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ABSTRACT 

Switched reluctance motors (SRMs) have been gaining increasing popularity and 

emerging as an attractive alternative to traditional electrical motors in hybrid vehicle 

applications due to their simple structure, ruggedness, ability of fault-tolerance, extremely 

high-speed operation, high power density, and low manufacturing cost. However, large 

torque ripple and acoustic noise are well-known as their major disadvantages. 

This thesis presents a novel five-phase 15/12 SRM which features higher power 

density, very low level of vibration with flexibility in controlling the torque ripple profile. 

This design is classified as an axial field SRM, hence it needs 3-dimensional finite-

element analysis model. Nonetheless, an alternative 2-dimensional model is developed 

and simulated using FEA software (MagNet) in order to analyze the proposed model. 

The findings from the simulation is scrutinized and analyzed to realize various 

design features along with performance of the model. The finding in reference to the 

proposed axial field model is then compared with existing radial field models to validate 

its performance improvement. The manufacturing issues were addressed to prove its 

feasibility and cost effectiveness in conjunction with its assembly competences. Taking 

all the aspects into account superiority of new model's efficiency is comprehended to 

justify its application in HEV application. 
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NOMENCLATURE 

Generally symbols have been defined locally. The list of principle symbols is 

iven below. 

As Electric loading 

Asp Stator pole area 

B Magnetic loading, magnetic flux density 

Bc Magnetic flux density in the core 

Bg Magnetic flux density in the air gap 

Bs Maximum magnetic flux density in the core 

D Bore diameter 

F MMF per phase 

Fc MMF drops in c-core stator 

Fg MMF drops in the air gap 

Fr MMF drops in the rotor cube 

g Air gap length 

i Instantaneous phase current 

/ Current 

Ir Rated current 

7 Saturation current 

Ku Constant relates the inductance ratio 

kd Duty cycle constant 

ke Efficiency constant 

L Winding inductance 

La Aligned inductance 



jy Aligned unsaturated inductance 

£ Unaligned unsaturated inductance 

lc Flux path length in the core and rotor cube 

Lu Unaligned inductance 

m Number of phases 

N Number of turns per phase 

Nr Rotor speed (rpm) 

Pd Output power 

Pr Number of rotor poles 

Ps Number of stator poles 

R Phase resistance 

r Radius of the centre of a rotor cube 

Rph Motor phase resistance 

T Torque 

Tav Average torque 

Tjnstmax Maximum Instantaneous torque 

Tlnstmm Minimum Instantaneous torque 

TR Torque ripple 

tr Rotor-cube line length 

Vs Voltage of the source 

Wco Coenergy 

Wa Electric energy 

Wf Stored field energy 

Wfc field energy in the coil 

Mechanical work 



a Ratio of the of inductances 

(3r Rotor pole arc 

f3s Stator pole arc 

s Step size 

A. Unsaturated inductance ratio 

ju Magnetic permeability of the core material 

//o Magnetic permeability of the free space 

9 Angular rotor position 

(Om Motor angular speed 

Tr Rotor pole pitch 

TS Stator pole pitch 

Yj/ Flux linkage 
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1 INTRODUCTION 

1.1 Overview 

We live in a world of limited resources. In a world in such, one of the most 

precious resources is the environment in itself. If we look back into the last century, 

extreme emission of fossil fuel has pushed the world environment more and more towards 

impairment. This has been of a serious concern for quite a while now. Now with the 

Fossil fuel price on the rise along with the hunger added of fossil fuel the world economy 

is also facing climactic challenges. 

Modern civilization owes its achievements to transportation system profoundly. 

Intensive growth of transportation is accompanied with rapid urbanization and 

industrialization, predominantly in developing country. At the same time as its price 

transportation is one of the highest patron of fossil fuel, consequently the largest 

contributor towards green house gas emission. In 1971, the global consumption of 

petroleum was close to 49 million barrels per day, 33 percent of which was consumed by 

transportation sector. This share increased to 48 percent of the 77 million barrels per day 

consumed in 2002. According to an estimate by the International Energy Annual, the 

global oil demand will spike up to 121 million barrels per day by 2030, 54 percent of 

which will be consumed by transportation alone. 

Most of the transportation in use today has fossil fuel drive internal combustion 

engine (ICE) in use. Hybrid electric vehicles are designed with an objective to reduce 

both environmental hazard and dependence on fossil fuel. In a hybrid electric vehicle an 

electric motor is put together with an ICE to overcome many weakness of combustion 

engine as well as utilize the strength of electric motor in a vehicle. 
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1.2 History of Hybrid Electric Vehicles 

1.2.1 Beginning 

In 1901, while employed at Lohner Coach Factory, Ferdinand Porsche designed 

the Mixte, a 4WD series-hybrid version of "System Lohner-Porsche" electric carriage 

previously appeared in 1900 Paris Salon. The Mixte broke several Austrian speed records, 

and also won the Exelberg Rally in 1901. The Mixte used a gasoline engine powering a 

generator, which in turn powered electric hub motors, with a small battery pack for 

reliability. It had a range of 50 km, a top speed of 50 km/h and a power of 5.22 kW 

during 20 minutes. 

In 1905, H. Piper filed a US patent application for a hybrid vehicle. [1] The 1915 

Dual Power, made by the Woods Motor Vehicle electric car maker, had a four-cylinder 

ICE and an electric motor. Below 15 mph (25 km/h) the electric motor alone drove the 

vehicle, drawing power from a battery pack, and above this speed the "main" engine cut 

in to take the car up to its 35 mph (55 km/h) top speed. About 600 were made up to 

1918.[2] 

In 1931 Erich Gaichen invented and drove from Altenburg to Berlin a 1/2 

horsepower electric car containing features later incorporated into hybrid cars with 

maximum speed 40 km/h. The car battery was re-charged by the motor when the car went 

downhill. Additional power to charge the battery was provided by a cylinder of 

compressed air which was re-charged by small air pumps activated by vibrations of the 

chassis and the brakes and by igniting oxyhydrogen gas. No production beyond the 

prototype was reported. 

1.2.2 Predecessors of Current Technology 

A more recent working prototype of the HEV was built by Victor Wouk. Wouk's 

work with HEVs in the 1960s and 1970s earned him the title as the "Godfather of the 

Hybrid". Wouk installed a prototype hybrid drivetrain (with a 16 kW electric motor) into 

2 



a 1972 Buick Skylark provided by GM for the 1970 Federal Clean Car Incentive 

Program. 

The regenerative braking system, the core design concept of most production 

HEVs, was developed by electrical engineer David Arthurs around 1978 using off-the 

shelf components and an Opel GT. The vehicle exhibited 75 miles per US gallon (3.1 

L/100 km; 90 mpg-imp) fuel efficiency. 

In 1989, Audi produced its first iteration of the Audi Duo (or Audi 100 Avant 

duo) experimental vehicle, a plug-in parallel hybrid based on the Audi 100 Avant quattro. 

This car had a 12.6 bhp Siemens electric motor which drove the rear wheels. A trunk-

mounted nickel-cadmium battery supplied energy to the motor that drove the rear wheels. 

The vehicle's front wheels were powered by a 2.3-litre five-cylinder engine with an output 

of 136 bhp (101 kW). The intent was to produce a vehicle which could operate on the 

engine in the country and electric mode in the city. Mode of operation could be selected 

by the driver. One drawback was that due to the extra weight of the electric drive, the 

vehicles were less efficient when running on their engines alone than standard Audi 100s 

with the same engine. 

Two years later, Audi, unveiled the second duo generation - likewise based on the 

Audi 100 Avant quattro. Once again this featured an electric motor, a 28.6 bhp (21.3 kW) 

three-phase machine, driving the rear wheels. This time, however, the rear wheels were 

additionally powered via the Torsen differential from the main engine compartment, 

which housed a 2.0-litre four-cylinder engine. 

1.2.3 Production HEVs 

Automotive hybrid technology became successful in the 1990s when the Honda 

Insight and Toyota Prius became available. These vehicles have a mechanical linkage 

from the ICE to the driven wheels, so that some power is transferred from the engine to 

the wheels without conversion to and from electric energy. 

The Prius has been in high demand since 2004. Newer designs have more 

conventional appearance and are less expensive, often appearing and performing 
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identically to their non-hybrid counterparts while delivering 40% better fuel efficiency. 

The Honda Civic Hybrid appears identical to the non-hybrid version, for instance, but 

delivers better mileage. The redesigned 2004 Toyota Prius improved passenger room, 

cargo area, and power output, while increasing energy efficiency and reducing emissions. 

The Honda Insight, while not matching the demand of the Prius, stopped being produced 

after 2006 and has a devoted base of owners. In 2004, Honda also released a hybrid 

version of the Accord but discontinued it in 2007 citing disappointing sales. 

Honda, which offers Insight, Civic and Accord models, sold 26,773 HEVs in the 

first 11 months of 2004. Toyota had sold a cumulative 306,862 HEVs between 1997 and 

November 2004, and Honda had sold a total of 81,867 HEVs between 1999 and 

November 2004. 

Audi was the first European car manufacturer to put in 1997 a hybrid vehicle into 

series production, the third generation Audi duo, then based on the A4 Avant. 

2005 saw the first hybrid electric sport utility vehicle (SUV) released, the Ford 

Escape Hybrid. Toyota and Ford entered into a licensing agreement in March 2004 

allowing Ford to use 20 patents from Toyota related to hybrid technology. Toyota 

announced calendar year 2005 hybrid electric versions of the Toyota Highlander and 

Lexus RX 400h with 4WD-i, which uses a rear electric motor to power the rear wheels 

negating the need for a differential. Toyota also plans to add hybrid drivetrains to ten new 

hybrid models by 2012 and expects to sell worldwide one million hybrids per year early 

in the coming decade. 

In 2007, Lexus released a hybrid electric version of their GS sport sedan dubbed 

the GS450h with a power output of 335bhp. The 2007 Camry Hybrid became available in 

summer 2006 in the United States and Canada. Nissan announced the release of the 

Altima hybrid in 2007. 

Commencing in 2008 General Motors began to market their 2-Mode Hybrid 

models of their GMT900 based Chevrolet Tahoe and GMC Yukon SUVs. 

The Toyota hybrids combined with Lexus reached 1 million hybrids sold in the 

US by February 2009, and worldwide sales of hybrids by both carmakers reached over 
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1.7 million vehicles by January 2009. As a top seller in the US market, the Toyota Prius 

made up more than half of the 1.2 million Prius sold worldwide by early 2009. 

The Ford Fusion Hybrid officially debuted at the Greater Los Angeles Auto Show 

in November 2008, and was launched to the U.S. market in March 2009, together with the 

second generation Honda Insight and the Mercury Milan Hybrid. 

1.2.4 Pre-production HEVs 

For the 2009 model year, the same technology will be offered in the Cadillac 

Escalade and their 1/2-ton pickup truck models, the 2009 Chevrolet Silverado and GMC 

Sierra 2-mode hybrid models. Also in 2009 GM's Saturn division is releasing the first 

front wheel drive version of the 2-mode technology with the appearance of the 2009 

Saturn Vue 2-mode hybrid model. 

Hyundai Motor Company plans to start retail sales of its first LPG-electric hybrid 

vehicle in July 2009. To be sold initially in the South Korean domestic market under the 

Avante badge, the Elantra LPI Hybrid Electric Vehicle (HEV) is the world's first hybrid 

vehicle to be powered by liquid petroleum gas (LPG) and the first to adopt advanced 

Lithium Polymer (Li-Poly) batteries. 

Comparing operating costs among different types of hybrid vehicles currently 

available in the marketplace, the Elantra LPI HEV promises to be the cheapest of all to 

run. The Elantra LPI HEV promises to be as much as 40 percent cheaper to operate than 

other competitor models in the marketplace. 

Honda will release the CR-Z in hybrid form in Feb 2010 in Japan. 

1.3 Environmental Issues of Hybrid Electric Vehicles 

1.3.1 Fuel Consumption 

Current HEVs reduce fossil fuel consumption under certain circumstances, 

compared to otherwise similar conventional vehicles, primarily by using three 

mechanisms [3]: 
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• Decrease consumption of energy during idle/low output, 

• usually by turning the ICE off 

• Recapture wasted energy (i.e. regenerative braking) 

• Reduce the size and power of the ICE, and hence inefficiencies from 

under-utilization, by using the added power from the electric motor to 

compensate for the loss in peak power output from the smaller ICE. 

Any combination of these three primary hybrid advantages may be used in 

different vehicles to realize different fuel usage, power, emissions, weight and cost 

profiles. The ICE in an HEV can be smaller, lighter, and more efficient than the one in a 

conventional vehicle, because the combustion engine can be sized for slightly above 

average power demand rather than peak power demand. The drive system in a vehicle is 

required to operate over a range of speed and power, but an ICE's highest efficiency is in 

a narrow range of operation, making conventional vehicles inefficient. On the contrary, in 

most HEV designs, the ICE operates closer to its range of highest efficiency more 

frequently. The power curve of electric motors is better suited to variable speeds and can 

provide substantially greater torque at low speeds compared with internal-combustion 

engines. The greater fuel economy of HEVs has implication for reduced petroleum 

consumption and vehicle air pollution emissions worldwide. 

1.3.2 Noise 

Reduced noise emissions resulting from substantial use of the electric motor at 

idling and low speeds, leading to roadway noise reduction, [4] in comparison to 

conventional gasoline or diesel powered engine vehicles, resulting in beneficial noise 

health effects (although road noise from tires and wind, the loudest noises at highway 

speeds from the interior of most vehicles, are not affected by the hybrid design alone). 

Reduced noise may not be beneficial for all road users, as blind people or the 

visually-impaired consider the noise of combustion engines a helpful aid while crossing 

streets and feel quiet hybrids could pose an unexpected hazard. The U.S. Congress and 

the European Commission are exploring legislation to establish a minimum level of sound 

6 



for electric and hybrid electric vehicles when operating in electric mode, so that blind 

people and other pedestrians and cyclists can hear them coming and detect from which 

direction they are approaching. Tests have shown that vehicles operating in electric mode 

can be particularly hard to hear below 20 mph (32 km/h). 

1.3.3 Pollution 

Reduced air pollution emissions, due to lower fuel consumption, lead improved 

human health with regard to respiratory problems and other illnesses. Pollution reduction 

in urban environments may be particularly significant due to elimination of idle-at-rest. 

Battery toxicity is a concern, although today's hybrids use NiMH batteries, not the 

environmentally problematic rechargeable nickel cadmium. "Nickel metal hydride 

batteries are benign. They can be fully recycled," says Ron Cogan, editor of the Green 

Car Journal. Toyota and Honda say that they will recycle dead batteries and that disposal 

will pose no toxic hazards. Toyota puts a phone number on each battery, and they pay a 

$200 "bounty" for each battery to help ensure that it will be properly recycled. 

Hybrid Vehicle emissions today are getting close to or even lower than the 

recommended level set by the EPA (Environmental Protection Agency). The 

recommended levels they suggest for a typical passenger vehicle should be equated to 5.5 

metric tons of carbon dioxide. The three most popular hybrid vehicles, Honda Civic, 

Honda Insight and Toyota Prius, set the standards even higher by producing 4.1, 3.5, and 

3.5 tons showing a major improvement in carbon dioxide emissions. 
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1.4 Electric Motors 
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Figure 1.1. Torque speed characteristics of (IMs), (PMSMs) and (SRMs). 

Performance of an HEV relies on the design and control of its electric propulsion 

system that consists of a traction motor, its power electronic drive, motor controller and 

an energy storage element such as battery. HEV propulsion requires high instant power 

and power density, wide speed ranges in constant torque and constant power operation, 

high efficiency and reliability. Selection of a suitable electric motor to fulfill these 

requirements continues to pose a challenge [6]. Several motors have been analyzed for 

traction purposes [7]-[13] amongst which direct current motor (DCMs), induction motors 

(IMs), permanent magnet synchronous motors (PMSMs) and switched reluctance motors 

(SRMs) are considered the most fitting candidates. 
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1.4.1 DC Motors (DCs) 

Figure 1.2. DC motor. 

Torque-speed characteristics of DC motor in addition to simpler speed control is 

proved to be gratifying in electric propulsion when it comes to the traction requirement. 

On the down side DC motor drives have a bulky construction, low efficiency, low 

reliability, and higher need of maintenance, mainly due to the presence of the mechanical 

commutators, even though with some progress with slippery contacts. Moreover, in 

traction applications the advancement of rugged solid-state power semiconductors made it 

gradually more realistic to introduce AC induction and synchronous motor drives. 

However, with consideration to the cost of the inverter, ac drives are used generally just 

for higher power. At low power ratings, the dc motor is still an attractive choice. 

Improvement of existing vehicle systems without changing the mechanical part can be 

achieved by the new DC chopper power electronics. On this context it worth mentioning 

a French automaker PSA Peugeot Citroen, who introduced the HEV version of the well-

known Berlingo, which is called Dynavolt, with a dc motor as electric propulsion [4]. 
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1.4.2 Induction Motors(IMs) 

Figure 1.3. Induction motor(IM). 

Dependability, low cost and wide speed ranges at constant power has made 

induction motors a appropriate choice in context to HEVs. One major drawback is lower 

efficiency of induction motor in traction application for which several optimal flux 

control and energy optimization techniques are revolutionizing [14] - [18]. Modifications 

at the design level and fault tolerant, high performance control techniques are has made 

induction machine a more appropriate choice for induction motor [19] - [26]. 

Squirrel cage induction motors are most preferable choice for the electric 

propulsion of HEVs for their reliability, ruggedness, low maintenance, low cost, and 

ability to operate in hostile environments. 

Primitively, a number of shortcomings of induction motor drive which 

undermined its use in HEVs were mainly high loss, low efficiency, low power factor, and 

low inverter-usage factor, which is more serious for the high speed, large power motor. 

One most critical problem was posed by its presence of breakdown torque limits when in 

extended constant-power operation where at critical speed the breakdown torque is 

reached. 

Fortunately, these drawbacks are taken into consideration and being surmounted 

by more refined design along with the use of modern power electronics. [18]—[20]. The 

use of a multiphase pole-changing IM drive, especially for traction application, has been 

proven effective [26], [27]. 
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1.4.3 Permanent Magnet Synchronous Motors (PMSMs) 

Figure 1.4. Permanent magnet synchronous motor(PMSM). 

Permanent magnet synchronous motor is an admirable choice in the case of HEV 

propulsion system due to their higher efficiency, higher power density and lower weight. 

Inventive design and control technology are presently being investigated to overcome its 

weakness of field weakening capability to achieve optimal speed range in constant power 

region. Progress of robust, control strategies to achieve power output and torque response 

desired in traction application is also under persuasion [33] - [37]. 

Buried-magnet mounted permanent magnet motors are acknowledged for their 

ruggedness with higher air-gap flux density while the surface-mounted permanent magnet 

ones have an advantage of having less number of permanent magnets. An additional 

configuration is the so-called PM hybrid motor, where the air-gap magnetic field is 

obtained through the combination of PM and field winding. In the broader term, PM 

hybrid motor may also include the motor whose configuration utilize the combination of 

PM motor and reluctance motor. PM hybrid motors offer a wider speed range and a 

higher overall efficiency but with a more complex construction [5]. 

Finally, the PM brushless motor is particularly privileged and suited for the wheel 

direct-drive motor applications [33]. 
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1.4.4 Switched Reluctance Motors (SRMs) 

Figure 1.5. Switched reluctance motor. 

Due their simple and rugged construction, high speed operation and extended 

constant power range, SRMs are gaining interest as a potential alternative in HEV traction 

[38] - [40]. However torque ripple and acoustic noise are major concerns in SRM drive 

performance. Research is currently focused towards analysis, design improvement and 

development of excitation schemes and control strategies to reduce these effects [41] -

[45]. With the advancement in power electronics technology, new converter and motor 

drive topologies are also being introduced for improved performance and reduced losses 

for these motors [46] - [53]. 

SRMs are subjected to a great deal of curiosity and appreciation to have an 

impending prospect for HEV applications. They have several advantages which makes 

them this attractive; such as: 

• simple and rugged construction 

• fault-tolerant operation 

• simple control 

• outstanding torque-speed characteristics 

On addition, extremely long constant-power range is one of the strengths. 

Although there are several disadvantages; such as: 
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• Acoustic noise generation 

• Torque ripple 

• Special converter topology 

• Excessive bus current ripple 

• Electromagnetic-interference (EMI) noise generation. 

Both the advantages and the disadvantages are significant for HEV applications. 

Acceptable solutions to the above disadvantages are needed to get a viable SRM-based 

HEV [33], [34]. Nonetheless, SRM can actually envisage potential solution for light and 

heavy HEV applications [35], [36]. 

1.5 Research Objective 

The objective of this research is to overcome the major disadvantages of SRM in 

application of HEVs; with that purpose in mind a new design topology of SRM is 

proposed which is capable of delivering an SRM for the purpose of HEV 

application with extended driving range as well as wider speed range. 

To achieve its purpose the new design is capable of delivering: 

• Reducing torque ripple as well as acoustic noise using smaller flux paths 

by using axial flux path instead of radial flux path through the rotor. 

• Enriching motor efficiency by means of having lower core losses in both 

stator and rotor. 

• Increasing motor life as a consequence of have axial flux path. 

• Exceptional design with C-core windings perturbed out of the stator in 

such a way so that significant improvement is accomplished in heat 

dissipation technique. 

• Innovative design with significantly increased power density which is vital 

in application to HEVs. 
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• Design topology enabling more efficiency in manufacturing and 

maintenance as a result, lower cost manufacturing with low maintenance 

due to flexible and unique design of perturbed C-core model. 

For the purpose the machine model is designed and consequently analyzed using 

FEA simulation software (MagNet). 

Thesis Outline 

This thesis is organized as follows: 

Chapter 2: In this chapter, the background of switched reluctance machine is 

being scrutinized. To furnish a clear understanding, classification and 

basic design topology of SRM is looked into. To have a better 

perceptive the motor energy conversion and torque production 

fundamentals are conferred. Depicting motor operation and 

analyzing machine characteristics the machine mathematical model 

is also discussed in this chapter. Different machine drive topologies 

in machine control applications are also being scrutinized. 

Chapter 3: This chapter is all about the design of proposed machine model. It 

describes different key features of the new design and details about 

specific design specifications 

Chapter 4: In this chapter, the step by step design procedures of the new 

machine model are presented. The machine parameters are 

optimized. In order to predict the machine power rating, the output 

power equation is derived according to its special geometry. 

Chapter 5: The designed model analyzed using FEA software (MagNet). To 

achieve this, the 3-D model of the machine is perceived in 2-D. The 

FEA results are used to represent the new machine performance. To 

validate these results, the model is compared against a standard 

machine performance. 
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Chapter 6: In this chapter, the manufacturing details and assembly issues of the 

proposed model is being looked into. In regards to this, different 

manufacturing challenges and tactical details are being examined 

along with the assembly steps. 

Chapter 7: Findings of this research are summarized in this section. 
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2 FUNDAMENTALS OF SWITCHED RELUCTANCE MACHINES 

2.1 Definition 

Switched reluctance motor is a type of synchronous electric motor except of 

having salient poles both on the rotor and the stator along with concentrated set of coils 

each of which is wound on one pole and the exciting current commutation from one phase 

to the other is done electronically. 

Torque is generated through the phenomenon of reluctance force in which the 

moveable part tends to move towards the position where the inductance of the excited 

winding is maximized; in other words where the reluctance of the excited phase is 

minimized. In a switched reluctant motor, motion may be rotary or linear. From structural 

stand point, rotor may be interior (as in Figure 2.1) or exterior. Generally the moveable 

part is a simple component made of soft magnetic iron, shaped in such a way as to 

maximize the variation of inductance with position. The geometrical simplicity is one of 

the main attractive features: since no windings or permanent magnets are used, the 

manufacturing cost appears to be lower than for other types of motor, while the reliability 

and robustness appear to be improved [54]. 

Figure 2.1. Switched reluctance motor. 
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2.2 History of the Switched Reluctance Motor 

Figure 2.2. Davidson's electric motor. 

The earliest recorded switched reluctance motor was the one built by Davison in 

Scotland in 1838 and used to propel a locomotive on the Glasgow-Edinburgh railway 

near Falkirk. The stepper motor that includes some of the features of the modern switched 

reluctance motor was invented and patented in the 1920's in Aberdeen by C.L. Walker. In 

1969, S.A. Nasar introduced the basic concepts of the modern day switched reluctance 

machine [55]. The period of the late 70s was a time of development of concepts of the 

switched reluctance motor that was helped along with the development of fast switching 

devices culminating in the work by [56] and [57]. Since then there have been massive 

developments in the both the design and control of switched reluctance motors. [58]. 

2.3 SRM Configurations 

Switched reluctance motors are primarily classified into two main categories; 

rotary switched reluctance motors (SRM) and Linear switched reluctance motors (LSRM) 
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Figure 2.3. Classification of switched reluctance motor. 

and that is done on the basis of the nature of the motion. The rotary SRMs are further 

differentiated by the orientation of the magnetic field path with respect to the axis of their 

shafts. If the magnetic field path is perpendicular to the shaft, which may also be seen as 

along the radius of the cylindrical stator and rotor, the SRM is classified as radial field. 

When the flux path is along the axial direction, the machine is called an axial field SRM. 

Radial field SRMs are most commonly used. They can be divided into shorter and 

longer flux paths based on how a phase coil is placed. The conventional one is the long 

flux path SRMs, in which the phase coil is placed in the diametrically opposite slots. 

Short flux path SRMs have the advantage of lower core losses due to the fact that the flux 

reversals do not occur in stator back iron. They are ideal for applications where the total 

length may be constrained, such as in a ceiling fan or in a propulsion application. The 
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disadvantage of this configuration is that the stator laminations have to be folded one on 

top of the other, unlike the simple stacking of laminations in the radial field configuration. 

The variety of combinations of number of phases with stator and rotor number and 

shapes of poles led to a wide range of possible designs of the SRM. There are various 

configurations of SRM designs which were proposed to improve the overall performance 

of the machine, e.g. a c-core stator was proposed in [59] as shown in Figure 2.5 to 

increase torque capability and efficiency and also to provide a higher flexibility in 

winding design. 

(a) (b) 

Figure 2.4. Switched reluctance motor (a) 6/4 pole and (b) 8/6 pole. 

Figure 2.5.3-D view of dual rotor configuration C-core switched reluctance motor. 
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2.4 Operation of the Switched Reluctance Motor 

The reluctance motor is a type of synchronous machine. It has wound field coils of 

a DC motor for its stator windings and has no coils or magnets on its rotor. Fig. 2.1 shows 

its typical structure. It can be seen that both the stator and rotor have salient poles; hence, 

the machine is a doubly salient machine. 

The rotor is aligned whenever the diametrically opposite stator poles are excited. 

In a magnetic circuit, the rotating part prefers to come to the minimum reluctance position 

at the instance of excitation. While two rotor poles are aligned to the two stator poles, 

another set of rotor poles is out of alignment with respect to a different set of stator poles. 

Then, this set of stator poles is excited to bring the rotor poles into alignment. This 

elementary operation can be explained by Fig.2.6 [60]. In the figure, consider that the 

rotor poles rl and r l ' and stator poles c and c' are aligned. Apply a current to phase a with 

the current direction as shown in Fig.2.6.a. A flux is established through stator poles a 

and a' and rotor poles r2 and r2' which tends to pull the rotor poles r2 and r2' toward the 

stator poles a and a', respectively. When they are aligned, the stator current of phase a is 

turned off and the corresponding situation is shown in Fig.2.6.b. Now the stator winding b 

is excited, pulling rl and r l ' toward b and b', respectively, in a clockwise direction. 

Likewise, energizing phase c winding results in the alignment of r2 and r2' with c and c', 

respectively. Accordingly, by switching the stator currents in such a sequence, the rotor is 

rotated. Similarly, the switching of current in the sequence of acb will result in the 

reversal of rotor rotation. Since the movement of the rotor, hence the production of torque 

and power, involves a switching of currents into stator windings when there is a variation 

of reluctance, this variable speed motor is referred to as a switched reluctance motor 

(SRM). 
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(a) (b) 

Figure 2.6. Operation of SRM (a) phase c aligned and (b) phase a aligned. 

2.5 Mathematical Model for SRM 

During motor operation, each phase is excited when its inductance is increasing 

and unexcited when its inductance is decreasing Neglecting the mutual inductance, an 

equivalent circuit of the SRM could be derived from the voltage equation for one phase 

that is giving as follows 

V = Rphi + 
rfv|/(9,Q 

dt 
(2.1) 

It is basically the instant voltage across the terminals of a single phase of a SRM 

winding. This voltage is equal to the sum of the resistive voltage drop and the rate of the 

flux linkages, where, V is the terminal voltage, / is the phase current, Rph is the motor 

phase resistance, and v|/ is the flux linkage of the winding, which is function of the rotor 

position, and the motor current i, 

y/ = L(0,i)-i ^2.2) 

where L is the winding inductance which is a function of the rotor position and 

excitation current. 

By substituting (2.2) into (2.1) we get: 

21 



Figure 2.7. Equivalent circuit diagram of SRM. 

di . dO dL(0, i) 
V = RJ + L(0,i) — + i — 

dt dt dO 

V = Rphi + L(0,i)- + 
di dL(0, i) 

dt dO 
•com-i 

(2.3) 

(2.4) 

In equation (2.4), the three terms on the right hand side represent the resistive 

voltage drop, the inductive voltage drop, and the induced emf, respectively. And hence 

the mathematical model is represented by the equivalent circuit shown in Fig.(2.7) [60] 

2.6 Energy Conversion of the Switched Reluctance Motor 

Electromechanical energy conversion analysis for SRM is necessary to explain the 

torque production physics (mechanism). 

Multiplying both sides of the voltage equation (2.1) by i, gives an expression for 

the instantaneous power for SRM, [58] 

Vi = Rpf+i^^ (2.5) 

It can be seen from (2.5) that the power given to an SRM has two forms. The first 

term on the right hand side is the resistive load while the second term can be further 

expanded as follows; it can be explained from the energy conversion definition for SRM 

that is illustrated in the figures (2.8-2.13). 
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Figure 2.8. Electric energy division of SRM. 

The electrical energy supplied from the voltage source at any moment is the sum of the 

coenergy and the stored field energy at this moment, as shown in fig (2.8) 

The general expression for the torque produced is defined as 

~dW„ 

80 
(2.6) 

where Wco is the coenergy, 6 is the angular rotor position. At any position the coenergy is 

the area under the magnetization curve so it can be defined as follows 

wco=\ydi (2.7) 

where y/ is the flux linkage at any rotor position as a function of the current. 

From (2.6) and (2.7), we can graphically demonstrate the instantaneous torque as 

the work AWm divided by A9 as illustrated in fig (2.9). 

23 



0 I 

Figure 2.9. Work production for infinitesimal displacement. 

If we assume the current to be constant while the rotor is moving from A to B, the 

incremental mechanical work done is then equal to the change of coenergy, which is 

actually the complement of the stored field energy. This is explained as during this 

displacement from A to B, the energy exchange with the supply is equal to the area 

enclosed by ABCD. The change in stored field energy is: 

AWf = OBC-OAD (2.8) 

and the mechanical work done is: 

AWm =rAG 

= AWe-AWf 

= ABCD - (OBC - OAD) 

= (ABCD + OAD) - OBC 

= OAB 

(2.9) 

From this analysis we realize that the energy supplied from the electric source is 

partially converted to mechanical work while the rest is stored in the magnetic field and at 

the end of the stroke is returned to the electric source [58]. 

From (2.6), (2.7) and if the phase inductance varies linearly with the rotor position 

for a given current, the torque can then be written as: 

•2 

T 
il dL(6,i) 

d6 
(2.11) 
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2.7 Average Torque 

To derive the average torque we will study the torque production mechanism, 

considering the energy conversion theory over a complete stroke from unaligned position 

of the rotor to fully aligned position. If the motor speed is constant and the rotor is at the 

unaligned position, the flux-linkage increases according to the equation: 

¥=\(VS- Ri)dt = — \(V,- Ri)d6 (2.12) 

where Vs, the voltage source is constant and the winding resistance value is negligible, 

therefore the flux linkage increases linearly with rotor position. The current initially rises 

linearly before the rotor enters the overlapping region. But as the poles overlap, the 

inductance increases and a back-emf builds up which in turn reduces the rise of the 

current. Fig. 2.11 demonstrates this period of torque production. During this period the 

two switches (transistor Ql and Q2 in Fig. 2.14) are conducting. Till this point the electric 

energy supplied by the voltage source was split into approximately two halves, one was 

converted to mechanical work depicted in Fig. 2.11 by Wmt. and the second half is still 

stored as field energy in the coil (referred to as Wfc). At point C, the two switches turn off 

and the phase is commutated. The energy that was stored in the field forces the current to 

flow in the same direction within the coil through the two diodes (Dl, D2), therefore the 

two diodes are forward-biased and hence the voltage applied across the coil terminals is 

reversed. This is called as the de-fluxing period. 

Due to the current that continued to follow after point C, a mechanical work is 

generated during this de-fluxing period; it is depicted as Wmd in Fig. 2.12. 

As a sum to the complete stroke, Fig. 2.13 shows the whole mechanical work done 

(W) and the energy returned to the power source (R). 

The average torque can now be derived from the number of energy conversion 

loops (strokes) per revolution and it can be written as follows 

T=
TOJA.W ( 2 1 3 ) 
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Figure 2.10. Torque production during transistor conduction period. 
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Figure 2.11. Torque production during diode conduction period. 
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Figure 2.12. Torque production during energy conversion loop. 



2.8 Typical Bridge Converter for SRM Drives 

Whether it was positive torque (motoring) or negative (regenerative), torque 

generation in SRMs is independent of current direction, only the phase inductance rate of 

change that determine which mode of operation it is. Therefore simple drive is sufficient for 

their operation. The most common SRM converter topology is the one shown in Fig. 2.14. It 

is for only one phase can be multiplied to match the number of phases required. Note that this 

asymmetric bridge converter requires 2 power switches and 2 diodes, resembling the 

conventional ac motor drives. The asymmetric bridge converter offers ease of control, fault 

tolerance capability and efficiency. To energize phase winding, both transistors Ql and Q2 

are on and the current increases through both switches. If one transistor is off while the other 

is still on, the winding voltage will be zero. Phase current then slowly decreases by 

freewheeling through one transistor and one diode (that is called soft switching). When both 

transistors are off, the phase winding will experience -Vs voltage. Phase current then quickly 

decreases by freewheeling through the two diodes. The main advantages of this converter are 

the independent control of each phase and the relatively low voltage rating of the inverter 

components. The major drawbacks are the total number of switches and a relatively low 

demagnetizing voltage at high speeds [61]. 
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D1 

Q2 j | D2 
. 

Figure 2.13. Single phase SRM drive. 
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3 PROPOSED MOTOR 

3.1 Proposed Motor Concept and Description 

The conceptual diagram for the proposed motor is shown in Fig. 3.2. The stator is 

composed of 15 c-core, each of which has individually wound coil. The rotor which has a 

disc shape could be made of any low magnetic permeability material. Through the rotor 

disc, 12 square holes are created to be filled by 12 cubes of high magnetic permeability 

material such as iron. The torque production in this design relies on the tendency of any 

of these cubes (which can be considered as the rotor's poles) to align with the two poles 

of an energized c-core, providing the minimum reluctance path to the magnetic circuit of 

one c-core. The motor has 5 phases and 3 repetitions as shown in Fig. 3.1, where the 15 

cores on the stator are divided into 3 sets displaced by 120 mechanical degrees for better 

forces distribution on the structure of the motor. 

Figure 3.1. Top view of the proposed SRM model with phase distribution. 

28 



(a) 

(b) 

Figure 3.2. Proposed switched reluctance motor, (a) whole motor, (b) rotor. 



3.2 Torque Ripple Reduction 

Toque ripple is defined as 

T -T 

*Ave 

According to [62], the majority of torque ripple occurs in the phase overlap region 

where the torque producing responsibility is commutated from one energized phase to 

another. The overlap region is greatly influenced by the step size that is defined as 

follows 

* = - ^ - (3-2) 
m-Nr 

From (3.2) it can be noted that both the number of phases and the number of poles 

are required to be maximized for the purpose of reducing the torque ripple. However, to 

adopt high number of phases or poles the diameter of the motor has to be increased which 

in turn increases the flux path length and hence the losses increase, this is for the case of 

conventional radial SRM. 

In the proposed design, the flux path is independent of the rotor diameter. 

Therefore, the latter can be increased to allow more space for higher number of poles 

without affecting the magnetic loading. As a result of having higher number of poles, the 

step size is reduced which in turn results in minimizing the torque ripple. 

3.3 Vibration and Acoustic Noise Minimization 

According to literatures [63], [64], the acoustic noise in reluctance motors is 

mainly generated by the electromagnetic radial force produced by excitation as seen in 

Fig. 3.3 By peering at the proposed design in Fig. 3.4, it can be seen that the reluctance 

force developed at the rotor's pole has only tangential components with no radial 

component produced.; therefore the vibration and the acoustic noise in this design are 

brought to a low level. 
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Figure 3.3. Reluctance force components of radial field motor. 

Figure 3.4. Reluctance force component of proposed motor. 
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3.4 Key Features of the New Design 

This design has additional features as compared with typical SRMs, they are 

summarized as follows: 

1. Higher torque and power density: 

T = ̂ kekdkuBAsD
2LNr (3.3) 

where, 

ke: the efficiency constant. 

kd : the duty cycle constant. 

ku : constant relates the inductance ratio (Ku = 1 - LulL
s
a) 

B, As: are the magnetic and electric loading respectively, 

D : the bore diameter, 

L : the length of motor, 

Nr: the rotor speed (rpm). 

From (3.3) we see that for a given magnetic and electric loading, the 

torque is proportional to the square of the diameter. The proposed design 

has the ability to increase the torque by increasing the diameter of the 

rotor, without increasing the flux path Length. 

2. Larger space available for the coils gives the designer more flexibility in 

determining the number of turns so the resistance and copper losses are 

reduced unlike the conventional SRMs that are limited by the slot space. 

This is illustrated in the specific electric loading formula [60]: 

A , - 2 - ^ (3.4, 

where, N is the number of turns per phase, lis the current 
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3. Lower core losses than that in conventional SRM due to the fact that flux 

reversals do not occur in the stator back iron in addition to having short 

flux paths. 

4. All c-cores are electrically and magnetically isolated from each other so 

that they can be wound individually without complex winding equipment 

and by automated process. 

5. The inertia of the rotor is small since it can be made of a material that has 

much lesser mass density than that of the steel which is used in 

conventional SRM's rotor. In addition, this inertia could be made smaller 

by creating some openings in the rotor body keeping in mind not to exceed 

its solidarity limits. 

6. Due to its unique pancake shape, this design can be augmented for higher 

power rating. 

7. This design provides a maximized thermal dissipation due to the 

following: 

• Thin structure of the motor has a better thermal dissipation factor 

• The heat generation source in motors is usually the coils. In this 

design, they are located on the outer circumference which 

facilitates a faster and more efficient heat transfer to the outer 

ambient 

• This special structure also enables it to adopt advanced cooling 

systems such as water jacket around the motor case. 
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4 MOTOR DESIGN PROCEDURES 

4.1 Geometry Design 

The objective of the design is to provide a feasible solution to the well-known 

drawbacks of SRMs namely the acoustic noise and torque ripple. A considerable work 

done in the analysis of the acoustic noise suggests that the radial forces account for most 

of it as mentioned earlier in this thesis. Therefore to meet this constraint, we designed a 

motor with axial flux so that the magnetic forces are only in the tangential plane to the 

rotor circumference, thus reducing the radial forces to a very low level. 

And regarding the torque ripple, a possible solution according to [58] is to 

consider higher number of phases so that the number of strokes per revolution increases; 

as a result the torque dip problem could be alleviated. This solution is not feasible in case 

of conventional SRJVI because increasing the number of phases requires larger diameter 

resulting in a greater flux-path length which in turn raises the losses and reduces 

efficiency. The solution for this was addressed in this design by adopting a shorter flux-

path as shown in Fig. 4.1. 

The subsequent step of the design procedure was with the hand calculation of 

several geometries with varying pole numbers and pole dimensions keeping in mind that 

several requirements need to be fulfilled such as; minimizing the step size (s) also known 

as stroke in some literature, the self starting capability, and the optimum pole arcs. 

In this design a small step size of 6 degree was achieved, it was calculated as 

follows: 

\ps -p\ 
s = P—zp-x?>60 Degree (4.1) 

Ps x Fr 

where, Ps, Pr are the number of stator poles and rotor poles respectively [65]. 

To achieve the self stating requirement, the stator arc (ps) should be greater than 

the step size (s). The optimum pole arcs are a compromise between various conflicting 
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requirements. On the one hand they should be made as large as possible to maximize the 

aligned inductance and the maximum flux linkage. However, if they are too wide there is 

not enough clearance between the rotor and stator pole-sides in the unaligned position. 

This restriction can be represented by: 

f^-P,)Ps (4-2) 

The optimum pole arcs are somewhere between these extremes. Generally, for 

very high efficiency designs, the slot area needs to be maximized and this leads to a 

narrower pole arc [58]. However, in the proposed design this problem does not exist as 

there is enough space for the windings around the stator cores owing to its unique 

topology as can be seen from the top view of the motor in Fig. 4.2. Furthermore we can 

increase this space by extending the c-core length in the radial direction (ds) adding very 

negligible magnetic loading to the design. This was actually the case in this design 

process while trying to achieve the electric and magnetic load balancing. An adequate 

choice for this design was to have both stator and rotor poles' arcs equal. Fig. 4.3 shows 

the inductance profile for all phases. It can be noted that the overlap region was increased 

to offer stronger self-starting capability, large output torque, and little torque ripple. The 

main parameters and dimensions are presented in table 4.1, and illustrated in Fig. 4.2, and 

Fig. 4.4. 

I f - i <l> 

Figure 4.1. Short magnetic flux-path. 



Figure 4.2. Geometry parameters of the proposed SRM. 
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Figure 4.3. Five phases inductance profile. 



Figure 4.4. C-core dimensions. 

Table 4.1. Motor Parameters. 

Parameters 

The number of phases 

The stator-rotor configuration 

The rotor pole pitch Tr 

The stator pole pitch ts 

The rotor pole arc /3r 

The stator pole arc fis 

The outer diameter of the rotor D 

The radius of the centre of a rotor cube f 

The air gap length g 

The core height hc 

The core width Wc 

The core thickness tc 

The rotor thickness tr 

The stator pole depth ds 

The coil length lc 

Number of turns N 

Values 

5 

15/12 

30° 

24° 

9.6° 

9.6° 

320 mm 

144 mm 

0.3 mm 

93 mm 

72 mm 

24 mm 

24 mm 

30 mm 

45 mm 

40 
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4.1.1 Material Selection and Orientation 

Various materials were studied for the optimization of the motor performance in 

regard to higher output torque and less losses. The best two options were; M: 15-29 and 

M-19. Both are non-oriented silicon steel have similar lamination thickness of 0.36 mm. 

The laminations are oriented along the axial plane to suppress eddy current as shown in 

Fig. 4.4. The B-H characteristics and the loss curves for both materials are presented in 

Figures 4.5, 4.6, 4.7, and 4.8, for comparison purpose. 

Figure 4.5. B-H characteristics of M-15 29. 
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Figure 4.6. Loss-B-Peak characteristics of M-15 29. 
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M: 15-29 shows slightly better characteristics in term of less material loss and 

higher saturation ratio, therefore it was superior to M-19. 

Figure 4.7. B-H characteristics of M -19. 

Figure 4.8. Loss-B-Peak characteristics of M-19. 
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4.2 Analytical Design 

4.2.1 Output Power Derivative 

Like in AC machines, SRM design starts with deriving the output power equation 

which is a function of the specific electric loading, magnetic loading, motor speed, and 

the dimensions of the machine. 

The voltage equation for one phase is given by: 

V = R-I +^tlA (4.3) 
dt 

The current here is assumed to be flat-toped at certain value during the phase 

conduction period. The phase resistor value is very small so it can be neglected. And the 

ratio between the aligned and unaligned inductance is known or it can be calculated 

through an iterative procedure as in [66]. Considering these assumptions, (4.3) can be 

developed to the following: 

V = Ir^- (4.4) 
dt 

V-t = Ir[La-Lu] (4.5) 

where, La is the aligned inductance, Lu is the unaligned inductance. 

The time, angular speed of the rotor, and stator arc are related with each other by: 

t = A . (4.6) 

The flux-linkage y/ at the aligned position is given by 

¥ = La-Ir=B-Asp-N (4.7) 

where, 

A , the stator pole area 

N, number of turns per phase 
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B , is the average flux density. Its value can be obtained from the B-H characteristics of 

the material used. 

The cross section area for the stator pole A , is related to the rotor components 

dimensions as follows: 

AP = Ps • r- tr (4.8) 

where, 

Bs, the pole arc of the stator. 

r, the radius for the centre point of a rotor cube (rotor pole). 

tr, the rotor-cube line length. 

The ratio of the of inductances is termed as: 

L 
a = -2- (4.9) 

u 

Substituting equation (4.6), (4.7), (4.8), and (4.9) in (4.5) gives the voltage 

equation for the proposed motor: 

V = (D-B-r-t-N-Ml 
V a) 

(4.10) 

and the phase current can be derived from the specific electric load, equation (3.4) 

Finally, the output power can be found from: 

Pd=ke-kd-V-m-I (4.11) 

4.2.2 Magnetic Circuit Analysis 

The most significant inductances in the theory of SRM are the unsaturated aligned 

inductance £'a (this is the slope of the aligned magnetization curve in the linear region) 

and the unsaturated unaligned inductance Lu. Let au be the unsaturated inductance ratio 

Lu
a/Lu. Then, since the magnetic circuit has a uniform cross-section, the magnetomotive 
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force required to produce a maximum flux density of Bs in the stator core is auNis where, 

is is the current at which the saturation begins [58]. It is the minimum operating current 

required since it is necessary for SRM to operate within the saturation region to maximize 

the energy transfer and thus increasing the efficiency. 

In the proposed design, the distinction of having completely separated magnetic 

circuits represented by the c-cores makes it simpler from the designing point of view than 

the conventional SRM. Considering one c-core along with one rotor cube that completes 

the magnetic circuit as shown in Fig. 4.1, we can write the required magnetomotive force 

(MMF) to produce the flux density in the air gap as well as the stator core and the rotor 

cube, as follows 

F = Fg+Fc+Fr (4.12) 

where, F is the total MMF per phase applied and Fg, Fc, and Fr are the MMF drops in the 

air gap, c-core stator, and rotor cube respectively. In this design, the cross-section and 

material of the stator and the rotor are identical. Therefore Fc and Fr can be together 

considered as a part of the circuit, and equation (4.12) can then rewritten as 

B B 
F = Ni = ^-g + ^lc (4.13) 

where. 

TV: 

Bg: 

Bc: 

g-

lc. 

jX. 

W-

number of turns, 

magnetic flux density in the air gap, 

magnetic flux density in the core, 

air gap length, 

flux path length in the core and rotor cube, 

magnetic permeability of the core material, 

magnetic permeability of the free space. 
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In the aligned position the phase inductance is at its maximum value because the 

magnetic reluctance of the flux path is at its lowest. At low current levels, before the 

saturation starts, most of the reluctance is in the air gap because the magnetic 

permeability of the core material is much higher than that of the air (//))//0). In addition 

to it, the flux path length in this design is relatively short, as a result, the second term on 

the right-hand side of equation (4.13) can be neglected and the minimum required current 

can be determined. 

On the other extreme, working in the heavily saturated region is also not 

recommended as it increases the iron losses which in turn reduce the efficiency. The 

current at which this occurs will be obtained by utilizing the data from the B-H 

characteristics of the core material used (Ml 5-29), without neglecting the second term in 

(4.13) at this time. It was found that the minimum current required is 17 A and the 

maximum allowable is 275 A. The optimum current can thus be derived on the basis of 

the maximum increment of co-energy later in this thesis. 

In spite of having a completely different structure topology, the new motor has the 

fundamental torque production mechanism similar to the conventional SRMs. The 

general expression for the torque produced by one phase at any rotor position is 

T = 
80 (4.14) 

i=const. 

where, Wco is the coenergy,6>is the angular rotor position. At any position the coenergy is 

the area below the magnetization curve so it can be defined as follows 

Wco=§Vdi (4-15) 

where, ^ is the flux linkage at any rotor position as a function of the current. 
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5 FINITE ELEMENT ANALYSIS AND RESULTS 

5.1 Model Formulation 

Although the proposed motor is considered as a rotary SRM, it is more like a 

linear SRM in term of its operation's concept. As mentioned earlier, this design has 

completely independent magnetic and electric circuits for every c-core; therefore, getting 

the magnetization characteristics for one case over one stroke range is enough to 

represent the behavior of the whole motor. Fig. 5.1 shows 3-D model for one c-core along 

with one iron cube in the fully aligned position. 

Figure 5.1. 3-D model of one C-core. 

Figure 5.2.3-D model of one C-core along with the rotor. 



During the motor operation, the actual motion of the iron cube is along the Y-axis. 

So, the flux lines and the motion are in two different planes resulting in a need for a 3-D 

finite element analysis. As long as our objective is to study the static analysis over short 

range of displacement (from unaligned to aligned position) and due to its symmetric 

geometry, the model can be studied and simulated in 2-D analysis by assuming the 

motion axis to be shifted to the X-coordinate as indicated in Fig. 5.2. 

5.2 Finite Element Analysis Results 

The modified 2-D model was built using MagNet software. MagNet uses the 

finite-element method of solving the electromagnetic field equations. This subdivides a 

2D model into small triangle elements, forming a mesh that covers the entire region. To 

improve the solution accuracy, the polynomial order of the elements was chosen to be (3). 

The mesh was refined by 30%, in which MagNet will select the worst 30% of elements 

and generate new elements with half their dimensions. Fig. 5.3 shows the meshed 2-D 

model. Finer mesh elements were generated at the corners and at the areas that require 

higher accuracy. 

5.2.1 Magnetic Flux Solution 

The 2-D model was simulated and solved. Fig. 5.4 illustrates the (field solution) 

finite-element flux-plot when the current was 250 Amps. It can be seen that most of 

core's regions are saturated. As the rotor moves more toward the full alignment position, 

the saturation level increases and covers more regions and vice versa. Depending on this 

plot, the designer can point out the regions that have not been saturated so the material 

could be saved there. 
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Figure 5.3. FE mesh of G-core model. 

Figure 5.4. Simulated FE magnetic flux plot. 

5.2.2 Magnetization Characteristics 

The flux-linkage as a function of magnetomotive force (MMF) is shown in Fig. 

5.5 for one stroke range, from unaligned to fully aligned position of the rotor. It can be 

observed in the graph that the curve of the aligned position starts to be saturated at almost 

700 (AT) which comes in obvious conformity with the analytical design calculations that 

had shown a minimum of 17 (A) for the saturation to start (for the aligned rotor position). 

Similarly, for the maximum allowable current, both analytical and simulation results are 
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Figure 5.5. The saturation characteristics of the proposed motor (40 turns). 

in sufficient agreement that can be inferred from Fig. 5.4. The level of saturation when 

the current is 250 amp can be read from the color map. 

5.2.3 Co-energy and Operating Current 

The optimum operating current can be found by referring to equations (4.14) and 

(4.15) in which was proved that the larger increment of co-energy, the higher increase in 

the torque. 
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Figure 5.6. Torque current characteristics. 
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So if we find the current at which the maximum increment of co-energy occurs it 

would be the optimum operating current. The simulation results for the co-energy 

increment versus the magnetomotive force are plotted in Fig. 5.7. The plot indicates that 

42 ampere is the optimum current. However this result is for the aligned position so it 

would not be accurate for the for the whole stroke range. As the rotor moves away from 

alignment, the saturation level decreases and the optimum current is then expected to be 

higher. 

Figure 5.8 shows a set of curves for the torque increment with respect to the 

current, each of which is at different rotor positions. The curve at 8 degree position which 

is very close to the complete alignment, points up 50 amps as the optimum current for its 

position and that assures the latter result in Fig. 5.7. The whole set of curves determine 

the current range where the motor operates at its higher efficiency to be from 40 till 120 

amps. However, the motor can still operate at much higher current ratings to deliver 

higher torque but with gradually reduced efficiency. The model was simulated at 275 

amps to show peak torque value of 123 N.m. 
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Figure 5.7. Increment of co-energy with respect to magnetomotive force at the aligned position. 
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Figure 5.8. Torque increment versus current at different angular positions. 

5.2.4 Vibration and Acoustic Noise Reduction 

The radial forces on the rotor and stator poles were obtained for aligned position 

where the radial forces are at their maximum values, different current ratings were 

applied for this simulation. The simulated results in Fig. 5.9 shows very low values in the 

range (0 to 3 Newton), which validates the proposed model. 
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Figure 5.9. Radial force verses current characteristics at aligned position. 
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5.2.5 Torque Ripple Minimization 

Torque ripple is defined as the difference between the maximum and minimum 

instantaneous torque expressed as a percentage of the average torque during steady state 

operation [67]. 

TR = 
T, Inst„ -T, Inst„ 

T (5.1) 
Ave 

As per the motor design in [62], the torque ripples have been mitigated to 11% in 

spite of its complex double layered structure. The new SRM design proposed in this 

thesis is able to restrain the torque ripples to 8% as shown in Fig. 10, without boosting the 

current in regions of low torque. This result is validated against the design in [62] for a 

similar output torque range. Their design is shown in Fig. 5.11 and its result is in Fig. 

5.12. 

Rotor Position [degree] 

Phase A 

Phase B 

Figure 5.10. Instantaneous torque for the five-phase motor. 
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Figure 5.11. Multilayer Switched reluctance motor. 

Figure 5.12. Torque ripple for multilayer SRM. 

5.2.6 Ohmic Loss Results 

Ohmic loss is the power loss in a phase winding due to the resistance of its conductor. It 

is the product of the square of the current and the resistance of the conductor, described 

by the formula: 

P = I2R (5.2) 

The simulation result in Fig. 5.13 shows the ohmic loss for one coil of a phase. 
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Figure 5.13. Loss-current characteristics for a one coil of a phase. 

5.2.7 Machine Characteristics 

An iterative design process was employed to reach the final machine's 

characteristics. By utilizing the magnetization characteristics, the inductance ratio was 

obtained to be used in the output power equation from chapter four. The machine's 

characteristics are listed in table 5.1. 

Table 5.1. Machine's Characteristics. 

Rated Power 

Rated Phase Voltage 

Rated Phase Current 

Rated Speed 

Maximum Current 

Maximum Power 

20 KW 

80 V 

150 A 

6000 rpm 

275 A 

35 KW 
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6 MANUFACTURING AND ASSEMBLY 

6.1 Manufacturing 

In HEV, the motor is subjected to sudden power demands depending upon the 

driver's need. This sudden demand of power leads to high in rush of current which at 

times prove harmful to the motors coils. Thus the automotive industry is focused on 

developing motors that are robust and having economically feasible, easy maintenance for 

its commercialization. The proposed motor design has a simple and compact assembly 

without sacrificing its robustness and performance to suit HEV application. 

The simple constructional feature reduces the manufacturing constraint of 

complexity, such as; 

• The square cross- sectional geometry allows the use of steel laminations. 

• From manufacturing point of view, Steel laminations are better in term of 

cost and robustness against harsh environment. 

• The c-core is to be fitted in the slot that will suppress any harmonic-base 

vibration among the steel sheets themselves. Consequently, iron loss is 

reduced. 

6.2 Non-Magnetic Components Selection 

Selecting of the materials that are not involved in the energy transformation is 

quite important as most of the losses occur within these components. Alternating 

magnetic field will induce current that generates heat losses. Solution for this was by 

searching for a material that is non-magnetic, non-conductive and robust enough to deal 

with high toque. Kevlar, is found to be one of the best options. 

Kevlar is light, strong para-aramid synthetic fiber, related to other aramids such as 

Nomex and Technora [68] 
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Developed at DuPont in 1965 by Stephanie Kwolek It was first commercially used 

in the early 1970s as a replacement for steel in racing tires. Currently, Kevlar has many 

applications, ranging from bicycle tires to racing sails because of its high strength-to-

weight ratio. 

General properties of Kevlar: 

• Non-magnetic material 

• Low Electrical Conductivity 

• High Toughness (Work-To-Break) 

• Excellent Dimensional Stability 

• High Cut Resistance 

• High Tensile Strength at Low Weight 

• High Chemical Resistance 

• Low Thermal Shrinkage 

6.3 Assembly 

The structural diagram for the motor in Fig. 6.1 gives clear image of how simple 

the assembly of this design is going to be. 

The slots on across which the c-cores are attached restrain it from derealization in 

the tangential axis against any kind of vibration. The outer cover prevents derealization 

on the radial axis. This design thus permits the motor to maintain a constant air gap in 

spite of vehicular vibrations. The c-cores are separately wound and located on the outer 

circumference as shown in the fig. This also reduces the maintenance cost and time as it 

has the flexibility to replace just the damaged c-core. 

Owing to its maximized pole's overlap region, the rotor position sensors might be 

eliminated which further increase its ease of assembly. 
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Figure 6.1. Complete structural diagram for proposed model. 
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7 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In HEV applications SRM can be very successful given that through innovation 

and design its shortcomings has significantly been conquered as well as its strengths has 

been amplified. In this thesis a new SRM model has been developed and the developed 

model has been analyses using FEA simulation software MagNet. The findings of this 

model are used to analyze its performance and a complete comparative study is 

performed to validate its abilities. Towards overcoming the shortcoming and enhance the 

strengths of SRM in HEV application the achievement of this research can be 

summarized as followings: 

• A novel axial field SRM design is proposed which shows a lot of 

flexibility in all design aspects 

• The analysis of the new design demonstrates the improvements in terms of 

radial forces and torque ripple reduction 

• The proposed design shows numerous features which promote it to be a 

potential candidate for HEV applications 

• A simplified and sufficient 2-D FEA model is developed 

• Most final motor design aspects and results were obtained by either the 

analytical method or software simulation method. However, in some steps 

of the design, results were obtained by both strategies concurrently, as in 

section 4.2.2, where the operating current range was determined by 

analytical method and later verified by the magnetization characteristics in 

section 5.2.2. The comparison shows good agreement between both 

results. 

• The manufacturing issues were addressed to prove its feasibility 
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7.2 Future Work 

In this thesis, the first stage of designing new SRM for HEVs applications has 

been introduced. An approximate sizing for this design is obtained using the power output 

equation through an iteration process with the support of finite element analysis software. 

The static study has produce most of the machine characteristics. 

The completion of this project still requires more stages that can be described as 

follows: 

1. To cover all design aspects, the dynamic operation needs to be studied 

2. As this design has mainly focused on the analysis of one c-core within 2-D plane, 

development of the 3-D model could be of great importance to verify the accuracy 

of the 2-D simplified model results and to analyse the dynamic operation of the 

design as well 

3. Designing the motor drive and control is also recommended to be integrated with 

this specific motor design 

4. And finally, prototyping the new design in order to experimentally validate the 

simulated results. 
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