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ABSTRACT 

A finite-difference model for simulations of thermal wave propagation in a layered 

material is discussed. The method is based on the implicit scheme in solving the partial 

differential heat equation. According to the conventional implicit methods of solving the heat 

equation, a large set of equations must be solved to find the temperature distribution of the object 

at any time. This will cause a serious problem when working with large samples or experiments 

of long duration as well as generalizing the method to two and three dimensions. To avoid this 

complication, the concept of sparse matrices is successfully utilized to accelerate the solution of 

a large system of equations while simulating each time step, as well as reducing the computer 

memory consumption. 

Parker's method of evaluating the thermal diffusivity of a material is tested by this approach. The 

model proves to give reliable results for thermal diffusivity measurement in ID and 2D Cartesian 

systems that show good agreement with experiments conducted on samples of metals and epoxy. 
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Chapter 1 

1 Historical Background 

1.1 Discovery of Infrared Radiation 

Infrared discovery goes back to 1800 when Sir William Herschel (1738-1822), German-

born British Astronomer who is famous for discovering Uranus on March 13, 1773. He 

discovered Infrared or as he phrased it, "Invisible rays" while reproducing Newton's 

experience using a prism to pass sunlight through and separate white light into colors. He 

measured the temperature of each color and noticed that temperature progressively 

increased from the violet end to the red end of the visible spectrum. But it came to his 

surprise that temperature increased further when he positioned the thermometer beyond 

the red end. Further experimentation led to Herschel's conclusion that there must be an 

invisible form of light beyond the visible spectrum [1]. 

1.2 Thermography as a NDT Tool 

In many applications; from the production lines, where in situ inspection speeds up the 

process, to the characterization of antique art treasures and cultural heritages, there is an 

increasing demand for safety[2]. Destructive evaluations can be useful during the design 

stages, but Non-Destructive Testing and Evaluation techniques (NDT&E) are helpful 

inspection tools, since they allow to examine materials or components in ways that do not 

impair future usefulness [3]. NDT inspection techniques though, are required to be 

reliable, economical, sensitive, user friendly and fast. Moreover, the materials and 

processes are constantly evolving; hence the inspection technique should be adaptable as 

well [4]. 

Infrared Thermography (IT), among the various NDT techniques used nowadays, is 

known as an attractive tool for non-contact inspections. Different thermal properties of 

the scene (sample under study) and the object of interest (subsurface defects, cracks. 



disbonds. etc.) are detected as thermal contrast assuming emissivity variations, reflections 

from the environment and atmosphere attenuations are negligible. 

Soon after its discovery, Infrared Thermography was used as a NDT tool. From the 

earliest applications of Infrared NDT, was a patent in 1935 by J. T. Nicholas [5]. He used 

a radiometer to verify the uniformity at which steel slabs are reheated in a steel-rolling 

mill. In 1948 R. C. Parker and P. R. Marshall [6] investigated experimentally the 

temperatures generated at sliding surfaces, especially between railroad wheels and the 

brake blocks. The current flow in an electric power transmission line was studied by 

Leslie and J. R. Wait in 1986 [7]. Infrared radiometry also made it possible to detect the 

overheated components on circuit boards in 1961 [8]. 

In the mid 1960s when commercial infrared cameras became available, a wide range of 

applications were developed continually for this non-contact, non-intrusive technique in 

military, industrial, civil engineering, environmental and medical fields. 

1.3 Advantages and Limitations 

A thermographic survey is totally non-destructive and unlike X-rays and ultraviolet, 

infrared is harmless to living bodies. It provides fast inspections (up to a few m2 at a 

time) with minimal access requirements. Measurements in inaccessible areas which are 

hazardous for other test methods may be done by this method. The system under study in 

this method needs not to be shut down for inspection, and this not only cuts on the 

expenses but also real time images enable immediate interpretation by a skilled 

practitioner [9-11]. 

It is also important to mention some limitations to this method. 

For applying this method to a large surface, a quick and uniform thermal stimulation is 

difficult to achieve. For outdoor surveys, factors such as high winds, rain, standing water 

on the roof. etc. may lead to thermal loss and surface cooling, thus affecting the reliability 

of the interpretation. Cracks and disbands large enough to result in measurable change oi' 

-> 



thermal properties are detectable in this method. Expensive tools and experience are 

required to obtain and interpret the thermal images [9-11]. 

1.4 Fundamentals of Infrared Thermography 

It is known that all bodies at a temperature above absolute zero (-273 C) emit 

electromagnetic radiation regardless of their state. The energy and wavelength of the 

emitted EM wave are related through the well known relation: 

E = hf = ^ (1.1) 

Hence the electromagnetic spectrum would look like figure (1-1). 

Increasing Frequency (v) 
i<>14 io22 ioM IO1* io'6 io14 in'2 IO1" lo8 IO*1 in4 io2 io° v(Hz) 

I i I . I . I i i i i i i i i 

y rays 
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Rad io w 
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ives 
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io-"1 io _ u io -12 ur10 ip"8 I ;i(r* ur" i c 1 io° io2 in4 io* ms X(m) 

, . . - - - - " " " "~~~- - - -__ Increasing Wave leng th (?v) - » 

Visible spectrum 

500 600 

Increasing Wavelength (K) in nm -» 

700 

Figure 1-1 Electromagnetic Spectrum [1] 

While the visible light wavelength lies between 0.4 to 0.7 urn, thermal radiation falls into 

the infrared section of the electromagnetic spectrum which is enclosed between 0.7 to 

1000 urn. 
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This radiation is usually emitted from a small portion of the surface and includes a 

variety of wavelengths and a distribution of energy. (Figure 1-2) 

11 

s l 

SPECTRAL 
DISTRIBUTION 

DIRECTIONAL 
DISTRIBUTION 

Wavelength 

(a) (b) 

Figure 1-2 Radiation emitted by a surface (a) Spectral distribution (b) 
Directional distribution. (Adopted from Maldague, 2001) |3 | 

As an important concept in radiometry, blackbody is explained as a perfect radiator. A 

hlackbody is defined by Gustav Robert Kirchhoff (1824-1887) to be a surface that 

absorbs all incident radiation of different wavelengths and directions without reflecting or 

transmitting it. It also re emits this energy evenly in all directions until it is in equilibrium 

with the environment. (Figure 1-3) 

4 



(a) (b) 

Figure 1-3 Features of a blackbody cavity (a) absorption, (b) emission from an aperture (Adopted 
from Maldague, 2001) |3| 

According to Planck's law, the spectral radiance of a blackbody in thermal equilibrium is 

given by [12]. 

2hcl 
A'[exp(hc/AKT)-\] 

^>.M^T) = —r ,7 , ! , , ^ „ W r a > - ' f f - ' (1.2) 

L would be the power of the Blackbody (b) per unit surface area and per unit of solid 

angel, h and K represent the Planck's constant (6.63 x 10"34 Js) and the Boltzmann's 

constant (1.381 * 1023 J/K), c is the light's speed (3 x10 s m/s) and T is the blackbody 

temperature in Kelvin. 

This equation predicts the energy radiated as a function of wavelength at temperature T. 

integrating Planck's law over all wavelengths ranging from 0 to QO, the total radiant 

emission would be: 

5 



Mh = af (1.3) 

known as Stefan-Boltzmann expression [12]. 0 = 5.6697 * 10"8 W/m2 K4) 

1.4.1 Emission 

Unlike a Blackbody, a rea/ surface does not absorb the incident radiation completely. 

Emissivity is the relative amount of a real surface's thermal radiation to that of a 

Blackbody under the same conditions of temperature (7^) and direction [12]. 

s{A.,Ts) = 
M{Ts) 

Mh(Ts) 
(1.4) 

Emissivity of a surface is a unit less parameter that changes between 0 for a whitebody 

(perfect reflector) and 1 for a blackbody (perfect emitter). Figure (1-4) shows the spectral 

distribution of a real surface in comparison with a blackbody. 

Blackbody, T 

-Real surface, T 

Figure 1-4 Comparision of a blackbody and real surface distribution of 
radiance | 3 | 

6 



1.4.2 Absorption 

The traction of the incident flux absorbed by the surface is called absorbance. 

«'%>• (1.5) 

Same as emissivity, absorbance is also dependent on the incident wavelength and 

direction; however it is not affected by the temperature of the surface. 

1.4.3 Reflection 

Reflection is defined as the ratio of the incident radiation reflected by the surface and is 

affected by the direction of both incident and reflected flux [12]. 

P(A,ej,e',<t>') = ̂ L±L (i.6) 

This formula is not very convenient to work with, since for a given incident radiation, the 

reflection in all directions should be considered. Hence in practice surfaces are 

considered either to be isotropically diffuse or perfectly specular. As is depicted in figure 

(1-5), an isotropically diffuse surface reflects the incident radiation uniformly in all 

directions regardless of the incident radiation and a perfectly specular surface reflects the 

incident radiation with the same angle as the incident angle [12]. 
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Incident ray Radiation 
of uniform 

i - - ^ radiance 

e = e 
i 

Incident ray j Reflected ray 

ia) JbL 
Figure 1-5 Reflection (a) isotropically diffuse, (b) perfectly specular (Adopted from Makiague, 2001) |3| 

1.4.4 Transmission 

To define transmission for a semitransparent object, the possible scattering and 

absorption by the particles inside should also be taken into account. That's why it is not a 

simple problem. However on a macroscopic scale, transmittance is defined as the ratio of 

the transmits flux in all directions to the directly incident flux [12]. 

T(A,0,t) = 
d<t>i,t 

(1.7) 

It is also possible to integrate transmittance over all possible wavelengths (/: 0—+oo), and 

that would be called the total directional hemispheric transmittance. (Figure 1-6) 
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Incident Rav 0 

Semitransparent 
Medium 

Transmitted 
flux 

Figure 1-6 Transmission process illustrated as a directional irradiance 

1.4.5 Energy Balance and Krichhoff s Law 

Incident radiation on a semitransparent material is partly reflected by the surface and the 

rest is either transmitted through the object or absorbed by it. However, as shown in 

figure (1-7), the net flux should remain unchanged. 

# • = £ + & + & (1.8) 

Integrating equation (1.8) over all possible wavelengths and similar directional 

conditions, properties expressed previously will be related as: 

p + a + T = 1 (1.9) 

For opaque objects (t = 0). (1.9) becomes: 

p + a = 1 (1.10) 
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Krichhoffs law relates absorption and emission for a blackbody [12]. 

s (k, 9', cp') = a (X, 0. <p) (1.11) 

Although equation (1.11) only applies to a blackbody, it can still be used for a diffuse 

surface for which emission and absorption are independent of spectral and directional 

conditions [12]. For thermography inspections black painting is used to increase 

emissivity and also to prevent reflections from environment. 

Incident Reflection 

4>i <«>r 

Figure 1-7 Flux exchange in a semi-transparent medium 

1.5 Differ en t Approaches: A dive, Passive 

In order to investigate a structure with Infrared Thermography, there are two approaches 

that can be used, passive and active. In the passive approach, the specimen and the 

ambient are naturally at different temperatures (usually the specimen is at higher 

temperature). While in the active approach, an external excitation source, such as heating 

or cooling system needs to supply the thermal contrast between different parts of the 

sample. 
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1.5.1 The Passive Approach 

The passive approach is commonly used for civil engineering structures inspection, 

maintenance, medicine and property evaluation. The material under investigation is 

usually examined for abnormal temperature profile indicating an irregularity or possible 

defect, void, etc. 

In passive thermography, the key word is the temperature difference with respect to the 

surrounding, often referred to as the "delta-T" or the "hot spot." A delta-T of 1 to 2 °C is 

generally found suspicious while a 4°C value is a strong evidence of abnormal behavior 

[10]. however there have been more sophisticated applications of this approach rather 

than only qualitatively pin down the anomalies. These investigations are more 

complicated and need thermal modeling. 

For instance in a reported application [15], a numerical method was developed to 

simulate the heating process of needles used to sew fabrics in the automobile industry. 

(Seat cushions and backs, airbags, etc.) The friction between the needle and the fabric 

(usually synthetic) in high speed sewing generates heat which will cause worn or broken 

thread and damages the thread as well as burns the fabric and weakens the needle itself. 

Experiments on the plant floor have shown the temperature raise of up to 100-300°C with 

the sewing speed of 1000 to 3000 rpm. 

The model uses different factors such as needle design, thread fabric properties and 

sewing speed to predict the temperature distribution in the needle during the sewing 

process as well as the time needed to reach a steady state. By understanding the heating 

process, they can reach the optimized operation through changes in needle geometry, 

cooling system, etc. 
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1.5.2 The Active Approach 

Unlike the passive approach, in the active infrared thermography the characteristics of the 

stimulus is known and that makes it possible to get quantitative results such as the depth 

of a possible defect, hence it's widely used in NDT&E. Depending on the different 

methods of data acquisition and data processing, various active thermography approaches 

has been developed. 

1.5.2.1 Pulsed Thermography (PT) 

In Pulse Thermography, the object surface is being stimulated by a heating pulse and the 

data acquisition is performed by monitoring the temperature evolution of the surface after 

it starts to cool down. Lamps, flash lamps, scanning lasers or hot air jets are the most 

popular heating tools and Infrared cameras are used to monitor the signal in the transient 

area. There are two possible modes of data acquisition in PT. Reflection mode and 

Transmission mode. In the Reflection mode, the heat source and the Infrared camera are 

both placed on the same side of the specimen while in the transmission mode, the camera 

faces the back surface of the sample. Reflection mode is preferred in cases where the 

defect is closer to the heated surface or the rear surface is not accessible. The signal 

received by the IR camera (Thermograms) is then being processed to estimate the 

characteristics of the subsurface defect such as size, depth and thermal resistance. 

Cielo in 1984 was the first who came up with the idea of pulsed approach [16]. He 

applied this technique on the aluminum coating plasma sprayed on aluminum substrates 

with artificial defects between the coating and the substrate. The parameters of interest 

were the thickness, adhesive and cohesive strength. In order to interpret the experimental 

results, he developed a numerical model based on the inversion procedure and got 

encouraging results. 

In ll)85. for the first time Balageas et al. developed an analytical model using finite 

difference method to study the thermal decay in a coated substrate [17]. Given the 
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thermal properties and the thickness of the substrate, the model could evaluate the 

thermal properties and the thickness of the coating and the thermal contact resistance of 

the interface. Cielo and Krapez used this technique to remotely measure the thickness of 

oil film on water. They could evaluate the oil thickness up to 1 mm with the error range 

of 0.1 mm [18]. However, there are some practical limitations in adopting this method for 

open-air environmental applications. The problems could rise by the energy absorption of 

the laser pulse by the atmospheric aerosols or the oil film immerging into water. 

One of the problems with thermal images developed by PT was the blurring. It was 

assumed that loss of information during the data acquisition was the cause of blurring, 

however in 1992, Favro et al [19] could remove the blurring by developing an algorithm 

which performs a mathematical inversion of the scattering process to the experimental 

data. As proved by Vavilov (1992) [20], the reverse method will predict more than one 

combination of defect characteristics for a single thermogram. Thus, it was suggested that 

the iterative calculation should be done knowing some of the defect's parameters, a priori 

beforehand [21]. However, these methods turned out to be time consuming and only 

applicable to some specific cases. 

The difference between the thermal properties of the defected and non-defected (sound) 

areas causes the thermal contrast which is measured and evaluated in PT. 

The larger the thermal contrast, the more detectable the damaged area. C r not only 

changes by different atmospheric conditions and the device precision, but also is affected 

by the size and depth of the defect. Smaller defects and deeper-located ones will result in 

lower thermal contrast, hence harder to evaluate. It is understood that the loss in Cp is 

proportional to the cube of depth: 

Dr * - T (1.13) 
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Maldague (2002) [22] suggested to use a rule of thumb that says the radius of the smallest 

detectable defect should be at least one to two times larger than its depth under the 

surface. 

To study the limits in defect evaluation by infrared thermography, Meola et al ran a 

thorough experiment on composite specimens with external material as defects [23]. 

Results proved the key role of the thickness in defect visibility, meaning that a thin large 

defect is more difficult to detect than a thick small one at the same depth. 

However, there are a few drawbacks in these computational approaches leading to some 

inaccuracies. One of such was the fact that not always a priori parameter of the defect 

was available. Also the sound area was assumed to have evenly distributed temperature 

over the surface. 

In 2002, Pilla et al [24] solved the one dimensional Fourier equation assuming a Dirac 

pulse applied to a homogeneous semi-finite plate: 

AT = -T£=~ (1.14) 
•sjnpCk y/t 

In this equation, Q is the total energy absorbed and yjpCk is called thermal effusivity 

(e). This equation defines the temperature of sound area locally as a function of time. 

Hence the variation of effusivity with time is studies to evaluate the depth and thermal 

resistance of the defect zone. 

This approach brought some distinctive advantages to PT by introducing the New 

Absolute Contrast (NAC) based on the reconstruction of the temperature in the sound 

area [24]. 
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Since thermal contrast is evaluated based on the total energy (Q) and Q is affected by 

non-uniform heating and convection, Peng and Almond (1998) [25] proposed to replace 

it with defect visibility. 

The subscripts d and s represent the surfaces above the center of the defect and the sound 

area. 

Although pulse thermography is the sufficient choice in many applications, it is affected 

by the local variation of the emissivity coefficient and non-uniform heating that can mask 

the defect visibility. The emissivity problem may be solved by painting the surface, but 

this could be a solution only for parts where this surface finish is allowable [21]. 

Various methods based on different stimulating or processing techniques are being 

reviewed in the following sections. 

1.5.2.2 Lock-In Thermography (LT) 

Heat injection during the short time of a pulse (e.g. typically 10 ms for a powerful flash 

lamp) may cause initially high temperature on the surface. Another surface heating 

method is by modulated heat deposition in which energy is distributed over a longer 

period of time. Therefore it reduces the thermal load of the inspected component to a 

power density which is typically below the one of sunshine at noon in summer [26]. 

The basic idea in modulated or Lock-in thermography (LT) is submitting the specimen 

under study to a periodic (sinusoidal) temperature stimulant. In this case, highly 

attenuated and dispersive waves will form inside the sample and they are known as 

"thermal waves" [10]. Like all other waves, thermal waves reflect from the boundaries 

and interact with any discontinuity in the sample. This reflected modulated temperature 

contains some useful information of the defect, boundary, etc. The result is the amplitude 
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and phase of the sinusoidal wave pattern at each point which can be used to evaluate the 

temperature variation. The phase image can be used to directly specify not only the size 

but also the depth and thermal resistance of any kind of imperfection in a sample. 

Carlomagno and Berardi came up with the idea of modulated thermography in 1976 [27]. 

Further investigation to utilize NDT of materials with this method was done by Beaudoin 

et al (1985) and Kue et al (1992) [28, 29]. In 1994, Busse et al used LT for depth 

profiling of fiber orientation in composite laminates [30]. Since then LT has been used 

for defect detection in veneered wood (Wu 1994) [31], measure thickness, density and 

porosity of ceramic coatings (Wu et al 1996a, Rantala et al 1996) [32, 33] and inspection 

of aircraft components (Wu et al 1996b 1998) [26, 34]. 

Meola and his group (2002, 2003, 2004) [35-40] at the University of Naples investigated 

in the capability of this method to deal with other applications such as measurements of 

material thermal diffusivity, evaluation of assembly ways like adhesive bond joints, as 

well as control of bonding improvements after surface plasma treatment. 

For a thermal wave modulated at frequency co, the thermal diffusion length is given by 

this relationship: 

M = M (1-16) 

Where a is the thermal diffusivity of the material and the wave frequency is /= (O/2TI. 

While u is the maximum depth range in amplitude image, the maximum thickness that 

can be inspected in a phase image is proved by Busse and Rosencvvaig (1980) and Busse 

(1982) [41, 42] to be: 

/; = l-8ARr (1.17) 
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Hence the penetration depth of thermal waves in the material depends on the properties of 

the material (heat conductivity, heat capacity and density) as well as the wave cycle time. 

The slower the wave, the deeper it can penetrate in the material. To start a test, usually 

one would start to investigate the surface layer using high frequency waves, then 

reducing the frequency to observe deeper layers until the whole thickness is examined. 

From limitations of this approach, one is the low frequency range needed for 

investigation of thick materials with low thermal diffusivity which not all the heat flux 

modulators can provide. Also it is possible to miss a defect because of not choosing a 

proper frequency. In practice lock-in thermography is rather time consuming for 

evaluation of thick materials with low thermal diffusivity. 

More recently in 1999, Dillenz et al used an ultrasonic transducer attached to the sample 

[44]. Their method has the advantage of selective heating of only the damaged area, and 

is proved to detect deeper and smaller defects. From the applications of this method are 

detection of corrosion, vertical cracks and delaminations. In the next section a 

combination of the previous methods named Pulsed Phase Thermography (PPT) is 

described. 

1.5.2.3 Pulsed Phase Thermography (PPT) 

The idea behind Pulse Phase Thermography is to combine two previous methods in a way 

that enables us to make use of the advantages of PT and LT while avoiding their 

drawbacks. Data acquisition in Pulse thermography is fast and straight forward while in 

LT, more specialized equipment is needed plus the experiment is rather time consuming 

in LT. On the other hand, the data in PT is highly affected by thermal, optical and 

geometrical surface characterizations and the environmental reflections, while using the 

phase images to process the data in LT makes it less sensitive to these conditions. 

The link between these two methods is established by Fourier transform according to 

which any pulse can be transformed to a sum of harmonic waves with a mix of 
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frequencies. (Figure 1-8) Based on this theory, in PPT as in PT. the sample is pulse 

heated, yet the Fourier transform on the temporal decay wave in the specimen 

unscrambles the mix of frequencies in each pixel. So that, a phase or magnitude image of 

each pixel is provided as in Lock-in Thermography. 

Pulse Waves 

Square 

J L 
Thermal FT 

Periodic Waves 

Sinusoidal waves 

. . ( 0 \ 

Figure 1-8 Pulse thermography vs. Lock-in thermography (experimental configuration) 

Historical Notes on Pulsed Phase Thermography 

Pulse Phase approach was introduced by Maldague and Marinetti in 1996 [44]. Maldague 

and his group kept working on this method and reported their progress and results on its 

application. Given the non- linear and noisy character of pulsed thermographic data, 

inverse solutions are difficult to reach, that's why PPT was only used as a qualitative 

defect detection approach for the first couple of years from its discovery until in 1998. 

Maldague and his group tried to get quantitative results using neural networks [46|. 

Neural network approach was chosen due to its ability to work with non linear problems 

with missing or noisy data. Although this approach opened new windows to quantitative 
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investigations in infrared NDT, high sampling frequency was needed for the data 

acquisition system, depending on the material's thermal diffusivity. 

A practical drawback of Fourier Transformation is the infinite extensions on time axis of 

the basis function which causes information loss on the time evolution of the spectral 

properties of the signal. The time information is needed for defect depth retrieval, so 

another transform rather than Fourier Transform is needed. In 2000, Maldague et al 

adopted wavelet transform for signal processing [47]. This method provided the 

frequency analysis without missing on time information. However, the last two 

approaches proved to be too lengthy in computational routines to be applicable in most 

NDT processes. Later in 2004, they proposed a new depth retrieval approach based on 

absolute phase contrast defined as [48]. 

A(p=<pd'-(ps (1-18) 

Where the subscripts d and s stand for the defect and sound areas. They proved that the 

depth changes with the blind frequency (fb), frequency at which a defect generates enough 

phase contrast to be invisible, as: 

zKafb
1/2 (1.19) 

They also tested their theory on Plexiglas and Aluminum, two materials with low and 

high conductivity and the results well agreed with the theory [48]. Following this work, 

steel plates with flat bottomed holes were studied by this group in 2005 [49]. The defects 

were located at different depths ranging from 1 to 4.5 mm and the results showed the 

same correlation between the blind frequency and the defect depth. 

PPT has proved to have a great potential for NDT applications and investigations on its 

applicability and improving the results are still under study. 
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1.6 Instrumentation for Infrared Thermography: 

When it comes to experimental analysis, the set up and instrumentation is of great 

importance. This is an overview of investigation tools, such as detectors, radiometers, 

infrared cameras and a brief review of the methods to apply various thermography 

techniques and data acquisition. 

1.6.1 Detectors 

Optical receivers are the main part of infrared radiometry systems. As of 1999, the 

worldwide IR detector market was estimated to be $10 billion increasing by rate of 30% 

every year [51]. An infrared detector or sensor is used to convert the radiant energy to 

some other assessable quantity such as the electrical signal. There are two types of 

sensors: thermal detectors and photonic detectors. 

1.6.1.1 Thermal Detectors 

In thermal detectors, the incident radiation raises the surface temperature which changes 

the electrical conductivity of the heated material and in turn affects the output signal. 

Thermal detectors response is independent of incident wavelength and this characteristic 

makes it unique in this way. To discuss the sensitivity of thermal detectors, one should be 

familiar with effective conductivity GR which is given by [52]: 

GR=4o?A (1.20) 

Where T represents the sensor temperature, a is the Stefan-Boltzmann constant, and A is 

the detector-sensitive area. Then the detectivity limit is [51 ]: 

£ * = , — V ~ (1-21) 
V 4kT2G 
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k is the thermal conductivity and G is the limit of GR. 

Depending on the physical property affected by the surface heating in the thermal 

detector, there are different types of thermal detectors. 

Bolometers, are the ones in which the electrical conductivity is the changing factor. 

Thermopiles are made from many thermocouples connected in series or in parallel. 

Temperature difference generates voltage difference in each thermocouple through 

Thompson effect. The signal in Pneumatic detectors is generated by pressure variation of 

a definite volume of gas. Another type of thermal detectors is Pyroelectric detectors that 

make use of the Pyroelectric crystals. As introduced in 1984 by Granicher, temperature 

change in Pyroelectric crystals produces electric polarity [52]. Temperature variation in 

the detector's surface Pyroelectric crystals causes the charge variation and thus a transient 

current to be picked up. Liquid crystals are also used as thermal sensors. When 

illuminated by white light, they reflect color light from red to violet under temperature 

changes providing the resolution of up to 0.01 °C [50]. 

1.6.1.2 Photonic Detectors 

In Photonic detectors, incident photons on a semi conductor material will generate 

excitation which is directly measured by the detector. The incident photons on 

photocathode will pull away electrons from the valance to the conduction atomic band. 

This method prevents unnecessary heating of the sensitive surface. There are two types of 

photonic detectors: photoemissive and quantum 

In photoemissive photonic detectors, the current (electron flow) will generate the 

resulting signal while in quantum detectors either the change in conductivity or the 

generated voltage is being measured. Since there is no heating involved in this process, it 

is much faster than thermal detectors and the use of solid state material allows these 

detectors to be compact, robust and dependable [50]. 

21 



1.6.2 Infrared Imaging Instrumentation 

In order to get one or two dimensional images from the detector, there are two main 

approaches: using a single detector attached to an electromechanical scanning device, or 

using an array of individual IR detectors with no movement applied (Focal Plain Arrays). 

Since first introduced in 1973 by Shepherd and Yang [53], large arrays of 512 x 512 has 

been produced by different companies and they are the most popular IR imaging tools in 

today's technology. An infrared camera is made of FPA, the appropriate optics and 

electronics and cooling system. There are two readout tools for the FPA, Charge Coupled 

Device (CCD) and Complementary Metal Oxide Semiconductor Device (CMOSD). 

CMOSD is less expensive than CCD and enables windowing (reading a section of the 

array rather than the whole data) however; it has higher noise and less sensitivity. In 

today's applications, CCD leads the scientific and technical field while CMOSD is being 

employed in the applications such as surveillance, camcorders, snapshots, etc. 

1.7 Summery 

In this chapter, basic and practical concept of infrared thermography was reviewed. Also 

a brief review on various NDT applications for IR thermography since its discovery was 

presented. Pulse thermography and lock-in thermography as two main methods in IR 

thermography and their advantages and drawbacks were described. As a conclusion, 

pulse phase thermography, as a combination of both Pulse Thermography and Lock-in 

Thermography was found to benefit the advantages of both methods without sharing their 

imperfections. 

In the imaging process, thermal and photonic detectors are explained based on their 

method of converting the thermal variation of the surface to an electric signal. For further 

signal processing, two types of devises (CCD and CMOSD) are used for different 

applications. The next step in IR thermography would be image processing methods 

which will be reviewed in the next chapter. 
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Chapter 2 

2 Thermography Techniques 

In this chapter, the main principals of heat propagation in a material are presented as well 

as different numerical solutions to the heat equation. Mathematics of various image 

processing methods in IR thermography is discussed to prepare for the logic behind the 

algorithm developed in the next chapter. 

2.1 The Heat Equation 

The one dimensional heat equation is [55]: 

dT(x,t) d2T(x,t) n , „ ,„ „ 
— y - ^ - = a V - ^ 0<x<L, t>0 (2.1) 

dt dx~ 

In this equation, a = k/pc is the thermal diffusivity and is a property of the material with 

k, p and c being heat conductivity (W.m"'.K"'), density (kg.m"3) and specific heat (J. kg"1. 

K"1). T is the transient heat function in a semi-infinite material with thickness L. 

This equation can be solved both for a pulse or periodic thermal waves. 

2.2 Pulse Thermography (FT) 

Pulse thermography is a popular method in IR thermography in which the specimen is 

pulse heated and the temperature decay is recorded. Assuming the heat pulse to be perfect 

Dirac delta function (in practice however, a pulse with very short duration is used), the 

solution to equation (2.1) in a semi-infinite isotropic solid would be [56|: 
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T{z.t)=T0 + 
O 

exp(-
4at 

(2.2) 

In this equation, z represents the depth and O is the energy absorbed by the surface [J/trr] 

and To is the initial temperature [K]. 

To study the temperature behavior at the surface (r=0), Eq. (2.2) becomes: 

r(o,/) = r0+- Q 

e^M 
(2.3) 

e being effusivity and defined as Jkpct 

2.2.1 Data Acquisition in Pulse Thermography 

A typical experimental setup for active thermography is illustrated in figure (2-1). First 

the thermal pulse is sent to the specimen's surface. Second an infrared camera records the 

thermal decay of the surface. The heat source and the camera are either placed on the 

same or opposite sides of the sample depending on the inspection method 

(Reflection/Transmission) selected. 
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Fi«ure 2-1 Experimental setup for active (optical) thermography by Transmission or Reflection 
mode, source: http:/Av\v\v.visiooimage.com 
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The data is then recorded in 3D matrices, containing both spatial (x-y coordinates) and 

temporal (i coordinate) information. To process the data there are two options of (1) 

working at pixel level which is the temperature changes of a fixed point in space through 

time or (2) at 2D images or thermograms which are the temperature profile of the surface 

on time domain. (Fig. 2-2) 
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Figure 2-2 Thermograms on the time domain, it is also possible to study the temperature behavior 
of pixel (i,j) through time. 

2.2.2 Defect Characterization 

The temperature profile of a sample can be used for subsurface defect detection purposes. 

After the heat pulse is employed on the sample's surface, it reaches the subsurface layers 

and drops quickly due to diffusion and also radiation and convection losses. However, a 

defect under the sample's surface will reduce the diffusion rate. Figure (2-3) illustrates 

the temperature decay curves of two samples of the same material with and without a 

subsurface defect. They behave similarly the first instants after the heat pulse is applied, 

however as soon as the heat front reached the defect area with different ejfusivity. the heat 

exchange rate with environment changes hence the difference in temperature above the 

defect spot. 
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Figure 2-3 Temperature evolution curve after absorption a rectangular heat pulse: (1) plate made of 
homogeneous material; (2) same plate containing a subsurface flaw (From Maldague, 1993) 

This allows finding temperature contrast which is defined as: 

C(t) = TM(t)-T hl(t) (2.4) 

Thermal contrast is the base of many defect detection analyses. Some methods employ 

the time and temperature at which the maximum of the peak is located for each pixel 

(figure 2-4), to reconstruct Maximum Contrast timegrams or thermograms. Also half the 

time of maximum of thermal contrast curve [57] and the slope of the curve [58] have 

been used to indicate the size, depth and thermal resistance of the defect. 
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Figure 2-4 Contrast evolution over subsurface defect (From 
Maldague 1993) 



This method provides good results as long as the sample is homogenous with fairly 

shallow defects. Moreover, non-uniformity in heating process is practically inevitable, 

which makes the thermal contrast curve difficult to interpret. 

2.3 Lock-in Thermography (LT) 

In Lock-in thermography (LT), instead of a heat pulse, modulated heat is generated by 

the heat source and delivered to the surface. The input modulated wave is defined by its 

angular frequency co and its magnitude / , the thermal wave generated in the sample will 

propagate at the same frequency but different amplitude (A) and also a shift in the phase 

value (</>). (Figure 2-5) 

Input |l,«| Output |A.co.ipl 
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Figure 2-5 Input/ output modulated wave in lock-in thermography 

The one dimensional solution to Eq. 2.1 for a modulated heat source is expressed as [60]: 

T(iJ) = T0e\p(-~ )cos 
ITVZ 

A 
at (2.5) 

It is assumed that the thermal wave is propagating in a homogeneous semi-infinite 

material where Ttl is the temperature of the surface right after stimulated by the source 

and // is the diffusion length defined as [60]: 
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a is thermal diffusivity of a material and expressed as [60]: 

k,p,cp are thermal conductivity, density and specific heat. 

2.3.1 Data Acquisition in Lock-in Thermography 

Lock-in thermography has the advantage of not being a point by point imaging process. 

In the conventional thermography methods, a laser beam would stimulate the surface at a 

certain point and the detector would pick up the locally generated thermal wave from the 

same point. The Fourier analysis is then to be performed on the read out signal to provide 

the amplitude and phase information of that point. One drawback to the point by point 

scanning process is time concerns. The measurement time should be long enough to 

cover one complete modulation cycle at minimum; for instance, it would take 5 seconds 

for a thermal wave with frequency of 0.2 Hz to complete its cycle. Now this should be 

multiplied by the number of pixels (usually as order of 10? pixels) to obtain the total data 

acquisition time. This approach could take so long for a large sample that makes it 

inapplicable to the industry. 
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However, this problem would be solved by using an extended heating source instead of 

the point heating [59]. Also it is possible to employ an infrared camera as a thermal 

detector array. A Fourier transform should be performed on the signal from each pixel to 

get the magnitude and phase of the modulation. 

One concern is that the process should not take longer than the data acquisition itself. In 

1998, Wu and Busse [59] found that the process would be particularly fast and easy using 

a sinusoidal heat injection. 

2.3.2 Establishing Phase and Amplitude Information 

Lt works on the base of stimulating the sample's surface by modulated heat and 

observing the temperature variation over the surface to reconstruct the responding 

thermal wave. In case of a sinusoidal heat injection, the temperature field is also a sine 

wave which can easily be recovered from three or four data points in a modulation cycle. 

As shown in figure 2-6, the reference signal is reconstructed from 4 equidistant data 

points, Si (i = 1 to 4) being the detector signals at pixel xi. The Amplitude A and phase <p 

are [59]. 

<p(x,) = arctan 
S,(s,)-S,(s,) 

S2(*,)-S4(x,X 
(2.8) 

A(X]) = V[S, (*,)-S3 0Or+fe(*i )-£,(*,)? (2.9) 
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Figure 2-6 Computation of phase, amplitude and thermographic images in LT. During each heating 
cycle, the infrared camera takes four images (Top) local thermal waves are reconstructed for any 
pixel (Busse, 1994) 

As it is clear from equation (2.8), phase image is less affected by inhomogeneous 

illumination, surface emissivity variation [59] or the reflection from the environment 

[61]-

Although the image can be recovered by only four data points, in practice one would 

prefer to work with different modulation frequencies which would fit more than four 

points in a complete cycle. Moreover, working with more data points will reduce the 

noise. In that case, as shown by Wu in 1996 [62], all points in one 90°-interval can be 

averaged to 1 point which is the corresponding 5, in equations (2.8) and (2.9). (Fig. 2-7) 
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Figure 2-7 Reconstructing the thermal wave in LT from 1024 data points (Wu, 1996) 

Finally other than the modulated heat injection, a lock-in apparatus is similar to that of 

pulse thermography. (Figure 2-8) 
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Figure 2-8 Lock-in thermography apparatus 



2.4 Pulse Phase Thermography (PPT) 

2.4.1 Theory 

Pulse phase thermography (PPT) is in fact a combination of the two previously described 

Lock-in thermography and Pulsed thermography methods. PPT utilizes the time 

frequency duality to extract phase images from PT results using Fourier transform, the 

well known mathematical formulation in transform analysis. 

In theory, an ideal Dirac pulse of null duration can be transformed to a flat distribution 

over frequencies ranging from -oo to +00 in the frequency domain. (Figure 2-9) 
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Figure 2-9 Time frequency duality (a) an ideal temporal pulse of zero duration and infinite 
amplitude and (b) its frequency spectrum 
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However, in practice the thermal pulse used is different from an ideal Dirac pulse in the 

sense that it has finite amplitude and duration values. As an example, one can consider a 

square pulse with amplitude Ap and duration AT centered on t = 0. (Figure 2-10) The 

corresponding frequency spectrum would be defined by Fourier transform [50]. 

W ) = 
A Atrsin(7ifAt ) 

ApAtp sinc(7fAtp) (2.10) 

The shape of F as a function of frequency would look like the graph in figure 2-11, which 

proves that unlike an ideal Dirac pulse, here a finite frequency range is involved in the 

frequency domain, each appearing with various amplitudes. 
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Figure 2-10 Time frequency duality: (a) square pulse of 1 second duration centered at t=0; (b) 
corresponding frequency spectrum (From Maldague 1993) 



2.4.2 Data Acquisition in Pulsed Phase Thermography 

In Pulsed Phase thermography, after the sample surface is stimulated by a heat pulse, 

temperature evolution of the surface is recorded in N thermogram sequences. Observing 

the behavior of a single pixel (i,j) during N recorded thermograms will provide a vector 

T(k) where k is ranging from 0 to N-l. (Figure 2-11) Amplitude and phase images can 

be extracted from this vector using a discrete one-dimensional Fourier transform [51]. 

Fn = J^T(k)e\p(2mkn/ N) = Re(F„) + /Im(F„) (2.11) 
A=l 

In this equation n stands for the frequency increment in the frequency domain. 

3-, infrared image sequence 
L (after thermal pulse) 

• Fourier Transform of temperature evolution 
• Computations of Ren, lmn 

• Computations of phase, amplitude 

Figure 2-11 Temperature evolution of pixel (i,j) through N thermograms 
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Establishing Phase and Amplitude in Pulsed Phase Thermography: 

The imaginary and real parts of equation (2.11) are then used to extract the amplitude and 

phase images [51]. 

A„ =^JRe;+lm; and 0n=atan 
Re„ 

(2.12) 

This process is repeated for every pixel on the surface until the ampligrams and 

phasegrams for all the frequencies in the frequency domain is reached [63]. (Figure 2-12) 

f. u 

Figure 2-12 (Left) Amoligram and (Right) Phasegram sequence in the frequency domain 

For a typical non-defective pixel like (i,j), the amplitude and phase profile would look 

like figure (2-13) [63]. 

Figure 2-13 (a) Temperature (b) Amplitude and (c) Phase profiles for a pixel on the frequency 
domain. Adopted from |63| 

J O 



It can be seen from figure (2-13) that a sequence of N thermograms will provide N/2 

useful frequency components and the other half can be predicted due to the odd/even 

nature of the profiles. 

The advantage of working in frequency domain is that the phase images are much less 

sensitive to problems such as non-uniform heating, reflections from environment, and 

emissivity variations in the surface. Also as compared to LT, this method has the 

advantage of getting a complete phase profile from a single run. 

2.4.3 Defect Characterization in Pulsed Phase Thermography Using 
Depth Inversion 

Once the data acquisition is done, the phase contrast profiles will be employed to find the 

defect's depth. Figure (2-14) shows the phase profiles of two flat bottomed holes in a 

sample located at different depths z/ and z?. Considering zs as a sound area in the same 

sample, the phase contrast profiles for each defected pixel is calculated 

using A^ = <f>d -<f>s. As depicted in figure (2-14), phase contrast profiles have non-zero 

values from /=# to a specific frequency names blind frequency (f), which has a different 

value for each pixel. Blind frequency is defined as the first point in frequency domain 

(while moving from higher frequencies to lower ones) at which the phase contrast is 

visible for a defect. In fact blind frequency for a pixel is the point on its phasegram where 

it merges with the phase profile of a sound area. As a result, deeper defects have lower 

blind frequencies (fh_ > fh,, )• 

-Jt)|rad| s'—^Oz, 
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Once the blind frequency is found for a defect zone, the depth z is proved to be related to 

it as follows [63]. 

= C,I^+C (,,3) 

Where a = kl pcp is thermal diffusivity. As this term is used to fit experimental data, C| 

and C? are found to be around 1 and 1.5 respectively [63]. 

2.5 Thermal Diffusivity 

Thermal diffusivity is a significant property of a material that establishes the rate of 

transitory heating and cooling and is defined as: 

cc = — (2.14) 

Where k, p and c are thermal conductivity, density and specific heat. 

Measuring a is of great importance to researchers for various reasons. Knowing the 

thermal diffusivity of a material makes it possible to predict the heat pulse behavior in it, 

as well as investigating the subsurface defects and composition. 

2.5.1 Diffusivity Measurement 

Different techniques have been developed over time to measure the thermal diffusivity of 

a material. Non-contact measurements involve a transitory excitation delivered to the 

surface of the material under investigation and an optical probe to detect a. 
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Both pulse and modulated heat source can be employed to excite the surface initially as 

well as various shapes of initial excitations.'Here are some schemes for such methods 

[64]: (Figure (2-15)) 

(1) Large area surface heating 

(2) Line heating 

(3) Small spot heating 

(4) Grating heating 

(5) Circular heating 

(a) (t>) (c) 

{$$? f~7~7\ ,r^r~~7\ 
/' 

(d) <e) 

f'V-./-.^tyr 
/ 

r / 

/ 
L-
i 

! 

* 
S-^. 

• • 
_.- . 

/ 
- 1 

A 

Figure 2-15 Shapes of photothermal excitations useful for thermal diffusivity measurements: (a) 
large area heating (b) line-heating (c) small spot heating (d) grating heating and (e) circular heating 

The optical detection is then completed inside or on the edges of the sample by exploring 

the changes in one of these properties [64J: 

(1) Transient thermal radiation from the surface 

(2) Refraction of the probe beam 

(3) Reflection of the probe beam 

(4) Diffraction of the probe beam 

(5) Surface deformation 
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If a heat pulse is used as an initial excitation, the temporal decay of one of these 

properties is observed to get thermal diffusivity. In case of employing a modulated 

excitation, the change in its phase is related to the thermal diffusivity. 

A comprehensive review of the first three methods can be found in [64] while the 

transient thermal grating and surface deformation of a metallic film is studied in [65-68]. 

2.5.2 Flash Method 

Advances in material technology and increasing applications of materials at high 

temperatures have caused a great interest in the methods to determine the thermal 

diffusivity (a). To measure this parameter in high temperature, implementing old 

methods are not of great interest due to the time consuming tests required for reliable data 

or the large sample size needed. However, Parker et al [69] introduced Flash method to 

measure thermal diffusivity. 

When a thermally insulated sample of thickness L is being stimulated by a one 

dimensional thermal pulse {T(x,t)), the temperature distribution at a later time will be 

[69]: 

T(x,t) = - Jr(x,0)cfr+ - f > x p ~n~n'at x c o s — j>(X,0)COS — dx (2.15) 
^ o ^ »=i t L o 

Assuming that the initial temperature pulse has the radiant energy O (cal/cm2) and it is 

uniformly absorbed by the front surface of the sample, T(x,t) will be given by: 

T(x,0) = Q/DCK for 0<x<g (2.16) 

r(.v.0) = 0 for g<x<L (2.17) 

g in this equation is a very small depth value close to the surface(.v^). Substituting T(O.l) 

in equation (2.15). the temperature profile at later times is [69]: 

39 



T(x,t) = 
O 

DCL 
1 + 2 1 COS 

n/vc s'm(n7rg IL) 
T {nnglL) xexp 

-n~n~ 

Is 
-at (2.18) 

Where D is the density (g/cm ) and C is the heat capacity (cal/g°C). Parker et al studied 

the temperature profile at the rear surface (L=0) of such a sample. Since g is a very small 

value, s'm(n/rg IL) « nng IL, and (2.18) becomes: 

7(1,0 
DCL 

l + 2]T(-irexp 
f 2 2 \ 

—^—at 
«=i V J 

(2.19) 

Figure (2-16) represents the dimensionless plot of the sample's back surface according to 

equation (2.19). It can be seen from (2.19) that a can be determined in two ways [69]. 

a, =(1.38£2/;r2/ l) 

a2 =(0ASL2/x2tx) 

(2.20) 

(2.21) 

tj,n is the time required for the back surface temperature to reach half of the maximum 

temperature and tx is the time axis intercept of the temperature versus time curve. 
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Figure 2-16 Plot of the back surface temperature du r i ng t ime |69| 
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2.6 Summary 

Different methods of data acquisition and data analysis in thermography are discussed in 

this chapter. Pulse thermography is a popular method where a thermal pulse is introduced 

to the sample's surface and its temporal decay is studied to investigate surface properties. 

It provides good results for homogenous samples with fairly shallow defects. However, in 

practice, the pulse has non-uniformities that make the thermal contrast curve difficult to 

interpret. Lock-in thermography is another method introduced that uses a modulated 

thermal wave to stimulate the surface and the change in amplitude and phase of the wave 

defines thermal properties of the sample. The problem with this method is that there 

should be a run of experiment for each pixel on the sample, so that it takes a long time. 

However modulated wave has the advantage of not being sensitive to noises and non-

uniformities. As an optimum thermography method PPT (pulse phase thermography) is 

then introduced that combines the advantages of both methods without their limitations. 

The surface is pulse heated as in PT while the temporal decay is transformed to phase and 

amplitude images through Fourier transform. 

Also Parker's Flash method of measuring thermal diffusivity is discussed. This method is 

the most reliable way of measuring thermal diffusivity so far and will be utilized in the 

next chapters to verify the applicability of the proposed simulation for thermal diffusivity 

evaluation of materials. 
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Chapter 3 

3 Numerical Methods in Heat Transfer 

3.1 Introduction 

In the past few years, there has been a great effort to develop various numerical methods 

for the solution of heat equations. Although there are exact solutions available to the heat 

equation, they only apply to linear flow of heat or areas of simple shape. Studying 

thermal wave behavior in the more complicated boundary conditions and sample shapes 

needs numerical solutions. 

Among the various finite difference schemes to solve partial differential equations, a 

particular scheme should be picked depending on the type of partial differential equation 

considered. 

The equation to be solved is the one-dimensional time dependent heat conduction: 

^ - i ^ = 0 (3.,) 
dx~ a dt 

where 0(x) is the function of temperature distribution along a l D rod. 

The idea behind the numerical solutions is to replace the partial differential equation by a 

discrete approximation and solve the resulting set of algebraic equations to find the 

discrete unknowns. The more nodes (discrete points) used in a numerical method, the 

greater resolution and accuracy of the method. 

3.2 Finite Difference Method 

The finite difference method (FDM) is one of the most popular numerical solutions to 

equation (3.1). In this method, a mesh is considered as the set of points in location-time 
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domain for which (/>(x.t) is obtained approximately. Figure (3-1) is a representation of a 

one dimensional mesh with nodes located equally distanced on position (Ax) and time 

(At) axis. 

o—o—Q—Q—Q—Q—Q 

T—V—V—V—T—T—T 

i T T T T T T J T 

6—o—o—<o—6—CK-6 

At 

Ax 

Figure 3-1 Mesh representing a one dimensional rod through several time steps 

Applying the finite-difference method to the heat equation is in fact replacing the 

continuous derivatives with difference formulas. Difference formulas as being explained 

in the following section use different combinations of the points on the mesh to replace 

the continuous derivatives. Depending on which combination of the mesh points to use in 

a difference formula, there are different schemes to employ in a finite difference problem. 

After the proper scheme is chosen and applied to the partial differential equation, the 

numerical solution will approach to the real solution if the time and position spacing go 

to zero. However, not all the schemes will develop the true solution by the same rate. 

Hence, choosing a proper finite difference scheme for a particular problem is of great 

importance. The following sections will be on reviewing some of these schemes and 

applying them to the heat equation. 
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3.3 Discrete Approximation of Derivatives 

3.3.1 Finite Difference Approximation of First Derivative 

In finite difference method to replace the partial differential equations with a proper 

difference formula, the Taylor series expansion of ^(x) about the random point x, is 

considered [70]. 

ox + 
dx2 d20 

2 dx~ + 
Sx3 d3</> 

3! 8x3 + .. (3.2) 

Where Sx represents a small change along the x axis. Solving this equation for 
V dx j , 

dx 

</){xl +Sx)- </>(xl) Sx dV 

Sx 2 dx2 

Sx2 d3<p 

3! dx: + .. (3.3) 

When applying this method for a mesh of N nodes along a one dimensional rod of length 

L. dx is replaced by Ax (= ) and equation (3.3) would change to: 

dt 
dx v Av 

Ax d2</> 

2 dx2 

Ax~ d"<j> 

3! dx3 + . (3.4) 

Where the exact values of 0(x,) and (z)(x,+Av) are substituted by the approximated 

solutions cj), and^ , assuming that / is the mesh point at x,. 
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Rewriting equation (3.4) while only keeping the first order derivative gives: 

dx Ax 
+ 0( At) {forward) (3.5) 

Where the order of" O(Av) "determines the truncation error associated with the finite 

difference scheme used. In this case O(Ax) is: 

O(Av) = 
A x d2<f> 

2 dx2 + 
(Ax)2 5V1 

3! Bx' + . (3.6) 

Equation (3.5) is calledforwara'difference formula to replace the first order derivative of 

<f> at Xj. The term forward suggests that the nodes involved in this estimate were x, and 

*,>/. Av is under the control of the user, so is the truncation error. 

First order backward difference is obtained by involving nodes / and /'-/, and using 

Sx = -Ax in equation (3.2): 

A A A W + 
(At)2 d2<f> 

2 dx2 
(Ac)3 aV 

3! dx' + . (3.7) 

Solving for the first order derivative to get backward difference equation: 

d<p 

Ax 
+ ()(Ax) (backward) (3.8) 

This is an alternative first order difference term used to solve the partial differential 

equations. However, the truncation error remains of the same order for both forward and 

backward formulas. 



There is another finite difference approximation known as central difference for which 

the magnitude of the truncation error turns out to be smaller than the previous two 

methods. 

To determine the central difference equations, (3.7) is to be subtracted from (3.2): 

fa+\ = fa + Ax 

k-\ = <t>, ~ A * 

_d<j) 

dx 

Ox 

fa+\-fa-\ =2Ax di 
dx 

(Ax)2 dl<j> 

2 dx2 

(Ax)2 d2(j> 

2 dx2 

+ 
.X, 

Xj 

, 2(Ax)3 5-> 

3! dx* 

(Axf a> 
3! dx3 

(Ax)3 d'V 
3! dx3 

+ ... 
X. 

+ ... 

+ ... 

(3.9) 

Solving for the first order derivative: 

di 
dx 2Ax 

(central) (3.10) 

This is the central difference method to solve a partial differential equation. As is 

revealed by equation (3.10), central difference is a more accurate approximation since the 

truncation error associated with it is second order in Ax. 
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3.3.2 Finite Difference Approximation of Second Derivative 

To develop the finite difference scheme for a partial derivative of second order, the same 

method as in central difference is used. However in this scheme, forward and backward 

terms are added to set the result: 

#.+l+rt_,=24+(Ax) ,dV 
dx2 + 

2(Ax)4 5V 
4! ox 

+ . (3.11) 

Solving (or(d2<f>/dx2)x , gives: 

d2<f> 

dx-
^-2^:^+0(Ax)2 

(Ax)-
(central) (3.12) 

This equation is called the central scheme since the nodes involved are a central node (x,) 

and the neighboring nodes (x,_/) and (x,+/). However the forward and backward relations 

are also easy to find [71]. 

d2</> 

dx^ 

6-2tM+tn2 

(A*)2 
+ O(Ax) (forward) (3.13) 

d2(f> 

dx2 

#-_2-2#_,+# 
(AY)2 

+ 0(Ax) (backward) (3.14) 

Although two/three grid points are involved in the schemes above to find the equivalent 

approximation for first and second order derivatives, methods using more than three 

nodes to evaluate the derivatives at node .v, are also possible to develop [71]. 

As is seen in equation (3.12). the truncation error in the central scheme is from the order 

of magnitude of (Jx)~ while it is of order (Ax) for the forward and backward methods. 
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3.4 Employing Finite Difference Approximation in Heat Equation 

3.4.1 Types of Partial Differential Equations 

To solve a second order partial differential equation with finite difference schemes, there 

are various schemes to choose from. However, selecting the right method depends on the 

type of the differential equation to be solved. 

To study this matter the most general form of the second order partial differential 

equation presented by Forsythe et cil. (1967) is considered [72]. 

Ad^ + B ^ + cd^ + Ddl + Edl + F(/> + G(xy) = 0 (3 
dx~ Bxdy dy dx dy 

It is assumed that the coefficients A, B...G are not a function of^ , however they may be 

dependent on x and y. Different values of A,B and C may then result in 3 types of 

differential equations [72]. 

i2- 4AC < 0 

;2- 4AC = 0 

'?- 4AC > 0 

Elliptic 

Parabolic 

Hyperbolic 

(3.16a) 

(3.16b) 

(3.16c) 

Here are some examples of the heat conduction equations under each category [71]. 

The steady state heat conduction equation is in fact Laplace's equation and is elliptic: 

d2</> d2<t> _ 
—T + ̂ TT = 0 (j.17) 
ox' cy 

This equation turns to a Poisson '.s equation in case there is an energy generation involved 

and is also elliptic: 
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^ ^ * j g i x . y ) - 0 (3.18) 
ox' ov~ k 

Example of a parabolic equation is the one-dimensional time dependent heat equation: 

^ - ! £ (3.19) 
dx~ a dt 

The wave equation is of second order in time and is an example of a hyperbolic equation: 

d2<t> 1 d2(f> 
dx2 c2 dt2 (3.20) 

To identify whether an equation is elliptic or parabolic, the order of the partial 

differential equations involved should be considered. In equation (3.17), the second order 

partial derivatives in x and y imply that the condition at any random location on x-y 

domain is affected by the changes in x and y variables on both sides of that point. Such 

an equation is called elliptic. However, the time derivative in equation (3.19) is of first 

order, hence any change at a point on the time axis is influenced only by the previous 

point on it. It is important to know that even one such derivative in an equation is enough 

for it to be a parabolic equation, as in equation (3.19). This explains the reason why 

parabolic equations are easier to work with since they have the advantage of major 

cutback in data storage. 

3.4.2 Finite Difference Schemes in One Dimensional Parabolic 

System 

In this section the Unite difference formulation of one- dimensional parabolic systems are 

studied as well as its stability. Transient heat problem in one-dimension is a one of 

numerous parabolic systems. A single parabolic problem may have many possible finite 
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difference solutions. The following is an example of three solutions which were used in 

this thesis. 

In these schemes the partial time and space derivatives are replaced by a discrete 

approximation. The analysis is based on the assumption that heat is propagating in a 

finite region of length L. 

dt dx2 ' 

To specify discrete values of <f>(x,t) at different time and locations </>" is used. The 

subscript / and the superscript n specify the point at x=x, at the n\h time step. 

3.4.2.1 Simple Explicit Scheme 

In this method the time derivative in (3.21) is approximated by the forward difference 

and the second order spatial derivative is substituted by the central approach. 

<r-£=a ff,-24"+#,:, + 0{At)+0(Ax)2 
At (Ab­

solving for <j>"A to get: 

trl=tf+-^M>-2tf+V-i) (3.23) 

The truncation error dropped is from the order of (J[At ,(Ax)2 ]• A simple rearrangement 

of the terms in this equation will develop the final answer: 

C'= 'C+n-2/ -M"+/ -C i (3.24) 
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where 

r = 
aAt (3.25) 

Equation (3.24) is called the simple explicit method in solving the heat diffusion problem. 

In this scheme, assuming the temperatures at nodes /- / , /, /+/ are available at time level 

n, the temperature at / at the next time level (n+1) is developed. (Fig 3.2) 

n+l 

o 

Time 

° ~ T T T T 
—O k 6—Q 

•o 

.-<^-Q-^>-<y-Q 

-> i-l i i+1 

Figure 3-2 The finite Difference nodes associated with the simple explicit method 

It is interesting that in this scheme, the value of tj)''+] is independent of the values <j>"^ and 

,ii+] 

If a rod of length L is divided to M intervals on the mesh. / changes in the 

range 0 < / < A/, hence M+l unknown potentials {</>") are to be found. However, there 

are only M-l algebraic equations available by (3.24) at each time step. The other two 

equations are found by applying the boundary conditions. The following is a study on 

heat diffusion in a one dimensional rod with three different boundary conditions [71]. 
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a) If the temperature at the boundaries is known at all times, then the two additional 

equations would be: 

(*(0,/) = #, (3.26-a) 

0 ( 4 0 = 0/. (3.26-b) 

b) In case where the edge surfaces are subject to convection due a temperature gradient 

with the environment: 

_k 30(0,0 + / ^ ( o , f ) = /^(0,oo) (3.27-a) 
dx 

kW
L>0 +h^(0,t) = h^(L,oo) (3.27-b) 

ox 

Where h() and hL represent the heat transfer coefficients at x=0 and x=L, and 0(0, oo) and 

0(I,oo) are the known ambient temperatures at each end into which the heat is 

transferred. To discretize these two equations, forward and backward difference schemes 

are used in equations (3.27-a) and (3.27-b) respectively [71]. 

c) When there is a prearranged flux (QO,QL) at the boundaries: 

-k— = 0Q = known (3.28-a) 
dx 

k— = 0. = known (3.28-b) 
dx ~' 

The same approach as in the previous part (b-) is applicable to this equation given that ho 

and /?/ values are zero here. 
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3.4.2.2 Simple Implicit Scheme 

To derive simple implicit scheme, backward difference should be used to discretize the 

time partial derivative on the left hand side of equation (3.21). 

dt 

in ±n~\ in ±n 
1 ~9, + 0(At) (3.30) 

At 

Similar to the explicit method, in this scheme also central difference is used to substitute 

the spatial derivative in equation (3.21). Introducing these discrete values to equation 

(3.21) results in: 

£-r:=a c, - w+c, + O{A0+C)(Ax)2 (331) 
At (Ax) 

Here, same as in Equation (3.22) the accuracy of the approximation is of order of 

0[(Ax)2,At]. Rearranging this algebraic formula shows that unlike the explicit method, 

here the potential <f>" is not independent of its neighboring nodes <f>"_{ and^,",. 

-L#'-' = —^ + ( — + - ^ ) ( / > : ^ / ; , (3.32) 
At' (Ax)2 " At (Ax)2 (Ax)2 

Therefore a set of equations should be solved to find the potential of a node at later times. 

Figure 3-3 illustrates how the nodes associated with simple implicit scheme are different 

from the explicit method. 
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n-1 

Time 

i-1 i i+1 

Figure 3-3 The finite Difference nodes associated with the simple implicit method 

In this method, at each time step (n), set of N equations should be solved. Although the 

computational process for the implicit scheme is more complicated than the explicit 

method, this scheme has a great advantage of being unconditionally stable. Considering 

the fact that both methods are of the same accuracy, simple implicit method allows an 

open choice of At for a little extra computational effort. 

Both implicit and explicit methods are of the first order of accuracy in time domain. 

(O(At)). In case where more accurate results are demanded, another scheme of 

importance is the Crank-Nicolson scheme with the temporal error of the second order 

(O(At)2). This scheme is actually nothing complicated but taking the average of the right 

hand side in equations (3.22) and (3.31) from explicit and implicit methods, while 

keeping the left hand side of implicit equation [71]. Similar to the implicit method, this 

scheme is unconditionally stable. 

There are also other schemes to choose from when it comes to discretizing the heat 

equation for a specific problem. Combined method and three-time-level method are two 

examples from many [71]. It is then a matter of choice and priorities in a problem which 

results in choosinu one of the possible methods over the rest. 



3.5 How Precise Are Numerical Methods? 

When applying the finite difference scheme to discretize the partial differential equations, 

there is a variety of methods to choose from e.g. implicit, explicit schemes. However, 

choosing the proper scheme for a problem is not possible unless the question of its 

stability, consistency, errors and convergence is answered. 

The most evident error involved in the finite difference scheme is the truncation error as 

discussed in section 3.3.1, where the terms of higher order of the variable (e.g. Ax) are 

neglected. The larger the truncation error, the farther the approximation is from the exact 

solution. 

In the limit where the time and space intervals tend to zero, the numerical solution should 

approach the analytical solution. If this condition is met by a finite difference scheme, it 

is convergent. 

One of the common errors in all computational methods is the round-off error. As is 

suggested by its name, this error is caused by rounding off real numbers. This error is less 

significant nowadays since the modern computers can store real numbers with up to 12 

decimal places. 

3.5.1 Stability 

If the errors involved in a computational scheme are growing at each step with no 

bounds, it is said to be unstable. 

Although the simple explicit method is easy to implement computationally, there are 

some restrictions to it. The solution to equation (3.24) shows divergence and oscillation 

for some r values. This is referred to as instability, and the proper value range of r to 

prevent it is: 

r<- (3.29) 
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Given that r = r(Eq. 3.25). and a and Ax are specified for a particular heat diffusion 
(Ax)' 

problem, At can only get limited range of value in order to meet the condition in (3.29). 

In a problem where the temperature is studied over a long time, either longer time steps 

or larger number of them should be used. Equation (3.29) restricts the maximum length 

of the time steps so that the calculations should be performed over a larger number of 

steps. 

This implies the increase in the number of iterations needed which is not favorable. 

However, there is not such a restriction in implicit scheme. In order to prove this point 

there is an analytical way of studying the stability of this technique called the Fourier 

method. 

3.5.2 Fourier Method of Stability Analysis for Implicit Scheme 

Assuming that </>,.• is the exact solution to a partial differential equation and ^v is its 

numerical solution [71], the error of the computational method used is the difference of 

between these two solutions [71]. 

e = *N-fa (3-30) 

Now let's consider implicit method in which the time and spatial derivatives are replaced 

by the backward and central differences respectively: 

ZL ^ = a ^ y> r.^ ( 3 3 1 ) 

At (Ax)2 [ } 

For small values of At and Ax. 0F satisfies this equation already, so that according to 

equation (3.30). it results in: 
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* , - * , " 
At = a 

s"::-2s'r'+e, ' + £,+] 

(Ax)2 
(3.32) 

Assume that the errors introduced to a numerical solution at the beginning of the time, are 

expressed as complex exponentials 

„ n >"A' ,/fiJSx 
s(iAx.nAt) = s"J = e1"" .e (3.33) 

Here j=V-l . pm is the Fourier mode, y is a general complex quantity and n and i represent 

the time and space step numbers. Let's assume: 

4 = e* 
yM (3.34) 

Then (3.33) becomes: 

(3.35) 

Introducing the Fourier definition of the error in equation (3.32), it becomes: 

(Ax)' 

2aAt J e
jP"Ax+e-Jp^x ^ 

(3.36) 

Considering that: 

cos(/?„Av) = 
e /A„Av + ^ . ; A „Av 

(3.37) 

And recallin n r = 
aAt 

(Ax)2 
- , (3.36) is written as: 
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^ - l = 2^(cos(/?„Av)-l) (3.38) 

*-l = -4r£ sin2 ( ^ ^ ) (3.39) 

(3.40) 

Now, looking at equation (3.33) and (3.34), it is evident that the solution will be stable as 

long as |<f| < 1. It is evident that this condition is met by all positive values of r which are 

the only values that it can get according to its definition. Therefore, implicit method is 

stable no matter what the choices of Ax and At are. 

3.6 Summary 

In this chapter the numerical solution of the heat equation is reviewed. Since finding the 

exact solution of this partial differential equation is not straightforward in case of 

different shapes and boundary conditions, the numerical solutions are considered. Finite 

difference method (FDM) is introduced to replace the partial derivatives with difference 

formulas. Among various results of applying FDM to the heat equation, two most popular 

ones are discussed in this chapter: Explicit and Implicit schemes. 

Although explicit scheme is mathematically easier to implement, it is only conditionally 

stable. On the other hand, this is not the case for the implicit method; however a large set 

of equations should be solved in this method which is the main focus of this thesis. Next 

chapter includes the suggested algorithm to overcome this difficulty and the obtained 

results from both simulations and the experiments. 

l + 4,.sin
2(AA^) 

2 

58 



Chapter 4 

4 Implementation of Numerical Methods and Results 

In this section, explicit and implicit schemes are tested for various initial and 

boundary conditions and the results are compared for both methods. All the 

algorithms are written in MATLAB6 7.0.4. 

4.1 Employing Explicit Scheme in One Dimension 

The explicit finite difference codes are tested for one object under three different 

types of boundary conditions. The method is then employed to 2 dimensions and the 

stability of this method is studied as well. 

The heat source varies from a square pulse as in pulse thermography to modulated 

heat as in Lock-in thermography. 

The main equation to solve in simple explicit method is: (3.24) 

i = l,2,...,M-l and n = 0,1,2,... 

This term will provide a set of M-l equations while there are M+l unknowns to find 

(i=0,I A/). The other two terms depend on the different boundary conditions in 

each problem. 

The algorithm is as follows: 

(1) Define a two dimensional matrix to store the data, the number of rows in this 

matrix is defined by the number of time steps and it has VI columns to store 

temperature of the cells. 

(2) Start from n=0 and use (3.24) to find the temperature <j>) for all values of i 

(I M). 
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(3) Go to the next time step (/?=/) and repeat the same process as in (2) and find 

(jf- and store it in the third (n=2) row of the profile matrix. 

(4) Keep performing the calculations un-til the last time step. 

4.1.1 Set Temperature at the Boundaries 

It is assumed that the temperatures at i=I and i=M are known during the whole 

process, i.e.: 

Ta Tb 

/=/ /=/W 

Set Temperatures at the Boundaries 

(4.1) 

These two equations will provide the two missing equations to solve (3.24). The set of 

M equations to be solved at each time steps can be written in the matrix form: 

C 

At 

1 0 ••• 0 0 

r ( l_2r) r 0 0 

o '•. '•. '•. o 
0 0 r (1-2/-) r 

0 0 - 0 I 

T„ 

(4.2) 

The first and last row will maintain the temperature of the boundary cells at Ta and Tb 

at all times. 
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%Expllcit method, 1-D, set boundary temperatures. Dirac Delta pulse 

clear all 
clc 

"hDefine the test problem 

iLnth = 200; 
iTime = 300000; 
d x = 0.0001; 
d t = 0.0001; 
alf = 10A(-6)*ones(iLnth, 1); 
r = alf*d_t/(d_x)A2; 
T = zeros(1, iLnth); 
T(100) = 50; 
T new = zeros(1, iLnth); 
T a=20; 
T_b=20; 
Lsavejrame = 1000; 
count = 1; 

for i = 1 : iTime 

Tj iew = zeros(1, iLnth); 
T_new(1,1);:T_a; 

forj = 2 : iLnth-1 
T_new(j) = rG)*T(j-1) + (1 

end 

T_new(1,iLnth) = T_b; 

T(1:iLnth) = T_new(1:iLnth); 

end 

-2*r(j)) 

% the length of the 1-D rod 
% the number of the time steps in the time of observation 
% the size of the spatial step 
% the duration of the time step 
% the array of thermal diffusivities 
% define r: thermal_diffusivity*d_t/(d_x)A2 
% the temperature distribution 
% the heat sources 
% temporarily keeps each T row 
% boundary temperatures 

% the interval of saving the frames 

% the time loop (steps) 

T(j) + r(j)*T(j + 1); 

% assigning the newly calculated temperatures to the real array 

Code Listing 4-1 M A T L A B codes to solve 1-D linear heat diffusion problem, explicit method, 
prescribed boundary temperatures. 
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4.1.2 Boundaries Subjected to Convection 

In case where there is heat transfer in form of convection from the first and last cells 

on the rod, two additional terms would add to equation (3.24) [71]. 

-k<y. + hot = hoT (4.3-a) 
ox 

k?l + hl<t> = hlTMl (4.3-b) 
ox 

Where ho and hi are heat transfer coefficients at both ends of the rod. These two 

equations show how heat is transferred from the first and cells on the rod to the 

neighboring environment with the ambient temperatures Tma and Tmj, respectively. 

Although the ambient temperatures are known at both ends, the temperature of the 

cells is not. Adding these two relations to the main heat equation at the boundaries 

results a set of M equations to solve at each time step. However, the partial 

differential equations in (4.3) should also be replaced by the difference methods. 

Using forward differencing method for (4.3-a) gives: 

.k{KJL) + ^=hjn0 j=i (4.4-a) 
Ax 

And employing backward difference method to discretize (4.4-b) results in: 

kfi /"'-•)+M;;=ft,7;A, \=u 
Ax 

(4.4-b) 

Rearranging these two equations to get the temperature of the first and last cell in 

terms of the neighboring cells: 

^ ' , = - ^ 7 - +-J—#;. , (4.5-b) 
\ + y, I + v, 
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Where 

//.AY . h, Sx 
* , = — and , , = — 

It should be mentioned that the accuracy of this equation is also from the first order in 

space, i.e. O(Ax), as the forward/backward difference methods used to discretize the 

partial differential terms. 

To implement this method, there should be a minor change in the algorithm 

mentioned previously. 

(1) Define a two dimensional matrix to store the data, the number of rows in this 

matrix is defined by the number of time steps and it has M columns to store 

temperature of the cells. 

(2) The temperature at all points is known at the beginning (n=0), for n=l the loop 

starts from i=2 and goes on to n=M-l, using equation (3.24) to find the 

temperature at each node. 

(3) While still on the same time step (i.e. n=l), the temperature on the first and last 

spatial nodes are defined using the set of equations (4.5-a) and (4.5-b). 

(4) Repeat the steps (2) and (3) for the next time step n=2 and save the information in 

the third row of the matrix defined in the first step. 

(5) Repeat this method until the last time step is reached. 

Code listing 4-2 is the implementation of this scheme in terms of MATLAB codes. 
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%hxp!iC!t method. 1-D, convect: 

clear all 
clc 

%Define the test problem 

iLnth = 200; 
iTime = 300000; 
d x = 0.0001: 
d t = 0.0001; 
alf = 10A(-6)*ones(iLnth, 1); 
r = alf d_t/(d_x)A2; 
T = zeros(1, iLnth); 
T(100) = 50; 
h0=50; 
hL=50; 
T_amb_0=10; 
T_amb_L=30; 
Gamma0=h0*d_x/k; 
GammaL=hL*d_x/k; 
T_new = zeros(1, iLnth); 
i_save_frame = 1000; 
count = 1; 

for i = 1 : iTime 

T_new = zeros(1, iLnth); 

forj = 2: iLnth-1 

T_new(j) = r(j)*T(j-1) + (1 
end 

on at the 

-2*r(j))* 

boundaries. Cirac Delta pulse 

% the length of the 1-D rod 
% the number of the time steps in the time of observation 
% the size of the spatial step 
% the duration of the time step 
% the array of thermal diffusivities 
% define r: thermal_diffusivlty*d_t/(d_x)A2 
% the temperature distribution 
% the heat sources 
% the heat transfer coefficients at the boundaries 

%the ambient temperatures at the boundaries 

% temporarily keeps each T row 
% the irrterval of saving the frames 

% the time loop (steps) 

T(j) + r(j)*T(j + 1); 

T_new(1,iLnth) =(GammaL/(1+GammaL))*T_amb_L+(1/(1+GammaL))*T_new(iLnth-1); 
T_new(1,1)= (Gamma0/(1+Gamma0)) 
T(1:iLnth) = T_new(1:iLnth); 

end 

*T_amb_0+(1/(1+GammaO))*T_new(2); 
% assigning the newly calculated temperatures to the real array 

Code Listing 4-2 MATLAB Codes to Implement Explicit Scheme in ID, Boundaries subjected to 
convection. Pulse Heating. 
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4.1.3 Boundaries Subjected to a Prescribed Flux 

Another possible boundary condition in case of a l-D rod where a known heat flux is 

applied at the boundaries at all times [71]. 

3d 
-k— = q0 = Known x=0 (4.6-a) 

dx 

dd> 
k— = q,= Known x=L (4.6-b) 

dx 

A comparison between the previously discussed "known convection boundary 

condition" and this one shows that the latter is obtained by substituting the heat 

transfer coefficients in equation (4.3) by zero. In order to employ finite difference 

method to discretize this term, the same method as in previous section can be used 

with zero values for ho and hi.. The two boundary equations then will be obtained as: 

tf=3s£L + fi x=o (4.7-a) 

# w = ^ + (C-i X = L ( 4 J ' b ) 

k 

It is worth to be noted that the accuracy of this method is also of the first order in 

space O(Ax). The algorithm to implement the explicit scheme to this problem is 

precisely the same one used for the prescribed convection boundary condition. The 

code listing presented below is the MATLAB codes for a l-D sample with the known 

heat flux at the boundaries. 
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3bExpilcit method. 1-D. Known Heat Flux a! the boundaries, Dirac Delta pulse 

clear ail 
clc 

%Define the test problem 

iLnth = 200; 
iTime = 300000; 
d_x = 0.0001; 
d_t = 0.0001; 
alf= 10A(-6)*ones(iLnth, 1); 
r = alf d_t/(d_x)A2; 
T = zeros(1, iLnth); 
T(100) = 50; 
q0 - 40; 
ql_ = 60; 
k = 
T_new = zeros(1, iLnth); 
Lsavejrame = 1000; 
count = 1; 

for i = 1 : iTime 

T_new = zeros(1, iLnth); 

% the length of the 1-D rod 
% the number of the time steps in the time of observation 
% the size of the spatial step 
% the duration of the time step 
% the array of thermal diffusivities 
% define r: thermal_diffusivity*d_i/(d_x)A2 
% the temperature distribution 
% the heat sources 
% the heat flux at the boundaries 

% temporarily keeps each T row 
% the interval of saving the frames 

% the time loop (steps) 

forj = 2 : iLnth-1 
T_new(j) = r(j)*T(j -1) + (1 - 2*r(j)) * T(j) + r(j) * T(j + 1); 

end 

T_new(1 JLnth) =qL*d_x/k+T_new(iLnth-1); 
T_new(1,1)= q0*d_x/k+T_new(2); 
T(1 :iLnth) = T_new(1 riLnth); % assigning the newly calculated temperatures to the real array 

end 

Code Listing 4-3 M A T L A B codes to solve 1-0 linear heat diffusion problem, explicit method, 
prescribed heat flux at the boundaries. 
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4.1.4 Explicit Scheme with Lock-in Thermography 

In order to benefit from the advantages of lock-in thermography in the explicit 

method, the process can be repeated utilizing modulated heat source instead of a Dirac 

delta pulse. In practice the difference in implementing a modulated heat pulse is in 

defining the temperature distribution at the beginning of the experiment, i.e. n=0. 

The following code listing (Code Listing 4-4) is an example of a l-D rod subjected to 

a sinusoidal pulse. 

%Explicit Method, 1-D, Sim 

clear all 
clc 

% Defining the problem 

iLnth = 200; 
iTime = 30000; 
d x = 0.0001; 
d_t = 0.0001; 

i save frame = 1000; 
alf= 10A(-6)*ones(iLnth, 1); 
r = alfd t/(d x)A2; 
T a=20; 
T_b=20; 

% the program execution 

T = zeros(1, iLnth); 
T new = zeros(1, iLnth+2); 
f=3; 
S_Amp=700; 
el_No=20; 
for i = 1 : iTime 

T(1,2:6)=S_Amp*sin(f*2* 
T_new(1,1)=T_a; 
forj = 2 : iLnth-1 

T_new(j) = r(j)*T(j-1) 
end 
T_new(1,iLnth) = T_b; 
for k = 1 : iLnth+2 

T(k) = T_new(k); 
end 

end 

soidal Heat Pu 

pi*(i-1)/iTime); 

+ (1 

se, Known Temperature at the Boundaries. 

% the number of the cells in the rod 
% the number of the time steps in the time of observation 
% the size of the spatial step 
% the duration of the time step 

% the interval of saving the frames 
% the array of thermal diffusivities 
% define r: thermal_diffusivity*d_t/(d_x)A2 
% boundary temperatures 

% the temperature distribution 
% temporarily keeps each T row 
%Frequency of the source 
%Amplitude at the source 
% the element under Investigation 
% the time loop (steps) 

% the coordinate loop 
2*r(j))*T(j) + r(j)*T(j + 1); 

% assigning the :-ewly calculated temperfitii.'es to she real a/^iy 

Code Listing 4-4 MAT LAB codes to implement H sine shape pulse to a l-D heat diffusion problem. 
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4.2 Simple Explicit Method in 2-D Diffusion 

Although multidimensional linear diffusion problem can be solved for the simple 

shapes such as a rectangle, cylinder and sphere using analytical methods, for bodies 

with irregular shapes, complicated boundary conditions or temperature dependent 

properties (e.g. diffusivity), it is easier to solve the problem with numerical method 

[71]. 

In this section the generalization of the finite difference method in solving a 2-D 

parabolic system is to be studied. Parabolic systems are chosen since they cover a vast 

range of the heat transfer problems. Heat/mass diffusion in solids, boundary layer type 

heat transfer problems and transient temperature diffusion problems are a few 

examples of the parabolic systems. 

Two-dimensional linear heat diffusion equation is given by: 

d</> 

dt dx2 dy2 (4.7) 

Where as in the one dimensional case, a represents the thermal diffusivity. However, 

the temperature is a function of time and both x and y directions (<p(x,y,ij). As for the 

explicit method, the time derivative is replaced by the forward difference and the 

spatial derivatives are replaced by central differences. 

y^i ^ = a^±i ^ %+,-> + a ^ V'\ fll+[ + O(M) + O(Av)2 + (){Av): 

M (AY)" (A>r 

(4.8) 

Here </>". represents the temperature at the spatial coordinates (i.j). Rearranging this 

equation in terms of the temperature at (i.j) at a later time step (n+l) provides: 
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Where 

aAt and aAt 

(Ay? 
(4.10) 

The spacing on each x and y axis is a matter of user's choice. To simplify the 

computational process, the x and y discrete intervals may be chosen the same values 

without affecting the generality of the solution. Therefore equation (4.9) becomes: 

C' = 'W-..,+ Cu + C-.+ C+ .)+ (' - 4'')C (4.11) 

Where r=rx=rv. 

Figure (4.1) illustrates how the explicit scheme works for 2-D problems. The 

temperature of a point on the 2-D plane at a later time step may be found knowing the 

temperature of the same point and its four neighbors at the present time step. 

1 A 

t=n+l 

t=n 

k 

X X X X X X X 
X X X ^ XXX 

XXX / f / X X 
X X X X X X 

y i 
j+jry*' / x'w^ XXX 

SX X X X X / 
i-1 i i+1 

/ / x 
/' / 

P X 

Figure 4-1 The 2-D finite difference nodes associated with the simple explicit scheme. 
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The MATLAB codes to implement this scheme in case of a flat surface with known 

temperature at the boundaries subjected to a square heat pulse. 

% Explicit scheme, 2-D. known 

clear all 
clc 

%Test Problem 

iLnth = 100; 
jLnth = 65; 
iTime = 30000; 
• T a = 40; 
• T_b=50; 

temperature at the boundaries, square heat pulse 

% the number of cells in the rod (x axis) 
% the number of cells in the rod (y axis) 
% the number of the time steps in the time of observation 
% the prescribed temperature at the boundaries (East,West) 

%This model works as long as we assume that d__x = d..y, otherwise it'll be more complicated 

d x = 0.001; 
d_y = 0.001; 
d t = 0.005; 
alf=10A(-5)*ones(jLnth,iLnth); 
r = alf*d_t/(d_x)A2; 

% the program execution 

T = zeros(jLnth , iLnth ); 
• T(10:20, :)= 10000; 
T_new = zeros(jLnth , iLnth); 

for t = 1 : iTime 
forj = 2 : jLnth-1 

for i = 2 : iLnth-1 
T_new(j,i) = r(j,i)*(T(j -1 

end 

• T_new(j, iLnth ) = T_a; 
• T_new(j,1) = T_b; 

end 

forj = 1 : jLnth 
for i = 1 : iLnth 

T(j,i) = T_new(j,i): 
end 

end 

% the size of the spatial step (x axis) 
% the size of the spatial step (y axis) 
% the duration of each time step 

% the array of thermal diffusivities 
% define r: thermal diffusivity'd t/(d x)A2 . d x = d y: 

% the temperature distribution 
% the heat source 
% temporarily keeps each T distribution 

% the time loop (ste'ps) 
% the coordinate loop 

i) + T(i + 1,i)+Tfl,i-1)+T(j,i + 1)) + (1-4*rO,i))*TQ,i); 

%known temperature at East 

% assigning the newly calculated temperatures to the real array 

Code Listing 4-5 MATLAB codes to implement the explicit scheme to a 2-D surface. 
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A modulated heat wave may replace the square pulse by defining the heat source as a 

sinusoidal wave initially generated on x or y axis. In the previous example, the A line 

should be replaced by: 

T(:,2:4) = 700*sin(t*20*pi/iTime); 

This change will represent a sinusoidal heat wave with the initial amplitude of 

magnitude 700° and the frequency of (1/iTimes) second'1 and excites the entire second 

to forth rows of the surface at the beginning. 

Also there is no restriction on the boundary conditions in this 2-D generalization since 

to apply a different boundary condition to this problem, one may only replace the 

lines • by the type of boundary conditions discussed in sections 4.1.2 and 4.1.3. 

To generalize the heat diffusion problem to a layered sample, the only change in this 

method is to consider different thermal diffusivities on it. Code listing 4-6 represents 

MATLAB codes for a 2 layer sample. 
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%2 layers- 2 dimension 
%% parameters 

iLnth = 100; % the number of cells in the rod (x axis) 
jLntM = 30; % the number of celis in the rod (y axis)—-first layer 
jLnth2 = 30; % the number of cells in the rod (y axis)—-second layer 
jLnth = jLnthl + jLnth2; 
iTime = 50000; % the number of the time steps in the time of observation 
%This mode! works as long as we assume that d_x = d_y. otherwise it'll be more complicated 
d_x = 0.001; % the size of the spatial step (x axis) 
d_y = 0.001; % the size of the spatial step (y axis) 
d j = 0.0003; 

defect1_x1 = 30 
defect1_y1 = 20 
defect1_x2 = 33 
defect1_y2 = 40: 
defect2_x1 = 40 
defect2_y1 = 36 
defect2_x2 = 45; 
defect2_y2 = 55 

% the duration of each time step 

% the coordinates of the point where the defect starts 

% the coordinates of the point where the defect ends 

a l fa j = 10A(-6); 
alfa_2=10A(4); 
defect1_alf=1*10A(-10): 
defect2_alf=1*10A(-10); 

% alfl = first layer 
% alf2 = second layer 

% the array of thermal diffusivities alf = ones(jLnth,iLnth); 
alf(1: jLnth1,:) = alfa_1; 
alf (jLnth1+1 : jLnth ,:) = alfa_2; 
% alf(defect1._y1 : defect 1 „y2 . defect1_x1 : defect1_x2) = defect1_alf; % there is a change of diffusivity 
where the defect is located 
% alf(defect2..y1 : defect2„.y2 , defect2_x1 : defect2„x2) = defect2_alf; % there is a change of diffusivity 
where the defect is located 

r = alf*d_t/(d_x)A2; 
i_save_frame = 100; 

% define r: thermal_diffusivity*d_t/(d_x)A2 , d _x = d„y; 
% the interval of saving the frames 

%% the program execution 
T = zerosfjLnth , iLnth ); % the temperature distribution (+ 2 'virtual' rows + 2 'virtual' columns on the 
sides) 

T(30,:) = 10000; % the heat source 
T_new = zeros(jLnth, iLnth); % temporarily keeps each T distribution 
count = 1; 

fort = 1 : iTime % the time loop (steps) 

! the coordinate loop (includes ;he 'rear cells only - i.e.. from the 2nd to the preiast forj = 2 : jLnth 
for i = 2 : iLnth 

Tjiewflj) = r(j,i)*(T(j - 1,i) + TO + 1.i)+ T(j,i - 1)+T(j,i + 1)) + (1 - 4*r(j,i)) * T(j,i 
end 

end 

for j = 1 : jLnth 

for i = 1 : iLnth 
T(j.i) = T_new(j.i) 

end 
end 

'•"r, 3SSK e newly calculated temperatures to the real anay ",a sHe nev 

Code Listing 4-6 Implicit method for a 2 layers sample in 2-1) 



4.3 Implicit Scheme in 1-D 

Mathematical implementation of the implicit scheme is more complicated than the 

explicit scheme since here a set of equations should be solved at each time step in 

order to get the temperature of the nodes on it. 

To get a clear image of the system of equations to be solved, it's better to rearrange 

equation (3.32) into the matrix form. 

At' (Ax)2 " At (Ax)2 (Ax) 

^ " = r l ( l + 2 r ) - r C ' - r C 1 (4-12) 

Before arranging the matrix form of the equation above, the boundary conditions 

should be resolved. It is assumed that there is not a temperature gradient at the 

boundaries, meaning zero heat flux: 

dx 
= 0 (4.13) 

.v=/. 

From the forward difference we have: 

ht«-h< = Q A, =A 
. " VM+I r.vi 

Ax 

(4.14) 

where M is the last spatial step. It is assumed that there is an "invented" temperature 

point at the extended region after the last point. In order for the equation (4.12) to 

satisfy the boundary condition: 

^ = C ' 0 + 2 r ) - r ^ , - ^ l (4.15) 

This becomes: 

ft, =C' (• + '•) - ' ' d < 4 - '6) 
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The same process for the x=0 boundary condition results in: 

4"=# ,+1(l + r ) - / -# + l (4.17) 

The matrix form of the implicit method is then defined: 

\ + r 

-r 

0 

0 

0 

0 

-r 

\ + 2r 

-r 

0 

0 

0 

0 

— r 

\ + 2r 

0 

0 

0 

0 

— r 

-r 

0 

0 

0 

0 

l + 2r 

-r 

0 ~ 

0 

0 

0 

— r 

] + r 

"tf 
^' 
^' 

.^.wi_ 

(4.18) 

The algorithm that should be used is as the following: 

(l)Starting from n=0, ^° is known for all / values. Therefore the matrix problem to be 

solved can be simplified as: 

AX = B (4.19) 

(2)Once .Y(the temperature distribution at n=l) is found, it acts as the input data (B) 

for the next time step. 

(3)Going to n=l, another matrix equation of type (4.19) is solved for known values of 

<f>], and this way set of <p~ is found. 

(4)Repeat the same process and it is completed when n=M-l. 

The matrix of the coefficients (A) in the equation (4.18) is called a tricliagonal matrix 

in linear algebra since only the main diagonal and the first immediate diagonals above 

and below the main one have nonzero values. 

In order to implement this scheme in MATLAB codes, separate functions are defined 

for each purpose from constructing the sample and all its properties to solving the 

tridiagonal matrix equation and drawing the plots. 
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function Tobj=make_obj(a,b.c,e,f,g) 

Tobj.iLnth=a; 
Tobj.d_x=b; 
Tobj.d_t=c; 

Tobj.alpha=10A(-6)*ones(a,1); 

Tobj.T_H=e; 
Tobj.T_R=f; 
Tobj.r=Tobj.alpha*Tobj.d_t/(Tobj.d_x)A2; 
Tobj.pulse_duration=g; 

Code Listing 4-7 MATLAB function to make the sample under study 

The properties involved in making a computational object are its thermal diffusivity, 

the duration of a time step and the length and number of the spatial steps. 

The next step is to build the coefficient matrix for the defined object. 

function M=make_matrix(Tobj) 

M.diag=zeros(Tobj.iLnth, 1); 
M.lower=zeros(Tobj.iLnth-1,1); 
M.upper=zeros(Tobj.iLnth-1,1); 

for i=1 :Tobj.iLnth-1 

M.upper(i)—Tobj.r(i+1); 
M.diag(i)=1+Tobj.r(i)+Tobj.r(i+1); 
M.lower(i)=-Tobj.r(i+1); 

end 

M.diag(1)=1+Tobj.r(2); 
M.diag(Tobj.iLnth)=1+Tobj.r(Tobj.iLnth); 

%Diag 
%Lower diag 
%Upper diag 

Code Listing 4-8 MATLAB function to build the matrix of coefficients. 



Now to solve the matrix equation in (4.18), the function solve-tridiag is introduced. 

The input to this function is the four arrays that are known to the problem, which are 

the main, upper, lower diagonals of the coefficients matrix (A) plus the temperature 

distribution of the sample at the previous time step (B). The Gaussian elimination is 

used to solve this matrix equation. 

function x - solveJridiag(a,b,c,d) 

% x = solve_tridiag(a,b.c.d) solves A*x = d for x. where a is the diagonal., b is the upper diagonal, and c is 
% the lower diagonal of A. 

% NOTE: 
% size(a)=size(d)=n 
% size(b)=size(c)=n-1 

% Initialization 
m = zeros(size(a)); 
I = zeros(size(c)); 
y = zeros(size(d)); 
n = size(a,1); 

% 1. LU decomposition 
m(1,:) = a(1,:); 

y(1,:) = d(1,:); 

%2. Forward substitution (L*y=d; for y) 

for i = 2 : n 
i_1 = i-1; 
l(L1,:) = c(i_1,:)./m(iJ,:); 
m(i,:) = a0.:)-l(i_1,:).*b(i_1,:); 

y(i,:) = d(i,:) - l(i_1 ,:).*y(i_1,:); %2. Forward substitution (L*y=d, for y) 

end 

%3. Backward substitutions (U*x-~y. for x) 

x(n.:) = y(n,:)./m(n,:); 

for i = n-1 :-1 :1 

x(i,:) = (y(i.:)-b(i.:).*x(i+1,:))./m(i l:); 
end 

Code Listing 4-9 MATLAB code of a function to solve the matrix equation of type (4.18). 
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function Temp_el=T_Evolve(Tobj,M,iTime,el_no) 
% function Temp=T_.Evolve(Tobj.M.iTime) 

T = zeros(Tobj.iLnth,1); 
T_new = zeros(Tobj.iLnth,1); 

T nev\Fones(Tobj.iLnth,1)*Tobj.T R; 
T_new(1)=Tobj.T_H; 

d=T_new; 

% Temp=zeros(iTime,Tobj.iLnth); 

Temp_el=zeros(iTime,1); 

for i = 1 : iTime 

% Temp(i,:)=T_new: 

% the temperature distribution 
% temporarily keeps each T row 

% since keeping temp of the rod at every time step takes lot of memory 
% Temp is a matrix that keeps the info at 
% some time intervals defined in the code. 

% holds the temperature of el no'th element for at all the moments 

% the time loop (steps) 

ifi*Tobj.d_t<Tobj.pulse_duration 
d=T_new; 

else 
T_new=solve_tridiag(M.diag,M.upper,M.lower,d); 
d=T_new; 
Temp_el(i)=T_new(el_no); 

end 

end 

Code Listing 4-10 M A T L A B codes for impl ici t method in solving the 1-D heat diffusion problem 

It is to be noted that this simulation system suggests that the matrix equation Ax=B 

should be solved for each time step separately. With the number of time steps from 

the order of 100000. it would take a lot of memory to keep the temperature 

distribution of the I-D rod after each round. To avoid this problem, it is suggested that 

instead of saving the data from all the time steps, it should be done at larger time 

intervals, for example every 100 time steps. 
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In order to have an easier access to the code and get the results, this scheme is set up 

on the GUI (Graphic User Interface) format that makes it easier to change the 

parameters in a problem and see the resulting plot. 
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Figure 4-2 The GL1 screenshot 

The program is designed in a\\a\ that the user can define if the heat source is a simple 

square pulse heat or a modulated one. In case of the square heat pulse, the duration of 

the pulse is adjustable as well. I f the heat source used is a modulated wave, the 

frequency of the heat pulse can be defined in this format. Other parameters to 

determine are the time and space intervals (d t. d \ ) . 
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4.3.1 Implementing the Defect in a Sample 

In case of dealing with a defective sample, the thermal diffusivity of the sample is not 

constant through out the sample but varies within the sample from point to point. The 

idea for the simulation to include the imperfections in the sample is to consider the 

thermal diffusivity of the material as a function of the location in the sample (i.e. 

a(i)), hence results in r(i) in Eq. (4.18). This program (Fig. 4-2) allows simulating the 

heat diffusion in a homogeneous material with up to two imperfections inside. The 

location and size of the defects may be determined by the user as well as their thermal 

diffusivity. 

Generally two types of results are sought from this scheme: 

(1) The temperature evolution of a specific element. 

(2) The temperature distribution on the 1-D rod at a specific time step. 

The plot on the left hand side of Fig 4-2 is the real time representation of the 

temperature distribution on the 1-D rod. Once a number of time cycles (defined by the 

user) are finished, on the left hand side of Fig 4-2, the temperature variation of the 

defined cells versus time is shown. The user can choose to track up to several cells for 

their temperature variation during the time of the experiment. 

Once the plot is obtained, the Flash method (section 2.5.2) is used to determine the 

thermal diffusivity of the sample. Parker's Flash method of thermal diffusivity 

determination either uses the half time, t/.j which is the time required for the back 

surface temperature to reach half of the maximum temperature or tx that is the time 

axis intercept of the temperature versus time curve. In order to determine a reliable 

method, both these methods are utilized to obtain the thermal diffusivity for a sample 

and the result is presented. (Fig 4-3) 
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Figure 4-3 Flash Method. Temperature vs. Time at the rear surface. Heater Temperature: 373 
(K), Thermal diffusivity: 10e-8(m2/s). 

Figure 4-3 represents a typical measurement of the thermal diffusivity. ai and â  

result from using half-time and intercept methods respectively. 

In order to find the optimum conditions for using the Flash method, a series of 

experiments are simulated. 

In figure 4-4, the thermal diffusivity is found for samples of different thicknesses. It is 

evident from this figure that 1-1.5 mm thick samples should be chosen if half lime 

method is used («/) and 2.5-3 mm thick samples are best to use if the intercept 

method is employed («;). 

It is to be noted that the real thermal diffusivity value for this sample has been chosen 

to be 104 (m:/s). 

80 



T
he

rm
al

 D
iff

us
iv

ity
 

1 

^ 1 
|3̂  
i 

<T 
^~-i 

| I / 
iz 

"y\ 
/S'\ \^x^^ 

i i i 

/ 

7 

^ 

^ 

Thlckness(mm) 

Figure 4-4 Thermal Diffusivity from Flash Method vs. Thickness, (red: «,;black: a2) 

Another significant factor in the experiment is the heat pulse duration. The square 

thermal pulse generated by the flash heater is available in 5 different pulse durations: 

[1/1425, 1/900, 1/500, 1/175 (sec)]. The simulation is done for each thermal pulse and 

the resulting ai and ci2 are presented in red and black in figure (4-5.a). Since the real 

thermal diffusivity employed in this experiment is 10"4 (m2/s), it is evident in this 

figure that the half time method's results are more appealing. The next figure is a 

closer look at this plot (Fig (4-5.b)). It can be concluded that the longer the pulse 

duration, the more accurate results are obtained. 
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Figure 4-5.b Thermal diffusivity vs. Pulse duration for the half time method 
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4.3.2 Results and Conclusion 

With the information from the simulations above, the best possible conditions to run 

the experiment are as follows: 

-employing the half time method for finding thermal diffusivity. 

-working with longer duration square pulse. (1/175 sec) 

-studying on the samples with thickness of 1 to 1.5 mm. 

The experiment is done for several types of materials and the results are compared to 

the real thermal diffusivity values from the text books. 

Table 4-1 Thermal Diffusivity (Flash Method) 

Material 

Aluminum 

Chromium 

Copper 

Lead 

Silicon Carbon 

Wood 

Thickness 

(mm) 

1.5 

1 

1.5 

1.5 

1 

1.5 

Estimated 

thermal 

diffusivity 

(m2/s) 

91.1xl0"6 

29.6 xlO"6 

H2.8xl0"6 

23.6xl(T6 

229.6 xlO"6 

8.5 xl(T8 

Thermal 

diffusivity 

(textbook) 

(m2/s) 

84.2 xlO"6 

29.2 xlO"6 

112.3x 10 6 

24.1x10 6 

229.7 xl(T6 

8.2 xl(T8 

Percentage 

of deviation 

from the 

textbook 

values of a 

(m2/s) 

%7.6 

%l.3 

%0.4 

%2.1 

%0.04 

%3.5 
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4.3.3 Error Analysis in Thermal Diffusivity by Flash Method 

The uncertainty involved in the Flash method is to be found by analyzing the 

formulas: 

a, = (1.38Z2//r/,) 

a2=(0AU2/n2tx) 

(4.20-a) 

(4.20-b) 

Employing error propagation formula to Eq. (4.20): 

Sc^_L3S 

a n' 
Mf)Y.f*(',„)Y 

+ 
'1/2 J 

^ a _ L 3 8 (2S{L)\2 

a n2 \\ L ) 
S{txl2) 

hi i 

(4.21) 

(4.22) 

To find the uncertainty in Eq. (4.20-b), the same process should be repeated: 

8a 0.48 

a { c ) 
(4.23) 

It is to be noted that the uncertainty in length and time are in fact equal to the smallest 

intervals chosen in each problem, i.e. d.x and d_t. In the process of finding thermal 

diffusivity for the materials in table (4-1): 

d_x=IO'J(m) and d_t= 10°(sec) 

It can be concluded from equation (4.23) that the relative error in thermal diffusivity 

is inversely dependent on the sample's thickness. The thicker the specimen and the 

longer the time duration, the more precise is the estimated thermal diffusivity. 

Meaning that in practice, a pulse of greater power is needed to stimulate the surface 

and the detector should take images for a longer period of time. 
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4.3.4 Experimental Evaluation of Flash Method 

4.3.4.1 Instrumentation 

The experimental setup includes a flash 

heater that generates the heat pulse, the 

sample, the infrared camera to record the 

thermal evolution of the surface and a 

computer to analyze the data. Figure (4.6) 

illustrates the flash heater at the bottom of 

the picture and the infrared camera above. A 

single Speedotron 206 VF flash lamp is used 

connected to a 4803CX power supply with 

maximum power of 4800W*s. The flash 

duration was set to 1/175 second. The 

infrared camera used in this apparatus is a 

FLIR SC4000 with InSb detector, 320x256 

resolution, multiple detector/ ROIC modes 

and 14-bit digital data. A flat surface with 

small circular opening acts as a diaphragm to 

generate a point source to apply on the 

sample's surface. While the sample faces the 

flash, the camera records the temperature 

changes on the rear surface of the sample. 

Since every millisecond counts in this 

process, it is essential for the camera and 

flash heater to start precisely at the same 

time. A relay system is devised for this 

purpose. (Fig 4.7) 
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Figure 4-7 The relay system (Left), The Epoxy+Ti50 samples (Right) 

There are two relays on this chip where the first one switches the camera on and the 

second one activates the flash. In practice, to prevent losing the first received data 

from the sample, it is suggested that the camera starts recording before the heater. The 

software is designed to make it possible by defining a time delay between the two 

relays. 

The camera then starts to collect images. The user is to determine the number of the 

images to be taken and the frequency of taking them. The program stores the data and 

the user can study the behavior of any spot on the sample. Figure (4.9) illustrates the 

spot under study and the plot at the bottom is its temperature variation over the time 

of the experiment. 

The data is then converted to a two dimensional array of temperature versus time 

using MATLAB. The maximum temperature of the back surface is then found, and 

the time when the surface temperature reaches half its maximum value is employed to 

find thermal diffusivity. 

The next section describes the experimental results and the error analysis for this 

method. 
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Figure 4-9 The spot on the sample defined for temperature analysis and the plot of its temperature 
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4.3.4.2 Results and Error Analysis 

The experiment is done for samples made of Titaniutrijo powder embedded in Epoxy. 

The thickness of the samples is selected to be 1mm, 2mm to match the optimum 

conditions for Flash method discussed in the previous section. The infrared camera is 

set to take 400 images with the frequency of 10 shots per second. The process is 

repeated for each sample 20 times, stimulating a different part of the sample with the 

heat pulse each time. The sample's dimension is large relative to the flash diaphragm, 

so that it can be assumed that the heat is propagating only in one dimension. The 

material is homogeneous, hence the total thermal diffusivity is found from the average 

of thermal diffusivities of each part. The result is presented in table (4.2) and the error 

analysis is discussed in the following. 

Table 4-2 Experimental evaluation of thermal diffusivity by Flash method 

a(m2/s) 

Epoxy+Tiso (thickness: 1.00mm) 

2.5448x10"' 

2.5448x10"' 

2.7993 xlO"7 

2.5448x10"' 

2.5448x10"' 

2.5448x10"' 

2.5448x10"' 

3.1103x10"' 

3.1103x10"' 

2.7993x10"' 

Avg: 2.7088x 10"' 

a(m2/s) 

Epoxy+Ti5o (thickness:2.02mm) 

3.0263x10"' 

3.1103x10"' 

2.9466x10"' 

2.8711x10"' 

2.9466x10"' 

3.0263x10"' 

3.9466x10"' 

3.9466x 10"' 

3.9466x10'' 

3.0263x10'' 

Avg: 3.4030x10"' 
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To find the error involved in this experiment equation (4.22) should be employed. The 

reading error in length and time are: 

SL = 0.0\mm 

8t = 0.05 sec 

Which result from the accuracy of the equipment in the lab. Substituting these values 

in Eq.(4.22) the error in experimental measurement of thermal diffusivity is: 

Sample Thickness 

Sa(m2 Is) 

Relative error 

1.00 mm 

0.0387x10"' 

% 1.43 

2.02mm 

0.0486x10"' 

%1.42 
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4.4 Implicit Method, Two Dimensions 

4.4.1 Theory 

Considering a system with thermal propagation in two directions, the temperature is a 

function of (x,y). The heat equation is then: 

dd> ,d~d> d~d> 
— = a(—V + — r 

dt dx" dy 
= a(-f + _ ^ ) (4.24) 

The same as in case of l-D, the backward difference and central difference are used to 

replace the time and spatial partial derivatives respectably: 

9,j-\ ~ 2<P,.i + <P,.J+\ <Pi-\.j ~ 20,j + <Pl+\., 
' " ' - * ' • ' = « ! 

At (Ax)2 (Ay)1 (4.25) 

Assuming that the space intervals along x and y directions are chosen to be the same 

size and rearranging equation (4.25) results: 

C - C = '(C-.+C+C+C' - 4C') (4-26> 

.... orA/ arA^ 
Where r = (Ax)2 (Ay)2 

C = -'-(C-.+ <C+ C , + <C,)+a + 4r)<T (4-27) 

Same as in case of a l-D rod. here the temperature of a cell on the surface at a time 

step is related to the temperature of the same cell with its four neighbors at a later 

time step. 

When dealing with a l-D wire in implicit scheme, x and B involved in the matrix 

equation (Ax=B) are one dimensional arrays. However, in case of a Mat surface, they 

both chanee to 2 dimensional matrices. This would make matrix A to have 3 
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dimensions. Since complicated mathematics is needed to solve such a problem, a new 

scheme is being proposed. 

In this scheme it is suggested that instead of a 2-0 matrix representing the surface 

temperature, we can change it to a one dimensional array by changing each row's 

position at the end of the previous row. (Fig. 4.10) 

mMymfflm 

(2) 

(4) 

?mmm 

E^> 

Fig 4.10 Schematic presentation of converting a 2-D matrix to a l-D array 

The l-D array of a mesh of N by M is arranged in the following way: for the 

temperature <f>" , i and j both start from 1, the next temperature on the array has the 

same i value but j=2. Repeat the same manner until j reaches its maximum value 

(j=M), then i is replaced by i+1 and j starts from zero. While i remains fixed, j 

increases until its maximum. The process is repeated until i=N. On the first 

approximation, the general form of the equation would look like equation (4.28). 

0 

-r (1+4/-

0 

0 0 ' - . 0 

0 0 0 

0 

0 

- r 

0 

0 

0 

0 " 

0 

0 

- r 

0 

'•_ 

c. 
c 
C' 

/"'[,_ 

= 
€',, 
C 
C-, 

/ : , , _ 

(4.28) 
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It is evident that the one dimensional arra\s in the above equation is a column matrix 

of (Nx M) elements or the more convenient form is: 

WY.U.YUFIYI/.I =p].v.i;-i (4.29) 

N 

Similar to the implicit method in 1-D, x is to be found at each time step and is 

replaced as B for the next time. Up to this point, it is known that A is a five diagonal 

matrix with non zero elements on the main and the first upper and below main 

diagonals, and two other ones which are each located at M cells away from the main 

diagonal. 

From the three diagonal matrix in 1-d and five diagonal matrix in 2-D. it can be 

understood that in a 3-D study, a seven diagonal matrix will be formed. 

To get the precise information on A, study of boundary conditions is necessary. 

4.4.2 Consideration on Boundary Condition 

To start with, let's consider the initial conditions applied on the sample. Depending on 

the location of the heater at the beginning of the experiment, B at t=0 may be written 

as the following: 

4.4.2.1 Heating the Surface from the Top 

i 
1 

M 

i 

i 

< = ^ -

VM 

li»ure 4-11 Schematic representation of the coefficient matrix (A) in implicit method, heating 
from the top. 
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Figure 4-12 Schematic representation of the initial matrix (B) in implicit method, heating from 
the left side bar. 

The N by M mesh on the left hand side of Fig. (4.11) represents the surface under 

study and it is evident that in the process of converting this 2-D matrix to a 1-D array, 

the first row will be located at the first M cells of B. 

4.4.2.2 Heating from the Left Side 

Figure (4.12) represents the location of the cells on the left side of the surface on the 

1-D array. The first cell is located at the top of the array and the next one is M cells 

away. 

4.4.2.3 Heating from the Right Side 

When the source is located at the right hand side of the surface, the initial 1-D array 

(B) looks like Fig. (4.13). Here again the interval between each two heated cells is VI. 
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Figure 4-13 Schematic representation of the initial matrix (B) in implicit method, heating from 
the right side bar. 

Thus the initial condition may be set and maintained for as long as desired in the 

sense that the initially heated cells on the column vector may remain heated for 

several time steps. 

4.4.3 Problems with Implementing the Implicit Scheme and the 

Proposed Solution 

Now considering the boundary conditions of the second order, it can be assumed that 

the simulation is done under the conditions where there is no heat flux between the 

edges and the environment. This is the case when the environment is not a good heat 

conductor with small coefficient of heat transfer (air in this case), and the temperature 

difference on the edges and the environment are small relative to the source 

temperature. 

Putting it in mathematics, it"s known that the heat flux is proportional to the first order 

spatial derivative of temperature: 
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,7 d(t> 
d.X 

In the case where the flux is zero on the boundaries: 

ziv 

Although the mathematical interpretation of this scheme is not complicated, finding 

the precise values and locations of the elements in the coefficients matrix (A) is 

challenging. 

The coefficient matrix from the 1-D implicit method is helpful here. Same as in 1-D 

case, here there is a factor (-r) on the cells corresponding to the "neighbors'" and a 

factor (\+ls) for the main cell where X is the number of the '"neighbors". It is shown 

in figure (4.14) that there are cells with 1, 2 and 4 neighbors in the matrix A. 

To figure out the general lay out of A, the case of a 5 by 6 sample matrix is studied. 

(Fig 4.14) It is obvious that the matrix should be 30 by 30. It is also found that there 

are five block of 6 by 6 matrices on the main diagonal with similar lay outs. The 

elements on the main diagonal colored in dark grey are (\+Xr), and other elements 

colored in light blue are - r factors. X for each dark grey cell may be determined by 

counting the number of blue cells at the same row. All the other elements in white 

hold zero. 

Although the lay out of A is now found, from this example it is understood that for a 

typical sample with the number of spatial divisions of order 100 by 100, A would 

belO4 x 104. Storing such huge amount of data is almost impossible and solving the 

matrix equation from the order of 108 needs sufficient computational powers and 

time. 

To overcome this problem, another scheme is devised [73]. This scheme takes 

advantage of the fact that a major portion of the elements in A are zero. Such a matrix 

is called "sparse "matrix. This method takes into account only the nonzero elements 

and all the mathematical procedures of matrix algebra are still available. The 

elaborate explanation of this scheme is attached in Appendix A. 

Once the data is stored on the computer, the matrix equation is to be solved. The 

MATLAB code for storing A and solving the matrix equation is attached in Appendix 

B. 
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The following are the results of the simulations and discussion. 
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Fig 4.14 Implicit method in 2-D, the coefficient matrix for a sample of 5 x 6. 
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4.4.4 Simulation, Implicit Method, 2-D 

With the theory developed in previous sections (4.4.1 and 4.4.3) in hand, the 

simulation is put into practice [73]. To make sure that the results are reliable, the 

program is to be tested for different initial conditions before the main run is 

completed. 

4.4.4.1 The Coefficient Matrix 

To start with the simulation, it is necessary to make sure that the coefficient matrix 

(A) built by the sparse matrix method looks the same as the one in figure (3.17). So 

that the program was tested for a 5 by 6 sample of Aluminum. 

In all the following simulations the time and spatial intervals are fixed: 

d-t = 0.01 sec and d-x = d-y = 0.1 mm 

Temperature of the heater is set to 1000 K and the environment is at 300 K. 

Figure 4-15 The coefficient matrix representation 
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Figure 4-16 Heat propagation in a sample 

The figure above represents the heat propagation in a sample while the heat is 

generated from the top side the sample and is maintained for 100 time steps (1 sec). 

The program is set to simulate the first 3 seconds of the propagation. In the last slide, 

3 spots are defined and thermal diffusivity for them is found using Flash method. 

Both half time method and intercept method are used to find thermal diffusivity (oti 

and 0:2). (figure 4-17) The results are then compared to the textbook values of a for 

the same sample. (Table 4-3) 

Table 4-3 Thermal diffusivity from the simulated heat propagation using Flash method 

a ~~—^coordinate 

oti(m2/s) 

ot2 (m /s) 

Relative error ai 

Relative error 012 

(19,24) 

7.174x10"' 

8.5713x10"' 

%14.8 

%1.8 

(19,25) 

7.6451 xlO"' 

8.0812 x 10"' 

%9.2 

%4.1 

(19,26) 

7.0778x10"' 

7.6498x10"' 

%15.9 

%9.1 

Aluminum 

8.42 xlO"7 
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coordinates: (19,24) 

, l _ _ 1 1 1 1 > 1 
0 50 100 150 20G 250 300 

Time Steps 

coordinates: (19,25) 

0 50 100 150 200 250 300 
Time Steps 

coordinates: (19,26) 

Figure 4-17 Finding thermal diffusivity in fig 4-16 using Flash method. 
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4o4o4o2 Heater Location 

The program proves to work with the heater located at the top middle or top corner of 

the sample.(figures 4-18,4-19) The sample is assumed to be 3 by 4 cm. the spatial 

divisions are 0.1mm, the temperature of the heater is 1000K while the environment is 

at room temperature. 
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Figure 4-18 Simulation of heat propagation in a sample with the heater at the middle of the top 
side 
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The same initial conditions are applied to the same sample except for the location of 

the heater which at the top left comer of the sample this time. 
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Figure 4-19 Simulation of the heat propagation with the heater at the corner 
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4.4.4.3 Implementing Defects in a Sample 

A single defect can be implemented into a sample at random coordinates. In this 

example the sample of dimensions 2by 3.5 cm has a defect of a rectangular shape. 

The defect is laid at cells (10,145:175) with a different thermal diffusivity as the one 

from the sample: 

^sample = 8 . 1 e - 7 Otdefects = 2.2e -7 
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Figure 4-20 Heat propagation simulation for a sample with a single defect inside 
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Figure (4-20) is a demonstration of the heat propagation through time in this sample 

which shows a proper agreement with the real defected samples in which the thermal 

waves change direction and are refracted by the imperfections. 

Another test is done on a sample with several defects of different shapes. The thermal 

diffusivity of the sample and the defects are as follows: 

Ctsample — 8 . 1 6 - / 

^defects = 2.2e -7 

The thermal diffusivity of the sample at is then found using Parker method. 

50 

100 

1S0 

200 

25c 

coordinates: (15,36) 

240 

230 

220 

g 
| 210 

200 

190 

180 

0 50 100 150 200 250 300 

Time Steps 

Figure 4-21 (up) Heat propagation simulation for a sample with a multiple defects inside,(down) 
Flash method of finding thermal diffusivity for the same sample 
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4.4.4.4 Heat propagation in 3 Layers: 

The simulation is taken further to a sample of three layers. In this case two conditions 

are considered. If the middle layer is more thermally conductive than the other two 

layers the simulated heat propagation looks like figure (4-22). 

Here the following values for thermal diffusivities are adopted: 

a) = 0C3 = 2.50e -7 

a2 = 2.75e -7 

Size of the sample: 30 by 40 cells. 

Thickness of each layer: 10 rows. 

Heat source in the middle: from cell #10 to 30. 
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Figure 4-22 Heat propagation in a 3 layered sample, the middle layer is more heat conductive 
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Figure (4-23) is the representation of the heat propagation in a three layered sample 

with the middle layer more thermally conductive than the other two. 

The thermal diffusivities of the layers are: 

oti = CC3 = 2.80e -7 

cc2 = 2.50e -7 

Size of the sample: 30 by 40 cells. 

Thickness of each layer: 10 rows. 

Heat source in the middle: from cell #10 to 30. 
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Figure 4-23 Heat propagation in a 3 layered sample, the middle layer is less heat conductive 
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It is interesting to compare the heat propagation process in figures 3-22 and 3-23. It 

seems from figure 3-22 that the heat does not go much further than the second layer 

and is stuck there until it cools down. However in figure 3-23 the heat is transferred 

through the middle layer smoothly and reaches the third layer which is expected from 

theory [73]. 

4.5 Conclusions 

In this chapter, an algorithm is prepared and tested to simulate the thermal wave 

propagation in a homogeneous material. The simple implicit scheme is adapted to 

descretize the partial differential heat equation. To implement the scheme in practice, 

a large set of equations is to be solved which makes it complicated in terms of 

computer memory consumption and the duration of the test. Applying the concept of 

sparse matrices is a proper choice to overcome this problem. 

Although the results are satisfactory, there are some limitations that should be 

mentioned. The results presented here are from simulating samples with maximum 

dimensions of 3 cm by 4 cm. It will take about 15 minutes to run an experiment for a 

sample of 0.4 cm by 0.4 cm, however the duration of the simulation does not increase 

linearly with respect to dimensions. For a sample of 3x4 cm, it will take half a day to 

get the results. If time was critical concern, writing the same code in C++ rather than 

MATLAB is supposed to decrease the duration of a test run. 

Another source of error may be the boundary condition considered in this chapter. 

The simulation is done assuming that there is no heat tlux from the environment. It is 

suggested to try other boundary conditions to see if the results are more accurate. 
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Chapter 5 

5 Conclusions and Discussion 

A finite-difference model for simulating the propagation of thermal waves in a 

layered material is developed. The method is based on the implicit scheme in solving 

the partial differential heat equation. 

The fundamentals of infrared thermography were reviewed. Also a brief review on 

various NDT applications for IR thermography since its discovery was presented. 

Pulse thermography and lock-in thermography as two main methods in IR 

thermography and their advantages and drawbacks were described. Pulse phase 

thermography, as a combination of both PT and LT was found to benefit the 

advantages of both methods without sharing their imperfections. In the imaging 

process, thermal and photonic detectors are explained based on their methods of 

converting the thermal variation of the surface to an electric signal. 

In the second chapter, different methods of data acquisition and data analysis in 

thermography were presented. Pulse thermography and Lock-in thermography are 

studies as well as the advantages and limitations of each method. Finally Pulse Phase 

thermography as a combination of these two schemes proves to benefit from the 

advantages of both methods without sharing their limitations. 

Parker's Flash method of measuring thermal diffusivity was also introduced. This 

method is utilized in the next chapters to verify the applicability of the proposed 

simulation for thermal diffusivity evaluation of materials. 

Chapter 3 involves the mathematics to solve the heat equation. It turns out that the 

exact solution to this partial differential equation is not easy to get hence the 

numerical solution are sought. Finite Difference method as an efficient tool in solving 

a partial differential equation is described and employed to solving the heat equation. 

Simple Explicit and Implicit schemes as the most common schemes resulting from 

FDM are investigated. 
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Both explicit and implicit schemes are implemented through simulations for ID and 

2D objects. The implicit scheme is chosen for further evaluations since it has the 

advantage of being unconditionally stable however, more complicated math is 

involved in it. 

A large set of equations is to be solved in the implicit method at each time step to find 

the temperature distribution of the surface. For a typical sample of 3cm by 3 cm, the 

coefficient matrix is from the order of (103 by 103) which is almost impossible to store 

on the computer memory plus the fact that this process is to be repeated as many 

times as the time steps (usually 103 times). 

The fact that the coefficient matrix in this problem contains a large number of zero 

elements suggests utilizing the concept of sparse matrices. RR(U)0 as a fast method 

of storing such a matrix in the program is discussed in Appendix A. 

As a result, the algorithm to implement the implicit method is defined (Appendix B) 

and the results for an object of two dimensions with or without defects is presented. 

The simulation is also taken to the next level by considering a sample of three layers. 

In the experiments, Parker's Flash method is used to measure thermal diffusivity and 

the results are compared to those from the simulations and textbooks. It can be seen 

from the results that the intercept method of thermal diffusivity measurement from 

Flash method leads to more reliable results in case of a 2D sample than the halftime 

scheme. The maximum relative error involved is found to be %I0. 

The error could be the result of assuming no heat flux on the boundary cells. More 

complicated boundary conditions may result in more accurate thermal diffusivities. 

Another concern of this simulation is also the time period. A typical sample of 3by 3 

cm would take the simulation 12 hours to run which can be enhanced by working in 

C++ environment instead of MATLAB used here. 

The result of this study has been accepted by the IOth QUIRT (The Quantitative 

Infrared Thermography) conference at University of Laval, Quebec. Canada on July 

2010 [73J. 
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Appendix A: 

Row-wise Representation Upper Ordered (RR(U)O) Format. 

When dealing with modeling of systems with large numbers of elementary cells, 

one usually faces the necessity to solve matrix equations of type A*x = B, where A is 

a large sparse matrix. Depending on the type of simulated situation, A may be 

iridiagonal (temperature is function of time-and one coordinate, T(x, t)), five-diagonal 

(case of T = T(x, y, t)) or seven-diagonal matrix (case of T = T(x, y, z, t)). In all these 

situations the number of nonzero elements is small relative to the total number of 

values, which requires vast amounts of memory to store and sufficient computational 

powers to process such matrices. 

To decrease the load on computing system and storage, the way the sparse 

matrices are handled should differ from traditional way. An alternative format of 

matrix should take into account the sparsity of matrix, avoid storing of zero elements 

but still allow for basic mathematical procedures of matrix algebra. 

One of such alternative ways of handling sparse matrices is so called row-wise 

representation, complete, ordered (RR(C)O). 

Suppose we have following sparse matrix: 

f\ 0 0 0 0^ 

0 0 2 0 0 

0 6 0 8 5 

0 0 3 0 0 

v0 9 0 0 0y 

In RR(C)0 this matrix can be represented by three lists: 

AN = 1 2 6 8 5 3 9 (nonzero values) 

IA = 1 3 2 4 5 3 2 (column indices for each of nonzero values stored) 

J A = 1 2 3 6 7 8 (pointers of the first elements in each row) 

In this case the storage of matrix A requires space allocation for 25 values if 

stored in usual way. while the three lists (AN, IA and JA) take only 20. In general, if 

we assume there are M nonzero values in NxN sparse matrix, AN uses M cells. IA 

uses M cells and JA - N+l cells. Thus, the matrix A will require 2 • M + N - I units 

of memorv, while in common wav it would take N" units. 
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Solving FDM simulation problems one has to deal with large sparse matrices 

which have another useful property - their symmetry. Taking this property into 

account, on can save just upper half of the matrix and its diagonal elements, which 

allows to reduce the amount of memory space about twice relative to RR(C)0. This 

improved way of matrix storage is known as row-wise representation, upper, ordered 

(RR(U)O). 

For example, suppose we have following matrix: 

' 1 0 1 3 0^ 

0 3 0 4 5 

1 0 7 0 0 

3 4 0 2 0 

v0 5 0 0 5, 

By its upper triangle, in RR(U)0 this matrix would be represented by four lists: 

DA = 1 3 7 2 5 (D-list) 

AN = 1 3 4 5 (N-list) 

IA = 3 4 4 5 (I-list) 

JA = 1 3 5 5 5 (J-list) 

As can be seen, the matrix description now contains only 14 values. In general 

case, if the number of nonzero elements in NxN matrix is M, then diagonal contains 

M elements, the list of nonzero elements - —(M-N), the list of column indices -

— (M-N), and the list of the rows pointers - N. In total, RR(U)0 description of a 

matrix takes N+M units of memory, which makes this format of matrix description to 

be the one of choice. 

Though RR(U)0 is very different from conventional way of matrix description, it 

is still very convenient for mathematical operations. Before we proceed to solution of 

matrix equations, we have to describe some of the basic considerations. 

Merging of lists. By merging we will mean combination of two or more lists of 

numbers keeping only unique values in the resulting array. For example, two lists 

.<l = [l 6 3 5] and B = [l 2 8 9 5] will give C = [\ 2 3 5 6 8 9]. 
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One can see that C keeps only unique values of both A and B. This operation will play 

a significant role in mathematics related to RR(U)0 format (mergeJist.m). 

Solving of matrix equations. One of the most common ways to solve a system of 

equations, expressed as a matrix equation A • x = B, is expressing the matrix A as a 

product of three matrices: 

A = L-D-U, 

where L is lower triangular matrix with ones on the main diagonal, U is upper 

triangular matrix with ones on the main diagonal, and D is a diagonal matrix. After 

this kind of decomposition, one can easily solve equation 

Ax=LDUx=B 

by consequent solution of three matrix equations: 

L-co = B gives co, then 

Dv = co gives v, and, finally, 

U • x = v allows one to find x. 

The solution can be made shorter. During triangulization of matrix A one actually 

constructs a set of other equations, which are the combinations of the initial ones. 

Keeping track of the permutations, one can get a new set of right-hand sides B' and 

solve following system: 

DUx = B' 

Later we will see this approach allows for reducing the amount of calculations. 

Solution of a system of type Dv = co is simple. The matrix £)"', inverse to 

diagonal matrix D is a diagonal matrix with diagonal elements, inverse to 

corresponding elements in D: 

(\ o (n (\ o o^ 
If, for example. D = 0 3 0 

0 0 5 

.then D] = 0 1/3 0 

0 0 1/5 

Thus the solution of Dv = co comes to multiplication of each element of column 

vector co by diagonal elements of matrix D"1. Provided that D'] is given in RR(U)0 

format, these values are stored in designated list and can easily be accessed in D-list. 

The next part of the solution is solution of the system £/ x = co, where U is an 

upper diagonal matrix with ones on the main diagonal. It is easy to check that U can 

be written as a product of a number of elementary column matrices: 
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u 

(\ a b d^ f 

I c e 

1 / 

V J 

d\(\ 
1 e 

1 / 
1 J 

b 

I c 

1 

Vl a 

V 1 1 

Thus, the solution of U • x = co is x = U ' • co, where U ' is a reverse product of 

the elementary column matrices: 

U = 

W 

a b d 

1 c e 

1 / 
I JJ 

a Y i 

1 

- 6 

- c 

1 - / 

1 y 

Working with £/ expressed in RR(U)0 format, it should be easy to extract 

elements with certain column indexes and reverse their sign, forming elementary 

column matrices. These elements are extracted from N-list using column numbers 

from Mist. 

Multiplication of a matrix and a column vector. Suppose one has to multiply an 

NxM matrix A stored in RR(U)0 format by a column vector B of length M. The 

multiplication of A by B is then a column vector C of length M. Each component of 

the vector C is a product of a corresponding row of matrix A and vector B. 

The algorithm for this multiplication is simple. For acquiring ith component of C 

one first finds ith value in the list J A, which contains the numbers of the first elements 

of each row. Then, looking over the elements in AN from JA(i) to JA(i+l)-l, one 

takes IA(JA(k)) and multiplies by B(JA(k)). The component of C is acquired as a sum 

of these products. 

In case of multiplication of a column vector by an elementary column matrix L'n, 

where n is the number of column containing nonzero elements atop of the main 

diagonal. Consider an example: 

'̂ - ^ fb, 

L'.= cu h = 
b2 
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J 

b2 

b, 

Ay 

= 
b, + a2b, 

b, 

, b * • ) 

Thus, during the multiplication Ll
n -b only those components ofb become altered, 

which indices are less than n. The altered components are the sums of initial 

components (b/, bi, •••) and the products of//'1 component (here - />_?) and the elements 

of n'h column of tn (a/, cti, ...)• 

The code for this kind of multiplication is extremely simple: 

1 co l_ ind = L . I ( L . J ( l ) ) ; 
2 for i = 1 :1 : length(L.N) 
3 b ( i ) = b ( i ) + L.N(i) *b(col_ ind) ; 
4 end 

Now, after reviewing the way to solve matrix equation with upper triangle matrix, 

we need to find the way to convert an arbitrary matrix to upper triangle configuration. 

Note: the matrix equation containing large sparse symmetric matrix A and right-

hand side B can be solved in MATLAB using solve AXB function 

Matrix triangulization. 

Triangle matrix is one which has nonzero elements only on its diagonal and only 

on one of the sides of the diagonal. Depending on the side where nondiagonal nonzero 

elements are located, the matrix can be called upper- or lower- diagonal. 

Triangulization of a matrix is a general name of a procedure transforming an 

arbitrary matrix to triangular configuration. 

One of the most convenient methods of matrix triangulization is Gauss 

elimination. Further we will use this method for conversion of a matrix to upper 

diagonal configuration. In Gauss elimination one finds linear configurations of the 

matrix rows in order to make some of the matrix elements to become zero. To convert 

a matrix to upper diagonal, one should eliminate all the elements under the diagonal 

by adding the upper rows multiplied by certain numbers. 
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Suppose one has a matrix: 

f\ 5 3\ 

A 2 6 5 

3 4 9 
J 

One can eliminate the first column under the diagonal by multiplying the first row 

by - 2 and - 3 , and adding the row to the second and the third correspondingly: 

0 5 3 ^ 

0 - 4 - 1 

0 —11 Oy 

To eliminate the second row one multiplies the second row by - 11/4 and adds it 

to the third row: 

0 5 3 ^ 

0 - 4 

0 0 

- 1 

1/4 

In case of larger matrices, the procedure is a cycle over the rows. At each step /' 

the /'* row is added to all the lower rows multiplied by a negative ratio of the first 

elements of the destination row and / row. 

The procedure stays absolutely the same in case of large symmetric sparse 

matrices. But as it was discussed before, it is problematic to store them in usual 

manner. Instead we agreed to use special format for storing sparse matrices. In this 

format we keep separately diagonal elements (D-list), the elements of the upper 

triangle (N-list), and the portrait of the upper triangle (in lists I and J). The power of 

this format is in the fact it does not store .zero elements. But at the same time this 

creates additional difficulties for using RR(U)0 for triangulization of matrix. The 

origin of these difficulties is in the fact we do not know a priori where in the matrix a 

nonzero element can appear after some row is added to another. For example, suppose 

we have a matrix 

A = 

^ 

5 6 0 

3 0 9 

which can be written in RR(U)0 as: 

D: 1 6 9 

N: 5 3 
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1:2 3 

J: 1 33 

After triangulization this matrix will have a new element in position (2, 3): 

(\ 5 3 ^ 

U = 19 -15 

11.84 
J 

In other words, we do not know the portrait of the final upper triangular matrix in 

advance. For this reason, the process of triangulization of an arbitrary sparse 

symmetric matrix stored in RR(U)0 format is subdivided into two parts: symbolic 

stage, where the portrait of a new matrix is to be found, and numeric one, where 

calculations are to be made and the numbers to fill the cells in the portrait found. 

On the symbolic stage one should remember that one row is added to another, so 

their portraits are merged. In the most recent example we had to merge the portraits of 

the first and the second rows, making the element (2, 3) to appear in the second row. 

Thus, knowing that fh row will be added to the/ ' ' one, we should first merge the I-

lists of the two rows to get the new portrait of new row, then find how much the row 

grew (increased its length). This increase of the length of the row will shift the values 

of J-array. As we remember, this list holds the positions of the first elements of each 

row of the upper triangle. Thus, if, say, the new matrix became larger by 2 elements, 

all the subsequent rows will be shifted 2 elements further. 

The procedure of the symbolic part is as follows: 

I 15 



for j = I : 1 : ST_N-1 

arrl = IU(ST_i + j : 1 : ST_i + ST_:i - 1) 

:.' si = IU(ST i + - - 1) ; 

:f N_sl < length(JU) 
arr2 = IU;jU(N_sl) : JU(N_sl + 1 ; - 1), 
arr3 = merge_listiarrl, arr2); 
Incr = length(arr3) - length(arr2); 

IU = [IU(1: JU(N_sl) - 1), arr3, IU(JU(N_sl + 1) : length (I'J) ) ; 

for 1 = N_sl + 1 : 1 : length(JU) 
JU(1) = JU(1) + Incr; 

end 
end 

end 
end 

After the portrait is prepared, it is to be filled with the old numbers in their old 

positions, and zeros in the new positions. In fact, this procedure does not change the 

matrix, just some zero elements become taken into account in the matrix. The purpose 

of this procedure is to prepare the rows for combining. 

Below is the code for this procedure: 
function AN_new = expand_portrait (AN_old, IA'_old, JA_old, IA_new, JA_new) 
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Now. when the portrait is ready, and the old matrix is expanded, one can be sure 

there will be no need to change the I- and J-lists. One can perform the rows additions. 

During the numeric part one checks the presence of nonzero elements in each row 

of the upper triangle (N-list) and, since the matrix is symmetric, finds out to which 

destination row the current row will be added (the number of the destination row is 

equal to the column index of the current nonzero element in the current row), as well 

as the coefficient to multiply the row by (it is equal to the negative ratio of the 

element in current row with the number equal to the destination row number divided 

by the current element). 

The code for the numeric procedure is as follows: 

count_k = 0; 
for i = i : 1 : Nrows 

ST_i = A.J(i) ; 

ST_N = A.J(i + 1) - ST_i; 

for j = 0 : l : S T N - l 

count_k = count__k + 1; 
k(count_k, 1) = - single(A.N(A. J(i) + j) / A.D(i)); . •-.;-•':. •:.:& .-; .f-.:'::: -••''..<-:.:• 

k ( c o u n t _ k , 2) = s i n g l e d ) ; \ -.\:e : v j ; i e r zi ";v> ,-.•... 
k ( c o u n t _ k , 3) = s i n g l e (A. I (A. J ( i ) + j ) ) ; i ::;:e nuirj-cr :: f :;;,= „ e s i 

f o r 1 = j : 1 : ST_N - 1 • l o o k -.vc-r r h e t-].~i,v-;r:-:? t 0 ;••,-.> 

A . D ( A . I ( S T _ i + 1 ) ) = A . D ( A . I ( S T _ i + 1 ) ) + k ( c o u n t _ k , 1) * A . N ( S T _ i + 1 ) , 

C o l _ i n = A . I ( S T _ i + 1 ) ; •' ;•;? -;': ir .„ f; i •;-. ;•.:.'.;-..•: 

Row_in = A . I i S T _ i + j i ; • _ : e :•:: •„:::•.': i . - : ' : ? .:•: 
:< = f i n d _ p c s (A. I , A . J , Rcw_in , C o l _ i n ) ; '-. -v- ; - . : r : . ; . i : ': -.-.r L-."-. _:.: •;••; 

A. Mix) = A . M ( X ) + k ( c o u n t _ k , 1) * A.K(ST i *• I ) ; 
e n d 

It should be noted that the list k is stored intentionally. After the procedure is 

done, one will have the scheme of all the permutations performed with the rows. This 

will allow to rearrange the right-hand side when solving the matrix equation of t\pe 

Axx = B. 

117 



After triangulization one should normalize each row in respect to the diagonal 

element, so the matrix is upper triangular with ones on the diagonal. This would allow 

representing the matrix as a product of a number of elementary column matrices. 

Appendix B: 

Sample codes (main body and some functions in RR(U)O) 
operating the simulation in case of a 2D sample 

The following code represents the main body of the developed program: 

clear ail 
clc 
tic 

'•olmtial i n p u t s — 

iTime=300; 
NLrows = 400; % the number of rows in the sample 
N_cols = 400; % the number of columns in the sample 
d_x = 0 .0001 ; % the size of the spatial step 
d_t = 0 .01 ; % the duration of the time step 
tJength=N_rows*N_cols; 

x0=[l 99 200 201 ]; % Inspection points coordinates 
y0=[399 399 399]; % Inspection points coordinates 

T_H=1000; %Source temperature 
T_R=300; %Rooin Temp 
source_width=20; 
source_depth=l; 
source_beg=l 0; %begining location of the source 
pulse_dur=l*iTime/3; 

a!pha=2.5e-7; 
r=alpha*d_t/d_xA2 

r_mtx=zeros(N_rows, NLcols); 
r_mtx(:,:)=r; 

% Aipha.defect-2.2e-3: 
"< r .p; ' !rre«aipha_dt:f f ;ct ,d_t/d_xA2 
?S •\_:;u'<'4.5 o.7)-r_pr;nie: 
% r_;nrx;:0- l 5 i 7 :•;•--r_prime: 
% r_mtx(4 ! 9.2 3"i = r .pr ime; 
% r j r t x iS .30 .3 1 }-r_pr ime; 

alpha_2=2.75e-7; 
r_2=alpha_2"d_t/d_xA2 

http://Aipha.defect-2.2e-3


r_mtx(10:20,:)=r_2; 

56dlpha_3=2.6e-7; 
^ r_3=a lpha_3 'd „c /d „xA2 
% r_:i itxl20:encl,:}=r.3: 

'^Transformation Matrix Generation 

M = make_fivediag_RRUO(N_rows,N_cols,r_mtx); 

figure(2) 
A=rruo2norm(M); 
pcolor(A) 
view(0,270) 
% spy(A) 
titleCM Matrix representation {5x6 elements)') 

%% 

%Diagonalization on The Matrix in RR(U)0 

[DA, k]= diagonalize_mtxA(M); 

% return 

for i = l:l:size(k, 1) 
if k ( i , 2 )==0 

disp(['Here"s the number: ', num2str(i)]) 
break 

end 
end 

k = k ( l : i - l , :); 

%% 
%clc 
% N_rows = 100; % the number of the ceils in the rod 
%N_cols = 100; 
% t_length=N.rovvs*N_cols; 
% 
% 
%loadDAk_01 
% for i *-- 1 :1 :size(k. 1) 
% i f k ; i . 2 ) = = 0 
% disp(['Here"s the number: '. num2str(i)]) 
% break 
% end 
% end 
% 

V înit-At Boundary Conditions--

T = zeros(t.length,l); % the temperature distr ibut ion 
T_new=ones(t_length, 1 )'T_R; 
-u T:J source,.c!epth"N..cols,l !•= P..H; 
T_new(source_beg:source_beg + source_width-l ,1 )=T_H; 

Temp_el=zeros(length(xO),iTime-l); 
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%So!ving and frame saving 

for i = 1 : iTime-1 % the time loop 

if i<pulse_dur 

T=solveDAXB(DA, k, T.new); 
% T=M\T.new; 

% T( l :source_depth*N_cols,l)=T_H; 
T(source_beg:source_beg+source_width-l ,1 )=T_H; 

else 

T=solveDAXB(DA, k, T.new); 
% T=M\T„.new; 

end 

for nn=l :t_length 
ifT(nn)<T.R 

T(nn)=T_R; 
end 

end 

T_2D=(reshape(T,N_cols,N_rows))'; 

for m = N_rows-2;N_rows 
T_2D(m,:)=max(T_2D(m,:)); 

end 

for ii=l :length(xO) 

Temp.el(ii,i)=T.2D(xO(ii),yO(ii)); 

end 

pcolor(T.2D); 
axis([l N.cols 1 N.rows 0 T_H 0 T.H]) 
colorbar 
view(0,270) 
shading interp 

F(i)=getframe; 

% pause(0.03) 

T_new=T; 

disp(['step:', num2str(i)]) 
end 
toe 

XAipha calculation and plotting--

for i=1 :length(xO) 

PObj.distance=yO(i); 

PObj.d_x=d_x: 
PObj.d_t=d,t; 
PObj.iTime=iTime; 



PObj.x_0=xO(i); 
PObj.y_0=yO(i); 
PObj.T,R=T_R; 

f igure(i+3) 
plot_temp(Temp_el(i,:)',PObj) 

end 

% movie(F) 

And followings are code description of two of the main functions used in main body 
of the program: 

function A=make_fivediag_RRUO(rOows,N_cols,r) 

% this funct ion makes the five diagonal syrnetric matrix in RRUO format. It accepts 
% the number of rows and columns on the specimen along wi th r( ) and makes the heat 
% t ransform matrix in RRUO format. The output is structure "A" composing of: 
% 
% A.D - diagonal elements 
% A.N - nonzero non-diagonal elements of the upper part of matr ix A 
% A.I - column numbers of elements in A.N 
% A.J - pointers o f the f irst elements in each row 

% Uncomment to check the code from inside: 

%N_rows=5; 
% N_cols=6; 
% r=ones(N_rows,N_cols); 
% r = 1 ; 

% - • • - - • -

N_total=N_rows*N_cols; 
A.D=ones(l, N_total); 
A.N=ones(l, [(N_rows-l)*N_cols+N.rows*(N_cols-l)]); 
A l=zeros(l, length(A.N)); 

A.J=zeros(l, N.total); 

% A.D calculation — 

kk=l; 

% for i= i :N_rows 
% for j = l :N_cols 

% if i==i || i==N_rows 

if j . „ ^ l ij j = r=N..coli 



% end 
% end 
% 
% k k = k k + l ; 
% end 
% end 

for i=l :N.rows 
for j = l :N_cols 

i f i== l 

i f j==l ||j==N.cols 
A.D(kk)=l+2*r(i,j); 

else 
A.D(kk)=l+3*r( i j ) ; 

end 

elseif i==N_rows 

i f j== l || j==N_cols 
A.D(kk)=l+3*r( i j ) ; 

else 
A.D(kk)=1+4*r(i,j); 

end 

else 
i f j== l || j==N_cols 

A.D(kk)=l+3*r( i j ) ; 
else 

A.D(kk)=1+4*r(ij); 
end 

end 

kk=kk+l ; 
end 

end 

% for i= l :N_rows 
% fo r j= ] ;N_co ls 
% 
% i f j = = l || j==N_cols 
% A .D(kk )= l+3* r ( i j ) ; 
% else 
% A.D(l<ki=l+4"r(i . j} ; 
% end 
% 
% k k = k k + ] ; 
% end 
% end 

% A.D(1)=1 +4"'i(i,j); 
%A.D(N_to ta ! ) - i+2" r ( i j ) ; 

% A N calculation -

m m = l ; 

for mm=l :length(A.N)-(N_cols-l) 

if rem(f loor(mm/(2*N_cols- l)) ,2)==0 

if rem(mm,2*N_cols-l)==0 
A.N(mm)=-r(i + l j ) ; 
i = i + l : 



elseif rem(mm,2)==l 

A.N(mm)= -r(i j ) ; 

else 

A.N(mm)=-r(i+l j-1); 

end 

if rem(mm, 2*N.cols-l)==0 
A.N(mm)=-r(i+l j ) ; 
i=i+l ; 
j - i ; 

elseif rem(mm,2)==l 

A.N(mm)=-r(i+l J-1); 

else 
j= j+ l ; 
A.N(mm)= -r(ij); 

end 

end 

end 

for mm=length(A.N)-(N_cols-l)+l :length(A.N) 

A N(mm)= -r(ij); 
J=J+1: 

end 

% A.! calculation-

a2=N_cols-l; 
a3=N_cols-2; 
al=2+a3; 

for i=l:length(A.N)-(N_cols-l) 

if rem(floor(i/(2*N.cols-1 )),2)==0 

if rem(i,2'vN_cols-l)==0 
A.l(i)=al+1; 

elseif rem(i,2)==l 
A.l(i)= al -a3; 

else 
A.l(i)=al+a2; 

end 

else 

if rem(i, 2*N_cols-l )==0 
A.l(i)=al+1; 



elseif rem(i,2)==l 
A.l( i )=al +a2; 

else 

A.l(i)=al-a3; 

end 

end 

al=A.I(i); 

end 

A.I(length(A.N)-(N_cols-l)+l)=A.I(length(A.N)-(N_cols-l)-2)+2; 

for i=length(A.N)-(N_cols-l )+2:length(A.N) 

A.I(i)=A.I(i-l)+l; 

end 

% A J calculation -

A.J(1)=1; 

for i=2:length(A.J)-N_cols 

AJ(i)=A.J(i-l)+2; 

if rem(i,N_cols)==l 

A.J(i)=AJ(i-1)+l; 

end 

end 

for i=length(AJ)-N_cols+l :length(A.J) 

A.J(i)=AJ(i-l)+l; 

end 

% A D = A D ' ; 
% A.N=A N': 
%A l=A! ' ; 
% A > A J ' ; 

% Checking the results for s i ra l i iiurpisers (N.rows & N.cois -< S O ! — -

% M-rr: jo2norni(A): 

% acolor(M) 
% cnlorirtap:'jet,i 
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function plot_temp(FinaLTemp,PObj) 

P"_max,t]=max(FinaLTemp); % finds the maximum of the graph (temperature of the 
chosen element vs. time) 

for i=l :PObj.iTime-2 %finds the time at which the temperature is half of the 
maximum 

if(Final_Temp(i)<=PObj.T_R+(T_max-PObj.T_R)/2 && Final_Temp(i+l)>=PObj.T_R+(T_max-PObj.T_R)/2) 
t_half=i; %the time at which the temperature is half of the maximum 

end 
end 

% t_x calculation - - --
X1=[t_half; t_half+l]; 
Y1=[Final_Temp(t_half) ; Final_Temp(t_half+l)J; 

f=fit(Yl, X I , 'linear'); 
t_x=round(feval(f,PObj.T_R)); 

% alpha calculation — — - - - --

L=P0bj.distance*P0bj.d_x; 
alphal =1.38*LA2/(piA2*t.half*PObj.d.t) %finds alpha coef. from t.half 
alpha2=0.48*LA2/(piA2*t_x*PObj.d.t) %find*s alpha coef. from t_x 

% plotting commands — — -

fff=fit(X1,Yl,linear'); 
fplot(fff,[0,PObj.iTime/2],':r') 
hold on 

X2=[0 PObj.iTime]; 
Y2=[PObj.T_R PObj.T.R]; 
t=l:PObj.iTime-1; 

plot(t,FinaLTemp,'b','linewidth',2) 
plot(t_half,FinaLTemp(t_half),'ok','linewidtli',21'Marl<erSize',l 2) 
plot(t_x,24,'ck','!inewidth',2,,MarkerSiz.e',l 2) 
plot(t.half,PObj.T_R,'ok','linevvidth',2,'MarkerSize',12) 
plot(X2,Y2,'k') 
plot([t.half t.half],[PObj.T_R-0.5 T.max+0.5],';r) 
text(t_half+5,Final_Temp(t_half),['\ieftarrow t_h« ',num2str(t_half), ' T_m/2= 
\num2str(PObj.T_R+(T_max-PObj.T_R)/2)]) 
text(t.half, PObj.T.R-5, ['\uparrow t.h= ,num2str(t_half)]) 
textd.x, PObj.T_R-5, ['\Mpanovv t_x- ,num2str(t_x)]) 
text(3"PObj.iTime/5,PObj.T.R+(T_max-PObj.T_R)/2l["a;,oha„l--- ',num2str(alphal)],'fontsize'.1 3) 
text(3"PObj.iTime/5,PObj.T_R+(T_maxPObj.T.R)/2-10.[:\a!pha..2= 'lnum2str(alpha2)],'fontsize,,I 3) 
axis([0 PObj.iTime PObj.T_R-20 T.max+l]) 
xlabeK'Time Steps', 'fontsue',1 3) 
ylabeK'Temp(K)', 'fontsise'.l 3) 

hold off 

file://'/uparrow
file://'/Mpanovv
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