height with sliding cycles, showing that 
silicon particle elevation does not change with sliding distance in Al-18.5% Si. 
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Fig. 5.23. Variation of the maximum contact pressure on the particles in Al-18.5% Si 
with the normal load. 
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CHAPTER 6 TRANSITIONS FROM UMW-I TO UMW-II 

AND UMW-III 

6.1. Introduction 

Measurable volumetric wear loss does not occur on contact surfaces in the UMW-

I regime. Surface damage is limited to the microscopic level. The deviation of volume 

loss from zero, that is, detectable material loss, indicates the transition from UMW-I to 

UMW-II. The purpose of this chapter is to capture the transition point when the damage 

inflicted by the counterface started leading to material loss from the deformed aluminum 

matrix, namely, the onset of UMW-II, and subsequently the onset of UMW-III, with 

reduced wear rate after long sliding cycles. The mechanisms triggering these transitions 

and the microstructural factors in terms of silicon particle morphology, size, distribution, 

and matrix hardness responsible for these transitions are examined. The worn surfaces of 

the two eutectic alloys, Al-11% Si-C, Al-11% Si-F, containing a similar percentage of 

silicon and with comparable hardness of matrix, but different silicon morphologies and 

sizes were periodically observed by a SEM and an optical surface profilometer after 

completing a test to a given number of cycles at tested loads of 0.5 to 2.0 N. Similar 

observations were made on a spray formed Al-25% Si, which has similar silicon particle 

size and morphology but with a much higher silicon particle areal density and harder 

matrix in comparison with Al-11% Si-F. 

In the first section of this chapter (Section 6.2), the evolution of the surface 

damage that occurred under UMW conditions in Al-11% Si-C and Al-11% Si-F with 

applied load and sliding cycles is presented. This section starts with a comparison of the 
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maximum contact pressures applied on the exposed silicon particles in the two eutectic 

alloys (Section 6.2.1). The experimental results from the wear tests are presented in 

Section 6.2.2 for the A1--11% Si-C alloy, then the Al-11% Si-F in Section 6.2.3. This is 

followed by summaries of observations of oil layer deposits in Section 6.2.4 and an 

analysis of changes in Si particle heights for both alloys in Section 6.2.5. 

The sliding wear mechanisms of Al-11% Si-C and Al-11% Si-F in the UMW 

regime and the mechanism of triggering the onset of UMW-II and UMW-III in the two 

eutectic Al-Si alloys are discussed in Section 6.2.6, based on the mechanical response of 

silicon particles to the applied load, and the propensity of the formation of the oil residue 

layer. 

The evolution of microstructural events and surface damage of Al-25% Si are 

delineated in Section 6.3. The observed wear mechanisms are compared with those in Al-

11% Si with similar Si particle morphology and size, interesting differences and 

similarities are noted, to shed light on the effect of microstructure on damage mechanisms 

in the UMW regime. 

Sections 6.3.1 to 6.3.3 present the worn surface evolution with applied load and 

sliding cycles in the order they were detected in Al-25% Si, starting from the lowest load 

applied. Quantitative determination of damage to silicon particles and the aluminum 

matrix in Al-25% Si is presented in Section 6.3.4. The mechanisms leading to the surface 

damage in Al-25% Si, and the effect and silicon particle distribution on the sliding wear 

behaviour are discussed in Section 6.3.5. The difference in the micromechanisms 

responsible for the surface damage in the two alloys is rationalized with the mechanical 

response of the silicon particles to the applied load, the propensity to form an oil residue 

layer, the coefficient of friction, and wear to the counterface. 
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6.2. Evolution of the Surface Damage with Sliding Cycles and Applied Load 
in Eutectic Al-Si Alloys 

6.2.1. The Maximum Real Contact Pressures Applied on the Two Eutectic Al-Si 

Alloys 

The contact pressure analysis conducted in Section 4.4 suggested that the 

maximum contact pressure is strongly dependent on silicon particle size and distribution. 

Fig. 6.1 shows the variation of the maximum real contact pressure applied on Al-11% Si-

C and Al-11% Si-F with the normal load. The maximum contact pressures applied on the 

two alloys under the normal loadings used in the current experiments are listed in Table 

6.1. The data listed for Al-11% Si-F was calculated with a density of 0.04/um2. The 

maximum contact pressures applied on the silicon particles in Al-11% Si-F are about 2 

times higher than those in Al-11% Si-C. It follows that at the load of 0.5 N, the 

maximum real contact pressure applied on Al-11% Si-C was slightly smaller than its 

matrix hardness (670 MPa), while that applied to Al-11% Si-F exceeds its matrix 

hardness of 660 MPa. Therefore, local plastic deformation is more likely to occur in Al-

11% Si-F in comparison with Al-11% Si-C at 0.5 N. The maximum pressures applied on 

the contact surfaces of the two alloys at 1.0 and 2.0 N are greater than their matrix 

hardness. Consequently, sinking-in of the silicon particles into the aluminum matrix is 

expected to happen in both alloys at 1.0 and 2.0 N. These calculation results will be used 

to explain the contact surface evolution and UMW behaviour of the two alloys in the 

following sections. 

6.2.2. Surface Damage Evolution in Al-11% Si-C 

6.2.2.1. Variation of Volume Loss with Sliding Cycles 
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Fig. 6.2 shows the volume losses of Al-11% Si-C with sliding cycles at applied 

loads of 0.5, 1.0, and 2.0 N. It indicates that the transition from UMW-I to UMW-II 

happens to the alloy at all applied loads. At 0.5 N, volumetric loss started to be 

measurable after sliding to 3 x 105 cycles, indicating that the UMW-I regime was 

maintained in the alloy up to this point. At this sliding cycle the volume loss was 4.2 x 10" 

5 mm3. At an applied load of 1.0 N, the transition from UMW-I to UMW-II started after 

sliding to 5 x 104 cycles; the measured material loss was 1.58 x 10" mm . At 2.0 N, 

UMW-I lasted only to 1 x 104 cycles; the volume loss was 1.0 x 10"4 mm3. 

Immediately after the transition point, the volume loss increased with increasing 

sliding distance and normal load. The initial increase at 2.0 N corresponded to a wear rate 

of 9.79 x 10"10 mm3/cycle (8.67 x 10"8 mm3/m). An important aspect of the plots shown 

in Fig. 6.2 is that they indicate a decrease in the wear after certain number of cycles, 

inferring that the alloy enters UMW-III. In fact, the volume loss of the alloy tested at 2.0 

N showed a drop off after 6 x 105 cycles. The volumetric wear loss after sliding for 6 x 

105 cycles was 3.58 x 10"4 mm3, which corresponded to an 18% reduction compared to 

wear at 3 x 105 cycles ( w= 4.4 x 10"4 mm3). Examination of the worn surfaces with 

sliding distance is instructive to better understand the transition from UMW-I to UMW-II. 

Metallurgical evidence is provided in Section 6.2.2.2. 

6.2.2.2. Contact Surface Evolution with Sliding Cycles 

The contact pressure listed in Table 6.1 suggests that at an applied load of 0.5 N, 

the maximum contact pressure applied to the silicon particles (654 MPa) in Al-11% Si-C 

was slightly less than its matrix hardness (670 MPa), indicating that the silicon particles 

were not expected to be pushed into the aluminum matrix. Accordingly, the silicon 
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particles should carry the applied load and no surface damage should be inflicted on the 

aluminum matrix. 

Figs. 6.3 a to e illustrate the evolution of the worn surface morphologies in Al-

11% Si-C at 0.5 N. After sliding for 5 x 102 cycles (Fig. 6.3 a), the silicon particle 

surfaces inside the wear tracks show slight wear on their contact surfaces in the form of 

longitudinal scratches along the sliding direction, but no obvious particle height reduction 

or damage to the aluminum matrix were observed. It is observed that silicon particles 

with high aspect ratio started to fracture at 5 x 104 cycles (Fig. 6.3 b). This is consistent 

with observations made by Riahi et al. [71-72]. Fragmentation of the silicon particles 

facilitated silicon particle sinking-in, due to the increase in the pressure applied on the 

small fractured sections (Fig. 5.17). The stress intensification on fragmented particles was 

discussed in Section 5.4.3. The aluminum matrix around the sunken-in particles bulged 

out to accommodate the displacement caused by the particle indentation (Fig. 6.3 c). It is 

notable that damage that occurred so far was still at the microscopic level, no material 

loss was detectable within the detection limits for the sensitivity of the test machine, 

therefore, UMW-I was maintained with minimal surface damage. 

The elevated aluminum plateaus are susceptible to permanent contact damage by 

the counterface. According to Fig. 6.2, volumetric wear loss started to deviate from 0 

after 3 x 105 cycles; hence the alloy entered UMW-II. Fig. 6.3 d presents the 

corresponding contact surface morphologies. Significant surface damage, in the form of 

continuous scratches parallel to the sliding direction was observed on the aluminum 

surface, and material loss became obvious and measurable. In addition, most of the 

silicon particles inside the wear tracks appeared to be fractured into smaller sections, 

which became embedded into the aluminum matrix. At the longest sliding distance, i.e., 
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at 6 xlO cycles, the SEM image in Fig. 6.3 e reveals a similar wear mechanism. The 

abrasive scratches on the wear track are continuous and deeper, inferring an increase in 

material loss. The silicon particles inside the wear track are fully embedded into the 

aluminum matrix. These observations suggest that the onset of the running-in period is 

inevitable when the silicon particles became embedded in the aluminum matrix leading 

to a loss of their load carrying ability. 

Evaluation of the microstructure at 1.0 and 2.0 N applied loads showed that 

damage to the silicon particles and the aluminum matrix around the particles occurred at 

shorter sliding distances due to the higher contact pressure (Section 6.2.1). 

Fundamentally the images offer no new information from those presented in Fig 6.3. 

Figs. 6.4 a to d present the evolution of the worn surfaces at 2.0 N after stopping the 

sliding tests between 5 x 10 and 6 x 10 cycles. The back scattered SEM image in Fig. 

6.4 a, taken after 5 x 102 cycles illustrates that silicon particle fracture and sinking-in 

started to happen in the very beginning of surface damage process. Fig. 6.4 b presents the 

image taken after 1.5 x 103 cycles, where asymmetrical aluminum pile-ups around the 

fractured and sunken-in silicon particles were observed. With increasing sliding cycles, 

the continuous abrasive scratches became deeper and wider, inferring a transition to the 

UMW-II regime. Damage and material loss on the contact surface is shown in Fig. 6.4 c 

after sliding for 6 x 105 cycles. In addition, the SEM image in Fig. 6.4 c shows that the 

elevated aluminum surface in some areas, such as indicated by the arrows marked ORL, 

became dark in color compared to the area outside the wear track. Further analysis 

showed that this is an oil residue layer (ORL). The layer is only formed after the contact 

had evolved by sliding; i.e, after Si fragmentation and damage to deformed aluminum. 

More analysis of the layer is presented in Section 6.2.4. The enlarged backscattered SEM 

183 



image in Fig. 6.4 d reveals details of fractured Si particles inside the wear track that are 

embedded into the aluminum matrix. The arrow in Fig. 6.4 d indicates displacement of 

fractured parts of the fractured particles leading to opening of gaps on the aluminum 

surface through which oil residues can diffuse inside the matrix and to the matrix particle 

interfaces. 

6.2.3. Surface Damage Evolution in Al-11% Si-F 

6.2.3.1. Variation of Volume Loss with Sliding Cycles in AI-11% Si-F 

The tribological behaviour of the alloy with the finer microstructure, Al-11% Si-F 

was not identical to Al-11% Si-C. Fig. 6.5 shows the variation of volumetric wear loss of 

Al-11% Si-F at the applied loads of 0.5, 1.0, and 2.0 N. According to Fig. 6.5, the UMW-

I regime was maintained at 0.5 N even after sliding to 6 x 105 cycles, i.e., no material loss 

could be detected to Al-11% Si-F. At 1.0 N, the transition from UMW-I to UMW-II 

started at 5 x 104 cycles, the measured material loss was 7.53 x 10"5 mm3. At an applied 

load of 2.0 N, the deviation of volumetric wear loss from zero started after just 5 xlO3 

cycles, the corresponding volume loss was 1.40 x 10"4 mm3. 

Similar to Al-11% Si-C, the volume loss increased with increasing sliding 

distance and normal load. However, the plots shown in Fig. 6.5 indicate that the volume 

loss decreased after sliding for 3 xlO5 cycles at 1.0 N, and 104 cycles at 2.0 N, the alloy 

entered the UMW-III regime. This is again similar to the decreasing wear trend seen in 

Fig. 6.2 for Al-11% Si-C. The mechanisms responsible for delaying the transition to 

UMW-II at all sliding cycles at 0.5 N and the attainment of the UMW-III accompanied by 

a decrease in volume loss after sliding long cycles will be understood through the 

metallurgical evidence provided in Section 6.2.3.2. 
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6.2.3.1.1. Microstructural Features of the Worn Surfaces of Al-11% Si-F 

The contact pressure analysis presented in Section 4.4 suggests that the maximum 

real contact pressure applied on the silicon particles in Al-11% Si-F was dependent on the 

silicon particle distribution. The maximum contact pressure decreased with a reduction in 

the separating distance between the silicon particles (Fig. 4. 20). At all the applied loads 

used, the maximum contact pressures applied to the silicon particles exceeded the matrix 

hardness (660 MPa). This infers that Si sinking-in is expected, and more plastic 

deformation is expected to the areas with small silicon particle areal density. 

Consequently, the transition to the UMW-II regime should occur at a lower number of 

cycles, and more material loss is expected compared to Al-11% Si-C. 

Figs. 6.6 to 6.8 illustrate the evolution of the worn surface morphologies of Al-

11% Si-F at 0.5 N. Figs. 6.6 a and b show the 3D surface profilometer images taken after 

interrupting the sliding tests at 5 x 102 and 1.5 x 103 cycles. They show that the damage 

mechanism operating in Al-11% Si-F differed from that of Al-11% Si-C: Silicon particle 

sinking-in started in the very beginning. At 5 x 104 cycles the particle height continued to 

decrease (Fig. 6.7). To accommodate the indentation made by the silicon particles, 

aluminum pile-ups were formed around the sunken-in silicon particles, as in the case of 

Al-11% Si-C. However, as shown in Fig. 6.7 a and the magnified SEM image shown in 

Fig. 6.7 b, the aluminum pile-up in Al-11% Si-F depended on the Si inter-particle 

spacing. Aluminum pile-up was generally observed around those sunken-in silicon 

particles which had a larger separation between the silicon particles, that is, around 

sparsely distributed sunken-in silicon particles, i.e., where the area density of silicon 

particles is < 4x10" urn"2. The arrows in Fig. 6.7 b indicate a location of pile-ups. When 
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the inter-particle distance between silicon particles was small, corresponding to a particle 

density > 4xl0"2 urn"2, little or no aluminum pile-up was observed. The bulging out of the 

aluminum matrix around the sunken-in silicon particles can also be observed in the 2-D 

surface profilometer image (Fig. 6.7 c). Compared with the aluminum pile-up adjacent to 

the plate-like silicon particles in Al-11% Si-C, the aluminum bulging-out around the 

small spherodized silicon particles appears to be more symmetrical, as the arrows indicate 

in Figs. 6.7 a and b. While the asymmetry in pile-up formation in high aspect ratio Si 

particles is noted in Figs. 6.3 and 6.4 b where more aluminum accumulation was 

observed ahead of the plate-like silicon particles in Al-11% Si-C. 

Figs. 6.8 a - c show the evolution of surface damage within the wear track after 

sliding for 6 xlO5 cycles at 0.5 N. The silicon particle height continued to decrease, 

however, no significant damage, i.e., surface scratches parallel to the sliding direction, 

were observed (Fig. 6.8 a). The surface damage appeared to be a function of the area 

density of silicon particles. At location 'X' in Fig. 6.8 a, where silicon particles were 

closely distributed (area density of silicon particles > 0.04/um2), silicon particle sinking-

in was the main damage process. A high magnification view of the inset X is given in 

Fig. 6.8 b to show the sunken-in particles. The top parts of most particles are still visible 

above the aluminum matrix. While at location 'Y', where silicon particles were 

distributed with larger spacing and the area density was about 0.01/um2, the aluminum 

matrix around those silicon particles rose above the initial surface and more particles 

were embedded into the aluminum matrix. In the magnified backscattered SEM image of 

Fig. 6.8 c bulging-out of the aluminum matrix that covered almost all particles is evident. 

It can be seen that local plastic deformation is extensive, but no scratches could be 

observed, hence no material loss occurred. The top surfaces of the elevated aluminum 
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plateaus remained smooth, but assumed a dark color, due to the formation of an oil 

residue layer, which will be further discussed in Section 6.2.4. In summary, UMW-I 

maintained in Al-11% Si-F at 0.5 N even after the longest sliding cycle used. 

At 1.0 N, the transition to the UMW-I regime in Al-11% Si-F was first noted at a 

sliding distance of 5 x 104 cycles. At this point in sliding, the silicon particles became 

totally embedded in the aluminum matrix. Additionally, longitudinal surface scratches on 

the elevated aluminum became apparent with continuous tracks. This resulted in 

measurable quantities of material loss (i.e., 7.5 x 10" mm ). At 2.0 N, the degree of 

silicon particle height reduction was greater in comparison with that at 0.5 N after sliding 

for any cycle. Obvious silicon particle sinking-in was observed after sliding just 5 x 102 

cycles. Aluminum bulging out started to form locally after just sliding for 5 x 102 cycles 

as shown in Fig. 6.9. Longitudinal scratches were visible after sliding for 5 x 103 cycles. 

6.2.4. Characterization of the Oil Residue Layer 

After sliding for 6 x 105 revolutions at 2.0 N, virtually the whole wear track was 

covered by a dark colored layer, as shown in the optical image (Fig. 6.10 a). This is the 

oil residue layer. The wear track morphology after sliding for 5 x 104 cycles in Fig. 6.10 a 

indicates that the contact surface was first subjected to wear damage; the wear track was 

not covered with the dark layers, but surface scratches and severe deformation. At 2.0 N 

(as well as 1.0 N) an oil residue layer was formed after the transition to UMW-II and 

surfaces evolved for sliding long cycles. Once formed, this layer served to reduce the 

wear as seen in Fig 6.5, that is, the alloy entered UMW-III regime. Fig. 6.10 b presents 

the SEM image taken from the location 'X' in Fig. 6.10 a showing the morphology of the 
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oil residue layer. The oil residue layer spreads over the surfaces of silicon as well as 

aluminum. The nanometer size morphological features of the layer are seen in the 

corresponding AFM image shown in Fig. 6.10 c. Similar features were observed on the 

Al-Si cylinder bore surfaces by M. Dienwiebel et al [13]. To identify the microstructural 

changes in the layers adjacent to the worn surface in UMW-II, FIB and TEM 

investigations were required. 

Fig. 6.11 a shows a cross-section of the wear track prepared using a FIB milling 

technique. Fig 6.11 b is a secondaiy FIB image giving details of the inset in Fig. 6.11 a. 

In this section the thickness of the oil residue layer is about 0.6 (Am. Embedded silicon 

particles are clearly seen. An oil residue appears to spread under some particles. Fig. 6.12 

presents the cross-sectional TEM image taken from the same section of this FIB image: 

The layer is visible on the top surface. It exhibits nanocrystalline aluminum grains (note 

the layer above the silicon particle) with sizes less than 100 nm, consistent with the size 

of features seen in the AFM image. The aluminum grains immediately below that have an 

equi-axed shape and nano-crystalline size in the range of 400- 600 nm. 

The mechanical properties of the worn surfaces covered with the oil residue layers 

were evaluated using a nano-indentation tester. Using a maximum load of 2.3 mN the 

indenter penetrated to a depth of 200 nm and hardness values ranging between 1.5 to 2.5 

x 103 MPa were obtained. At the same penetration depth the bulk aluminum matrix had a 

hardness of 750 to 850 MPa, indicating that the hardness of the oil residue layers and the 

aluminum layers adjacent to them were more than three times higher than that of the 

aluminum matrix. 

Chemical analysis of the composition of the oil residue layer by XPS, as shown in 

the survey spectrum in Fig. 6.13, reveals that engine oil elements were found in the layer: 
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S, Ca, Zn, C, and O, and aluminum and silicon. This layer has been formed during the 

course of sliding wear and, therefore, is named an oil residue layer. A closer examination 

of the chemical state of aluminum in the oil residue layer (Fig. 6.14 a) indicated that the 

uppermost few nanometers (depth sensitivity of XPS is 6-7 nm) of the aluminum layer 

was composed of aluminum oxide (binding energy 73.7 eV). This contrasts with the XPS 

spectra of the initial surface where metallic aluminum (binding energy 72 eV) and 

aluminum oxide (74.8 eV) were observed. When the (dry) sliding wear tests were done 

in ambient air (45% RH) at 2.0 N, again these two peaks were observed (Fig. 6.14 a), 

thus providing additional evidence that the Al 2p peak at 73.7 eV obtained after the 

lubricated tests might be attributed to the presence of elements from the oil. A similar Al 

2p peak shift was found by Hu et al. [82] from an Al-Si alloy surface sliding against 

itself, lubricated with amines. Similarly, Timrnermans et al. [81] detected oil elements on 

a worn surface generated after fretting wear of hypereutectic P/M Al-Si alloys in an oil 

environment. The Si 2p spectra presented in Fig. 6.14 b show that the silicon in the near 

surface appeared to be both in the form of silicon oxide and elemental silicon, and that the 

spectrum remained virtually unchanged from the initial surface or after dry sliding tests. 

6.2.5. Evolution of Silicon Particle Height with the Sliding Cycles in the Two 
Eutectic Al-Si Alloys 

Complete sinking-in of silicon particles causing the loss of their load carrying 

ability, is a precursor to transition from UMW-I to UMW-II, if no oil residue layer is 

formed. Accordingly, a statistically analysis of the silicon particle height distributions is 

necessary to quantify damage in the UMW regime. Quantitative analysis of the worn 

surface morphology is presented for Al-11% Si-C in Section 6.2.5.1, and then for Al-11% 
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Si-F in Section 6.2.5.2. 

6.2.5.1. Silicon Particle Height Reduction in Al-11% Si-C 

Histograms showing the reduction of silicon particle heights in Al-11% Si-C at the 

applied loads of 0.5, 1.0 and 2.0 N after various sliding distances are plotted in Fig. 6.15. 

The average initial height of silicon particles standing proud of the aluminum matrix in 

Al-11% Si-C is 1.60 urn. At an applied load of 0.5 N, the average silicon particle height 

cumulatively decreased to 1.50 um after sliding for 5 x 103 cycles, and to 0.87 urn after 

sliding for 105 cycles. Fig. 6.15 indicates that after sliding for 3 x 105 cycles the height 

difference between silicon and aluminum peaks disappeared and all the surface profiles 

merges into a single peak. The reduction in the average silicon particle height on the 

contact surfaces of Al-11% Si-C with the sliding distance at each applied load is 

summarized in Fig. 6.16. 

Figures 6.15 b and c show that, the silicon particle height was reduced by a 

greater amount at 1.0 and 2.0 N than at 0.5 N. The initial silicon particle average height of 

1.60 um in at 1.0 N decreased to 1.40 um after sliding for just 3 x 102 cycles. After 

sliding for 104 cycles, the average height of a silicon particle protruding above the 

aluminum matrix was only 0.38 um. After sliding for 5 x 10 cycles, it was no longer 

possible to differentiate the silicon height from the aluminum. At 2.0 N, after sliding for 

104 cycles, the two peaks merged into a single peak (Fig. 6.15 c), inferring that silicon 

particles were completely embedded in to aluminum matrix. 

6.2.5.2. Silicon Particle Height Reduction in Al-11% Si-F 

Figs. 6.17 a to c present the histograms showing the reduction of silicon particle 
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heights in the Al-11% Si-F at the applied loads of 0.5, 1.0 and 2.0 N after various sliding 

cycles. A summary of the analysis of the height histograms after various sliding distances 

is plotted in Fig. 6.18. It indicates that the silicon particle height in Al-11% Si-F also 

decreased with increasing sliding cycles and normal load. But Al-11% Si-F exhibited a 

larger degree of silicon particle sinking-in at low sliding cycles at each load when 

compared to Al-11% Si-C with large plate-like silicon particles (Fig. 6.15). On the other 

hand, the worn surface morphologies presented in Section 6.2.3 indicates that the 

embedding of the silicon particles into the aluminum matrix was also affected by the 

silicon particle distribution. The data for Al-11% Si-F shown in Fig. 6.17 was constructed 

by analyzing surface profilometry data measured from locations where silicon particles 

were distributed with smaller separation distance, the area density was > 0.04/um2. At 0.5 

N, the initial silicon particle height of 1.74 above the aluminum matrix decreased to 1.45 

um after sliding for 5 x 102 cycles, after sliding for 105 cycles, the silicon particle height 

protruding above the aluminum matrix was just 0.40 um, while for the large plate-like 

silicon particles in Al-11% Si-C at 0.5 N, the average particle heights decreased by 0.70 

um after sliding for 105 cycles. However, after sliding for 3 x 105 cycles, the average 

height of the silicon particles projecting above the aluminum matrix in Al-11% Si-F was 

still 0.26 um (Fig. 6.17 b). 

Like the large plate-like silicon particles in Al-11% Si-C, the average heights of the 

small spherorized silicon particles in Al-11% Si-F decreased by a greater amount by 

increasing the applied load to 1.0 and 2.0 N (Figs. 6.17 b and c). At 1.0 N, the initial 

silicon particle height of 1.74 um in Al-11% Si-F rapidly decreased to 0.22 um after 

sliding for 104 cycles (Fig. 6.17 b). After sliding for 5 x 104 cycles, it was no longer 

possible to differentiate the locations of silicon peak heights from the aluminum surface 

191 



profile (Fig. 6.17 b). At 2.0 N, the initial average heights of the silicon particles in Al-

11% Si-F sharply decreased by 1.50 um after a sliding distance of only 103 cycles (Fig. 

6.18). After sliding for 5 x 103 cycles, the height difference between silicon particle and 

aluminum matrix vanished, and surface profiles of the silicon particle and matrix become 

merged into a single peak (Fig. 6.17 c). 

In addition, the number of sliding cycles at which the silicon particle peak height 

diminishes to zero almost always corresponded to the number of sliding cycles where the 

running-in period started. Therefore, complete sinking-in of silicon particles, causing the 

loss of their load carrying ability, is the precursor to the transition from UMW-I to UMW-

II provided that an oil residue layer is not formed (Sections 6.2.2, and 6.2.3). 

6.2.6. Summary and Discussion 

The wear test results show that the transition from UMW-I to UMW-II depends 

on two factors, one is the mechanical response of the hard phases to the applied load, and 

the other is the possible formation of an oil residue layer. 

Both eutectic Al-Si alloys tested had comparable compositions, and bulk and 

matrix hardnesses, but different microstructures: the average silicon particle length in Al-

11% Si-C was 15 times larger, and the particle aspect ratio was 7 times larger than in Al-

11% Si-F. The silicon particle distribution in the alloys was different too (Fig. 3.4); the 

silicon particles in Al-11% Si-C had a larger interparticle spacing when compared to the 

particles in Al-11% Si-F. Examination of the worn surfaces generated during sliding tests 

versus sliding cycles revealed that the surface damage mechanism in Al-11% Si-C 

differed from that of Al-11% Si-F at 0.5 N, while at 1.0 and 2.0 N, the two alloys 

exhibited a similar wear damage mechanisms. The propensity of the alloys to form an oil 
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residue layer was different. The contact pressures applied on Al-11% Si-F, where the area 

density was > 0.04 /urn2, were about 2.5 times higher at each load than those applied on 

Al-11% Si-C. At 0.5 N, an initial contact stress exerted on Al-11% Si-C was less than its 

matrix hardness. The surface damage mechanism evolved with sliding distance in Al-11% 

Si-C at this load in the following sequence: 

i) Abrasive wear on the top surfaces of silicon particles by the counterface, 

ii) Fracture of silicon particles, 

iii) Sinking-in of fractured silicon particles into the aluminum matrix, 

iv) Bulging out of the aluminum matrix adjacent to the sunken-in silicon particles, 

v) Wear to the elevated aluminum portions by the counterface, causing material loss. 

The experiments at 0.5 N clearly observed fractured silicon in Al-11% Si-C, and 

not in Al-11% Si-F. This is due to the fact that the size and shape of the silicon particles 

control their ability to resist the applied contact pressure. Although the estimations of 

contact pressure provided in Section 6.2.1 are helpful in rationalizing the response of the 

silicon particles to the applied load, these calculations do not exactly simulate the 

experiment. The pin - on- disc experiments have an additional shear stress on the silicon 

particles. The calculations suggest that larger particles will have a reduced stress level, 

and hence should perform better. However, the data shows that large particles with a large 

aspect ratio failed by fracture, and are no better than small spherical particles in resisting 

the transition to the UMW-II regime. As shown in Fig. 5.17, the maximum contact 

pressure exerted on the fractured silicon particles will increase due to the size reduction. 

Therefore, fragmentation of the plate-like particles into small pieces assists silicon 

particle sinking-in. This was in fact experimentally observed. The calculations in Section 

4.4 do not predict the behaviour of the fractured particles; these fragments can be lost 
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altogether, or easily pushed into the matrix, both of which reduce their ability to carry 

load in a way that is not predicted by the calculations. 

The small spheroidized silicon particles in Al-11% Si-F exhibited a greater 

decrease in silicon particle height at a low number of cycles in comparison with Al-11% 

Si-F, due to the much higher contact pressure (Table 6.1). The height reduction of 

particles in Al-11% Si-F was not due to particle abrasion but rather to rapid silicon 

particle sinking-in, which started at the very early stages of sliding. As stated before, 

silicon particle sinking-in induced plastic deformation of the aluminum matrix, which led 

to the formation of aluminum pile-ups around the sunken-in particles. The backscattered 

SEM images in Fig. 6.7 indicate that the silicon particle sinking-in and aluminum 

bulging-out around the sunken-in silicon particles were affected by the particle 

distribution at 0.5 N. Silicon particles with a smaller separation distance from one another 

were pushed into the aluminum matrix to a lesser extent than those with a wider spacing. 

At locations where the local silicon particle density was high, there was little or no pile-

up formation. This infers that in these locations where particles were more closely spaced 

they constrain the matrix and hence induce local hardening at levels higher than where the 

particles are sparsely distributed - The increased matrix strength makes sinking-in of the 

closely spaced particles more difficult (Fig. 6.7). Unlike Al-11% Si-C, in this alloy no 

conspicuous wear damage in the form of longitudinal abrasive scratches was observed on 

the elevated aluminum plateaus. A dark colored layer covered most of the elevated 

aluminum surfaces after 6 x 10 cycles (Fig. 6.11 a). Hence, in Al-11% Si-F tested at 0.5 

N, the transition to UMW-II was prevented throughout. The evolution of damage in Al-

11% Si-F with sliding at 0.5 N can be summarized as: 

i) Rapid sinking-in of silicon particles into the aluminum matrix (no abrasion on the 
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top surfaces was evident), but particle sinking-in depended on interparticle 

spacing, silicon particles in areas with large interparticle distance sink-in more 

readily than those with small interparticle spacing, 

ii) Development of aluminum pile-ups adjacent to the sunken-in silicon particles, 

iii) Formation of an oil residue layer on the elevated aluminum surface. 

The formation of the oil residue layer with a higher hardness than the aluminum 

matrix material has quite significant consequences; it appears that it was effective in 

inhibiting the transition to UMW-II. This layer prevented direct contact between the 

nascent aluminum and the counterface (Fig. 6.8). The important point is that at 0.5 N 

applied load, the layer depended on the microstructure and the number of sliding cycles, 

and that for the Al-11% Si-C microstructure, the layer never formed. 

At applied loads of 1.0 and 2.0 N, sinking-in of the silicon particles in the eutectic 

Al-Si alloys was inevitable due to the high contact pressure, exceeding their matrix 

hardness (Table. 6.1). In spite of the fact that there was some fracture of large silicon 

particles in Al-11% Si-C, the results indicate that the alloy behaved as though yielding of 

the aluminum matrix was based on the initial particle size (stress). The wear mechanisms 

in both alloys appeared to be similar and consisted of the following distinct stages: 

• In the UMW-I regime, sinking-in of silicon particles into the aluminum matrix 

and bulging-out of the aluminum matrix adjacent to the sunken-in silicon 

particles were observed. 

• In the UMW-II regime, wear to the elevated aluminum portions by the 

counterface, causing material loss started to be measurable. 

• In the UMW-III regime, an oil residue layer supported by ultra-fine aluminum 
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grains was formed, leading to a decrease in the volumetric loss. 

At these loads, silicon particles with a smaller size were more rapidly embedded 

into the aluminum in comparison with large silicon particles. But, ultimately all particles 

became completely embedded in either alloy. As the particles were pushed in, 

deformation of the surrounding aluminum occurred in order to conserve volume. The 

deformed aluminum became exposed to the counterface at low sliding cycles. Hence, the 

transition to the UMW-II regime occurred earlier. The surface damage process evolved 

with the sliding cycles during the UMW regime is schematically summarized in Fig. 6.19. 

The key difference between the alloys at the tested loads was the generation of a 

black colored oil layer on the elevated aluminum plateaus around the sunken-in silicon 

particles after sliding for a large number of cycles. Aktary et al. [ I l l ] found that the 

formation of the ZDDP anti-wear film is a function of rubbing time. As with the 0.5 N 

tests, the details of formation of this layer depended on the microstructure, load, and 

number of sliding cycles: A greater area of the wear track was covered with this layer at a 

lower number of sliding cycles for the Al-11% Si-F alloy. This suggests that a 

competition exists between the kinetics of formation of these deposits, and removal of the 

layer by wear processes. 

The material loss decreased on the contact surfaces in Al-11% Si-C at 2.0 N after 

3 x 105 cycles and after approximately 105 cycles for Al-11% Si-F at 1.0 N and 2.0 N, 

these conditions correspond to observations of the oil residue layer nearly completely 

covering the 'wear track. The decrease in material loss is possibly attributed to the 

formation of the oil residue layer with engine oil elements in it. The material loss 

reduction may also be caused by refinement of aluminum grain size during sliding 

process. The formation of ultrafine grains adjacent to contact surface increased the local 
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hardness and possibly provided support to the oil residue layer. Some nano-crystalline 

aluminum grains were mixed with oil residue in this layer. The surface plastic 

deformation accompanying formation of the oil residue layers has been noted in Figs. 6.4, 

6.8, and 6.11. 

The reduction in the grain size of aluminum during sliding results from severe 

plastic deformation, inferring that the contact surface was subjected to large plastic 

strains. During sliding wear, in addition to the shear stress applied to the material layers 

adjacent to the contact surface, a superimposed hydrostatic pressure field exists. 

Consequently, aluminum layers can be constrained to very large strains without fracture. 

The principles of processing of ductile materials with ultra-fine grain sizes using high 

strain deformation processes are well known [112]. It was estimated that application of a 

large hydrostatic pressure of about 5 GPa and equivalent plastic strains of the order of 

5.0-10.0 were typically induced using torsional deformation carried out under hydrostatic 

pressure, and in this way ultra-fine grain sizes of the order of 100-200 nm could be 

obtained [113]. An estimate of the severity of local shear strains generated during sliding 

contact conditions can be made using the grain size data provided by the cross-sectional 

TEM micrographs (Fig. 6.12). The original aluminum grain size of the two eutectic Al-Si 

alloys is 10-30 micrometers. During deformation the grain size in the material 

immediately below the oil residue layers has been reduced to about 500 nm. The size of 

the aluminum grains within the oil residue layer is even smaller (less than 100 nm). 

Hence hydrostatic pressures and plastic strains in aluminum that are at the same order of 

magnitude as noted above are likely to occur during the pin-on-disc tests in the UMW 

regime and at the beginning of the UMW-II regime. The nanocrystalline aluminum layers 

are harder than the rest of the bulk alloys (750 - 850 MPa), as the composite hardness of 
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the oil residue layer and nano-crystalline aluminum surfaces was 1.5- 2.5 GPa. Thus they 

serve to support the oil residue layer, and help to maintain low wear rates. 

It is important to emphasize that the silicon particle height in Al-11% Si-F at 0.5 

N, and also for Al-11% Si-C at 1.0 reduced abruptly from the beginning to after some 

short sliding cycles, for example 5 x 104 cycles for Al-11% Si-F at 0.5 N, it then 

decreased gradually with sliding cycles. This can also be attributed to work hardening of 

the aluminum matrix due to grain size reduction; the increased strength of the matrix 

makes the further sinking-in of silicon particles more difficult. 

In closing, it should be noted that all tests reported here were conducted at a 

relatively low sliding speed in order to insure that the lubrication state stayed in the 

boundary lubricated regime. This use of low speed limited the total number of cycles that 

any single test could be run, for practical reasons: The longest tests took 4 full days to 

complete. The trend in the data shows that once the oil layer is formed, the material loss 

rate tends to decrease with the sliding cycles. The experimental observation made on the 

two alloys indicates that the UMW finally tends to be stabilized after sliding for long 

cycles. This makes one wonder whether a new stable condition lies further out in the data, 

where after even greater number of sliding cycles the tests may return to a stable 

condition equivalent to the UMW-I regime, which is not accompanied by material loss. 

To test this premise, the two eutectic Al-Si alloys were tested to 2 x 106 cycles at 2.0 N. 

Figs. 6.20 and 6.21 present the optical images taken from the wear tracks of Al-11% Si-C 

and Al-11% Si-F after stopping the sliding tests at 2 x 106 cycles. It can be seen that 

virtually the whole wear tracks of both alloys were covered by a dark-colored layer (Fig. 

6.20 a and 6.21 a). But the oil residue layer formed on the Al-11% Si-F surface was more 

uniform compared with that on Al-11% Si-F (Fig. 6.20 b and 6.21 b,), inferring that the 
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microstructure in Al-11% Si-F is optimal for the formation of the oil residue layer. For 

both alloys, the volumetric wear loss continued to decrease compared to the data obtained 

after shorter sliding cycles of 6 x 105. For example, the volume loss measured from the 

Al-11% Si-F surface decreased from 1.58 x 10"4 mm3 to 8.07 x 105 mm3 when the sliding 

cycles increased from 6 x l 0 5 t o 2 x 10 cycles. 

The results obtained from Al-11% Si-F with small spheroidized silicon particles 

suggested that surface damage in the form of silicon particle sinking-in and aluminum 

pile up was affected by the silicon particle distribution. Accordingly, it is conceivable that 

the use of an Al-Si alloy with a high areal density of small spheroidized silicon particles, 

which are evenly distributed with small inter-particle distance, would be advantageous in 

reducing the wear damage under the UMW conditions. In order to test this premise, a 

spray formed hypereutectic alloy (Al-25% Si) with a harder matrix (1,090 MPa), high 

areal density (about 0.3 ± 0.1), and uniformly distributed small silicon particles was tested 

under the conditions that corresponded to the UMW regime. The experimental results 

from the wear tests are presented for the Al-25% Si alloy in Section 6.3. 

6.3. UMW Behaviour of the Al-25% Si Alloy 

Microstructural events controlling the wear behaviour of Al-25% Si were complex 

and depended on the applied load. Also morphological features of the wear tracks evolved 

with the number of contact cycles. These features are described in the following sections 

in the order they were detected, starting from the lowest load applied. 

6.3.1. Worn Surface Morphologies at 0.5 N 
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At 0.5 N hardly any visible damage was apparent on the wear tack. Figs. 6.22 a 

and b show characteristic features of the wear tracks after sliding for 5 x 104 cycles. It 

was difficult to distinguish the impression of the wear track on the contact surface in the 

low magnification SEM micrograph of Fig. 6.22 a. A small number of fractured silicon 

particles were observed within the wear track, as marked in the higher magnification 

SEM image of Fig 6.22 b. No wear or damage due to plastic deformation on the 

aluminum matrix was evident. Examination of the 3-D optical surface profilometer 

image in Fig. 6.22 c of the same portion of the wear track shown in Fig. 6.22 a indicates 

that generally there was a some decrease in the heights of the silicon particles standing 

out of the wear track. 

After sliding for 6 x 105 cycles, which is the longest number of cycles used at 

0.5N, an assessment of the SEM images of the wear track (Fig. 6.23 a) revealed that the 

main features of the wear remained essentially the same as those from a lower number of 

cycles. There was an increase in the number of fractured silicon particles, some of which 

can be seen in Fig. 6.23 b. As seen here, larger particles were more prone to fracture. The 

silicon particle elevation inside the wear track continued to decrease, compared to outside 

the wear track. However, the silicon peaks still rose above the aluminum surface (Fig. 

6.23 c). Quantitative evaluation of the silicon particle height distribution within the wear 

track will be given in Section 6.3.4, but it is helpful to note here that the silicon particle 

height reduction can occur either as a result of the embedding of rigid particles into 

aluminum or by wear of the tops of particles, depending on the magnitude of the contact 

stress on and the hardness of the aluminum (Section 6.2). In the case of the Al - 25% Si 

alloy, which has high hardness, wear of silicon peaks is the likely reason for the particle 

height reduction. Evidence for abrasion on silicon particles can be seen in the high 
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magnification image in Fig. 6.23 b . Embedding of rigid particles into the softer aluminum 

(silicon sinking-in) is normally accompanied by the formation of aluminum pile-ups in 

the vicinity of the sunken-in particles (Sections 5.3.1 , and 6.2.2.3). At 0.5 N, no clear 

evidence for matrix deformation could be observed. The salient observation is that the 

particle elevation is still above the matrix at the end of test, and thus, aluminum did not 

come in direct contact with the counterface. 

A period of high wear, mainly through the loss of aluminum followed. The 

observations pertaining to the Al- 25% Si alloy therefore, suggest that the high hardness 

and high silicon content, and hence smaller contact pressure per particle, made this alloy 

more wear resistant compared to eutectic Al-1 l%Si-C at this low load. In this respect the 

wear performance of Al- 25% Si can be considered equivalent to that of cast 390 (Al-

18.5%o Si) alloys (Section 5.5) with similar hardness (97 ± 7 HB), in which the damage 

was also confined to the silicon particle peaks. 

6.3.2. Worn Surface Morphologies at 1.0 N 

At 1.0 N local damage to aluminum adjacent to silicon particles became apparent, 

but otherwise metallurgical features of the worn surfaces of Al-25%> Si were in general 

agreement with those at the lower load. Figures 6.24 a-d present images showing the 

worn surface morphology examined after running to 5 x 104 cycles at 1.0 N. The 

secondary SEM image (Fig. 6.24 a) and the high magnification back-scattered SEM 

image in Fig. 6.24 b both indicate that silicon particles became partially embedded into 

the aluminum matrix. As stated above, silicon sinking-in was accompanied by formation 

of aluminum pile-ups around these particles. The pile-ups form in order to accommodate 

the displacement caused by the rigid particle indentation into the plastically deforming 
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matrix (Figs. 6.24 c and d). The rise in the average elevation of aluminum within the 

wear track is seen in Fig. 6.24 c. Pile-up formation was not uniform but depended on the 

location of the silicon particles inside the wear track. Namely, the elevation of aluminum 

in the vicinity of the particles at the centre of the wear track is higher according to Fig. 

6.24 c. This correlates well with the higher contact stress distribution at the center of the 

wear track (see Section 6.3.5.1). Another factor that influences the propensity of pile-up 

formation is the local particle density (i.e., the number of particles per unit surface area). 

Examination of a large number of optical surface profilometer and SEM images from 

various locations of the wear tracks indicated that aluminum pile-ups were preferentially 

formed around silicon particles in regions where the particle density was lower than the 

average, i.e., < 4 xlO2 urn"2. In regions where the local silicon density was high, 

corresponding to a particle density > 4 xlO2 urn"2, a lower amount of aluminum pile-up 

development was found. The contact stress depends on the details of the surface 

roughness, which in this case is dependant on the particle density. It is also likely that the 

aluminum matrix became more constrained when closely spaced particles were pushed in. 

This would cause an increase in the local yield strength making initiation of sinking in 

more difficult. 

At 1.0 N, a larger percentage of silicon particles were fractured compared to 0.5 N 

(Fig. 6.25). For example, after 5 xlO4 cycles, 8 % of particles were fractured at 0.5 N, 

while at 1.0 N, 22 % of the particles in the wear track were fractured. Some fractured 

silicon particles exhibited crack openings as indicated in Fig. 6.24 b. Fracture between 

particles and the matrix was also observed. 

The same wear mechanisms continued to operate at higher sliding cycles, and the 

surface damage accumulated as shown for the tests performed to 6 xlO5 cycles. The SEM 
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images in Figs. 6.26 a and b clearly show that most of the particles were embedded into 

the aluminum matrix inside the wear track after 6 xlO5 cycles. The average silicon 

particle size was reduced as a result of particle fracture and fragmentation. Formation of 

aluminum pile-ups resulted in an increase in the relative height of the matrix as shown in 

the 3-D surface profilometer image of Fig. 6.26 c. An important consequence of the these 

damage accumulation processes is that the aluminum matrix was left with fewer options 

to defend itself from contact damage and some direct contact between aluminum and 

counterface materialized. Scratch marks initiated on the aluminum are shown in Fig. 6.26 

c, but no mass loss from the sample could be detected using a high sensitivity (10" g) 

electronic balance. A method was developed (see Section 3.5) to estimate very small 

quantities of damage for pin on disk tests. Using this method, 2.03 x 10"7 g of material 

was removed during wear from the Al-11% Si-F after 5 xlO4 cycles at 1.0 N. No evidence 

for material loss could be detected for the Al-25% Si alloy using the same method. The 

first evidence for material removal in Al-25% Si was found at the higher load of 2.0 N, as 

will be described in the next section. 

6.3.3. Worn Surface Morphologies at 2.0 N 

At 2.0 N, damage to both silicon and aluminum was more extensive and 

additional wear mechanisms become operative at longer sliding distances. Metallurgical 

and compositional data illustrating the wear mechanisms at 2.0 N are presented in Figs. 

6.27 - 6.29, and described in the following paragraphs. 

Figures 6.27 a - c show the evolution of surface damage within the wear track 

after sliding for 104 cycles. Silicon particles inside the wear track were already fractured 

and became embedded into the aluminum matrix (Figs. 6.27 a and b). Particle height 
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reduction and pile-up formation both occurred at this short sliding distance (Fig. 6.27 c), 

and to a larger extent compared with tests at lower loads (i.e., compare Fig. 6.27 c with 

Figs. 6.24 c and 6.26 c). According to Fig. 6.27 b the top parts of most particles are still 

above the aluminum matrix, so that they are not totally implanted in the matrix. The pile-

up formations around these particles are marked by the arrows in Fig. 6.27 b. Aluminum 

pile-ups were preferentially formed around the embedded silicon particles in regions 

where the silicon interparticle spacing was larger than average. This observation once 

more underlines the earlier point that plastic deformation occurs with more difficulty in 

regions with high particle density. 

A low magnification SEM image of the sample subjected to 5 x 104 cycles is 

given in Fig. 6.28 a, it shows that the wear track was transformed into an apparently 

smoother surface, where it is difficult to distinguish individual particles. Silicon particles 

appear to be fully embedded into the aluminum matrix (Fig. 6.28 b). Almost all silicon 

particles fractured. Small cavities are seen in Fig. 6.28 b, and were probably caused by 

fractured particles that were washed away during sliding. Scratch marks on the aluminum 

and silicon are an important feature of wear. These marks, which extend in the sliding 

direction, are clearly seen on Fig. 6.28 c. A profilometer trace taken across the continuous 

scratch marks of the wear track (Fig. 6.28 d) shows the profile of the wear. Accordingly, 

the material loss was 2.2 x 10~4 mm3. 

Increasing to 6 x 104 cycles, the volume of material loss increased to 3.34 x 10"4 

mm , the wear track became wider, and continuous scratches inside the wear track can be 

seen in Fig. 6.29 a. Figure 6.29 b provides additional evidence for other aspects of wear 

damage, including silicon particle fracture and fragmentation. The tops of the silicon 

particles are no longer standing out of the wear track, as previously shown, and they are at 
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the same elevation as the top surface of the aluminum matrix. Parts of the surface were 

covered with a tribolayer that had a glaze-like appearance (Fig. 6.29 b). This layer did 

not come off after washing with hexane. Details of the layer are better seen in a cross-

sectional view of the wear track. To expose the cross-sectional view of the features on, 

and immediately below the wear track, the wear track was sectioned using a site-specific 

ion beam milling technique in a focused ion beam (FIB) system, as shown in Fig.6.29 c. 

There are several wear-induced damage features of interest in the cross-sectional SEM 

image. Of foremost interest is the presence of a tribolayer on the contact surface. This 

layer is very thin with thickness of the order of 0.1 um. With the use of XPS analysis, the 

presence of elements including C, Ca, S, and Zn, which belonged originally to the 

synthetic oil used to create the boundary lubrication condition, were detected in this layer. 

The XPS spectrum also indicates oxygen, silicon, and aluminum. Similar layers were also 

formed on the surfaces of other Al-Si alloys including Al-11% Si-C and Al-11% Si-F 

(Figs. 6.4, and 6.10). Electron energy loss spectroscopy analyses indicated that the carbon 

in the oil-residue layer is amorphous, and aluminum oxide was also detected. Figure 6.29 

c provides an example of a separated interface between silicon adjacent to the contact 

surface and the aluminum matrix. It shows that oil layers have diffused to the channel 

formed between the separated interface between silicon and aluminum. Finally, similar to 

Al-11% Si-F, the size of aluminum grains immediately below the contact surface is much 

smaller than the original grain size of 3-5 urn. The aluminum grains indicated by the 

arrows in Fig. 6.29 c have an average size of 0.5 um or less. The grain size reduction can 

be attributed to the generation of large strains near the contact surfaces [114]. It is 

proposed that an increase in the matrix hardness afforded as a result of grain refinement 

would help to strengthen the contact surface. Fig. 6.30 shows the plots of load versus 
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displacement measured from the black layer and the aluminum matrix using a maximum 

load of 2.5 mN the indenter penetrated to a depth of 200 nm and hardness values ranging 

between 1.5 to 2.5 GPa were obtained. At the same penetration depth the bulk aluminum 

matrix had a hardness of 750 to 850 MPa, indicating that the hardness of the oil residue 

layers and the aluminum layers adjacent to them were more than three times higher than 

that of the aluminum matrix. This would also support the oil-residue layer on the contact 

surface, thus, acting together with the oil-residue layer to increase wear resistance of the 

contact surface. However, it is important to note that the layer formed on Al-25% Si 

surface (0.1 um) was about 5 times thinner that that formed on Al-11% Si-F (0.6 urn). 

This will be discussed in Section 6.3.4.2. 

Damage occurred first on silicon particles and then to the aluminum matrix. 

Quantitative evaluation of damage inflicted to the constituents of the alloys is presented 

in Section 6.3.4. 

6.3.4. Quantitative Evaluation of Damage to Silicon Particles and Aluminum 

Metallurgical evidence presented in Section 3.3.2.1 indicates that the height of 

silicon particles standing 1.8 ± 0.4 urn above the etched aluminum surfaces decreased 

during the wear process - either due to wear of silicon summits or sinking-in of particles 

into aluminum. When the average silicon height decreased, their effectiveness as load 

carrying constituents diminished, and aluminum became susceptible to wear. These 

histograms are given in Figs. 6.31 a-c for the applied loads of 0.5, 1.0 and 2.0 N after 

various sliding cycles. It is seen that the silicon summit elevations decrease very 

gradually with increasing the sliding cycles at 0.5 N to 1.4 after 105 cycles and 1.0 um 

after 6 xlO5 cycles (Fig. 6.31 a). At 1.0 N (Fig. 6.31 b), the particle height after 105 
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cycles is 0.9 um, and 0.4 um after 6xl05 cycles. At 2.0 N (Fig. 6.31 c) the decrease in the 

silicon height is much faster. Fig.6.32 summarizes the particle height changes relative to 

aluminum matrix. While after the longest sliding cycles, the average silicon particle 

height is still above the average elevation of aluminum matrix at 0.5 and 1.0 N, at 2.0 N 

there is no difference between peaks representing silicon and aluminum after sliding only 

to 5 x 104 cycles. As stated above, this situation coincides with the initiation of wear and 

consequently material loss. 

Fig. 6.33 shows the volume of material loss from the wear tracks on Al-25% Si at 

applied loads of 0.5, 1.0, and 2.0 N. As expected at low loads, no material loss was 

detected. At 2.0 N, however this was not the case as after sliding for 5 x 104 cycles a 

volume loss of 2.24 x 10"4 mm3 was measured. This corresponds to the number of sliding 

cycles where silicon became entirely embedded in the aluminum matrix. The material 

loss is not a linear function of sliding cycles: The volumetric wear rate loss between 5 x 

104 - 105 cycles at 2.0 N corresponded to a wear rate of 2.0 x 10"10 mmVcycle (or 1.63 x 

10"8 mm3/m). This is the UMW-II regime. As seen in Fig.6.33 after sliding for 3 xlO5 

cycles, the slope of volume loss vs. sliding cycles curve started to decline, namely, 

entering UMW-III regime. This was attributed to the formation of an oil-residue layer and 

to hardening of the aluminum subsurface as a result of microstructural refinement under 

large strains. 

6.3.5. Discussion 

6.3.5.1. Wear Mechanisms in Al-25% Si 

At low loads wear of Al-25% Si was initiated on the summits of silicon particles 

standing above the contact surfaces and these particles were fractured, some becoming 
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dislodged. The peaks of silicon particles within the wear track remained above the 

aluminum surface and continued to carry the applied load, thus protecting aluminum from 

damage. The damage mechanisms that occurred at 0.5 N can be summarized as: 

i) Wear of the top surfaces of silicon particles, 

ii) Fracture of silicon particles, 

iii) Reduction of particle height but no visible damage to aluminum. 

At 1.0 N, evidence for particle sinking-in into the matrix (in addition to fracture 

and abrasion) was found; this was accompanied by the formation of aluminum pile-ups. 

These pile-ups were more readily seen around the particles located in contact areas where 

the average silicon density was low. It was also seen that in general more pile-ups were 

formed at the centre of the wear track. At this load, evidence for some damage initiation 

to the aluminum matrix was found in the form of longitudinal grooves, after long sliding 

cycles. But the wear to aluminum was not large enough to be measured by an electronic 

balance or quantitative interferometry. Hence, at 1.0 N the surface damage events 

consisted of the following steps: 

i) Wear of the top surfaces of silicon particles, particle fracture and fragmentation, 

ii) Particle sinking-in in the aluminum matrix, 

iii) Development of aluminum pile-ups adjacent to the sunken-in silicon particles, 

more prominent at the centre of the wear track and in locations with low particle 

density. 

iv) Initiation of slight wear damage on the aluminum surface in the form of scratches. 

At 2.0 N, silicon particle sinking-in and aluminum pile-up formation events were 

more discernible. Even after sliding for a short number of cycles, it was not possible to 

distinguish between the silicon peak and the aluminum surface profile. Aluminum wear 
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became visible at this point, and a period of high wear (UMW-II) ensued. This period was 

not persistent, and eventually the rate of damage decreased as an oil-residue layer was 

formed. Wear of Al-25% Si at 2.0 N involved the damage mechanisms summarized 

below: 

i) Wear of silicon particle peaks, particle fracture, fragmentation, and particle/matrix 

decohesion, 

ii) Sinking-in of silicon particles completely into the aluminum matrix ad formation 

of aluminum pile-ups, 

iii) Wear of aluminum, causing measurable quantities of material loss, leading to the 

transition to the UMW-III regime, 

iv) Development of an oil-residue layer on the surfaces of aluminum and silicon 

particles and strengthening of the aluminum layers by grain refinement, leading to 

the attainment of the UMW-III regime. 

The variations of contact pressure applied on the silicon particle asperities with 

the radial distance at each of the normal loads of 0.5, 1.0 and 2.0 N are plotted in 

Fig.6.34. The contact pressure applied on the exposed silicon particles is the highest at 

the centre of the wear track but diminishes with increasing the radial distance. The radial 

distance at which the contact pressure decreased to zero at each load is approximately the 

same as the width of the wear track. The applied pressure was distributed over a larger 

distance at higher loads. On the particles at the centre of the wear track the contact 

pressure was as high as 1.57 GPa at 0.5 N; 1.62 GPa at 1.0N; and 1.68 GPa at 2.0 N. The 

contact pressures calculated using the Hertz theory [105], assuming smooth surfaces, are 

also plotted in Fig.6.34. The maximum real contact pressure values calculated following 

the Greenwood-Tripp analysis were 60% greater than the Hertzian pressures. The 
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apparent contact pressure calculated using the Greenwood-Tripp's model, at each load 

spread over an area with greater radius compared with the Hertzian pressure. The 

maximum apparent contact pressure estimated with Greenwood-Tripp are 164 MPa at 0.5 

N, 246 MPa at 1.0 N, and 349 MPa at 2.0 N, which were 40 % lower than the Hertzian 

pressures. 

Examination of the contact pressure distribution curves in Fig. 6.34 help to 

rationalize several aspects of particle sinking-in and deformation mechanisms 

accompanying sliding wear of Al-25% Si. It is seen that the peak values of contact 

pressures exerted on the silicon particles in locations near the centre of the wear track are 

higher than the hardness of Al-25% Si alloy and also exceed the hardness of the 

aluminum matrix (1,090 MPa). Following the criterion proposed in Section 4.4, particle 

sinking-in and aluminum plastic deformation are expected to occur at all loads. 

According to SEM observations and optical surface profilometry data summarized in Fig 

6.32 the smallest amount of sinking-in is observed at 0.5 N, for which the contact 

pressure is the smallest. Particle sinking-in was clear at higher loads. The SEM and 

optical profilometry observations (e.g. see Figs. 6.26 and 27) indicated that the particle 

sinking-in and aluminum yielding preferentially occurred at the centre of the wear tracks. 

This location is in qualitative agreement with the distribution profile of the contact 

stresses. Contact stresses exceed the alloy hardness near the centerline of the wear tracks, 

i.e., at distances smaller than 30 um according to Fig. 6.34. But it should be noted that the 

contact stress model is static and can not be used in explaining particle height reduction 

with the sliding cycles. 
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6.3.5.2. Effect of Areal Density of Silicon Particles and Matrix Hardness on the 
Transition to UMW-II and the Attainment of UMW-IH 

When compared the experimental observations made on sand cast eutectic Al-Si 

alloys (Section 6.2.3) with those on the spray formed Al-25% Si (In Section 6.3), it is 

noted that the damage to silicon and aluminum are less severe in the spray deposited Al-

25% Si than in the eutectic sand cast Al-Si alloys under similar loading conditions. It is 

useful to compare the wear performance of Al-25% Si with those of eutectic alloys and 

draw conclusions on the role of microstructure on the wear mechanisms. Hence, the alloy 

subjected to fast cooling after casting has been selected for comparison with Al-25% Si. 

As Table 6.2 shows, the Al -1 l%Si-F alloy had small, spherical silicon particles that are 

comparable to the silicon particles in Al-25% Si (Table 6.2), with similar aspect ratio. 

Yet, the matrix hardness of Al -ll%Si-F (67 ± 12 Hv) was about 38 % less than that of 

the Al-25% Si. The area fraction of silicon on the contact surfaces of Al-11% Si-F was 

0.1, which was about 60% smaller than on Al-25% Si (0.3). 

The difference in UMW behaviour between the two alloys due to their difference 

in silicon particle areal density and matrix hardness was rationalized firstly from the 

contact pressure applied on the silicon particles and then the propensity in the formation 

of the oil residue layer. 

Fig. 6.35 presents the plots of the maximum values of the contact pressures 

reached at the centre of wear tracks of Al-11% Si-F and Al-25% Si in the load range of 

0.5 -3.0 N. The peak value of the pressure at 0.5 N was estimated as 2.49 GPa and as 2.68 

GPa at 2.0 N. It is seen that the contact pressure applied on particles in Al-11% Si-F was 

about 1.6 times larger compared to Al-25% Si at each test load. As stated above, the 
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silicon particle size for each alloy is comparable, but the particle area density in Al-11% 

Si-F was about 56% lower, thus increasing the pressure exerted, as a smaller number of 

particles have to carry the same applied load. 

Because of the larger pressure exerted at a given load, and the fact that the Al-

11% Si-F alloy has a lower matrix hardness, the particles in this alloy exhibited a greater 

decrease in height at all sliding cycles compared with Al-25% Si (Fig. 6.36 a). The 

reduction in silicon height in Al-11% Si-F was primarily due to particles sinking into the 

matrix and formation of aluminum-pile ups; consequently, material loss from the 

aluminum matrix in Al-11% Si-F occurred earlier (Fig.6. 36 b). While no material loss 

was detected from the contact surfaces of Al-25% Si at 1.0 N, the Al-11% Si-F alloy 

showed mass loss and wear after 104 cycles. At 2.0 N, the transition to UMW-II in Al-

11% Si-F initiated 103 cycles earlier than the onset in Al-25% Si. The UMW-II regimes 

were followed by a drop in wear rates at larger sliding cycles. 

As noted in Section 3.5.2 the volumetric wear is derived from the surface profile 

of the wear track; specifically, from scars in the aluminum. This profile is a function of 

abrasive wear, but it is also influenced by other processes that alter the surface 

morphology. Chemical processes, such as surface oxidation or formation of an oil 

residue layer, or a mechanical process like polishing can lead to a roughening to 

smoothening transition. These processes can reduce the depth of the wear scars and 

reduce the volumetric wear seen in Fig. 6.36 b. Oil deposits with similar composition, 

i.e., a mixture of engine oil elements and nano-crystalline aluminum, were observed in 

the wear tracks of both Al-25% Si and Al-11% Si-F when the wear rate (slope of the 

curve) of Al-25% Si is slowing, and when the wear rate of Al-11% Si-F is decreasing. 

The deposits vary in thickness and coverage, and their volume is too small to be measured 
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directly, hence it is impossible to quantitatively link them to the observed wear behavior, 

however, qualitatively it appears that these deposits can be correlated with the wear 

performance. At 2.0 N, after sliding for approximately 6xl05 cycles (Figs. 6.11 a and b) 

the wear track on Al-11% Si-F was covered by an oil residue layer. The cross-sectional 

TEM image of the worn surface of Al-11% Si-F at 2.0 N shown in Fig. 6.11 b reveals 

that the aluminum grains immediately below the oil residue layer had a nano-crystalline 

size in the range of 400- 600 nm, similar to the Al-25 % Si (Fig. 6. 29 c). The ultrafine 

grains adjacent to the contact surface increased the local hardness, and possibly provided 

support to the oil residue layer (Figs. 6.12 and 6.29 c). Unlike Al-11% Si-F, which was 

virtually covered with a dark colored oil residue layer (about 0.6 um), after sliding 6 xlO5 

cycles at 2.0 N. The wear track of Al-25% Si, on the other hand, was occasionally 

covered by the oil residue layer (only about 0.1 urn) after sliding 6 xlO5 cycles at 2.0 N. 

At 2.0 N and 105 cycles the oil residue for the Al-25% Si alloy was not qualitatively as 

extensive as in the Al-11% Si-F experiment, and the drop in wear rates in the Al-25% Si 

alloy is less when compared to Al-11% Si-F. This infers that, for the Al-25% Si, the 

formation of the oil residue layer might take longer duration. The evolution of the 

counterface and the coefficient of friction (COF) with the sliding cycles provides more 

evidence for this premise. 

Figures 6.37 and 6.38 present the 3-D surface profilometer images and 

corresponding cross-sectional profile taken across the center of the wear scars of the 

counterface balls after sliding against the two alloys for 2 xlO cycles at 2.0 N. It is 

interesting to note that a mechanical polishing-like process occurs on the worn surface of 

Al-11% Si-F; some area of the worn surface of the counterface ball sliding against Al-

11% Si-F, as indicated by arrows in Fig. 6.37 a, tends to be smooth. While the worn 
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surface of the counterface ball sliding against Al-25% Si still showed lots of severe 

scratches, only a very small area became smooth. The variations of the COFs of the two 

alloys with the sliding cycles, as shown in Fig. 6.39, indicates that the COF in Al-11% Si-

F was about 16% smaller than that in Al-25% Si at the sliding cycle of 6 xlO5. The COF 

of Al-11% Si-F evolved with an abrupt drop, a gradual increase, and then decrease to the 

final stable value. The point at which the final stable value of a COF was reached was 

consistent with the sliding cycles when the whole wear track was covered by an oil 

residue layer; it was 3 x 105 cycles for Al-11% Si-F at 2.0 N. While for Al-25% Si, the 

COF was not stable even after sliding for 6 xlO5 cycles. Also, the slope of the COF drop 

in the Al-25% was smaller and lasted much longer (about 3 times longer), and the COF 

exhibited greater fluctuation in comparison with that of Al-11% Si-F. This is highly 

suggested that the drop of the COF in the beginning is related to the silicon particle 

sinking-in. The evolution of the COF and counterface morphology provides evidence that 

the UMW tends to stabilize after the surface evolves with long sliding cycles due to the 

formation of the oil residue layer. It also infers that the plastic deformation is the 

precursor to the interaction between materials adjacent to the sliding interface, leading to 

the tribo-chemical reaction or physical adsorption between the engine oil and materials at 

the contact surface, and hence, to the modification of the chemical composition of the 

near-surface material. Accordingly, the oil residue layer is more likely to be formed on 

Al-11% Si-F, in which the aluminum exhibited a lager degree of plastic deformation 

compared to Al-25% Si. 

In summary, the Al-25% alloy was more successful in delaying the transition to 

the UMW-II regime compared to the sand cast eutectic Al-11% Si-F alloy with lower 

matrix hardness and lower silicon content (11 wt. % Si). Although the Al-25% Si alloy is 
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superior at low loads, this alloy loses its advantage once the Si particles loose their ability 

to support the counterface. There are differences in the details of the two curves, but the 

volumetric wear of both alloys is comparable at 2.0 N. Other mechanisms associated 

with running-in of the Al-11% Si-F surface become dominant in controlling wear, and 

lead to a stable running surface, very different from the as-prepared surface, that account 

for the long term wear behavior. The Al-11% Si-F alloy may actually be preferable to 

Al-25% Si since formation of this stable surface appears relatively quicker in the Al-11% 

Si-F alloy. Overall, considering the damage to the counterface, and the tendency to the 

stabilization of the UMW, Al-11% Si-F with small spheroidized silicon particles 

distributed with larger interparticle spacing, and relatively soft matrix was expected to 

provide optimal resistance to UMW damage. 
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Table 6.1. The maximum real contact pressures applied on two eutectic Al-Si alloys 

Pressure 

(MPa) 

The maximum 
contact pressure 

\ Load 

Alloy \ t N ) 

Al-ll%Si-C 

Al-ll%Si-F 

0.5 

654 

1653 

1.0 

687 

1722 

2.0 

731 

1762 

Table 6.2. Properties of spray cast and sand cast Al-11% Si-F alloys. 

Alloy 

Al-25%Si 

Al -11% Si-F 

Matrix hardness 

(kgf/mm2) 

110±20 

67 ±11 

Alloy hardness 

(HB) 

102 ±4 

79 ±2 

Si particle size 

Length 

(urn) 

8±2 

6 ± 3 

Width 

(um) 

5±2 

3±2 

Si aspect ratio 

2 

2 
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Fig. 6.1. Variation of the maximum real contact pressures applied on Al-11% Si-C 
and Al-11% Si-F with the normal load. 
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Fig. 6.2. Plot of volume loss with the sliding cycles for Al-11% Si-C. The plots at 
0.5, 1.0, and 2.0 N with zero volume loss were shifted vertically for clarity. 
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Fig. 6.3. Evolution of surface damage in Al-11% Si-C with sliding cycles at 0.5 N. (a) 3 D 
surface profilometer image after at 5 x 102 cycles; (b) Secondary SEM image at 5 x 104 

cycles showing Si particle fracture; (c) 3-D surface profilometer image at 5 x 104 cycles 
showing aluminum pile-up. The view in inset 'X' is the same with the SEM image in (b); (d) 
Backscattered SEM image after sliding for sliding for 3 xlO5 cycles; (e) Backscattered SEM 
image after sliding for 6 x 105 cycles. WT is the wear track, SD is the sliding direction. 
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Fig. 6.4. Surface damage in Al-11% Si-C at 2.0 N: (a) Backscattered SEM image after 
sliding for 5 x 102 cycles, (b) Backscattered SEM image after sliding for 1.5 x 103cycles, (c) 
Backscattered SEM image after sliding for 104 cycles, (d) Secondary SEM image after 
sliding for 6 x 105 cycles, and (e) High magnification backscattered SEM image taken from 
the inset 'X' in (d). 
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Fig. 6.5. Plot of volumetric loss with the sliding cycles for Al-11% Si-F. The plots 
at 0.5, 1.0, and 2.0 N with zero volume loss were shifted vertically for clarity. 
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(c) 
Fig. 6.6. 3 D surface profile images taken from the contact surface of Al-11% Si-F after 
stopping the sliding tests at (a) 5 x 102, (b) 1.5 x 103 and (c) 5 xlO3 cycles at 0.5 N. 
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Fig. 6.7. Surface damage in Al-11% Si-F after sliding for 5 x 104 cycles at 0.5 N: 
(a) Backscattered SEM image; (b) High magnification backscattered SEM taken 
form the inset 'X' in (a), (c) 2-D surface profilometer scanned along the horizontal 
line (AA') indicated in (a). 
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(c) 
Fig. 6.8. Surface damage of Al-11% Si-F after sliding for 6 x 105 cycles at 0.5 N: (a) 
Secondary SEM image; (b) High magnification secondary SEM image taken from the 
inset 'X' in (a), and (c) High magnification backscattered SEM image taken from the 
inset' Y' in (a). 
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Fig. 6.9. Surface damage in Al-11% Si-F after sliding for 103 cycles at 2.0 N: (a) Backscattered 
SEM image; (b) Magnified backscattered SEM image taken from the inset X in (a); (c) 3-D 
surface profile image. 
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Fig. 6.10. Surface damage in Al-il% Si-F after sliding for 6 x 105 cycles at 2.0 N: 
(a) Optical image showing the wear track covered by dark coloured layer; (b) 
Secondary SEM image taken from the inset 'X' in (a); (c) AFM image taken from 
the inset 'X' in (a). 
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Fig. 6.11. Cross-sectional FIB secondary image (taken by Dr. Meng-Burany) of the wear track 
(a) general view, and (b) detail of inset 'X' in (a) showing the oil residue layer generated on 
the contact surface. 
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Fig. 6.12. Cross-sectional TEM image (taken by Dr. Meng-Burany) of the wear track showing 
ultra-fine aluminum grains around the particles. 
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Fig. 6.13. Survey XPS spectrum taken from the black colored layer on the contact surface 
of Al-11% Si-F after sliding for 6 x 105 cycles at 2.0 N. 
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Fig. 6.14. XPS spectra of (a) Al2p, and (b), Si 2p taken from the black coloured layer on the 
contact surface of Al-11% Si-F after sliding for 6 x 105 cycles at 2.0 N. 
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Fig. 6.16. Change in the silicon particle height projected above the aluminum matrix 
with the sliding cycles in Al-11% Si-C at applied loads of 0.5, 1.0, and 2.0 N. 
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Fig. 6.17. The distribution frequency of surface topography on the Al-11% Si-F 
surfaces at various sliding cycles at (a) 0.5 N, (b) 1.0 N, and (c) 2.0 N 
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Fig. 6.18. Change in the silicon particle height projected above the aluminum matrix 
with the sliding cycles in Al-11% Si-F at applied loads of 0.5, 1.0, and 2.0 N. 
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Fig. 6.19. Schematic illustration of the surface damage evolution in Al-Si alloys in UMW 
regime, (a) Si particles carry the applied load leading to the wear of the top Si surfaces; (b) 
Local plastic deformation in the forms of Si particle sinking-in and aluminum piling- up 
around the sunken-in Si particles, leading to the reduction in local aluminum grain size; (c) 
Formation of an oil residue layer supported by ultra-fine aluminum grains. 
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(a) 

(b) 

Fig. 6.20. Optical images showing surface damage on the wear track of Al-11% Si-
C: (a) Low magnification image; (b) High magnification image from the inset in (a) 
after sliding for 2 x 106 cycles 2.0 N. 
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(a) 

(b) 

Fig. 6.21. Optical images showing surface damage on the wear track of Al-11% Si-F: 
(a) Low magnification image; (b) High magnification image from the inset in (a) after 
sliding for 2 x 106 cycles 2.0 N. 
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Fig. 6.22. (a) Secondary SEM image, (b) high magnification back scattered SEM 
image of inset 'X' in (a), and (c) 3-D surface profile image showing surface damage 
on the top surfaces of silicon particles inside the wear track of Al-25% Si after 
sliding for 104 cycles 0.5 N. 
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Fig. 6.23. (a) Secondary SEM image, (b) high magnification back scattered SEM 
image of inset 'X' in (a), and (c) 3-D surface profile image showing surface damage 
on the top surfaces of silicon particles inside the wear track of Al-25% Si after sliding 
for 6 x 105 cycles 0.5 N. 
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Fig. 6.24. (a) Secondary SEM image, (b) high magnification back scattered SEM 
image of inset in (a), (c) 3-D surface profile image, and (d) high magnification 3-D 
surface profile image of inset in (c) showing the evolution of surface damage in Al-
25% Si, after sliding for 5 x 104 cycles at 1.0 N. 
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Fig. 6.25. The percentage of fractured Si particles inside the wear tracks at 0.5 and 1.0 
N as a function of sliding cycles. 
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Fig. 6.26. (a) Secondary SEM image, (b) high magnification back scattered SEM 
image of inset in (a), and (c) 3-D surface profile image showing the evolution of 
surface damage in Al-25% Si, after sliding for 6 x 105 cycles at 1.0 N. 
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Fig. 6.27. Surface damage in Al-25% Si after sliding for 104 cycles at 2.0 N: (a) 
Secondary SEM image; (b) High magnification back scattered SEM image of inset in 
(a); and (c) 3-D surface profile image showing slight damage on the aluminum matrix. 
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Fig. 6.28. Surface damage in Al-25% Si after sliding for 5 x 104 cycles at 2.0 N :(a) 
Secondary SEM image; (b) High magnification back scattered SEM image of inset in (a); 
(c) 3-D surface profilometer image; and (d) 2-D surface profile scanned along the 
horizontal line (AA') indicated in (c) showing the material loss. 
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Fig. 6.29. Surface damage in Al-25% Si after sliding for 6 x 105 cycles at 2.0 N: (a) 
Secondary SEM image of the surface; (b) High magnification back scattered SEM 
image of the inset in (a) showing the wear track sparsely covered by a little amount 
of dark coloured layer; (c) Cross-sectional FIB secondary image (taken by Dr. Meng-
Burany) of the wear track taken from the inset in (a) showing the oil residue layer 
generated locally on the contact surface. 
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Fig. 6.30. The indentation displacement -load curves of the oil residue layer formed on 
the worn surface after sliding to 6 x 105 cycles at 2.0 N and aluminum matrix. 
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Fig. 6.31. The distribution frequency of surface topography on the Al-25% Si 
surfaces at various sliding cycles at (a) 0.5 N, (b) 1.0 N, and (c) 2.0 N. 
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Fig. 6.32. Change in the silicon particle height projected above the aluminium matrix 
with the sliding cycles. 
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Fig. 6.33. Variation of the volumetric wear loss with the sliding cycles for the AI-25% Si. 
The plots at 0.5, 1.0, and 2.0 N with zero volume loss were shifted vertically for clarity. 
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Fig. 6.34. Real contact pressure distribution applied to Al-25% Si at 0.5N, 1.0 N, and 
2.0 N. The matrix hardness of the alloy is 1,090 MPa. 
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Fig. 6.37. (a) 3 D surface profile image of the ball surface sliding against Al-11% Si-F for 
2 xlO6 cycles, and (b) 2 D surface profile scanned along the horizontal line (AA') indicated 
in (a). 
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Fig. 6.38 (a) 3 D surface profile image of the ball surface sliding against Al-25% Si for 
2 xlO6 cycles, and (b) 2 D surface profile scanned along the horizontal line (AA1) indicated 
in (a). 
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Fig. 6.39. Variation of the COFs of Al-25% Si and Al-11% Si-F with the sliding cycles 
at 2.0 N. 
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

1) The contact used in the experiments was modeled using both the Greenwood and 

Tripp formalism, and Hertzian contact mechanics, and the "real" asperity contact 

pressure was estimated as outlined by Greenwood and Tripp. 

i) The maximum average contact pressures distributed on the alloy with coarse 

Si particles were smaller than those applied on the alloy with fine Si 

particles. These pressures are smaller than the maximum Hertzian contact 

pressures at each load. 

ii) The maximum contact pressures applied on the exposed silicon particles, 

that is, the real contact pressure, were substantially higher than the 

maximum average contact pressures. These pressures are important in terms 

of understanding how the aluminum matrix supports the silicon particles. 

iii) The peak values of the real contact pressures occurred at the center of 

contact area and diminished with radial distance. Estimated distances where 

real contact pressure values reached zero were roughly the same as wear 

track widths of the alloys tested. 

iv) The maximum contact pressures applied on the Si particles were used to 

rationalize the mechanical response of Si particles. When they exceeded the 

matrix hardness of the tested alloys, the local plastic deformation in the form 

of Si particle sinking-in and aluminum piling-up around the sunken-in Si 

particles started to happen at the center of the wear tracks. 
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v) The maximum contact pressures applied on the alloys with coarse silicon 

particles (Al-12% Si, Al-11% Si-C, Al-18.5% Si) were smaller than those 

applied on the alloy with fine particle size (Al-11% Si-F, and Al-25% Si). 

The maximum contact pressures applied on the alloy with high areal density 

Si particles (Al-25% Si) was smaller than the one with small areal density of 

Si particles (Al-11% Si-F). 

2) Surface damage that occurs in the UMW regime was simulated on the chemically 

etched (10% NaOH) contact surfaces of five Al-Si alloys namely, sand cast Al-

12% Si, Al-11% Si-C, Al-11% Si-F, Al-18.5% Si, and spray formed Al-25% Si, 

through performing the sliding tests at low loads of 0.5, 1.0, and 2.0 N and under 

boundary lubricated conditions with synthetic engine oil as lubricant. 

3) Quantitative evaluation of damage in UMW is made possible by statistically 

examining the morphological changes, including the relative changes in matrix 

and particle elevation distribution profiles, and volumetric loss from the elevated 

aluminum matrix. This methodology was effective to provide a quantitative 

measurement of a very small amount of wear. 

4) Under the ultra-mild wear conditions sliding contact occurred on the tops of the 

elevated portions of the silicon particles standing above the aluminum matrix. The 

damage mechanisms leading to wear under UMW conditions consisted of the 

following steps: 

i) Wear of the top surfaces of silicon particles by the counterface; 

ii) Sinking of load bearing silicon particles into aluminum; 

iii) Plastic deformation of the aluminum around silicon particles leading to the 

formation of aluminum pile-ups; 
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iv) Wear of the elevated portions of aluminum plateaus by the counterface. 

5) UMW behaviours of Al-Si alloys were found to be strongly dependent on the 

matrix hardness and the microstructures of the alloys in terms of silicon particle 

morphology, size and their distribution. 

i) Increasing the silicon particle size and the matrix hardness, and using particles 

with low aspect ratio would improve the load carrying ability of the alloys, 

and thus would prevent aluminum matrix from being damaged. 

ii) Increasing the areal density of small spheroidized silicon particle and matrix 

hardness resists the silicon particle sinking-in and aluminum pile-up. 

6) The morphological features of wear tracks changed with the applied load and at a 

given load level the surfaces evolved with the number of sliding contact cycles. At 

the point when the wear from plastically deformed aluminum became observable, 

the alloys entered a regime of high wear (UMW-II). However, the UMW-II 

regime was followed-up by a period of reduced wear rates at long sliding cycles 

when an oil residue layer was formed on the contact surface. The evolution of 

wear behaviour was dependent on the aluminum matrix and microstructural 

factors in terms of Si particle morphology, size, and distribution. 

7) The transition to the UMW-II regime coincided with the formation of a contact 

morphology where the elevation difference between Si particles and aluminum 

matrix disappeared. That is to say that the transition to UMW-II started when the 

silicon particles were totally embedded into the aluminum matrix, leading to 

contact of the aluminum matrix with the counterface. 

8) The microstructure factors in controlling the onset of the UMW-II regime were 

identified to be silicon particle size, morphology, distribution, and matrix 
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hardness. A comparison of sand cast Al -11% Si-F with Al-25% Si with similar 

small silicon size and morphology showed that the transition to UMW-II initiated 

at shorter sliding cycles and lower loads in the near-eutectic Al-Si alloy. 

9) The aluminum grain size in the plastically deformed aluminum matrix adjacent to 

sunken-in silicon particles was generally less than 200 nm, indicating generation 

of large plastic strains and increase in local hardness. 

10) An oil residue layer generated from the deformed aluminum matrix sliding 

contact with the counterface was observed on the contact surfaces. It had a 

hardness of 1.5-2.5 GPa. It appears to have been beneficial for delaying the 

transition to the UMW-II regime to a larger number of sliding cycles and higher 

loads, and reducing the wear rate in UMW-II leading to the attainment of UMW-

III. 

11) An oil residue layer was more easily to be formed in the Al-11% Si alloy with 

matrix hardness of 67 Hv and small Si particles, when compared to the alloys with 

either large silicon particles or with small silicon particles distributed at smaller 

interparticle distances and having a harder matrix. The preferable formation of a 

smooth and stable worn surface morphology of an oil residue that is supported by 

ultra-fine aluminum grains accounts for the optimal long term wear performance 

of this alloy. 
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