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Abstract 

RNA interference (RNAi) is a highly evolutionally conserved process of post-

transcriptional gene silencing (PTGS) by which double stranded RNA (dsRNA), when 

introduced into a cell, causes sequence-specific degradation of homologous mRNA 

sequences, siRNA (small interfering RNA are a class of 20-25 nucleotide-long double-

stranded RNA molecules) is involved in the RNA interference (RNAi) pathway where the 

siRNA interferes with the expression of a specific gene. We focus on the problem of gene 

family knockdown by using the minimal number of siRNAs. The problem is to determine 

the minimal number of siRNAs required to knockdown a family of genes targeted by 

these siRNAs. This is a minimal set covering problem, and hence it is NP-hard. In this 

thesis, we explore a number of heuristic optimization methods for the minimal siRNA 

covering problem. Such methods include evolutionary heuristics, as well as novel greedy 

methods, applied for the first time to the minimal siRNA cover problem. Preliminary 

experiments with genetic algorithms show significant reduction in the siRNA cover size, 

when compared with branch&bound and probabilistic greedy. We are currently 

implementing novel greedy methods which are variants of well-known feature subset 

selection algorithms. In such methods, we define criterion functions over a collection of 

siRNA subsets to help us decide which subset is best to be included in a candidate 

solution. 

We use three gene families: the FREP genes from Biomphalaria glabrata and the 

olfactory genes from Caenorhabditis elegans. We also conducted experiments on one 

artificial data set. 
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Chapter 1 

1. Introduction 

RNA interference (RNAi) was first discovered in 1998 by Andrew Fire and Craig Mello 

in the nematode worm Caenorhabditis elegans and later found in a widely number of 

organisms, including mammals. RNA interference (RNAi) plays both regulatory and 

immunological roles in the eukaryotic genetic system [1,2], and it also involved in both 

therapeutic and genomic applications because of its potentials in treatments for widely 

existed diseases such as HIV [3, 4], Huntington's diseases [5] and some certain types of 

cancers [6, 7]. RNA interference (RNAi) is a mechanism that inhibits gene expression at 

the stage of translation by hindering the transcription of specific genes. RNAi targets 

include RNA from viruses and transposons (significant for some forms of innate immune 

response), and work on regulating development and genome maintenance. Small 

interfering RNA strands (siRNA) play a key role in the RNAi process, and have 

complementary nucleotide sequences to the targeted RNA strand. Specific RNAi pathway 

proteins are guided by the siRNA to the targeted messenger RNA (mRNA), where they 

cleave the target, breaking it down into smaller portions which can not be translated into 

protein any more. A type of RNA transcribes from the genome itself, microRNA 

(miRNA), works in the same way [8]. 

Nowadays, RNAi research mainly focus on single gene knockdown. Gene knockdown 

relates to genetically modifying an organism whose goal is to have reduced expression of 

one or more genes in its chromosomes by inserting a reagent such as a short DNA or 

RNA oligonucleotide with a sequence complementary to an active gene or its mRNA 
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transcripts. This can lead to permanent modification of the chromosomal DNA to produce 

a "knockdown organism" or a temporary change in gene expression without modification 

of the chromosomal DNA molecules to knock down the function of a single gene. In this 

thesis, we want to knockdown a gene family with a minimal number of siRNAs because 

the efficacy of a specific siRNA in knocking down its target gene is determined by its 

homology to that gene. As the synthesis of individual siRNAs may cost hundreds or 

thousands of dollars, so using compact sets of siRNAs for gene family knockdown would 

have more advantages. 

Following association with an RNAi silencing complex, siRNA targets mRNA transcripts 

that have sequence identity for destruction. A phenotype resulting from this knockdown 

of expression may inform about the function of the targeted gene. However, off-target 

effects compromise the specificity of RNAi if sequence identity between siRNA and 

random mRNA transcripts causes RNAi to knockdown expression of non-targeted genes. 

The chance for off-target RNAi increases with greater length of the initial dsRNA 

(double strand RNA is RNA with two complementary strands sequence) , inclusion 

into the analysis of available un-translated region sequences and allowing for mismatches 

between siRNA and target sequences. siRNA sequences from within 100 nucleotide of the 

5' termini of coding sequences have low chances for off-target reactivity. This may be 

owing to coding constraints for signal peptide-encoding regions of genes relative to 

regions which encode for mature proteins. Off-target distribution varies along the 

chromosomes of Caenorhabditis elegans, apparently owing to the use of more unique 

sequences in gene-dense regions. Finally, biological and thermodynamical descriptors of 
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effective siRNA reduce the number of potential siRNAs compared with those identified 

by sequence identity alone, but off-target RNAi remains likely, with an off-target error 

rate of 10% [11]. In a word, we want to avoid off-target effects in which the siRNA 

causes unintended knockdown of an untargeted gene to which it incidentally has high 

homology. So our purpose is to select a minimal set of siRNAs that cover targeted genes 

in a family and do not cover any untargeted genes. This is a NP-Hard problem [9] since 

we can regard it as a set cover problem. In this paper, we introduce four heuristics for this 

problem: a genetic algorithm-based heuristic, a dominated target covering heuristic, a 

dominant siRNA selection heuristic and a forward selection heuristic. Our experiment 

results show that our methods significantly reduce the number of siRNA covers compared 

with other two algorithms: branch and bound, probabilistic greedy [9]. 

We implement our proposed methods on three gene families. The first family, which is 

the set of Fibrinogen-related protein (FREP) genes from the snail Biomphalaria glabrata 

are medically relevant because this snail is a model organism for infection by the human-

affecting parasite Schistosoma mansoni [9]. The second family is another set of FREP 

genes like family 1 [10]. And the data of third family, which is the olfactory genes of 

nematode Caenorhabditis elegans, is downloaded from NCBI [12]. 

Chapter 2 

2. Gene Knockdown 

Gene knockdown involves techniques through one or more of an organism's genes 

expression which is reduced by genetic modification (a change in the DNA of one of the 
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organism's chromosomes) or by treatment with a reagent, for instance: a short DNA or 

RNA oligonucleotide to either an mRNA transcript or a gene. The result is a: knockdown 

organism when genetic modification of DNA is done. If the change in gene expression is 

result from an oligonucleotide binding to an mRNA or temporarily binding to a gene, this 

leads to a temporary change in gene expression without modification of the chromosomal 

DNA and the result is as a: transient knockdown. 

Transient knockdown decreased expression through blocking transcription, degradation 

of RNA transcript and blocking either mRNA translation, pre-mRNA splicing sites or 

nuclease cleavage sites used for maturation of other functional RNAs such as miRNA [37] 

by binding oligonucleotide to the active gene or its transcripts. Transient knockdowns for 

learning about a gene have been sequenced as the most direct use. It also has an unknown 

or incompletely known function, an experimental approach known as reverse genetics. 

Researchers infer how the knockdown differs from individuals in which the gene of 

interest is operational by an experimental approach. Since oligos can be injected into 

single-celled zygotes and will be present in the daughter cells of the injected cell through 

embryonic development [38], transient knockdowns are often used in developmental 

biology. 

Heretofore, knockdown organisms with permanent alterations in their DNA have been 

applied mainly for research purposes. These organisms are most commonly used for 

reverse genetics such as mice or rats, because they cannot easily be applied through 

transient knockdown technologies. 



2.1 RNA Interference 

RNA interference refers to a mechanism in eukaryotic cells that leads to a specific 

posttranscriptional gene silencing in response to long double stranded RNA. In the cell 

the long dsRNA are cut into 21-25 bp pieces by an enzyme called DICER, a member of 

the RNase III family of dsRNA specific ribonucleases. The resulting small dsRNAs 

activates a large protein complex called the RNA-induced silencing complex (RISC) 

which, by using one of the strands as a guide, binds to the corresponding mRNA and 

degrades it, leading to a specific 'knock down' of protein expression. In vertebrate cells 

investigations of RNAi initially gave problems with the vertebrate interferon defense 

system, which by several complex pathways leads to an overall and therefore nonspecific 

cellular shut down of protein expression. As the interferon response is thought to be 

triggered only by dsRNAs longer than 30 bp, smaller dsRNAs about 21 base pairs long, 

termed small interfering RNAs or simply siRNAs, have been explored for the induction 

of specific RNAi in vertebrate cells. These smaller dsRNAs are thought to function as 

equivalents of the small dsRNAs cut by DICER. 

RNAi is an RNA-dependent gene silencing process that is controlled by the RNA-induced 

silencing complex (RISC) and is initiated by short double-stranded RNA molecules in a 

cell's cytoplasm, where they interact with the catalytic RISC component argonaute [14]. 

When the dsRNA is exogenous (coming from infection by a virus with an RNA genome 

or laboratory manipulations), the RNA is imported directly into the cytoplasm and 

cleaved to short fragments by the enzyme dicer. The initiating dsRNA can also be 

endogenous (originating in the cell), as in pre-microRNAs expressed from RNA-coding 

genes in the genome. The primary transcripts from such genes are first processed to form 
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the characteristic stem-loop structure of pre-miRNA in the nucleus, then exported to the 

cytoplasm to be cleaved by dicer. Thus, the two dsRNA pathways, exogenous and 

endogenous, converge at the RISC complex [15]. . 

2.1.2 Importance of RNAi 

Gene expression is the process by which the information encoded in a gene is converted 

into amino acid sequences. When a gene is expressed, DNA is transcribed into mRNA 

which then acts as a template for the production of proteins. Thus, degradation and 

regulation of mRNA help govern cellular mRNA and, therefore, protein levels that result 

from gene expression. Complete genomes are being sequenced for several organisms and 

there is an increasing need for studying gene behaviors and functions. Changes in 

phenotype, resulting from RNAi, gives information about the functions of the targeted 

gene. Therefore, a mechanism like RNAi, which employs existing cell machinery, is 

highly useful. RNAi is also becoming increasingly important in developing therapeutic 

applications for a number of diseases due to its potential for specific targeted silencing 

[23]. During gene expression, there are three stages where genes causing diseases can be 

controlled - transcriptional, post-transcriptional, and post-translational intervention. 

Traditionally, drugs for disease control have been targeted towards proteins, which occur 

in the posttranslational phase. RNAi targets the protein-producing mRNA and can thereby 

control disease earlier - in the transcription phase. RNAi has been successfully used to 

target diseases such as AIDS [24], neurodegenerative diseases [25], cholesterol [26] and 

cancer [27] on mice with the hope of extending these approaches to treat humans. 
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2.2 siRNA 

A nucleotide (nt) is a subunit of DNA or RNA and is made up of one of adenine (A), 

guanine (G), cytosine (C) or uracil (U) (in RNA) or thymine (T) (in DNA), along with a 

phosphate molecule, and a sugar molecule. The RNA molecule is formed from a 

sequence of these nucleotides. The complementary nucleotides of A, C, G and U are U, G, 

C and A respectively. When long dsRNA from an external source is introduced into the 

cell, it is recognized by Dicer, a member of the RNase III family of dsRNA-specific 

ribonucleases. Dicer cleaves the dsRNA to produce siRNA duplexes of lengths 19-21 nt 

[16]. Each siRNA strand has a 5' phosphate group and a 3' hydroxyl group and has a 2 nt 

overhang at the 3 ' end [17]. The siRNA duplex separates into sense and antisense strands 

and one of the strands is taken up by a RNA-protein complex, referred to as RISC [18]. 

HO 
OH 

Schematic representation of a siRNA molecule: a -19-
21basepair RNA core duplex that is folowed by a 2 
nucleotide 31 overhang on eacfi strand OH: 31 hyd ros 
P: 5! phosphate. 

Figure 1.1 Anatomy of an siRNA 

(From http://en.wikipedia.org/wiki/Image: SiRNA_structure2.jpg) 

Activation of RISC requires an ATP-dependent unwinding of the siRNA duplex. Both the 

sense and antisense strands of the siRNA are capable of directing RNAi but specificity 

depends on the anti-sense strand. The active RISC then targets mRNA transcripts that 
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have sequence complementarity with the siRNA sequence. The targeted mRNA 

sequences are cleaved into smaller fragments which are then degraded. This results in 

sequencespecific removal of mRNA in targeted genes, which are then not expressed at the 

protein level. Figure 1.2 graphically illustrates the RNAi pathway initiated by the 

introduction of dsRNA. The knockdown effects induced by RNAi are usually transient 

but using vectorbased delivery methods, stable RNAi can be induced. RNAi is not 

immediate and there is a time course associated with the process. RNAi has also been 

shown to be inheritable in C. elegans [19]. In mammals, it was observed that long 

dsRNAs, with lengths more than 30 nt activate the PKR kinase pathway in the cell, also 

known as the interferon response. This causes non-specific degradation of mRNA, and 

leads to apoptosis or cell death. However, using synthesized siRNAs of lengths 21 - 23 nt 

[20] does not evoke the interferon response and provides effective silencing by RNAi. 

t o n © sSsRMA 

0 RISC . ' 

AAA& ,̂A& 

^ ^ A A A A 

Figure 1.2 RNA Interference Pathway (From RNAiWeb.com) 

http://RNAiWeb.com


In addition to siRNAs, gene silencing can also be caused by micro RNAs (miRNA). 

miRNAs are small RNAs, processed from double stranded hairpin structures that are 

encoded in the genome, and are believed to be involved in gene regulation. Unlike 

siRNAs, which work by mRNA degradation, miRNA work by suppressing translation of 

mRNA to protein. miRNAs have been shown to function as siRNAs by binding to 

perfectly complementary mRNA sequences to cause degradation. On the other hand, 

siRNAs can act as mRNAs with 3 - 4 nt mismatches and G-U mismatches [21]. This 

demonstrates that it is only the degree of complementarity which determines the 

functionality of the siRNA or miRNA sequence [22]. However, the effects of miRNA-

like behavior of siRNAs on efficacy experiments have not been extensively studied so far. 

This work only deals with the siRNA and so this document will not delve in the details of 

miRNA, but it is important to note that they are closely related. 

2.2.1 siRNA Sequence Design 

Three different kinds of software are implemented in this thesis for the siRNA sequence 

design - BLOCK-iT™ RNAi Designer [28], siDirect [29] and TROD (T7 RNAi Oligo 

Designer) [30]. 

BLOCK-iT™ RNAi Designer [28] uses a patented algorithm. The reasonable scheme 

which is used by this software not only supposition but also based on the practical 

experiment results. The experiment certified that RNAi Designer can choose unique 

target sequences which will remarkably increase the probability of off-target genes. 

BLOCK-iT™ RNAi Designer identifies effective RNAi sequences then uses BLAST to 
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select from a widely organism specific database which can be ensured to eliminate the 

off-target RNAi sequences. 

Rational siRNA design is used by siDirect [29]. The general guide lines [31] are shown as 

follows: 

1. siRNA targeted sequence is usually 21 nt in length. 

2. Avoid regions within 50-100 bp of the start codon and the termination codon 

3. Avoid intron regions 

4. Avoid stretches of 4 or more bases such as AAAA, CCCC 

5. Avoid regions with GC content <30% or > 60%. 

6. Avoid repeats and low complex sequence 

7. Avoid single nucleotide polymorphism (SNP) sites 

8. Perform BLAST homology search to avoid off-target effects on other genes or 

sequences 

9. Always design negative controls by scrambling targeted siRNA sequence. The control 

RNA should have the same length and nucleotide composition as the siRNA but have at 

least 4-5 bases mismatched to the siRNA. Make sure the scrambling will not create new 

homology to other genes. 

By experimentally analyzing the silencing efficiency of 180 siRNAs targeting the mRNA 

of two genes and correlating it with various sequence features of individual siRNAs, 

Reynolds et al [32] at Dharmacon, Inc identified eight characteristics associated with 

siRNA functionality. These characteristics are used by rational siRNA design algorithm 

to evaluate potential targeted sequences and assign scores to them. Sequences with higher 
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scores will have higher chance of success in RNAi. Table 2.1 below lists the 8 criteria and 

the methods of score assignment. 

Criteria 

1 

2 

3 

4 

5 

6 

7 

8 

Description 

Moderate to low (30%-52%) GC Content 

At least 3 A/Us at positions 15-19 (sense) 

Lack of internal repeats (Tm*<20iaC) 

A at position 19 (sense) 

A at position 3 (sense) 

U at position 10 (sense) 

No G/C at position 19 (sense) 

No G at position 13 (sense) 

Score 

Yes 

1 point 

1 point /per A or U 

1 point 

1 point 

1 point 

1 point 

No 

-1 point 

-1 point 

Table 2.1 Reynolds' rational design rules [32] 

TROD (T7 RNAi Oligo Designer) [30] is a web application that facilitates the design of 

DNA oligonucleotides for the synthesis of short interfering RNAs (siRNAs) with T7 

RNA polymerase. TROD looks for all occurrences of the sequence NzGNisC. The G and 

C nucleotides are required for efficient synthesis of the RNA by T7 RNA polymerase, 

since it strongly favours a G at the start site. From these sequences, the program generates 

both the sense and antisense strands of DNA oligos that will be used to produce the 

siRNAs in vitro. By definition, the 'antisense' DNA oligo encodes the antisense siRNA 

strand, and vice versa. The following (reverse complemented) T7 promoter is appended to 

the 3' ends of the DNA oligos: 5'-TATAGTGAGTCGTATTA-3'. 

After T7 transcription, the siRNA duplexes will look like the following: 

sense siRNA: 5'-GNNNNNNNNNNNNNNNNNNUUU-3' 
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antisense siRNA: 3'-NNCNNNNNNNNNNNNNNNNNNG-5' 

TROD, by default, appends an AA dinucleotide to the 5' end of the DNA 'sense' strand, 

since AT-richness is preferred at this site. The result (as shown above) is a UU 

dinucleotide overhang on the sense siRNA after T7 transcription. In addition, in order to 

destabilize the 5' end of the antisense siRNA (so as to direct it to the RISC complex), a U 

replaces the complementary C, producing a GU pair. 

2.2.2 Efficaciousness of siRNA 

From the current research, the result shows that not all possible siRNA can be synthesized 

against a specific target, but a subsection of them would take effect in causing any 

degradation [33] and more, all siRNA do not result in equal knockdown effects [33]. As 

we found out the efficacy of siRNA even in the same target mRNA differ in different 

target sites, here to select efficiency ones which are extremely functional causing a certain 

higher percentage of the target mRNA sequence to degrade. There is variance on the 

importance of each of these properties. Reynolds et al. [32] launched their siRNA 

knockdown experiments and concluded that properties of the target mRNA did not affect 

the efficacy of knockdown but be solely based on properties of the siRNA. However, 

other studies [34, 35] showed that secondary structure and thermodynamic features 

(related to stability) of the siRNA are also important determining factors of functionality. 

Up on most studies, siRNA with knockdown of greater than 80% of the target mRNA are 

considered highly efficient while threshold varies based on the required level of silencing. 

So to help designing siRNA sequences to highly efficient against target mRNA sequences, 

it is quite important to have siRNA efficacy prediction. 
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2.2.3 Specificity of siRNA 

To better design siRNA sequences, the specificity of it is equaled important with potency 

or efficacy. While maximum degradation of target mRNA is required, silencing of non-

target mRNA should be avoided. To achieve the objective of maximally degrade target 

mRNA, avoid silencing of non-target mRNA is needed. As siRNA gene silencing is 

considered to be highly sequence-specific, even one single base mismatch would ruin 

gene silencing [20], while we can show the evidence in cultured human cells with eleven 

complementary matches out of 19 nucleotides of a siRNA is enough causing silencing 

[36]. This shows siRNAs may interact with limited sequence similarity and mentions us 

to give necessary consideration on siRNA specificity in design algorithms. Qiu et al. [11] 

have examined the effects of siRNA lengths on off-target error rates. 

2.3 Gene Family Knockdown 

At present, the focus of RNAi research has been put on single gene knockdown, which 

refers to genetically modifying an organism with intention to reduce expression of single 

or multiple genes in their chromosomes by inserting a reagent with a sequence 

complementary to an active gene or its mRNA transcripts, the most typical represent is a 

short DNA or RNA oligonucleotide. The impacts of gene knockdown will permanently 

modify the chromosomal DNA to produce a "knockdown organism" or a temporary 

change in gene expression without modification of the chromosomal DNA molecules to 

knock down the function of a single gene. In this thesis, we are trying to solve the 

problem which is using a minimal number of siRNAs to knockdown a gene family. The 

reason is the efficacy of a specific siRNA in knocking down its targeted gene is 
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determined by its homology to that gene. Further more, the synthesis of individual 

siRNAs may cost large amount of money, so using compact sets of siRNAs for gene 

family knockdown would bring more efficiency and profit. 

Because of its generally high specificity to a single target mRNA, RNAi has so far been 

primarily used to target and knock down the expression of individual genes in isolation. 

Often, however, it is useful to be able to knock down multiple genes simultaneously. For 

example, a family of closely related genes may have mutually redundant function; to 

observe any phenotypic change, it may be necessary to suppress the entire family 

simultaneously. For single gene knockdown, it usually suffices to select a substring of the 

target mRNA as the initiator siRNA. For families of genes, however, it is less clear how 

to design an optimal set of siRNAs to target the entire family. 

2.4 Problem Statement 

Given an siRNA covering problem instance {S, G, W}, we want to find the minimum set 

of siRNAs required to knock down all the target genes. We define the problem as follows: 

2.4.1 Minimal siRNA Selection Problem 

Given a siRNA set, S = {si,...,sN}, and a gene set, G - {gi,...gic}, a NxK matrix W=fwyJ 

is generated such that wy= 1 if s7 cover gh otherwise wy= 0. By doing this, we can transfer 

the minimal siRNA set cover problem to simple set covering problem. Table 2.2 shows an 

example of a matrix with the number of siRNAs N-l and the number of genes K=6. First, 

we generate this matrix from the original sequences of siRNAs. For example, gi and g3 
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have the same siRNA sequences: si=CACUCUACUGCAGCAAAGC; g2, g3 and g6 have 

the same siRNA sequences: s2=GUGGGAGCGCGUGAUGAAC. Then for the first 

column: wn=l, W3i=l, and wu=0 for other elements; for the second column: W22=1, 

W32=l, W62=l, and w;2=0 for other elements. With the off target effect genes: g4, gs and g$, 

we should not select column 2, 4 and 5, because those genes include S2, S4 and S5. Table 

2.3 shows the matrix without off target effects. In this thesis, we select the off target 

genes randomly. 

On 

target 

Off 

target 

gi 

g2 

g3 

g4 

g5 

g6 

Si 

1 

0 

1 

0 

0 

0 

S2 

0 

1 

1 

0 

0 

1 

S3 

0 

1 

1 

0 

0 

0 

S4 

0 

0 

1 

0 

1 

0 

S5 

1 

1 

1 

1 

0 

0 

S6 

1 

0 

0 

0 

0 

0 

S7 

0 

0 

1 

0 

0 

0 

Table 2.2 Example of a matrix with off target effects. 

On 

target 

gi 

g2 

g3 

Si 

1 

0 

1 

S3 

0 

1 

1 

S6 

1 

0 

0 

S7 

0 

0 

1 

Table 1.3 Example of a matrix without off target effects. 

Given a matrix W, the objective of the minimal siRNA set cover problem is to find a 

minimal set of siRNAs that can cover all the target genes without covering any off target 
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genes. In Table 2.2, for instance, {S3, S6} is an optimal solution, while the solution {si, S3, 

S7} is not, and therefore it is not cost effective. 

The definition for minimal siRNA set cover problem is that, given a NxK matrix W with 

a siRNA set, S- {si, ...,SN} and a gene set G= {gb-.-gic}, the goal of the minimal siRNA 

set cover problem is to select a subset Smin c S of siRNAs such that 1) Smin is minimal, and 

2) Smin covers all the target genes without hitting any off target genes. In [9], this was 

proved to be an NP-hard problem by performing a reduction from the set covering 

problem. 

This problem can be formulated as an integer linear programming (ILP) problem as 

follows: 

N 

Minimize: 2_jXj (1) 

N 

Subject to: ^WijXj>l i=l,...,K (2) 

x,e{0,l} j=l,...,N (3) 

Variables JC,=1 when siRNAy is selected, otherwise XJ=0. 

In this thesis, we solve the above ILP problem by using three deterministic greedy 

heuristics and a genetic algorithm. 
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Chapter 3 

3. Overview of Existing Techniques 

This chapter gives an introduction for set cover problem. There is plenty of research has 

already done on set cover problem. A number of existing exact and approximate methods 

for it, including greedy heuristics [39, 40], Lagrangean relaxation [41], exact branch & 

bound, probabilistic greedy [9] and genetic algorithms [42, 43]. This section is followed 

by the discussion of these methods. 

3.1 Chvatal Heuristic 

This idea is to Let A be a binary matrix of size m X n, let cT be a positive row vector of 

length n and let e be the column vector, all of whose m components are ones. The set-

covering problem is to minimize cTx subject to Ax ^ e and x binary. Then compare the 

value of the objective function at a feasible solution found by a simple greedy heuristic to 

the true optimum. It turns out that the ratio between the two grows at most logarithmically 

in the largest column sum of A. 

3.2 Lagrangean relaxation 

In Beasley [41], the author consider the set covering problem (SCP) which is the problem 

of covering the rows of a m-row, n-column, zero-one matrix( ay) by a subset of the 

columns at minimum cost. Formally, the problem can be defined as follows: 

Let 

Xj= 1 if column j (cost q) is in the solution, 

Xj = 0 otherwise, then the program is: 
n 

minimise ^CJXJ (4) 
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n 

subject to ^aijXj>\, i=l,...,m, (5) 

XjG(0,l), j=l,...,n. (6) 

Equation (4) ensures that each row is covered by at least one column and equation (6) is 

the integrality constraint. The author presents a three stage algorithm consisting of: 

(I) A dual ascent procedure: 

Letting Uj (^0 , i=l, •••, m) be the dual variables associated with equation (5) then the 

dual of the linear programming relaxation of the SCP (DLSCP) is given by 

m 

minimise ^w (7) 

m 

subject to ^atjui ^Cj, i = 1,...,n, (8) 
i=i 

Ui>(), i=l,...,m. (9) 

The author adopted a two pass procedure to the problem of generating a good lower 

bound for the SCP from a feasible solution for DLSCP. This procedure was modelled on 

the dual ascent procedure of Balas and Ho [44]. At the end of this procedure, there will be 

a set of dual variables feasible for DLSCP and a corresponding lower bound as given by 

equation (7). 

(II) A sub gradient procedure starting from an initial set of lagrangean multipliers equal to 

the dual variables from stage (I): 

(III) Solving the dual of the linear programming relaxation of the SCP: 

(a) Generate an upper bound, 

(b) Use the dual ascent procedure to calculate an initial set of lagrange multipliers, 

(c) Use the subgradient procedure in an attempt to improve upon the bound derived from 

the dual ascent procedure, 
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(d) At the end of the subgradient procedure optimally solve DLSCP using a simplex 

algorithm. 

Note here that the third stage is achievable computationally because a comprehensive set 

of problem reduction tests are used to remove some rows, and a large number of columns, 

from the problem. 

3.3 Exact Branch and Bound Algorithm 

The minimal siRNA cover problem can be solved using branch-and bound techniques. A 

search tree is constructed by iteratively picking an siRNA and branching on it. At each 

point the algorithm generates two subtrees with one corresponding to selecting the siRNA 

and the other to de-selecting the siRNA. When an siRNA is selected, deduction 

techniques are used to reduce the search space. During the search, the algorithm keeps 

track of the current best cover with the lowest number of siRNAs. 

The Algorithm below shows the pseudocode for the exact, branch-and-bound process. S 

is the set of unselected siRNAs, and M is the set of uncovered target genes. The argument 

rank contains ranks for all the siRNAs. x is the current selection of siRNAs and b is the 

best selection found so far. The algorithm starts with (S, M, rank, 0, 1), where and 

represent vectors with all 0s and all Is, respectively. 

In step 4, we use Lemma 3 [9], which is proposed by Zhao et al. 2004, allows us to prune 

branches which cannot lead to any covers better than the known best one. 

Branch and Bound Algorithm: 

1. Branch_and_Bound (S, M, rank, x, b) { 

19 



2. Reduce S/M and update x 

3. Sort the rest of the siRNAs in non-increasing order of uncovered genes they can 

cover 

4. Compute the lower bound on the current path based on Lemma 3 [9] 

5. if (the lower bound > I b I or the low bound >Number_From_Greedy) {return b} 

6. if( | M | = 0 ) {returnx} 

7. si = first (S) 

8. y = Branch_and_Bound (S - {si}, M - g(sl), rank, x, b) 

9. if ( I y I < I b I or ( | y I = I b I and avgRank(y, rank) > avgRank(b, rank))^ 

{b=y} 

10. y = Branch_and_Bound (S - {si}, M, rank, x, b) 

11. if ( I y I < I b I or ( I y I = | b | and avgRank(y, rank) > avgRank(b, rank))= 

{b=y} 

12. return b 

13.} 

During the reduction stage, the algorithm discards any dominated siRNA, which covers 

only a subset of genes also covered by another siRNA. An essential siRNA is an siRNA 

which is the only one that can cover a particular target gene. We add all essential siRNAs 

to the solution x since they must be in any complete cover. We update the uncovered 

genes M accordingly. 

After reduction is done, the potential lower bound on the current path is estimated based 

on Lemma 3 [9]. If the current estimate requires more siRNAs than the current best cover 
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b, then we prune the current path. Otherwise, it generates two branches, one for selecting 

the next siRNA and the other for de-selecting the same siRNA. Simultaneously, the 

algorithm uses as the upper bound the number of siRNA in the cover obtained from our 

greedy algorithm to prune some paths since the minimal cover must be no worse than the 

one obtained from any greedy algorithm. 

3.4 Probabilistic Greedy Algorithm 

The probabilistic greedy algorithm [9] shares some common aspects with the randomized 

greedy algorithm [45], but it differs in an important way. The randomized greedy 

algorithm [45] uses a uniform probability distribution to select the next candidate to the 

cover, while this approach selects the next siRNA randomly according to a domain-

specific non-uniform probability distribution. Let f(s) be the number of genes that an 

siRNAs covers, and h(g) be the number of siRNAs which cover a particular gene g. 

Based on the two features: f(s) and mingeg(S)h(g), the author define a selection metric for 

selecting siRNAs, and then construct a subset of the unselected siRNAs as the set of 

potential siRNAs based on the selection metric and limiting parameter aG[0, 1]. They 

compute a selection probabilistic distribution over the potential siRNA set. 

The selection metric for siRNA, s, found to be the most effective is: 

milWw Kg) 
The selection probability distribution over the set of potential siRNAs S' is defined as: 
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The Algorithm below shows the pseudocode for the probabilistic greedy algorithm. S is a 

set of siRNAs, and M is the set of the target genes. The argument rank contains ranks for 

all the siRNAs: 

1. ProbGreedy (S, M, rank) { 

2. a = aValue / /a£[0, 1] 

3. k = aValue //Number of repetition 

4. opt = S 

5. iter = 0 

6. while (iter < k = { 

7. C = 0 

8. while (M ^0) { 

9. MAX = 0 

10. for each s e S { 

11. Compute metric m(s) 

12. if ( MAX < m(s) ) MAX = m(s) 

13. } 

14. S'=o 

15. for each s e S 

16. if (m(s) > a * MAX) S'= S' U {s} 

17. Compute probability distribution P(s) over S' 

18. Select s randomly from S' according to P(s) 

19. C = C U {s} 

20. S = S - {s} 
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21. M = M-g(s ) 

22. } 

23. Remove redundant siRNAs from C 

24. if ( | C | < I opt | or ( | C I = I opt I and avgRank(C, rank) > avgRank(opt, 

rank)) 

25. opt=C 

26. } 

27. return C 

28. } 

This procedure is repeated k times from line 6 to 27, and returns the best siRNA cover it 

finds. Whenever there is a tie between two siRNA covers, the algorithm uses their 

average ranks as a tie-break, and chooses the one with the higher average rank. Since 

there are up to min( I M I , I S I ) siRNAs in an siRNA cover, thus, the inner while 

loop could have up to min( I M I , I S I ) iterations, where each iteration requires O(S) 

time. Therefore, the algorithm requires 0(k* I S I * min( I M I , I S I )) time. The 

probabilistic greedy algorithm reduces to standard greedy algorithm, when a=1.0 and k=l. 

3.5 Genetic Algorithm 

This Genetic algorithm [42] made some modifications to the basic genetic procedures 

including a new fitness-based crossover operator, a variable mutation rate and a heuristic 

feasibility operator accommodated specifically for the set cover problem. 

A genetic algorithm (GA) can be understood as an "intelligent" probabilistic search 

algorithm which can be applied to a variety of combinational optimisation problems [45]. 
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The theoretical foundations of GAs were originally developed by Holland [46]. The idea 

of GAs is based on the evolutionary process of biological organism in nature. During the 

course of the evolution, natural populations evolve according to the principles of natural 

selection and "survival of the fittest". Individuals which are more successful in adapting 

to their environment will have a better chance of surviving and reproducing, whilst 

individuals which are less fit will be eliminated. This means that the genes from the 

highly fit individuals will spread to an increasing number of individuals in each 

successive generation. The combination of good characteristics from highly adapted 

ancestors may produce even more fit offspring. In this way, species evolve to become 

more and more well adapted to their environment. 

A GA simulates these processes by taking an initial population of individuals and 

applying genetic operators in each reproduction. In optimisation terms, each individual in 

the population is encoded into a string or chromosome which represents a possible 

solution to a given problem. The fitness of an individual is evaluated with respect to a 

given object function. Highly fit individuals or solutions are given opportunities to 

reproduce by exchanging pieces of their genetic information, in a crossover procedure, 

with other highly fit individuals. This produces new "offspring" solutions, which share 

some characteristics taken from both parents. Mutation is often applied after crossover by 

altering some genes in the strings. The offspring can either replace the whole population 

(generational approach) or replace less fit individuals (steady-state approach). This 

evaluation-selection-reproduction cycle is repeated until a satisfactory solution is found. 

The basic steps of a simple GA are shown below: 

Generate an initial population; 

24 



Evaluate fitness of individuals in the population; 

Repeat 

Select parents from the population; 

Recombine (mate) parents to produce children; 

Evaluate fitness of the children; 

Replace some or all of the population by the children; 

Until a satisfactory solution has been found. 

Chapter 4 

4. Methodologies 
It is well known that heuristic method is extremely important for the present and future 

developments of bioinformatics, since it can provide key solutions for the new challenges 

posed by the progressive transformation of biology into data analysis. There are four 

heuristic methods are presented in this paper to solve the minimal siRNA set cover 

problem. 

4.1 Dominated Target Covering Heuristic (DTC) 

To select a minimal number of siRNAs STO„-covering each target gene, DTC uses a 

function to evaluate each individual siRNA. Given a matrix W which is determined by a 

siRNA set S={si, •••SN} and a gene set G={gi, •••gKJ, we define the cover function cov as 

follows: 

c o v f ^ g , . ) ^ * ^ s.eSgi,gieG ( 1 Q ) 

where 0^cov(sj,gi)^l and Sgi (Sgi denotes the number of siRNAs generated by each gene, 

so it is impossible to be empty)is the set of siRNAs related to gene g,-. The value of 
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covfogj) is considered as a ratio by which Sj contributes to the satisfaction of coverage 

constraint for gene g,-. 

Since the minimal number of siRNAs is to be selected, it is suitable to take into 

consideration each siRNA with regard to its capability of satisfying coverage constraints. 

After applied Equation (10), the coverage is calculated as: 

C(sj) = max{cov(sj,gi]l<i<k) gt e GSJ 

where Gsj is the set of genes covered by sj, C(sj) is the maximum contribution made by Sj 

according to each gene. This is illustrated in Table 2.3, which derives from Table 2.2. 

gl 

& 
g3 

c 

Si 

1/2 
0 
1/3 
1/2 

S3 
0 
1 
1/3 
1 

S6 
1/2 
0 
0 
1/2 

S7 
0 
0 
1/3 
1/3 

Table 4.1 Example of a coverage function table. 

When C(SJ) = 1, we consider sj as an essential siRNA since any feasible solution has to 

include it. In Table 4.1, it is obvious that S3 is an essential siRNA. 

This heuristic consists of three phases: initialization, construction and reduction. Initially, 

we calculate C(s) for each siRNA seS from the given matrix W. Then an initial non-

feasible solution Smiis created, which only contains essential siRNAs. We denote S as the 

set Sj, Ssoiis the subset of S which contains selected Sj in the next phase. In the construction 

phase, we always select the high-ratio siRNAs sj into Sini by sorting 5Vw in descending 

order of C(s). Note that, when we select a Sj&S\Ssoi that covers g„ we delete sy from 

matrix W, and then we compute C(s) from the reduced matrix W. This step executes 

repeatedly until we get an initial feasible solution. In the reduction phase, Ssoi is reduced 
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by repeatedly removing low-ratio siRNAs to achieve a feasible but near optimal solution 

Smin which is selected to cover all the target genes. 

More precisely, the steps of the heuristic can be described as follows: 

1. Initialization Phase 

a) compute C(s) for all s £ S 

b) Sini = {s&S | C(s)=\} {essential siRNAs in initial solution} 

2. Construction Phase 

d) sort S£soi in descending order of C(s) 

e) for each gene g; not covered by Ssoi 

Ssoi = Ssoi U sj {next highest-ratio sy£ .SV̂ o/ that covers g,-} 

f) delete sj from matrix W; 

g) repeat step a) to step f) 

3. Reduction Phase 

i)W=W\ Smi„ /*the restriction of matrix W to the siRNAs in Smin */ 

j) compute C(s) for all s^Smin 

k) sort Sde/ ={s£5OT,-„ I C(s)<\} in ascending order of Cfij 

1) if Smin\{s} is feasible for each s £ 5^/ then 

m) return Smin 
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In the worst-case, the time complexity of DTC is dominated by the construction phase. 

The time complexity of the construction phase is dominated by sorting in step d) and the 

search for siRNAs to cover some genes in step e). Sorting the siRNAs in e) takes O (n 

logn). In step e), there are potentially K genes that are not yet covered by Ssoi. Testing a 

gene for coverage takes at most n steps. Searching for the highest-degree siRNA Sj to 

cover a gene gi takes at most n steps. Therefore, step e) takes O (nk). The construction 

phase iterates n times at most (see step g)). Therefore, the construction phase runs in 

O (n2k) + O (n2 logn). 

4.2 Dominant siRNA Selection Heuristic (DSS) 

We also want to satisfy the selection of dominant siRNAs; sj dominates si if Gsi c GSJ. In 

Table 2.3, for example, si dominates S6 since Gs6={gi} c Gsi={gi,g3}. Selecting 

dominant siRNAs instead of dominated siRNAs covers more genes. In the example, 

however, we have C(si)=C(s6), and hence DTC will select si for gene coverage rather 

than S6 which depends on the particular order of the siRNAs. This is because DTC will 

select a dominant siRNA Sj over its dominated siRNA si only if C(sj)>C(s\). In Table 2.3, 

S6 dominates S7 and C(s6)>C(s7), therefore S6 will be selected first. 

To satisfy the selection of a dominant siRNA that has the same degree as some of its 

dominated siRNAs, we modify Equation (10) in such a way that a dominant siRNA Sj will 

have a higher C(s) value than its dominated siRNAs. We solve this by adding a penalizing 

each entry in Table 4.1 with an amount that takes into account the number of coverd 

genes. The new cov function has the form as follows: 

c o v ^ g , - ) - ^ * ^ * - ^ sjeSg,, gteG 
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(12) 

where 0 =S= cov(sj,gi) ̂  1, Sgi is the set of siRNAs related to gene gi, Gsj in the penalty term 

is the set of genes covered by Sj and m is the number of genes. In Equation (12), siRNAs 

that cover fewer genes are penalized more than those that cover more genes. 

Dominant siRNA Selection (DSS) heuristic is similar to DTC heuristic described in 

Section 4.1 only with the exception that function C is defined by using Equation (12) 

instead of Equation (10). In DSS, siRNAs that cover dominated genes are selected first, 

as in DTC. Unlike DTC, dominant siRNAs among all such siRNAs will be selected first. 

These two greedy principles together allow a larger coverage at each selection step. So 

DSS is greedier than DTC. 

4.3 Genetic Algorithm for Minimal siRNA Set Cover Problem 

Beasley et al. [41] presented a genetic algorithm-based heuristic for set covering problem. 

Based on this method, our GA inherits the siRNA selection function defined in Section 

4.2. The improved genetic approach can be illustrated in details as follows. 

4.3.1 Representation and Fitness Function 

To design a genetic algorithm, we have to devise a suitable representation scheme at first. 

Given the initial candidate siRNA set S= {SI,...,SN}, we want to find a feasible subset 

Smi„<zS of minimal cardinality. Therefore, the search space is the power set of S, denoted 

by 2 ; that is the set of all subsets of S. The fitness of an individual 5 is related to its 

objective value, which corresponds to the number of siRNAs in its associated subset. So 

the fitness function is: 
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/ = ! > (13) 

where sy is the value of the j-th bit (column) in the string (row) corresponding to the i-th 

individual. 

4.3.2 Parent Selection Operator 

For the purpose of selecting the fittest individuals continuously, we apply a binary 

tournament selection which selects the best individual in any tournament. The chosen 

individual will be removed from the population, otherwise individuals can be selected 

more than once for the next generation. 

4.3.3 Crossover Operator 

We implement the fusion operator of [41] which regards both the structure and the 

relative fitness of each parent solution, and produces a single child only. This crossover 

focuses on the differences of the parents. So it will generate new solutions more 

efficiently when they have similar parents. Besides, the fittest parent will obtain more 

probability to contribute the fitness of the child. Let fs and fs
pl be the scaled fitness 

values of the parents P\ and Pj respectively, and let C denote the child solution, then for 

eachj e [1,N]: 

1. IF Py = P2j, THEN Cj = Py = P2f, 
2. ELSE 

f 
(1) Cj = Py with probability p = / " s 

J pi J pi 

(2) Cj = Py with probability 1 - p 
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4.3.4 Mutation Operator and Variable Mutation Rate 

In the next step of crossover, we use the mutation operator to change a number of bit 

positions randomly. The number of positions to mutate for a given solution depends on 

the mutation rate. We use the variable mutation rate in [41]. It essentially depends on the 

rate of the GA convergence which means lower mutation rates are used in early 

generations. When mutation increases to higher rates, the population converges, after that 

mutation stabilizes to a constant rate. The mutation schedule below specifies the number 

of bits to mutate [41]. 

Nuntn m/ (14) 
1 + exp(- 4mg(t - mc)/mr) 

where / is the number of child solutions that have already been generated, my specifies the 

final stable mutation rate, mc is the number of solutions that should be generated such that 

the mutation rate i s ^ _ , and mg specifies the gradient at / = mc. The value of m/is user-
2 

defined and the values of mc and mg are problem-dependent parameters. 

4.3.5 Heuristic Feasibility Operator 

Crossover and mutation operators can generate unfeasible solutions. Hence, we propose a 

heuristic feasibility operator that keeps the feasibility of solutions in the population. More 

over, the operator provides a local optimization method for fine-tuning the results 

generated from crossover and mutation operators. This operator consists of the last two 

phases of DSS heuristic: construction and reduction phases. GA has already generated a 

potentially good solution Ssoi so we do not need to apply the initialization phase for this 

step. The construction phase starts with such a solution Ssoi which is not a feasible 
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solution generated by GA. The feasibility operator is applied for unfeasible solutions 

only. 

4.3.6 The Algorithm 

This Genetic Algorithm can be summarized as follows: 

1) Generate an initial population of N solutions. Set t:=0. 

2) Select two solutions St and S2 from the population using binary tournament 

selection. 

3) Produce a new solution C using the fusion crossover operator. 

4) Mutate Nummut randomly selected bits in C. 

5) Make C feasible and remove redundant columns in C by using DSS heuristic 

operator. 

6) If C is identical to any one of the solutions in the population, go to step 2; 

otherwise, set t:~t+l and go to step 7. 

7) Replace a randomly selected solution with an above average fitness in the 

population by C. 

8) Repeat steps 2-7 until t=Ps. {t is the number of child solutions that have already 

been generated, Ps is the population size which is a user defined parameter). 

4.4 Forward Selection Heuristic 

Forward Selection begins from an empty set of features. It first evaluates all one-feature 

subsets and selects the one with the best performance. Then evaluates all two-feature 

subsets that include the feature already selected in the first step and selects the best one. 

This process will continue until extending the size of the current subset leads to a lower 

performance. The steps of forward selection heuristic are shown as follows in detail: 

1) Use Equation (12) to select a ,sy with the best value (the highest value of C(s)). For 

instance, si is selected. 
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2) From all possible two-dimensional vectors that contain Sj form the fist step, that is, 

T rp rp rp 

[si, S2] , [si, S3] , [si, S4] ...[si, Sj] , compute the criterion value for each of them and 

select the best one, give an illustration: [si, s j 1 . 

3) Form all three-dimensional vectors generated from the two-dimensional winner ([si, 

S4]1), that is, [si, S4, S2]T, [si, s4; S3]T, [si, S4, Ss]T.. .[si, S4, Sj]T and select the best one. 

4) Continue this procedure, until find a subset of S which can cover all the target 

genes with the minimal number ofay. 

5) In case that S may include redundant siRNAs, the last phase of DSS: reduction 

phase will be used in this step. 

The time complexity for step 1) is O (n2k), from step 2) to step 4) the time complexity 

is O (n). While, the reduction phase of DSS is implemented in step 5). So the total 

time complexity for forward selection is O (n2k+n+nlogn). 

Chapter 5 

5. Computational Experiment Results 

The experiments were conducted to find minimal siRNA sequences to cover all the target 

genes. As a set cover problem, we have a matrix and the goal is to select minimal 

columns to cover all the rows. We tested our heuristic methods on three gene families and 

an artificial matrix. During the experiments, each method was carried out consistently in 

the same environment using the same dataset. 

5.1 Experiment Environment 
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We implemented all approaches, and experimental results show that our heuristic 

approaches are good alternatives for the minimal siRNA set cover selection problem 

heuristics: exact branch and bound algorithm, probabilistic greedy algorithm [9]. All 

heuristics were implemented by Java programming language. 

The hardware platform is as follows: 

• A workstation with Intel(R) Xeon(TM) CPUs 3.20GHz and 3.19GHz 

• 8.00GB of RAM 

• The operating system is Microsoft Windows XP, Professional x64 Edition. 

5.2 Dataset 

In this thesis, we apply our methods to three gene families. The first family, the set of 

Fibrinogen-related protein (FREP) genes from the snail Biomphalaria glabrata, is of 

interest in human immunological studies because both humans and B.glabrata may 

become infected by the parasite Schistosoma mansoni [9]. The second family is also a set 

of FREP genes like family 1[10]. And for the third family, we downloaded the olfactory 

genes of nematode Caenorhabditis elegans from NCBI [12]. Fibrinogen-related proteins 

(FREPs) are in the hemolymph of the freshwater gastropod Biomphalaria glabrata. They 

are produced in hemocytes. Some categories of FREPs are modulated following infection 

with parasites such as the digenetic trematode Echinostoma paraensei. Some FREPs are 

capable of binding to parasite surfaces and can precipitate soluble parasite antigens, 

prompting hypothesis that they take into effect in internal defense [17]. The defense 

responses of B.glabrata are a relational concern since this snail is one of the most 
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important intermediate hosts for another digenetic trematode, Schistosoma mansoni, a 

parasite which infects about 83 million people [18]. Studying of molecules or genes 

involved in snail response to trematode infection will be very helpful for understanding 

the underlying mechanisms of the snail host and parasite interaction. 

The actual target gene families used in our experiments are: 

• Target family 1: 13 FREP genes from Zhao et al. [9]. 

• Target family 2: 53 fibrinogen (FBG) genes from the FREP family in Zhang et al. [10]. 

• Target family 3: 150 olfactory genes from NCBI [12]. 

5.3 Experiment Results 
We design the siRNA sequences for above 3 gene families by three softwares [28, 29, 30]. 

5.3.1 Experiments on using BLOCK-iT™ RNAi Designer 

Table 5.1, 5.2 and 5.3 show the number of siRNAs used for covering target genes. In 

these tables, G is the number of target genes, S is the number of siRNA sequences 

without off target gene effects. (Some abbreviations are used: PG=Probabilistic Greedy, 

BB=Branch & Bound, DTC=Dominated Target Covering, DSS=Dominant siRNA 

Selection, GA_DSS=Genetic Algorithm with Dominant siRNA Selection, FS=Forward 

Selection). 

size of 
target 

set 
PG 

BB 

G=2 
S=22 

2 

2 

G=3 
S=27 

3 

3 

G=4 
S=34 

4 

4 

G=5 
S=30 

5 

5 

G=6 
S=36 

5 

5 

G=7 
S=45 

6 

6 

G=8 
S=51 

7 

7 

G=9 
S=65 

9 

9 

G=10 
S=75 

10 

10 

G=ll 
S=81 

13 

13 

G=12 
S=84 

14 

14 

G=13 
S=96 

15 

15 

35 



DTC 

DSS 

GA_D 
SS 

FS 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

5 

5 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

7 

7 

8 

8 

8 

8 

9 

8 

8 

8 

10 

9 

9 

9 

11 

10 

10 

10 

Table 5.1 Results for Target Family 1 (BLOCK-iT™ RNAi Designer). 

size 
of 

target 
set 
PG 

BB 

DTC 

DSS 

GA_D 
SS 

FS 

G=5 
S=40 

5 

5 

5 

5 

5 

5 

G=10 
S=79 

11 

11 

10 

9 

9 

9 

G=20 
S=137 

28 

28 

19 

19 

19 

19 

G=30 
S=170 

36 

37 

21 

20 

20 

20 

G=40 
S=201 

51 

51 

26 

25 

25 

25 

G=50 
S=254 

33 

34 

20 

19 

19 

19 

G=53 
S=277 

30 

30 

18 

17 

17 

17 

Table 2.2 Results for Target Family 2 (BLOCK-iT™ RNAi Designer). 

size 
of 

targe 
t set 
PG 
BB 

DTC 
DSS 
GA_ 
DSS 
FS 

G=15 
S=14 
4 

16 
16 
16 
14 

14 

14 

G=30 
S=27 
3 

33 
33 
27 
26 

26 

26 

G=45 
S=42 
3 

48 
48 
42 
41 

41 

41 

G=60 
S=56 
7 

63 
63 
57 
56 

56 

56 

G=75 
S=71 
1 

79 
80 
71 
69 

69 

69 

G=90 
S=86 
0 

95 
96 
86 
84 

84 

84 

G=10 
s 
S=991 

110 
112 
99 
97 

97 

97 

G=120 
S=109 
7 

122 
123 
110 
108 

108 

108 

G=135 
S=120 
2 

120 
121 
121 
118 

118 

118 

G=150 
S=133 
9 

153 
154 
136 
132 

132 

132 

Table 5.3 Results for Target Family 3 (BLOCK-iT™ RNAi Designer). 

5.3.2 Experiments on using siDirect 

Table 5.4, 5.5 and 5.6 show the number of siRNAs used for covering target genes: 
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size 
of 

target 
set 

PG 
BB 
DTC 
DSS 
GA_ 
DSS 
FS 

G=2 
S=2 
2 

2 
2 
2 
2 

2 

2 

G=3 
S=2 
7 

3 
3 
3 
3 

3 

3 

G=4 
S=3 
5 

G=5 
S=3 
7 

6 
6 
5 
5 

5 

5 

G=6 
S=4 
4 

9 
9 
6 
5 

5 

5 

G=7 
S=5 
5 

10 
10 
8 
6 

6 

6 

G=8 
S=6 
3 

11 
11 
9 

7 

7 

7 

G=9 
S=7 
2 

12 
12 
9 
9 

9 

9 

G=l 
0 
S=8 
4 
13 
13 
10 
10 

10 

10 

G=l 
1 
S=9 
S 
14 
14 
11 
11 

11 

11 

G=12 
S=10 
3 

15 
15 
11 

11 

11 

11 

G=13 
S=ll 
0 

16 
16 
12 

12 

12 

12 

Table 5.4 Results for Target Family 1 (siDirect). 

size 
of 

target 
set 
PG 
BB 
DTC 
DSS 
GAJD 
SS 
FS 

G=5 
S=50 

5 
5 
5 
5 

5 

5 

G=10 
S=93 

16 
16 
13 
11 

11 

11 

G=20 
S=15 
8 

31 
31 
19 
19 

19 

19 

G=30 
S=19 
4 

48 
48 
30 
29 

29 

29 

G=40 
S=22 
5 

69 
69 
37 
36 

36 

36 

G=50 
S=27 
3 

45 
45 
30 
29 

29 

29 

G=53 
S=29 
9 

42 
42 
25 
24 

24 

24 

Table 5.5 Results for Target Family 2 (siDirect). 

size 
of 
targ 
et 
set 
PG 
BB 
DT 
C 
DS 
S 
GA 
D 
SS 
FS 

G=l 
5 
S=l 
58 

21 
21 

18 

18 

18 

18 

G=3 
0 
S=2 
89 

40 
40 

33 

32 

32 

32 

G=4 
5 
S=4 
42 

58 
58 

49 

48 

48 

48 

G=6 
0 
S=5 
83 

73 
73 

64 

63 

63 

63 

G=7 
5 
S=7 
33 

90 
90 

82 

81 

81 

81 

G=9 
0 
S=8 
84 

109 
109 

99 

98 

98 

98 

G=l 
05 
S=10 
12 

125 
125 

114 

113 

113 

113 

G=l 
20 
S=ll 
30 

138 
137 

129 

128 

128 

128 

G=l 
35 
S=12 
27 

143 
142 

142 

133 

133 

133 

G=l 
50 
S=13 
62 

175 
175 

158 

140 

140 

140 
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Table 5.6 Results for Target Family 3 (siDirect). 

5.3.3 Experiments on using TROD (T7 RNAi Oligo Designer) 

Table 5.7, 5.8 and 5.9 show the number of siRNAs used for covering target genes: 

size of 
target 

set 

PG 

BB 

DTC 

DSS 
GA_D 

SS 
FS 

G=2 
S=22 

2 

2 

2 

2 

2 

2 

G=3 
S=27 

3 

3 

3 

3 

3 

3 

G=4 
S=33 

4 

4 

4 

4 

4 

4 

G=5 
S=35 

7 

7 

5 

4 

4 

4 

G=6 
S=41 

8 

8 

6 

5 

5 

5 

G=7 
S=50 

9 

9 

7 

6 

6 

6 

G=8 
S=59 

10 

10 

8 

7 

7 

7 

G=9 
S=69 

11 

11 

8 

8 

8 

8 

G=10 
S=79 

12 

12 

9 

9 

9 

9 

G=ll 
S=89 

13 

13 

10 

10 

10 

10 

G=12 
S=98 

15 

15 

10 

10 

10 

10 

G=13 
S=106 

16 

16 

11 

11 

11 

11 

Table 5.7 Results for Target Family 1 (TROD). 

size 
of 

target 
set 
PG 
BB 

DTC 
DSS 

GA_D 
SS 
FS 

G=5 
S=49 

5 
5 
5 
5 

5 

5 

G=10 
S=92 

14 
14 
12 
10 

10 

10 

G=20 
S=153 

29 
29 
17 
17 

17 

17 

G=30 
S=185 

44 
44 
28 
27 

27 

27 

G=40 
S=220 

62 
62 
32 
31 

31 

31 

G=50 
S=271 

38 
37 
26 
25 

25 

25 

G=53 
S=297 

35 
35 
21 
20 

20 

20 

Table 5.8 Results for Target Family 2 (TROD). 

size 
of 

target 
set 
PG 
BB 

DTC 
DSS 

G - 1 5 

S=152 

19 
19 
16 
16 

G=30 

S=282 

39 
39 
32 
31 

G - 4 5 

S=433 

54 
54 
46 
45 

G=60 

S=575 

68 
68 
60 
59 

G=75 

S=720 

85 
84 
76 
75 

G=90 

S=872 

104 
104 
96 
94 

G-105 
S=1001 

119 
119 
109 
108 

G=120 
S=1118 

130 
129 
120 
118 

G=13S 
S=121S 

132 
131 
131 
127 

G=1S0 
S=1350 

162 
162 
143 
138 

38 



GA_ 
DSS 
FS 

16 

16 

31 

31 

45 

45 

59 

59 

75 

75 

94 

94 
Table 5.9 Results for Target Fami 

108 

108 

118 

118 
y 3 (TROD). 

127 

127 

138 

138 

Table 5.10 shows the result generated by an artificial big matrix. 

size of 
target set 

PG 

BB 

DTC 

DSS 

GA_DSS 

FS 

G=255 
S=2792 

63 

63 

15 

13 

13 

13 

Table 5.10 Results for an Artificial Matrix. 

5.3.4 Summary of Experiments on Different Designed Sequence 

and Results 

Experiment results show that our heuristics are able to select less number of siRNAs than 

the methods mentioned in [9]. Since the three siRNA software designers use different 

algorithms, we got different siRNA sequences from each designer. Therefore, the 

numbers of the siRNA sequences are all different. When the number of siRNA increases, 

DSS, GA_DSS and FS give much better results than other methods. From the artificial 

dataset, we can clearly notice that the contrast between DSS, GA_DSS, FS and PG, BB is 

extremely remarkable. It can be expected that this will provide a great help for RNAi 

interference experiments. 
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Chapter 6 

6. Conclusion 

6.1 Conclusions 

In this thesis, we discussed some heuristic approaches for the minimal siRNA set cover 

problem which is important to gene family knockdown. We introduced a novel heuristic 

method: forward selection for set covering problem and we also implemented other three 

improved methods. 

Experiment results showed that these methods are able to obtain relative minimal 

solutions which are still comparable to the known heuristics [9] for this problem. Hence, 

our methods can significantly reduce the number of siRNAs required in gene family 

knockdown experiments as compared to knocking down genes one by one. 

The experiments showed that it is a nice application of set cover heuristics to a recent 

biological problem. The modifications made to suit the problem were well thought out 

and the novel forward selection heuristic was promising. 

6.2 Future Work 

There are some directions for further work. We summarize as follows: 

• Applying some other siRNA sequence design software to compare the output 

sequences which are generated by these software. 

• Implementing siRNA sequences from biological experiments instead of using siRNA 

sequence design software. 
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• Experiments on more gene families. 

• Designing a more evolutionary heuristic method. 
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