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Abstract: 

This thesis proposes an Intrusion Detection System, NeuDetect, which applies Neural Network 
technique to wireless network packets captured through hardware sensors for purposes of real 
time detection of anomalous packets. To address the problem of high false alarm rate 
confronted by the current wireless intrusion detection systems, this thesis presents a method of 
applying the artificial neural networks technique to the wireless network intrusion detection 
system. 

The proposed system solution approach is to find normal and anomalous patterns on pre-
processed wireless packet records by comparing them with training data using Back-
propagation algorithm. An anomaly score is assigned to each packet by calculating the 
difference between the output error and threshold. If the anomaly score is positive then the 
wireless packet is flagged as anomalous and is negative then the packet is flagged as normal. If 
the anomaly score is zero or close to zero it will be flagged as an unknown attack and will be 
sent back to training process for re-evaluation. 
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1. INTRODUCTION: 

Computer security is starting to become one of the more active areas in Computer Science and 

Engineering. Almost everyday some flaw is found in a protocol, a program, or a system. These 

flaws sometimes lead to security breaches that affect many companies and nations worldwide. 

Network security solutions are generally grouped into two main categories: prevention-based 

techniques and detection-based techniques. Prevention-based techniques, such as encryption 

and authentication, are often the first line of defense against an attacker to reduce intrusions but 

cannot eliminate them (Onat and Miri 2005). For example, encryption and authentication 

cannot defend against compromised sensor nodes, which carry the private keys. From the 

experiences of security research, no matter how many intrusion prevention messages are 

inserted in a network, there are always some weak links that one could exploit to break in. 

Detection-based techniques aim at identifying and excluding the attacker after prevention-

based techniques fail. The detection techniques are categorized into signature and anomaly 

detection. Signature detection techniques match known attack profiles with the current events, 

whereas anomaly detection detects significant deviations from the established system normally. 

Intrusion detection presents a second wall of defense and it is a necessity in any high 

survivability network (Zhang and Lee 2000). 

Wireless Sensor Networks (WSNs) are vulnerable to security attacks. WSNs can be deployed 

in hostile environments and sensor nodes may be compromised. WSNs are always unattended 

but physically reachable from the outside world, so they are vulnerable to security attacks. 

Intruders, impersonating legitimate nodes, may disrupt the network operation by injecting false 

information or by not cooperating in tasks such as packet forwarding. Such malicious node 

activity can severely affect the network operation. Therefore, WSNs must be secured to 

prevent an intruder from obstructing the delivery of correct sensor data. In wireless networks, 

prevention-based security techniques are less effective because of the shared broadcast medium 

and resource-limited network elements (Onat and Miri 2005). In multihop wireless networks, 

nodes forward packets for other nodes and this requires additional trust requirements which 

increase the complexity of prevention-based security solutions. As a multihop wireless 
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network, securing the WSNs with conventional prevention techniques is difficult due to 

scalability problems, computation, communication and the storage overhead associated with 

these methods. To provide a secure wireless sensor network, we need to deploy intrusion 

detection and response techniques. 

Intrusion detection research has generally focused on wired networks (Khoshgoftaar et al. 

2005). The increasing reliance upon wireless networks has put tremendous emphasis on 

wireless network security. Current WSNs are based on the IEEE 802.11 standard which is 

known to have security flaws (Barbara et al. 2001). Recent efforts on WSN security have 

generally focused on improving the network architecture or protocols and on detecting a 

specific attack (CISCO 2007). 

Most IDSs are based on hand-crafted signatures that are developed by manual encoding of 

expert knowledge (Ertoz et al. 2004). These systems match activity on the system being 

monitored to known signatures of attacks. The major problem with this approach is that these 

IDSs fail to generalize to detect new attacks or attacks without known signatures. Recently, 

there has been an increased interest in data mining based approaches to building detection 

models for IDSs. These models generalize from both known attacks and normal behavior in 

order to detect unknown attacks. They can also be generated in a quicker and more automated 

method than manually encoded models that require difficult analysis of audit data by domain 

experts. Several effective data mining techniques for detecting intrusions have been developed 

(CISCO 2007; Gantenbein et al. 2002; Julisch and Dacier 2002; Barbara et al. 2001), many of 

which perform close to or better than systems engineered by domain experts. We know that 

data mining is a collection of powerful data analysis techniques intended to assist in analyzing 

extremely large datasets. Data mining is not a single approach but a set of techniques that can 

often be used in combination with each others to extract the maximum insight from a dataset. 

Properly applied, data mining can reveal hidden relationships and information buried within an 

organization's data warehouse. 
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1.1. Thesis Contribution: 
This thesis proposes a wireless intrusion detection system named NeuDetect, with the 

following major intentions: 

Real-Time Intrusion Detection: Many existing intrusion detection systems (Lee and Stolfo 

2000; Ertoz et al. 2004) rely heavily on manual intervention by a security administrator to 

effectively protect networks. In the proposed system we have used proprietary hardware 

sensors, where streams of wireless packets (e.g., MAC frames) from Access Points (AP) are 

instantly captured and processed by using neural network techniques. 

Training Data: Our proposed system uses training data. In the Detection Module of our 

system, we have used a classifier using Back-Propagation Neural Network Algorithm to train 

the system with crafted attacks and then to classify the incoming data packets comparing with 

the trained attack database. 

Faster Processing: The inherent speed of neural networks is another benefit of this approach. 

Because the protection of computing resources requires the timely identification of attacks, the 

processing speed of the neural network, even in a high speed network, enables intrusion 

responses to be conducted before irreparable damage occurs to the system. Snort-Wireless (Air 

Snort 2007) has a low attack detection rate in high speed network (Ejelike 2008). Our system is 

capable to detect wireless attacks in high speed networks with acceptable false alarm rate. 

Dynamically Updating Intrusion Database: The proposed system has the dynamic ability to 

enhance the intrusion database in continuing to reevaluate the unknown packets through the 

training process. An anomaly score is assigned to each packet by calculating the difference 

between the output error and threshold. If the anomaly score is positive then the relevant 

wireless packet will be flagged as anomaly and an attack number is assigned for future 

comparison with incoming packets. If the anomaly score is zero or close to zero the packet will 

be flagged as unknown packet and sent back to training process. Finally if the anomaly score is 

negative then the packet is flagged as normal. 
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Accuracy: Our proposed system uses training data to recognize known suspicious events with 

a high degree of accuracy. ADAM has low attack detection rate especially in Man-in-Middle 

type of attacks, about 65%, and also produces a lot of false alerts (Liu et al. 2007). Our system 

can detect the attacks with more than 94% detection rate. 

Unknown Attacks: Our system can detect unknown attacks with acceptable false alarm rate 

(11%). Then these unknown attacks are added to the training samples to identify accurately as 

known attacks later. 

Reduced False Alarm Rate: Our system reduces the false alarm rate in detecting unknown 

intrusions by using Back-Propagation (which is discussed later) neural network classification 

and self-organization techniques. We have investigated that Snort-Wireless (Air Snort 2007) 

and Clustering Approach (Khoshgoftaar et al. 2005) have high false positive detection rate 

(Ezeife et al. 2008). Our system can detect attacks with about 2% false positive and 5.5% false 

negative detection rate which are better than some other existing wireless IDS like Snort-

Wireless (Air Snort 2007), ADAM (Barbara et al. 2001), Wifi-Miner (Ezeife et al. 2008), 

WIDCA (Ezeife et al. 2008), etc. 

1.2. Thesis Outline: 
This report is organized as follows: the rest of the chapter 1 introduces wireless sensor network 

architecture, standard wireless protocol IEEE 802.11 's authentication processes and 

vulnerabilities, intrusion classifications in wireless sensor network, types of attack, data mining 

techniques in network intrusion detection systems. Chapter 2 discusses related work in network 

intrusion detection systems that uses data mining techniques like association rule, classification 

rule and cluster analysis algorithms for both wired and wireless network intrusion detection 

systems, their limitations and technologies. Chapter 3 explains our proposed system's 

algorithm and technology. Chapter 4 describes the experimental results of our system. Finally 

Chapter 5 consists of conclusions and future work. 
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1.3. Wireless Sensor Network 
A wireless sensor network (WSN) consists of a large number of sensor nodes. WSNs support 

many novel and existing applications such as environment monitoring, infrastructure 

management, public safety, medical and health care, home and office security, transportation, 

and military applications. The sensor nodes are deployed over an area and form a wireless 

network. The position of sensor nodes need not be engineered or pre-determined. The sensor 

nodes are autonomous devices with limited battery, computational power, and memory. A 

large number of sensor nodes are densely deployed and they have a short communication 

range. Hence, multihop communication in sensor networks is expected to consume less power 

than the traditional single-hop communication. Furthermore, the transmission power levels can 

be kept low, which is highly desired in covert operations. Multihop communication can also 

effectively overcome some of the signal propagation effects experienced in long-distance 

wireless communication (Akyildiz et al. 2002). 

A unique feature of sensor networks is the cooperative effort of sensor nodes. Sensor nodes are 

fitted with an on-board processor. Instead of sending raw data to the nodes responsible for the 

fusion, sensor nodes use their processing abilities to carry out simple computations locally and 

transmit only the required and partially-processed data. 

Figure -1 shows the complexity of wireless sensor networks, which generally consist of a data-

acquisition network and a data-distribution network, monitored and controlled by a 

management center. The over abundance of available technologies makes even the selection of 

components difficult, let alone the design of a consistent, reliable, robust overall system (Lewis 

2004). 
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Figure 1: Wireless Sensor Networks 

1.3.1. WSN Operation Modes: 
802.11 wireless networks operate in one of two modes - Ad-hoc and Infrastructure mode. The 

IEEE standard defines the ad-hoc mode as Independent Basic Service Set (IBSS), and the 

infrastructure mode as Basic Service Set (BSS). In the remainder of this section, we explain the 

differences between the two modes and how they operate. 

In ad hoc mode, each client communicates directly with the other clients within the network by 

using 802.11 a/b/g or Bluetooth standards, see figure 2. Ad-hoc mode is designed such that 

only the clients within transmission range (within the same cell) of each other can 

communicate. If a client in an ad-hoc network wishes to communicate outside of the cell, a 

member of the cell MUST operate as a gateway and perform routing. 
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Client C 

Figure 2: Example ad-hoc network 

In infrastructure mode, A Wireless Sensor Network (WSN) can be easily built using only a few 

simple devices which mainly include a radio transceiver, called Access Point (AP), which is 

essentially a small transmitter and receiver with a wired connection into an Asymmetric Digital 

Subscriber Line (ADSL) link or Ethernet LAN. It forms an association with a wireless device 

and acts as an intermediate between the client and the wired connection, providing 

authentication and seamless access. A Network Interface Card (NIC) with 802.11 capabilities 

which talks to the radio transceiver and allows the data transfer to and from your computer. 

Each client sends all of its communications to a central station, or access point (AP). The 

access point acts as an Ethernet bridge and forwards the communications onto the appropriate 

network- either the wired network, or the wireless network, see figure 3. 

Access'Point 

Client B 

Figure 3: Example infrastructure network 

Prior to communicating data, wireless clients and access points must establish a relationship, or 

an association. Only after an association is established can the two wireless stations exchange 
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data. In infrastructure mode, the clients associate with an access point. The association process 

evolves in the following three states: 

• Unauthenticated and unassociated, 

• Authenticated and unassociated, and 

• Authenticated and associated 

To transition between the states, the communicating parties exchange messages called 

management frames. 

We will now walk through a wireless client finding and associating with an access point. All 

access points transmit a beacon management frame at fixed interval. To associate with an 

access point and join a BSS, a client listens for beacon messages to identify the access points 

within range. The client then selects the BSS to join in a vendor independent manner. A client 

may also send a probe request management frame to find an access point affiliated with a 

desired SSID. After identifying an access point, the client and the access point perform a 

mutual authentication by exchanging several management frames as part of the process. After 

successful authentication, the client moves into the second state, authenticated and 

unassociated. Moving from the second state to the third and final state, authenticated and 

associated, involves the client sending an association request frame, and the access point 

responding with an association response frame. After following the above process, the client 

becomes a peer on the wireless network, and can transmit data frames on the network. 

1.3.2 Characteristics and Requirements for WSN 

Due to the characteristics and limitations of WSNs, the following are the requirements in 

building applications on this type of network (Culler et al. 2004): 

I. Large number of sensors: 

Cheap small-sized sensors are used for the summarized information in it. 
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II. Low energy use: 

In many applications, the sensor nodes will be deployed in a remote area in which case 

servicing a node may not be possible. Thus, the lifetime of a node may be determined by the 

battery life, thereby requiring minimal energy expenditure. 

III. Efficient use of the small memory: 

When building sensor networks, issues such as routing-tables, data replication, security and 

such should be considered to fit the small size of memory in the sensor nodes. 

IV. Data aggregation: 

The huge number of sensing nodes may congest the network with information. To solve this 

problem, some sensors such as the cluster heads can aggregate the data, do some computation 

(e.g., average, summation, highest, etc.), and then broadcast the summarized new information. 

V. Network self-organization: 

Given the large number of nodes and their potential placement in hostile locations, it is 

essential that the network be able to self-organize itself. Moreover, nodes may fail (either from 

lack of energy or from physical destruction), and new nodes may need to join the network. 

Therefore, the network must be able to periodically reconfigure itself so that it can continue to 

function. Individual nodes may become disconnected from the rest of the network, but a high 

degree of connectivity overall must be maintained. 

VI. Collaborative signal processing: 

Yet another factor that distinguishes these networks from Mobile Ad-hoc Networks 

(MANETs) is that the end goal is the detection/estimation of some event(s) of interest, and not 

just communication. To improve the detection performance, it is often quite useful to fuse data 

from multiple sensors. This data fusion requires the transmission of data and control messages. 

This need may put constraints on the network architecture. 
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VII. Querying ability: 

There are two types of addressing in sensor networks: data-centric, and address-centric. In 

data-centric, a query will be sent to a specific region in the network. Whereas, in addressing-

centric, the query will be sent to an individual node. 

1.4. WLAN Standard Protocol: IEEE 802.11 
Since the ratification of the IEEE 802.1 lb standard in 1999, wireless LANs have become more 

prevalent. Today, wireless LANs are widely deployed in places such as corporate office 

conference rooms, industrial warehouses, Internet-ready classrooms, and even coffee houses. 

These IEEE 802.11-based, commonly known by Wi-Fi, wireless LANs present new challenges 

for network administrators and information security administrators alike. Unlike the relative 

simplicity of wired Ethernet deployments, 802.11-based wireless LANs broadcast radio-

frequency (RF) data for the client stations to hear. This presents new and complex security 

issues that involve augmenting the 802.11 standard. 

Security in the IEEE 802.11 specification—which applies to 802.11a, 802.11b, and 802.1 lg— 

has come under intense scrutiny. The 801.22b standard is the first widely used standard and is 

known as Wi-Fi. Later in 2003, 801.1 lg standard was developed to operate in the same 2.4 

GHz band as in 801.1 lb but with a higher speed of 55 Mbps. Currently, both of them denote 

Wi-Fi standards. Researchers have exposed several vulnerabilities in the authentication, data-

privacy, and message-integrity mechanisms defined in the specification. These are reviewed in 

this part 

• The authentication and data-privacy functions described in Clause 8 of the IEEE 802.11 

specification 

• The inherent security vulnerabilities and management issues of these functions 

• How security issues can be addressed effectively only by augmenting the 

802.11 security standard 
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1.4.1. 802.11 Authentication Processes 
Wireless LANs, because of their broadcast nature, require the addition of user authentication to 

prevent unauthorized access to network resources and data privacy to protect the integrity and 

privacy of transmitted data. The 802.11 specification stipulates two mechanisms for 

authenticating wireless LAN clients: open authentication and shared key authentication. Two 

other mechanisms—the Service Set Identifier (SSID) and authentication by client Media 

Access Control (MAC) address—are also commonly used. This section explains each approach 

and its weaknesses. 

The use of Wired Equivalent Privacy (WEP) keys can function as a type of access control 

because a client that lacks the correct WEP key cannot send data to or receive data from an 

access point. WEP, the encryption scheme adopted by the IEEE 802.11 committee, provides 

encryption with 40 bits or 104 bits of key strength. We will discuss WEP and its weaknesses in 

brief. 

I. Service Set Identifier (SSID) 

The SSID is a construct that allows logical separation of wireless LANs. In general, a client 

must be configured with the appropriate SSID to gain access to the wireless LAN. The SSID 

does not provide any data-privacy functions, nor does it truly authenticate the client to the 

access point. 

II. 802.11 Authentication 

Authentication in the 802.11 specification is based on authenticating a wireless station or 

device instead of authenticating a user. The specification provides for two modes of 

authentication (CISCO 2007): 

• Open authentication 

• Shared key authentication 

Another authentication process is widely used, MAC Address Authentication, which is not 

described in 802.11 specification. 
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II. a. Open Authentication 

Open system authentication is the default authentication protocol for 802.11. As the name 

implies, open system authentication authenticates anyone who requests authentication. 

Essentially, it provides a NULL authentication process. The 802.11 open authentication 

process consists of the following transactions (Figure 4): 

1. Client broadcasts a probe request frame on every channel 

2. Access points within range respond with a probe response frame 

3. The client decides which access point (AP) is the best for access and sends an 

authentication request 

4. The access point will send an authentication reply 
o 

5. Upon successful authentication, the client will send an association request frame to 

the access point 

6. The access point will reply with an association response 

7. The client is now able to pass traffic to the access point 

Clent 

1. Profos Request 

2. Probe Response 

3. Autherrticatbn Request 

•#~™™ 4. AuthentE^tton Responss 

5. Association Request — 

S. Asociatbn Response jtecesB Point 

Wired 
Neteork 

Figure 4: 802.11 Open Authentication Process 

II. b. Shared Key Authentication 

Shared key authentication is the second mode of authentication specified in the 802.11 

standard. Shared key authentication uses a standard challenge and response along with a shared 

secret key to provide authentication. If the authentication is successful, then the client 

(initiator) and the responder switch roles and repeat the process to ensure mutual 

authentication. Shared key authentication requires that the client configure a static WEP key. 

Figure 5 describes the shared key authentication process. 
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1. The client sends an authentication request to the access point requesting shared key 

authentication 

2. The access point responds with an authentication response containing challenge text 

3. The client uses its locally configured WEP key to encrypt the challenge text and reply 

with a subsequent authentication request 

4. If the access point can decrypt the authentication request and retrieve the original 

challenge text, then it responds with an authentication response that grants the client 

access 

- 4 **utw«tote«P«S!^»we<§4»:i»« 
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wired 

Figure 5: Shared Key Authentication Process 

The format of an authentication management frame is shown in figure 6. The format shown is 

used for all authentication messages. The value of the status code field is set to zero when 

successful, and to an error value if unsuccessful. The element identifier identifies that the 

challenge text is included. The length field identifies the length of the challenge text and is 

fixed at 128. The challenge text includes the random challenge string. 
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Figure 6: Authentication Management Frame 
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III. MAC Address Authentication 

MAC address authentication is not specified in the 802.11 standard, but many vendors support 

it. MAC address authentication verifies the client's MAC address against a locally configured 

list of allowed addresses or against an external authentication server (Figure 7). MAC 

authentication is used to augment the open and shared key authentications provided by 802.11, 

further reducing the likelihood of unauthorized devices accessing the network (CISCO 2007). 

Client <*~ 
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Figure 7: MAC Address Authentication Process 

1.4.2 802.11 Authentication Vulnerabilities 

I. Use of SSID 

The SSID is advertised in plain-text in the access point beacon messages (Figure 8). Although 

beacon messages are transparent to users, an eavesdropper can easily determine the SSID with 

the use of an 802.11 wireless LAN packet analyzer, like Sniffer Pro. Some access-point 

vendors offer the option to disable SSID broadcasts in the beacon messages. The SSID can still 

be determined by sniffing the probe response frames from an access point (Figure 9). 
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Figure 8: SSID in an Access Point Beacon Frame 
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Figure 9: SSID in an Access Point Probe Response Frame 

The SSID is not designed, nor intended for use, as a security mechanism. In addition, disabling 

SSID broadcasts might have adverse effects on Wi-Fi interoperability for mixed-client 

deployments. 

II. Open Authentication Vulnerabilities 

Open authentication provides no way for the access point to determine whether a client is 

valid. This is major security vulnerability if WEP encryption is not implemented in a wireless 

LAN. It is not recommended to deploy wireless LANs without WEP encryption. 

III. Shared Key Authentication Vulnerabilities 

Shared key authentication requires the client use a pre-shared WEP key to encrypt challenge 

text sent from the access point. The access point authenticates the client by decrypting the 

shared key response and validating that the challenge text is the same. The process of 

exchanging the challenge text occurs over the wireless link and is vulnerable to a man-in-the-

middle attack. An eavesdropper can capture both the plain-text challenge text and the cipher-

text response. WEP encryption is done by performing an exclusive OR (XOR) function on the 

plain-text with the key stream to produce the cipher-text. It is important to note that if the XOR 

function is performed on the plain-text and cipher-text are XORed, the result is the key stream. 

15 



Therefore, an eavesdropper can easily derive the key stream just by sniffing the shared key 

authentication process with a protocol analyzer (Figure 10). 

Figure 10: Vulnerability of Shared Key Authentication 

IV. MAC Address Authentication Vulnerabilities 

MAC addresses are sent in the clear as required by the 802.11 specification. As a result, in 

wireless LANs that use MAC authentication, a network attacker might be able to subvert the 

MAC authentication process by "spoofing" a valid MAC address. MAC address spoofing is 

possible in 802.11 network interface cards (NICs) that allow the universally administered 

address (UAA) to be overwritten with a locally administered address (LAA). A network 

attacker can use a protocol analyzer to determine a valid MAC address in the business support 

system (BSS) and an LAA-compliant NIC with which to spoof the valid MAC address. 
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1.5. INTRUSION ANAL YSIS 

Intrusion detection is the art of detecting inappropriate, incorrect, or anomalous activity in 

order to respond to external attacks as well as internal misuse of computer system. It discovers 

violations of confidentiality, integrity, and availability of information and resources. Intrusion 

detection demands as much information as the computing resources can possibly collect and 

store. It needs constant improvement of technologies and processes to match pace of Internet 

innovation. Intrusion can provide digital forensic data to support post-compromise law 

enforcement actions. It can identify host and network wrong-configuration, improve 

management and customer understanding of the Internet's inherent hostility. Also, it is able to 

learn how hosts and networks operate at the operating system and protocol levels. 

In the wireless sensor network, the stream source would be a remote sensor that monitors the 

airwaves and generates a stream of 802.11 frame data as input to the analysis mechanism. 

Since wireless attacks occur before data is on the wired network, it is important for the source 

of the event stream to have access to the airwaves before the Access Point (AP) receives the 

data. The analysis mechanism can consist of one or more components based on any of several 

intrusion detection models. False positives, where the IDS generates an alarm when the threat 

did not actually exist, severely hamper the credibility of the IDS. In the same manner, false 

negatives, where the IDS did not generate an alarm and a threat did exist, degrade the 

reliability of the IDS. 

Signature based techniques produce accurate results but can be limited to historical attack 

patterns. Relying solely on manual signature-based techniques would only be as good as the 

latest known attack signature until the next signature update. Vendors who provide managed 

services, claim that they can write the updates to new attacks within hours and update the 

signature database in the client premises over the Internet. Anomaly detection techniques can 

detect unknown attacks by analyzing normal traffic patterns of the network but are less 

accurate than the signature-based techniques. A multi-dimensional intrusion detection 

approach integrates intrusion detection models that combine anomaly and signature-based 

techniques with policy deviation and state analysis. 
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1.5.1. Intrusion Detection for Traditional Network 

All computer activity and network traffic fall in one of three categories, including normal, 

abnormal but not malicious, and malicious. Properly classifying these events is the single most 

difficult problem, even more difficult than evidence collection. Two primary intrusion 

detection models are the Network-based intrusion detection and the Host-based intrusion 

detection. Network-based intrusion detection monitors network traffic for signs of misuse. 

Host-based intrusion detection monitors computer processes for signs of misuse. Systems are 

called "hybrid" systems if they do both. A hybrid IDS on a host may examine network traffic 

to or from the host, as well as processes on that host. 

Intrusion detection paradigms include the following: 

• Anomaly Detection 

• Misuse Detection 

Among all, anomaly detection and misuse detection are the most common traditional intrusion 

detection techniques. The following are summaries of the two techniques: 

Anomaly Detection 

An Anomaly-Based Intrusion Detection System, is a system for detecting computer intrusions 

and misuse by monitoring system activity and classifying it as either normal or anomalous. 

The classification is based on heuristics or rules, rather than patterns or signatures, and will 

detect any type of misuse that falls out with normal system operation. In order to determine 

what attack traffic is, the system must be taught to recognize normal system activity. The 

anomaly detector observes the activity of subjects and generates profiles for them that 

represent their behavior. The audit records are processed, the system periodically generates a 

value that is a measure of the abnormality of the profile. This value is a function of the 

abnormality values of all the measures comprising the profile. The advantage of anomaly 

intrusion detection is that well-studied techniques in statistics can often be applied. For 

example, data points that lie beyond a multiple of the standard deviation on either side of the 

mean might be considered anomalous. The integral of the absolute difference of two functions 

over time might also be used as an indicator of the deviation of one function with respect to the 
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other. The greatest disadvantage of anomaly detection is that it is difficult to determine 

thresholds above which an anomaly should be considered intrusive. Setting a threshold too low 

results in false positives and setting it too high results in false negatives. 

Misuse Intrusion 

Misuse intrusion detection refers to the detection of intrusions by precisely defining them 

ahead of time and watching for their occurrence. Misuse detection is also sometimes referred to 

as signature-based detection because alarms are generated based on specific attack signatures. 

These attack signatures specify the features, conditions, arrangements and interrelationships 

among events that lead the system to a break-in or other intrusive activity. Signatures are not 

only useful to detect intrusions but also attempted intrusions. A partial satisfaction of a 

signature may indicate an intrusion attempt. A misuse intrusion detector that simply flags 

intrusions based on the pattern of input events assumes that the state transition of the system 

leads to a compromised state when exercised with the intrusion pattern, regardless of the initial 

state of the system. One of the major advantages of misuse detection system is that user can 

examine the signature database, and quickly determine which intrusive activity the misuse 

detection system is programmed to alert on. One of the biggest problems is maintaining state 

information for signatures in which the intrusive activity encompasses multiple discrete events 

(that is, the complete attack signature occurs in multiple packets on the network). Another 

drawback is that your misuse detection system must have a signature defined for all of the 

possible attacks that an attacker may launch against your system. This leads to the necessity for 

frequent signature updates to keep the signature database of your misuse detection system up-

to-date. 

1.5.1.1. Intrusion Classification for Traditional (Wired) Network 

According to (Bai and Kobayashi 2003), primarily there are four kinds of intrusions: 

1. User to Root Attack (U2R) 

2. Remote to User Attack (R2U) 

3. Denial of Service Attack (DoS) 

4. Probes Attack (Probes) 
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The most severe attacks are categorized as U2R and the order of severity can be organized as 

U2R > R2U > DoS > Probes. According to research it is found that current data mining based 

IDSs are more useful on capturing DoS and Probes attacks than capturing U2R and R2U 

attacks (Ezeife et al. 2008). 

1. User to Roof Attack: 

This category consists of attacks where a local user on a machine is able to obtain privileges 

normally reserved for the UNIX super user or the Windows NT administrator. The intruder 

exploits some software vulnerabilities to gain root access. Examples of U2R attack are Eject 

and Fbconfig (Radosavac and Baras 2003). The most common User to Root attack is buffer 

overflow attack, which enables the attacker to run personal code on a target machine once the 

boundary of a buffer has been exceeded, giving him the privileges of the overflowed program 

(which in most cases is root). This type of attack usually tries to execute a shell with the 

application's owner privileges. Some examples of those attacks are eject, ffbconfig etc 

(Radosavac and Baras 2003). 

2. Remote to User Attack: 

In this type of attack, the attacker does not have any user account in the victim system. By 

exploiting some software vulnerabilities and sending network packets, the user gain normal 

access and later he can launch U2R attack and gain root access. An example of this kind of 

attack is Sendmail attack. The Sendmail attack exploits a buffer overflow in UNIX version 

8.8.3 of sendmail and allows a remote attacker to execute commands with superuser privileges. 

By sending a carefully crafted email message to a system running a vulnerable version of 

sendmail, intruders can force sendmail to execute arbitrary commands with root privilege. 

According to (Lincoln Laboratory MIT 2007), in this type of attack, the attacker sends a 

carefully constructed mail message with a long MIME header field. Sendmail daemon 

overflows during MIME processing and adds a new entry to the password file. Attacker comes 

back later and finds that his mail message has given him a root account on the victim system. 
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3. Denial of Service Attack (DoS): 

DoS is a type of attack on a network that is designed to bring the network down by flooding it 

with useless traffic. Although a DoS attack does not usually result in the theft of information or 

other security loss, it can cost the target person or company a great deal of time and money. 

Typically, the loss of service is the inability of a particular network service, such as e-mail, to 

be available or the temporary loss of all network connectivity and services. A denial of service 

attack can also destroy programming and files in affected computer systems. In some cases, 

DoS attacks have forced Web sites accessed by millions of people to temporarily cease 

operation. Examples of this kind of attack are SYN flood attack, Teardrop attack, Smurf attack 

etc (Lincoln Laboratory 2007). 

4. Probes Attack: 

Probes attack itself does not do anything other than scanning all reachable ports of computers 

in a network, gathers information, and looks for security holes in the network. Later this 

information can be used to launch other types of attacks and cause more damage to the 

network. Examples of this kind of scanning tools are Ipsweep, Mscan etc (Ezeife et al. 2008). 

An Ipsweep attack is a surveillance sweep termine which hosts are listening on a network. 

There are many methods an attacker can use to perform an Ipsweep attack. The most common 

method is to send ICMP Ping packets to every possible address within a subnet and wait to see 

which machines respond (Lincoln Laboratory 2007). Then, the attacker can determine which 

ports on which machines are open and then he can plan to launch other attacks through those 

open ports. 

1.5.1.2. Types of Attacks in Wireless Sensor Network: 
Wireless sensor network is vulnerable to different kinds of attacks. In this section we will look 

at the various kinds of WSN attacks as follows: 

/ . MAC Address Spoofing: 

IEEE 802.11 has as a 48-bit MAC address in the same format as an IEEE 802.3 address and 

similar to an Ethernet address. The 802.11 address is similar to the Ethernet's in both format 
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and security. Since there is no validation of address, one can spoof addresses. Since almost all 

wireless NICs permit changing their MAC address to an arbitrary value through vendor-

supplied drivers, open-source drivers or various application programming frameworks, it is 

trivial for an attacker to wreak havoc on a target wireless LAN. When an attacker changes 

his/her MAC address they continue to utilize the wireless card for its intended layer 2 

transport, transmitting and receiving from the same source MAC. A common example is an 

attacker executing a brute-force attack script with a random MAC address for each successive 

connection attempt. This kind of attack would go undetected by network activity analysis 

applications that report upper-layer network activity or large quantities of traffic from a single 

source of address (Wight 2003). 

2. Address Resolution Protocol (ARP) Poisoning: 

When data are sent out onto a network, they need a way to find the destination. This is 

accomplished on several layers, depending on how far the data need to travel. At the first layer, 

there exists an address called the MAC address. This theoretically 100% unique vale is 

systematically assigned to each and every network device that is produced. In other words, 

every network card, router, and switch has a pseudo-serial number that distinguishes it from 

every other network device in the world. However, the MAC address is used only to 

communicate within local networking segments, which are called subnets. Once the data pass 

through a router or switch to another network subnet, the next layer of addressing becomes 

important. This is because the database is required to record every MAC address and its 

location would be too large for quick processing. Instead, other technologies, such as DNS, 

WINS, IP manage data flow the farther out the data travels. To facilitate this transmission of 

data, ARP was designed to act as the intermediary between IP and MAC addresses. 

ARP is responsible for managing the relationship between MAC addresses and the IP 

addresses for network devices. This fundamental technology is part of the core of Internet 

functionality. In fact, without it a network will fail to work. However, it has been discovered 

that ARP information can be spoofed, or faked, to facilitate the control of all network data. The 

MAC address to IP address table is usually stored locally on each computer. This helps speed 

up data transfer because the MAC address doesn't have to be verified each and every time a 
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device wants to communicate with another device. However, this advantage has a negative 

side. By storing the MAC addresses in the ARP table, a potential weakness arises. A remote 

hacker could control an ARP table of a computer and could change MAC to IP address entries, 

which could cause traffic to be redirected from the correct target to a target of the hacker's 

choice (Wight 2003). 

3. Deauthentication: 

Any wireless client must first authenticate itself to the AP before further communication may 

commence. The authentication framework is a message that allows clients and access points to 

explicitly request deauthenticaiton from one another. Unfortunately, this message itself is not 

authenticated using any key material. Consequently the attacker may spoof this message, either 

pretending to be the access point or the client, and direct it to the other party. In response, the 

access point or client will exit the authenticated state and will refuse all further packets until 

authentication is reestablished (Bellardo and Savage 2003). 

4. Man-in-the middle attacks: 

Placing a rogue AP (Access Point) within range of wireless stations is wireless-specific 

variation of a man-in-the-middle attack. If the attacker knows the SSID in use by the network 

(which is easily discoverable) and the rogue AP has enough strength, wireless users will have 

no way of knowing that they are connecting to an unauthorized AP. Using a rogue AP, an 

attacker can gain valuable information about the wireless network, such as authentication 

requests, the secret key that may be in use, and so on. Often, the attacker will set up a laptop 

with two wireless adaptors, in which one card is used by the rogue AP and the other is used to 

forward requests through a wireless bridge to the legitimate AP. With a sufficiently strong 

antenna, the rogue AP does not have to be located in close proximity to the legitimate AP. So, 

for example, the attacker can run the rogue AP from a car or van parked some distance away 

from the building. However, it is also common to set up hidden rogue APs (under desks, in 

closets, etc.) close to and within the same physical area as the legitimate AP. Because of their 

undetectable nature, the only defense against rogue APs is vigilance through frequent site 

surveys using tools such as Netstumbler (Robert 2004) and AiroPeek (Wild Packets 2007), and 

physical security. 
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5. Disassociation: 

Since a client may be authenticated with multiple access points at once, the 802.11 standard 

provides a special association message to allow the client and access point to agree which 

access point shall have responsibility for forwarding packets to and from the wired network on 

the client's behalf. As with authentication, association frames are unauthenticated, and 802.11 

provides a disassociation message similar to the deauthentication message described earlier. 

Exploiting this vulnerability is functionally identical to the deauthentication attack. However, it 

is worth noting that the disassociation attack is slightly less efficient than the deauthentication 

attack. This is because deauthentication forces the victim node to do more work to return to the 

associated state that does disassociation, ultimately requiring less work on the part of the attack 

(Bellardo and Savage 2003). 

6. Wormhole Attack: 

The wormhole (Kwok 2003) attack is possible even if the attack has not compromised any 

host, and even if all communication provides authenticity and confidentiality. In the wormhole 

attack, an attacker records packets at one location in the network, tunnels them to another 

location, and retransmits the packets into the network at the later location. The wormhole 

attack can form a serious threat in wireless networks, especially against many ad-hoc network 

routing protocols and location based wireless security systems. Wireless security protocol 

based on localization have the potential to detect wormhole attacks. Localization systems are 

based on verifying the relative locations of nodes in a wireless network. Knowing the relative 

location may help conclude whether or not packets are sent from a node or a wormhole. 

7. Network Injection Attack: 

The network injection attack is a kind of DoS attack which exploits improperly configured 

wireless LANs or rogue access points to target the entire network. When an access point is 

attached to an unfiltered part of the enterprise network, it broadcasts network traffic, such as 

"Spanning Tree" (802.ID), OSPF, RIP, HSRP (CISCO 2007) and other broadcast or multicast 

traffic. By doing this, the packets invite attacks that take down wireless and wired network 
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equipment and spur a meltdown of the entire internal network infrastructure, including hubs, 

switches and routers. 

8. RTS/CTS Flood: 

Request to Send and Clear to Send flood are like SYN flood in TCP for wired network (Hu et 

al. 2003). In SYN-flood attack, SYN packet is sent to target and target returns an ACK packet 

to cause a half-open connection. If the attacker keeps sending SYN packets it can cause a DoS 

attack till timeouts occur. Similarly in 802.11, a flood of RTS packets can lead to DoS attack 

since only a finite number of connections can be open at any given time. 

9. Jamming attacks: 

Jamming is a special kind of DoS attack specific to wireless networks. Jamming occurs when 

spurious RF (Radio Frequency) frequencies interfere with the operation of the wireless 

network. In some cases, the jamming is not malicious and is caused by the presence of other 

devices, such as cordless phones, that operate in the same frequency as the wireless network. 

In a case like this, the administrator must devise and implement policies regarding the use of 

these devices or choose wireless hardware that uses different frequencies. Intentional and 

malicious jamming occurs when an attacker analyzes the spectrum being used by wireless 

networks and then transmits a powerful signal to interfere with communication on the 

discovered frequencies. Fortunately, this kind of attack is not very common because of the 

expense of acquiring hardware capable of launching jamming attacks. Plus, jamming a 

network represents a kind of Pyrrhic victory for the attacker since it leads to a lot of time and 

effort being expended merely to disable communications for a while (Rahman 2008). 
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2. Related Works Using Data Mining Techniques: 

From the data centric point of view, we can consider intrusion as a data analysis process. 

Anomaly detection is about finding normal usage patterns from audit data, whereas misuse 

detection is about finding the patterns of intrusion, and then using these patterns to inspect 

audit data. Audit data can be obtained from many sources. Using these audit data we can 

implement data mining approach to wireless network intrusion detection which provides an 

opportunity to learn the behaviors of network users' activity. To gain insight into the overall 

distribution patterns and interesting correlations among sensor network attributes, different 

researchers have used different data mining approaches. Association, Classification and 

Clustering: three methods of data mining have been used largely in the field of network 

intrusion detection from the very beginning (Ma et al. 2004; Rahman 2008). Among them 

Association rule was the widely used technique in many models including ADAM (Barbara et 

al. 2001), MADAM ID (Lee and Stolfo 2000), LERAD (Mahoney and Chan 2003), MINDS 

(Ertoz et al. 2004) etc. We have investigated several research papers of various researchers 

who used different model names which have been implemented to different data mining 

techniques as follows: 

2.1. Association Rule Concept: 

An association rule is mainly a mathematical rule of the form {A,} -> {By} which is found 

useful in data mining based NIDS (Ezeife et al. 2008). In the database, the association between 

data items (e.g., A/, By) means that we can infer that particular data item (e.g., By) is in 

existence because of the appearance of some data items (e.g., A,) in a transaction. Association 

rule mining is used to discover correlation relationships among items in transaction data. An 

example of transaction data from a bookstore is shown in table 1. 
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Transaction ID (TID) 

1 

2 

3 

4 

Items 

book, paper, pencil 

file, pen, pencil 

file, paper, pen, pencil 

file, pen 

Table 1: Sample Transaction data 

Let us discuss the association rule in a mathematical form. Here are some standard definitions 

of association rule related terms from (Dunham 2003; Ezeife et al. 2008): 

Given a set of items / = {Ij, I2, , lmj and a database of transactions D = {tj, t2, , t„} where 

ti = {In, la, ..... Iikj and Iy el, an association rule is an implication of the formX -> Y where X, 

Y czl are sets of items called itemsets and X nY = 0. 

The support for an association ruleX -> Fis the percentage of transactions in the database that 

contain X u Y. The support parameter can be used to determine how often the rule is applied. 

The confidence or strength for an association rule X -> Y is the ratio of the number of 

transactions that contain X u Y to the number of transactions that contain X. The confidence 

parameter can be used to determine how often the rule is correct. 

For example, using table 1, the itemset / = {book, file, paper, pen, pencil}. We can find that 

{file, pen} occurs in transaction 2, 3 and 4. So, if we make a rule Mkefile ->pen, the support of 

this rule will be 3/4*100% = 75%, which means 75% of all customers buy both items. 

The confidence of the rule file -> pen will be the ratio of the number of transactions that 

contain {file, pen} to the number of transactions that contain {file}. Transaction number 2, 3 

and 4 contain {file, pen} and transaction number 2, 3 and 4 contain {file}. So, confidence of 

this rule would be 3/3*100% = 100%, that means 100% of customers who buy file also buy 

pen, meaning the rule has 100% accuracy. 
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Through next several sub-sections we will discuss two important Association Rule Mining 

algorithms: Apriori, FP-growth algorithm and frequent episode rules, which are commonly 

used for Network Intrusion Detection Systems (NIDS). 

2.1.1. NIDS Using Association-Rule Mining: 

Association-rule mining finds interesting association or correlation relationships among a large 

sets of data items. With massive amounts of data continuously being collected and stored, the 

discovery of interesting association relationships among huge amount of transaction records 

can help in making decisions (Han and Kamber 2001). A well known example is market basket 

analysis. It analyzes customer buying habits by finding association between the different items 

that customer place in their shopper baskets. If most customers who buy milk also buy bread, 

then we can put milk and bread oh the same shelf to increase the profit. Here we will examine 

a few researchers' approaches using association rules in intrusion detection system for wired 

networks which may provide the conception of its implementation in wireless sensor networks. 

2.1.1.1 ADAM 
In (Barbara et al. 2001) the authors present an architecture of data mining based intrusion 

system ADAM (Audit Data Analysis and Mining). In ADAM they use a combination of 

association rules to detect any attack in a TCP Dump audit trails. ADAM is developed at 

George Mason University of USA. They introduce the approach that any event flagged by the 

association rules module that cannot be classified as a known attack or as a normal event (false 

alarm) by the classifier, ought to be considered, conservatively, as an unknown attack. Using 

this assumption, authors change the label in the classifier from "default" to "unknown". 

First, ADAM collects normal, known frequent datasets by mining into this model. Secondly, it 

runs an on-line algorithm to find last frequent connections and compare them with the known 

mined data and discards those which seem to be normal. With the suspicious ones it then uses a 

classifier which is previously trained to classify the suspicious connections as a known type of 

attack, unknown type of attack or a false alarm. There are two phases in this experimental 

model. In the first phase they trained the classifier. This phase takes place only once offline 
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before using the system. In the second phase they use the trained classifier to detect intrusions. 

The algorithm with example [Rahman 2008] is described below. 

attack free 

training data 

training data 

off-line single 
and 

domain-level mining 

on-line single level 
and 

domain-level mining 

feature selection 

suspicious 
hot tercet; 

I * . 

features 

profile 

label kemsets 
as false alarms 

or attacks training 
classifier builder 

Figure 11: Training phase of ADAM 

Phase 1: 

In the first phase, attack free normal frequent datasets are used to build a normal 

profile, where a minimum support is specified. For example, we have a database 

consisting of attack free connections. The schema of the database is shown in Table 2. 

Time stamp Source IP Source Port Destination IP Destination port Flag Service 

Table 2: Schema of attack free database to be used to build attack free normal profile 

Now suppose for some specified minimum support (for instance 60%) we collect only 

those connections those have a support greater than the minimum support. And we 

build a profile of normal connections. For example, the normal profile might be like 

table 3. 

Time stamp 

TO 

Tl 

Source IP 

137.207.34.1 

137.207.34.1 

Source Port 

80 

25 

Destination IP 

168.212.22.3 

207.34.56.2 

Destination port 

80 

25 

Flag 

ACK 

ACK 

Service 

http 

telnet 

Table 3: Sample of normal profile 
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• Then in the second step again training data and the already built normal profile are used 

with an online algorithm of tunable size. From the training data, association rules are 

generated in the form of X-> Y. Suppose, in some specified period of time a rule 

(src_IP = 137.207.34.1, src_port = 80 -> service = http) is getting strong support. 

Then this rule will be checked in the normal profile, if the rule is present then it will be 

ignored. In this case it will be ignored since it matches with the normal profile. But for 

instance, if we see that a rule {destJP = 137.207.34.1, destjport = 80 ->flag = SYN) 

(which is actually a signature of SYN flood attack) is getting strong support within a 

specified time window and this does not match with any normal profile data, a counter 

is used to track the support that the itemset received. If the support crosses the 

threshold, then it will be reported as suspicious. 

Then the features of the raw data corresponding to these suspicious itemsets are located and 

used to train the classifier by classifying them as false alarms or attacks. 

Phase 2: 

• In this phase, the classifier is already trained and can categorize any attack as known or 

false alarm. The attacks that are not specified in the classifier are labeled as unknown 

attacks. Here, also the same dynamic on-line algorithm is used to produce suspicious 

data with the help of normal profile and trained classifier. If it is false alarm then the 

classifier excludes those from the attack list and does not send those to system 

monitoring officer. 
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Figure 12: Discovering intrusions with ADAM 

The authors used DARPA 1999 datasets in their experiment. The authors claimed that ADAM 

is very successful in detecting DOS, PROBE, U2L attack but their system could not detect 

U2R attacks. The main deficiency in the approach is that they used only association rules and 

as a result their classifier generated a lot of rules, among them many were redundant. Another 

weakness of ADAM is that it totally depends on attack free normal training data, which are 

difficult to get. 

2.1.1.2. MINDS 
In (Ertoz et al. 2004) the authors present MINDS (Minnesota Intrusion Detection System) 

which was developed at the department of computer science in University of Minnesota. To the 

best of our knowledge MINDS is one of the best unsupervised anomaly detection system 

which is based on statistical approaches, clustering, outlier detection schemes etc. In this paper 

the authors have presented an unsupervised anomaly detection technique that assigns a score to 

each network connection that reflects how anomalous the connection is, and an association 

pattern analysis based module that summarizes those network connections that are ranked 

highly anomalous by the anomaly detection module. The brief workflow of the MINDS 

[Rahman 2008] is as follows: 
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Figure 13: MINDS System 

Input: 

Input to the MINDS is Netflow version 5 data collected using flow tool (for details refer to 

(www.splintered.net/sw/flow-tools) which is an alternative to tcpDump data. Flow-tools only 

capture packet header information, not the message contents. Just like tcp dump data header 

information contains source ip, source port, destination ip, destination port, time stump, flag 

values, duration of the connection etc. They have used 10 minutes time window. All data in the 

internet are passed as packets. All these packets have some header information and data. The 

system only captures the header information for all of those packets that have passed in last 10 

minutes. Those data are stored and before they are fed into the main system a data filtering step 

is performed to remove network traffic that the analyst is not interested in analyzing. For 

example, filtered data may include traffic from trusted sources. For example, in University of 

Windsor, when an access request to port numbers between 40000 and 60000 comes from 

UofW campus network it is granted, otherwise if the source IP is not from the university 

network, the access is denied. More precisely, if somebody tries to access port 40001 with 

http://cs.uwindsor.ca:40001 from home, then the request is denied but is granted if the request 

is coming from university lab computers. 
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Step 1: Feature Construction 

The first step in MINDS main system is "feature extraction". The data are in the binary format 

but we know the format (which bytes are representing what) and we extract those basic 

features from the audit data. These basic features include source and destination IP address, 

source and destination ports, protocol, flags, number of bytes and number of packets. With 

these basic features then derived features are computed. There are two types of derived 

features, (1) time window based features and (2) connection window based features. Time 

window based features are constructed to capture connections with similar characteristics 

within the last T seconds. For example, how many connections were destined towards the same 

destination IP address in last T seconds is called count-dest. Connection window based features 

are constructed to capture connection with similar characteristics within last N connection. For 

example, within last N connection how many connections were destined towards the same 

destination IP address is called count-dest-conn. Sample features of both type features are 

presented below in table 4 and table 5. 

Feature 

name 

count-dest 

count-src 

count-serv-

src 

count-serv-

dest 

Feature Description 

Number of flows to unique destination IP address inside the network in the last 

T seconds from the same source 

Number of flows from unique source IP addresses inside the network in the last 

T seconds to the same destination 

Number of flows from the source IP to the same destination port in last T 

seconds 

Number of flows from the destination IP address using same source port in last 

T seconds 

Table 4: Time-window based features 
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Feature name 

count-dest-conn 

count-src-conn 

count-serv-src-

conn 

count-serv-dest-

conn 

Feature Description 

Number of flows to unique destination IP address inside the network in the 

last N flows from the same source 

Number of flows from unique source IP addresses inside the network in the 

last N flows to the same destination 

Number of flows from the source IP to the same destination port in last N 

flows 

Number of flows from the destination IP address using same source port in 

last N flows 

Table 5: Connection-window based features 

Step 2: Known Attack Detection 

After all features of connection have been derived then the next step is to compare those 

features with known anomalies. If it finds a match then it directly send it to the analysts. 

For example, suppose it is known from time-window based features that one single source IP is 

trying to access the same port in many destination IPs many times within the last 3 seconds and 

if there is existing signature of this kind of attack then it can be sent to analyst as an attack 

without any hesitation. Now if there is no known attack signature of this kind then we send that 

connection record to Anomaly Detection module, which will be the next step. 

Step 3: Anomaly Detection 

In this step Anomaly Detection module will use an outlier detection algorithm to assign an 

anomaly score to each network connection. It assigns a degree of being an outlier to each data 

point, which is called Local Outlier Factor (LOF) (Breunig et al. 2000). For each data example, 

the density of the neighborhood is first computed. The LOF of a specific data example p 

represents the average of the ratios of the density of the example p and the density of its 

neighbors. LOF requires the neighborhood of all data points be constructed. This involves 

calculating pairwise distances between all data points, which is 0(n2) complexity. As there 

could be a million data sets, the complexity will be huge. To reduce the complexity an 
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approach has been taken in MINDS. They have made a sample dataset from the data and all 

data points are compared with the small set, which reduces the complexity to 0(n*m), where m 

is the size of small dataset. 

Figure 14: Local Outlier Factor (LOF) approach 

For example, in the figure 17 we can see that cluster C2 is denser than CI. Due to the low 

density in cluster CI, for most examples q inside CI, the distance between any dataset and its 

neighbor is greater than that of CI. For example, the distance between pi and p3 is higher than 

the distance between p2 and p4. So, therefore p2 will not be considered as outlier. 

Step 4: Association Pattern Analysis 

After assigning each connection a score then top 10% scores are taken as anomaly class and 

bottom 30% scores are taken as normal class. Middle 60% scores are ignored in their system. 

Then, these scored connections are passed into the Association Pattern Generator. 

This module summarizes network connections that are ranked highly anomalous by the 

anomaly detection module. The goal of mining association patterns is to discover patterns that 

occur frequently in anomaly class or in normal class. In this step they have applied association 

rule to construct rulesets for anomaly class and for normal class. For example, scanning 

activity for a particular service can be summarized by a frequent set: 

sourceIP=X, destinationPort=Y 

If most of the connections in the frequent set are ranked high by previous step, then this 

frequent set may be a candidate signature for addition to a signature-based system. Or, if the 
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following frequent set is scored lower and appeared many times then we can say it is normal 

which is a web browsing activity. The web browsing activity can be summarized as a frequent 

rule set: 

Protocol=TCP, destinationPort=80, NumPackets=3.. .6 

Then, in the last step summary of all rules are presented in front of analyst and then analyst can 

update or build normal profile or can label a new attack signatures. This is how the MINDS 

woks as an unsupervised anomaly detection system. One limitation of MINDS is that it only 

analyzes the header parts of data and does not pay attention to payload. As a result, U2R or 

R2U attacks may go undetected in their system. 

2.2. Cluster Analysis Concept: 
Clustering is a major data mining technique which is widely used in network intrusion 

detection purposes. Clustering is a process of partitioning a set of data or objects into groups of 

similar objects. Each group, called cluster, consists of objects that are similar among 

themselves and dissimilar to objects of other groups. 

Traditionally, clustering techniques are broadly divided in hierarchical and partitioning 

(Berkhin 2003). Hierarchical clustering is further subdivided into agglomerative and divisive. 

While hierarchical algorithms build clusters gradually (as crystals are grown), partitioning 

algorithms learn clusters directly. In doing so, they either try to discover clusters by iteratively 

relocating points between subsets, or try to identify clusters as areas highly populated with data 

(Berkhin 2003). In this section we will discuss a popular clustering algorithm, K-means 

clustering, which falls under partitioning clustering method. 

K-Means Clustering: 

The K-means algorithm takes the input parameter, k, and partitions a set of n objects into k 

clusters so that the resulting intra-cluster (objects within the same cluster) similarity is high but 

the inter-cluster similarity (objects residing in different clusters) is low. Cluster similarity is 

measured with regards to the mean value of the objects in a cluster, which can be viewed as the 

cluster's center of gravity. 
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Algorithm: &-means. The &-means algorithm for partitioning based or 
objects 

Input: 

in the cluster. 

The number of clusters k and a database containing n objects. 

Output: A set of k clusters that minimizes the squared-error criterion. 

Method: 

(1) 
(2) 
(3) 

(4) 

(5) 

arbitrary choose k objects as the initial cluster centers; 
repeat 

(re)assign each object to the cluster to which the object is 
based on the mean value of the objects in the cluster; 

i the mean value of the 

the most similar, 

update the cluster means, i.e., calculate the mean value of the objects for 
each cluster; 

until no changes; 

Figure 15: K-Means algorithm 

For example, we have 5 datasets in two 2-dimensional spaces. The sample input data is 

described in figure 16 and the number of cluster, k, is 2. 

Data Point 

1 

2 

3 

4 

5 

Array 1 

22 

19 

18 

1 

4 

Array 2 

21 

20 

22 

3 

2 

Figure 16: Sample dataset for K-Means algorithm 

Initially, we choose two arbitrary centre points (18,22) and (4,2) as centroids for Ci (cluster 1) 

and C2 (cluster 2). To determine the Euclidean distance of a dataset P = (Pi, P2, . . . , Pn) from a 

centroid Q = (Qi, Q2, . . . , Qn), the formula is: 

\j{p\ - qi)2 + (P2 - ga)2 + • • • + (Pn - qnf = A J2(Pi - qi}2-
\h=i 
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Iteration 1: 

We will have to check the Euclidean distance of every point (e.g., 22,21)from both centroids 

Ci(18,22) and C2(4,2) and the point will be assigned to the cluster it has lowest distance with. 

For Point 1,(22,21): 

Distance from centroid C,: V{(22-18)2 + (21-22)2} = Vl7 = 4.12 

Distance from centroid C2: V{(22-4)2 + (21-2)2} = A/6517 = 80.72 

So, point 1 is assigned to C|. 

In the same way point 2 and point 3 are assigned to Cj and point 4 and point 5 are assigned to 

C2. 

So, Cluster 1, d = {point 1, point 2, point 3} = {(22,21), (19,20), (18,22)} 

Cluster 2, C2 = {point 4, point 5} = {(1,3), (4,2)} 

Now, we calculate the new centroids for the clusters. 

New centroid for Cx: {(22,21) + (19,20) + (18,22)} / 3 = (20,21) 

New centroid for C2: {(1,3) + (4,2)} / 2 = (3,3) 

Iteration 2: 

We will have to check the distance of every point from both centroids and the point will be 

assigned to the cluster it has lowest distance with. 

For Point 1,(22,21): 

Distance from C,: V{(22-20)2 + (21-21)2} = 2 

Distance from C2: V{(22-3)2 + (21-3)2} - V685 = 26.17 

So, point 1 is assigned to C\. 
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In the same way point 2 and point 3 are assigned to C\ and point 4 and point 5 are assigned to 

C2. 

So, Cluster 1, C, = {point 1, point 2, point 3} = {(22,21), (19,20), (18,22)} 

Cluster 2, C2 = {point 4, point 5} = {(1,3), (4,2)} 

Now, we calculate the new centroids for the clusters. 

New centroid for C,: {(22,21) + (19,20) + (18,22)} / 3 = (20,21) 

New centroid for C2: {(1,3) + (4,2)} / 2 = (3,3) 

Since the clusters and centroids remain unchanged, we will stop here. The final clusters will 

look like figure 17. 
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Figure 17: K-Means Example 
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2.2.1. NIDS Using Cluster Analysis 
The process of grouping a set of physical or abstract objects into classes of similar objects is 

called clustering. A cluster of data objects can be treated collectively as one group in many 

applications. By clustering, one can identify dense and sparse regions and discover overall 

distribution patterns and interesting correlations among data attributes using different 

algorithms. We found in our investigation that the researchers are highly motivated and 

clustering analysis can serve as a first step for other analysis or mining operations on the 

detected clusters and even performance tuning of the sensor networks. 

In the research paper (Khoshgoftaar et al. 2005), the authors extended their previous work by 

clustering wireless traffic data and use heuristics to label each instance as intrusion or normal. 

The authors identified the problems that there are security vulnerabilities of 802.11 wireless 

networks for leading to a summary of network traffic metrics relevant to modeling the security 

of wireless networks. The heuristics they used are similar to their previous work in which 

clusters are ordered according to the largest cluster and a percentage cutoff is used to determine 

the separation point between attacks and normal clusters. The assumption here is that the 

largest cluster will have normal instances whereas anomalous or intrusive instances would 

belong to clusters far away from the largest cluster. In their study they use a distance-based cut 

off instead percentage cutoff. They applied the online k-means clustering algorithm to the three 

datasets for three different maximum number of clusters, i.e., k = 15, 30, 50 clusters. Initially, 

all metrics were used during clustering with the numeric features scaled to [0,1] and the 

categorical features -day, time slot, and access point - represented by the 1-of-N encoding 

approach. This encoding increased the number of features to 178 dimensions. The clusters that 

are relatively farther from the largest clusters are usually small in size and could constitute as 

anomalies or intrusions. 

40 



CttSidriCe 

Figure 18: Distance to largest cluster 

The cluster distances from the largest cluster plotted against the log of cluster size is shown in 

Figure - 18. The figure aids in identifying the normal clusters according to our conservative 

assumption that very large clusters cannot be attacks. Their study also investigated the use of 

tracers (records with known normal or intrusive levels) to enhance intrusion detection 

performance. They showed that the small set of tracers can significantly improve the intrusion 

detection rate of their cluster-based approach. Authors claim that their approach is one of the 

first studies to investigate a tracer-based clustering approach with expert analysis for intrusion 

detection in WLANs. They suggested that the future studies can investigate using tracers to 

isolate different intrusion or attack types among the intrusive clusters. 

The input data (http://nms.lcs.mit.edu/~mbalazin/wireless) for their work was a wireless logs 

obtained from more than 170 access points spread over three buildings. The raw data was 

summarized into connection-oriented records by pairing up the Mac address that uniquely 

identifies the client with the access point to which it is connected. The wireless network used 

for data collection was operating in the infrastructure mode with clients connected via the 

access points. The following attributes in table 6 are used in their data collection process. 
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Site 
Day 
Moment 
AP_Name 
SysUpTime 
SnmpInPkts 
SnmpOutPkts 
Ipln 
IpOut 
IpFwd 
Tcpln 
TcpOut 
Udpln 
UdpOut 

string 
Date 
Time 
String 
Time 
Int 
Int 
Int 
Int 
Int 
Int 
Int 
Int 
Int 

Table 6: Data Collection Attributes 

K-Means is a widely used algorithm that minimizes the mean-squared error (MSE) objective 

function. K-means is popular algorithm due to its simplicity, low time complexity, and fast 

convergence (Khoshgoftaar et al. 2005). The authors have shown in their previous work 

(Khoshgoftaar et al. 2005) that Online K-means not only outperforms batch K-means in 

clustering quality but is also more efficient. 

After preprocessing the data they have applied the online K-means algorithm to find the 

clusters from the wireless log data. We will now explain their online K-mean algorithm with an 

example (Ejelike 2008). Following table 7 represents the input data. 

Site 

LBdg 

MBdg 

Day 

2.7.20 

2.7.20 

Moment 

00:05:07 

00:10:07 

AP 

API 

AP2 

SysUpTime 

3:1:57:12.0 

3:2:02:12.0 

SnmpInPkts 

523976 

524444 

SnmpOutPkts 

522317 

522783 

Ipln 

984212 

984744 

IpOut 

528030 

528498 

IpFwd 

0 

0 

Tcpln 

1911 

1911 

TcpOut 

1911 

1911 

Udpln 

523187 

523653 

UdpOut 

524183 

524649 

Table 7: Sample Input data for clustering 

We can only use numeric values for Clustering. Therefore the site and AP name attributes 

which are of string data type in the sample data have to be converted to numeric data type. The 

authors used 1-of-N encoding, which assigns the same weight to each category and requires as 

many numeric places as there are categories. For example, Site with 3 nominal values (LBldg, 
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MBldg, SBldg) would be assigned 100, 010, and 001 respectively. LBldgAP and MBldgAP 

will be assigned 200 and 020 respectively, and any other APname would be 002. 

Suppose our Input dataset has 4 dimensions and the cluster has 2 points L, M, and a centroid P; 

L = (Li, La, ... , L4),M = (M,, M2, .... , M4), and P = (P,,P2, ... , P4). Pi = (L,+Mi)/2, P2 = 

(L2+M2)/2, P3 = (L3+M3)/2, P4 = (L4+M4)/2. 

The cluster centroid is randomly selected, each point in the matrix is assigned to the nearest 

cluster center and then a new centroid for each cluster is recalculated using the new cluster 

member values. For example, we will use a simple sample dataset for easy calculation to show 

how the online K-Means algorithm works. Assuming we transform the sample input data in 

Table 8, to make use of only five attributes from the sample input as shown in following Table. 

Connection Record 

Coni 

Con2 

Attribute 1 

5 

6 

Attribute 2 

3 

6 

Attribute 3 

2 

3 

Attribute 4 

1 

1 

Table 8: Sample connection records for kmo algorithm 

Each record Coni, Con2 represents one point with 4 attributes. 

1. Initial value of centroids (Initialization): Let C| and C2 denote randomly selected 

centroids, with Ci = (3,3,3,3) and C2 = (2,2,2,2). We are using a cluster with 2 points, therefore 

our K (number of clusters) = 2. 

2. Objects-Centroids Distance: The distance between cluster centroid to each object is 

calculated using Euclidean distance. Then, distance matrix at iteration 0 will be 

E= J_S||Xn-Hyn||2 (1) 

N 
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Where y„ = arg min* \\x„ - |i J \ is the cluster identity of data vector x„ and [i^ is the centroid 

of cluster j„. II II represents L2 norm. 

Let L; and M, = Coni, Con2 respectively and since we want to cluster the connection records in 

two clusters Ci and C2, as shown in Figure 19 below; 

k 
5 

3 

2 

1 

^ 

6 

6 

3 

1 

Ci 

3 

3 

3 

3 

Ci 

2 

2 

2 

2 

Figure 19: Matrix representation of CI and C2 at 0 iteration 

Then the distances between the columns in Table 8 is calculated as follows using equation 1; 

d (L;, d ) = V{(5-3)2 + (3-3)2 + (2-3)2 + ( 1-3)2 } = ^9 = 3 

d (Mj, C ) - V {(6-3)2 + (6-3)2 + (3-3)2 + (1-3)2} = V22 = 4.69 

d (Li,C2) = V{(5-2)2 + (3-2)2 + (2-2)2 + ( 1-2)2 }= yjn = 3.32 

d (Mj, C2) = V {(6-2)2 + (6-2)2 + (3-2)2 + (1-2)2 }= ^34 = 5.83 

Do represents distance at iteration 0, therefore our matrix at iteration 0 for the instance Ci is: 

D0 = [3 4.69] 

3. Objects clustering: The difference between online K-Means and normal K-Means is 

that, normal K-Means will assign all instances (connection records) to a cluster and then update 

the centroid. But, with online K-Means centroid is updated after assigning each instance to a 

cluster. The aim is to move the cluster point closer to the vector instance. Based on the 

minimum distance, Coni is assigned to group 1 as shown in Table 9. 
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co = 
1 

0 

= group 1 

= group 2 

Table 9: Object clustering generating cluster (C0) 

Ci = (3,3,3,3) group 1 

C2 = (2,2,2,2) group 2 

4. Determine a new centroid. It uses equation 2 below to calculate the new centroid position: 

M"vn 
(new) 

^yn - dE_ = f^yn + 2 (xn- M-yn) 

djiyn 

(2) 

£ is a learning rate that takes a small positive number (e.g., 0.05) or gradually decreases in the 

learning process 

jXyn = 4, S = 0.05. Since there are no objects in group 2, the centroid at group 2 will remain 

(new) 
unchanged at (2, 2, 2, 2). The new centroid JHvn (new center position) for group 1 will 

be as follows; 

(new) 
jLlynV ' = 3 + 0.05 ((5-3)+ (3-3)+ (2-3)+ (1-3)) 

r l yn^ 6 ^ = 3 + °-05 (_1 ) = 2-95 
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After recalculating the centroid, group 1 has the new centroid 2.95. Group 2 centroid remains 

unchanged as no objects are assigned to it. Our new matrix for first iteration is shown in Figure 

20. 

k 
5 

3 

2 

1 

^ 

6 

6 

3 

1 

Ci 

2.95 

2.95 

2.95 

2.95 

Ca 

2 

2 

2 

2 

Figure 20: Matrix records for iterationl 

The next object (R2) will now be allocated to a cluster. The object-centroid distance is now 

calculated as shown in No. 2. 

Dl (Mj, CI) = V {(6-2.95)2 + (6-2.95)2 + (3-2.95)2 + (1-2.95)2 } = V22.41 = 4.73 

Dj (Mj,C2) = V {(6-2)2 + (6-2)2 + (3-2)2 + (1-2)2 } = «^34= 5.83 

Di represents distance at iteration 1. 

Dl = [4.73 5.83] 

Based on the minimum distance, Con2 is assigned to group 1. 

c l = 
1 

_0 

= group 1 
= group 2 

Table 10: Object clustering generating cluster (Ci) 

The two records Coni and Con2 are now assigned to group 1. New centroid for group 1 is 

recomputed, group 2 centroid will still remain the same since no object is assigned to it. The 

re-computation of cluster centroid continues until each group remains unchanged. 

• To separate intrusive objects from normal instances; 
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Find the largest cluster, i.e., the one with the most number of instances, and 

label it normal. Assume its centroid is jua 

• Sort the remaining clusters in ascending order of the distance from each cluster centroid 

to ju0. Within a cluster, sort the data instances in the same way (i.e., ascending order of 

distance from each data instance to ju0). 

• Select all clusters that have a distance (to ju0) greater than t)D, and label them as 

intrusive where D is the largest distance from the centroid of the largest cluster to the 

farthest instance in y and rj is the portion of the instances farthest away from the largest 

cluster. 

• Label all the other instances as attacks. 

Assume group i is the largest cluster with a centroid (i0 of 3. D is 3.23 and rj = 0.17 then yD = 

0.55. So it means that any cluster that the distance from centroid u0 of group 1 is greater than 

0.55 will be labeled as intrusive cluster. 

To measure the performance (accuracy) of the proposed clustering-based intrusion detection 

approach, they ask a wireless network expert to assign normal or intrusive label to each cluster. 

The expert was given the average statistics of each feature for a cluster, but not the distance 

relationship between clusters. The expert categorized each cluster solely based on his 

understanding of the relationship between metrics and attacks. The set of expert-assigned 

labels are then used as the "ground truth" for the evaluation of their clustering based methods. 

They have done experiments on their system with three weeks datasets and claimed that the 

effectiveness of the clustering-based wireless intrusion detection method was validated. 
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2.3. Classification Rule Concept: 

Intrusion detection can be thought of as a classification problem: we wish to classify each audit 

record into one of a discrete set of possible categories, normal or a particular kind of intrusion. 

Given a set of records, where one of the features is the class label (i.e., the concept), 

classification algorithms can compute a model that uses the most discriminating feature values 

to describe each concept. 

2.3.1. Neural Networks: 

Neural Networks are analytic techniques modeled after the processes of learning in the 

cognitive system which is capable of predicting new observations on specific variables from 

other observations on the same or other variables after executing a process of so-called 

learning from existing data (Han and Kamber 2005). Pattern recognition is one of the most 

common uses for neural networks. Pattern recognition is a form of classification. A neural 

network trained for classification is designed to take input samples and classify them into 

groups. Therefore we can classify the Neural Network into Classification Techniques in data 

mining (Han and Kamber 2005). We have used the Neural Network techniques in our proposed 

system. 

We are going to describe briefly the Neural Network basics in the rest of this section and also 

the training algorithm called Back-Propagation in the following section. After a briefing of 

Neural Network basics, we will go through our proposed system in section 3. 

Neural Network (NN) is an interconnected group of artificial neurons that uses a mathematical 

or computational model for information processing based on a connectionistic approach to 

computation (Dunham 2003). In most cases a Neural Network is an adaptive system that 

changes its structure based on external or internal information that flows through the network. 

In more practical terms neural networks are non-linear statistical data modeling or decision 

making tools. They can be used to model complex relationships between inputs and outputs or 

to find patterns in data. 
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Neural Networks are very sophisticated modeling techniques capable of modeling extremely 

complex functions (Ramadas et al. 2003). The neural network user gathers representative data, 

and then invokes training algorithms to automatically learn the structure of the data. Although 

the user does need to have some heuristic knowledge of how to select and prepare data, how to 

select an appropriate neural network, and how to interpret the results, the level of user 

knowledge needed to successfully apply neural networks is much lower than would be the case 

using some more traditional nonlinear statistical methods. 

The most common neural network model is the Multilayer Perceptron (MLP). This type of 

neural network is known as a supervised network because it requires a desired output in order 

to learn. The goal of this type of network is to create a model that correctly maps the input to 

the output using historical data so that the model can then be used to produce the output when 

the desired output is unknown. A graphical representation of an MLP is shown below. 

Input First Second Output 
Lajer Hidden Hidden Lajpr 

La^er La^er 

Figure 21: Multilayer Perceptron [MLP] Model 

The above figure 21 is of a two hidden layer multiplayer perceptron (MLP). The inputs are fed 

into the input layer and get multiplied by interconnection weights as they are passed from the 

input layer to the first hidden layer. Within the first hidden layer, they get summed then 

processed by a nonlinear function. As the processed data leave the first hidden layer, again they 

get multiplied by interconnection weights, then summed and processed by the second hidden 
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layer. Finally, the data are multiplied by interconnection weights then processed one last time 

within the output layer to produce the neural network output. 

The MLP and many other neural networks learn using an algorithm called back-propagation. 

With back-propagation, the input data are repeatedly presented to the neural network. With 

each presentation the output of the neural network is compared to the desired output and an 

error is computed. This error is then fed back (back-propagated) to the neural network and used 

to adjust the weights such that the error decreases with each iteration and the neural model gets 

closer and closer to producing the desired output. This process is known as "training". 
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Figure 22: Neural Network Learning for XOR Data 

The above diagram Demonstrates a neural network learning to model the exclusive-or (XOR) 

data. The XOR data is repeatedly presented to the neural network. With each presentation, the 

error between the network output and the desired output is computed and fed back to the neural 

network. The neural network uses this error to adjust its weights such that the error will be 

decreased. This sequence of events is usually repeated until an acceptable error has been 

reached or until the network no longer appears to be learning. 

2.3.1.1. Applications for Neural Networks: 

Neural networks are applicable in virtually every situation in which a relationship between the 

predictor variables (independents, inputs) and predicted variables (dependents, outputs) exists, 

even when that relationship is very complex and not easy to articulate in the usual terms of 
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"correlations" or "differences between groups." A few representative examples of problems to 

which neural network analysis has been applied successfully are: 

• Detection of medical phenomena. A variety of health-related indices (e.g., a 

combination of heart rate, levels of various substances in the blood, respiration rate) can be 

monitored. The onset of a particular medical condition could be associated with a very 

complex (e.g., nonlinear and interactive) combination of changes on a subset of the variables 

being monitored. Neural networks have been used to recognize this predictive pattern so that 

the appropriate treatment can be prescribed. 

• Stock market prediction. Fluctuations of stock prices and stock indices are another 

example of a complex, multidimensional, but in some circumstances at least partially-

deterministic phenomenon. Neural networks are being used by many technical analysts to 

make predictions about stock prices based upon a large number of factors such as past 

performance of other stocks and various economic indicators. 

• Credit assignment. A variety of pieces of information are usually known about an 

applicant for a loan. For instance, the applicant's age, education, occupation, and many other 

facts may be available. After training a neural network on historical data, neural network 

analysis can identify the most relevant characteristics and use those to classify applicants as 

good or bad credit risks. 

• Monitoring the condition of machinery. Neural networks can be instrumental in 

cutting costs by bringing additional expertise to scheduling the preventive maintenance of 

machines. A neural network can be trained to distinguish between the sounds a machine makes 

when it is running normally ("false alarms") versus when it is on the verge of a problem. After 

this training period, the expertise of the network can be used to warn a technician of an 

upcoming breakdown, before it occurs and causes costly unforeseen "downtime." 
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« Engine management. Neural networks have been used to analyze the input of sensors 

from an engine. The neural network controls the various parameters within which the engine 

functions, in order to achieve a particular goal, such as minimizing fuel consumption. 

2.3.1.2. Back-Propagation Algorithm 

Back-Propagation learns by iteratively processing a set of training samples, comparing the 

network's prediction for each sample with the actual known class level. For each training 

sample, the weights are modified so as to minimize the mean squared error between the 

network's prediction and the actual class (Han and Kamber 2005). These modifications are made 

in the backwards direction, from the output layer, through each hidden layer down to the first 

hidden layer. 

We have implemented the back propagation algorithm in our proposed system for training 

purpose is summarized in the following figure 23: 

Algorithm: Backpropagation. Neural Learning for classification, using the backpropagation 
algorithm. 

Input: The training 
network. 

samples, samples; learning rate, /; a multilayer feed-forward network, 

Output: A neural network trained to classify the samples. 

Method: 

(1) Initialize all weights and biases in network; 
(2) while terminating condition in not satisfied { 
(3) for each training sample X in samples { 
(4) 
(5) 
(6) 
the previous layer, i 
(7) 
(8) 
(9) 
(10) 

// Propagate the inputs forward: 
for each hidden or output layer unit j { 

Ij = YJ wy Oi + Of //compute the net input of unit j with respect to 

Oi = 1 / 1 + e~'J ; } // compute the output of each unit j 
// Backpropagate the errors: 
for each unit j in the output layer 

Errj = Oj (1 - Oj)(Tj - Oj); II compute the error 
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(11) 
(12) 
the next higher 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) }} 

layer, 

for each unit j in the hidden layers, from the last to the first hidden layer 
Errj = Oj (1 - Oj) YJ< Errk wjk', II compute the error with respect to 

k 
for each weight w,y in network { 

Aw,y = (1) Errj 0,; // weight increment 
w,y = w,y + Aw,y-; } // weight update 

for each bias Oj in network { 
AOj = (1) Errj; // bias increment 
Oj = Oj + AOj; } // bias update 

Figure 23: Back-propagation Algorithm. 

Each step of the Back-propagation algorithm (Han and Kamber 2005) is briefly described below: 

Initialize the weights: 

The weights in the network are initialized to small random numbers ranging from - 1.0 to 1.0. 

Each unit has a bias associated with it. The biases are similarly initialized to small random 

numbers. 

Each training sample, X, is processed by the following steps. 

Propagate the inputs forward: 

In this step, the net input and output of each unit in the hidden and output layers are computed. 

First, the training sample is fed to the input layer of the network. Note that for unity in the 

input layer, its output is equal to its input, that is Oj = Ij for input unity. The net input to each 

unit in the hidden layer and output layers is computed as a linear combination of its inputs. A 

hidden layer or output layer unit is shown in figure 29. The inputs to the unit are the outputs of 

the units connected to it in the previous layer. To compute the net input to the unit, each input 

connected to the unit is multiplied by its corresponding weight, and this is summed. Given a 

unity in a hidden or output layer, the net input, Ij, to unity is: 

Ij = liWjOi + 0J 
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where wy is the weight of the connection from unit I in the previous layer to unit j ; Ot is the 

output of unit i from the previous layer; and #, is the bias of the unit. The bias acts as a 

threshold in that it serves to vary the activity of the unit. 

XQ 
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Weights 
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Wjj 

w, nj 

Inputs (outputs 
from previous 
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dm WVP 

Bias 

e, 

Weighted 
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I 
/ 

Activation 
Function 

Outrnit 

Figure 24: Neural Network Structure 

In above figure 24, a hidden or output layer unity: The inputs to unity are outputs from the 

previous layer. These are multiplied by their corresponding weights in order to form a 

weighted sum, which is added to the bias associated with unity. A nonlinear activation function 

is applied to the net input. 

Each unit in the hidden and output layers takes its net input and then applies an activation 

function to it. The function symbolizes the activation of the neuron represented by the unit. The 

following sigmoid function (Han and Kamber 2005) is used. Given the net input Ij to unity, then 

Oj, the output of the unity, is composed as 

Oi = l/l + e'1J 

This sigmoid function is non-linear and differentiable, allowing the back-propagation 

algorithm to model classification problems that are linearly inseparable. 
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Back Propagate the Error: 

The error is propagated backwards by updating the weights and biases to reflact the error of the 

network's prediction. For a unity in the output layer, the error Err/ is computed by the 

following: 

Errj=Oj(l-Oj)(Tj-Oj) 

Where Oj is the actual output of unity, and 7} is the true output, based on the known class label 

of the given training sample. 

To compute the error of a hidden layer unit j , the weighted sum of the errors of the units 

connected to unit j in the next layer are considered. The error of a hidden layer unit j is as 

follows: 

Errj = Oj (1 - Oj) X* Errk wjk 

where w,* is the weight of the connection from unity to a unit k in the next higher layer, and 

Errk is the error of unit k. 

The weights and biases are updated to reflect the propagated errors. Weights are updated by the 

following equations, where Aw,y is the change in w,y: 

Av/y = 0)ErrJOl 

Wy = W,y + AWy 

The variable / is the learning rate, a constant typically having a value between 0.0 and 1.0. 

Backpropagation learns using a method of gradient decent to search for a set of weights that 

can model the given classification problem so as to minimize the mean squared distance 

between the network's class prediction and the actual class label of the samples. The learning 

rate helps to avoid getting stuck at a local minimum in decision space and encourages finding 

the global minimum. If the learning rate is too small, then learning will occur at a very slow 

pace. If the learning rate is too large, then oscillation between inadequate solutions may occur. 
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A rule of thumb is to set learning rate to 1/t, where t is the number of iterations through the 

training set so far. 

Biases are updated by the following equation, where AQj is the change in bias 6f. 

A6j=(\)Errj 

0J=9J+A8J 

Note that here we are updating the weights and biases after presentation of each sample. This is 

referred to as case updating. Alternatively, the weight and bias increments could be 

accumulated in variables, so that the weights and biases are updated after all of the samples in 

the training set have been presented. This later strategy is called epoch updating, where one 

iteration through the training set is an epoch. In theory, the mathematical derivation of back-

propagation employs epoch updating, but case updating is more common since it tends to yield 

more accurate results. 

Terminating Condition: 

Training stops when 

• All Aw,y in the previous epoch were so small as to be below some specified 

threshold, or 

• The percentage of samples misclassified in the previous epoch is below some 

threshold, or 

• A pre-specified number of epochs has expired. 
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2.3.1.3. Example for Learning by Back-propagation Algorithm: 

Figure 25 shows a multilayer feed-forward neural network. Let the learning rate be 0.9. The 

initial weights and bias values of the network are given in table 11, table 12 and table 13, along 

with first training sample, X = (1, 0, 1), whose class label is 1. 

Xi 

x2 

X3 

Figure 25: An example of a multilayer Neural Network 

Xi 

1 
X2 

0 
X3 

1 

Table 11: Initial Input 

W14 

0.2 
H>I5 

-0.3 
*>24 

0.4 
W25 

0.1 
W34 

-0.5 
W35 

0.2 
W46 

-0.3 
WS6 

-0.2 

Table 12: Initial weights 

04 
-0.4 

0s 
0.2 

06 
0.1 

Table 13: Initial bias values 

57 



The net input and output calculations using following two equations are showed in table 14: 

Oi = l/l +e'lJ 

Unit/ 
4 
5 
6 

Net input, lt 

0.2 + 0 - 0.5 - 0.4 = -0.7 
-0.3 + 0 + 0.2 + 0.2 = 0.1 
(-0.3) (0.332) - (0.2)(0.525) + 0.1 = -0.105 

Output, Oj 
1/(1+eu/) = 0.332 
1/(1 + e~ul) = 0.525 
1/(1 + e0105) = 0.474 

Table 14: The net input and output calculations 

Calculation for the error at each node using following two equations are showed in table 15: 

Errj=Oj(l-Oj)(Tj-Oj) 

Errj = Oj (1 - Oj) X* Errk wjk 

Unity 
6 
5 
4 

Err, 
(0.474) (1 -0.474) (1 -0.474) = 0.1311 
(0.525) (1 - 0.525) (0.1311) (-0.2) = - 0.0065 
(0.332) (1 - 0.332) (0.1311) (-0.3) = - 0.0087 

Table 15: Error calculation for each node 

Calculation for Weight updating by using following two equations are showed in table 16: 

Awy = (1) Errj 0{ 

W y = W y + AWy 

Weights 
w46 

W56 

W14 

WIS 

W24 

W25 

W34 

W35 

New Value 
-0.3 + (0.9)(0.1311)(0.332) = -0.261 
-0.2 + (0.9)(0.1311)(0.525) = -0.138 
0.2 + (0.9)(-0.0087)(l) = 0.192 
-0.3 + (0.9)(-0.0065)(1) = -0.306 
0.4 + (0.9)(-0.0087)(0) = 0.4 
0.1+(0.9)(-0.0065)(0) = 0.1 
-0.5 + (0.9)(-0.0087)(l) = -0.508 
0.2+ (0.9)(-0.0065)(l) = 0.194 

Table 16: Calculation for Weight updating 
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Calculation for Bias updating by using following two equations are showed in table 17: 

Bias 
06 
05 
04 

New Values 
0.1 + (0.9)(0.1311) = 0.218 
0.2 + (0.9)(-0.0065) = 0.194 
-0.4 + (0.9X-0.0087) = -0.408 

Table 17: Calculation for Bias updating 

2.3.2. N9DS Using Neural Network: 

A Wireless Intrusion Detection Method Based on Dynamic Growing 
Neural Network 

In this research paper (Liu et al. 2006), the authors presented an intrusion detection method 

based on Dynamic Growing Neural Network (DGNN) for wireless networking. The main 

character of the method is that it is an anomaly detection method and can learn the normal 

behavior. DGNN is based on the Hebbian learning rule and adds new neurons under certain 

conditions. When DGNN performs supervised learning, resonance will happen if the winner 

can't match the training example; this rule combines the Adaptive Resonance Theory (ART) 

(Grossberg 1996) neural network and Winner-Tale-All (WTA) learning algorithm. When 

DGNN performs unsupervised learning, post-prune is carried out to prevent overfitting the 

training data just like decision tree learning. To improve wireless intrusion detection accuracy, 

we use an artificial neural network to perform anomaly detection. The following features are 

introduced in their proposed system: 

Feature Selection: 

The basic premise for anomaly detection is that there is intrinsic and observable characteristic 

of normal behaviour that is distinct from that of abnormal behaviour. Three main parts in 

anomaly detection system are: feature selection, model of normal behaviour, and comparison. 

Feature selection is a critical part in building normal behaviour model and performing 
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comparison. In their proposed method, they selected and constructed features from MAC layer. 

All 802.11 frames are composed by Preamble, PLCP Header, MAC Data, and CRC. Each 

MAC Data frame consists of the following basic components: A MAC header, which 

comprises frame control, duration, address, and sequence control information; A variable 

length frame body, which contains information specific to the frame type; A frame check 

sequence (FCS), which contains an IEEE 32-bit cyclic redundancy code (CRC). The frame 

control field consists of control information, those four address fields indicate the BSSID, 

source address, destination address, transmitting station address, and receiving station address. 

All these information can be used to construct features. 

Intrusion Detection Process 

The behaviour of the network can be described as follows. At first, a training vector x is 

presented to the network and each neuron receives this sample. Then the dissimilarity measure 

between x and each synaptic weight will be computed. After that, the competitive function will 

choose the winner neuron and compute the penalizing rate of other neurons. Last, the learning 

rule part gets the result of competitive and updates the synaptic weights. The output is the 

winner neuron, which represents a cluster. The summary of the operation is as follows: 

StepO: Initialize learning rate parameter fi, penalizing rate parameter fi, the threshold of 

dissimilarity v; 

Stepl: Get the first input x and set wo = x as the initial weight; 

Step2: If training is over go to step 6, else randomly takes a feature vector x from the feature 

sample set X and computes the dissimilarity measure between x and each synaptic weight dt; 

Step3: Decide the winner neuron j and tests tolerance: If (dj >= v) add a new neuron and sets 

synaptic weight w = x , goto Step2; 

Step4: Compute the penalizing rate y,; 

Step5: Update the synaptic weight Wj, goto Setp2. 

Step6: Use prune algorithm to prune the similar weights. 

In supervised learning training vector x and neuron vector w includes the class identifier. If 

their identifier is the same the learning will carry out. DGNN first studies the normal behaviour 
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of WLAN to construct the normal feature set. When the neural network is stable, we can use it 

to monitors the WLAN, If an intruder is trying to intrude the network, the intrusion detection 

system can find it in real time and alarm immediately. 

IWTA algorithm 

The learning algorithm of DGNN is Improved Winner-Take-All (IWTA), which extends the 

basic competitive learning algorithm - Winner-Tale-All (WTA). The basic idea of IWTA is not 

only the winner is rewarded as in WTA but also all the losers are penalized in different rate. 

There are some similarities between IWTA and RPCL (Nair et al. 2003). The principle 

underlying RPCL is that in each iteration, the cluster center for the winner's neuron is 

accentuated (rewarded) where at the weight for the second winner, or the rival, is attenuated 

(penalized), and the remaining neurons are unaffected. IWTA is similar to LTCL (Nair et al. 

2003) too, but in IWTA the penalized rate is based on the dissimilarity level. 

The IWTA is summarized as follows: 

i. Use the following equation to measure to measure the dissimilarity between input 

vector X and weight vector w-,, / = 1,...., n , n is the number of neurons; 

f i 
d, =«/{x,w.) = 

ii. Arrange the neurons according to dt from small to big and the smallest is the winner. 

Determine the rewarding neuron and penalizing rate of other neurons as 

1, tfaewitMiier 

• /#—, others 

where fi is the penalizing rate parameter, v is the threshold of dissimilarity. 

iii. If the winner's dissimilarity measure d < v, then update the synaptic weight by learning 

rule as 

W , ( H l )= W,(f)H (i\yit-\ i M n l ) - flW^l 

where ji > 0 is the learning rate parameter, i indicates / th neuron. When the neuron is active 

y = 1, // = // *V[ we get 
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Else add a new neuron and set the synaptic weight w = x. 

Post-prune algorithm 

Neural network may also bring the overfitting problem. In decision tree learning, it uses post-

prune method to prevent overfitting. DGNN also performs the post-prune to overcome this 

problem. The prune strategy based on the distance threshold and if two weights are too similar 

they will be substituted by a new weight. The new weight is calculated as 
Wnew = (W0id, X U - W0ld2 X t2) / (ti - t2) 

where tj is the training times of W0m, t2 is the training times of W0td2 

The prune algorithm is shown below: 

StepO: If old weights meet (oldW) is null then algorithm is over 

else go on; 

Stepl: calculate the distance between the first weight (fw) and the other weights; 

Step2: find the weight (sw) who is the most similar to fw; 

Step3: if the distance between sw and fw is bigger than prune threshold then delete fw from 

old Wand add fw into new weights meet (newW) go to step 0; 

else go on; 

Step4: get/vv's training times value (ft) and sw's training times value (st); 

Step5: calculate the new weight (raw) and raw's training times value (nt), 

nw=(fw *ft + sw* st)l(ft+st), 

nt=ft + st, 

Step6: delete fw and sw from oldW, and add nw into newW, go to step 0. 

In the simulation the authors first trained DGNN using the benchmark which contains 600 

examples of control charts synthetically generated by the process in Alcock and Manolopoulos 

(1999). There are six different classes of control charts: Normal, Cyclic, Increasing trend, 

Decreasing trend, Upward shift, and Downward shift. The training result is show in Table 18. 

In the dataset the classes are organized as follows: 1-100 are Normal, 101-200 are Cyclic, 201-

300 are Increasing trend, 301-400 are Decreasing trend, 401-500 Upward shift, and 501-600 
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are Downward shift. After training they have used each class data to test which weight more 

similar it. It is found that DGNN can perfectly predicate Normal/Cyclic classes. But it is often 

confused by Decreasing trend/Downward shift and Increasing trend/ Upward shift classes. 

To solve this problem they used the post-prune algorithm to cluster the similar weights which 

have been gotten when distance threshold is 35. When the prune threshold is 40, the prune 

result is shown in Table 19 After 7 epochs prune, all the 275 weights have been clustered to 33 

weights. 

Blsiartee IfarshoM T,^ ^g $Q ^J 4% 

Mamter of weights 275 155 S? 4S 34 

Table 18: DGNN Training Result 

Pt EM? epodh j 2 3 4 5 6 7 

Num&er of weights l f i 9 1 0 9 ? 6 5 6 42 3 6 33 

Table 19: Prune Result 

The Normal class has been clustered to No.l weight and it can perfectly predicate Normal data. 

The results show that Decreasing trend and Increasing trend all clustered to two weights, other 

weights have cluster to Downward shift and Upward shift. Through analyze and test the 

weights it can be found that the reason to confuse Decreasing trend/Downward shift and 

Increasing trend/ Upward shift is two weights which have been shown with dotted lines in the 

figures. So if we delete those two weights the neural network can perfectly predict synthetic 

control chart time series. 

In this experiment, the authors have evaluated their proposed method. They first train the 

neural network with different normal features, then use the stable neural network to monitor 

the system where some abnormal behaviours are happening under the same environment. They 

have tested the false alarm rate under different learning and detection conditions. MAC 

address, IP address, and some control information were taken out from packet to construct 

features of WLAN. In detection process, one PC of room A carried out ping death attack to the 
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WLAN and a desktop PC with TL-WN650G/PCI sniffs the WLAN. In their experiment they 

found that DGNN can detect those attacks. After 1.5xl04 times training, the neural network 

could learn the normal behaviour of this WLAN and the error rate was about 15%. 

The main problem of the method is that it usually falsely alarm new normal adding mobile 

client as intruder, and some abnormal behavior of added station cannot be found. Some famous 

attacks such as RTS/CTS based DoS cannot be prevented by this method. So their plan was to 

extend their work by adding some rule-based expert system and response methods to improve 

detection accuracy. 
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3. Proposed System for Wireless Intrusion Detection: 

The timely and accurate detection of computer and network system intrusions has always been 

an elusive goal for system administrators and information security researchers. The individual 

creativity of attackers, the wide range of computer hardware and operating systems, and the 

ever changing nature of the overall threat to target systems have contributed to the difficulty in 

effectively identifying intrusions. A single intrusion of a computer network can result in the 

loss or unauthorized utilization or modification of large amounts of data and cause users to 

question the reliability of all of the information on the network. 

The constantly changing nature of network attacks requires a flexible defensive system that is 

capable of analyzing the enormous amount of network traffic in a manner which is less 

structured than rule-based systems. A neural network-based misuse detection system could 

potentially address many of the intrusions that are found in rule-based systems. Rule-based 

systems suffer from an inability to detect attacks scenarios that may occur over an extended 

period of time and also lack flexibility in the rule-to-audit record representation (Cannady 

2000). Slight variations in an attack sequence can affect the activity-rule comparison to a 

degree that the intrusion is not detected by the intrusion detection mechanism. A neural 

network conducts an analysis of the data and provides a probability estimate that the data 

matches the characteristics which it has been trained to recognize. Therefore, we have used 

Neural Network technique in our proposed wireless network intrusion detection system. 

The main advantages of the artificial neural networks include the ability of faster information 

processing, the ability of classification, the ability of learning and self-organization. By virtue 

of these abilities of the artificial neural networks, the network intrusion detection system can 

analyze the network stream real time and detect whether there exist intrusions or not (Jing et al. 

2004). 

A neural network conducts an analysis of the information and provides a probability estimate 

that the data matches the characteristics which it has been trained to recognize. While the 
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probability of a match determined by a neural network can be almost 100%, though the 

accuracy of its decisions relies totally on the experience the system gains from training period. 

3.1. Overview of the Proposed System - NeuDetect: 

To be effective Intrusion Detection System for wireless sensor network, it should always 

monitor the airwaves to recognize and prevent attacks before the attacker authenticates to 

Access Point (AP). Our wireless LAN will make use of stream of sensor data from a remote 

sensor IDS that continuously monitors the wireless packets and extracts information like 

source and destination MAC address, the sequence number and AP the wireless station is 

trying to connect to, by reading 802.11b frames. Then the extracted data will be analyzed and 

pre-processed to serve as input to our Neural Network based anomaly detection module, where 

we have used the Back-Propagation algorithm for finding anomalies. From the figure 26 below 

we can see that our proposed wireless intrusion detection system based on the artificial neural 

networks includes several modules, now we will introduce briefly each module separately. 

Data Collection 
Module 

Sensor 

Sensor 

> 

Data Processor 
Module 

Extracts selected 
attribute values 
from wireless 
sensor log by 

Commview for 
WiFi and outputs 

csv file 

i> 

1 V > 

Detection 
Module 

Detects 
anomalous data 

packets by 
using Back-
Propagation 

Algorithm 

f 

1 
I > 

Decision 
Module 

Triggers Alert 

Figure 26: Prototype Structure of the Proposed System 

The NeuDetect algorithm is presented as Algorithm 1 in figure 27. The proposed model finds 

the anomalous patterns after having training data by using Back-Propagation Neural Network 

techniques. 
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\Algorithm 1: (NeuDetect: Wireless IDS) 

Algorithm NeuDetectO 
Input: Wireless Data Packets (P), Sensors (S), Access Points (AP) 
Output: Anomalous Packets (A), Alert 

Begin 
While (true) 

(1) Capture wireless packets from AP using sensors (S) 
(2) Extract connection packets (P)from sensors S with 

Commview for WiFi software and save as .csvfile 
(3) Call Back-Propagation Algorithm insert 

.csvfile records as input and output anomalous 
records (A) 

(4) Triggers alerts. 
End 

Figure 27: Algorithm 1 - NeuDetect Model 

3.2.1. Data Collection Module: 
This module monitors network stream real time and capture wireless data packets to serve as 

the data source of the NIDS. Our Packet Capture module contains the proprietary Network 

Chemistry wireless hardware sensors (Network Chemistry 2006). The goal of this module is to 

capture wireless network packets successfully from a selected Access Point (AP) and log them 

into the database. Then the Feature Extractor module converts the raw data to readable format 

with help of CommView (CommView for WiFi 2007) for WiFi software and outputs a csv file 

(csv stands for Comma Seperated Values where attributes values are simple text separated by 

commas). 

So, for the Data Collection and Data Processor module we have to perfectly install and 

configure 1) Wireless Access Point (AP), 2) RF Sensors including both a sensor server and a 

sensor client software, 3) CommView for WiFi software, 4) MS SQL Server database as 

shown in figure 28. 
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MS SQL 
Server DB 

Data load 
using SSIS 

CommView 
forWiFi 
Software 
(Packets in 

Figure 28: Data Collection and Data Processor Module 

Clients connect to the wireless network through Access Point (AP) and our sensors are 

configured and associated with the AP, so that, the sensor can capture all the packets sent by 

the client to the AP. In this way, we ensure that all packets from clients that pass through our 

network are captured by the sensor. Sensors receive and analyze all 802.11 packets, analyze the 

data, and send processed data to the Server, where the information is stored. For the Sensors to 

perform their function, we installed and configured RFprotect Server and Client software of 

Network Chemistry Sensors. 

The RFprotect Server analyzes, stores, and integrates data from Sensors. The Server comprises 

the RFprotect Engine, a database of known stations, experts, location analysis, alerts, and 

reported events. The Server consolidates and analyzes wireless traffic, generates alerts and 

maintains a database for the RFprotect console users. 

The Console (client) provides the information presentation and operator controls for RFprotect. 

The Console is the main suite of tools for viewing and managing the information provided by 

the RFprotect Server and Sensors, and provides views of wireless activity, security alerts, and 

RF environmental analysis. 

The minimum requirements for installing the Sensor software are as follows: 
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• Windows XP, 2000, 2003 or Linux operating system 

• 2.4GHz or greater CPU 

• 1GByte memory 

Hardware configuration of our system for Sensor Server and Client Installation: 

• Windows XP Professional Operating System Service pack 2 

• Pentium 4 CPU 3.06 GHZ 

• 1 GB RAM 

• 150 GB of Hard disk 

Sensor Software installation steps: 

The software installation is easy. We first installed the server software before the client. With 

the software CD inside the CDROM drive, we started the RFprotectServer and the installer 

displays a Welcome screen dialog box. Select all the default and continue clicking "Next" until 

completing the RFprotectServer setup wizard then click Finish and then proceed to creating the 

database wizard. We also choose the default for the database creation which uses firebird. The 

RFprotectClient installation is also easy. We selected all the default for this installation. 

Configuring Sensors: 

After installation we launch the RFprotectClient, as shown in figure 29, and then we enter the 

password. 

Network Chi'imslry PFprott'tl I'.un 

RFprotect Console Login 
Client/Server Edition 
Version: 5.0.6 

Connect f Advanced! 

Cho«s« Ihe sawei to connect to from the Aop dawn Ifet 
connection setfirtg? for e new; server. 

Server 

Usemartie 

Password 

jlocalhost 

JSYSDBA 

p-i 

or enter the 

"3 

Conneet 

Figure 29: RFProtect Login Window 
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The screen in figure 30 will appear showing that no sensor has been added. To add a sensor, 

we click on the Add sensor button, then the discover sensor window as shown in figure 31 is 

open. 
KmuKmmmmmma 

K n o w n S t « $ m « | l^ipi^Fupia&cirt-Conl*t?l \ &*a&a$0.rtF<Qm&p 'Spneior* | $i»rti$<pr f iampt(»6ps | i.p»piis*KW*$ jj 

l i P-aM*« > ' ^ B6fe-esH | ^ ^ f _ _ J ^ j & < * * A-*S S e n s e * ^ 

V * " ^ , / "'"'ti 

Sfflrvtsr; fad«lhAsit { Rtntet SufnSwuai*- (• L*s««naim«j SVSEH&A i 

Figure 30: Sensor Configuration Window 

Figure 31: Discover Sensor Window 

We double-click our Sensor that we want to configure. The dialog in figure 32 appears. 
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Srnsor Lnnfiqur <ihon - Spnsor # 1 

Qmmd S U s l s « y « 1 Channel | WEP j Filter j 

r Identity — — • ~~ 

% J MAC address. 0S:11:F5t3B;41;FC 

J l i J ^ 

Name: I Sensor 81 

% IP address settings, tote ihat if the IP address of the 
S Sensor is changed (hen the Sensor m\\ need to be 

<* Obtain an IP address autoan^icsi? using DHCP 

C Us© t i e Mowing IP address • • 

IPadciress: 

Subnet mask: 

Oeteult gateway: 192 

Close 

Figure 32: Sensor IP address Configuration 

1. Click the Address tab. 

2. Click Obtain an IP address automatically using DHCP to cause Sensors to use DHCP to get 

their IP address, gateway, and domain. 

3. Click Apply. 

4. Configure the Server address for the Sensor by clicking the Server tab 

Once a Sensor is added the Configuration window first appears with the unrecognized Sensor 

displayed, shown in figure 33. The lock icon indicates that the sensor is not yet communicating 

with the server. Clicking the check box will make the sensor to communicate with the server. 
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Figure 33: Console window with unknown sensor 

Once the sensor is configured to send data to the server, the sensor is displayed in the Console. 

Figure 34 shows our sensor in a communication state. 
•"I r*uiiiL £lit-mi<>tiy I'f | i rn l i 11 i unsnK- UiHimi i * ! *&&'.!:•&'' 

$ie £ & prelaw |$ fo 

u&3 Dashboard i Netwe*. Alette ^ 8F Envw-onrneRt ^ Locate \ p* Sfoeld ^ j 8 * ftepofte ; 

Known $-tatans-| Not t^ lonCcmlfe l j ^Gfasy^flforce Setiso^ j Senser Templates j locations J Switches.] Moffiafetf Reports \ fraetrMSSjfStemUHjf 
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Status 

Setvert l&e#iosfc j ftofet supemser | usemamai SYSDBA Uf^knowtedged Alerts: 183 [ 

Figure 34: Console window with sensor 
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Monitoring and capturing packets 

Once the sensor is configured, it is able to detect all wireless networks around it as can be seen 

in figure 35 below. Then we select the AP from which we want to capture the packets, we right 

click on it and select external capture as shown in figure 36. 

It is worth noting here that the Network chemistry RFprotect sensor is a capture device for 

Packetyzer. Packetyzer is a packet capture program that is installed with the Network 

Chemistry RFprotect software. Figure 36 shows Packetyzer has been used to capture packets in 

WiFiMiner. The RFprotect is a signature-based Intrusion protection system for 802.1 la/b/g 

wireless connections that is used to detect rogue devices, intrusion and DOS attacks. It is not 

capable of detecting new or unknown attacks unless the signature of that attack is updated in 

the RFprotect server. 
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Figure 36: Captured packets using Packetyzer 

74 

http://IEEE302.il


3.2.2. Data Processor Module: 

This module extracts feature vector from the network stream and submits the feature vector to 

the Back-Propagation (BP) model. Here the feature vector should serve for the description of 

the network stream. Wireless Network stream itself is not suitable directly as the input of the 

BP Classifier, so it is necessary to extract some features from the network stream. Feature 

selection and extraction is one of the pivotal problems in implementing the intrusion detection 

system. The core of anomaly detection in wireless network lies in selecting features that have 

enough weight to detect intrusions. For example, attackers look for open ports as a passage 

through which to enter the network and launch their attacks. It means that features like Ports 

(source and destination), MAC address (source and destination), Total number of packets and 

the size of the packet sent in a certain time interval, will play a vital role in detecting the 

attacks. The features extracted from the wireless network stream forms a feature vector which 

serves for the description of the packet. After a detailed study of network attacks we have 

selected the following feature/ attributes to form the feature vector that we hope will be able to 

detect wireless attacks. 

Feature/ Attribute 

ESSID 

SrcMAC 

destMAC 

SrcIP 

destIP 

Packet Size 

Time 

srcPort 

destPort 

. Channel 

Definition 

The Access Point (AP) Name 

Source MAC Address 

Destination MAC Address 

The source IP address 

The destination IP address 

The number of bytes 

Time stamp 

Source Port no 

Destination Port no 

Channel Number 

Table 20: Wireless Packet Measurement Attributes 

75 



We have used a very powerful tool, Commview for WiFi, in our data processor module to 

analyze and extract the features for 802.11 a/b/g/n captured wireless packets. With Commview 

for WiFi, we can easily select which features/ attributes are to be exported into the csv file. A 

sample of csv file is shown in following figure 37. 
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Figure 37: Sample preprocessed csv file output by Commview for WiFi 

We have used an ETL tool called MS SQL Server Information Services (SSIS) to load from 

.cvs file into MS SQL Server database. 

3.2.3. Detection Module: 

The function of this module is to analyze the network stream and to draw a conclusion whether 

normal or anomalous. To analyze the network stream we have used Back-Propagation (BP) 

technique, the most widely used neural network technique, which has made a good figure in 

the field of Pattern Recognition. In fact, the problem to be solved by the intrusion detection 

system is to differentiate "Bad Packets" from "Good Packets" in the network stream. In this 

sense, "Intrusion Detection" can be understood as "Pattern Recognition" to some extent (Jing et 
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al. 2004). From this point of view, we select Back-Propagation model in the design of the 

NIDS prototype based on the artificial neural networks. There are several conditions which 

should be considered in the design of the detection module by using Back-Propagation 

technique: 

• The number of hidden layers: It is rare to have more than two hidden layers in the neural 

network structure. For general applications one hidden layer is enough. That's why in the 3-

layer Neural Network, we have set one hidden layer in-between input and output layer. 

• The dimension of the input layer and the output layer. Generally speaking, the dimension of 

the input layer is the number of the features selected, and the dimension of the output layer is 

the number of outputs that can be classified by the Detection Module. We have selected 10 

attributes from the feature vector as input layer and 1 attribute as output layer. 

• The dimension of the hidden layer. In contrast with the input layer and the output layer, the 

dimension of the hidden layer is difficult to determine. There is no deterministic theory that 

can be applied on this problem. The book (Masters 2006) presented a formula which we have 

used to determine the dimension of the hidden layer. The formula is as follows: 

Hidden Layer = Vmn = VlxlO = VlO = 3.16 

Where, m = dimension of output layer and n = dimension of input layer. 

Therefore, we have taken 3 attributes in the hidden layer for our BP Neural Network. 

• The activation function. In general, the function 

/f*;=l/(l+exp(-x)) 

can be used in the Detection Module. 

• Initialization of the weight and the threshold. The weight of different neural units and the 

threshold will be set to a small random number from -1 to 1. By doing so, the convergence of 

the BP network can be ensured. 
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After taking these conditions into account carefully, we have designed a prototype Neural 

Network for our proposed system as follows in figure 38. We have drawn the following figure 

with 6 inputs to avoid a clumsy figure and also to do step by step demonstration of manual 

calculation for the training algorithm. 

Figure 38: Neural Network for Proposed System with 10 inputs, 1 outputs and 3 dimensional 1 hidden layer 

As we know, the artificial neural networks can work effectively only when it has been trained 

correctly. So, the first step of the Detection Module is training. That is to say, given a set of 

intrusion samples, according to the BP algorithm, the Detection Module will learn what is 

normal, what is abnormal, and what an intrusion is. When the training target has been reached, 

the training procedure finished, and the Detection Module has memorized the knowledge on 

how to analyze and determine whether an intrusion event happens or not. Then the trained 

Detection Module can be used to analyze the network stream captured by the data collection 

module. The training algorithm that we have used in our proposed system is as follows in 

figure 39: 
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Algorithm 2. (Training Algorithm) 

Training Algorithm 0 
Input: Processed Data - Featured Vector with 6 Attributes (V) 
Output: Anomalous Packets (A), Normal Packets (N) 
Begin 
1. Set all weights to random values ranging from -1.0 to +1.0 
2. Set an input pattern to the neurons of the net's input layer 
3. Activate each neuron of the following layer: 

Multiply the weight values of the connections leading to this 
neuron with the output values of the preceding neurons 
Add up these values 
Pass the result to an activation function, which computes the 
output value of this neuron 

Repeat this until the output layer is reached 
4. Compare the calculated output pattern to the desired target pattern and 

compute an error value 
5. Change all weight values of each weight matrix using the formula: 

- weight(old) + learning rate * output error * output(neurons i) * 
output(neurons i+1) * ( 1 - output(neurons i+1) ) 

6. Go to step 2 
7. The algorithm ends, if all output patterns match their target patterns 
End 

Figure 39: Learning Algorithm 

Now we are describing how the training process will be running with the following example: 

We will follow our neural network structure as in figure 43. We have selected six input 

variables from the feature vector as following table 21. We have converted all values of the 

feature vectors into numeric values. To simplify calculation we divide each value by its 

decimal numbers and take up to precision level 3. 

SrcMAC = 00:14:D1:3A:71:E4 = 0014D13A71E4 = 89409614308 

= 89409614308 /10000000000 = 0.89409614308 

= 0.894 

destMAC = 00:1F:3A:57:5A:49 = 001F3A575A49 = 134122789449 

= 0.134 
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ESSID = ZILLUR - 907376768582 
= 0.907 

Xj 

SrcMAC 
89409614308 

x2 
destMAC 

134122789449 

X3 

srcPort 
80 

X4 

destPort 
52580 

x5 
Packet Size 

110 

x6 

ESSID 
907376768582 

X] 

0.894 
x2 

0.134 
Xi 

0.80 
X4 

0.525 
x5 

0.11 
x6 

0.907 

Table 21: Initial Input 

Then we set all weights and biases values to random values ranging from -1.0 to +1.0. 

W/7 

0.2 
wis 
-0.3 

w19 

0.4 
W27 

0.1 
*V28 

-0.5 
W29 

0.2 
W37 

-0.3 

W38 

-0.2 
w39 
0.1 

w47 

-0.2 
w48 

0.3 
W49 

-0.1 
w57 

-0.4 
W>5S 

0.3 

w59 

-0.2 
w67 

0.5 
W68 

-0.3 
n>69 

-0.5 
W710 

0.2 
wsio 
0.4 

W910 

-0.4 

Table 22: Initial weights 

07 
-0.4 

6>, 
0.2 

09 
0.5 

O10 
0.3 

Table 23: Initial bias values 

Now we will calculate Net Inputs to Hidden Layer using the following equation: 

Ij = S, wu Ot + 6j 

where, Ij is net input for unity, 

Wjj is the weight of the connection from unit / in the previous layer to unity, 

Oj is the output of unit i from the previous layer, and 

9j is the bias of the unity. 
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h = 0.894 x 0.2+ 0.134 x 0.1 + 0.80 x (-0.3) + 0.525 x (-0.2) + 0.11 x (-0.4) + 0.907 x 0.5 
+ (-0.4) 
= 0.1788 + 0.0134 - 0.24 - 0.105 - 0.044 + 0.4535 - 0.4 = 0.6457 - 0.789 
= -0.1433 

Ig = 0.894 x (-0.3) + 0.134 x (-0.5) + 0.80 x (-0.2) + 0.525 x 0.3 + 0.11 x 0.3 + 0.907 x (-
0.3) + 0.2 
= - 0.2682 - 0.067 - 0.16 + 0.2575 + 0.033 - 0.2721 + 0.2 = - 0.7673 + 0.4905 
= - 0.2768 

I9 = 0.894 x 0.4 + 0.134 x 0.2 + 0.80 x 0.1 + 0.525 x (-0.1) + 0.11 x (-0.2) + 0.907 x (-0.5) 
+ 0.5 
= 0.3576 + 0.0268 + 0.08 - 0.0525 - 0.022 - 0.4535 + 0.5 = 0.9644 - 0.528 
= 0.4364 

Output for hidden layer, O,• = 1 / (1 + e'!J) 

0 7 = 1 / (1 + e 01433) = 1 / (1 + 1.154076) = 1 / 2.154076 = 0.464236 

0 8 = 1 / (1 + e 02768) = 1 / (1 + 1.318903) = 1 / 2.318903 = 0.431238 

0 9 = 1 / (1 + e" ° 4364) = 1 / (1 + 0.646359) =1/1.646359 = 0.6074 

Net Input for output layer, Ij = £, wy Ov + 0j 

I10 = 0.4642 x 0.2 + 0.4013 x 0.4 + 0.2689 x (- 0.4) + 0.3 
= 0.1025 + 0.1605 - 0.1076 + 0.3 = 0.563 - 0.1076 
= 0.4554 

Output for output layer, 0, = 1 / (1 + e 'lj) 

d o = 1 / (1 + e -°-4554) = 1 / (1 + 0.634194) = 1 /1.634194 = 0.6119 

The error is propagated backwards by updating the weights and biases to reflect the error of the 

network's predictions. The error is calculated by the following equation for Output Layers: 

Errj=Oj(l-Oj)(Tj-Oj) 

Where Oj is the actual output of unit j , and Tj is the true output, based on the known class level 

of the given training sample. Here the class level that we consider is 1. 
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Err,o = 0.6119x (1- 0.6119) x (1- 0.6119) = 0.6119 x 0.3881 x 0.3881 = 0.0921 

The Error for hidden layer units are calculated using following equations: 

Errj = Oj (1 - Oj) £* Errk wjk 

Err9 = 0.6074 x (1 - 0.6074) x (0. 0921 x (-0.4)) 
= 0.2689 x 0.3926 x (- 0.0458) 
= - 0.0038 

Err8 = 0.4312 x (1 - 0.4312) x (0.0921 x 0.4) 
= 0.4312x0.5688x0.0368 
= 0.0090 

Err7 = 0.4642 x (1 - 0.4642) x (0.0921 x 0.2) 
= 0.4642x0.5358x0.0184 
= 0.0045 

The weights and biases are updated to reflect propagated errors. Weights are updated by the 

following equation: 

wij = Wjj + (1) En} Oj 

Where, / is learning rate. We consider here, / = 0.9. 

Weight updating: 

W710 

W810 

W910 

W17 

W i 8 

W , 9 

W 2 7 

W 2 8 

W 2 9 

W37 

W38 

W39 

= Wy+ (1) Errj Oi 

= w^ + (1) Errj Oj 
= WiJ + ( l ) E r r j O i 

= w ^ + (1) Errj Oi 
= w ^ + (1) Errj Oj 
= Wij + ( l )Err jOi 

= Wij + ( l )Err jOi 
= Wy + (1) Errj Oi 

= wy + (1) Errj Oj 

= w,j + ( l )Err jOi 
= w i j + ( l ) E n j O i 
= Wij + ( l )Err jOi 

= 0.2 + (0.9)(0.0921)(0.4642) = 0.2384 
= 0.4 + (0.9)(0.0921)(0.4312) = 0.4357 
= (-0.4) + (0.9)(0.0921)(0.6074) = - 0.3496 

= 0.2 + (0.9)(0.0045)(0.894) = 0.2036 
= -0.3 + (0.9)(0.0090)(0.894) = - 0.2927 
= 0.4 + (0.9)(- 0.0038)(0.894) = 0.3964 

= 0.1 + (0.9X0.0045X0.134) = 0.1005 
= -0.5 + (0.9)(0.0090)(0.134) = - 0.4889 
= 0.2 + (0.9)(- 0.0038)(0.134) = 0.1995 

= -0.3 + (0.9)(0.0045)(0.80) = - 0.2967 
= -0.2 + (0.9)(0.0090)(0.80) = - 0.1935 
= 0.1 + (0.9)(- 0.0038)(0.80) = 0.0972 
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W47 = Wjj + (1) ElTj O 
W48 = Wjj + (1) ElTj O 
W49 = Wjj + (1) ElTj O 

W57 = Wij + (1) En-j O 
w58 = Wjj + (1) En-j O 
w 5 9 = Wy + (1) Errj O 

W67 = Wjj + (1) ElTj O 
w68 = Wy + (1) En-j O 
w69 = w,j + (1) En-j O 

= -0.2 + (0.9)(0.0045)(0.525) = - 0.1978 
= 0.3 + (0.9)(0.0090)(0.525) = 0.3042 
= -0.1 + (0.9)(- 0.0038)(0.525) = - 0.1017 

= -0.4 + (0.9)(0.0045)(0.11) = - 0.3995 
= 0.3 + (0.9)(0.0090)(0.11) = 0.3008 
= -0.2 + (0.9)(- 0.0038X0.11) = - 0.2003 

= 0.5 + (0.9X0.0045X0.907) = 0.5036 
= -0.3 + (0.9)(0.0090)(0.907) = - 0.2926 
- -0.5 + (0.9)(- 0.0038)(0.907) = - 0.5031 

Now, the biases are updated by the following equations: 

ej = ej + 0)Errj 

Bias updating: 

810 = 6j + (1) En-j = 0.3 + (0.9)(0.6119) = 0.8507 

e9 - 6j + (1) En-j = 0.5 + (0.9)(- 0.6074) = - 0.0466 

08 = 9j + (1) En-j = 0.2 + (0.9)(0.4312) = 0.5880 

07 = 9j + (1) En-j = - 0.4 + (0.9)(0.4642) = 0.0177 

Thus the first input pattern had been propagated through the net by updating the weights and 

bias. The same procedure is used for the next input pattern, but then with the changed weight 

values. After the backward propagation of the pattern, one learning step is complete and the 

output error can be calculated by adding up the squared output errors of each pattern. By 

performing this procedure repeatedly, this error value gets smaller and smaller. The algorithm 

is successfully finished, if the error is zero (perfect) or approximately zero. 

The equation for calculating the root mean square error for a series of n values of x is as 

follows: 
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Xrms = V (Xl2 + X2 + ... + X„2) /H 

We got the root mean square error for training data, xrms = 0.0058, which is matched very 

closely with the desired root mean square (RMS) error of 0.0. 

An anomaly score is assigned to each packet calculating the difference between the output 

error and threshold. If the anomaly score is positive then the relevant wireless packet will be 

flagged as "Anomalous" and set an attack number to it for future comparison with incoming 

packets. If the anomaly score is zero or close to zero will be flagged as "Unknown" packet and 

it will send back to training process. Finally if the anomaly score is negative then the packet is 

flagged as "Normal". Then, these anomalous data packets are stored into the intrusion database 

and an attack number is assigned to all identified anomalous packets. The system will send 

back the "Unknown" packet to reevaluate into the training process. This reevaluating process 

will dynamically enhance the intrusion database of our proposed system. 

3.2.4. Decision Module: 

When detecting an intrusion, this module will send an alert message to the security 

administrator. After scrutinizing the data stream from Detection Module whether it is normal 

or anomalous, this module will make decision on the anomalous packets whether it is a known 

attack or unknown or normal. This module will estimate that the network stream is dangerous, 

and the network stream is the same or very similar with one of the attack type by matching 

with intrusion database which the Detection Module has been trained, then it will draw a 

conclusion that the network stream being detected can be classified into one attack type with 

the label "Attack". We have used the following algorithm in our decision module, figure 39. 
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Algorithm 3: (Decision Algorithm) 

Algorithm DecisionO 
Input: Anomaly Score (X), Attack Number (N) 
Output: Normal (M), Known Attack (K), Unknown Attack (U) 

Begin 
If positive anomaly score 

Level as Anomalous and match with attack database 
and trigger alert 

Else if negative anomaly score 
Skip it as Normal 

Else if zero or close to zero 
Level as Unknown Attack 
And send back to training process to reevaluate 

End 

Figure 39: Algorithm 3 - Decision Module 

When the Detection Module estimates that the network stream is Anomalous and decision 

module can not match with any known "Attack", but the threshold of the Detection Module has 

been reached, then this module will draw the conclusion that the network stream being detected 

is "Unknown". Here the "Unknown" virtually represents a new attack type which the Detection 

Module has not been trained to identify. The "Unknown" examples then will be added to the 

Training Samples of the BP Model, and after training with the "Unknown" examples, the 

Detection Module will have the ability to identify it accurately. After such a process, the 

"Unknown" becomes some known "Attack", which implies that the ability of the BP Model 

can be enhanced dynamically. 

All of these modules together constitute the NeoDetect prototype system based on the artificial 

neural networks, and the function of each module has been introduced briefly. 
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4. Experiments and Result Analysis: 

We have developed a prototype system to implement our proposed system NeuDetect which 

includes the algorithms and techniques described in section 3. We have used the programming 

language C#, MS SQL Server database engine and SQL Server Information Services (SSIS) to 

implement this. We also have used hardware sensor to capture wireless connection records 

before they reach the access point, then these captured records are preprocessed by Commview 

for NeuDetect software. The tool Commview outputs the captured records as csv file. Then this 

preprocessed csv file send to the Detection Module to flag anomalous connection packets. 

The main objective of this experiment is to prove that our proposed system NeuDetect is 

capable of detecting more types of wireless attacks than other system at a lower cost. We 

compared our system with Snort-Wireless (Air Snort 2007), which is the only open source 

wireless IDS, WiFi Miner (Ezeife and Rahman 2008) and Sensor-Based Online Clustering 

Approach for Wireless Intrusion Detection - WIDCA (Ezeife and Ejelike 2008). Due to the 

unavailability of labeled wireless data as normal or anomaly, we crafted our own packets to 

train and test the system. 

The rest of the chapter is organized as follows: section 4.1 describes our test bed setup, section 

4.2 describes how we crafted the different types of attack packets for training and 4.3 describes 

how we tested our system and section 4.4 describes the test analysis of the results after 

comparing with other systems. 

4.1. Test Bed Setup: 

The test bed of our proposed system consists of three computers (PC-1, PC-2, and PC-3), one 

Proprietary wireless sensor (Network Chemistry), and one access point (AP). The network is 

setup as figure 40. We installed Network Chemistry sensor and Commview for WiFi in PC-1 

from where we scanned all Access Points in ranges and selected the AP for our wireless 

network and started capturing packets from our Access Point. We created a wireless network 
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with PC-2 and PC-3 where both were connected to AP. PC-2 is the attacker PC and PC-3 is the 

victim PC. 

Figure 40: Our Test Bed 

The hardware configurations of these PCs are as below: 

PC-1: Intel Pentium 4 1.87 GHz, 1.0 GB Ram, 60 GB Hard Drive 

PC-2: Intel Pentium 4, 2.0 GHz, 2.0 GB Ram, 160 GB Hard Drive 

PC-3: Intel Pentium 4, 2.2 GHz, 4.0 MB Ram, 250 GB Hard Drive 

4.2. Wireless Attacks Crafted for Training 

As we know it is hard to get wireless training sample data comprised with wireless attacks and 

normal data. Therefore, we have crafted following attacks using different available free tools 

and we captured these wireless attacks using sensors and then these captured records are 

preprocessed by Commview. Then Commview outputs the captured packets as csv file. 

Similarly we have preprocessed some normal innocent wireless packets by Commview after 

capturing with the sensor. 

• WEP Cracking Attack 
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• De-authentication Attack 

• Disassociation Attack 

• ARP Poisoning Attack 

• SYN Flood and UDP Flood Attacks 

• Man-in-the-Middle Attacks 

At first we have generated some innocentVnormal packets between PC-2 and PC-3 in figure 40. 

These packets were generated as a result of some innocent web browsing. Within 10 minutes 

time window we have captured about 20,000 packets. The following figure 41 shows that we 

captured these packets with the Network Chemistry sensor. Then we preprocessed these data 

with Commview for NeuDetect software. 
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Figure 41: Innocent wireless packets captured for training our system 

After that we collected 2100 anomalous packets (WEP Cracking attacks, De-authentication 

attacks, Disassociation attacks, ARP Poisoning attacks, SYN Flood attacks, UDP Flood attacks 

and Man-in-the-Middle attacks - about 300 packets from each type) and mixed these 2100 

anomalous packets with 20,000 innocent packets and input these total combined 22,100 dataset 
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for training into the Detection Module of our proposed system where we implement the Back-

Propagation algorithm. 

In the rest of the section we will discuss about crafting these attack packets. 

Crafting Attack Packets for Training: 

To craft attacks, we have used BackTrack network security suite (BackTrack 2007). 

BackTrack is a Linux live distribution focused on penetration testing tools as a Live CD. 

Currently BackTrack consists of more than 300 different up-to-date security tools which are 

logically structured according to the work flow of security professional. We have used this 

BackTrack tool for crafting few wireless attacks for the training data of our system and also for 

testing our system. 

WEP Cracking Attack 

At first we stared the tools Kismet to monitor wireless traffic by clicking on the start key and 

browsing to Backtrack->Wireless Tools -> Analyzers ->Kismet. We use Kismet to find the 

bssid, essid, channel number of the Access Points (AP) and also type of encryption (WEP) that 

we will be accessing. We select the AP we want to access, then we copy and paste the 

broadcast name (ESSID), MAC address (BSSID) and channel number of the selected AP into a 

text editor. Here, the Access Point is NeuDetect for our experiments. 

Then we open up a new terminal window and start the tool Airodump, 802.11 packet capture 

tool, so we can collect ARP replies from the target AP. 

We captured some packets from our Access Point (NeuDetect) and from there we spoofed a 

valid client's MAC address. Then we started BackTrack security tool and using the Aireplay 

[52] utility we sent authentication and association request to NeuDetect AP as in figure 42. The 

following command we have used: 

Aireplay-ng -1 0 -e NeuDetect -a 00:14:D1:3A: 71:E4 -h 00:0E:35:07:A7:FC ethO 
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Here, -1 means attack mode, 0 means continuously, -e is the option for SSID of target AP, -a 

denotes the target AP's MAC, -h denotes source MAC and ethO is the network card. 

Then we started sending fake ARP packets to NeuDetect AP so that we can capture the replies 

through Airodump. Once we have captured enough packets then we started Aircrack utility to 

decrypt the WEP key as figure 43. In few minutes time interval Aircrack decrypted the WEP 

key. 
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Figure 42: Fake Authentication Packets 
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Figure 43: NeuDetect AP to decrypt WEP Key 
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The sensor captured all of these attacking packets and we used Commview software to 

preprocess these crafted attack packets and it generated a csv file containing these attacks. 

De-authentication Attack: 

A host authenticates to a WEP protected AP there are six packets involved (Deckerd and 

Hindarto 2006) in the authentication. Two of these packets can be used to crack the WEP key. 

Below is a capture of a six packet authentication between the client, 00:14:6C:6C:AA:77, and 

the AP, 00:OF:66:2B:8A:CF. 

1. 

2. 

3. 
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Figure 44: Six Authentication Packets 

1. Client sends Probe Request with ESSID to the broadcast address. 

2. AP with matching ESSID responds indicating the AP's MAC address and other available 

options. 

3. Client acknowledges probe response. 
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4. AP sends encrypted challenge text to client. 

5. Client deciphers challenge text and responds with the challenge text encrypted using the 

shared key. 

6. The AP verifies that the challenge text is correct and responds indicating that authentication 

was successful. 

To craft attacks we are interested in capturing packet number four and five; the challenge text 

exchange between the AP and client. Both of these packets are encrypted using the shared 

WEP key and therefore can be used to crack the WEP key. 

We use aireplay-ng to de-authenticate a host using the —deauth option. This attack will send a 

spoofed deauthentication request as the AP to the client (Deckerd and Hindarto 2006). To 

perform this attack we used the target's MAC address, option -c below and the target AP 

BSSID, option -a below. Both of these can be gathered using Kismet. 

msmsmx-jm£KiMz^i^->^^ • • • • • • • * « • 
Network L is t iChannels 

,-*, teee • ,-. - 1 'n *"h, PacHs F l a p IP Range* 
f, H**\*<sH Detail's - - ' . - — , 

i : * - , ' - > » , : ! • • -. . ' J 

, '*v, f I- if " . *> r 

Figure 45: Kismet Network Details and Target AP BSSID 
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Figure 46: Kismet Client List 
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Figure 47: De-authentication attacks using Aireplay-ng 

The sensor captured all of these attacking packets and we used Commview software to 

preprocess these crafted attack packets and it generated a csv file containing these attacks. 

Disassociation Attack: 

Disassociation messages, however, are not as regular as application data. They must be 

injected through the data link layer to convey management information employed in 802.11 

standards. To craft disassociation attack we have used a tool called Air-jack which provides 

direct utilities for sending association and de-authentication frames. 

To craft attacks we have supplied correct arguments such as the interface, AP's MAC, victim's 

MAC, and source's MAC (same as AP's MAC). The disassociation frames have sent to the 

intended victim and cause it to disassociate with the access point. 
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After sending disassociation packets using Air-jack we monitored kismet and found 

disassociation happened as showed in figure 49. We also tried to ping the affected host and it 

was not responding as showed in figure 50. 
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Figure 48: Disassociation showed in Kismet 
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Figure 49: Destination host unreachable after pinging 
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The sensor captured all of these attacking packets and we used Commview software to 

preprocess these crafted attack packets and it generated a csv file containing these attacks. 

ARP Poisoning Attack 

To generate the attack first of all we have to search for a host on which we want to mount the 

attack. We have used NMAP to get the list of hosts which are currently up in the network. 

Once we get the IP addresses we can start crafting attack any one or all of the hosts with 

another tool named ettercap. 

The following command we have used in NMAP for searching host: 

#nmap-sP 192.168.1.* 

•h«lt - N D M 

---append-output Append t o , r a t h e r than c lobber s p e c i f i e d output f i l e s 

- - s e n d - e t h / - - s e n d - i p : Send using raw e the rne t frames or IP packets 
- - p r i v i l e g e d : Assume t h a t the user i s f u l l y p r i v i l e g e d 

., - - u n p r i v i l e g e d : Assume the user lacks raw socket p r i v i l e g e s 
-V: P r i n t v e r s i o n number 

• -h P r i n t t h i s he lp summary paqe. 
EXAMPLES, 

nmap -v -A scanme.nmap.org 
nmap -.1 -sP 192.168.0 >V16 10 .Q.0 .0 /8 

' nmap -v - iR 10000 -PN -p 88 
SEE THE ['IAN PAGE FOR'MANY MORE OPTIONS, DESCRIPTIONS, AND EXAMPLES 

nmap -sP 192.168 l . t 

' t i n g Nmap 4 . 2 0 C h t t p : / / i n s e c u r e . o r g ) a t 2 0 0 7 - 1 1 - 0 6 1 3 : 
. 1 9 2 . 1 5 8 . 1 . 1 a p p e a r s t o be u p . 

A d d r e s s : O O : 1 C : 1 0 : 9 E : 8 C : D 1 (Unknown) 
: 1 9 2 . 1 5 8 . 1 . 1 0 0 a p p e a r s t o be u p . 
: 1 9 2 . 1 6 8 . 1 . 1 0 1 a p p e a r s t o be u p . 
A d d r e s s : 0 0 : 1 3 : 0 2 : 3 B : 1 A : 8 C ( I n t e l C o r p o r a t e ) 

L 1 9 2 . 1 6 8 . 1 . 1 0 9 a p p e a r s t o be u p . 

A d d r e s s : 0 0 : 1 2 : 1 7 : 9 A - : 8 C : D 5 ( C i s c o - L i n h s y s ) 
f i n i s h e d : ' 2 5 b I P ' a d d r e s s e s ( 4 h o s t s up) s canned i n 4 8 . 4 5 0 se 

Figure 50: NMAP Output 

To craft a simple ARP Poisoning attack, on the attacking machine, first start the browser and 

then use the following command: 

#ettercap -T -Q -M arp:remote -i ethl /192.168.1.102/ // -P remote_browser 

Where, 

• -T starts ettercap in text mode. 
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• -Q will make ettercap be superQuiet (not print raw packets in the terminal 

window) 

• -M starts man in the middle mode, and 

• arp:remote is the type of poisoning, and remote is a parameter for MITM. These 

options can be combined into one switch like -TQM. 

• ethl is the network interface used in the attacking machine. 

• 192.168.1.102 is the IP address of the victim. 

The above command will log all the URLs that the victim visits on the attacker's computer. 

Also this will let a netscape-based browser (Mozilla, Firefox, Netscape etc) on the attacking 

machine silently follow the web pages that a victim machine visits. The following figure 52 

shows the screenshot of the output of the above command. 

:S#siort ; Sdit:; MeW: !;Befo;t?marks." iettirYgS: [ Help 

QBPjUpsbsil 

Figure 51: Ettercap output 
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The sensor captured all of these attacking packets and we used Commview software to 

preprocess these crafted attack packets and it generated a csv file containing these attacks. 

SYN Flood and UDP Flood Attacks 

We have used Engage Packet builder v2.2.0 to craft SYN Flood and UDP Flood attacks which 

has downloaded from www.enfiagesecurity.com. It is Powerful and scriptable Libnet-based 

packet builder for Windows platform. It is useful to build personalized packet with the aim of 

testing the security of firewall, network, etc. (TCP, IP, UDP, ICMP) and useful to send packets 

in wireless 802.11 a/b/g network. 

In SYN Flood attack, the attacker sends a lot of TCP packets, where both SYN and 

(ACKnowledgment) ACK flags in the header are set to 1 using Engage Packet Builder. The 

attacker's IP address is faked and destination IP address is the server victim's address. 

Receiving so many packets from attacker prevents victim from accepting new legitimate 

requests and may crash the victim server. To craft these attack packets we open the Engage 

Packet Builder software and specify the Network Interface card at top left corner and select the 

tab for TCP packets at top right corner. Then put some fake IP address (192.168.1.101) at the 

place of source IP address and at destination IP address we put the victim's IP address 

(192.168.1.102). At source port we put some arbitrary port number (80) and destination port is 

some vulnerable port (8080). At the flags tab at the interface we set SYN and ACK. Then we 

start the web server by clicking the button at low right corner. Then we specify the number of 

packets to be sent at Nb of Packets: 100. Then we press SEND button and it will start sending 

the TCP SYN Flood attack packets to the victim's PC. The interface for creating the TCP SYN 

Flood attack is shown in figure 52. To create UDP flood packets, we need to go to the UDP tab 

besides TCP tab and specify random destination port at each time and send UDP flood packets 

to the victim's PC. Interface for creating UDP Flood packets is shown in figure 53. 
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Figure 53: Crafting UDP Flood Attack packets 

Once these attack packets are sent to the victim's PC we can capture these attack packets from 

the PC equipped with sensor and Commview. Then we output these packets in csv format to 

further preprocess for training purpose. 
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Man-In-The-Middle Attacks 

To gather attack packets for Man-In-the-Middle type of attack, we set up a rogue AP with the 

same SSID (Service Set Identifier) as the legitimate one in a place nearer than the legitimate 

AP. To be successful with this attack we placed the rouge AP at least 5 channels away from the 

legitimate AP. Then, using the spoofed client's MAC address we sent de-authentication 

packets using Aireplay of BackTrack security tool. As a result, the targeted client is 

disconnected from the legitimate AP and is connected to the rogue AP because of the stronger 

signal. 

In our experiment the legitimate AP was NeuDetect (MAC address: 00-14-D1-3A-71-E4) 

operating at channel 3 and the victim's MAC address was 00:0E:35:D7:A7:FC, which was 

connected to the legitimate AP. We placed another router with the same SSID (NeuDetect) at 

channel 10 and placed it near victim's PC. Initially no PC was connected to the rogue AP. 

Then from another PC booted with BackTrack, we launched Aireplay and issued the following 

command as shown in figure 54: 

aireplay-ng -0 100 -a 00:14:D1:3A:71:E4 -c 00:0E:35:D7:A7:FCathO 

Here, -0 means deauthentication, 100 is the number of deauthentication packet to be sent, -a 

00:14:D1:3A:71:E4 is the legitimate AP's MAC address, -c 00:0E:35:D7:A7:FC is victim's 

MAC address and athO is the network card in use. This step is shown in Figure 54. As a result, 

the targeted host disconnect from the legitimate AP. The disconnected victim PC then rescans 

wireless channels and connects to the rogue AP. 

These de-authentication packets were captured and gathered as anomalous packets with 

Commview for NeuDetect software. 
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Figure 54: Sending Deauthentication packets to AP 

Finally we have combined all of those csv files for different attack packets and also for normal 

packets into one csv file as showed in figure 55. 
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Figure 55: Preprocessed combined attack and normal packets 
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From this combined csv file, we have selected the parameters for feature vector as specified in 

the section 3 and uploaded all data of the feature vector into a text file to run through the 

Detection module of our proposed system for training process. The training process was done 

when we got the root mean square error is equal to 0.0058, which is close to zero, after several 

retry of adjusting the values of weights, bias, learning rate as trial and adjustment basis. 

4.3. Test Results 

After doing the training with the normal and attack data packets that described in the section 

4.3, we have generated similar attack packets following the same steps to test our system 

whether it is capable to detect the attacks or not. To do the test we have crafted total about 

1400 attack packets which includes 200 for each attacks of WEP Cracking Attacks, De-

authentication Attacks, Disassociation Attacks, ARP Poisoning Attacks, SYN Flood and UDP 

Flood Attacks, and also Man-in-the-Middle Attacks. Then we run these packets into the 

Detection Module of our system and it outputs some packets as alert which have positive 

anomaly score and some of them matches with the attacks listed in the attack training database. 

Then we calculate the anomaly detection rate and false alarm rate. We tested the same attack 

dataset with SNORT Wireless, Wifi-Miner (Apriori association rule based) and WIDCA 

(Clustering Technique based) system to compare our system with these three existing system. 

Attacks 

WEP Cracking 
De-authentication 
Disassociation 
ARP Poisoning 
SYN Flood 
UDP Flood 
Man-in-the-Middle 
Total 

No. of 
Attacks 

200 
200 
200 
200 
200 
200 
200 
1400 

Snort-
Wireless 

138 
142 
139 
148 
145 
144 
136 
992 

Wifi-Miner 

174 
170 
172 
175 
169 
166 
167 

1193 

WIDCA 

182 
185 
179 
183 
175 
168 
180 

1252 

NeuDetect 

187 
195 
194 
185 
190 
182 
189 

1322 

Table 24: Attacks Detected 
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Figure 56: Attacks Detection Comparison 

Attacks 

WEP Cracking 
De-authentication 
Disassociation 
ARP Poisoning 
SYN Flood 
UDP Flood 
Man-in-the-Middle 

Snort-
Wireless 

69% 
71% 

69.5 % 
74% 

72.5 % 
72% 
68% 

Wifi-Miner 

87% 
85% 
86% 

87.5 % 
84.5 % 
83% 

83.5 % 

WIDCA 

91% 
92.5 % 
89.5 % 
91.5% 
87.5 % 
84% 
90% 

NeuDetect 

93.5 % 
97.5 % 
97% 

92.5 % 
9 5 % 
91% 

94.5 % 

Table 25: Attack-wise Detection Rate 

IDS 
Snort-Wireless 
WIDCA 
Will-Miner 
NeuDetect 

Detection Rate 
70.86 % 
89.42 % 
85.21 % 
94.42 % 

False Negative % 
29.14% 
10.57% 
14.79 % 
05.58 % 

Table 26: Detection Rate and False Negative 
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Figure 57: Detection Rate and False Negative Comparison 

In our experiment, we also tested the false positive in our system. We know the false positive 

happens when a system flags an alert but in reality it should not be an alert. To perform this 

test, we crafted some normal packets (about 5000) to launch into our system and compared the 

same to other systems as showed in table 27. 

IDS 

Snort-Wireless 
WIDCA 
Wifi-Miner 
NeuDetect 

No. of Normal 
Packets 

5000 
5000 
5000 
5000 

Packets 
Detected 

359 
127 
236 
98 

False 
Positive % 

7.18% 
2.54 % 
4.72 % 
1.96% 

Table 27: False Positive Rate 
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Figure 58: False Positive Rate Comparison 
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Unknown Attack: 

We have crafted an attack which was not used for training of our system to check whether our 

system is able to detect it or not. To craft this attack, we sent crafted forged control, 

management and data frames to the wireless network using File2air named tool. We used the 

following command to send the attack from shell console: 

File2air -n 200 -I athO -s 00:14:D1:3A: 71:E4 -d 00:0E:35:D7:A 7:FC -fpath for file 

-f: is the location of the file to be replayed into the network, it must be in binary form 

-n: is the number of packets to send 

IDS 

NeuDetect 

No. of Unknown 
Packets 

200 

Packets 
Detected 

178 

False 
Negative % 

11.0% 

Table 28: Testing Unknown Attack 
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4.4. Result Analysis: 

We see from table 24 that our system, NeuDetect, performed better than SNORT-Wireless, 

WIDCA and Wifi-Miner. In table 25 gives an overview of specific attack detection rate. From 

there we can see that NeuDetect performed better in detecting De-authentication and 

Disassociation attacks than other attacks. In case of the detection rate of UDP Flood attack, 

NeuDetect detected less than average detection rate of other of attacks but still in comparison 

to SNORT Wireless and WIDCA and Wifi-Miner, it performed better. 

In table 26 gives the comparison of an average detection rate and false negative rates where we 

can see the attack detection rate of our system is higher as well as the false negative rate is also 

reduced than those systems. 

In table 27 shows the comparison of the false positive rate. Our system also performed better in 

reducing false positive rate. From table 28, we can see that our system has the ability to detect 

the unknown attacks which was not taught to detect in the training phase. Everyday we are 

experiencing new type of attacks, it is an outstanding feature of our system that it can detect 

the unknown new intrusions. 

We used hardware sensor in our system to ensure that all packets sent to the access points are 

captured and sent to our system for analysis. Snort and most other wireless IDS depends on 

packets that passes through the wireless router. 
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5. CONCLUSION AND FUTURE WORKS 

In this thesis, we proposed and implemented a wireless intrusion detection system: NeuDetect, 

which uses Neural Network techniques to detect anomalous wireless packets by using training 

data. We have used back-propagation algorithm to train the system, then our algorithm was 

designed for Anomaly Score calculation which assigns a score to each wireless packet. Positive 

anomaly score for specific wireless packet means anomalous pattern while a negative anomaly 

score indicates a normal pattern of that wireless packets. We have also used proprietary 

Network Chemistry hardware sensors to capture real-time traffic in order to improve intrusion 

response time. 

We researched and discussed various wireless attacks possible in a wireless network. Based on 

our research on well-known wireless intrusions, we demonstrated how these attacks can be 

crafted and how it can be captured using our system. We crafted few types of attacks to use as 

training data and also for testing our system. In testing phase we have compared our system 

with three other wireless intrusion detection systems and found our system is more efficient. 

We also used Hardware Sensor to capture wireless packets from specific access points to get 

the advantage of real time traffic monitoring to improve intrusion response time. Some other 

IDS use net-flow data from routers instead of capturing from airwaves, but in our system we 

captures real-time wireless data from airwaves. 

In detection of the known intrusion, our system has a better performance with high correctly 

detection rate and a low false alarm rate. Specially, our system can detect unknown intrusions 

with an acceptable false alarm rate. Everyday we are experiencing new type of attacks, it is an 

outstanding feature of our system that it can detect the unknown new intrusions. 

There is still room for improvement in our system. Currently in our system, if the anomaly 

score does not match with the trained anomaly score database and the corresponding attack 

number then the false alarm will be triggered. In future, to reduce the false alarm rate for this 

reason we may improve our Decision Module by implementing clustering approach instead of 

just comparing with the numeric values i.e. anomaly score. We will work to develop some 

adaptive process for weight and learning rate adjustment to reduce training processing time for 
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large dataset. We will enhance the ability of the Detection Module of our system to detect the 

unknown new intrusions. We will also be working towards making our system generalized so 

that it can be used for both wired and wireless intrusion detection. In order to avoid 

unreasonable complexity in the neural network, an initial classification of the connection 

records to normal and general categories of attacks can be the first step and the records in each 

category of intrusions can then be further classified to the attack type, which will also be in our 

future enchantment list. 
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