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ABSTRACT 

A new method for image reconstruction of a foreign object, i.e. any reflector which 

somehow could be inserted into the brain tissue, such as a bullet or a piece of shrapnel, is 

investigated. The method is based on noninvasive transcranial ultrasound propagation 

through skull bone and brain tissue. A simulation has been developed during the study to 

process the experimental results and reconstruct an image showing the position of the 

foreign object. The algorithm is designed for use with a linear array of 128 receivers and 

a source of ultrasound as the reflector (all at the optimized frequency of 1.7MHz). A 

simplified simulated skull bone (scattering medium) was also added to the program to 

distinguish how it affects passing through ultrasonic fields in different circumstances. 

From an experimental point of view, to check the effectiveness of the algorithm, a 

simplified skull bone phantom was made and used in data acquisition at the array of 

receivers. When passed through phantom layer, the ultrasound field (initially generated at 

the reflector) reaches the array of receivers, and after being saved, the distribution on the 

array is processed to compensate for the distortion and reconstruct an image which 

contains data about the reflector's position. Due to high attenuation in scattering medium 

(which represents skull bone's acoustical properties) and brain tissue, it has been 

determined that the method can reconstruct the reflector's position roughly at a maximum 

distance of 15cm from the array of receivers in presence of the phantom which is far 

enough to cover all inside of a typical skull. 
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Chapter 1 

INTRODUCTION 

The ability to reconstruct ultrasonic images of internal brain structures (soft tissues 

and blood vessels) through the thick skull bone is without question very beneficial for 

biomedical purposes. The main obstacles that stand in the way of reliable ultrasonic 

imaging arise from strong destructive effects due to the thickness of skull bones. 

The wave front distortion is primarily caused by the irregularity of the lower 

boundary of the skull bone; in other words, the lower bone boundary is not flat. The 

compound, multi layered structure of the skull bone also influences the acoustical field 

characteristics, leading to distortion. Further, the heterogeneity scales vary considerably 

between individuals, ranging from millimeters to centimeters (Fig. 1.1). The 

inhomogeneities are for the most part smooth, save for a few small sections. 

Fig.l.l MRI transversal images of skull bone[l] 

A side view of the acoustical field after propagation through the skull bone is 

presented in Fig 1.2. These images were reconstructed by means of an optical shading 

method. The top image was recorded at a frequency of 700 kHz; the bottom image 

corresponded to a frequency of 2 MHz. As can be seen by comparing the first image with 

the second, the increase in frequency causes inhomogeneities within the skull bone to 



have a more pronounced effect, causing the acoustical field to become distorted and 

unfocused. 

Fig.1.2. Optical images of the acoustical fields after their propagation through 
the thick skull bones[33]. 

1.1. Historical Notes 

Signal propagation through the skull bone can be presented as the product of a 

convolution function representing the initial signal with some unknown function referred 

to as the pulse transfer characteristic which itself is constant in time [10]: 

sou!(x) = s,n(x)®h(x-x0) (1.1) 

Therefore, if this pulse transfer characteristic can be estimated, a matched filter can 

be created, which may in turn be used to reconstruct the initial signal shape. This 

procedure is named 'matched filtering process' and has been widely used in radio and 

sonar systems for more the 60 years. 

Due to the fact that it is impossible to calculate the pulse transfer characteristic of a 

complex filter like skull bone, it must be obtained through direct measurement. Various 

methods and approaches for determining the pulse transfer characteristic have been 

presented over the years. Some of them include obtaining skull bone profiles via X-Ray 

or MRI (K.Hynynen) [1-3], the reference source method (M.Fink) [4-9], and directly 

measuring the skull bone profile by means of an ultrasound sensor (V.Svet, A.Molotilov, 

S.Baykov) [10,11]. Each of these methods has both advantages and restrictions as follows 
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• The Hyhynen's method (via X-Ray or MRI) measures the skull bone profile with 

high precision; it does not, however, yield information about its acoustical 

properties [1-3]. 

• The Fink's method (the reference source method) is another unique method with 

high accuracy. However, it is not clear how this method can be practical due to 

the fact that the reference source must be placed within the soft brain tissue [4-9]. 

• The Svet-Molotilov-Baykov's method enables a less accurate reconstruction of 

the complex pulse transfer characteristic but, the advantage of this method is that 

it measures the skull bone profile with the same sensor that is used for 

visualization which makes it a noninvasive method [10-11]. 

Over last twenty years, as a result of the development of phased array technologies, 

novel qualitative ultrasonic transcranial techniques have also been introduced for both 

diagnostics and therapy. As such, two primary investigation methods were put into 

practice at nearly the same time. Although these techniques are somewhat similar in 

nature, as will be shown below, they are certainly distinct. 

The first method was developed at the University of Paris VI under the direction of 

Professor M. Fink [4-9]. This method is commonly referred to as Time Reversal Mirror 

(TRM) method. As a matter of fact, TRM is a modification of wavefront inversion 

methods which had previously been established in radiolocation and hydroacoustics. This 

method takes advantage of the remarkable properties of piezoelectric transducers. In 

particular, transducers are reversible (they may both transmit and receive acoustic 

signals), highly linear, and permit immediate measurement of sound wave parameters [4-

6]. According to this method, the acoustic pressure field /?(r;,?)is recorded by each 

receiving array element, with respect to both position r, and time /. The recorded data are 

digitized and kept during the T time interval. Then the acoustic pressure field is 
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reradiated by the same array elements in the inverse time order (i.e. from last to first 

signals), that is equivalently the p{r^T-t) acoustic field radiation. 

This procedure transforms the divergent source acoustic field into a converging wave 

which is focused on the initial source. Unlike standard mirrors which produce a virtual 

image of acoustical object, this method produces a real acoustical image of the original 

source. This method, realized through the use of ID or 2D transducer arrays, remains 

efficient even if an inhomogeneous media is present between the target and the mirror. 

Here each transducer is connected with its own electronic circuit which consists of an 

amplifier (for received signals), analog-digital converter (ADC), memory block and 

programmable radiator. The radiator is able to synthesize a time-inverse version of the 

retained signal [4-6]. 

This method had initially been developed for a well-defined medical task; namely an 

attempt to determine the stone location during lithotripsy [4-6]. Under such conditions 

focusing the destructive ultrasound waves is a difficult task due to sound velocity 

heterogeneity and ultrasound beam distortion. Furthermore, sometimes stone dislocation 

can happen up to 2 cm. Hence it is necessary to achieve highly precise ultrasound beam 

focusing on the stone. To do this it is necessary to pick out the reflected target against the 

reflections of other stones and organs walls. Thus, the interested area is irradiated by an 

ultrasound array. The same array is used to record the reflected signal before it is time 

inversed and reradiated. After this set of iterations the ultrasound beam is focused on the 

most reflective target and a high amplitude wave is used to destroy the stone. 

Additionally, the same method has been used by J.-L.Thomas and M.Fink [7], 

M.Tanter et al. [8], J.-L.Aubry et al. [12] and M.Pernot et al. [13] for the investigation of 

focused ultrasound propagation through an intact human skull. J.-L.Thomas and M.Fink 

[7] used a single element of size 1x10 mm as the source. The linear array consisted of 

128 elements, approximately 1x25 mm in size with a central frequency of 1.5 MHz. The 

elements were placed on a concave surface with a radius of 100 mm. The acoustic 

pressure field was then created by a single element and in turn written to the entire array. 

4 



As the next step, the recorded signals were inverted in time and started to radiate 

simultaneously by all the 128 elements. In this mode the single element was used as a 

receiver to scan the acoustical field. 

J.-L.Aubry et al. also accomplished the TRM procedure in a similar way [12]. During 

a biopsy, aimed at estimating cancerous growth, a tiny hydrophone was placed in 

immediate proximity to the growth. The hydrophone was then used as a point source. The 

radiated ultrasound pulse that passed through the media (including the skull bone) was 

recorded by a linear array. The hydrophone was then removed and the time inversed 

signal with amplitude compensation was reradiated. This procedure allowed for phase 

and amplitude corrections of the aberrations caused by the skull bone. Through focus 

shifting in space [8], the entire growth could be heated on a point by point basis. 

Furthermore, another method called space-time inverse filtering technique [9] 

represents a further development of this approach. Here the biopsy allows one to place a 

series of transducers in tissues within a particular area of interest. Thus, the received 

signals for the pulse response of all transducers can be used to precisely focus on an 

established point. This experiment demonstrated that the focusing quality after ultrasound 

propagation through human skull bone was the same as that which can be achieved in 

water. Furthermore, it is possible to compensate for both the phase distortions and 

attenuation due to the skull. 

The distinguishing feature of the investigation conducted by the aforementioned 

group is that the skull bone was assumed to be a heterogeneous structure with variant 

local acoustical parameters within each region of the skull. Furthermore, the possibility of 

estimating the acoustical properties of the skull bone from MRI and CT (Computer 

Tomography) during this study had significant impact on the development of this 

method. In fact, the CT method is more informative because it reveals the parameters of 

internal skull bone structure [9]. In fact, J.-L.Aubry et al. [12] demonstrated how local 

sound velocity, absorption and density could be estimated from CT data. This data was 

later used in the numeric simulation of a three dimensional wave equation by the finite 
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difference method [15]. The simulated wave fronts passing through the skull were found 

not to differ from experimental wave fronts passed through the same region of the real 

skull bone [12]. Moreover, the wave front created by the virtual point source placed 

within the brain after propagating through the skull bone could be recorded by a set of 

receivers. These same conditions can be set up experimentally with a simulated wave 

front inversed in time and experimentally radiated by a real array. Hence, the ultrasound 

focusing problem can be solved without the necessity of having a physical sound source 

inside the brain. Thus, the phase and amplitude aberrations due to the skull bone can be 

non-invasively corrected. This method is promising for brain hyperthermia [12]. 

However, the essential problem that remained unsolved was the necessity of focused 

electronic scanning from a point that was within immediate proximity to the growth. The 

reason was that all previously developed powerful therapeutic arrays utilized regular 

element positions. Those arrays did not allow focused scanning for the necessary distance 

without the formation of sizeable side lobes within the directional pattern. A successful 

attempt to overcome this problem was undertaken in an investigation by M.Pernot et al. 

[13]. The authors used an idea which had been previously put forth by S.Goss et al. [14], 

where it was suggested that a hemispherical array of transducers/receivers with random 

element positions on the array's surface be used. These arrays consisted of 200 unit 

elements, each 8 mm in diameter, working at a frequency of 0.9 MHz. The total array's 

diameter was 180 mm with a radius of curvature of 120 mm. The application of this array 

and the aforementioned method of signal correction on the array's elements allowed for 

the sound pressure to be both increased and focused even after propagation through the 

skull bone. In fact, the sound pressure in the focal area was raised 4.5 times which was 

equivalent to a temperature increase of approximately 20 times at the focal point. The 

experiments were conducted at several skull bone positions and they all yielded in sharp 

focal points. The distortions were found to be significant. Due to their reported data [14] 

the sound velocity in the skull bone was 3500 m/s and also the absorption coefficient in 

some bone parts reached values of about 8 dB/mm. It was interesting that the parts of 

skull bone with high or low absorption were quite non-coincident with regions having 

high or low phase shifts. 
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In spite of all advantages of the method developed by mentioned French specialists, it 

is not without its shortcomings. The primary fault is that in the TRM method an ideal 

point source is needed. In fact, the point source or the scattering object must be the 

brightest part of the extensive target [7]. The authors suggested that this condition can be 

easily fulfilled if a tiny hydrophone is placed within the brain tissues [12,13]. 

Unfortunately, the practical realization of this solution is extremely complicated. As such, 

the authors suggest that a virtual sound source be used in the tissue as an ideal scattering 

object before conducting simulations [12]. Naturally, the efficiency of this method must 

be confirmed during further investigations. 

Another technique, based on matched filtering processing and analogous to TRM, has 

also been suggested by Svet-Molotilov-Baykov [10,11]. In this method, the inverse wave 

front procedure for wideband probe signals is used and information about skull bone 

structure has been extracted from the ultrasound field. Before matched filter processing, 

the phase array has been used to measure the local skull bone thickness under each array 

element. During ultrasound pulse propagation the complex amplitude is measured and, as 

a result, the skull bone transfer function is formed. The complex transfer coefficients 

contain information about both local thickness and local absorption. Certainly this 

method has a great advantage as it does not require either a local sound source (virtual or 

physical) or another imaging method (MRI or X-ray) to determine the skull bone's 

profile. As such, this method has been suggested not only for ultrasound therapy but also 

for the acoustical imaging of brain structures. The major disadvantage of this technique is 

that a linear ultrasound array must be used; the ID phase arrays are limited due to the 2D 

skull bone curvature. As a matter of fact, our study is also closest to this method as will 

be discussed in details during the following chapters. 

From an experimental point of view, this method has been tested "in vivo". The first 

acoustical images of internal brain structures were obtained during the experiment and 

compared with X-ray images [10,11] (Fig. 1.3). 

7 



COKTE TRANSVERSAL 

COWE LONGITUDINAL 

Figl.3. Acoustical image of the venous sinus[34]. 

A great number of papers concerning the investigation of the potential for 

noninvasive brain therapy through the intact skull were performed by K.Hynynen. The 

distinguishing feature of his investigations was the use of homogeneous human skull 

bone. Here it was assumed that the main contribution to distortions during focused 

ultrasound propagation through the skull was due to irregularities in bone thickness. Also, 

the sound velocity and density for the skull bone were considered to be twice that of 

water and brain tissue. This unreal assumption considerably simplified the calculations 

which could then be completed only having to take into account geometrical beams 

distortions. 

In J.-L.Aubry's study, [12], the importance of heterogeneous skull bone structure was 

noted and numeric simulations were undertaken. The wave front from the virtual point 

source passed through the skull and the source position reconstruction were considered in 

the following structures as the skull bone 

I) A heterogeneous structure 

II) A homogeneous structure 

and 

III) A model without any correction 
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Corresponding intensity (pressure squared) distributions versus the distance from the 

focal point are presented in Fig.l .4 (in relative units). 

Distance to focal point (mm) 

Figl.4. Power distribution versus distance form the focal point, i) The gray line 
represents calculation results by the TRM method for a heterogeneous skull 
bone model, ii) The dotted line represents a homogeneous model, iii) The dash-
dot line represents power distribution without correction. [12]. 

Obviously, the homogeneous model (dot line) essentially improved the focusing 

quality in comparison with the absence of correction calculations (dash-dot line). At the 

same time, the level of the side lobes was 10 dB less. Besides, the homogeneous model 

distribution curve line is more symmetric with respect to the focus. On the other hand, the 

focusing quality of the heterogeneous model is better than that of the homogeneous 

model. In addition, the distribution curve is absolutely symmetric relative to the focus 

and the side lobes are very small. Thus, according to the authors [12], the heterogeneous 

model is more precise with respect to hypothermia of brain tissue. 

The investigations by K.Hynynen's laboratory in the field of focused ultrasound 

propagation through the intact skull began a couple years later than the French scientists. 

Despite this delayed start, their work soon proved equally fruitful. The goal of their work 

was to demonstrate the possibility to destroy deep internal brain structures through the 
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intact skull bones not by traditional heat coagulatory necrosis, but by tissue cavitational 

destruction [17]. Because cavitational thresholds in tissues are only weakly dependent on 

the effect duration, the same destruction can be obtained through the use of several short, 

high intensity ultrasound pulses. In this way the damage to the bone tissue due to the 

heat, produced in the emitting area, could be avoided. For acoustical field measurements 

a tiny hydrophone was used. Using this hydrophone the phase shift at each element of the 

array could be measured. These phase shifts were used to compensate for the distortion 

resulting from the human skull bone. The destructions were produced in rabbit brain 

tissues in vivo after the ultrasound propagated through their skull bone. It turned out that 

destruction could be achieved by a single transducer only if its frequency was no more 

than 1 MHz. An array of transducers was also used in a similar case. The phase 

measurements from the 60 elements on the 2D array demonstrated that at a frequency of 

0.6 MHz (wavelength 2.5 mm) 80% of the phase shifts, caused by the skull bone, were 

less than 90°. In the other words, most of the elements caused an acoustical pressure 

increase within the area of focus. If the frequency was increased to 1.58 MHz 

(wavelength less then 1 mm) the number of such elements decreased to 50%, resulting in 

reduced focusing quality. In short, the use of phased arrays permitted phase correction for 

the elements, allowing satisfactory focus quality even at a frequency of 1.58 MHz. Also, 

the destructions in the brain tissue were not accompanied by heat injuries in skull bone. 

Also, in their theoretical investigation, J.Sun and K.Hynynen [15] developed an 

effective numerical model. Here the whole experimental apparatus was considered as a 

three layered structure; i.e. water, bone and brain. The geometrical characteristics were 

presented in numerical form according to an MRI analysis of the skull. This model 

permitted the simulation of focused ultrasound propagation through the skull by taking 

into account wave absorption, diffraction, refraction and scattering. During this study, the 

focusing was achieved using a 2D phased array. 10 cm in diameter, with a radius of 

curvature of 10 cm. The array's surface was divided into various numbers of square (in 

projection) elements (from 4x4 to 16x16) and the frequency was varied from 0.5 to 1.5 

MHz. In the absence of phase correction on the array elements the quality of focusing 

was diminished. However, in spite of high attenuation in the skull bone, complicated 
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skull shape and varying skull thickness, the phase correction of the array elements 

minimized focus shift at the calculated position, reduced side lobe levels and raised the 

focus intensity. According to the authors, the optimal size of the elements was 

approximately 5 to 6 wavelengths. On the other hand, for the 1 MHz frequency, the 

optimum array had 10x10 elements, each having an individual size of lxl cm2. Finally, 

due to the potential for skull heating, it is suggested that the ultrasound frequency during 

surgery through an intact skull should not exceed 1 MHz. 

The double layer model (bone, brain) was described in the next theoretical paper by 

the same authors [16, 17]. Here it was supposed that the ultrasound sources (phase array 

elements) were placed in contact with skull. In order to sufficiently increase the sound 

pressure at a fixed point within the brain, the surface of the array, and hence the surface 

of the skull under radiation, was maximized (actually 6 times more than for a typical 

single focused radiator). This allowed the pressure in the brain to be increased by three 

times, greatly reducing the potential for local skull heating. A frequency of approximately 

0.6 MHz was optimal to bring about maximal acoustic pressure and, in turn, maximal 

heating at the focus. According to the authors there also are some restrictions in this 

method. First, the numerical refractions, the stationary waves and the shear modes were 

absent in the skull bone. Also, the skull bone was assumed to be a homogeneous 

structure; which means that individual variations in both shape and thickness were not 

taken into account. 

The experimental testing of the theoretical conceptions described above was 

conducted and reported in a paper by the same research group in 1999 [16]. A skull 

segment had been preserved in formaldehyde before experiment. The array was made of 

a single transducer with a frequency of 1.1 MHz, having a diameter of 10 cm and a radius 

of curvature of 8 cm which was divided into 76 equal in size elements. The elements 

were acoustically separated by a silicon mastic and power was supplied using a 256 

channel power amplifier which permitted digital amplitude and phase adjustments in each 

channel. The array and skull bone were placed in a tank of degassed water and the 

hydrophone was used for acoustical field control. Two methods were used for the phase 

11 



correction of the array elements. The first was based on the above described calculations 

regarding the geometrical characteristics of skull using the MRI data; the second method, 

on the other hand, was based on measuring the phase shifts at each array element, where 

a hydrophone was placed at a set point under the skull bone and served as a point source. 

The experiment demonstrated that the first method of phase correction resulted in an 

increase of sound pressure at the focus point up to 95% (as compared to the case when 

phases at all elements were equal, i.e. without correction). With this correction the 

pressure at the focus was 9% of that which was measured in water without the skull. The 

phase correction conducted with the hydrophone allowed a sound pressure increase of 

only 3% more than the pressure in the first correction method. Thus, according to the 

authors, the method for phase calculation using MRI data for the skull shape and 

thickness is acceptable for ultrasound brain therapy through the intact skull. However, for 

clinical use it is necessary to also overcome a set of other difficulties associated with this 

method. These difficulties are 

1. Phase distortions are due to skull bone but not brain tissues and skin. 

2. The measurements with bone tissues were conducted in vitro but not in vivo. 

3. The phase error was not considered to influence the focus depth in the brain. 

4. The power levels that were used were considerably less than that which is 

expected for brain tissue destruction. 

5. The larger element size limited the possibility of utilizing electrical scanning 

outside the geometrical focus where the maximum intensity occurred. Thus, 

scanning can only be obtained via a mechanical method. 

Further, G.Clement et al. [18] investigated the possibility of effectively reducing the 

number of array elements and subsequent power channels. In fact, this was achieved by 

rotating simple arrays around some axis of skull symmetry. Two examples of these kind 

of arrays are shown in Fig. 1.5. 
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(a) 

/ \ 

/ 

(*) 

Fig.1.5. The geometry of simple arrays which were used for simulating multi­
element arrays with (a) 11 elements and (b) 64-elements 40 of which 
are active [18]. 

The first array in Fig. 1.5 was optimized for 0.6 MHz and had a diameter of 10 cm and 

a radius of curvature of 8cm. This array consists of 11 similar elements. The second array 

(0.5 MHz in frequency) consisted of 64 square (in projection) radiators, each 1cm2 in 

size; only 40 (black-outs at the Fig.1.5) of these elements were active. These arrays were 

placed at four different positions to reproduce the effect of a large array (Fig. 1.6). In 

reality, it was more appropriate to rotate the skull relative to the array. 

Axis of rotation 

Fig.1.6. Experimental scheme of a small array placed at 4 different positions to reproduce 
the field of a large array [18]. 
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The mentioned series of investigations was conducted using two virtual arrays with 

40 and 160 number of elements respectively. The field measurements were accomplished 

via a tiny hydrophone. The phase corrections corresponding to the above described 

method led to increased focusing quality for the 44-element array. After phase correction 

the acoustical pressure increased from 26% to 42% of the value in water. The maximum 

mechanical displacement of the array relative to skull was ±15 mm. The authors 

estimated the possibility of electrical scanning using the 160-elements array to be ± 10 

mm. The last number seems rather conservative because the acoustical field 

measurements, conducted with the hydrophone, were most likely out of the area where 

the powered secondary intensity maximum should occur. 

K. Hynynen et al. also designed another array of transducers to make destruction in a 

soft tissue through human skull [19]. The array had a central frequency of 0.6 MHz and 

was arranged as a hemisphere with a radius of 15 cm. The array consists of 64 elements. 

A picture of the array is shown in Fig. 1.7 and presented schematically in Fig. 1.8. The 

field, produced by the array, was then measured with a tiny hydrophone (0.2 mm in 

diameter). The hydrophone was also used for phase correction using the same above 

described method. 

Figl.7. Photo of a 64-elements hemispherical array [19]. 
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Fig. 1.8. Schematic configuration of a 64-elements hemispherical array [19]. 

As mentioned, the tissue destruction was undertaken in rabbit muscular tissue after 

ultrasound propagation through a human skull. It was produced at the maximum possible 

power of the array (2624 Watt, 41 W/channel) with an 8 Sec exposure. The temperature 

of the skull surface exceeded the room temperature (24°C) by 12.4°C to 18.6°C during 

several tries. The authors also conducted numerical simulations for arrays of the same 

number of elements and also for those having 8, 11, 64, 228 and 501 elements. The 

ultrasound field was calculated at the geometrical centers of the mentioned arrays. The 

results are presented in Fig. 1.9. It can be seen from the plot that the square of the sound 

pressures (intensity), normalized to the correspondence value for the 64-element array, 

were 0.52, 0.56, 1.0, 1.4, and 1.52, respectively. 

x i o " 

50 !00 i50 200 250 300 J50 400 450 5O0 

Fig.1.9. Sound pressure squared (after propagation through the skull) 
as a function of the number of array elements [19]. 
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Therefore the 64-elements array noticeably exceeds the characteristics of the arrays 

with a larger number of elements. The authors conclude that the mean focus intensity, 

although important, is not the single criterion for estimating optimal array characteristics. 

No less important are the levels of the secondary intensity maximums during electronic 

scanning outside the geometrical focus. In fact, this criterion is of considerable help in 

determining how safe it is to use a particular array. As mentioned earlier, it was 

demonstrated that each element should not exceed a particular size, for example 5 

wavelengths. This fact inevitably leads to an increase in the necessary number of array 

elements. 

This set of laboratory investigations is concerned with the study of particular 

problems related to those described above. The numerical calculation of tilted sound 

wave absorption and propagation through skull bones was accomplished by [20] - all 

previous calculations were restricted to waves of normal incidence. Here it was 

demonstrated that the inner reflections of the wave within the skull have less of an 

influence on phase distortions at small incidence angels to the skull bone. 

Two different methods for brain surgery and therapy with focused ultrasound through 

the intact skull were developed in the K.Hynynen laboratory around 2002. The first of 

these methods is minimally invasive, the second completely noninvasive. The main 

feature of the first method [2] is that flexible tiny hydrophones are introduced into the 

blood vessels to control the focusing quality. In contrast to the methods developed by M. 

Fink et al., here it is not necessary to place the hydrophone within a particular region of 

the tissue. The hydrophone should, however, be placed near the suspected area. The 

position of the hydrophone can be controlled by MRI imaging. The means by which the 

tissues are affected are described as follows. Here, the powerless signal was transmitted 

to the each of the therapeutic array elements. The signal was recorded by a hydrophone 

and the necessary phase offset for each element was determined so that the received 

signals were in phase. This phase correction was then utilized to move the focus from the 

position of the hydrophone to the region that should be destroyed. Only then is the 
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powerful ultrasound technique utilized. Two arrays were used in these experiments for 

focus scanning: a 104-element array at 1.1 MHz with a radius of curvature of 16 cm and a 

120-element array at 0.81 MHz with a diameter of 19.2 cm. The 64-element hemisphere 

array (0.6 MHz frequency) was then used for destruction of some muscular tissue from a 

pig placed behind a human skull bone. All arrays developed by the authors consisted of 

regularly placed elements at the array surface. The destructions were produced at a 

distance of 10 mm from the hydrophone using 1900 Watts of power for 30 Sec. 

The principal results concerning the development of a completely noninvasive 

method of focused ultrasound were also developed later [3]. Here an improved 

calculation model of ultrasound propagation through the skull bone, method of 

measurements (particularly with respect to determining the geometrical parameters of the 

skull), the instruments for focused ultrasound that were developed by authors, as well as 

the results of experimental investigations are reviewed in detail. The focusing system was 

comprised of a 2D array. The array was arranged as a 30 cm diameter hemisphere (0.74 

MHz frequency) consisting of 1-3 piezoelectric elements divided into 500 separate 

sections, of which 320 were active. A 500-channel amplifier with 1800 Watts of power 

was used to supply the array. The calculation of the phases and amplitudes of the array 

elements was conducted by taking into account all data concerning the thickness and 

inner structure of the skull bone. For the focusing quality a PVDF-hydrophone, 0.2 mm 

in diameter was used. The hydrophone was placed in the water tank and was moved by 

means of a 3D-positioning system with stepper motor. The hydrophone measurements 

were used to optimize the 2D array and to compare this method with the phase 

calculation results. The calculation methods enabled an intensity of 45-46% of the 

intensity after the hydrophone phase correction (the average of 10 specimens with 

individual dispersion 22%-59%). According to the authors, the results of investigations 

demonstrate the ability to use the offered method for completely noninvasive surgery and 

therapy by affecting the tissues through the intact skull. 

One of the interesting results obtained in afore mentioned study. [3], was that the 

focus intensity produced by the hemisphere array was considerably reduced if the focus 
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was moved mechanically from the geometrical center of skull towards the skull surface. 

At the same time it was observed that at distances less than 40 mm from the surface, the 

intensity was significantly reduced (by more then 4 times) and the field distortions were 

considerably increased. The authors further suggested that for small target depths their 

assumption that refraction effects in the skull bone are negligible is no longer valid. In 

this case a special method should be developed to achieve destruction (multiple reflection 

effect in the skull bone was one of the main research areas of this thesis as will be 

discussed in chapter 2 and chapter 3). 

The mentioned problem was completely investigated and tried to be solved later by 

the same group (K. Hynynen et al. [22]). Here the authors noted that the assumption that 

ultrasound propagating through the skull bone consists only of longitudinal mode, 

enables good results for small angles of inclination beams. On the other hand, this 

assumption is not valid if the inclination angle exceeds 25° and approaches the first 

critical angle. The above description explains the amplitude reduction by means of a 

longitudinal wave model. According to the authors, the transformation of longitudinal 

waves (in the skin) into shear waves (in bone) and then again into longitudinal waves (in 

brain) is not responsible for the strong signal distortion and sharp amplitude decrease. In 

reality the amplitude of the signal in the focused beam is increased in comparison with 

the case where purely longitudinal waves propagate through the same region of the skull 

bone. In fact, there exists a potential advantage in the propagation of longitudinal-shear-

longitudinal waves in comparison with purely longitudinal waves as there is only a small 

difference in the sound velocity of shear waves in skull bone (about 1400 m/s) and 

longitudinal waves in water, skin and brain (about 1500 m/s). On the other hand the 

longitudinal wave velocity in skull bone is twice as high. Thus, shear waves in skull bone 

are characterized by the best impedance agreement between the mediums, bringing about 

less refraction and phase distortions. The authors investigated the role of shear waves as a 

mechanism to increase the effectiveness of ultrasound propagation through the skull 

bone. The authors first theoretically and then experimentally investigated the process of 

wave transformation in a test specimen (plastic parallel-plane) and in a human skull bone 

using a converging ultrasound beam. 
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Fig.1.10. The CT images are divided into sections containing 3D unparallel planes and 
the shear mode appearance was investigated in each section [22]. The symbols I, II, III 
denote the different mediums: skin, bone and brain. L - longitudinal waves, S - shear waves. 

A schematic image of the wave propagation is presented in Fig.1.10. The waves 

reflected from the boundaries are not shown in the image. The theoretical investigations 

conducted by authors allowed them to consider the effect of shear waves within the 

previously developed model of sound propagation through the skull bone. The 

experiment was conducted with single focused transducers (for plastic 1.5 MHz in 

frequency, 12 cm diameter, 16 cm radius of curvature; for bone 0.74 MHz in frequency , 

8 cm diameter, 15 cm radius of curvature). The plastic plane (11.8 mm thickness) and 

skull bone segment (5.3 mm thickness in the center) were rotated at various angles 

relative to the converging ultrasound beam. The calculated results were in good 

agreement with experiments results up until the first angle approached the critical angle 

(26-32° for the bone). In fact, at these angles and, in particular at larger angles, these 

results strongly differ from the previous ones and only agreed with calculations which 

accounted for the shear wave mechanisms. The peak pressure amplitude of the shear 

waves was 35-55% of peak amplitude of longitudinal waves. However the effect of the 

share waves on the brain tissues can be great due to the small variation between the 

velocities of the two wave modes, as described earlier. The authors suggest that this 



method can be useful not only for noninvasive neurosurgery and brain therapy, but 

especially for focusing at lesser depths below the skull surface. 

Further, acoustical analysis of the human skull bone and brain tissue will be discussed 

in this chapter as the information is of a great importance for the rest of this report. 

1.2 Acoustical analysis of the human head tissues 

The human skull bone is inhomogeneous and consists of three layers [27, 28] as 

shown in Fig.1.1 l.a. The top and bottom layers are composed of compact bone, while the 

middle layer, the diploe, is only present in the skull bone of an adult (Fig.1.1 l.b); It is 

absent in both children and animals. The diploe layer is composed of spongy bone tissue 

filled with cavities of liquid. Inside the diploe there are numerous diploic canals within 

which there are blood vessels which keep the bone tissue alive. 

Figl.11 (a) Bone Tissue (b) Human skull: 1-diploe (spongy bone tissue); 2-compact bone tissue. 3-

diploic canals. 
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Total skull bone thickness of an adult human defers from 15 to 20mm [27. 28]. The 

bottom surface of skull bone is irregular with the magnitude of irregularity ranging from 

8-15 mm through 100 mm. In fact, the skull bone can be effectively represented as a 

curved plate with a smooth top surface and curved bottom surface. The acoustic 

parameters of the skull bone are presented in Table 1. These data fully describe the 

ultrasonic properties of the various tissues found within the human head [29-31]. The 

acoustical properties of brain tissue are close to that of water. 

Table 1.1. Ultrasonic properties of human head tissues [29-31]. 

Sound velocity, 
m/s 
Density, kg/m3 

Sound 
attenuation, 
dB/m; frequency, 
MHz 
0.3 
0.6 
0.8 
0.87 
1.0 
1.2 
1.6 
1.7 
1.8 
2.0 
2.25 
2.9 
3.3 
3.4 
3.5 
5.0 
6.0 
7.0 
10 

Skull 
bone, 
Full skull 

2060-4100 

1800-2000 

200-230 
450-520 
750-1500 

1450-1700 
2800-3200 
3300-3550 
3600-4300 

4700-5300 

7800-8000 

Skull 
outer 
ivory 
table 
2920-
2960 
1930 

1450 

Skull 
inner 
ivory 
table 
2590-
3098 
1970 

1870 

Skull 
diploi 

2240-
2870 
1770 

1300 

Brain 

1460-
1570 
900-950 

85-90 

140 

180 
120 

240 
270 
365-370 

Blood 

1530-
1600 
1060 

34 

69 
110 

170 
250 

Blood 
vessel, 
walls 

1490-
1580 

150 
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The main difficulty that must be overcome in transcranial brain ultrasonic medical 

diagnostics is the relatively high ultrasonic attenuation that occurs in the skull bone. 

Furthermore, the probing signal brings about multi-reflections from the upper and inner 

bone surfaces. In fact, the skull bone can be presented as a parallel-sided plate. If a pulse 

signal is transmitted, the received signal can be represented as a time related to 

consecutive signals with reduced amplitudes. The useful signal, reflected from the object 

of interest is often masked by the multi-reflected signals, limiting and complicating the 

possibility for detection and identification (Fig.1.12)[33]. 

inner bone Boundary reflections ofe)ecJ scattering 

inner bone boundary reflections , object scattering 

100 150 
time, mfcs 

Fig. 1.12. (a) Reflected signals scattered from the object, as well as multi-reflection signal 

from the inner bone boundary, (b) The signals at the receiving array. 

22 



Finally, because the skull bone is a heterogeneous media with an irregular inner 

surface, the skull bone model is more accurately modeled as a parallel-sided plate with an 

inhomogeneous layer adjacent to it. The ultrasonic wave which passes through the layer 

is transformed into a spectrum of waves refracted in different directions. 

The medical standards governing the allowable intensity of ultrasound are 

determined according to skull bone overheating and liquid cavitations. As such, the 

allowable transmitted intensity in ultrasonic diagnostics is restricted to 150-300 mW/cm2. 

In fact, the ultrasound used in diagnostics has a lesser intensity than that used in other 

medical procedures [32]. For example, ultrasound used in physiotherapy heats tissue no 

more than 1°C. This correlates to an acoustical transmitting intensity of 1W/ cm2 for a 

time of 10 min. For treatment of hyperthermia, unfocused ultrasound with 10W/cm2 is 

used for 1-2 hours. The tissue temperature is held at 42-43°C. 

Hence there are high restrictions regarding the intensity of signal that can be used as 

well as considerable power losses to the ultrasonic signal due to attenuation as it passes 

through the skull bone. Both of these problems can be addressed by using multi-element 

phased arrays with electronic scanning. 

1.3. Conclusion 

According to the reviewed materials, the majority of the articles concerning matched-

filtering process are devoted to the therapeutic effect of ultrasound or ultrasound surgery. 

There are considerably less articles discussing ultrasonic imaging of the brain structure 

through the intact skull. This is most likely due to the fact that ultrasound therapy 

requires rather low frequencies (not higher than 1 MHz), which effectively reduces 

spatial resolution. As such, frequencies higher than 1.5 MHz are required for ultrasound 

diagnostics. 
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However, during this thesis I tried to develop a new theory and simulation for 

noninvasive image reconstruction through a simplified simulated skull bone. The goal of 

this study was to reconstruct the position of a static object places somewhere behind a 

scattering medium (simplified human skull bone). My study was based on the previously 

explained matched filtering process and more specifically TRM. The main difference 

between my theory and the TRM was that instead of having the array elements 

reradiating the signals in the inverse time order, as used in TRM [4-9], the phase 

information was saved on either a simulated or real array of receivers and the simulated 

re-radiation happened in inverse direction due to inversed previously saved phases to 

make the image reconstruction plane. The detailed explanations on the theory and 

experiment (my contribution to this study) are presented in chapters 3 and 4. 
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Chapter 2 

ACOUSTIC WAVES IN ISOTROPIC MEDIA 

In this chapter, the main acoustical principles and theoretical considerations used in 

developing the theory and algorithm will be briefly discussed. More detailed calculations 

are given in the references. 

2.1. Acoustical wave modes in isotropic solid media 

Unlike the fluids in which the acoustical waves only propagate in longitudinal 

(expansion/compression) mode, there could be both longitudinal and shear wave modes 

in solid media [37]. In isotropic solids, these two modes propagate independently and 

therefore they do not interfere. For each of the modes there exist a potential which the 

solutions for displacement in each mode is derived from its specific potential. For 

longitudinal mode this potential a scalar (</>) and, on the other hand, it is a vector 

potential (ip) for shear mode [37]. The displacement vectors (w;and us) can be obtained 

when the potentials are know in a solid medium 

u,=V^, us=Vxy/ (2.1) 

The displacement equations are then expressed by 

H, = A, exp j(co,t - k,.r) (2.2) 

iis = As expj(cost - k, .r) (2.3) 

Where A, and As are the longitudinal and shear waves initial amplitudes respectively. 

r is the path vector taken by the wave from the initial point. k,,co, and k,,<»v are wave 

number vector and angular frequency of the longitudinal and shear waves respectively. 



Having the displacement vector in hand, the other useful parameters such as velocity 

and pressure at each point can be easily derived [38]. 

2.2. Acoustic Impedance and Attenuation 

As a direct analogy of impedance in electrical circuits, the absolute value of specific 

acoustic impedance [39], useful to characterize a bulk (infinite) medium, is defined as 

Z = pV (2.4) 

Where p and V are density and sound velocity of the medium respectively. It is a highly 

useful concept in ultrasonic as will be used later in this chapter. 

Another important parameter in acoustics is attenuation factor (ar[dB/m]). It shows 

how attenuative a medium is [39]. As acoustical waves propagate through a medium their 

amplitude, and therefore their intensity, get damped as follows 

w = 4,exp(-«|r|)exp7(<y t-\t .r) (2.5) 

2.3. Reflection and Transmission at interfaces 

Performing the majority of operations or experiments with ultrasonic waves means 

transmitting the waves from one medium to another where the measurement is to be 

performed. For this reason it is essential to have a good understanding of the principles of 

reflection and transmission of ultrasonic waves. As in our case the transmission is 

supposed to happen either from the brain tissue to the skull bone (fluid-solid interface) or 

in the skull, from one layer to another (solid-solid interface), these two cases are to be 

explained in the remaining part of this chapter. 
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When an ultrasonic wave is incident on an interface between to media, the resulting 

wave(s) have changed amplitudes and directions. Change of direction is ruled by Snell's 

Law and the amplitudes of the reflected and transmitted waves can be found by 

calculating the reflection and transmission coefficients. 

2.3.1. Snell's Law and Slowness Surfaces 

Consider a plane boundary between media with different acoustical properties 

(Fig.2.1), the boundary conditions state that the particle velocity and the normal 

components of the stress must be continuous at all point on the boundary [35]. This 

means that the incident and scattered waves must all have the same z component of 

k tangential to the boundary. This is the basis for deriving SnelFs Law. 
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Fig.2.1. Acoustic wave scattering a plane boundary between two isotropic media. 

The derivation can be performed most efficiently by using the slowness surfaces as 

shown in Fig.2.2. It can be seen from Fig.2.1 that the transmitted wave(s) is refracted 

away from the direction of the incident wave. As discussed before, in acoustic media. 
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there could be several refracted and reflected waves with the same value of £tanas the 

incident wave. The slowness surface gives the magnitude of k/o> as a function of its 

direction. From Fig.2.2 the isotropic acoustic Snell's Law for either shear or longitudinal 

incidence is therefore 

— sum = —sinf? =—sin#, = —sinf? 

v, vs v; v; 
(2.6) 

Where 0l,9s,6l ,0S are the incident, reflected or transmitted angles as shown in Fig.2.2 

and V,,VS,V,',V}are the longitudinal and shear wave velocities in the first and second 

media respectively. 

Fig.2.2. Acoustic wave scattering a plane boundary between two isotropic media [35], 

2.3.2. Reflection and Transmission Coefficients at Solid-Solid Interface 

2.3.2.1. Shear wave incidence 

In this case both reflected and transmitted longitudinal waves are excited as shown in 

Fig.2.4. 
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Fig.2.3. Acoustic wave scattering at a plane boundary between two solid isotropic 
media when the incident beam is a shear wave. 

The particle velocity vectors shown in the figure can be written as 

V , = - ^ 4 e x p ( - / k , - r ) 

V ^ ^ ^ e x p ^ / k ^ r ) 

_ " w fl,exp(-ikw-r) 

V ; = - ^ - 5 ; e x p ( - / k ' , - r ) 

k'7 v;=-fs;exP(-/k'77.r) 

(a) 

(b) 

(c) 

(d) 

(e) 

(2.6) 

Applying the boundary conditions to the velocity and stress components [36] leads to the 

set of scattering equations 

As sin 0S = -B, cos 0, - B] cos 0] + Bs sin 0S + B's sin 0\ 

As cos 0, = -B, sin 0, - B\ sin 0] + Bs cos 0S + B's cos fft 

(a) 

(b) 
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- Asjuks sin 20, = -B,(A + 2fi)k, cos20, + B](A' + 2ju')k', cos 20/ + B,fjk, sin 20, - B',n'k', sin 20; 

(c) 

- AsJuk, cos 20, = -5,/zfr, sin 20, - B',ju'k', sin 20] - Sv//fc, cos 20, - B'sfi'k] cos 20s' (d) 

(2.7) 

In the above mentioned set of equations, /u,A are Lame' coefficients of the first medium 
and//',A' are Lame' coefficients of the second medium [39]. According to above 
mentioned equations, the reflection and transmission coefficients are 

R - 5 ' 

Th=^ 
As 

R -B> 

A 

- * L 
A 

A 

T.= 
A, A 

(a) 

(b) 

(c) 

(d) (2.8) 

Where A is the determinant of the coefficients on the right-hand side of Eqs.(2.7) and 

A/s is the determinant obtained by replacing the coefficients of B, with those of A,, etc. 

More conveniently, the determinant can be written in the following way 

A = k. sin 6, sin 0] sin 0S sin 0\ (2.9) 

- cot e, -cot0,' 

(A + 2M) 
(2sin2 0, -1) - (A' + 2//)(2sin2 ff, -1) 

sin20, 

2//cot (9, 

sin2 ff 

2//cot0/ 

-cot0„ 

2ju cot 0, 

cot 01 

2//cot0,' 

ju{2-csc20,) / / (2-csc20 s ' ) | 
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2.3.2.2. Longitudinal Wave Incidence 

The case is shown schematically in Fig.2.4. The only difference from the previous part 

(Fig.2.3) is that the incident wave is changed from shear wave to longitudinal wave. 

Since the scattered wave polarizations and angles are the same in both figures, only the 

terms on the left hand side of Eqs.(2.7) need to be changed [36]. These terms become 

- A, cos 9, (a) 

A, sin 0, (b) 

4(A + 2//)£,cos20; (c) 

- A,fJc, sin 2B, (d) (2.10) 

And the reflection and transmission coefficients are found to be 

(a) 

(b) 

(c) 

(d) (2.11) 

Where again A is the determinant of the coefficients on the right-hand side of Eqs.(2.7) 
and A/s is the determinant obtained by replacing the coefficients of Bt with those of As, 
etc. 

R„ 
A. 

" " A " A 

K, = 
B. A si 

A 

" ~ A, " A 
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Fig.2.4. Acoustic wave scattering at a plane boundary between two solid isotropic 
media when the incident beam is a Longitudinal wave. 

2.3.2.3. Reflection and Transmission Coefficients at Fluid-Solid Interface 

As explained before, the only allowed mode in fluid media is longitudinal wave mode. 

Whenever a longitudinal beam reaches a solid interface, it gets partially reflected and 

transmitted. The case is shown in Fig.2.5. The reflected wave is also of longitudinal 

polarization as it propagates in fluid medium. On the other hand both longitudinal and 

shear modes can be excited in the second medium [39]. 

Fig.2.5. Acoustic wave scattering at a plane boundary between a liquid and a solid 
medium. The incident beam is of longitudinal kind. 
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Applying the boundary conditions to the tangential and normal components of velocity 

and stress respectively and following the same procedure as last section [39], the 

reflection and transmission coefficients for wave's displacement are derived as 

_ Z, cos2 20, + Zs sin2 20, - Z, 
K — : : ; : 

Z, cos 20, + Zs sin" 29s + Z, 

(2.12) 

T,= 
f \ 

A. 2Z, cos 20, 

Z,cos220s+Zssm220s+Zi 

(2.13) 

T = 
.Pi 

2Zr sin 20. 

Z,cos220s+Zssm220s+Zl 

(2.14) 

Where 

Z.= PlV\ 

vcos^, y 
2,= Piv, 

cos^, 
Z . = 

Kcos0sJ 

(2.15) 

The equations derived for reflection and transmission coefficients in this chapter will 

be used in next chapter in order to find the effect of the simulated skull bone on any 

incident ultrasonic wave. 

During the next chapter, the main theory of this study and the simulation developed 

according to the theory will be discussed and the results of the simulation will be 

presented. 
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Chapter 3 

SIMULATION 

3.1. General apparatus and Mechanism 

As mentioned in the introduction part, the long term goal of the Brain Project was to 

reconstruct the image of a foreign static object (reflector of any kind) positioned 

somewhere inside the brain. The particular goal related to my research was to develop the 

project's theory and simulation to finish phase I. The main purpose on this phase had 

been defined as developing an algorithm to check the validity of the theory on a 

simplified theoretical and experimental setup as will be explained in this and the 

following chapter. More sophisticated and therefore realistic apparatuses remain to be 

studied in future after the theory showed enough accuracy and functionality. Therefore, at 

this point although the simulated skull bone had all its acoustical properties the same as 

real skull, its physical shape was simplified to be more convenient to be built and used in 

the experiment part; i.e. instead of a curved and porous three layered structure, a flat 

scattering multi-layer was simulated as will be discussed further in this chapter. 

Moreover, as the acoustical properties of brain tissue and head skin are very close to 

water, the whole apparatus in both simulation and experiment were immersed in water; 

just like most of the previous studies in this area ([5-9],[11-13], etc.). 

The general configuration according to which the simulation has been developed is 

shown in Fig.3.1. The codes were developed in MATLAB 7.0.4 and a part of it, as an 

instance, has been included as Appendix A. 

As can be seen in Fig.3.1, spherical ultrasound waves initiate from the static object 

which itself could be either a source of ultrasound or a sound reflector. The static object 

generates beams in all directions. Each beam gets attenuated due to distance as it 

propagates in water until it reaches the scattering medium (simulated skull bone). 

Scattering medium causes significant distortion to the passing through field. This 
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distortion includes high attenuation in skull bone layers, multiple reflections between the 

layers and refraction at boundaries (skull layers and skull-Brain tissue boundaries). 

Array of 128 Receivers 

Static Object 

Fig.3.1. Extended source, Scattering medium (simulated skull) and array of receivers' apparatus. 

3.2. Simulation Parts 

Generally speaking, the simulation consisted of two main parts: 

Parti 

To find Intensity distribution of a propagating acoustical field, through the scattering 

medium, on the array of receivers as explained above. 

Part II 

To reconstruct the static object's position due to saved Intensity distribution on the 

array of receivers. As a matter of fact, this part was the practical part of the simulation as 

in real situation instead of the simulated intensity Distribution on the array of receivers, 

the real measured distribution was taken from the experiment and inserted in the 
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simulation to see how the software reconstructed the static object's position. More details 

on experimental data acquisition and relative image reconstruction are provided in 

chapter 4. 

During this chapter, results from part I have being used in part II to get 

reconstruction's results. This allowed us to make sure about the primary availability of 

the developed algorithm before going to the experiment part. 

Before developing the main body of the codes, it was necessary to formulate and 

simulate the main elements of the apparatus i.e. static object, scattering medium, and 

array of receivers with desired acoustical properties as follows. 

3.3. Main Elements' Simulation 

3.3.1. Static Object (Reflector) 

Due to its size, the static object can be simulated as a point source or a combination of 

point sources. This means that any static object (also called as 'extended source' from 

now on) can be treated as a group of tiny elements, e.g. half of the wavelength wide as 

used in our study, each works as a point source of ultrasound simulated as 

U,u,hj)(xw,y,„)=U,0 exp(j<p:o) (3.1) 

Wherexlo, .y,„are the coordinates of the /th point source and£/„, <p;oare its 

corresponding amplitude and initial phase. The number of point sources and therefore the 

object's size is a matter of decision and could be set at any desired value. 

3.3.2. Layered Skull Bone 

According to its triple layered structure (Outer Layer, Diploi, and Inner Layer as 

shown in Fig. 1.1), the simulated skull bone also consisted of three main layers. As 

mentioned before, a simplified model of skull, i.e. flat and nonporous, was used to check 
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the validity of the theory. Besides, as the final code needed to be examined by real 

experimental data, it was easier to make a flat nonporous Phantom layer than a curved 

porous one. Curved models and real ex vivo skull bone are planned to be studied in 

future. 

Due to its randomly curved structure, the inner layer showed to be the most distorting 

layer. In addition, as the inner boundaries of a typical skull do not have significant 

change in slope, the other two layers were modeled as flat layers with different acoustical 

properties due to table 3.1. To develop the inner layer, two different techniques were 

suggested as discussed below. 

Technique A: Random Phase Shifting Elements 

Due to the fact that no matter how a beam penetrates and leaves a layer, in addition to 

attenuation, the layer introduces some phase shift to exponential part of the wave's 

equation, and also knowing that the inner layer's non-planar structure defers from person 

to person, it could have been modeled as a set of consecutive random phase shifting 

elements (Fig.3.1). Each element then possessed an arbitrary phase shift ( 0 - 2 ; r ) and 

introduced that amount to any transmitted beam. This technique was only good for the 

simulation part and not useful for experiment, as in the experiment the curvy structure of 

each physical scattering layer is known and should be considered in the reconstruction 

part {part IT) of the simulation. We used this technique only to get a quick result for 

intensity distribution on the array of receivers and corresponding reconstruction as will be 

explained in section 3.4. 

/ 

\ y 
Random Phase Shifting Elements f0-2n) 

Incident beam 

Fig.3.2. Scattering layer's simulation via technique A. Black and white elements in the picture 
are random phase shirting elements. Each element introduces a phase shirt (0-2n) to any 
passing through beam. 
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Technique B: Ideal inner layer with inner curved boundary 

To make the inner layer with a randomly curved boundary, first a 2D distribution of 

points (Ax = 5 - 1 Omm, Ay -1 - 4mm) were chosen to make a rough view of the curved 

boundary. The next step was to fit the best curve possible (Smoothing Spline) to the 

points (Fig.3.2) and extract the function related to the curve. The function was then 

replaced in the main simulation as the curved boundary of the inner layer. When incident 

on its surface at any point, the beam would be refracted and partially reflected/transmitted 

due to the slope of the boundary at the point of incidence. This model represented a final 

and ideal simulation for scattering layer's inner boundary (Fig.3.3) and was used in both 

parts of the simulation (i.e. part I and part II) and experiment as will be discussed later. 

Outer Layer 

Fig.3.3. Final simulated skull layers. The inner boundary was developed as the best fitting curve to a dispersion 
of points randomly positioned in x and y direction (&x = 5-\0mm,Ay = l-4mm)- The fitting (unction then 
replaced in the main simulation as the inner boundary's equation to be able to find the slope at any point of 
incidence. 

Acoustical properties of all elements used in final simulation are shown in Table 3.1 (all 

the values are taken for room temperature, i.e. 24°C). 

Medium 

Water 

Inner layer 

Diploi 

Outer layer 

Longitudinal Wave 

Velocity (m/s) 

1489 

3098 

2870 

2920 

Transverse Wave 

Velocity (m/s) 

N.A.* 

2590 

2240 

2960 

Attenuation 

Factor (dB/m) 

180 

3400 

3400 

3400 

Density 

(kg/m3) 

1000 

1970 

1770 

1930 

Table3.1. Acoustical properties of water and scattering medium layers 
*Shear waves do not exist in liquids. 
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Static object 

Random Phase 

Shifting Layer 

Array of receivers 

Element's Width 

111 = 0.44mm 

5A-7A = 2.2-3.08inifi 

A/2 = 0.44mm 

Total Size 

6X/2=2.64mm 

128X/2=56.32mm 

56.32mm 

Table.3.2. dimensional information on static object, random phase shitting layer and array of receivers 

3.3.3. Array of Receivers 

The array of receivers in Fig.3.1 was simulated as sequence of 128 small blocks 

(each /l/2=0.44mm in size, X: wavelength in water). Each block is capable of saving 

the final phase and amplitude (and therefore Intensity) of the superposition of all incident 

beams. 

3.4. Simulation Results for part I: Sound Intensity on the Array 

Intensity Distribution on the array of receivers was calculated in absence and presence 

of the scattering medium. 

3.4.1. Intensity Distribution in Absence of the Scattering Medium 

To find the Intensity distribution on the array of receivers in absence of the scattering 

medium, an extended source (6 point sources separated by XI2 along a straight line) was 

placed in the near field zone from the linear array of receivers. Each of the point sources 

on the static object then radiated a harmonic signal (frequency f=1.7 MHz) of unit 

amplitude. The linear receiving array consisted of 128 point receivers separated by XI2 

along a straight line. The acoustical field at the array could be calculated as a Frenel 

integral which in digital form can be written in a discrete form as 
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t/amff(^)=i:^ , (X"'>,JexpO^+y^-«wr l t) (3.2) 

r,k=^{xk-x,0)
1+h'k-yJ) (3.3) 

Where M (=6) is the number of point sources used to make the extended source (static 

object); rlk is the distance between the i'h element of the extended source and the k'h 

receiver on the array. xk, yk are the coordinates of the &'''receiver on the array, or)vis the 

2̂ r C 
attenuation coefficient in water, k = — is the wave number (A = —=0.88mm is the 

* / 
wavelength, c = 1500m/ s is sound velocity in water and / = 1.7MHz is the signal 

frequency). Fig.3.4 shows the results of simulation for the extended source placed at the 

A A 
center of the array (xl0 = 62 — 67— = 27.28-58.96mm) at three different distances, i.e. 

half, same and twice the length of the receiving array. 
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Fig3.4 Simulated intensity Distribution of received 
acoustical field on the array of receivers in absence 
of the scattering medium. The static object has been 
made by six point sources (separated by )J2 along a 
straight line). The static object was placed at the 
center of the array in x direction, i.e. xl0=62X/2-
67/72. The distance between the static object and the 
array of receivers was a) y0=64 >72=28.16mm. half 
of the length of the receiving array b) y0=l28 
A/2=56.32mm, the same as receiving array length, 
and c) y„=256 IJ2=\ 12.64mm, twice the length of 
the receiving array. 
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3.4.2. Intensity Distribution in Presence of the Scattering Medium 

In the case in which the scattering medium was applied, two different algorithms were 

suggested to be used at the time. First algorithm assumed that there was no refraction in 

the scattering medium, which means that beams from static object reached the array of 

receivers in straight paths and only got attenuated due to the distance they take in water 

and each layer. Theoretical arrangements of a beam passes through the scattering medium 

(a close-up view of the area denoted by a dashed square in Fig.3.1) due to above 

mentioned algorithm for both inner layer techniques are shown in Fig.3.5.a and Fig.3.5.b. 

Fig.3.5 Theoretical arrangement of a beam transmits through the scattering medium (a close-up view of the area 
denoted by a dashed square in Fig.3.1) for (a) Random phase shifting elements technique and (b) Ideal inner 
layer with inner curved boundary technique 

This time, in the same manner that Eq.(3.1) was calculated, the acoustical field at each 

element (subscripted by " k ") on the array of receivers was calculated as 

/ E (kir:kj)+ (pR.Laytr " X (<*' " '"J ) (3.4) 

For the Random Phase Shifting Elements technique, and 

AlfaM-ti".-^) (3.5) 

For the Ideal inner layer with inner curved boundary technique. 
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In Eq.(3.4) and Eq.(3.5) M is the number of point sources used to represent the static 

object, L is the number of possible mediums each could have propagated through, i.e. 

water and scattering medium layers, rlkl is the path taken in water or any of the layers in 

the scattering medium when a beam initiates from the /'* point source on the static object 

and end in the k'h element on the array of receivers, a, is the attenuation coefficient 

(Table 3.1) of either water or any of the flat layers in the scattering medium andpf t / is 

the phase shift amount, in radians, of the phase shifting element through which a beam 

has been passed through. It is notable that in Eq.(3.4) L = 3 (/ = 1: water, 1 = 2: diploi, 

and 1 = 3: outer layer in the scattering medium) and in Eq.(3.5) 1 = 4 (/ = 1: water, 1 = 2: 

Inner layer, / = 3 : diploi, and 1 = 4: outer layer). 

To get the intensity distribution on the array of receivers in presence of the scattering 

medium, the same apparatus of last part (where scattering medium had not been applied) 

was used. Scattering medium was then added to the apparatus in between the array of 

receivers and extended source (3A/2 = 132mm far from the array. This could be thought 

as the thickness of a human head skin) with its acoustical properties (Table 3.1) in the 

range of a real skull bone. The results for both inner layer techniques due to Eq.(3.4) and 

Eq.(3.5) are shown in Fig.3.6.a and Fig.3.6.b. 

Intensity en the Array rntsmHy a s &» Array 
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Fig.3.6 Simulated intensity distribution on the array of receivers in presence of the scattering medium using the 
refraction free algorithm for (a) Random phase shifting elements technique and (b) Ideal inner layer with inner 
curved boundary technique. The same extended source (static object) was placed at the center of the array of 
receivers (x10=62X/2-67X/2) and y0=128 X/2=56.32mm far from it. 
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On the other hand, the second algorithm was refraction included. A close-up view of 

the area denoted by a dashed square for this algorithm is shown in Fig.7. For clarity not 

all the possible beams inside the scattering medium and those who leave it are sketched. 

Fig.3.7. Theoretical arrangement of a beam passes through the scattering medium for refraction included 
algorithm (a close-up view of the area denoted by a dashed square in Fig.3.1) for (a) Random phase shifting 
elements technique and (b) Ideal inner layer with inner curved boundary technique. The red lines represent shear 
(transverse) beams and the blue lines represent longitudinal beams. 

By taking into account refraction, transmission/reflection at the layers boundaries, 

distances each beam passes in the layer and attenuation loss at each layer, the acoustical 

field propagated through the scattering medium and received by the array was calculated. 

For each beam which reaches scattering medium surface, two modes could be generated 

in each layer if the incident angle (the angle between the norm and the direction of 

incident beam) had not been beyond their critical angles of incidence. Additionally, at 

each boundary, mode conversion could happen due to different transverse and 

longitudinal wave velocities in each layer. Snell's Law and critical angle restriction had 

been applied. Due to high attenuation in scattering medium, beams which had more than 

two reflections in each layer were too weak to be detected from the experimental point of 

view. Therefore only beams with maximum two reflections in each layer played role in 

the simulation. Again acoustical field on the array of receivers was calculated for both 

inner layer techniques. For instance, for a beam reflected twice in each of the layers the 

acoustical field distribution at each point ( xk) on the array derived from 
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M 

Uam,y{Xk)=Yj n ( W * * . , - * M , ) % ^ ^ e x p 
1=1 /=1 

j \ Ya(kirik,,)+(pR.l.ayer | ~ Z ( « / ' ^ . ' ) 

(3.6) 

For the Random Phase Shifting Elements technique, and 

Uarm{xk)=Yu 1 [V,-U • RM,1 • Rl-U ) 1 - ~eXP 
/=l 

Hr.*j 
iZfV.ulrZfc''**.') 

(3.7) 

For the Ideal inner layer with inner curved boundary technique. 

Again, In Eq.(3.6) and Eq.(3.7), Mis the number of point sources used to represent 

the static object, L is the number possible mediums for each propagating beam, i.e. water 

and scattering medium layers, rlk, is the path taken in water or any of the layers in the 

scattering medium when a beam initiates from the /'* point source on the static object and 

end in the k'h element on the array of receivers, a, is the attenuation factor of either water 

or any of the flat layers in the scattering medium and^R/fly(,r is the phase shift amount, in 

radians, of the phase shifting element through which a beam has been passed. It is notable 

that L = 3in Eq.(3.6) (/ = 1: water, 1 = 2: diploi, and / = 3 : outer layer in the scattering 

medium) and L = 4 in Eq.(3.7) (/ = 1: water, 1 = 2: Inner layer, 1 = 3: diploi, and 1 = 4: 

outer layer)., 7J_i;and R,_u are related transmission and reflection coefficients (taken 

from chapter 2 section 2.3) at the boundary of the (/-l)' ' 'and /"'layers. Z, is the 

impedance of the /"'layer, c,and p,are sound velocity and density of the /"Mayer 

respectively, and 6, could be angle of incidence or refraction accordingly. The results for 
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both inner layer techniques due to Eq.(3.6) and Eq.(3.7) are shown in Fig.3.8.a and 

Fig.3.8.b. 
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Fig.3.8 Simulated intensity distribution on the array of receivers in presence of the scattering medium using the 
refraction included algorithm for (a) Random phase shifting elements technique and (b) Ideal inner layer with 
inner curved boundary technique. Only twice reflected then transmitted beams in each layer played role in the 
simulation. Significant power loss, compared to other Intensity distribution graphs (~10"5 times), was observed due 
to multiple reflections in the layers. The same extended source (static object) was placed at the center of the array 
of receivers (xlo=62A/2 -67X72) and y0=128 X/2=56.32mm far from it. 

By the same token, as another example, acoustical field (Fig.3.9.g and Fig.3.9.h) on 

the array of receivers for a beam directly reaches the array of receivers with no reflection 

in the layer (all way transmitted) was calculated as 

UamV{Xk)=^ 11 Vi-u) 1 exP 
/=i 

'ik,l 

A S (*' r<*.' ) + VB-L-Ver ~ Z («/ ' rUJ ) 
V /=! J l=\ 

1=1 

(3.8) 

For the Random Phase Shifting Elements technique, and 

M 

U'array ( * * ) = £ 

( I-

V H 
£(v,*.;) - £(«/•>**,,/) (3.9) 

For the Ideal inner layer with inner curved boundary technique. Results are shown in 

Fig3.9.a and Fig.3.9.b. 
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Fig.3.9 Simulated intensity distribution on the array of receivers in presence of the scattering medium using the 
refraction included algorithm for (a) Random phase shifting elements technique and (b) Ideal inner layer with 
inner curved boundary' technique. Only all way transmitted beams in each layer played role in the simulation. The 
same extended source (static object) was placed at the center of the array of receivers (xio=62Xy2-67X/2) and y0= 128 
W2=56.32mm far from it. 

In the same way, all possible combinations of mode conversion and 

reflection/transmission (up to two reflections in each layer) have been found and applied 

into the simulation. Characteristic final calculated intensities on the array of receivers for 

both inner layer techniques are shown in Fig.3.10.aand Fig.310.b. 
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Fig.3.10 Final Simulated intensity distribution on the array of receivers in presence of the scattering medium using 
the refraction included algorithm for (a) Random phase shifting elements technique and (b) Ideal inner layer with 
inner curved boundary technique. The same extended source (static object) was placed at the center of the array of 
receivers (x,0=62A/2-67/V2) and y0=128 X/2=56.32mm far from it. 

To see how multiple reflections in the layer affect the final distribution on the array, it 

was required to make a comparison between the maximum intensity level on the array of 

receivers for one of the final comprehensive distributions (Fig.3.10.a or Fig.3.10.b) and 

one of those which only were twice reflected then transmitted beams included (Fig3.8.a 
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or Fig3.8.b). As can be seen from the figures, multiple reflections caused enormous 

power loss in the field. A characteristic maximum intensity level of twice reflected beams 

was found to be 4.17 xlO~9 while it was measured 5.97 xlO"4 for the whole beams 

package. This means that, in future studies, multiple reflected beams can be safely 

neglected as they showed to be too small in final amplitude to have a significant affect on 

the intensity distribution. 

3.5. Simulation results for part II: Image reconstruction 

3.5.1. Theoretical Considerations 

After finding the intensity distribution on the array of receivers, the next step was to 

reconstruct an image of the original source of the field. In addition to its size, the image 

should have contained information about the exact coordinates of the static object. As 

mentioned before, all elements on the array of receivers simulated in a way to be capable 

of recording the final amplitude and phase of superposition on the beams they had 

received. The main part of our theory developed at this stage due to Matched Filtering 

Method and, to be more precise, by taking advantage of Time Reversal Mirror (TRM) 

method as they explained in section 1.1. 

To reconstruct the original acoustical field by only using the distorted field 

distribution on the array of receivers, we supposed that each receiver starts to generate its 

own field (like a point source) in the reversed direction with its initial phase and 

amplitude the same as what it had saved from Part I. So, this time instead of a small 

number of point sources, 128 point sources produce acoustical field at the same time in 

the reverse direction. A theoretical arrangement is shown in Fig.3.11. The field then 

penetrates into the scattering medium from the outer layer. Both the refraction included 

and refraction free algorithms were applied to the scattering medium. After leaving the 

scattering medium, a superposition of all incident waves at each point of a vertical mesh 

grid in the array of receivers-simulated skull plane was calculated and saved. As 

predicted in the theory, the superposition of the reverse propagating waves was in a way 
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that the final plot of the field intensity on the mentioned mesh plane, showed a major 

peak at the original static object's position. The preciseness, mathematical formulation 

and final results of each algorithm are discussed in the remainder of this chapter. 

Simulated Skull 
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Fig.3.11. Theoretical arrangement of the Image Reconstruction part of the simulation. 

Just as in part I, the results were generated in the absence and presence of the scattering 

medium. 

3.5.2. Image Reconstruction in Absence of the Scattering Medium 

In absence of the scattering medium, the reconstructed field at 128 by 300 discrete 

points (also called image plane from now on) was calculated in the same manner as 

Eq.(3.2) with a negative value for the angular part as the waves are propagation in the 

reverse direction 

U,maJx\y') = ±U-JXrykKxp(-jcp0k -jkrk<) (3.10) 
4=1 rk 

r>'=J(xk-x')2
+(yk-y')2 (3.11) 

In Eq.(3.10) and Eq.(3.11), {x',y') is the coordinate of the point in image plane in which 

the reversed field is being calculated. (xk,yk) is the coordinate of the k'h receiver on the 



array of receivers. N(=128) is the number of receivers on the array of receivers. U and 

<p0k are the saved amplitude and phase (from part I) of the k'h receiver on the array of 

receivers respectively which are now being used as its initial amplitude and phase. 

The first reconstructions were done in absence of the scattering medium for the three 

intensity distributions from the previous section (Fig.3.4). The original static objects were 

X X 
placed at the center of the array (xi0 = 62 67— = 27.28 -58.96mm) at three different 

distances, i.e. half, the same and twice the length of the receiving array. The results are 

shown in figures 3.12.a, 3.13.a and 3.14.a at the end of this chapter. 

The "b" parts of the figures are the same as the graphs in Fig.3.4. The figures also 

contain two other graphs named as Vertical and Horizontal Profiles. Vertical and 

horizontal cross-sections of the main peak in Vertical Image Planes are shown in those 

parts of the figures. The peak's widths are also mentioned at the level of 0.7 of maximum 

intensity. 

Comparing the "vertical image planes" of figures 3.12, 3.13 and 3.14, some other 

information about the resolution of the image can also be obtained. It can be seen that as 

the static object gets farther from the array of receivers, the resolution decreases in the 

reconstructed image plane. This could be explained due to change in resolution element 

size in y direction. The resolution element in y direction is defined as 

; y 
dy" = — (3.12) 

D 

Where D is the size of the array and Y is the distance in between the resolution 

element and array of receivers. As Y increases, also dy" increases which results in less 

final resolution. For example, in Fig.3.12 as Y = DI2 = (128/1/2)/2 = 28.16mm, 

dy" = X12 = 0.44mm. By the same token, dy" = X = 0.88mm in Fig.3.13, and 

dy = 2X" = \.76mm in Fig.3.14. 
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3.5.3. Image Reconstruction in Presence of the Scattering Medium 

After applying the scattering medium, in the same manner that Eq.(3.10) was derived 

from Eq.(3.2), reconstruction fields' formulas were developed for all other cases 

mentioned in part I. 

In refraction free algorithm (Fig.3. and Fig.3.) the reconstructed field at each point of 

the image plane due to Eq.(3.10) and Eq.(3.11) was calculated as 

umage {x,y)=2s L e xP 
k=\ IX, 

I L \ L 

A Z (*/ ril ) + PR-Layer ~ J<P»k + £ ( « / • < / ) 
,=1 

;=i 

(3.13) 

For the Random Phase Shifting Elements technique (Fig.3.2), and 

umJxW)=±Uk-°'7{Xk>ykK.P 
kml Z</ 

- 71 Z (*' ri<) - Wok + Z ("/ • ri ) (3.14) 

For the Ideal inner layer with inner curved boundary technique (Fig.3.3). 

In Eq.(3.13) and Eq.(3.14), r'kl is the path taken by each beam in the /'* medium 

(either water or any of the layers in the scattering medium). Again it should be noticed 

that in Eq.(3.13) 1 = 3 and in Eq.(3.14) L = 4. The results are shown in Fig.3.15 and 

Fig.3.16 (at the end of this chapter). 

On the other hand, in refraction Included algorithm (Fig.3.7.a and Fig.3.7.b) the 

reconstructed field at each point of the image plane for only twice reflected beams in 

each layer (as an example) due to Eq.(3.6) and Eq.(3.7) was calculated as 
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( 

tfam* (**)=£ - J\ £ (*/</)+?>« /^, I - v>»t + £ («/ •r*,/ 

(3.17) 

For the Random Phase Shifting Elements technique (Fig.3.2), and 

t̂ ™, (**) = £ 
5X, 

- J £ (v*',/) - J<P« + £ ( « / • < / ) 
/=i y 

(3.18) 

For the Tcfea/ /Twer /oyer w/V/z /wier curved boundary technique (Fig.3.3). The results are 
shown in Fig.3.17 and Fig.3.18. 

Finally, following the same procedure, image reconstructions for the intensity 

distributions of only single reflected beams (Fig.3.19 and Fig.3.20) and also image 

reconstructions for the intensity distributions of the final comprehensive package of 

possible beams (Fig.3.21 and Fig.3.22) were executed in the program and the results are 

presented. 

A comparison has been made between the original and reconstructed coordinates of 

the extended sources through all aforementioned algorithms and techniques in Table 3.3. 



Distance from the 
array of receivers 

Original Position Maximum Position 

28.16 mm 

In absence of the scattering medium (figures 3 12,3.13 and 3 14) 

xjo=62-67 pixs. v0=64 pix. ! x10=64 pix. y0=64 pix. 

56.32 mm xl0=62-67 pixs. y0=128 pix. xLO=64 pix. y0=128pix. 

112.64 mm xio=62-67 pixs. y0~^(> pix Xi0=64 pix. >'o=255 pix. 

56.32 mm 

56.32 mm 

In presence of the scattering medium- refraction free algorithm 
(figures 3.15 and 3.16) 

technique I 

technique II 

xio=62-67 pixs. y0=128pix. 

xio=62-67 pixs. y0=128pix. 

xi0=62 pix. 

x10=61 pix. 

yo=130 pix. 

y0=132 pix. 

In presence of the scattering medium- refraction included algorithm 
only all way transmitted beams (figures 3.19 and 3.20) 

56.32 mm 

56.32 mm 

56.32 mm 

56.32 mm 

technique I 

technique II 

xl0=62-67 pixs. y0
=128 pix. 

x10=62-67 pixs. y0=l28pix. 

xl0=63 pix. 

xio=65 pix. 

In presence of the scattering medium- refraction included algorithm 
only twice reflected beams (figures 3 17 and 3.18) 

technique I 

technique II 

xio=62-67 pixs. y0=128pix. 

xio=62-67 pixs. y0=128pix. 

xi0=65 pix. 

x,0=68 pix. 

y„=127pix. 

y0=127pix. 

y0=123 pix. 

y„=134pix. 

In 

56.32 mm 

56.32 mm 

presence of the scattering medium- refraction included a 
(figures 3.21 and 3.22) 

technique I 

technique II 

x10=62-67 pixs. 

x10=62-67 pixs. 

y0=l28pix. j 
i_ 

y0=128pix. i 

gorithm- Final 

xl0=62 pix. yo=130pix. 

xio=62 pix. yo=130pix. 

Table3.3. Original and reconstructed coordinates of the extended source in all aforementioned conditions. 
lpix.=)V2=0.44mm. technique I: Random phase shifting elements. Technique II: Ideal inner layer with curved boundary. 
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3.6. Conclusion 

It can be seen from the table.3.3 that in absence of the scattering medium the 

simulation predicted the static object's position with a high accuracy. The reconstructed 

coordinates are almost the same as original coordinates in all three cases. 

It could also be concluded that between the refraction included methods the 

comprehensive refraction included algorithms made the most accurate predictions about 

the original position of the static object (2pixs=0.88mm deviation from the original 

position). The less accurate prediction was made when only twice reflected beam took 

part in the simulation. This was predictable as the majority of the beams were eliminated 

from the simulation. 

Another interesting conclusion from the table.3.3 was that in the case that only all way 

transmitted beams were used in the simulation, the reconstruction results was reasonably 

accurate (~5pixs=2.2 mm). This could be explained by the fact that multiple reflected 

beams were much too week to be able to significantly affect the distribution on the array 

of receivers and the reconstruction results. 

Furthermore, making decision about the preciseness of the two algorithms {refraction 

free and refraction included) needs the experimental results and will be discussed in next 

chapter. On the other hand, some conclusions could be made up by comparing the 

reconstruction results from Table.3.3. 

During the next chapter real experimental data will be replaced in the simulation and the 

effectiveness of the simulation will be evaluated. 
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Fig.3.12 (a) Reconstructed image of the reversed field in absence of the scattering medium using the same Intensity distribution in Fig.3.4.a. the 
original static object had been placed at xi0=62A/2-67A/2 and y0=64 A/2, the reconstructed image also showed a major peak exactly at the same 
place, (b) Intensity distribution in Fig.3.4.a (c) Horizontal Profile of the major peak in Vertical Plane Image, (d) Vertical Profile of the major 
peak in Vertical Plane Image. Peak's widths in both x and y direction are also mentioned at the bottom. 
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Fig.3.13 (a) Reconstructed image of the reversed field in absence of the scattering medium using the same Intensity distribution in Fig.3.4.b. 
the original static object had been placed at xio=62X/2-67A/2 and y0=128 X/2. the reconstructed image also showed a major peak exactly at the 
same place, (b) Intensity distribution in Fig.3.4.b (c) Horizontal Profile of the major peak in Vertical Plane Image, (d) Vertical Profile of the 
major peak in Vertical Plane Image. 
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Fig.3.14 (a) Reconstructed image of the reversed field in absence of the scattering medium using the same Intensity distribution inFig.3.4.c. 
the original static object had been placed at xi0=62X/2-67A/2 and y0=256 X/2. The reconstructed image also showed a major peak exactly at the 
same place, (b) Intensity distribution in Fig.3.4.b (c) Horizontal Profile of the major peak in Vertical Plane Image, (d) Vertical Profile of the 
major peak in Vertical Plane Image. 
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Fig.3.15 (a) Reconstructed image of the reversed field in presence of the scattering medium for the same Intensity distribution in Fig.3.6.a using 
the refraction free algorithm. The original static object had been placed at xio=62V2-67X/2 and y0=128 X/2. The reconstructed image also 
showed a major peak almost at the same place, (b) Intensity distribution in Fig.3.6.a (c) Horizontal Profile of the major peak in Vertical Plane 
Image, (d) Vertical Profile of the major peak in Vertical Plane Image. The inner layer of the scattering medium in this reconstruction was 
designed using Random phase shifting elements technique. 
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Fig.3.16 (a) Reconstructed image of the reversed field in presence of the scattering medium for the same Intensity distribution in Fig.3.6.b using 
the refraction free algorithm. The original static object had been placed at xio=62X/2-67X72 and y0=128 X/2. The reconstructed image also 
showed a major peak almost at the same place, (b) Intensity distribution in Fig.3.6.b (c) Horizontal Profile of the major peak in Vertical Plane 
Image, (d) Vertical Profile of the major peak in Vertical Plane Image. The inner layer of the scattering medium in this reconstruction was 
designed using Ideal inner layer with inner curved boundary technique. 
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Fig.3.17 (a) Reconstructed image of the reversed field in presence of the scattering medium for the same Intensity distribution in Fig.3.8.a using 
the refraction included algorithm. Only twice reflected beams in each layer was inserted in the reconstruction process. The original static object 
had been placed at xio=62X/2-6Tk/2 and y0=128 X/2. The reconstructed image also showed a major peak a bit off the expected coordinates, (b) 
Intensity distribution in Fig.3.8.a (c) Horizontal Profile of the major peak in Vertical Plane Image, (d) Vertical Profile of the major peak in Vertical 
Plane Image. The inner layer of the scattering medium in this reconstruction was designed using Random phase shifting elements technique. 
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Fig.3.18 (a) Reconstructed image of the reversed field inpresence of the scattering medium for the same Intensity distribution in Fig.3.8.b using 
the refraction included algorithm. Only twice reflected beams in each layer was inserted in the reconstruction process. The original static object 
had been placed at xio=62W2-67kJ2 and y0=128 X72. The reconstructed image also showed a major peak a bit off the expected coordinates, (b) 
Intensity distribution in Fig.3.8.b (c) Horizontal Profile of the major peak in Vertical Plane Image, (d) Vertical Profile of the major peak in 
Vertical Plane Image. The inner layer of the scattering medium in this reconstruction was designed using Ideal inner layer with inner curved 
hnundarv technimie. 
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Fig.3.19 (a) Reconstructed image of the reversed field in presence of the scattering medium for the same Intensity distribution in Fig.3.9.a 
using the refraction included algorithm. Only all way transmitted beams in each layer was inserted in the reconstruction process. The original 
static object had been placed at xio=62A/2-67A/2 and y0=128 A/2. The reconstructed image also showed a major peak almost at the same place, 
(b) Intensity distribution in Fig.3.9.a (c) Horizontal Profile of the major peak in Vertical Plane Image, (d) Vertical Profile of the major peak in 
Vertical Plane Image. The inner layer of the scattering medium in this reconstruction was designed using Random phase shifting elements 
technique. 
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Fig.3.20 (a) Reconstructed image of the reversed field in presence of the scattering medium for the same Intensity distribution in Fig.3.9.b using 
the refraction included algorithm. Only all way transmitted beams in each layer was inserted in the reconstruction process. The original static 
object had been placed at xio=62X/2-67X/2 and y0=128 X/2. The reconstructed image also showed a major peak almost at the same place, (b) 
Intensity distribution in Fig.3.9.b (c) Horizontal Profile of the major peak in Vertical Plane Image, (d) Vertical Profile of the major peak in Vertical 
Plane Image. The inner layer of the scattering medium in this reconstruction was designed using Ideal inner layer with inner curved boundary 
technique. 
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Fig.3.21 (a) Final Reconstructed image of the reversed field in presence of the scattering medium for the same Intensity distribution in 
Fig.3.10.a using the refraction included algorithm. The original static object had been placed at xi0=62A/2-67A/2 and y0=128 A/2. The 
reconstructed image also showed a major peak at the same place, (b) Intensity distribution in Fig.3.10.a (c) Horizontal Profile of the major peak 
in Vertical Plane Image, (d) Vertical Profile of the major peak in Vertical Plane Image. The inner layer of the scattering medium in this 
reconstruction was designed using Random phase shifting elements technique. 
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Fig.3.22 (a) Final Reconstructed image of the reversed field in presence of the scattering medium for the same Intensity distribution in 
Fig.3.10.b using the refraction included algorithm. The original static object had been placed at xio=62X/2-67X/2 and y0=128 X/2. The 
reconstructed image also showed a major peak at the same place, (b) Intensity distribution in Fig.3.10.b (c) Horizontal Profile of the major 
peak in Vertical Plane Image, (d) Vertical Profile of the major peak in Vertical Plane Image. The inner layer of the scattering medium in this 
reconstruction was designed using Ideal inner layer with inner curved boundary technique. 



Chapter 4 

EXPERIMENT 

4.1. Phantom Preparation 

As mentioned in the previous chapter, the effectiveness of the simulation in image 

reconstruction reveals itself when the estimated intensity distribution is replaced by real 

experimental data from an actual array of receivers. In order to set up the experimental 

apparatus the first step was to make an appropriate phantom as a representative for the 

scattering medium. As a matter of fact, since the curved inner layer has a much more 

distorting effect on the transmitted field than the other two flat layers (due to their plane 

interfaces), the validity of the simulation could be examined by either a single or a 

multiple layered structure as the scattering medium. For this reason a single layered 

phantom was designed with an irregular surface on one side. From an acoustical point of 

view, it was crucial to find or synthesize a material whose main acoustic parameters 

(sound velocity, density, and sound attenuation) were close to those of a real skull bone. 

To do this, mixtures of different metal powders in epoxy foundation were chosen to be 

used in fabrication process. This selection was made based on the fact that it was possible 

to manipulate the mixture's acoustical properties by changing the mass and volume ratio 

between the components, i.e. powder and epoxy. Fig.4.1 shows some of the test samples 

after they were dried and polished on their surfaces. 

l-lnuii 

Fig.4.1. Test samples in final phantom fabrication process. 
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After each sample was made, a series of experiments were conducted to measure its 

acoustical properties. In fact, also like the other studies, it was almost impossible to find a 

mixture with exactly the same acoustical properties as a real skull bone. It was inevitable 

that at least one of the main aforementioned parameters differed from its real value; but, 

as the future plan of the project was to replace the home made scattering medium with ex-

vivo skull bones, it could not be an issue. The results of the measurements on the test 

samples are presented in Table.4.1. 

Table4.1. Acoustical properties and measurement results for test samples. 

Sample 
(an epoxy with powder) 

Epoxy "Leco"+ Wi2m 

1 

2 

3 

4 

5 

Epoxy 
"Abocast"+Ti50um 

Epoxy 
"EpoxyCure"+SiC20nm 

SI 

S2 

S3 

S4 

Epoxy 
"EpoxyCure"+BC2onm 

BO 

Bl 

Epoxy+W,2nm 

Hyps 

Plastic 

errors 

mp0Wder' 

mtotai 

0.15 

0.20 

0.175 

0.25 

0.30 

0.3 

0.33 

0.25 

0.20 

0.11 

0.6-0.9 

0.33 

0.30 

±0.01 

d, mm 

3.5 

3.3 

3.7 

3.55 

3.55 

18.5 

7.95 

7.00 

6.76 

1.12 

8.15 

8.70 

Ao/A, 
dB 

5.5 

6.0 

5.5 

5.5 

6.0 

13.5 

7.0 

6.0 

5.5 

5.0 

8.0 

10 

10 

7.4 | 

5-6 I 10.6 

±0.1 ±0.5 

c, 
km/s 

2.40 

2.43 

2.30 

2.24 

2.43 

2.36 

2.90 

2.78 

2.74 

3.47 

2.13 

2.27 

3% 

p, g/cm3 

1.30 

1.35 

1.35 

1.40 

1.45 

1.89 

1.47 

1.38 

1.33 

1.26 

1.60 

1.38 

1.62 

1.8(wet) 

1.25 

±0.02 

Z T 

3.12 | 0.877 

3.28 1 0.860 

3.11 i 0.89 

3.14 1 0.875 

3.52 | 0.838 

4.48 | 0.82 

i 

| 
L 

4.26 | 0.77 
! 

3.7 | 0.82 

3.45 | 0.845 

| 
i 

5.55 | 0.67 

| 

3.45 | 0.845 

3.5% 

0.905 

a, 
dB/cm 

12.5 

14.0 

12.0 

12.0 

12.6 

24.13 

6.0 

5.4 

5.2 

40.4 

10 

10.0 

15-19 

10% 

66 



The parameters in Table 4.2 were measured in the following manner: 

mpowder'Tltotal -

mass ratio: powder mass in the specimen to the total mass of specimen; 

(Measured by weighing on a digital scale) 

p (density): 

measured with a balance using a submersion technique 

d (thickness of each specimen): 

measured with a micrometer 

Ao/A (signal amplitude ratio): 

Ao: without the sample, A: with the sample; measured with an 

oscilloscope 

Parameters Ao/A and At were measured by placing and removing the sample between the 

transmitter (plane ultrasonic transducer) and the receiver (needle hydrophone) in a water 

tank. 

the calculated parameters: 

c: Sound velocity; 

Z: Acoustical impedance (Z = pc); 

T: Signal transmission coefficient through the two boundaries of each sample (due to 

the impedance mismatch); 

a: Sound attenuation; Calculated by subtracting the losses due to the impedance 

mismatch. 

Compared to the acoustical properties of a real skull bone (Table 1.1), an average 

sound velocity and density of the skull bone was satisfied by the test sample fabricated 

from Epoxy Abocast and Ti50Rm powder. Therefore a single layer phantom in large scale 

was made at the time from the best matching compound (Epoxy+Ti5oMm powder). Fig4.2 
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shows the final phantom layer fabricated in our lab. It was polished on the flat side and 

machined on the curved side so that the scratches were not comparable to the 

wavelengths (in water and sample itself). Furthermore, as the attenuation of the 

mentioned compound was different from the one for a real skull, its measured attenuation 

(2413dB/m) was replaced in the simulation instead of the one for a typical real skull bone 

at a frequency of l.7MHz (~3400dB/m). 

Fig.4.2. Final phantom layer fabricated from Epoxy and Tiso,,m powder 

4.2. Instrumentation 

In order to setup the experimental apparatus, a linear array of receivers with 128 flat point 

receivers (each 3.2mm in diameter) sited in 0.44mm steps was used. A 4-Axis X-Sel 

scanner was programmed and used to position the array of receivers. The scanner had a 

positioning accuracy of lum. Moreover, a water tank from acrylic glass and two holders 

were fabricated in order to site the point source transducer and the phantom layer at any 

desired distance in the water tank. Tap water which was allowed to stand for at least 4 

days was used during the measurements and data acquisition process. Unless will be 

mentioned, the acoustical properties of the parts were the same as declared in Table 3.1. 

The transducer used in the apparatus was a small flat transducer driven at a frequency of 



1.7MHz and a diameter of 5.5 millimeters. It behaved like an extended source in the near 

field and a point source in the far field (>6cm from the source). The Final layout of the 

experimental apparatus used to obtain intensity distribution on a real array of 128 

receivers is illustrated schematically in Fig.4.3. A program was generated in LABVIEW 

environment to control the X-Sel scanner. The program sent the initial signal to trigger 

the transducer through an ADC (Analog to Digital Converter). The signal was then 

inverted by an inverter and sent to the U-Tex UT Pulsar. The acoustical pulse was then 

generated by the pulsar and was sent to the transducer. The field was then received by the 

array of receivers (the multiplexer switched between the receivers 32 times through 4 

channels to cover the whole array). At the end the receiving signals were amplified and 

sent to the computer to be analyzed. 

Pictures of the linear array of 128 receivers and final experimental setup are also shown 

in Fig.4.4 and Fig.4.5 respectively. 

MUX 
(4x32) 

128 Channel 

Ultrasonic 

Preamplifier 

Immersion Ultrasonic 
Transducer (1.7MHz) 

* - Water Tank 

Linear Array of 
128 Receivers 

-» - Phantom Layer 

Fig.4.3. experimental configuration used to obtain acoustical field distribution on the 
linear array of 128 receivers. 
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Fig.4.4. Linear array of 128 flat point receivers (each 3.2mm in diameter) sited in 0.44mm steps. 

Fig.4.5. A picture of the experimental setup used in data acquisition for the simulation. 
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To find the acoustical field distribution on the array of receivers, during all data 

collections, the source was placed at the middle but different distances from the array of 

receivers in both the absence and presence of the phantom layer. At each distance the 

data was collected at least five times to make sure the distribution was comparatively 

stable. The distances between the three main parts of the experimental setup (transducer, 

phantom and receiving array) are tabulated in Table 4.2. All the distances were measured 

using the pulse-echo measuring technique [40]. During the measurement of the distances, 

pulses with an initial amplitude of 100V, a pulse rate of 4 kHz, a pulse width of 30ns, and 

a frequency of 10MHz were applied to the transducer. 

Table4.2. distances between the experimental setup parts. 

1 Normal distance from 

I the array of receivers 
H 

Phantom Layer 

In the absence of In the presence of 
the phantom layer the phantom layer 

8.21mm 8.34mm 

Focal point of the source 

In the absence of In the presence of 
the phantom layer the phantom layer 

30.3 mm, 60.2 mm 

and 90.4 mm 

30.1 mm, 60.4 mm 

and 60.4 mm 

4.3. Results (data acquisition and image reconstruction) 

4.3.1. In the absence of the phantom layer 

In the absence of the phantom layer, the field distribution on the array of receivers was 

almost symmetric as expected. After reaching the array of receivers, the field's amplitude 

was detected by each receiver and the results were saved as a 1 by 128 element matrix to 

be used in the reconstruction part of the simulation. Fig.4.6 shows the results at the three 

mentioned distances (Table 4.2). 
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m (b) 

Fig.4.6. Normalized recorded amplitude distribution 
at the array of receivers in absence of the phantom 
layer. The normal distance between the source and 
the array of receivers was (a) 30.3mm (b) 60.2mm 
and (c) 90.4mm. Each division on the horizontal axis 
equals X/2(=0.44mm) 

(c)' 

After inserting the matrices in the code, the simulation was then executed to do the 

reconstruction. The results are shown in figures 4.7, 4.8 and 4.9. Table 4.3 compares the 

original and reconstructed positions of the point source. As expected, the reconstructed 

coordinates are very close to the original ones. A maximum deviation of 2 pixies 

(0.88mm) was observed between the original and reconstructed coordinates which was an 

acceptable error for our purpose. At this point, the experimental results supported the 

theory and simulation. 

Table4.3. Original and reconstructed coordinates of the point source in absence of the phantom layer. lpix=Xy2=0.44mm. 

Distance from the 
array of receivers 

30.3 mm 

60.2 mm 

90.4 mm 

" • • - - • • — — " - - • 

Original Position 

x = 64 pix y = 68 pix 

x = 64 pix y = 136 pix 

x = 64 pix y = 204 pix 

Reconstructed Position 

x = 64 pix y = 69 pix 

x = 64 pix y = 134 pix 

x = 64 pix y = 203 pix 
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Fig.4.7. Image reconstruction /« absence of the phantom layer. The original point source had been placed at xjo=64X/2(64pixels) andy0=68 l/2(68pixeh). (a) 

Normalized vertical plane image of the reconstructed field, (b) Intensity distribution taken from Fig.4.6.a. (c) Horizontal Profile of the major peak in vertical 

plane image, (d) Vertical Profile of the major peak in vertical plane image. 
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4.3.2. In the presence of the phantom layer 

After collecting data in the absence of the scattering medium, the phantom layer was then 

applied to the setup (at a distance of 8mm from the array of receivers). Again according 

to Table.4.2 the small transducer was put at the mentioned distances and both the 

amplitude and phase distribution obtained and saved as 1 by 128 element matrices to be 

used in the program. Amplitude distributions at the three distances are shown in Fig.4.10. 

c 

(af--

(<-> 

Fig.4.6. Normalized recorded amplitude distribution 
at the array of receivers in Presence of the phantom 
layer. The normal distance between the source and 
the array of receivers was (a) 30.3mm (b) 60.2mm 
and (c) 90.4mm. Each division on the horizontal axis 
equals >72(=0.44mm) 

The next step was to replace all physical and acoustical properties of the simulated 

scattering medium with the ones of the real phantom layer. From the physical point of 

view, three layers of the simulated scattering medium should be changed to one layer; 

moreover, the randomly curved boundary of the inner layer in the simulation also needed 

to be substituted by the exact curve of the boundary of the fabricated phantom layer 

(Fig.4.2). To get the curvature of the phantom layer first a B-Scan was taken from the 

phantom when the transducer faced to its flat surface. The experimental configuration of 
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the scan and the B-Scan itself are shown in Fig.4.1 l.a and Fig.4.1 l.b respectively. As can 

be seen in Fig.4.11 .b, the back surface and the curved one showed maximum reflections 

and therefore in the B-Scan image they had higher amplitudes (white lines). 

Fig.4.11. (a) schematic configuration ofthe B-Scan setup, (b) The B-Scan taken from the phantom layer in the 
shown direction. The white lines show the front and back surfaces ofthe phantom. Each division along the 
horizontal axis equals 0.44mm QJ2). 

To replace the curvature in the simulation, the time difference between the two lines (flat 

and curved surfaces) was obtained from 128 intervals (each A/2=0.44 in size) and saved 

as the y coordinates of distribution ofthe points in a 1 by 128 element matrix. The matrix 

was then processed in MATLAB to fit the best curve into the points. The fitted curve was 

used as the inner boundary ofthe simulated phantom layer in the simulation. 

After all aforementioned steps, the simulation code was ready to process the inserted data 

and reconstruct the image plane related to each intensity distribution. The distances in 

which the data collected were tried to be the same as last part (see Table 4.2). It was 

obvious that between the two inner layer design techniques, explained in chapter 3, only 

the Ideal inner layer with inner curved boundary technique was applicable in the 

experiment part. On the other hand, for image plane reconstruction, both refraction free 

and refraction included algorithms were used to see how they are comparable to each 

other. It was expected that the refraction included algorithm which was the last and most 

comprehensive algorithm developed would give the most accurate reconstruction results, 

i.e. the reconstructed coordinates be closer to the original ones, compared to refraction 

free algorithm. The results ofthe refraction free algorithm are shown in Fig.4.12, 
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Fig.4.13 and Fig.4.14. The results for the refraction included algorithm are also shown in 

Fig.4.15, Fig.4.16andFig4.17. 

As can be distinguished by comparing the two set of above mentioned figures, the 

refraction free algorithm showed not to provide satisfactory results. This can be observed 

from the vertical image planes in Fig.4.12, Fig.4.13 and Fig.4.14 which either do not 

contain a significant maximum or the peaks are not happening at the acceptable 

coordinates. This showed us that the refraction free algorithm was not a reliable 

algorithm in our image reconstruction. Furthermore, the disability of the algorithm could 

also be explained due to the fact that the phantom layer was too thick that refraction had a 

considerable effect on the passing through beams and it was not allowed to be neglected. 

On the other hand, due to Fig.4.15, Fig.4.16 and Fig4.17 the refraction included 

algorithm successfully reconstructed the source's positions. A comparison has been made 

between the original and reconstructed coordinates of the point source in Table 4.4. 

Table4.4. Original and reconstructed coordinates of the source in presence of the phantom layer based on the comprehensive 
refraction included algorithm. lpix=>72=0.44mm. 

Distance from the 
array of receivers 

Original Position 

30.1mm J x = 64pix y = 68pix 

60.4 mm 1 x = 64 pix y = 136 pix 
I 

90.3 mm 1 x = 64 pix y = 204 pix 

Reconstructed Position 

x = 64 pix y = 69 pix 

x = 64 pix y = 138 pix 

x = 64 pix y = 205 pix 
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Fig.4.12. Image reconstruction in presence of the phantom layer based on the refraction free algorithm. The original point source had been placed at 
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Fig.4.14. Image reconstruction in presence of the phantom layer based on the refraction free algorithm. The original point source had been placed at 
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Fig.4.15. Image reconstruction in presence of the phantom layer based on the refraction included algorithm. The original point source had been placed at 

xio=641/2(64pixeh) and y„=128 X/2(128pixels). (a) Normalized vertical plane image of the reconstructed field, (b) Intensity distribution in Fig.3.10.b. (c) 
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Fig.4.16. Image reconstruction in presence of the phantom layer based on the refraction included algorithm. The original point source had been placed at 

xio=64X/2(64pixels) and y0=128 k/2(128pixels). (a) Normalized vertical plane image of the reconstructed field, (b) Intensity distribution in Fig.3.10.b. (c) 

Horizontal Profile of the major peak in vertical plane image, (d) Vertical Profile of the major peak in vertical plane image. 



00 

(a) 

Vertical plane image 

20 40 60 80 100 120 
u c o o n M e : x*64fk426Bamm) *-30Spcne8 24ntn) 

Horizontal profile 

(c) 

40 60 80 100 120 
max x-64 wk*<0,7>4f>«(l.76Kim) 

V s 

i n 

• : « f T " • " 

Vertical profile 

(«l> 

100 150 200 2S0 
max y«205 vnlti(D7)>31 p«(13£8 mm) 

300 

Fig.4.17. Image reconstruction in presence of the phantom layer based on the refraction included algorithm. The original point source had been placed at 
xio=64X/2(64pixels) and y0=128 A/2(128pixels). (a) Normalized vertical plane image of the reconstructed field, (b) Intensity distribution in Fig.3.10.b. (c) 
Horizontal Profile of the major peak in vertical plane image, (d) Vertical Profile of the major peak in vertical plane image. 



4.4. Conclusion 

To conclude the results of the experiment part it should be mentioned that although both 

the refraction free and refraction included algorithms gave satisfactory results in the 

simulation part (chapter 3), and they both predicted the static object's position with an 

acceptable accuracy, the refraction free algorithm showed to be non-practical as it was 

not able to reconstruct the real position of the static object. As explained in the previous 

section, this could be explained by the fact that refraction plays an important role during 

data acquisition and it can not be neglected in real circumstances, specifically when the 

scattering object is really thick. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

A new noninvasive image reconstruction algorithm through a simplified human skull 

phantom has been developed. The final program was able to predict the initial position of 

a source of ultrasound placed behind the homemade phantom layer. 

A thorough review of the other research groups studies were made before the basics of 

the algorithm being created. According to the reviewed materials, the majority of articles 

concerning matched-filtering process were devoted to the therapeutic effect of ultrasound 

or ultrasound surgery. There are considerably less articles discussing ultrasonic brain 

structure imaging through the intact skull. This was most likely due to the fact that 

ultrasound therapy required rather low frequencies (not higher than 1 MHz), which 

effectively could reduce spatial resolution. 

During this study it has been tried to develop a method based on the Matched Filtering 

Method, to predict the effect of a simplified skull bone-like scattering medium, through 

both simulation and experiment, and then try to compensate for that distortion to finally 

reconstruct the initial acoustical field. 

In chapter 3, a theoretical and mathematical basis has been developed to execute all 

possible distortion calculations and to first predict the intensity distribution of a scattering 

object, placed at different distances from the array of receivers in either the absence or 

the presence of the scattering medium. Secondly the calculated intensity distributions 

were used to find information about the original position of the object. Meanwhile, 

different algorithms and techniques were suggested and their results were compared at 

the end of the chapter. At that point the image planes reconstructed showed a high 

accuracy (<0.44mm) in absence of the scattering medium. Both the refraction free and 



refraction included algorithms were also showed to give acceptable results although the 

comprehensive refraction included results were still the most accurate. 

During chapter 4, the calculated phase and intensity distributions were replaced by 

real measured phase and amplitude distributions on a real array of receivers. In the case 

that the phantom layer had not been applied to the apparatus, the intensity distribution 

showed to be fairly symmetric as expected, an also the reconstruction results were of high 

accuracy. But in the case that the phantom layer had been applied, of course, the real 

receiving signals had been refracted by the phantom layer from their original direction. 

Therefore, it was predictable that refraction free algorithm would not work as proper as 

the refraction included one. After running the program, the refraction free algorithm did 

not give satisfactory results as the maxima were not happened in the close vicinity of the 

original coordinates. On the other hand, the comprehensive refraction included algorithm 

showed to be a practical algorithm with high enough accuracy for our purpose. 

As the future work, as continuity of 'Brain Project', our research group is planning to 

make more realistic circumstances in both the simulation and experiment. From the 

experimental point of view, a hemisphere-like non-homogenous phantom has planned to 

be made. The program then needs to be developed to simulate the mentioned phantom 

and replace it with the current flat one. Also instead of a transducer as a reflector, a real 

scattering object is planned to be used. 
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Appendix A: 

Image reconstruction Program in absence of the scattering medium 
(As an example of the whole code) 

N=128; 
f= 1700000; 
c l = 1 5 0 0 ; 
%ct2=2300; 
%el2=2500; 
%cl3=2700; 
% c t 2 = 0 . 0 0 0 0 0 0 1 ; 
cl2=1500; 
c!3=1500; 
D l = 1 0 0 0 ; 
D2=1000; 
D3=1000; 
% D l = 1 0 0 0 ; 
% D2=2500; 
% D3=2700; 
Z l = D l * c l ; 
% Zt2=D2*ct2; 
Z12=D2*cl2; 
Zl3=D3*cl3; 
l a m b d a l = c l / f ; 
Iambdal2=cl2/f; 
% lambdat,2=ct2/f; 
Iambdal3=cl3/f; 
k l=2*p i / l ambda l ; 
kl2=2*pi/lambdal2; 
% kt .2=2*pi / lambdat2; 
kl3=2*pi/lambdal3; 
UI0=0; 
UR0=1; 

arr_dx=lambda 1 / 2; 
arr_x=N*lambda 1 / 2; 
M=128; 
z=M*lambdal; 
d l=0 ; 
d2=0; 
d3=0; 
{,/i> d l = l a m b d a l / 2 ; 
% d 2 = 8 * l a m b d a l : 
"/.. d3=20* lnmbdul ; 
Implane__dx=lambda 1 / 2; 
%xo=\ m.p] a n e_dx* N / 2; 
% t h ct a=a t an (xo / z); 
lay er=zeros (1, N) * pi / 2 ; 
%laycr=rand( 1 ,N)'-'pi; 

dx_layer= 10*lambda 1 / 2; 
source_d=1; 
X=zeros(300,l); 
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phase=zeros(300,l); 
ampl=zeros{300,1); 
X_arr=zeros(N,l); 
ampl_arr=zeros(N, 1); 
phase_arr=zeros(N, 1); 
ampl_re l=zeros(N, 1); 
ampLim 1 =zeros (N, 1); 
ampLmn_t=zeros(N,300); 

for n=l: l :N 
X_arr(n,l)=n; 

end 

for i=l:l:N 
xi=(i-l)*arr_dx; 

ampl_re=0; 
ampl_im=0; 

for nu=-source_d:l:source_d 
xo=(N/2+nu)*Implane_dx; 

if xi>xo 
Theta=atan((xi-xo)/z); 
xl=(z-d3)*tan(Theta); 
rl=sqrt(xlA2+(z-d3)A2); 
k r l=k l*r l ; 

x2=(d3-d2)*tan(Theta); 
r2=sqrt(x2A2+(d3-d2)A2); 
kr2=kl2*r2; 

x3=(d2-dl)*tan(Theta); 
r3=sqrt(x3A2+(d2-dl)A2); 
kr3=kl3*r3; 

x4=(dl)*tan(Theta); 
r4=sqrt(x4A2+(dl)A2); 
kr4=kl*r4; 

xlayer=xl+xo; 
m=floor(xlayer/dx_layer); 
ph=layer(l,m+l); 

r=rl+r2+r3+r4; 
kr=krl+kr2+kr3+kr4; 
ampLre=ampl_re+(URO*cos(kr+ph)-UIO*sin(kr+ph)); 
ampl_im=ampl_im+(UIO*cos(kr+ph)+URO*sin(kr+ph)); 
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else 

Theta=atan((xo-xi)/z); 
xl=(z-d3)*tan(Theta); 
rl=sqrt(xlA2+(z-d3)A2); 

k r l=k l* r l ; 

x2=(d3-d2)*tan(Theta); 
r2=sqrt(x2A2+(d3-d2)A2); 
kr2=kl2*r2; 

x3=(d2-dl)*tan(Theta); 
r3=sqrt(x3A2+(d2-dl)A2); 
kr3=kl3*r3; 

x4=(dl)*tan(Theta); 
r4=sqrt(x4A2+(dl)A2); 
kr4=kl*r4; 

xlayer=xo-x 1; 
m=fIoor (xlayer/dx_layer); 
%ph=layer( 1 ,m+1); 
ph=0; 
r=rl+r2+r3+r4; 
kr=krl+kr2+kr3+kr4; 
ampl_re=ampl_re+(URO*cos(kr+ph)-UIO*sin(kr+ph)); 
ampl_im=ampl_im+(UIO*cos(kr+ph)+URO*sin(kr+ph)); 

end 
end 

phase_arr (i, 1) =atan (ampl_im / ampl_re); 
%att=exp(-3400*(r2+r3)-180*rl); 
a t t=l ; 

ampLarr(i,l)=((att*((abs(sqrt(ampl_reA2+ampl_imA2))*cos(phase_arr(i,l)))/(r*10)))A2)/(pi* 
64*12); 

ampl_rel(i, l)=ampl_re; 
ampl_im 1 (i, 1) =ampl_im; 

end 

subplot(2,2,2); 
max_intensity=max(ampl_arr, [], 1); 
plot(X_arr,ampl_arr) 
%ploi(X _.arr, phase ....arr) 
title('\bf,'Intensity on the Array;','fontsize', 10) 
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xlabel(['max=',num2str(max_mtensity,'%7.2e\n'),' (W/mmA2)'],!fontsize',8) 

ylabel(T) 
grid on; 
max(ampl_arr) 
axis tight; 

for nu=-source_d: l:source_d 
xo=(N/2+nu)*Implane_dx; 
z=M*lambdal; 

fori=l:l:N 
xi=(i-l)*arr_dx; 

if xi>xo 
Theta=atan((xi-xo) /z); 
xl=(z-d3)*tan(Theta); 
rl=sqrt(xlA2+(z-d3)A2); 
k r l=k l* r l ; 

x2=(d3-d2)*tan(Theta); 
r2=sqrt(x2A2+(d3-d2)A2); 
kr2=kl2*r2; 

x3=(d2-dl)*tan(Theta); 
r3=sqrt(x3A2+(d2-dl)A2); 
kr3=kl3*r3; 

x4=(dl)*tan(Theta); 
r4=sqrt(x4A2+(dl)A2); 
kr4=kl*r4; 

xlayer=xl+xo; 
m=floor(xlayer/dx_layer); 
ph=layer(l,m+l); 

r=rl+r2+r3+r4; 
kr=krl+kr2+kr3+kr4; 
ampl_re=(URO*cos(kr+ph)-UIO*sin(kr+ph)); 
ampl_im=(UIO*cos(kr+ph)+URO*sin(kr+ph)); 

else 

Theta=atan((xo-xi) /z); 
xl=(z-d3)*tan(Theta); 
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rl=sqrt(xlA2+(z-d3)A2); 
k r l=k l*r l ; 

x2=(d3-d2)*tan(Theta); 
r2=sqrt(x2A2+(d3-d2)A2); 
kr2=kl2*r2; 

x3=(d2-dl)*tan(Theta); 
r3=sqrt(x3A2+(d2-dl)A2); 
kr3=kl3*r3; 

x4=(dl)*tan(Theta); 
r4=sqrt(x4A2+(dl)A2); 
kr4=kl*r4; 

xlayer=xo-xl; 
m=floor(xlayer / dx_layer); 
%ph=layer( 1 ,m+1); 
ph=0; 
r=rl+r2+r3+r4; 
kr=kr 1 +kr2+kr3+kr4; 
ampl_re=(URO*cos(kr+ph)-UIO*sin(kr+ph)); 
ampl_im=(UIO*cos(kr+ph)+URO*sin(kr+ph)); 

end 

phase_arr (i, 1)=atan (ampl_im/ ampl_re); 
%att=exp{-3400*(r2+r3)-180*rl); 
a t t=l ; 

ampl_arr(i,l)=(att*((abs(sqrt(ampl_reA2+ampl_imA2))*cos(phase_arr(i,l)))/(r*1000)))A2; 
ampl_r e 1 (i, 1)=ampl_r e; 
ampl_iml(i, l)=ampl_im; 

end 
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X_implane=zeros(N, 1); 
%phase implane=zeros(N, 1); 
%ampMnipIane=zerosfN, 1); 
amplitude_re=0; 
amplitude_im=0; 
%z=22*la.mbdal; 
ampl_mn=zeros(N,300); 
phase_mn=zeros(N,300); 

for n=l : 1:300 
z=(l+n)*lambdal/2; 

fori=l:l:N 
xi=(i- l)*Implane_dx; 
X_implane(i, l)=i; 

forj=l:l:N 
xj=(j-l)*arr_dx; 
U R_xj=ampl_r e 1 (j, 1); 
UI_xj=ampl_iml(j, 1); 

if xi>xj 
Thetaij=atan((xi-xj) /z); 
xl=dl*tan(Thetaij); 
r l=sqrt(xlA2+dlA2); 
k r l=k l*r l ; 

x2=(d2-dl)*tan(Thetaij); 
r2=sqrt(x2A2+(d2-dl)A2); 
kr2=kl2*r2; 

x3=(d3-d2)*tan(Thetaij); 
r3=sqrt(x3A2+(d3-d2)A2); 
kr3=kl3*r3; 

x4=(z-d3)*tan(Thetaij); 
r4=sqrt(x4A2+(z-d3)A2); 
kr4=kl*r4; 

xlayer=xj+xl+x2+x3; 
%xlayer=xi-x4; 

m=floor(xlayer / dx_layer); 
ph=layer( 1 ,m+1); 
%ph=0: 
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r=rl+r2+r3+r4; 
kr=krl+kr2+kr3+kr4; 
att_inv=exp(3400*(r2+r3)+180*r4); 
amplitude_re=amplitude_re+(UR_xj*cos(-kr-ph)-UI_xj*sin(-kr-ph)) / 1 ; 
amplitude_im=amplitude_im+(UI_xj*cos(-kr-ph)+UR_xj*sin(-kr-ph))/l; 

°/iphase_implane(j.l)=phase_imp]ane{j,l)+Htan(ampl_im/ampLre); 

%ampl_im.plane(j, l)=phase_implanc(j,l)+abs(sqrt(ampl_reA2+ampl_imA2))*cos(phase_i 
plane(j,l.)); 

else 

Thetaij=atan((xj-xi)/z); 
xl=dl*tan(Thetaij); 
r l=sqrt (x l A 2+dl A 2) ; 
k r l = k l * r l ; 

x2=(d2-d l)*tan(Thetaij); 
r2=sqrt(x2A2+(d2-dl)A2); 
kr2=kl2*r2; 

x3=(d3-d2)*tan(Thetaij); 
r3=sqrt(x3A2+(d3-d2)A2); 
kr3=kl3*r3; 

x4=(z-d3)*tan(Thetaij); 
r4=sqrt(x4A2+(z-d3)A2); 
kr4=kl*r4; 

xlayer=xj - (x 1 +x2 +x3); 
%xlayer=xi+x4; 

m=floor(xlayer / dx_layer); 
ph=layer(l ,m+l); 
%ph=0; 

r=rl+r2+r3+r4; 
kr=krl+kr2+kr3+kr4; 
%UR_xi=l; 
% U L x i = l ; 
att_inv=exp(3400*(r2+r3)+180*r4); 
amplitude_re=amplitude_re+{UR_xj*cos(-kr-ph)-UI_xj*sin(-kr-ph))/l; 
amplitude_im=amplitude_im+(UI_xj*cos(-kr-ph)+UR_xj*sin(-kr-ph))/l; 

end 
end 

phase_mn(i,n)=atan(amplitude_im/amplitude_re); 
%att . jnv=exp(3400»(r2+r3)+180*r4); 



ampl_mn(i,n)=(abs(sqrt(amplitude_reA2+amplitude_imA2))*cos(phase_mn(i,n)))A2; 
amplitude_re=0; 
amplitude_im=0; 

end 
end 

ampl_mn_t=ampl_mn_t+ampl_mn; 
end 

k=max(ampl_mn_t,[], 1); 
l=max{k); 
ampl_mn_t=ampl_mn_t /1 ; 

%plot(X_im plane, ampl_iim.pl an e) 
% pi ot (X_i raplane, ph a se_i mpl an e) 
% title('Reverse Field Reconstruction on Image-Plane (no difraction, no layer)') 
%xlabel('N') 
%ylabel{'Ampli.mde (dB)') 
% s u rf f ampLm n) 

%center=[ 100,32,0] 
%rotate(h ,[0,0,1] .center); 

f-0; 
fori=l:N 

for n= 1:300 
if ampl_mn_t(i,n)>f 

f=ampl_mn_t(i,n); 
max2=n; 
maxl=i; 

end 
end 

end 

maxl ; 
max2; 
max l_mm=max 1 *lambda 1 / 2* 1000; 
max2_mm=max2*lambda 1 / 2* 1000; 

subplot(2,2,l); 
surf(ampl_mn_t); 
%set(gca,'ydir','reverse') 
view(2) 
title)'\bf(Vertical plane image}','FontSize',10) 
ylabel(['max coordinates: x=',int2str(maxl-l),' pix(',num2str(maxl_mm,'%7.2f),' mm) 
V=',int2str(max2+1),' pix(',num2str(max2_mm,'%7.2f),' mm)'],'fontsize',8) 
"%axisf[0 200 0 128)); 
axis tight; 
colorbar; 
view(90,90) 
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%axis equal 

shading flat; 

subplot(2,2,3); 

% %h=horizomaI 
% %v=vertical 

ampl_h=zeros(N,l); 

fori=l:N 
ampl_h(i, l)=ampl_mn_t(i,max2); 

end 

plot(X_implane,ampl_h); 
title('\bf (Horizontal profile)',Tontsize', 10) 
line([0 N],[0.7 0.7],'Color','red'); 

for i=l:N-l 
if i<maxl 

if ampl_h(i,l)<0.7 && ampl_h(i+l,l)>=0.7 
wid_l=i; 

end 
else 

if ampl_h(i,l)>=0.7 && ampl_h(i+l,l)<0.7 
wid_2=i; 

end 
end 

end 

width_h=wid_2-wid_ 1 +1; 
width_h_mm=width_h*lambdal /2* 1000; 

xlabel(['max: x=,int2str(maxl-l),' width(0.7)=,int2str(width_h),' 
pix(',nura2str(width_h_mm,'%7.2f),' mm)'j,Ton tsize',8) 
ylabel('I') 
grid on 
axis tight 

subplot(2,2,4); 

ampl_v=zeros(300,1); 

for i= 1:300 
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ampl_v(i, 1) =ampl_mn_t(max 1 ,i); 
end 

Y=ones(300,l); 

for i= 1:300 
Y(i,l)=i-1; 

end 

plot(Y,ampl_v); 
title('\bf{Vertical profile}',Tontsize', 10) 
line([0 300],[0.7 0.7];Color','red'); 

for i= 1:300 
if i<max2 

if ampl_v(i,l)<0.7 8585 ampl_v(i+l,l)>=0.7 
wid_l=i; 

end 
else 

if ampl_v(i,l)>=0.7 && ampl_v(i+l,l)<0.7 
wid_2=i; 

end 
end 

end 

width_v=wid_2-wid_ 1 +1; 
width_v_mm=width_v*lambda 1/2* 1000; 

xlabel(['max: y=',int2str(max2+1),' width(0.7)=',int2str(width_v),' 
pix(',num2str(width_v_mm,'%7.2f),' mm)'],'fontsize',8) 
ylabel(T) 
grid on 
axis tight 
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