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Abstract

All-Digital-Phase-Locked-Loops (ADPLLs) are ideal for integrated circuit imple-
mentations and effectively generate frequency chirps for Frequency-Modulated-
Continuous-Wave (FMCW) radar. This dissertation discusses the design require-
ments for integrated ADPLL, which is used as chirp synthesizer for FMCW auto-
motive radar and focuses on an analysis of the ADPLL performance based on the
Digitally-Controlled-Oscillator (DCO) design parameters and the ADPLL config-
uration. The fundamental principles of the FMCW radar are reviewed and the
importance of linear DCO for reliable operation of the synthesizer is discussed. A
novel DCO, which achieves linear frequency tuning steps is designed by arranging
the available minimum Metal-Oxide-Metal (MoM) capacitor in unique configura-
tions. The DCO prototype fabricated in 65 nm CMOS fulfills the requirements
of the 77 GHz automotive radar. The resultant linear DCO characterization can
effectivelly drive a chirp generation system in complete FMCW automotive radar

synthesizer.
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Chapter 1

Introduction

Automotive sensors are mounted around vehicles to enable a 360° safety zone.
While different types of driver assistance systems are proposed such as millimeter-
wave (mm-wave), infrared, ultrasonic, and laser sensors, the mm-wave automotive
sensor offers superior robustness against extreme weather environments such as

rain, temperature, snow, and fog [1].

Pre-crash sensing, blind-spot detection, and collision avoidance are enabled by
the usage of automotive Short Range Radar (SRR), which detects objects in the

distance range of 0.15-30 m.

On the other hand, the automotive Long Range Radar (LRR) senses long distance
range of 10-250 m and is primarily used for Automatic Cruise Control (ACC).

The Frequency Modulated Continuous Wave (FMCW) method is usually utilized
in automotive radar transceivers. FMCW radar relies on the accuracy of the
frequency modulation for a continuously transmitted signal to measure the target
properties, which calls for a linear frequency sweep to measure the range and
velocity of objects [2]. The accuracy of the measurement in FMCW radar depends
on the linearity of the generated frequency sweep of the frequency synthesizer.

Non-linearity in the sweeping range widens and shifts the peaks along the frequency

1



axis, which introduces a systematic bias in distance estimation and increases the

estimation variance [2].

1.1 Motivation

Unlike other traditional radar schemes, which use pulses and operate in the lower
G H z range, The mm-wave bands of the automotive radar are located near 24 GH z
(K-band) or 77 GHz (W-band). FMCW radar for the K- or W-bands offers much
smaller form factors. Shorter wavelength allows for the deployment of multiple
independent links in close proximity. The wavelength of the W-band (77 GHz) is
smaller than that of the K-band 24 G'Hz automotive radar. Further integration
is allowed driven by the significant reduction in the wavelength, which leads to a

more compact size [3].

The low cost and the potential for System-on-Chip (SoC) integration make CMOS
an appealing technology [4]. The increasing demand for compact, power efficient,
and low cost automotive radar as driven by the advances in silicon technology

have motivated research on SoC realizations. Automotive radar synthesizers and

transceivers in CMOS have been reported in [1], [3], [5], [7], [8].

Digitally intensive or digitally assisted RF architectures are becoming attractive for
realizing mm-wave frequency synthesizers. All-Digital-Phase-Locked-Loop (AD-
PLL) manifest itself as an attractive system architecture. The analog loop-filter
of the analog PLL is transformed to a digital one, which allows full integration
and provide scalability with the technology. Moreover, the total loop parameter
such as loop bandwidth and phase margin can be reconfigured via programming
internal digital registers that adjust the performance and control operation mode

[5], [6], [10], [11].
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Ficure 1.1: FMCW radar system.

While the analog PLLs still dominates the mm-wave range. However, ADPLLs
for the mm-wave applications still suffer from low in-band phase noise or rely on

extensive calibration circuitry. [12], [5], [8].

1.2 FMCW Radar

Fig. 1.1 shows the block diagram of a complete FMCW radar system. FMCW
signal is generated by the chirp synthesizer and the power amplifier (PA) feeds
the output to the transmit antenna (Tx). The receive antenna (Rx) picks up
the returned signal, which is then mixed with the synthesizer output to generate
the beat frequency. The baseband is digitized by the Analog-to-Digital (ADC)
convertor and the Digital Signal Processing (DSP) back-end performs an FFT on
the digitized signal to determine the beat frequencies, which is needed to calculate

the distance and the velocity of the target.

Phase-locked loop generates frequency chirps for FMCW radar that continuously
transmits a signal whose frequency is linearly modulated during the measurement.
Sawtooth chirp is a commonly used chirp profile. It is shown in Fig. 1.2. The
propagation delay between the transmitted and the received signals due to the

round trip is observed. If the target is moving relative to the radar, the received
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signal frequency experiences a Doppler shift. The target range and velocity are
measured being related to the resultant offset frequency between the transmitted
and the received signal, which is referred to as the beat frequency. For the sawtooth

profile in Fig. 1.2, the beat frequency is expressed as :

fb:ﬁ'¥+fd (1.1)

c
where R, BW, ¢, T, and f; denote the target range, the chirp modulation band-
width, the speed of light, the modulation period, and the Doppler frequency re-

spectively [9].

A sequence of chirps with different ramp slopes are transmitted to unambiguously
resolve the range R and the relative velocity v= cfy/2f.. f.is the center frequency

of the chirp.

The range and velocity resolutions are derived and expressed as [5], [13]:

Cc

AR = pr (1.2)
c 1

4
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Accordingly, large modulation bandwidth is required for fine range resolution,

whereas the velocity resolution can be improved with longer chirp period.

Although Egs. (1.2) and (1.3) describe the ideal resolution that can be achieved,
the actual values are further limited by other factors that includes the overlap of
the transmitted and the received chirps due to the time gating to discard highly
nonlinear chirp segments near the turnaround points, signal propagation delay,

and most importantly, chirp non-linearity [12].

1.3 Chirp Linearity

FMCW radar accuracy is based on the premise that the chirps are perfectly linear
so that the beat frequencies accurately represent the parameters of the detected

targets.

PLL bandwidth is a key, which needs to be optimized for achieving high chirp
linearity. The PLL division ratio in Fig. 1.3 approximates the chirp waveform

with a stair-like signal.

This modulation is discrete in output value and time. The PLL bandwidth must

be large enough to allow the PLL to follow the trajectory of the ideal linear

chirp profile. Therefore, the required bandwidth should be far greater than the
5



chirp modulation frequency. At the same time, PLL settling must not be so
fast to let the PLL output frequency to follow the stepped modulation signal too
closely. Therefore, the PLL bandwidth should to be less than the stepping rate of
the modulation signal. Consequently, an optimized loop bandwidth satisfies the

following inequalities [12]:

1 2lin -1
— << BWppp <
T PLL T/2

(1.4)

where lin are the number of bits denoting the chirp resolution. Therfore, the
modulation signal comprises 2/ output quantization levels. The stepping rate is

descibed as a function of the chirp resolution.

Delicate balance must be maintained between different trade-offs to maintain the
stringent requirements on the PLL loop design including settling response and
precise bandwidth. The VCO/DCO gain variations across wide frequency range
translated to non-linearity imposes a challenge to maintain constant loop proper-
ties. Moreover, linearity in the modulation can be hindered by the large changes

in the loop properties during frequency modulation [14], [15].

Several approaches are developed to mitigate the PLL/ADPLL bandwidth varia-
tion caused by non-linearity in the VCO-DCO.

Typically, non-linearity exists in the DCO transfer function that calls for calibra-
tion. The work in [8] introduces digital calibration techniques to mitigate DCO
non-linearity by monitoring the frequency error and calculating the gradient of
DCO frequency. One tuning bank only is activated at a time while the next bank
is enabled based on the convergence direction. The process is repeated across all

the tuning banks until the frequency error is diminished.

The FMCW ramp linearity in [5] is improved by reducing the fine tuning step of
the DCO and utilizing auto-calibration to linearize the multi-bank DCO tuning

curve. Distributed metal capacitor is used to provide ultra-small capacitance for

6



the fine-tuning bank of mm-wave DCO, which they developed in [17]. However,
for such an ultra fine tuning, the width and the height of the metal stubs beneath
the inductor become analogous. Therefore, the coupling between adjacent stubs
can not be ignored. To keep linear capacitor step, the width of the stubs needs to
be optimized through Electromagnetic (EM) simulation. EM simulation is costly

in terms of time. Besides, the precision of the EM simulator is curial.

The VCO frequency response is linearized in [15] using averaging varactors. A
combination of PMOS and NMOS varactors are proposed in [16] to linearize the
VCO gain. However, both Linearization techniques are quite delicate and can be

easily degraded with temperature or process variations.

In standard structures the DCO gain exhibits non-linearity and varies substantially
throughout the tuning range. Therefore, the conversion gains of the DCO require

continuous calibration in the background (6]

While a typical value of the DCO gain error across the tuning range that can be
considered is about 20% [5], the complexity of the digital calibration techniques to
mitigate DCO non-linearity varies among the reported designs [8], [5], [18], [19].

1.4 Objectives

The objective for this research is to design an mm-wave DCO capable of addressing
FMCW radar requirements. The success of the proposed system will allow mm-
wave circuits to be realized on digital CMOS technology, which can effectivelly

reduces the implementation cost in the field of automotive IC sensor design.

Varactor-less realization of mm-wave DCO is aimed to reduce the design complex-

ity and eliminates the trade-off between wide and linear tuning range requirements.



1.5 Dissertation Structure

- Chapter 2 presents the design Digitally Controlled Oscillator (DCO) with a
tuning-range and phase-noise that is able to address Short Range Radar (SRR)
requirements. In order to overcome the major challenge to design a wide tuning
range DCO, proper oscillator topology is chosen, specific tuning mechanism is
implemented, and design optimization strategies are employed without degrading

the Phase Noise (PN) performance.

- Chapter 3 investigates design strategies to enhance the performance for imple-
mentation of a CMOS DCO presented in 2. Design methodology is developed for
the enhanced DCO, which is based on an in-depth mathematical analysis of the

start-up condition and amplitude of oscillation.

- Chapter 4 presents a study of temperature and process sensitivity in CMOS
Colpitts oscillator. Based on the analysis of linear and non-linear models, temper-
ature and process sensitivity is derived. By defining the process and temperature
sensitivity parameters early in the design process, unnecessary design iteration is

prevented, and time-to-market is reduced.

- Chapter 5 presents varactor-less DCO with a new tuning structure that is pro-
posed and realized for the first time. Since the proposed DCO provides linear
tuning steps, it impacts the generation of linear frequency modulation for the

FMCW radar.

- Chapter 6 highlights the summary of this work, conclusions and the future work.
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Chapter 2

A 24GHz Digitally Controlled
Oscillator for Automotive Radar

in 65nm CMOS

2.1 Introduction

As the CMOS technology scales down, digital architectural solutions for RF sys-
tems become increasingly preferred over their analog counterparts to minimize
production cost. Very high speed transistors are available therefore making it
feasible to integrate Radio Frequency (RF) electronics with digital processing.
Digital intensive approaches facilitate a high level of integration to realize System-
on-Chips (SoCs) implementations. A DCO is one of the digital architectural so-
lutions to replace the analog Voltage-Controlled-Oscillators (VCOs) circuitry. In-
stead of having an analog voltage controlling the frequency tuning in the VCO,
the DCO frequency is controlled digitally. DCOs are the heart for All-Digital-
Phased-Locked-Loops (ADPLLs) [1] and all digital transmitters as a stand-alone
block without the PLL [2].

12



SRR automotive technology enables road safety via collision avoidance, pre-crash
sensing, and blind-spot detection [3]. A single chip CMOS radar SRR is desirable
for reduced production cost. The FCC allows the 24G H z automotive SRR to op-
erate between 22GH z—29G H z. The wide SRR band enables high range resolution
(AR). If for example AR is 10cm, using the equation AR = ¢/B, where B is the
bandwidth, and ¢ is the speed of light, a bandwidth of 3G H z is required. DCOs
for automotive SRR mandate a wide tuning range and low PN [4]. Colpitts VCO
can offer lower PN and a wider tuning range when compared to the conventional
cross-coupled LC tank VCO [5] [6] [7] [8]. However, the stability condition varies
across the tuning range imposing the main problem to fulfill wide tuning range
requirements. The oscillation condition can be kept constant across the tuning
range by employing a Clapp VCO at the expense of limited tuning range [9]. The
Colpitts-Clapp VCO was proposed in [10] to increase the tuning range as a hybrid
between the Colpitts and the Clapp.

Automotive radar receivers in [6] [11] implement VCOs in SiGe while the proposed
CC-DCO is a DCO in CMOS. The work in [10] reported a SiGe mm-wave VCO for
automotive radar as well. However, the tuning range was widened using a special
varactors available in Infeneon’s SiGe production technology. CMOS DCOs for
wireless applications were reported in [12] [13] to realize digital synthesizers, but
they were based on the conventional LC tank oscillator. Road safety and automo-
tive radar application is a recent research field. DCO for FMCW automotive radar
was reported in [4], however, it was based on the conventional LC tank oscillator

as well.

In this work, a potential tuning mechanism is discussed to maximize the tuning
range for a CC-DCO. In order to prove the concept, a 24GHz CC-DCO with a
29% tuning range is designed in 65nm CMOS process. To the best of author’s
knowledge, CC-DCO has not been employed in CMOS to widen the tuning range

for automotive radar in most of this prior work.
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This chapter is organized as follows. Section II shows the derivation of the negative
resistance linear model for the CC-DCO while tuning parameters are investigated.
Section III presents the implemented CC-DCO, the design parameters, and the

simulation results followed by the conclusion.

2.2 Colpitts-Clapp Design Aspects

2.2.1 Colpitts-Clapp Linear Model

A common-drain Colpitts-Clapp oscillator is shown in Fig. 2.1(a). This topology
provides an increase in the tuning range by adding another capacitor in parallel
with the inductor [8]. The lossy inductor is modeled as an inductor (L) in series
with a parasitic series resistance (Ry). Since the quality factor of the integrated
capacitors can be high, the lossy serial resistance associated with Cj 23 can be
neglected [14]. The linear model used to describe the oscillator is a negative

resistance based model. The impedance (Z;,) looking into the gate of M is:

1 1 Gm
scr T sc; T wRciey (21)
The negative resistance is denoted by:
9m
Ruey = ———— 2.2
g (UQCiCé ( )

where g, is the small signal transconductance of M, Ci= C1+Cy; Co= Co+Cl,.
Fig. 2.1(b) shows the negative resistance generator (Z;,) in parallel with the lossy
inductor and C5. Ci= C3+Cyq. Cys, Cg, and Cyy are the parasitic capacitors of
M;. Let C! be the equivalent series capacitance of C] and C%. Converting C” in
series with Ry, to its parallel representative give C) = C{Qc: /(1 + Q%;) =Ne

s

for high Qc/, and Rpegp = Rpeg(1 + Q2C§)' Let Ceqy = C5|C). Cegol||Rpeg,p can
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VOBC

31
7

FiGure 2.1: Colpitts-Clapp oscillator in common-drain configuration.

(a)

Schematic of the oscillator. (b) Negative resistance generator (Z;,) in paral-
lel with L and C5. (c) Negative resistance linear model.

be converted back to a series representative. Having Ceyp s = (1 + Q%eqv)/ QZCW =

Ceqo and Ryeqs = Ryegp/(1+ Q%ﬁqv) 2 Ry, the linear model for Colpitts-Clapp

oscillator is shown in Fig. 2.1(c). The negative resistance generator formed by

R,y in series with C,, exhibit the reflection coefficient (I'¢;) greater than 1 to

enforce instability. At the frequency of oscillation, L resonates with C.4, having:

fosc:
27T\/L Cy+ F%)
NG 1e
Can =t r iy

The start-up requires that | R, |> Rr. It can be expressed as:

_ Ym
w2, .C1Ch

osc

> R;
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2.2.2 Tuning Range

Equation (2.3) holds for Colpitts oscillators if C5 = 0. Cj is the tuning capacitor
in Clapp, while both of C5 and Cj are the tuning capacitors in Colpitts-Clapp
oscillator. The Tuning Range (TR) is defined as (fiae — fmin)/ feenter [9]. The
frequency range A fosc iS fings — fmin. Therefore, fiq. is a function of Cegy min and
fmin 15 a function of Ceyy mas- Ideally, the larger the tuning capacitor and A fo. is,
the wider the tuning range becomes. By maximizing C;/Cs ratio with C; > Cs,

equation (2.4) can be approximated as:

Cego = C5 + C} (2.6)

If C% = C% in (2.6), then the effective tuning capacitor is doubled as compared
to Clapp topology that just depends on C3 for tuning. In fact the condition of
maximizing C/C5 is also mandatory to satisfy low PN requirements [15]. In this
work, a simultaneous tuning mechanism is proposed such that part of C'y and Cj3

are equated, and the condition of C'; > (5 is valid. Let:

Oé = Cf2 + Csb + Ot,coarse (27)

C:IS = Cf3 + ng + Ct,coarse (28)

where Cy coarse is the coarse tuning effective capacitance, and Cyo, Cy3 are the
fixed part of Cy, C3 respectively. The tuning capacitors Cy and C5 should remain
greater than the parasitic capacitors that appear in parallel with it, otherwise, the
tuning capacitor looses its tuning functionality. Since Cyq > Cg, then in order to
maintain C% = C% to double the tuning capacitance, Cy, should be greater than

Cy 3 by a minimum of Cys — Cy. This is a second condition for wide A fo..
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Equation (2.3) can be simply written as:

1

27/ LCeyy

The derivative of f,s. with respect to Ceyyp is given by 6 fose/0Ceqy = — fose/2Cequ =~

fosc = (29)

A fosemin/ ACequmin. Where AC.qy, min is the minimum tuning step that can gen-

erate minimum frequency step A foscmin. Thus:

1

A = Afpse————
Ceqv fosc 5fosc/506qv

(2.10)

For a specific fose, Afosc and AC,,, are the fine frequency and capacitor steps
respectively. AC,,, is constrained by the minimum available size varactor or ca-
pacitor in the process. Large tuning range and fine resolutions calls for separate
and overlapped tuning capacitance banks to avoid matching difficulties [13]. Sep-
arate intermediate and fine tuning mechanisms can be provided as part of Cy,
retaining Colpitts tuning operation for a certain value of C} coarse, and equation

(2.7) is modified to:

Oé = C2,fixed + CQ,intermediate + C2,fine + Csb + Ct,coarse (211)

2.3 Design and Simulation

In order to verify the concept, fully differential CC-DCO is designed using TSMC
65nm RFIC models. The schematic is shown in Fig. 2.2. The single-ended based
analysis presented in Section II can be applied to the differential topology as a

half circuit representation.

Minimum width of M;y should satisfy the required g,, for start-up condition

in equation (2.5). M, should also be biased to provide a current density of
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FIGURE 2.3: Unit capacitance cells. (a) CTB and ITB unit cell. (b) FTB unit
cell.
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0.15mA/pm for low PN requirements [9]. The biasing current of 5mA is provided
by Ms 4 which are designed with 1pm channel length to reduce flicker noise that
can degrade the PN performance. The inductor L is a 83.3pH single turn spiral in-
ductor, having quality factor of 22.3. Two identical Coarse Tuning Banks (CTBs),
an Intermediate Tuning Bank (ITB), and a Fine Tuning Bank (FTB) are formed.
CTBs and ITB are implemented using binary-weighted Metal-oxide-Metal (MoM)
capacitors controlled by a 6-bit Coarse Word (CWI[5:0]) and 3-bit Intermediate
Word (IW[2:0)] respectively. FTB is implemented using a binary-weighted varac-
tors rather than MoM to provide small AC,,,. A 6-bit Fine Word (FWI5:0]) is
used to control the FTB. The implemented unit capacitance cells are similar to
[16]. Fig. 2.3(a) shows the switched capacitor cell for CTB and ITB. Each cell
consists of two identical binary-weighted MoM capacitors connected differentially
by a series and two pull-down CMOS switches. Fig. 2.3(b) shows the unit varactor
based cell for the FTB. Table 2.1 shows the values of the designed parameters.

Cadence analog design environment is used for simulation using a 65nm TSMC
models. Fig. 2.4(a) shows the simulated coarse tuning range that extends from
22GHz to 29GHz. Fig. 2.4(b) shows a coarse tuning step of 140M Hz. The
intermediate tuning range is 202M Hz and the intermediate step is 41M Hz as
shown in Fig. 2.4(c). The Fine tuning range is 84 M Hz and the fine step is
1.6MHz as in Fig. 2.4(d) and (e). The intermediate range covers 1.4 times the
coarse tuning step while the fine tuning range covers 2 times the intermediate step
to provide overlapping between the tuning banks which avoids frequency gaps.
SpectreRF is used to simulate the CC-DCO phase noise. The PN at 1M H z offset
from a 24GHz is —187dBc/Hz as shown in Fig. 2.4(e).

Table 2.2 presents the CC-DCO performance along with that of previously pub-
lished CMOS DCOs. Figure of Merit for Tuning range (FoMry) is defined as:

TR% PDC

FoMy = PN — 20109M — 20log + 10log
1mW

A.]cosc,min 10%
19

(2.12)



TABLE 2.1: CC-DCO Design Parameters

Device Size

Mi 2 33um/60nm

Ms.4 33um/1um

L (Spiral) 1 turn Area:  width=188um,
length=181pum

C; (MOM) W /finger=100nm, array=8X8,

multiply=180

Cs, fizea (MOM) | W/finger=100nm, array==8X8,
multiply="78

Cs,r (MOM) W /finger= 100nm, array=8X8§,
multiply=6

CTB (MOM) W /finger=100nm, array=8X8,
multiply=1, 2,4, 8, 16, 32

ITB (MOM) W /finger=100nm, array=8X8,
multiply=1, 2,4

FTB (AMOS) | 240nm/240nm,

multiply=1, 2,4, 8, 16, 32

Where Pp¢ is the power dissipation of the CC-DCO. The CC-DCO achieves the

highest tuning range with best-in-class phase noise.

2.4 Conclusions

In this chapter, a tuning mechanism is discussed to widen the tuning range of
a 24GHz DCO for SRR applications. Phase noise performance has been care-
fully considered. Tuning range of 29% is achieved by employing Colpitts-Clapp
topology, deriving the required design equations, varying two potential capacitor
banks simultaneously, and refining the results through simulation. The CC-DCO
is designed using Cadence design tool with the available 65nm component RF
models. Pnoise setup with SpectreRF is used to simulate the PN for the imple-
mented design. The simulated phase noise for a 24GHz CC-DCO is better than
—187dBe/Hz at 1M H z offset frequency.

20



Oct 10, 2013 Coarse Tuning ] Qct 10, 2015 Coarse Tuning Step i
— frequency (Y T{"/net0208")) % frequencyYT("/net0206™)
30.0 25.7
29.0 \ 25.6
28.0
5 5255
2 ~N 2 /\40(22. , 2536x1019
20 254
260 ] ‘/\
g i 123.0, 2.522x1019
£250 E a‘ 23.0, 2.522x
= 525.2
224.0 )
= =1
3 825.1
23.0
22.0 25.
210 24.9
0 10.0 20.0 30.0 40.0 50.0 60.0 200 210 22.0 230 24.0 25.0
Decimal index for the 6-bit coarse tune waord [~ 25.0] 2.4953c10 |Mal index for the &-hit coarse tuning word
(a) (b)
Oct 15, 2015 Intermediate Tuning Al Oct 15, 2015 Fine Tuning ]

< frequency (VT {"/ output™)

— frequency (VT {"/output™)

26.6 26.46 T T
‘ " MO(L0, 2.64514x1019
.T‘Mzu.o, 2.66284x1019 T
26.6 26.44
ol /\40(3.0, 2.65466x1019 =
£265 ~ £26.42
E g
g 241(4.0, 2.65057x1019 o
I I
= 26 = 26.4
=1 =
= o
E £
= =
§ g \
26.4 26.38
1 ":
M3{(6.0, 2'54239"110 BA M1(59.6936f 2.63668x1019
26.4- 2636 |
1.0 2.0 3.0 4.0 5.0 6.0 0 10.0 200 30.0 400 50.0 60.0
[ Loke62sa2Eio Decimal index for a 3-hit tuning 0 60.00.636631E10 Decimal index for a 6-hit word Q
(c) (d)
Oct 15, 2015 Fine Tuning Steps m ot 9, 2015 Periodic Noise Response m
& frequency (VT "/ output™) — output noise; ¥ / sqri{Hz)
26.439 -120
26.438
-140
=
826437
- ~ 0(12.0093, 2.64357x1019 &
£2643 P
$26.436 @
E z
@
526435 2-180
A £
£26.434
geuaet 1/ MO{1.01MHz, -187.2d8)
M1(12.9926, 2.64341x1019 =21T
26433 \
26432 -220+
X 110 12.0 . 13.0 14.0 103 104 107 106 107
’W 6432361E10 Decimal index for a 6-bit word ( [10584kHz | -167.53d8 relative frequency (HD

()

(f)

FIGURE 2.4: Simulation results of the CC-DCO. (a) coarse tuning. (b) coarse
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TABLE 2.2: Comparison of Relevant CMOS DCOs

Ref. [12] 2] [13] 4] This work
feenter 60 2.2 3.15 60 24
(GHZ)

TR 10% 3.18% 22.2% 11.6% 29%

(%)

A fosemin | 0.160 7 0.012 1.64 1.6
(MHZ)

PN -93 —121 —123 —140 —186
(dBc/Hz) | QIMHz | @).1MHz | QIMHz | QIMHz | Q1M H~z
PDC 12 1.3 9.84 13.2 10
(1Y)

FoMp —177 —180 —228 —221 —268
(dBc/H=z)

Tech. 90nm 65nm 65nm 65nm 65nm
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Chapter 3

A 24 GHz DCO with High
Amplitude Stabilization and
Enhanced Start-up Time for

Automotive Radar

3.1 Introduction

Automotive Short Range Radar (SRR) contributes to road safety via pre-crash
sensing, blind-spot detection, and collision avoidance [1]. Based on the Federal
Communications Commission (FCC) regulations, an automotive SRR is allowed

to operate in the frequency range of 22 — 29 GHz [2].

Range resolution (AR) is a key requirement of the Frequency-Modulated Continuous-
Wave (FMCW) for Short Range Radars, and it depends on the transmitter band-
width and TR of the local oscillator. The Bandwidth (B) and AR are related by
AR = ¢/B, where c is the speed of light.
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Ultra Wide Band SRR (5 GH z) requires hard range resolution. For such a wide
frequency range, amplitude-to-phase conversion needs to be avoided [3]. The am-
plitude of oscillation and consequently the transmitted output power for the SRR is

restricted by the Effective Isotropic Radiated Power (EIRP) of —41.3 dBm/MH z.

The quality factor (Q) of the switched tuning capacitors is sharply degraded in
higher frequencies and therefore the overall Q1 is reduced. In order to compen-
sate for the losses, large transistors are required to provide sufficient transconduc-
tance. However, the parasitic capacitors of the large transistors impose loading
effect and hence affect the TR of the VCO [4]. Therefore, achieving low PN and

wide TR simultaneously is challenging.

Unlike ring and relaxation oscillators used at low frequencies for few GHz [5, 6],
high frequency oscillators are employed based on highly selective resonator to

prevent noise from outside the bandwidth from degrading the PN [9].

A 24 GHz Colpitts VCO with 30% TR was reported in [7]. The work in [8] showed
the design of a 30 GH z common-drain Colpitts oscillator. Negative resistance was
improved by employing a parasitic cancellation technique. Although the start-up
condition was satisfied over a TR of 15.9%, it was based on 0.2 GaAs pHEMT
technology which required access to specialized and more costly fabrication pro-

Cess.

However, the steady state oscillation condition for the Colpitts VCO varies across
the TR. This condition is kept constant across the TR by employing a Clapp VCO
at the expense of limited TR [9]. In order to increase the TR, the Colpitts-Clapp

topology was proposed in [10].

VCOs and DCOs for SRR mandate low PN and wide TR [10]. The start-up condi-
tion and the amplitude of oscillation in Colpitts Clapp VCOs are functions of the
tuning element that can impose difficulties for a design with wide TR requirements

[11]. Moreover, the increased reliability factor of the transistor reduced sizes i