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ABSTRACT 

This research proposes a variety of solution approaches to a class of stochastic supply 

chain problems, with normally distributed demand in a certain period of time in the future. 

These problems aim to provide the decisions regarding the production levels; supplier 

selection for raw materials; and optimal order quantity. The typical problem could be 

formulated as a mixed integer nonlinear program model, and the objective function for 

maximizing the expected profit is expressed in an integral format. In order to solve the 

problem, an open source solution package BONMIN is first employed to get the exact 

optimum result for small scale instances; then according to the specific feature of the 

problem a tailored nonlinear branch and bound framework is developed for larger scale 

problems through the introduction of triangular approximation approach and an iterative 

algorithm. Both open source solvers and commercial solvers are employed to solve the 

inner problem, and the results to larger scale problems demonstrate the competency of 

introduced approaches. In addition, two small heuristics are also introduced and the 

selected results are reported. 
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1. INTRODUCTION 

1.1 Background 

The increasing competitive pressures in the global marketplace, coupled with the rapid 

advances in information technology have brought supply chain planning into the forefront 

of the business practices for most manufacturing and service organizations. 

"Supply chain management can be viewed as both an emergent field of practice and an 

emerging academic domain. Neither perspective is fully mature but each has considerable 

promise" (Storey et al., 2006). This conclusion is made by critically assessing current 

developments in the theory and practice of supply chain management, and through such 

assessments to identify barriers, possibilities, and key trends. It is pointed out that much 

of the theory in supply chain management is based on idealized schemes of optimal routes 

and quantities for demand fulfillment when it is considered from a whole-network or 

chain perspective. They compiled a picture of current supply chain practices and have 

identified a number of organizational and behavioral barriers to the realization of the 

more idealistic depictions of the seamless and end to end chain that should be responding 

to customer demand. The following lists the core component ideas: 

1. Seamless flow from initial source to final customer 

2. Demand-led supply chain (only produce what is pulled through) 

3. Share information across the whole chain (end to end pipeline visibility) 

4. Collaboration and partnership (mutual gains and added value for all; win-win; 

joint learning and joint design and development) 

5. IT enabled 

6. All products direct to shelf 
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7. Batch/pack size configured to rate of sale 

8. Customer responsive 

9. Agile and lean 

10. Mass customization 

11. Market segmentation 

What is worth mentioning is that the academic disciplines normally have core sets of 

concerns or problems, the variability and uncertainty within supply chain management are 

the core problems in both academic area and real world engineering application nowadays. 

From the second component listed above, we know that demand-driven supply chain is 

critical for the overall success. However, the demand uncertainty brings difficulties in 

terms of both supply chain modeling and model solving process in academic research 

community. 

There has been a large amount of literatures addressing demand uncertainties in supply 

chain management. The foremost consideration in incorporating uncertainties into the 

planning decisions is the determination of the appropriate representation of the uncertain 

parameters (Gupta 2003). Two distinct methodologies for representing uncertainty can be 

identified, which are the scenario-based approach and the distribution-based approach. In 

the former approach, the uncertainty is described by a set of discrete scenarios capturing 

how the uncertainty might play out in the future with each scenario assigned a probability 

of its future occurrence. However, the applicability of the scenario based approach is 

limited by the fact that it requires forecasting for all possible outcomes of the uncertain 

parameters. In cases where a natural set of discrete scenarios cannot be identified and 

only a continuous range of potential futures can be predicted, the distribution- based 

2 



approach is used by assigning a probability distribution to the continuous range of 

potential outcomes. The normality assumption is widely invoked in literature (Wellons 

and Reklaitis, 1989; Nahmias, 1989) as it captures the essential features of demand 

uncertainty and is convenient to use (Gupta, 2003). Nevertheless, the normality 

assumption formulation makes it hard to find an efficient solution approach in many cases, 

particularly, when it is combined with other considerations for in constructing models. 

1.2 Research Motivation 

Nowadays, the approaches and software for stochastic supply chain problems with 

discrete distribution functions are common in both the commercial world and the 

academic world; however, the cases with continuous distribution demands are less 

explored and so as good stochastic software for those problems. Among the same class of 

problems that specifically deal with supplier selection and order quantity determination 

decisions facing continuously distributed demands of finished products, the work of Kim 

et al. (2002), Zhang and Ma (2007) and Zhang (2007) are the most representative ones, 

among which, particularly, the Zhang (2007) model is the most comprehensive model. 

This model developed a MINLP model by combining strategic acquisition decisions with 

inventory management, where the manufacturer produces multiple products facing 

uncertain demand which is assumed to be normal distribution. Each product needs certain 

amounts of raw materials to be produced, which can be purchased from different 

suppliers with a quantity discount for different amounts and is going to be bought in a 

single planning period, such as a year. A MINLP model was build and solved using 

GAMS and its MINLP solver. However, due to the external functions introduced in the 
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commercial software, the solving process exhibited super sensitivity in terms of 

parameter changes, not to mention larger scale problems. 

Open source initiatives have been prevailing in the operations research community over 

the years. Their aim is to provide an open platform where both the source codes and 

algorithms are available to researchers and which also makes it possible for different 

researchers to compare their own algorithms for certain problems under relatively fair 

circumstances. For this consideration, we are determined to get more accessible and 

controllable solution approaches to this class of problems, especially for the model in 

Zhang (2007) based on open source solver, which can deliver more robust and reliable 

solutions, especially for larger scale problems. 

1.3 Research Objective 

The objective is to deliver more accessible, reliable, controllable and efficient solutions to 

the current dimension, and more importantly for larger scale problems based on the model 

in Zhang (2007). Therefore, we will demonstrate the usage of the open source software 

package BONMIN, and AMPL which serves as a comprehensive and powerful algebraic 

modeling language. In addition, an independent branch-and-bound algorithm, which is 

tailored to the model and combined with open-source solver, will be implemented in 

GAMS to reveal the insight of the solution approach and compare it with other available 

approaches. 

1.4 Thesis Organization 

The thesis is organized as follows: In Chapter II the literatures relevant to this research 

will be introduced and subsequently in Chapter III, the class of problems we are dealing 

with will be described, and the Open Source based MINLP package Solution Approaches 
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are proposed. Chapter IV provides some preliminary results to the example problem and 

validates the proposed approaches through different experimental tests and comparisons 

between the different approaches that were used previously. Chapter V delivers the 

proposed branch and bound algorithm framework specifically for the model in Zhang 

(2007). Chapter VI addresses the analysis of the larger scale problems and reports two 

heuristics. Finally, conclusions and recommendations are made and possible future 

improvements are discussed. 

5 



2. LITERATURE REVIEW 

There has never been a shortage of general supply chain modeling literatures since the 

debut of the Supply Chain Management. Different aspects of Supply Chain Management 

such as the new design and methodology, modeling and analysis, the concept and 

implementation in real world industry are intensively covered in the literatures. 

In this chapter, different themes of literatures have been organized into the following 

sections: Supplier Selection and Order Lot Sizing, Stochastic Supply Chain Design and 

solution approaches, Nonlinear Integer & Mixed Integer Nonlinear Supply Chain Design 

and Approaches, Open-Source development and application. 

2.1 Stochastic Supply Chain Modeling and Solution Approaches 

As discussed in the introduction section, the considerations of stochastic factors in supply 

chain modeling are prevailing nowadays, which reveals the nature of the business world. 

Various stochastic factors or uncertainties can be indentified in the business systems or 

supply chain systems and the existence of uncertainty factors brings much complexity for 

both modeling and computational process. One of the most important criterions to 

evaluate a good supply chain network is demand-driven, and demand itself is one of the 

key sources of uncertainties in any production-distribution system. The following 

literatures are organized in a way that demand uncertainties are classified into discrete 

and continuous distributions. 

2.1.1 Demand Uncertainties modeled as Discrete Distributions and Solution 
Approaches 

Santoso et al. (2005) proposed a stochastic programming model and solution algorithm 

for solving supply chain network design problems of a realistic scale. Their solution 
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integrates the sample average approximation (SAA) scheme, with an accelerated Benders 

decomposition algorithm to quickly compute high quality solutions to large-scale 

stochastic supply chain design problems with a huge (potentially infinite) number of 

scenarios. The proposed algorithm was proved robust by two supply chain network 

problems. The big contribution of this paper is that the new algorithm they proposed is 

able to tackle multistage stochastic problems with huge number of scenarios that is 

normal case in the real world. 

Leung and Wu (2005) developed a two-stage stochastic programming model to solve 

border-crossing distribution problems in an environment of uncertainty. They followed 

the classic two stage stochastic programming with recourse formulation strategy to 

formulate the problem. Under different economic growth scenarios with various 

possibilities, an equivalent mixed integer linear deterministic model was development, 

and solved by LINDO package. In addition, the subsequent analysis was done in terms of 

the changes to the possibility associated with each scenario. The authors developed a 

robust model; however, the solution approach to the problem is not representative enough 

for other two stages or multi-stage stochastic optimization problems. 

Lucas et al. (2001) presented a two-stage resource allocation model with 0-1 discrete 

variables. Using scenarios to represent the uncertainties in demand, they built a very large 

scale mixed integer-programming problem. In order solve this intractable problem, the 

Lagrange relaxation and its corresponding decomposition of the initial problem was 

employed to approximate the given problem where Lagrange relaxation is reinterpreted as 

a column generator. Their approach avoided the complicated effort on the intractable 
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large scale MIP problem and has been applied to study supply chain capacity investment 

and planning. 

Albornoz et al. (2004) proposed the way to obtain an optimum policy in the capacity 

expansion planning of a particular thermal-electric power system by formulating a two-

stage stochastic integer programming. The existent uncertainty related to the future 

availability of the thermal plants currently under operation. They used the so-called L-

shaped method to solve the problem numerically. AMPL was employed as the modeling 

platform of the problem coupled with CPLEX as the solver to implement the algorithm. 

In this paper, they proposed a good methodology for the stochastic integer problem. 

Alonso-Ayuso et al. (2003) presented a two-stage 0-1 stochastic modeling and a related 

algorithmic approach for a Supply Chain Management problem under scenario based 

uncertainties. In the model, strategic decisions were made in the first stage and the second 

stage was included by the tactical decisions. A splitting variable mathematical 

representation via scenario was presented for the stochastic version of the model and a 

two-stage version of a Branch and Fix Coordination (BFC) algorithmic approach was 

proposed to solve the stochastic 0-1 program. This paper provides a benchmark solution 

approach for multi-stage stochastic integer programming problems and is invoked 

frequently in the subsequent research. 

Gupta et al. (2000) utilized the framework of mid-term, multisite supply chain planning 

under demand uncertainty to try to avoid both inventory depletion at the production sites 

and excessive shortage at the customer. A chance constraint programming approach 

combined with a two-stage stochastic programming methodology was presented to 
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capture the trade-off between customer demand satisfaction and production costs. In the 

proposed model, the production decisions are made before demand realization while the 

supply chain decisions are delayed. The challenge associated with obtaining the second 

stage recourse function is resolved by first obtaining a closed-form solution of the inner 

optimization problem using linear programming duality followed by expectation 

evaluation by analytical integration. In addition, analytical expressions for the mean and 

standard deviation of the inventory are derived and used for setting the appropriate 

customer demand satisfaction levels in the supply chain. 

Gupta and Maranas (2000) proposed a two-stage stochastic programming approach to 

incorporate demand uncertainty in multisite midterm supply-chain planning problems. 

Under their methodology, the supply chain decision will not be made until the production 

decision is made. They obtained the closed-form solution of the inner optimization 

problem using linear programming duality. The evaluation of the expected second stage 

costs is achieved by analytical integration yielding an equivalent convex mixed-integer 

nonlinear problem (MINLP). Compared with Monte Carlo sampling, their computational 

effort is much smaller. 

Ahmed et al. (2003) addresses a multi-period investment model for capacity expansion in 

an uncertain environment, such as uncertain demand and cost parameters which was 

modeled using a scenario tree approach. A multi-stage stochastic integer programming 

formulation for the problem was developed and a reformulation of the problem was 

proposed using variable disaggregation to exploit the lot-sizing substructure of the 

problem. The reformulation approach dramatically reduces the LP relaxation gap of larger 

scale integer program and a heuristic approach was also presented produce good quality 
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integer solutions. The authors finally combined a branch and bound algorithm that makes 

use of the reformulation strategy as a lower bounding scheme, and the heuristic as an 

upper bounding scheme, to solve the problem to global optimality. 

For comprehensive structural properties of and algorithms for stochastic integer 

programming models, please refer to Haneveld and Vlerk, (1999). 

In this research, the solution approach is focused on a supply chain problem with demand 

uncertainty of continuous distribution which shares many similarities with the 

formulation of Newsboy model. This indicates that certain solution approach adopted in 

the literatures of Newsboy or Newsvendor model could provide some insights to the class 

of the models. The folio wings provide the corresponding review. 

2.1.2 Newsboy Model 

Another big class of stochastic supply chain problems is Newsboy Problem, which is also 

known as Newsvendor Problem or Newsstand Problem. The newsboy problem as the 

single period stochastic inventory model is found to be a suitable tool for decision

making regarding stocking issues in today's supply chains. Simply described, the 

Newsboy problem deals with situations where the demand for a commodity is uncertain 

(random) and those items that are ordered but remain unsold or unused at the end of the 

cycle become obsolete (Abdel-Malek et al, 2004). 

Rekik et al. (2004) analyzed a single-period, uncertain demand inventory model under the 

assumption that the quantity ordered (produced) is a random variable. They conducted a 

comprehensive analysis of the well known single period production/inventory model with 

random yield. Under the hypothesis that demand and the error in the quantity received 
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from supplier are uniformly distributed, they obtained closed-form analytical solutions for 

all values of parameters. They also provided the analysis of the benefit achieved by 

eliminating errors. 

Abdel-Malek and Montanari (2004) did a landmark work in constrained Newsboy 

problem where they proposed an exact solution procedure for the formulation with the 

uniform the demand probability density function. Further more, a Generic Iterative 

Method (GIM), which yields optimum, or near optimum, solution for general continuous 

density functions of the demand, was illustrated to make it possible for one to stop the 

computation when the desired level of accuracy is achieved. Subsequently, Abdel-Malek 

and Montanari (2005) extended the constrained Newsboy problem to the scenario where 

infeasible ordering quantities (negative) were obtained when applying the solution 

technique in Abdel-Malek et al. (2004). The solution space was divided into three regions 

according to different availability of the budget and numerical examples were also given 

to illustrate the application of the developed procedures. 

Again, In Abdel-Malek and Montanari (2005), they developed a methodology to examine 

the dual of the solution space of constrained multi-product newsboy problem with two 

constraints and propose an approach to obtain the optimum batch size of each product. 

The approach is based on utilizing the Lagrangian Multipliers, Leibniz Rule, Kuhn-

Tucker conditions to obtain the optimum or near optimum solution combined with 

iterative techniques whenever necessary. 

Weng (2004) developed a generalized newsvendor model to analyze the coordinated 

quantity decisions between the manufacturer and the buyer. The manufacturer and the 
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buyer operate to meet random demand of one product with a short lifecycle. The main 

contribution for them is to generate an analytical result for the model and the analytical 

process also yields the insights into the coordination structure between the manufacturer 

and the buyer. The quantity discount policy combined with Newsvendor problem 

provides some real world insights to the application of Newsvendor problem. 

Geunes et al. (2001) address inventory decisions in the context of the reorder-point, 

order-quantity policy in infinite-horizon, stochastic lead-time demand inventory systems 

in which the parameters may be non-stationary. They also developed a heuristic based on 

a simple EOQ model and one-period newsvendor model. The heuristic approach is also 

proved to be nearly as well as the optimal policy derived from complicated mathematical 

procedures. But only single product was considered in their model and the heuristic 

approach was also based on single product and single supplier. 

Yang et al. (2007) studied a single-product multi-supplier selection problem, where the 

product faces uncertain demand and different suppliers face different yield and prices. 

The buyer has to decide whether or not to order from each supplier, and if so how much 

to order given the stochastic demand nature of the products. A solution method based on a 

combination of the active set method and the Newton search procedure was proposed and 

the computational study also showed the effectiveness of their algorithm. 

Rekik et al. (2006) considered a single-period, uncertain demand inventory model under 

the assumption that the quantity ordered is a random variable. Based on a comprehensive 

analysis of the well known single period production and inventory model with random 

yield, they extend some of the results existing in literature to a scenario where demand 
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and the error in the quantity received from supplier are uniformly distributed. A closed 

form analytical solution approach was provided and an analysis under normally 

distributed demand and error was also provided. 

Niederhoff (2007) provided an approximating programming technique to solve the multi-

product and multi-constraint newsvendor problem. In stead of Lagrange Relaxation 

Techniques employed by the literatures before, the author took advantage the separable 

nature of the problem and developed a close approximation of the optimal solution using 

convex separable programming for any demand distribution in the traditional newsvendor 

model and its extensions. Since their approach is totally independent of the Lagrange 

Multiplier based methodologies, it makes it possible to extend the newsboy model to a 

new level. 

Areeratchakul and Abdel-Malek (2006) proposed a solution approach for the multi-

product newsvendor model with multiple constraints. The methodology was based on 

quadratic programming and triangular presentation of the area under cumulative 

probability distribution function of the demand. Their approach could provide exact 

solutions for uniform distribution and satisfactory approximations to other distribution 

functions such as normal distribution or exponential distribution. 

Khouja and Mehrez (1996) extended the classic newsvendor problem to the situation 

where the decision makers face a multi-product newsboy problem in which multiple 

discounts are used to sell excess inventory under a storage or budget constraint. A 

Lagrange Multiplier based algorithm was developed for the problem and the numerical 

example was also demonstrated to prove the effectiveness of the algorithm. 
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Lau and Lau (1995, 1996) introduced a Lagrange based numerical method to solve the 

multi-product multi-constraint newsboy problem. The main idea of the problem is that the 

proposed approach requires first obtaining the solution for the unconstrained model in 

order to initiate their numerical procedures. 

Vairaktarakis (2000) presented robust newsboy models with uncertain demand. Instead of 

describing uncertainty by means of probability density functions, the author described 

uncertainty using two types of demand scenarios, namely interval and discrete scenarios. 

For interval demand scenarios they only require a lower and an upper bound for the 

uncertain demand of each item, while for discrete demand scenarios they require a set of 

likely demand outcomes for each item. Using the above scenarios to describe demand 

uncertainty, they develop several mini-max regret formulations for the multi-item 

newsboy problem with a budget constraint. For the problems involving interval demand 

scenarios, linear time optimal algorithms were developed and for the models with discrete 

demand scenarios, they were solvable by dynamic programming. The model was also 

extended to the mixture of the above two scenarios mentioned above. 

Erlebacher (2000) has addressed the model of the capacitated multi-item newsvendor 

problem in cases where the cost structure is similar. He developed exact and heuristic 

solutions depending on the types of the demand probability distribution functions for 

different products. 

As discussed in the publications above, there have been a tremendous amount of 

publications regarding newsvendor problem and its various forms of extensions; however, 

most of the techniques shared in the publications are based on the unconstrained optimum 

14 



of the original classical newsboy problem. The problem formulated by Zhang (2007) 

shares some similarities with newsvendor model but also bears many discrepancies 

regarding both definition and formulation of the problem. 

2.2 Supplier Section and Order Lot Sizing 

With the advent of supply chain management, much attention is now devoted to supplier 

selection. The decision that is needed to make in supplier selection and order lot sizing 

problem can be categorized as follows (Aissaoui et al. 2007): 

> What product to order? 

> In what quantities and from which suppliers? 

> In which periods? 

From the perspective of technique oriented classification, the published worked can be 

divided into two major groups: single objective group and multi-objective group. See 

Figure 1 (Aissaoui et al. 2007) for detail. 

Criteria 

• " • 
Single objective Multiple Objectives 

i ' . 1 i H 
Linear Programming Mixed Integer Programming Other Muiti Objective Programming Goal Programming 

Figure 1: Technique oriented classification of supplier selection and lot sizing problem 

Problems modeled as other programming in single objective category in Figure 1 includes: 

> Dynamic programming: Fabian et al. (1959), Morris (1959), Kingsman [1986]. 

> Nonlinear programming: Pirkul and Aras (1985), Hong and Hayya (1992), 

Rosenblatt etal. (1998). 
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> Stochastic programming: Bonser and Wu (2001). 

> Decision theory: Ammer (1968). 

Stadtler (2007) developed a generalized mixed integer linear programming model which 

considers not only the all-units discount but also the incremental discount case which was 

only tackled by various ways of heuristics. The objective function in the proposed model 

is chosen in a way that resolves conflicts among proponents of a purely cost oriented and 

a cash flow oriented modeling approach. This paper also provided a review of the 

available research on quantity discount scheme. 

Basnet and Leung (2005) extended the single product, multi-period inventory lot-sizing 

model into multiple products and multiple suppliers and the demand of multiple discrete 

products is known over a planning horizon. An enumerative search algorithm and a 

heuristic were presented to solve the problem. 

Minner (2003) provided comprehensive reviews in inventory models with multiple supply 

options and discussed their contribution to supply chain management. Inventory models 

which include several suppliers in order to avoid or reduce the effects of shortage 

situations were discussed in the paper and the author also presented the related inventory 

problems from the fields of reverse logistics and multi-echelon systems. Combining 

Aissaoui et al. (2007) and Minner (2003) provides different discount schemes and multi-

supplier selection strategies under inventory models. Moreover, many effective algorithm 

approaches were also proposed in the literatures invoked and classified in the two papers 

mentioned previously, which are good resorts for the researcher who are interested in this 

topic. 
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2.3 Nonlinear Integer & Mixed Integer Nonlinear Supply Chain Design and 
Approaches 

Since this research deals with the solution approach of a stochastic supply chain problem 

modeled as a MINLP, it is important to review the solution approaches of the MINLP 

supply chain problems. 

Ko and Evans (2007) considered a supply chain management scenario from a perspective 

where the third party logistics providers (3PLs) must operate supply chains for a number 

of different clients who want to improve their logistics operations for both forward and 

reverse flows under the current globally fierce competition. Different from the past, 

during which the design of distribution networks has been independently conducted with 

respect to forward and reverse flows, a dynamic integrated distribution network to 

account for the integrated aspect of optimizing the forward and return network 

simultaneously was developed and modeled as MINLP. Due to the complexity of the 

problem as NP-hard, a genetic algorithm-based heuristic with associated numerical results 

is presented and a base-line example was tested by the genetic algorithm approach. 

Moreover, in order to assess the computational effectiveness of the GA, the original 

mathematical model was converted into a linear model through the use of dummy 

variables and additional constraints owing to the nonlinear components in the objective 

function. Finally, the results of the linear model, which were obtained from LINGO, were 

compared with those from GA approach and they conclude that GA based heuristic 

algorithm is more suitable for larger scale problems. 

Torabi et al. (2006) proposed a model which investigates the lot and delivery scheduling 

problem in a simple supply chain where a single supplier produces multiple components 
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on a flexible flow line (FFL) and delivers them directly to an assembly facility (AF). The 

main objective is to find a lot and delivery schedule that would minimize the average of 

holding, setup, and transportation costs per unit time for the supply chain. A MINLP 

model was created to represent the problem. Based on the special characteristics of the 

problem, an optimal enumeration method was developed to guarantee the optimal of the 

problem. However, in order to tackle the medium or larger scale problems, a hybrid 

genetic algorithm (HGA) was also developed, which incorporates a neighborhood search 

(NS) into a basic genetic algorithm that enables the algorithm to perform genetic search 

over the subspace of local optima. Some results were also shown in the paper to 

demonstrate the promising performance of HGA. 

Wang and Sarker (2004) studied a single-stage supply chain system that is controlled by 

kanban mechanism, which was pioneered by Toyota Motor Company in Japan and 

subsequently it was adopted by numerous other Japanese and US companies for applying 

the just-in-time manufacturing principles. The whole Kanban system was finally modeled 

as a MINLP which was solved optimally by branch-and-bound method to determine the 

number of kanbans, batch size, number of batches, and the total quantity over one period 

and a logistics system for controlling the production as well as the supply chain system is 

developed, which results in minimizing the total cost of the supply chain system. 

However, since the number of integers increases with the number of kanban stages, for 

multi-stage supply chain systems, the computational solution time of B&B is of concern, 

and the limitation for the size of problems that can be solved optimally by B&B was not 

studied. 
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Wang and Sarker (2006) extended the work of Wang and Sarker (2004) to a multi-stage 

supply chain system that operates under a JIT (just-in-time) delivery policy. Again, for a 

multi-stage supply chain system, a mixed-integer nonlinear programming (MINLP) 

problem was formulated to determine the number of kanbans, the batch size, etc. 

Similarly, it is solved optimally by branch and bound method, moreover, a greedy 

heuristic to avoid the large computational time in branch-and-bound algorithm is 

developed for solving a large MINLP. This paper provides an extremely good comparison 

among the solution procedures between exact algorithms and heuristic algorithms. 

Lieckens and Vandaele (2007) concerned with the efficient design of a reverse logistics 

network. Based on the traditional models formulated as mixed integer linear programs 

(MILP-model), they extended the model to the scenario where the queuing model was 

combined to account for the high degree of uncertainty inherent to reverse logistics 

networks, such as lead time and inventory positions. Due to the nonlinear relationships, a 

MINLP model was presented for a single product-single-level network and a differential 

evolution technique based genetic algorithm was developed to solve an example problem. 

However, no larger scale problems were solved in this paper. Interestingly, they divided 

the methods to solve MINLPs into two major categories: deterministic and stochastic. 

Deterministic methods have, such as branch-and-reduce and the BB branch-and-bound, 

interval analysis-based methods, etc, featuring running through the algorithm in a 

predefined way, which means that the next step of computation is exactly determined. 

While stochastic global optimization methods (also known as adaptive random search 

methods) such as differential evolution and adaptive Lagrange-multiplier methods, etc, 
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run through the algorithm in a random way, which means that the next step of 

computation is undetermined. 

2.4 Open Source Development and Application 

2.4.1 Open-Source Initiative 

Open source is a phenomenon in computer science that is increasingly receiving attention 

in the popular press. The underlying philosophy of open source is to promote software 

reliability and quality by supporting independent peer-review and rapid evolution of 

source code. This philosophy is pragmatically advanced by using copyright law in a 

nontraditional way (Ladanyi et al. 2005). 

An open source license implies that the software that it covers should have its source code 

included with its package. However, there are other policies that open source software 

must follow, and these are all included in the Open Source Initiative 

(www.opensource.org). All open-source licenses certified by the Open Source Initiative 

adhere to principles set forth in the Open Source Definition. The Open Source Definition 

version 1.9 states criteria on nine fundamental issues, including access to source code, 

free distribution, and prohibition of discrimination. However, it needs to be clear of the 

difference between public domain and open source, unlike the public domain software 

such as freeware or shareware; open source software is clearly copyrighted. Once 

software gets certified by the open source initiative, it must permit the unrestricted 

redistribution of source code, which does not discriminate so that diversity and 

participation are maximized. For the comprehensive information regarding open source 

initiative and several of certified open source software, please refer to 

www.opensource.org official website. 
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It is also necessary to mention the unique development paradigm of developing complex 

software which is high-performance, robust and secure. For a successful open source 

project (e.g. Linux Operating System or COIN-OR), a virtual community of volunteer 

developers spontaneously arises from among users who may download the source code, 

try it on their own purposes and make modifications and may also may find and fix bugs, 

extend functionality, and port to new platforms. Eventually, relatively large number of 

developers working simultaneously, the code evolves rapidly (Ladanyi et al. 2005). By 

opening source code for peer review and rapid evolution under an open-source license, 

computational results can be reproduced, fair comparisons of algorithm performance can 

be made, the best implementations can be archived and built on, code reinvention can be 

minimized, implementation innovation knowledge can be transferred, and collaboration 

and software standards can be fostered (Lougee-Heimer, 2002). 

Open-Source software bears the following advantages which are critical for this research: 

> Researchers can read, redistribute, and modify the source code. 

> Researchers can improve it, adapt it, and fix bugs by trying different problems. 

> It has greater availability and flexibility over commercial software. 

With the clear understanding of the upside of open source, we know that for an individual 

researcher, perhaps the most noticeable negative consequence of the current OR research-

software practices is the need to re-make pre-existing software. New algorithmic ideas are 

frequently tested by computationally benchmarking them against published techniques. 

To make a comparison meaningful, the competing implementations need to be run in the 
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same computing environment over the same test sets. Open source environment in 

Operations Research Community makes it possible to do so. 

However, open source presents an attractive alternative for the OR community, it is by no 

means a panacea. Operations research is a comparatively specialized area, the number of 

developers is correspondingly smaller and Writing software for peer review (let alone 

peer-extension and peer-maintenance), can be a non-incremental effort as compared to 

writing software for one's own use (Ladanyi et al. 2005). 

Linux-alike system appears as the most well known and successful example in open 

source development. In this research, we focus on the implementation of Open-Source 

initiative in Optimization and Operations Research (COIN-OR) on the supply chain 

problem modeled as MINLP. 

2.4.2 COIN-OR 

The COIN-OR (Computational Infrastructure for Operations Research) project is an 

initiative to spur the development of open-source software for the operations research 

community and is an initiative to promote open-source software resources for operations 

research professionals. The idea for the initiative was conceived by IBM Research. The 

goal was to create a community-owned, community-operated repository of open source 

software to meet the needs of OR professionals. It was hosted by IBM from August 2000 

and then INFORMS board unanimously voted to become the new host of COIN-OR in 

November 2002 .Success was defined as having COIN-OR become community-owned 

and community-operated (www.coin-or.org). 
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Under the framework of COIN-OR, a variety of software tools are under development by 

a heterogeneous group of volunteers from industry, academia, and government. There are 

different modules for linear programming, integer programming, nonlinear programming, 

subgradient optimization, and tabu search in the source code repository at 

http://www.coin-or.org. Currently all the modules are under the OSI-certified Common 

Public License (CPL). Having all the different software projects under the same license 

allows users to mix-and-match code without having to worry about creating licensing 

nightmares. 

Currently, the main available components of COIN-OR are: 

4» BCP - Branch-Cut-Price Framework; 

4» CBC - COIN-OR's native branch and cut code; 

4» CGL - Cut Generator Library; 

* CLP - (COIN-OR LP) a Simplex solver; 

4 COPS - COIN-OR Open Parallel Search Framework; 

4» IPOPT - Large-Scale Nonlinear Optimization; 

4t> NLPAPI - a library for defining nonlinear programming problems; 

4» OSI - Open Solver Interface; 

4t OTS - Open Source Framework for Tabu Search; 

4* SMI - Stochastic Modeling Interface; 

4* Bonmin - Basic Open-source Nonlinear Mixed INteger programming, an 

experimental open-source C++ code for solving general MINLP problems; 

4» LaGO - Lagrangian Global Optimizer, for the global optimization of non-convex 

mixed-integer nonlinear programs; 
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«* GAMSlinks - GAMS/COIN-OR Links, links between GAMS (General Algebraic 

Modeling System) and solvers that are hosted at COIN-OR; 

Some critical modules, which are still evolving, are illustrated in detail as following: 

The Open Solver Interface (OSI) is an API coded in C++, which enables implementations 

to be "solver agnostic" (Lougee-Heimer, 2002). OSI make it possible for different 

algorithms to be implemented and then run using any solver having an Open Solver 

Interface instantiation with no additional effort by providing an abstract base class to a 

generic linear programming (LP) solver, along with derived classes for specific solvers. 

Many applications may be able to use the OSI to insulate them from a specific LP solver. 

Currently, interfaces to both commercial solvers (e.g. ILOG CPLEX, IBM OSL, and 

XPRESS-MP) and open source solvers (e.g. CBC, CLP) are available. See 

https://projects.coin-or.org/Osi for detail. 

BONMIN, as the main module that has been dealt with in this research, it is necessary to 

give a basic review here and I will discuss the detailed application in the later chapter. 

BONMIN as an open source MINLP module developed in C++ is a collaborated effort 

between IBM Corporation and Carnegie Mellon University. It incorporates several 

already-existing open source packages (Clp, Cbc, Cgl, CoinUtils, Ipopt, Osi) and third 

party software (Ampl Solver Library, Bias, CPLEX, Lapack), and can be operated under 

both Windows and Unix-alike systems. Bonmin feathers the following algorithms 

(https://www.coin-or.org/Bonmin): 

• B-BB, a NLP-based branch-and-bound algorithm 

• B-QA, an outer approximation decomposition algorithm 

24 

https://projects.coin-or.org/Osi
http://www.coin-or.org/Bonmin


• B-QG, an implementation Quesada and Grossmann's branch-and-cut algorithm 

• B-Hyb, a hybrid outer approximation based branch-and-cut algorithm 

These algorithms are exact when the objective and constraints are convex functions, but 

in case at least one of objective and constraints functions is non-convex, the algorithms 

give heuristic solutions (Bonami et al. 2005). 

In part of this research, the focus will be on the framework of BONMIN package to solve 

the stochastic supply chain problem. The detailed methodology using BONMIN in this 

project will be discussed in the following chapters. Information on the other tools is 

available on the COIN-OR project web site at http://www.coin-or.org. 
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3. PROBLEM DESCRIPTIONS AND OPEN SOURCE BASED MINLP 
SOLUTION APPROACH 

3.1 Problems Descriptions 

In today's global economy, competitive advantage gained from a successful 

manufacturing strategy does not guarantee success. In order to succeed globally, it is 

becoming very important for companies to have appropriate supply chain strategies in 

addition to appropriate manufacturing strategies. Supplier selection is an important 

strategic or tactical level decision in the current economic climate where outsourcing has 

been a prevailing situation in the business world, due to the rocketing of the low-cost 

economic super powers, such as China and India. Provided with the decision regarding 

supplier selection, it results in the decision as to how much to order from each of the 

suppliers or outsourcers to maximize the profit or minimize the cost within a certain 

period of time. Fortunately, as mentioned in the literature reviews, the majority of the 

supplier selection and lot sizing models are linear programs or Mixed Integer Linear 

Programming problems, which can be comparatively easy to solve by currently available 

solvers. The efficient supplier chain should be a demand driven chain (Storey et al. 2006), 

as when the demand becomes stochastic in stead of deterministic, the problem becomes 

more complicated and the computational effort needed to solve the model also increases 

substantially. Stochastic demand can be represented in two ways: discrete and continuous 

distributions. Continuous distributions normally require more computational efforts 

compared with the discrete distributions. When these factors are combined with inventory 

control, which is sometimes nonlinear part, the problems becomes even more complicated. 

This class of problems being addressed shares a similar format of revenue generating 

formulation as newsboy or newsvendor models. However, these problems also bear much 
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more complicated considerations in capacity constraints, moreover, since the 

remanufacturing process of the components is added on top of the pure buying and selling 

— retailing, more decision variables are created than newsvendor model. The 

involvement of supplier selection makes binary variables a must to formulate a Mixed 

Integer problem and other considerations of inventory makes it possible for it to be more 

complicated as a nonlinear problem. The more factors that are considered, the more 

complete the model is and therefore the more computing efforts are expected. Generally, 

the following works represent this class of problems as introduced from 3.1.1 to 3.1.3 

3.1.1 Model No.l — The Configuration of a Manufacturing Firm's Supply Network 
with Multiple Suppliers 

The model described in Kim et al. (2002) considers a supply chain network consisting of 

a manufacturer and its suppliers, where each product of the manufacturer is composed of 

several components which are purchased or outsourced among different suppliers. The 

model was formulated with a similar objective function to the newsvendor problem with 

linear constraints in terms of both manufacturing capacity of manufacturers and suppliers. 

The formulation details are as follows: 

Maximize 

Zk=i{fok[rkZk ~ h(yk ~ zk)]f(zk)dzk + Jyk[rkyk - ak{zk -yk)]f(zk)dzk} -

lik=i dkyk — Z,i=il*j=i cijxij 

Subject to Capacity Constraints: 

r in 

fc=l ; ' = 1 

27 



n 
VijXij <qj, j = l,...,m, 

i=l 

K 

hyk ^ Q. 
k=l 

Xij,yk > 0 , 

Similar parameters and variables definition can be found in section 3.1.3. The problem 

was solved by an iterative algorithm in Kim's paper using a Lagrange multiplier method, 

which is a shared methodology for many multi-constraints newsvendor problems and 

guarantees global optimum for the problem. This problem presents a basic model, as is 

seen in section 3.1.2 and 3.1.3, as the main solving difficulty involved is the continuously 

distributed demand, which incurs the integration formulation found in the objective 

function. The model is solved and verified by the proposed approach in chapter 4. 

3.1.2 Model No.2 — Optimal Acquisition Policy for a Supply Network with Discount 
Schemes and Uncertain Demands 

Zhang and Ma (2007) proposed a discount scheme, with different amounts of raw 

materials to be purchased from various suppliers based on the model in Kim et al. (2002) 

with inclusion of binary variables. The formulation of the problem is exactly the same as 

the problem in section 3.1.3 after inventory considerations are removed from the model. 

The problem was implemented in GAMS coupled with C coded external function. The 

MINLP model was solved by SBB solver with different trials of NLP solvers such as 

CONOPT and MINOS. However, unlike the guaranteed optimal solution approach given 

in Kim et al (2002), given the black-box nature of GAMS's solver, results in not being 

I 

I 
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convincing enough that the solution of GAMS is optimal and GAMS's solvers are not 

available to all researchers as it is a commercial solver. 

3.1.3 Model No.3 — Zhang (2007) 

The model developed in Zhang (2007) combined model No.l and No.2, inventory cost 

was also considered in the model which incurs an additional nonlinear portion found in 

the objective function. Obviously, problem No.3 is the most representative and complex 

problem in this class Therefore, it is necessary to make a complete description of the 

model (Zhang, 2007). 

3.1.3.1 Assumptions 

• A two-tier supply-manufacturing chain problem is considered. 

• One cycle of the manufacturer's long-term production period, which is normally a 

year, is considered. The decision process deals with both a long-term planning 

problem that explores supplier selection for each material, and raw materials 

purchasing over the production cycle from each supplier, as well as a short term 

planning problem that suggests how often to place orders with each supplier. 

• Inventory management costs such as holding and ordering cost are also considered. 

• Both shortage and overage costs are allowed at the manufacturer's site with the 

cost of ak and bk per unit of product k respectively. 

• Uncertain product demands follow normal distributions with different parameters. 

Product k has demand zk, probability density function f(zk), mean ixk and 

standard deviation ak. 
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• Suppliers offer all-unit quantity discounts for purchases above certain quantities, 

which vary depending on the size of the order for one single product from one 

supplier. 

3.1.3.2 Parameters and Variables 

The followings are parameters in the model: 

ek : Unit production cost for product k, 

rk : Unit sales revenue of product k, 

mik : The amount of raw material i required for one unit of product k, 

riij : The amount of supplier j ' s internal resources required to produce one unit of raw 

material i, 

qfy: Total amount of resources reserved by supplier j from manufacturer, 

tk : The amount of the manufacturer's internal resources required to produce one unit of 

product k, 

Q: The total amount of manufacturers' resources, 

Cijj : Supplier j ' s unit price needed to provide one unit of raw material i within the order 

interval [dfjt ,d"jtl]. Price level 1=1,2,..., L, 

Qj : Manufacturer's management costs when using supplier j , 

kij : Fixed order setup costs for raw material i from supplier j , 

hij : Periodic holding costs per unit associated with raw material i from supplier j , 
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yk : The number of units of product k to be produced in the period, 

Xtji : The number of units of raw material i purchased from supplier j at the price level I, 

Uiji : 1 if the manufacturer buys any amount of raw material i from supplier j at price 

level I, 

uitj : 1 if raw material i is purchased from supplier j ; 0 otherwise, 

Vj : 1 if the manufacturer buys any raw materials from supplier j , 0 otherwise, 

Wij : Order quantity of raw material i from supplier j at each cycle, 

zk : Demand of final product k in the next period of horizon. 

3.1.3.3 Formulation 

Objective function: 

Re = Yl=i{^k[rkZk ~ h(yk - zk)]f(zk)dzk + Q[rkyk - ak(zk - yk)]f(zk)dzk}, 

Maximize Re 
I J L K J 

£ = 1 ; = 1 1 = 1 fc=l ; = 1 

kij £(=l xi,j,l X"1 X"* hi,jwi,j Ll=l xi,j,l 

kJk 

y y Ktj LUi Xj,j,i y y nuw f j LU-

i= i j=x l,J j=i ; = i ^li~1 li 

Where Re is the manufacturer's revenue, the second item is the cost of purchasing the raw 

material. The third and the fourth items are the production and management costs 
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associate with the suppliers, respectively. While the last two items are setup costs and 

inventory costs respectively. 

Capacity Limits Constraints: 

K J L 

2_, mi,kyk ^ 2 J 2 J xiJ,l , i = 1, - , /, 
fc=l 7 = 1 1 = 1 

I L 

2^ Hj 2^ xi,j,i ^ Qjvj > ) = 1> - >1> 
i= l 1=1 

£ tkyk < Q, 
k=l 

Xij,i,yk^0; 

The first constraint ensures that there are enough raw materials available for production. 

The second ensures the capacity of each supplier will not be exceeded. The third 

represents the manufacturer's capacity constraint. 

Quality Discount Constraints: 

xi,j,l ^ ^i,j,lui,j,l >V i>J> I 

xi,j,l — ^i,j,lui,j,l >V iJ> I 

/_J
ul,].issui.]>ViJ 

i=l 

vj >utj,Vi,j 
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1=0 

uiJ,i>ui,i>vi E {0,1}, Vi,;',/ 

The first two constraints ensure the price level for the amount purchased from the supplier 

within the discount interval offered. The third ensures that only one discount level will be 

applied to one offer, and the fourth indicates the internal logic relation between two 

binary variables. The last constraint guarantees that the order quantity at each interval will 

not exceed the total amount purchased from the supplier during the period. 

3.1.3.4 Solution Background 

Zhang (2007) developed an iterative solution procedure by finding the optimal order 

quantity Wy after relaxing the order quantity constraint: 

1=0 

The optimal order quantity becomes: 

l2kijj^=1miikyk 
1,1 I h 

v 

And the inventory cost and order set up costs can be expressed as follows: 

Inventory and setup cost: / / ( b;——— * / xin) 
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By doing this, variable Wtj is eliminated from the problem, which alleviates 

computational effort. Detail of the iterative algorithm can be found in Zhang (2007). It is 

worth mentioning that this research is based on the iterative algorithm. The main effort of 

the algorithm lies in the computation of the inner Mixed Integer Nonlinear Problem 

(MINLP) model. Zhang (2007) solved the model using GAMS modeling language and its 

MINLP solvers—SBB. 

Due to the stochastic factors, the uncertain demand, and the unavailability of the internal 

functions in GAMS, external functions were developed to calculate the integration 

functions in the objective function, or simply Re. However, there are still problems 

remaining with the GAMS commercial solver for this special MINLP. The problem is 

extremely sensitive when changing of parameters due to the external integration function. 

As GAMS-SBB is commercial software, it is difficult to deal with the solver itself. 

3.2 Foundation of Open Source Solution Approaches 

The open source solution approach is based on the Open Source MINLP package — 

BONMIN which acts as the solver, and AMPL, which appears as the modeling platform. 

Refer to Chapter 2 for a BONMIN discussion; the preceding discussion will focus on the 

implementation process of the problem using AMPL and BONMIN. 

The open source solution approach to the stochastic supply chain problem (Zhang, 2007) 

modeled as MINLP is realized through two methodologies, 

> External function based open-source approach 

> Triangular approximation based open-source approach 
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These two approaches are illustrated separately in detail in the following sections. In this 

research, the software is operated under Linux x86_64 GNU/Linux, which is accessed 

through SSH (Secure Shell). 

3.2.1 AMPL 

Developed by Bell Laboratories, AMPL (A Mathematical Programming Language) is a 

comprehensive and powerful algebraic modeling language for linear and nonlinear 

optimization problems for discrete or continuous variables (www.ampl.com). AMPL's 

flexibility and convenience make it ideal for rapid prototyping and model development, 

its speed and control options make it an efficient choice for repeated production runs 

(www.ampl.com). So far, the 64 bit AMPL student version is obtained, which can 

accommodate less than 300 hundred variables. 

The user friendly modeling language makes it easy to express complicated mathematical 

problem, as it resembles natural language. AMPL has the following basic files to model 

problems. 

In general, like most popular optimization modeling systems, AMPL supports the most 

basic model types such as Linear Programming, Mixed Integer Programming, 

Constrained and Unconstrained Nonlinear Programming, Mixed Integer Nonlinear 

Programming and Quadratic Programming. Moreover, AMPL can be operated under 

either Microsoft Windows System or Unix-like systems. In this research, the latter is 

adopted. In order to model a problem in AMPL, one should know the following three 

types of files as seen in Table 1: 

.mod file The file to define parameters, variables, objective functions and constraints 
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.dat file The file to declare the values for each parameter 

.xfile The file incorporating a group of command to implement and run the 

model 

Table 1: Main AMPL files 

In .mod file, the following inputs will be needed to define an AMPL model (Fourer et al. 

2003): 

> set: Declares a set name; 

> param : Declares a parameter which may be a single scalar value such as or a 

collection of values indexed by a set; 

> var : Names a collection of variables; 

> maximize or minimize followed by the name of objective function, which is 

arbitrary as long as it is not violating the syntax; 

> Subject to followed by the name of the constraint. 

Figure 2 is a snapshot of part of .mod model to illustrate the environment. All values of 

parameters must be defined in the .dat file. However, it does not mean that one has to 

have both a .mod file and a .dat file in order to build a model successfully, the separate 

model file and data file makes it easier to modify the model or data in the future, hence it 

is recommended, Figure 3 demonstrates of a .dat file. 
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:'M qcube.ends.uwindsor.cd - default - SSH Secure Shell 

J gte | * Mew fflndow Qelp 

j £1 Quick Connect i_j Profit* ' : f 2 : S O k ; H £)£i % <S¥? 
chenllq@nl:~/ampl student_linux/solvers/funclink> more myproiect.mod 

m SETS *" ### 

set i; # component 
set j; $ supplier 
set k; # product 
s e t 1; # d iscount segment 

U§ PARAMETERS ### 

par am p i := 3.14X5926; 

param s q r t 2 : - 1.414; 

param bigq : - 2000; 

param bigH :* 10000; 

param r {k} > 0; § s e l l i n g p r i c e of u n i t produce k 

paraa t <k} > 0; 0 manufactur ing 's product ive resource consumption for u n i t product k 

param a *k) > 0; § u n i t understock cos t 

param b {k} > 0; § u n i t overstock cos t 

param q ij) > 0; # capac i ty of each suppl ier 

param m {j) > 0; # management cos t to maintain the r e l a t i o n s h i p with suppl ier j 

param e (k) > 0; # manufacturer ' s u n i t product ion cos t for product k 

param mu {k\ > 0; § mean value of p . d . f of product k 

param sigma {k} > 0; # s tandard dev ia t ion of p . d . f of product k 

paraa g U , k ) > 0; § product k input requirement on mater ia l i 

param n ( i , j ) > 0; # requirement of resource of suppl ier j to produce u n i t component i 

Qiffiefterfto qoi)be.eFttis.uwindsorvca • •• • : .' ' • ^ _ _ _ _ ^ _ _ _ ™ ^ . •. BSH2 -r w s 123-cbc - hmac-md5 - none ; 142x42 "M\ 

Figure 2: AMPL .mod file illustration (SSH snapshot) 
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^ qcube.ends.iiwtncisar.ca - default - SSH Secure Stieli r- m*\ 
lie £dit i ' ^ Window Help 

•} QuickConnect _J Profiles [U # & ^ l ' i - \ SI £ ) / - I : % ' • *?'' 

chenllq6nl:~/ampl_student_linux/solvers/£unclinJi> more myproject.dat 
s e t i 
s e t 3 
s e t k 
s e t 1 

par am 

par am 

par am 

par am 

param 

par am 

* coupl comp2 coup3 comp4 compS; 
- suppl supp2 supp3 supp4 suppS; 
- prodl prod2 prod3 prod4 prodS; 
= segal segm2; 

r : = 
prodl 
prod2 
prod3 
prod4 
prod5 

t : -
prodl 
prod2 
prod3 
prod4 
prodS 

a : = 
prodl 
prod2 
prod3 
prod4 
prodS 

b :» 
prodl 
prod2 
prod3 
prod4 
prodS 

q : -
suppl 
3Upp2 
SUpp3 
3UPP4 
supp5 

m : = 
suppl 
supp2 
supp3 
3Upp4 
supp5 

0 s e l l i n g p r i c e o£ u n i t product b 
150 
200 
220 
230 
250 ; 
i manufacuturer's productive resource consumption for unit product k 

1 
2 
2 
2 
3 ; 
# u n i t understock cos t 
100 
90 
50 
90 
150; 
9 unit overstock cost 
60 
40 
20 
10 
100; 
|E capacity of each supplier 
10000 
7500 
9000 
6000 
12500; 
if management cost to maintain the relationship with supplier j 
350 
350 
350 
350 
350; 

Connected to qcube.ends.uwlndsQr.ca 55H2 - aesl28-cbc - hmac-mdS - none ' 142x42 

ml 

Figure 3: AMPL .dat file illustration (SSH Snapshot) 

Under the Unix-like system, AMPL is accessed through command lines which are both 

tedious and time consuming. In order to prevent the repetitive work, AMPL users are 

allowed to create .x files as a pool of commands to use to implement the model and still 

make modifications to either model or data files. In addition, different solver options may 

be declared and modified in .x files. Figure 4 provides you an example of a typical .x file. 
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^ qcubo.end&.uwindsor.ta - default - SSH Secure Shell 

Fie Edit View JSJhdow ticks 

£ Quick Connect _J Profiles S I ; # [ & 

r_ iwirxl 

M £ l £ l % <*?*? 

chenllq8nl:~/ampl^student_l inux/solvei :s /£unclink> mote mymodel.x 
r e s e t ; 
function I n t e g e a l l ( R e a l s , R e a l s , R e a l s ) ; 
function In tegca l2 (Rea l s ,Rea l s ,Rea l s ) ; 
funccion In t eg ra l3 (Rea l s ,Rea l s ,Rea l s ) ; 
function In t eg ra l^ (Rea l s ,Rea l s ,Rea l s ) ; 
model mypcoject.mod; 
data myprojec t .da t ; 
#data mypEOjectl.dat; 
option solver bonmin; 
option halt_on__aapl_error y e s ; 
^option bonmin_options "bonmin.num_ret:cY_unsolved_randoiiijpoint 5"; 
^options ipopt_options " t o l» l e -05 acceptable_tol=le-Q4"; 
* l e t bigq : - 2005; 
so lve; 
d isplay y ; 
d isplay x ; 
d isplay u ; 
d isplay v ; 
d isplay w; 
display TotalSP; 
display {£ in i , h in j ) sqct ( (2*ksetup[ i ,h]*sum {s in k} g [ f , s ]*y[ s ] ) /ho ld [£ ,h ] J - sum iv in 1} x [ f , h , p ] ; 
/ * l e t {£ in i , h i n j} u [ f ,h , " segml" ] := 0; 
l e t {£ in i , h in j ) x[£ ,h / r segml" ] := 0; 
d isplay y ; 
d isplay x ; 
d isplay u ; 
d isplay v ; 
d isplay w; 
display TotalSP; 
display {t in i , h in j } sqc t ( (2*ksetup[e,h]*sum {s i n k } g[f , s ]*y [ s ] ) / ho ld [ f ,h])-sum {p in 1} x [ f , h , p ] ; 
V 
display (f in i} sum {s in k} g[£,s]*yE3] - sum {h in j , p in 1} x [ C , h , p ] ; 
d isplay -sun {s i n k } ( (K[s ]+b[s ] ) 1 *In tegca l i (y [s ] , au[s ] / s igma[s ] ) - b[s]*y[s]*Integi :a l2 tyEs] ,mu[s] ,s igma[s]) 
+ ( r [s]+a[s])*yEs]*Integral3(Y[3] , iau[s] ,s igEia[s]) - a [ s ]*In tegEal4(y[s ] ,mu[s3 , s igma[s ] ) ) ; 

l e t y [ "p tod l" ] 
l e t y["prod2"] 
l e t y["prod3"] 
l e t y["prod4"] 
l e t y["prod5"] 

- 218.145; 
- 178.163; 
* 200.834; 
- 191.438; 
=• 213.661; 

d isplay -sua {s i n k} {(c[s ]+b[s] )*In tegi :a l l (y[s ] / muEs] ,s igma[s] ) - bEs^yEsJ^lntegEalZtyEsl^uEsl /SigmaEs] 

Connected to <ic«b6.eficis.uwino^or.ca !S5H2-aesl2«-cbc-Hrftac^q^-;nprie [.BSx'42 

Figure 4: AMPL .x file illustration (SSH Snapshot) 

3.2.2 BONMIN 
Another component shared by the two aforementioned approaches is BONMIN, which is 

the MINLP solver for the problem. Since BONMIN has been introduced briefly within 

the literature review, the implementation of BONMIN is focused. 

Download and installation procedures under various systems can be found in the 

BONMIN users manual (Bonami and Lee, 2006). It can be done through the following 

ways: 

• From a command line through .nl file (Gay, 2005) 

• From Modeling Language AMPL 
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• By invoking it from C/C++ programming 

In this research, we use AMPL modeling language to interact with BONMIN because of 

the user-friendliness features of AMPL. 

To use BONMIN from AMPL, the directory where the BONMIN executable is located 

has to be added in your environment variable $PATH to issue the command: 

option solver bonmin; 

in the AMPL environment. Then BONMIN will be used to solve the model loaded in 

AMPL. After the optimization process is finished, the values of the variables in the best-

known or optimal solution can be accessed in AMPL. If the optimization is interrupted 

with <CTRL-C>, then the best known solution is accessible (Bonami and Lee, 2006). 

Different parameters of BONMIN can also be changed through AMPL commands. What 

is also worth mentioning is that BONMIN comes with a parameter setting file called 

Bonmin.opt, which should be put under the same directory as .mod, .dat and/or .x files. 

3.3 External Function Based Open Source Approach 

For the model in (Zhang, 2007), the integration function calculation becomes the key 

point in the optimization process, which is unavailable among the AMPL internal 

functions. Therefore, external functions must be created along with AMPL to model the 

problem with BONMIN as the open source solver. The structure for solving the MINLP 

model is illustrated in Figure 5. 
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Model File ,mod Data Fife .dat 

r̂ 

Command File .x; Declaration of 

Integral External function 

Solver BONMIN 

Solving MIHLP 

Process 

r 
funeaddx, evaluate integral 

functions, and calculate the first 

and second order derivatives 

coded in C prof ramming 

language 

Output Console 

amplfunc.dil 

Figure 5: External function based open source BONMIN approach in AMPL 

The C code is used to evaluate the external functions and the derivatives are derived from 

the Romberg Integration Algorithm, which was coded originally by Press et al. (1992). 

the code is tailored slightly to accommodate into the 4 integration functions that have 3 

parameters in each of them. There are certain rules to make the external functions; please 
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refer to the following link for more information 

(www.netlib.org/ampl/solvers/funclink/funcadd.c). In order to use BONMIN within 

AMPL, AMPL Solver Library has to be downloaded, which can be accessed from 

www.netlib.org. The same thing can also be done by completing the compiling procedure 

of the BONMIN package according to the installation instruction (Bonami and Lee, 2006). 

Four external integration functions are developed according to the objective function, 

they are as follows: 

rvW z (zfc-/i[fc])2 

Integrall(y[k]>fi[kla[k])= —-A==e ™\W dzk, 
JQ <T[ [k]y/2n 

y[n] i (zk-nW)2 

Integral2(y[klix[k],a[k])= \ _ e 2"M2 dzk, 
Jo, a[k\y2n 

r+°° i (zk-ix[k])2 

Integral3(y[k],ii[k],a[k])= \ r i 1 ,— e 2^W2 dzk, 

r + 0 ° zv (zfc-M[fc])2 

Integral4(y[kln[k],a[k])= I * e Z"W2 dzk, 
Jy[k] <T[/c]V27r 

3.4 Triangular Approximation Open Source Approach 

The model in Zhang (2007) could be considered as an extension to the multi-product, 

multi-constraint newsvendor models and most algorithm approaches for newsvendor 

problem are based oh the characteristics of the relaxed constraint version and the 

Lagrange Multiplier Method for the nonlinear problem. Neither of these ideologies can be 

efficiently adapted to Zhang's problem, because the existence of the additional raw 

material variables. This is in addition to the product variables and another nonlinear item, 
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which is inventory cost and transportation or setup cost. When there is no provided 

efficient algorithm approach to deal with integration functions in objective function, it is 

impossible to tackle larger scale problems. Although the approach in 3.3 provides a 

different open source approach which is different from commercial software approach 

such as GAMS in Zhang (2007), it still does not get independent of external functions, the 

existence of which is actually the source of vulnerability when it faces large scale 

problems, because it still takes a relatively longer time to solve a small size problem. 

Apparently, better solution approaches are needed to to solve large scale problems. 

Areeratchakul and Abedel-Malek (2007) developed a triangular approximation approach 

to a multiproduct, multi-constraint newsvendor problem. The author used an 

approximation of the integration of the newsvendor problem, which is similar to the 

model in Zhang (2007). By doing this, the objective function becomes a quadratic 

problem with another single nonlinear part, which is a combined item of inventory cost 

and setup cost based on the algorithm in Zhang (2007). The following is the reasoning 

process of the triangular approximation approaches. 

In the formulation of the problem, which is based on Areeratchakul and Abedel-Malek 

(2006), the following is defined: 

f(zk) is the density function of the demand distribution of product k; 

FiVk) = fqkf(Zk)dzk, which is defined as a cumulative distribution function. 

Re = T.k=i{lok[rkzk - bk(yk -zk)]f(zk)dzk + Q[rkyk - ak(zk -yk)]f{zk)dzk], 
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rVk rVk r00 

tek = (rfc + h) zkf(zn)dzk - bkyk f{zk)dzk + (ak + rk)yk f{zk)dzk 
Jo JO Jyk 

Jr. 00 

zkf(zk) dzk 
V l . 'Vk 

rVk 
= Ofc + bk) zkf(zk)dzk - bkykF{yk) + {ak + rk)yk[l - F(yk)] 

Jo 

-aklE(zk)-J zkf(zk)dzkj 

= (ak + bk + rfc) $*kzkf(zk)dzk - (ak + bk+ rk)ykF(yk) + (ak + rk)yk - akE{zk) 

(1) 

Integrating the function by parts, we are able to obtain 

C *kf(.Zk)dzk = ykF{yk) - $y
Q

k F{zk)dzk (2) 

Substituting equation (2) into (1), we get: 

rVk 
Rek = (ak + rk)yk - akE(zk) - (ak + bk + rk) F(zk)dzk 

Jo 

Correspondingly, we have 

Re = 2*=i{(afc + rk)yk - akE{zk) - (ak + bk + rk) f*
k F(zk)dzk} (3) 

Now we will make the approximation of/ k F(.zk)dzk using the triangular approach: 

J0
ykF(zk)dzk ~\{yk-yi,k)Myk -yllk)} (4) 

Therefore, we have the error function: 
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error = JQ
ykF(zk)dzk -\{yk-yilfc)[Afc(yk -yi.k)] (5) 

Then Re could be expressed as the following way: 

Re = lK
k(Akyl + Bkyk + Ck) (6) 

And the problem becomes how to determine the different parameters: Ak, Bk, Ck. 

Substituting (3) into (6) we have: 

Ak = -±Ak(ak + bk+rk) (7) 

Bk = (a* + h+ rk)bkylik + ak+rk (8) 

Ck = -(?*^)Akyf>k-akE(zk) (9) 

3.4.1 Taylor Series based Triangular Approximation Approach: 

Getting the triangular approach through the Taylor Series of F(zk) at pik, it is assumed 

that the majority of zk distributes around nk. Please see Figure 6 as illustration of this 

idea, where the shaded area represents the triangular approximation of f*k F(zk)dzk. 
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Figure 6: Taylor series based triangular approximation approach 

The function of straight line in the Figure 6 can be expressed as: 

F&K) ~ Ffak) = /Ofc)0/c - Pit); (10) 

Let F(zfc) = 0, then 

y* = K ~ jtrif «* - 7 ^ * °; otherwise' *•* = ° ( I D 

^fc= /(Mfc) (12) 

Substituting (11) (12) into (7) (8) (9), the folio wings for the normal distribution function 

are obtained: 

An = -\f(,Hk)(ak + bk + Tfc) 

Bk = (a* + h + rk)\nkf(jik) - F0ifc)] + ak + rk 

k 2 /(/ik) fc ^ kJ 

(13) 

(14) 

(15) 
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Apparently, E(zk) = fik, therefore, given the specific parameters of product k and the 

corresponding distribution function, the quadratic approximation of Re can be obtained. 

3.4.2 Covering Range Based Triangular Approximation Approach: 

1.4 -

1.2 -

1 

0.8 

0.6 -

0.4 -

0.2 -

0 -

-0.2 < 

-0.4 -

Figure 7: Covering range based triangular approximation approach 

The following formula is used to calculate Ak, and ylk as demonstrated in Figure 7, 

where the shaded area stands for the triangular approximation of / k F(zk)dzk , 

. _ 0.9-0.1 , 
Ak~ F-H0.9)-F-H0.1) ^ ^ 

yi.k = F-^OS) - ^ , if ylk > 0; 0, otherwise. 

Based either of the two approximation approaches, the integration functions can be 

transferred into an equivalent quadratic function with respect to yk. 
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4. RESULTS AND ANALYSIS TO BONMIN BASED APPROACHES 

4.1 Results and Comparison of Three Proposed Approaches 

In this chapter, it is illustrated how the three approaches perform compared to the 

approach used in Zhang (2007), and these three approaches are also validated through the 

model and results in Kim et al. (2002). In order to compare these three approaches, all 

models are run under exactly the same BONMIN options settings. The results of the two 

BONMIN based approaches under different scenarios are reported and compared with 

AMPL external function based approach. The specifications of the example problems can 

be found in Appendix tables. 

The notation "EFO", "TSTO", "CRTO" represents "External Function based Open 

Source Approach"; "Taylor Series based Triangular Approximation Open source 

Approach" and "Covering Range based Triangular Approximation Open source 

Approach" respectively. 

Among the computational tests, the Branch-and-Bound algorithm option of BONMIN is 

selected as the algorithm among four available options. From table 2, we can easily see 

the difference among the three approaches. Please note that the solution values of the rest 

of the xtjj variables which are not listed are zero, and the values of the binary variables 

become obvious according to their corresponding x^ values. 

Since the problem is a convex problem, BONMI-MINLP algorithm guarantees the global 

optimum for it. Given that the correct evaluation and derivatives information is provided, 

the solution, which is obtained by EFO approach, is the global optimal solution. However, 

the time and the number of iterations EFO takes are much more than those of TSTO and 
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CRTO. This can predict EFO's unreliability when it comes to larger scale problems. 

TSTO approach provides almost exactly the same solution for ys and Xijtl as EFO, 

nevertheless, the objective function value deviates more from that of EFO compared with 

CRTO. Due to the following fact: 

• TSTO and EFO shares the same formulation except for the different ways of 

expressions of the integral part of objective function; 

• Almost exactly the same values of optimal solutions for all variables; 

Approaches (The manufacturer 

EFO 

216.972 

177.939 

201.189 

189.112 

215.516 

TSTO 

216.923 

178.054 

201.403 

188.439 

215.762 

capability is set to be 2000) 

CRTO 

218.145 

178.163 

200.834 

191.438 

213.661 

GAMS 

217.572 

177.883 

201.134 

189.229 

215.312 

BB algorithm 

Criteria 

yz 

y-A 

y* 

Xl,4,2 

*2,5,2 

X3,l,2 

•*4,2,2 

*5,3,2 

O. B. Value 

Number of Nodes 

Visited 

2051.11 

1773.31 

2179.95 

2443.66 

2177.94 

2051.83 

1773.85 

2177.8 

2443.07 

2178.05 

2049.38 

1773.06 

2191.01 

2445.08 

2178.16 

2051.595 

1773.341 

2181.842 

2444.230 

2177.883 

67670.419 

N/A 

62600.9 

15 

72832.1 

15 

62445.7 

15 

49 



CPU Time 

Number of Iterations 

21.81 

866 

0.37 

274 

0.37 

285 

N/A 

N/A 

Table 2: Comparison among different approaches when Q=2000 

It can be concluded that the difference of final objective function values between TSTO 

and EFO derives from the triangular approximation of integral functions. However, 

TSTO delivers much better performance regarding computing time and the number of 

iterations than EFO. Similar phenomenon can be observed for CRTO with respect to 

computing time and number of iterations. What is worth pointing out is that CRTO 

delivers more accurate objective function value than TSTO. Same numbers of nodes 

being observed can be simply explained by the fact that the same branching and node 

selecting rules are used for all three approaches during the solving process. GAMS 

solutions to the same problem are obtained from Zhang (2007), by comparing the results 

of variables, one can easily see that the open-source approach delivers as good solutions 

as GAMS. 

BB algorithm 

Criteria 

y i 

Vz 

ys 

y* 

ys 

X1A,2 

Approaches (The manufacturer capability is set to be 2050) 

EFO 

219.516 

181.616 

206.083 

193.096 

220.228 

2092.68 

TSTO 

219.08 

181.085 

205.427 

191.472 

219.762 

2086.28 

CRTO 

219.967 

184.118 

207.235 

195.127 

219.025 

2097.96 

50 



X2,5,2 

X3,l,2 

*4,2,2 

*5,3,2 

Objective function Value 

Number of Nodes Visited 

CPU Time 

Number of Iterations 

1810.08 

2220.47 

2493.01 

2223.41 

62680.1 

16 

2215.70 

4284 

1804.18 

2210.48 

2483.56 

2215.42 

72889 

15 

0.34 

266 

1819.97 

2234.9 

2500 

2234.12 

62724 

18 

0.4 

320 

Table 3: Comparison among different approaches when Q=2050 

Similar solution can be observed in Table 3 when the capacity of manufacturing resources 

is changed to 2050 per year; however, the time it takes for EFO is 6000 times longer than 

those of TSTO and CRTO. This observation indicates that EFO is not suitable for larger 

scale problems and very sensitive to the parameters changes, even for smaller scale 

problems. 

Since the exact evaluation of objective function is available through EFO, it is possible to 

combine TSTO and CRTO with EFO together to deliver both good solutions and more 

accurate objective values. Therefore, the combined approaches E-TSTO and E-CRTO are 

created. The results of implementation of this idea can be found in Table 4 and Table 5. 

BB algorithm 

Criterion 

Objective Function Value 

Criterion 

Approaches (The manufacturer capability is set to be 2000) 

EFO 

62600.9 

EFO 

TSTO 

72832.1 

E-TSTO 

CRTO 

62445.7 

E-CRTO 
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Revised Objective 62600.9 62600.3 62590.2 

Table 4: Comparison between combined approaches and original ones when Q=2000 

BB algorithm 

Criteria 

i '••icli'.v: 1 ;!-.!il!i>;i \ .-\w 

Criteria 

Revised Objective 

Approaches (The manufacturer capability is set to be 2050) 

EFO 

EFO 

62680.1 

TSTO 

72XS9 

E-TSTO 

62676.6 

CRTO 

d2724 

E-CRTO 

62667 

Table 5: Comparison between combined approaches and original ones when Q=2050 

The results in Table 4 and Table 5 indicate that E-TSTO and E-CRTO provide higher 

quality solution in terms of both objective values and computing efforts than TSTO and 

CRTO. 

In brief, table 6 reports the objective function values as the manufacturing capacity 

changes. 

Q 

1700 

1800 

1900 

2000 

2100 

2200 

2300 

EFO 

57205 

59958.9 

61754.2 

62600.9 

62680.1 

62680.1 

62680.1 

E-TSTO 

57205 

59958.9 

61754.1 

62600.3 

62676.6 

62676.6 

62676.6 

E-CRTO 

57188.7 

59942 

61739.4 

62590.2 

62660.2 

62660.2 

62660.2 
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2400 62680.1 62676.6 62660.2 

Table 6: Objective function values for different approaches when Q changes 

64000 j - - • 

63000 — JHh±jfp^ft~4&- ,ff~ 
62000 J i r ^ 

<u 61000 H y' 
— x 
^ 60000 --- Bf - — -

.> 59000 ••- / ~-

."§ 58000 - - - j / -

O 57000 - ~~« • • 

56000 — • • • 

55000 - -

54000 -I r——-r- 1 —r——-i s —i 
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Figure 8: Graphical illustration of table 6 

Figure 8 is drawn from the data in table 6, it can be noticed that E-TSTO and E-CRTO 

provides fairly good approximations as very close figure has also been reported in Zhang 

(2007), where the profit will not increase until the capacity Q roughly reaches 2100. 

Beyond 2100, the manufacturer's capability will not be fully used due to the resources 

constraints of suppliers. 

From the results reported above, it can be concluded that E-TSTO and E-CRTO can be 

projected as more efficient and reliable approaches for larger scale problems. 

4.2 Validation of Triangular Approximation Approach 

In order to validate the triangular approximation approach to the integral part of the 

problem, experimental tests are carried out to compare the results of E-CRTO and 

- M i - E-TSTO 

- X - E-CRTO 
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analytical global solutions to the same test problems in Kim et al. (2002) (Only E-CRTO 

is used to demonstrate the accuracy and efficiency of triangular approximation approach 

for the sake of simplification). Due to the comparatively straight forward structure in 

Kim et al (2002), the global optimal solutions obtained by a proposed iterative algorithm 

is guaranteed in the paper. The following results indicate that the Triangular 

Approximation approach indeed provides fairly well enough solution compared to the 

global optimum in Kim et al (2002). Table 7 and Figure 9 demonstrates the objective 

function values of case 1 in Kim's (see APPENDIX A for specifications of case 1) with 

different manufacturing capacity Q. Both E-CRTO and EFO delivers exactly the same 

quality of solutions compared with the global optimum of case 1 in Kim et al. (2002), 

however, EFO uses comparatively longer computing time. The details of computing time 

and results are shown in Table 7 and readers are referred to Kim et al. (2002) for the 

original graph to compare. 

Q 
2300 

2400 

2500 

2600 

2700 

2800 

2900 

3000 

3100 

3200 

3300 

3400 

3500 

3600 

3700 

E-
CRTO 

2983.64 

3130.74 

3275.84 

3418 

3555.91 

3683.11 

3791.46 

3888.51 

3970.36 

4005.44 

4005.44 

4005.44 

4005.44 

4005.44 

4005.44 

EFO 
2996.48 

3138.58 

3279.97 

3419.75 

3556.42 

3683.03 

3791.47 

3888.63 

3970.54 

4005.62 

4005.62 

4005.62 

4005.62 

4005.62 

4005.62 

E-CRTO(TIME, 
SEC) 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

EFO(TIME, 
SEC) 

>2 
>2 
>2 
>2 
>2 

>2 

>2 

>5 

>5 
>5 
>5 
>5 
>5 
>5 
>5 



Table 7: Validation of triangular approach on Kim's case 1 model 
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Figure 9: Graphical illustration of table 7 

Case 2 in Kim et al.'s is also compared with E-CRTO to validate the triangular 

approximation approach. Please see table 30 in APPENDIX D for detailed results of 

production amount change among five different products along with change of 

manufacturing capacity Q. Parameters and problem definitions of Case 2 can be found in 

APPENDIX B. Figure 10 provides the same experiments as conducted in Kim et al.'s 

case two, very similar values and trends can also be observed for case two in Kim et al. 

(2002). 

In this chapter, the proposed BONMIN based open-source approaches are validated by 

comparing the results in Kim et al. (2002) for both case 1 and case 2. In the future 

chapters, the BONMIN-CRTO approach will be used again as reference to test some 

larger scale problems. 
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Figure 10: Graphical illustration of table 30 
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5. NONLINEAR BRANCH-AND-BOUND ALGORITHM 

5.1 Motivation to the Development of B&B Algorithm 

The approaches proposed in chapter 3 are closely correlated with open source MINLP 

package BONMIN. Although BONMIN complies with OSI, which makes it possible for 

every one to access the source code, it is still difficult for individual researchers to modify 

the open source MINLP code in BONMIN, especially, for the Branch-and-Bound code. 

Therefore, a solution approach which can successfully and independently control the 

solving procedure of the MINLP and take advantage of the specific feature of the model 

of Zhang (2007) itself becomes very interesting and important. 

The currently available effective methods to solve MINLPs include Generalized Benders 

Decomposition (GDB), Outer Approximation (OA) and Branch-and-Bound (BB) 

(Kalvelagen, GAMS). Branch-and-Bound methods are used extensively for mixed-integer 

linear programming models and the basic method is directly applicable to MINLP. 

Similarly, the efforts that are needed to solve MINLP are good nonlinear solver, efficient 

integer branching and node selecting strategies. In order to improve the computing 

efficiency of the inner problem, triangular approximation is employed to transfer the 

integration function into a convex quadratic format, which is combined with the iterative 

algorithm to deal with the corresponding nonlinear part for inventory control. Therefore, 

the inner problem can be transferred into a convex quadratic problem since all the 

constraints are already linear. It is relatively easy to find the global optimal solution for 

convex quadratic problems. Due to the nature of the model in Zhang (2007), further 

literature review regarding branch-and-bound solution approach is provided as the 
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background of the tailored nonlinear branch and bound implementation and the 

corresponding methods adapted to the model are illustrated as well in each section. 

5.2 Background of Branch and Bound algorithm for MINLP 

The Branch-and-Bound dates back to Land and Doig (1960). The first reference to 

nonlinear Branch-and-Bound can be found in Dakin (1965). Please refer to Borchers 

(2001) for major issues during the implementation of nonlinear Branch-and-Bound 

algorithms. The following subchapters will be organized in the way that differentiates the 

major issues in the implementation of nonlinear Branch-and-Bound. 

5.2.1 Inner Nonlinear Programming Problems 

The solving process for inner nonlinear programming problems can differentiate 

dramatically from problem to problem. Theoretically, it depends on the nature of the 

nonlinear problems — the convexity of the problems. The nonlinear problem can be 

expressed as follows: 

Minimize f(x) 

subject to : h(x) = 0; 

flf(*) < 0; 

xERn 

If the both objective function f(x) and constraints g(x) are convex and h(x) is linear, then 

the nonlinear sub-problem is convex and relatively easy to solve. Both the original 

problem and the approximated problems are convex and especially, the latter one is a 

convex quadratic problem, therefore, we can comparatively easier get the optimal 

solution of the inner problem using both commercial and open source large scale 

nonlinear/quadratic packages. Currently, there are lots of algorithms available for convex 
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nonlinear problem, especially for quadratic convex problem, including Generalized 

Reduced Gradient (GRG) (Gupta et al. 1985), Sequential Quadratic Programming (SQP), 

Interior Point Method, Penalty Function Methods (Fiacco and Mccormick 1968), and 

Active Set method specifically for quadratic programming. For small size problems, a 

modified simplex method combined with KKT conditions could be used to find the global 

optimum for convex quadratic problems as described in Winston (2004). 

5.2.1.1 Generalized Reduced Gradient (GRG) and CONOPT 

Gupta et al. (1985) pointed out the code based on Generalized Reduced Gradient 

algorithm has demonstrated significant superiority over the code based on other 

algorithms. It was originally developed by Abadie and Carpentier (1969) and Wolfe 

(1967). One of the major nonlinear solvers adopted in this research, GAMS-CONOPT, 

was developed based on GRG algorithm. 

CONOPT is a solver for large-scale nonlinear optimization (NLP) developed and 

maintained by ARKI Consulting & Development A/S in Bagsvaerd, Denmark. It has been 

under continuous development for over 25 years. Based on the old proven GRG method, 

CONOPT has been a feasible path solver with many extensions. It has been designed to 

be efficient and reliable for a broad class of models. The original GRG method helps 

achieve reliability and speed for models with a large degree of nonlinearity, i.e. difficult 

models, and CONOPT is often preferable for very nonlinear models and for models 

where feasibility is difficult to achieve. Also, CONOPT has been designed for large and 

sparse models. Models with over 10,000 constraints are routinely being solved. 

Specialized models with up to 1 million constraints have also been solved with CONOPT. 

(www.conopt.com) 
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CONOPT guarantees global optimum for convex quadratic programming problems, 

therefore we can expect that CONOPT returns global optimum for our triangularly 

approximated inner problem. 

CONOPT is recommended to be used along with a modeling system, such as GAMS, 

AMPL, LINDO Systems, TOMLAB optimization, and in this research it is used with 

GAMS as GAMS-CONOPT nonlinear solver. 

5.2.1.2 Interior Point Method for Nonlinear Programming 

Growing interest in efficient optimization methods has led to the development of interior-

point or barrier methods for large-scale nonlinear programming. In particular, these 

methods provide an attractive alternative to active set strategies in handling problems 

with large numbers of inequality constraints (Wachter and Biegler, 2006). Another major 

nonlinear solver for inner quadratic problem is IPOPT, an open source interior point open 

source solver for large scale problems. The code has been written by Carl Laird and 

Andreas Wachter. IPOPT is designed to find the local optimum of nonlinear problems 

which can have both convex and non-convex objective functions and constraints as long 

as they are twice continuously differentiable. For convex quadratic problem, IPOPT also 

guarantee global optimum, which we are going to compare with other quadratic solvers 

such as CONOPT and CPLEX in next chapter. 

The IPOPT distribution can be used to generate a library that can be linked to one's own 

C++, C, or FORTRAN code, as well as a solver executable for the AMPL modeling 

environment. Recently, it has also been successfully compiled as a nonlinear solver 

option under GAMS system through another open source implementation package 

GAMSlink (www.coin-or.org). 
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5.2.1.3 Iterative Algorithm for Inner Nonlinear Problem 

The inner nonlinear problem we get after triangular approximations still remain non-

quadratic format since the existence of variable y(k)s in the denominator. In order to 

simplify the inner problem into a pure quadratic problem, a simple iterative algorithm is 

implemented as follows: 

New supplementary variables yl(k) are introduced. 

Step 1: Initialization yl(k) :=ak;# ak is the average demand of product k 

Step 2: Solve the quadratic problem 

If Zi y(fc) _ Ei yl(fc) < £ ; then stop; # £ is the stopping criterion 

Otherwise, yl(k) := y(k); and repeat step 2. 

Note: s is set 0.01 for our testing experiments in next chapter. 

5.2.2 Node Selecting Strategy in Nonlinear B&B 

The choice of next sub-problem to be solved could have a significant impact upon the 

overall performance of the nonlinear Branch-and-Bound algorithm. In mixed integer 

programming, a variety of strategies are employed to select the next sub-problem to solve 

(Borchers, 2001). 

Borchers (2001) also pointed out that one popular node selecting heuristic used in MILP 

known as "best bound rule" has also been widely used in nonlinear B&B. For "best bound 

rule", the sub-problem with the biggest upper bound is selected for maximization 

problems. This strategy has the advantage that the total amount of computation is 

minimized in a sense that once an integer solution is obtained, it will be good enough 
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lower bound that will eliminate many nodes from consideration. However, it will 

consume more memory than other strategies. Due to the availability of large computer 

memory nowadays, the size of memory is no longer an issue; therefore, this strategy is 

employed in our implementation. 

Another well known strategy is to branch from the newest node (Gupta and Ravindran, 

1985). In this strategy, whenever a branching is carried out the nodes corresponding to the 

new problems are given preference over the rest of the unfathomed nodes. In another 

word, the node that is newest in the list of unfathomed nodes is selected for branching. 

This strategy is also known as the depth first approach, which has the advantage of saving 

storage space and relatively easy to implement. However, for larger scale problems, it 

usually takes much longer time for this strategy. 

There are also other estimates or heuristics for node selection which not only considers 

the value of the objective function but also take into account the quality of the continuous 

optimal solutions, for example, the number of integer variables which are already integers 

in a node. Please refer to Gupta and Ravindran (1985) for detail. 

5.2.3 Branching Strategy in Nonlinear B&B 

There maybe a choice of several fractional variables to be branched once the node is 

selected. There are the following strategies as reported in Gupta and Ravindran (1985): 

Branch the important integer variables first in a given model since it is possible to get 

some information of the important variables. This can be done by assorting the variables 

in a descending order according to their importance and branch those with lower index 

first. In the model, according to the special structure of the model, u(ijl)s are considered 
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important binary variables over v(ij)s and w(j)s, and we found that v(ij)s and w(j)s can be 

relaxed as continuous variables given lower bounds of "0" and upper bounds "1", this is 

because of the fact that once u(ijl)s are determined, v(ij)s and w(j)s are easy to be fixed. 

Based on the facts above, we summarize the specific variable branching rules we tried for 

this model as follows: 

• Select the ones furthest from being integers among u(ijl)s 

• We do not intend to differentiate the branching priorities among u(ijl)s for 

different segments. This is because that only one segment for each component 

from each supplier will be allowed to select. 

The choice that selecting those variables furthest from being integers is aimed at getting 

the largest degradation of the objective when branching is carried out so that more nodes 

can be fathomed at an early stage. The strategies mentioned above makes it unique and 

special in the implementation of the nonlinear B&B to the MINLP model. 

Achterberg et al. (2005) provided a comprehensive review of a variety of state-of-the-art 

branching rules including strong branching, pseudo-cost branching and the hybrid of 

these two strategies. Based on these two strategies, they proposed a new generation of 

branching rule called reliability branching which has demonstrated superiority over other 

branching rules. 

5.2.4 Obtaining Upper Bound for sub-problems 

The branch and bound performance can also be improved by computing the upper bound 

of a sub-problem without actually solving the sub-problem. It is possible to get the upper 

bound of the optimal objective function value of the sub-problem from an optimal dual 
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solution of a sub-problem's parent problem (Borchers, 1997). It is important to find a 

lower bound on MINLP objective as quickly as possible, which will eliminate some 

nodes from the early stage of branch and bound. The goal is to find an initial integer 

feasible solution. Gupta and Ravindran (1985) also proposed two heuristics to obtain the 

initial integer solutions. 

Leyffer (2001) proposed a solution approach for MINLP by integrating SQP and Branch-

and-Bound, in which SQP serves as the nonlinear solver. This algorithm does not require 

the NLP problem at each node to be solved to optimality. Instead, branching is 

implemented after each iteration of the NLP solving. Subsequently, the nonlinear 

problems are solved during the tree search process. The basic idea underlying the new 

approach is to branch early—possibly after a single QP iteration of the SQP solver. 

5.3 Branch and Cut 

In non-linear branch-and-cut approach, constraints called cutting planes are added into the 

nonlinear programming subproblems. These constrained are selected in a way that they 

reduce the size of feasible region of nonlinear programming subproblems without 

eliminating feasible solutions from consideration. By doing this, the possibility that the 

subproblem can be fathomed by bound is increased, moreover, the use of cutting planes 

makes it more likely that an integer solution will be obtained earlier in the branch and 

bound process. Several of cuts generating methods have been reported in Bienstock 

(1996), including mixed integer rounding cuts, knapsack cuts, intersection cuts. 
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5.4 Proposed Nonlinear B&B Algorithm 

Based on the general framework of B&B in Wang and Sarker (2006), the proposed 

Branch-and-Bound algorithm specifically to the MINLP model in Zhang (2007) is 

illustrated as follows: 

Stepl: Solve the relaxed version of the problem (NLP), record its objective function 

value TC and set it the upper bound of the optimal solution of MINLP, Z(/=TC. An 

iterative algorithm is developed to transfer the nonlinear problem into a pure quadratic 

problem provided that the triangular approximation replaced the integration expression in 

the objective function. Set the upper bound and lower bound of v(ij) and w(j) to 1 and 0 

respectively, relax them as binary variables. 

Step2: If integer (binary) solutions are obtained, stop, otherwise set the lower bound of 

the problem Zh = — oo . 

Step3: If there is any fractional value for Uyi, choose the ones furthest from being integer 

variables and branch it, and get two sub-problems by adding U^ - 1, Uyj = 0 one at a 

time. Solve the two sub-problems. Fathom the infeasible problem right away and keep the 

feasible solutions to form the nodes. If there is any integer (binary) solutions, fathom the 

corresponding node and update Zh by setting Zh equal to the new integer objective 

function value. 

Step 4: Fathom the nodes by lower bound ZL , if no nodes are available to fathom, and 

then stop, and the node with the objective function value ZL is the optimal integer (binary) 

solution. 

Step 5: Go to the node with better objective function value and go to Step 3. 
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5.5 Pseudo-Code 

The branch-and-bound algorithm for MINLP problems with binary variables can be 

(Kalvelagen, GAMS): 

{Initialization} 

LB: =-oo; UB: = + » ; j=0; 

Store root node Q=0) in waiting node list 

while (waiting node list is not empty) do 

{Node selection} 

Choose the new generated nodes with the best objective function value from the waiting 

node list and remove it from the waiting node list 

Solve sub-problem 

if infeasible then 

Node is fathomed 

else if optimal then 

if integer solution then 

ifobj>LBthen 

{Better integer solution found} 

LB:= obj 

Remove nodes j from list with UBj < LBj 

end if 

else 

{Variable selection} 
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Find variable Utji furthest from being integer (binary) variables 

Create node j n e w with bound U^i = 1 

UB]new ••= obj 

Store node j n e w in waiting node list 

Create node j n e w + 1 with bound (/i;i = 0 

UBJnew+i := obJ 

Store node j n e w in waiting node list 

end if 

else 

Stop: problem in solving subproblem 

end if 

UB = maxjUBj 

end while 
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6. COMPUTATIONAL EXPERIMENTS OF NONLINEAR B&B 
ALGORITHM 

In this chapter, the proposed nonlinear Branch-and-Bound algorithm is tested on the 

experimental tests of larger scale problems and the results of nonlinear B&B are also 

compared with the solutions obtained from open source based MINLP package BONMIN 

approaches. The focus is on nonlinear B&B, which is the specific controllable algorithm 

which is developed for Zhang (2007) and it is respected to provide with the optimal 

solutions. The comparison with BONMIN based approach will deliver some insights 

about the proposed nonlinear B&B and validate the results as well. 

The nonlinear branch and bound algorithm has been implemented in GAMS, both 

GAMS-CONOPT and open-source IPOPT package are invoked to solve the inner convex 

quadratic problem in each node as illustrated in the pseudo code of chapter 5. 

6.1 Validation of Nonlinear B&B algorithm 

The same problem specification as Zhang (2007) is used to compare the proposed B&B 

algorithm with BONMIN based approach. The following table 8 shows the solution 

statistics: 

Branch and Bound 

Criteria 

J i 

J2 

yz 

y* 

Q=2000 

BB-NLP(CONOPT) 

217.25 

178.24 

200.91 

191.28 

BONMIN-CRTO 

218.145 

178.163 

200.834 

191.438 

Difference 

0.41% 

0.04% 

0.04% 

0.08% 
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y$ 

X1A,2 

X2,5,2 

*3,1,2 

*4,2,2 

X5,3,2 

Objective Function Value 

Number of Nodes Visited 

Time Elapsed 

Number of Iterations 

213.96 

2048.64 

1773.00 

2188.23 

2444.25 

2178.24 

62445.12 

11 

2.722 

N/A 

213.661 

2049.38 

1773.06 

2191.01 

2445.08 

2178.16 

62445.7 

15 

0.37 

285 

0.86% 

0.04% 

0.00% 

0.13% 

0.03% 

0.00% 

0.00% 

^ ^ \ ^ ^ 

^ ^ \ _ ^ 

^ ^ \ ^ 

Table 8: Validation of nonlinear B&B algorithm 

BB-NLP (CONOPT) represents the approach of branch and bound algorithm with 

CONOPT as inner solver. BONMIN-CRTO represents the solution approach mentioned 

in chapter 4, which uses BONMIN branch and bound algorithm. The solutions of these 

two approaches indicate that the proposed tailored nonlinear branch and bound algorithm 

delivers fairly good solutions with little deviations from the BONMIN approach, this 

observation also validates the BB-CONOPT approach. It can also be noticed that in the 

new approach, less nodes are visited than BONMIN, which should be attributed to the 

specific branching strategy that is adopted. 

6.2 Comparison of Different Nonlinear Solvers to Inner Quadratic Problem 

As is mentioned in Chapter 5 about the motivation of developing nonlinear branch and 

bound algorithm for this kind of problems, it is important to make sure to get the global 
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(or close to global) optimal solutions for the inner convex quadratic problems. Based on 

this consideration, different solvers available in GASM 22.5 student version are tried for 

the model in Zhang (2007). This is due to the fact that the size of the problem does not 

exceed the limit which is set for student version of GAMS and many nonlinear and 

quadratic solvers are available in the newest version of GAMS 22.5. The quadratic 

solvers include: BARON, COINIPOPT, CONOPT, CPLEX, MINOS, SNOPT, KNITRO, 

LGO, LINDOGLOBAL, MOSEK, MSNLP, OQNLP, PATHNLP, XPRESS. The 

following statistics in Table 9 shows clearly that the B&B algorithms with QCP solvers 

deliver exactly the same solution with different solving time. The results give the insight 

that both CONOPT and COINIPOPT will return the global optimal solutions for convex 

quadratic problems as it is illustrated in the solver's manual, and both of them will be 

used as the QP solver later for larger scale problems. A sample of output file for nonlinear 

B&B algorithm can be referred to APPENDIX E. 

Q=2000, Nonlinear BB with different QCP solvers 

Criteria 

Vi 

yi 

Y3 

y* 

Vs 

X1A,2 

-"•2,5,2 

CONOPT 

217.25 

178.24 

200.91 

191.28 

213.96 

2048.64 

1773.00 

COINIPOPT 

217.25 

178.24 

200.91 

191.28 

213.96 

2048.64 

1773.00 

MINOS 

217.25 

178.24 

200.91 

191.28 

213.96 

2048.64 

1773.00 

CPLEX 

217.25 

178.24 

200.91 

191.28 

213.96 

2048.64 

1773.00 

XPRESS 

217.25 

178.24 

200.91 

191.28 

213.96 

2048.64 

1773.00 

Difference 

0% 

0% 

0% 

0% 

0% 

0% 

0% 
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*3,1,2 

*4,2,2 

X5,3,2 

O.B. Value 

2188.23 

2444.25 

2178.24 

62445.12 

2188.23 

2444.25 

2178.24 

62445.12 

2188.23 

2444.25 

2178.24 

62445.12 

2188.23 

2444.25 

2178.24 

62445.12 

2188.23 

2444.25 

2178.24 

62445.12 

0% 

0% 

0% 

0% 

Table 9: Comparison of different nonlinear solvers to inner quadratic problem 

6.3 Experiments on Larger Scale Problems 

This research is aimed at providing good enough solution strategies to real world 

industrial application as initiated in Kim et al. (2002) and Zhang (2007). As the growing 

competition in the world wide PC industry nowadays, PC manufacturers have larger 

number of suppliers, final PC products, assembly components. For this consideration, 

reasonable size of larger scale problems are considered based on the cases from computer 

industries. 

6.3.1 The Methodology of Generating Large Scale Problems 

Based on the parameter specifications of the model in Zhang (2007), which can be 

accessed in APPENDIX C, ten more problems are randomly generated and tested under 

both nonlinear B&B approach in GAMS and BONMIN in AMPL. The parameters are 

randomly generated in a way that ranges from the corresponding parameters in the 

example of Zhang (2007) and are uniformly distributed with a fixed seed which makes it 

possible to obtain the exactly same problems later for the purpose of repetition of the 

testing substances. 

Since the problem is originated from a real world application of a computer industry in 

Korean, the dimension of the larger scale problems being generated has also been tailored 
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along with the consideration of current prevailing computer industry configurations. 

Dell™ (www.dell.com) is taken as the example. It is indicated from the website that the 

procurement component in Dell™ manages nearly 1.8 million purchase order lines per 

year from more than 5,000 suppliers worldwide. However, it must be admitted that in the 

real world supply chain application, there are so many other factors that are considered as 

well during supply chain and purchasing decision making process. It is neither necessary 

nor reasonable to try the problems with dimension as big as Dell has. Therefore, the 

models in Kim et al. (2002), Zhang and Ma (2007) and Zhang (2007) are just applicable 

to the decision making for a local decision making process. 

The testing substances regarding different dimensions such as the number of suppliers, 

raw materials (components), final products and discount segments are listed below in 

table 10. 

Suppliers 

6 
6 

11 

10 

15 

15 

20 

15 

15 

15 

Products 

6 
6 

5 

10 

10 

10 

15 

15 

15 

15 

Components 

6 

6 

5 

10 

10 

10 

10 

15 

15 

20 

Segments 

2 
3 

2 

2 

2 

3 

2 

2 

3 

2 

Table 10: Testing Substances 

Randomly problems in AMPL format are generated. Since there is just minor change with 

respect to the input data format between AMPL and GAMS, only AMPL format is 
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generated through C code. During the problem generating process, the followings factors 

are also considered: 

• The value of Q (Manufacturing Capacity) is carefully selected to ensure the 

feasibility of different dimensions of problems. Q is estimated by using the 

corresponding information regarding yk (the amount of product k to produce) and 

tk (manufacturer's production consumption for unit of product k). 

*t* The different values of available segments which should be set up by suppliers 

are carefully chosen to ensure the computing complexity of larger scale problems 

since the setting of segments has certain impact over the duality gap between the 

relaxed solutions and the final integer solutions. 

6.3.2 Discussion of Results to Larger Scale Problem 

The main contribution of this research is that the original MINLP problem with 

integration item in objective function and the nonlinear part of square roots in 

denominator is successfully transferred into a MIQCP (Mixed Integer Quadratic 

Constrained Problem). As the B&B approach has been validated in the previous part of 

6.1, the solutions of the MIQCP can be trusted. 

In this section, larger scale problems are tested to illustrate the robustness of nonlinear 

B&B algorithm. Both IPOPT and CONOPT are employed as the inner quadratic solvers 

to ensure the optimum and here only covering range triangular approximation is provided 

to simplify the process. It must be pointed out here that the inner problem in BONMIN-

B&B and GAMS-SBB in each node is not a quadratic problem but indeed a convex 

nonlinear problem. The results from 10 randomly generated problems in nonlinear B&B, 
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GAMS-SBB and AMPL-BONMIN are reported. In the following tables, NBB represents 

the branch and bound algorithm coded in GAMS environment, SBB represents GAMS-

SBB MINLP solver, while BBB represents open source MINLP branch and bound 

algorithm BONMIN and BOA means Outer Approximations algorithm option that is 

selected in BONMIN to solve the MINLP. N-S-GAP shows the gap between NBB and 

SBB while N-B-GAP represents the gap between NBB and BBB. The number of nodes 

visited gives the number of nonlinear problems that have been solved by nonlinear 

solvers. 

Note: In order to make the testing substances easy to recognize, a notation system is 

introduced to standardize different substances. It can be generally expressed as "s(n)-

p(m)-c(q)-seg(d)", among which letters "n", "m", "q", "d" represents the number of 

suppliers, final products, components and available segments respectively. For example, 

s6-p8-cl0-seg2 represents the substance with 6 suppliers, 8 final products, 10 components 

and 2 available segments in total. 

O.B. value 

x(l,2,l) 

x(l,4,2) 

x(2,2,2) 

x(2,5,2) 

x(3,3,2) 

x(4,l,2) 

x(5,5,2) 

x(6,l,2) 

y(D 
y(2) 

y(3) 

y(4) 

y(5) 

NBB 

248393.3 

777.49 

1600 

1648.81 

1500.01 

2712.11 

2577.36 

2439.41 

2408.81 

227.29 

164.45 

222.12 

209.41 

195.97 

SBB 

248397 

783.17 

1600 

1656.62 

1500.01 

2718.5 

2583.73 

2444.33 

2414.36 

227.94 

164.62 

222.39 

210.18 

196.76 

BBB 

248395 

783.177 

1599.96 

1656.59 

1500.01 

2718.46 

2583.69 

2444.29 

2414.32 

227.945 

164.617 

222.389 

210.178 

196.759 

N-S-GAP (%) 

0.00 

0.73 

0.00 

0.47 

0.00 

0.24 

0.25 

0.20 

0.23 

0.29 

0.10 

0.12 

0.37 

0.40 

N-B-GAP (%) 

0.00 

0.73 

0.00 

0.47 

0.00 

0.23 

0.24 

0.20 

0.23 

0.29 

0.10 

0.12 

0.37 

0.40 
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y(6) 
nodes visited 

CPU time(s) 

178.44 

95 

15.049 

178.58 

213 

6.094 

178.581 

56 

2.73 

0.08 

N/A 

N/A 

0.08 

N/A 

N/A 

Table 11: Statistics for s6-p6-c6-seg2 

From table 11, it is easy to see the substantial improvement from SBB to NBB with 

respect to the number of nodes visited and the gaps are very small regarding both 

objective function values and the variable solutions. As can be observed here that BBB 

delivers the best performance, and BBB is taken as the reference to ensure the optimality 

of the proposed branch and bound algorithm. However, it is only fair to compare NBB 

with SBB since they are based on the same platform — GAMS. 

O.B. value 

x(l,2,3) 

x(2,2,l) 

x(2,5,3) 

x(3,3,3) 

x(4,l,3) 

x(4,3,l) 

x(5,5,3) 

x(6,l,3) 

y(i) 
y(2) 

y(3) 

y(4) 

y(5) 
y(6) 

nodes 
visited 
CPU 

time(s) 

NBB 

271620.82 
2500.01 

459.99 

2724.99 

2740.12 

2599.99 
6.59 

2500.01 

2500.01 

229.45 

165.09 

225.19 

215.41 

197.27 

179.37 

129 

96.887 

SBB 

271620.94 

2500.01 

459.99 

2724.99 

2740.13 

2599.99 

6.77 

2500.01 

2500.01 

229.4 

165.11 

225.35 

215.45 

197.22 

179.36 

277 

9.838 

BBB 

271619 

2500.01 

459.952 

2724.96 

2740.06 

2599.93 

6.761 

2500.01 

2500.01 

229.392 

165.106 

225.353 

215.448 

197.215 

179.364 

86 

6.17 

N-S-GAP 
(%) 

4E-05 

0E+00 

0E+00 

0E+00 

4E-04 

0E+00 

3E+00 

0E+00 

0E+00 

2E-02 

1E-02 

7E-02 

2E-02 

3E-02 

6E-03 

N/A 

N/A 

N-B-GAP (%) 

7E-04 

0E+00 

8E-03 

1E-03 

2E-03 

2E-03 

3E+00 

0E+00 

0E+00 

3E-02 

1E-02 

7E-02 

2E-02 

3E-02 

3E-03 

N/A 

N/A 

Table 12: Statistics for s6-p6-c6-seg3 

Table 12 and 13 demonstrates the results of another two examples, compared with 

BONMIN-B&B algorithm, the solution obtained from CONOPT as the inner quadratic 



solver is validated again, and the huge improvement can be observed regarding the 

number of nodes visited between the tailored B&B algorithm coded in GAMS and 

GAMS-SBB provided that same solver CONOPT is employed to solve the inner 

nonlinear problems. 

O.B. value 

x(l,6,2) 

x(l,9,2) 

x(2,2,2) 

x(2,3,2) 

x(3,8,2) 

x(4,5,2) 

x(5,l,2) 

x(5,4,2) 

x(6,2,l) 

x(6,3,2) 

x(7,l,2) 

x(7,5,2) 

x(8,9,2) 

x(9,l,2) 

x(10,6,2) 

x( 10,9,1) 

y(D 
y(2) 

y(3) 

y(4) 

y(5) 

y(6) 

y(7) 

y(8) 

y(9) 

y(io) 
nodes 
visited 

CPU 
time(s) 

NBB 

386590 

2000 

2150.16 

2000 

2000 

4222.22 

3606.19 

2374.32 

2000 

523.47 

2200 

2000 

2029.72 

3777.34 

2706.83 

3600 

27.29 

215.96 

175.03 

203.38 

206.26 

206.33 

215.57 

246.16 

146.48 

159.43 

175.81 

291 

189.818 

SBB 

386608.4 

2000 

2168.5 

2000 

2000 

4240.99 

3621.75 

2394.4 

2000 

535.09 

2200 

2000 

2047.7 

3794.26 

2718.93 

3600 

42.35 

216.56 

175.85 

204.64 

207.08 

206.87 

216.76 

247.24 

146.63 

160.24 

176.86 

138 

280.535 

BBB 

386608 

2000 

2168.5 

2000 

2000 

4240.99 

3621.75 

2394.4 

2000 

535.09 

2200 

2000 

2047.7 

3794.26 

2718.93 

3600 

42.35 

216.563 

175.849 

204.636 

207.076 

206.872 

216.763 

247.238 

146.635 

160.24 

176.865 

901 

13.82 

N-S-GAP 

(%) 

0.00 

0.00 

0.85 

0.00 

0.00 

0.44 

0.43 

0.84 

0.00 

2.17 

0.00 

0.00 

0.88 

0.45 

0.45 

0.00 

35.56 

0.28 

0.47 

0.62 

0.40 

0.26 

0.55 

0.44 

0.10 

0.51 

0.59 

N/A 

N/A 

N-B-
GAP(%) 

0.00 

0.00 

0.85 

0.00 

0.00 

0.44 

0.43 

0.84 

0.00 

2.17 

0.00 

0.00 

0.88 

0.45 

0.45 

0.00 

35.56 

0.28 

0.47 

0.61 

0.39 

0.26 

0.55 

0.44 

0.11 

0.51 

0.60 

N/A 

N/A 

Table 13: Statistics for sl0-pl0-cl0-seg2 
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For the rest of the testing substances, only the objective functions and the number of 

nodes visited of the three solution approaches will be compared, and they are illustrated 

in Table 14. Please refer to Appendix F for the detailed solutions for CONOPT solvers, 

the results of all solvers can be found in the attached CD. For BONMIN B&B approach, 

B&B is first tried, if it failed then OA (Outer Approximation) algorithm is tried again, 

however if OA failed to converge within 2 days, then it is stopped manually. 

sll-p5-c5-seg2 

sl5-pl0-cl0-seg2 

sl5-pl0-cl0-seg3 

s20-pl5-cl0-seg2 

sl5-pl5-cl5-seg2 

Sl5-pl5-cl5-seg3 

sl5-pl5-c20-seg2 

sll-p5-c5-seg2 

sl5-pl0-cl0-seg2 

sl5-plO-clO-seg3 

s20-pl5-cl0-seg2 

sl5-pl5-cl5-seg2 

sl5-pl5-cl5-seg3 

sl5-pl5-c20-seg2 

Objective Function Value 

NBB 

65613.4 

55693 

74492.33 

60712.74 

519132 

565459.8 

453753.3 

SBB 

65613.95 

55745.51 

74533.81 

60767.56 

519134 

565462 

453777 

CPU time (s) 

NBB 

5.6 

486.62 

17131 

28.12 

815.69 

1054.26 

2973.75 

SBB 

8.617 

196.8 

31535.99 

314.02 

7254.339 

38227.13 

31423.65 

BBB 

65778.1 

55744.9 

74533.3 

60766.9 

519116 (BOA) 

565447(BOA) 

453753 

Nodes Visited 

NBB 

43 

555 

12919 

71 

1073* 

779* 

1981* 

SBB 

72 

406 

33110 

114 

4193(4098) 

20692(15594) 

7003 

BBB 

27 

374 

15594 

64 

N/A 

N/A 

7780 

Table 14: Simplified statistics for the rest of the examples 

It must be pointed out that in Table 14, the value marked with star "*" means that 

BONMIN-B&B fails to solve the problem which is solved by BONMIN-OA successfully. 

In order to simplify the branch and bound process, the binary variables for higher 
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discount segments are fixed based on the corresponding solutions we get from BONMIN-

OA. 

In the case of sl5-pl5-cl5-seg2 and sl5-pl5-cl5-seg3, under the same node selecting 

rule which is best bound selection, it can be noticed that the specific variable branching 

strategy for this model has demonstrated much more superior performance regarding the 

number of nodes visited than SBB. Very close objective function values are obtained as 

well and less CPU time is used for NBB than SBB when the problem becomes larger. The 

slight difference between the objective values could be attributed into the iterative 

algorithm technique which is introduced for the inner problem. 

As the motivation of collaborating with open-source solvers, COIN-OR nonlinear solver 

IPOPT is installed in GAMS by compiling a project package GAMSlink in COIN-OR. 

Detailed procedures and instructions in terms of GAMSlink installation can be referred to 

https://projects.coin-or.org/GAMSlinks according to various operating platforms. The 

following table 15 illustrates the comparison between IPOPT and CONOPT as the inner 

solvers to quadratic problems. The integer tolerance of le-4 is enforced when IPOPT is 

used as the solver since it is an external solver installed under GAMS while CONOPT 

comes with a commercial GAMS nonlinear solver. 

Testing Instances 

s5-p5-c5-seg2 

s6-p6-c6-seg2 

s6-p6-c6-seg3 

Sl0-pl0-cl0-seg2 

GAMS-IPOPT 

O.B. 
Value 

62445.12 

248393.32 

271620.82 

386589.98 

Nodes 
visited 

11 

133 

127 

299 

CPU time 

6.858 

11040.745 

95.586 

469.669 

GAMS-CONOPT 

O.B. 
Value 

62445.12 

248393.3 

271620.82 

386590 

Nodes 
visited 

11 

95 

129 

291 

CPU time 

1.546 

15.049 

96.887 

189.818 
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sll-p5-c5-seg2 

Sl5-pl0-cl0-seg2 

sl5-plO-clO-seg3 

s20-pl5-cl0-seg2 

Sl5-pl5-cl5-seg2 

sl5-pl5-cl5-seg3 

sl5-pl5-c20-seg2 

65613.4 

55693.48 

74492.33 

60712.74 

Fail to solve 

n/a 

453770.19 

29 

721 

3017 

119 

n/a 

> 65000 

8578* 

32.783 

12803.811 

89669.691 

383.164 

n/a 

n/a 

44951.617 

65613.4 

55693 

74492.33 

60712.74 

519132 

565459.8 

453753.3 

43 

555 

12919 

71 

1073* 

779* 

1981* 

5.6 

486.62 

17131 

28.12 

815.69 

1054.26 

2973.75 

Table 15: Comparison of IPOPT and CONOPT as inner solver 

The result in Table 15 shows that IPOPT and CONOPT deliver exactly the same 

objective function values while CONOPT generally visited less number of nodes and 

CPU time before reaching the optimal solutions, which should be attributed to the better 

integration of CONOPT with GAMS. However, IPOPT as the open source nonlinear 

solver has more flexibility in other platforms, such as AMPL or C/C++ code; it has 

greater potential to be explored in future research. 

It has to be admitted that if the dimensions of the problem are increased further, the 

computing time increases exponentially for most of the cases although some randomly 

generated problems have smaller duality gap itself which will make it easier to solve. 

6.4 Discussion of Complexity of Nonlinear Branch-and-Bound 

To analyze the complexity of B&B algorithm, N is denoted as the number of binary 

variables in the MINLP problem, and the number of nodes can be expressed as a function 

of N. It is shown in a very similar problem defined in Wang (2006) that the complexity 

of the B&B algorithm is (NN+1 - 1)/QV - 1) » 0(NN). And the worst case of the B&B 

algorithm would be the exponential form. When N becomes bigger and computing time 

will soon be intractable. For the model in Zhang (2007), the number of different 

combinations of the binary solutions could be as many as 2N, it could be extremely hard 
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to solve when N is very big. The actual computing time depends on the duality gap of the 

problem which is determined by the specifications of different problems. In other word, 

different B&B strategies can decrease the computational time to some extend; however, 

the running time of the worst case could be intractable. 

6.5 Idea of Heuristics 

6.5.1 Heuristic One 

A small heuristics is proposed here as part of the effort to deal with the situation where 

large amount of binary variables appears, especially for u^. The general idea can be 

categorized into two phases. In phase one, the only remaining binary variables will be Wj. 

Based on the results from phase one, certain amount of binary variables of [/yj will be 

fixed accordingly. Then the algorithm goes to phase two, where the regular nonlinear 

B&B algorithm applies as discussed previously. The heuristic algorithm is demonstrated 

as following: 

PHASE I 

Step 1: Eliminate the set of all segments, binary variables u ^ , v^, and the corresponding 

constraints involving uiix and v^, replace the variables xtji, du^ and dl^i by Xij, duij 

and dlij respectively. Use the last segment of parameters of du^ for the new parameters 

dutj and use the parameters of first the segment of dl^i for dl^. Eliminate parameters c^i 

and replace them with c^ with the values of the highest segment of q ;j . (By following the 

procedures in step 1, the model become a MINLP with the only binary variables wy, 

which means much less number of binary variables) 
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Step 2: Solve the MINLP from step 1 with the Nonlinear B&B algorithm, and record the 

solution. Select the solutions x^ with the values greater than the last segment limit in the 

original problem, and set the corresponding it̂ -j in the original problem to " 1 " . 

Phase II 

Solve the original problem using the tailored Nonlinear B&B algorithm with some of the 

Uiji fixed as indicated in the Step 2 of Phase I and record the solution. The solution can be 

considered as a heuristic solution of the original problem. In addition, this heuristic 

solution could act as the best found solution (lower bound). 

6.5.2 Heuristic Two 

This heuristic idea focuses on providing an initial integer solution quickly enough as the 

lower bound before the exact nonlinear B&B search actually starts. The heuristic shares 

the same first step as the Step 1 in Heuristic 1. After getting the objective value of the 

problem in Step 1, it is recorded as OBJ1. The variables, whose values are not within the 

limits of the last segments, are selected, then based on the actually values of these 

variables, they are assigned to the corresponding segments they belong to and set the 

associated binary variables u ^ equal to " 1 " . The integer solution objective value can be 

obtained by using the following formula: 

Best_found = OBJ1 - £ xtj * (cijl - q ; ) for all xtj that are less than the lower limit of the 

highest segment in the original problem. 

Then this Best_found value can be one integer solution which can serve as the initial 

lower bound of the exact nonlinear B&B algorithm. 
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For very large scale problems, although Branch-and-Bound algorithm can provide exact 

solutions, the time it takes for optimum is highly intractable; the solution from Phase I 

can be simply used to construct a heuristic solution by assigning the values of xtj to its 

corresponding segments based on the limits of different segments. Under this scenario, 

the definitions of the segments have the final say regarding the quality of the solutions. 

^ \ 

s5-p5-c5-seg2 

s6-p6-c6-seg2 

s6-p6-c6-seg3 
sl0-pl0-cl0-seg2 

sl5-p!5-cl5-seg2 

Heuristic 1 

o. b. value 

62445.12 

248393.32 

270988.82 

386589.98 

519132.04 

nodes visited 
11 
41 

46 

96 

660 

NBB 

o. b. value 
62445.12 

248393.3 

271620.82 

386590 

519132 

nodes visited 
11 

95 

129 

291 

1073 

Table 16: Comparison between NBB and Heuristic 1 

Table 16 shows the comparison of the selected examples between Heuristic 1 and 

nonlinear branch-and-bound algorithm, in both of which CONOPT is used as the inner 

solver. It can be easily seen that except for the case s6-p6-c6-seg3, the proposed Heuristic 

1 delivers exact objective values with less nodes visited. However, it has to be admitted 

that Heuristic 1 can not guarantee the optimal solution and when the dimension of the 

problem becomes bigger. With limited number of higher segments fixed, it still takes 

longer time to solve. A more approximated solution can be obtained through Heuristic 2, 

in which the number of binary variables equals to the number of suppliers and it is 

straight forward for much larger scale problems. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

In this thesis, a series of new solution approaches to a class of supply chain problems 

which share the similarity of having continuously distributed uncertain demand are 

developed. This class of stochastic supply chain problems can be represented by three 

major decision problems introduced by Kim et al. (2002), Zhang and Ma (2007) and 

Zhang (2007) separately. The model in Zhang (2007) is the most difficult and 

representative one among them. The major difficulties dealing with this class of problems 

include two aspects: 

••• How to deal with the integration functions that appear in the formulation to get 

reliable solutions of the nonlinear problem 

• How to handle the Branch-and-Bound procedure efficiently when different 

quantity discount schemes are introduced by various suppliers, and make the 

supplier selection decision. 

These two questions are addressed and explored deeply by focusing on the problem in 

Zhang (2007). Nonlinear B&B algorithm is considered as the frame work of the solution 

approaches, therefore this research work can be eventually divided into two portions: the 

effort to solve each problem in each node and branch-and-bound strategy. Before 

addressing these efforts, an AMPL-external function based approach is developed which 

is aimed to provide a solution from BONMIN by introducing self-defined external 

functions to tackle the integration parts. However, the optimality of this approach can not 

be guaranteed and it can not handle larger scale problems although it should return 

optimal solutions since the problem is convex problem by the manual of BONMIN. 
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In the effort to deal with inner nonlinear problem, intensive literature researches are 

conducted in Newsboy or Newsvendor problems due to the similarities they share in the 

objective functions. Specifically, inspired by Areeratchakul and Abdel-Malek (2006) 

triangular approximations are employed to transfer the integration function into quadratic 

functions. This transformation makes it possible to solve larger scale problems. The 

triangular approximation approach is validated by testing all the example problems in 

both Kim's and Zhang's paper and the results indicate that this approach indeed delivers 

fairly good approximation for real world applications. The quadratic form of the objective 

function combined with linear constraints makes it possible to work on larger scale 

problems. Both open source MINLP BONMIN and commercial GAMS-SBB are used to 

solve the problems and the results are reported as well. 

Further more, a tailored branch and bound algorithm is introduced and implemented in 

GAMS which is the core work of this research. An iterative algorithm is proposed to 

eliminate the variables in denominators about inventory and setup cost. By doing this, the 

problem becomes a pure quadratic problem in each node and both open-source nonlinear 

solver IPOPT and GAMS nonlinear solver CONOPT are employed to solve the inner 

problems. Based on the specific structure of this problem, a tailored variable branching 

rule is used when a non-integer solution is obtained after solving a node and has 

demonstrated significant improvements regarding the number of nodes visited compared 

with SBB. 

7.2 Contributions 

The main contributions of this research include the following aspects: 
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• By taking advantage of the similarity shared with newsboy model, the triangular 

approximation approaches are applied to the integration part in the objective 

functions instead of using Lagrange Multiplier based approaches. A quadratic 

function is obtained to replace the integral functions by decomposing it. Based on 

quadratic functions, future manipulations are possible to make along with 

modifications of the model by considering different other factors. 

• Open source packages such as BONMIN and IPOPT e t. are compiled and used in 

this research as part of the solutions approaches, which could be intensively 

explored later. 

• An iterative algorithm is proposed to transfer the inner nonlinear problem into a 

pure quadratic problem. This makes it possible for some future work aiming at 

providing research on the solution of the quadratic problems. 

• Heuristics are developed for possible larger scale problems and the results of 

selected problems are also reported. 

• A nonlinear branch and bound frame work tailored specifically for quantity 

discount segments has been successfully built and tested. For nonlinear B&B, 

both open-source solver COIN-IPOPT and commercial solver CONOPT in 

GAMS are used as the inner problem solver. Through comparisons between 

CONOPT and other quadratic solvers in GAMS, it can be seen that CONOPT 

delivers global optimum for the inner convex quadratic problem. Therefore the 

solution obtained from nonlinear B&B approach. At the same time, GAMS-SBB 

is also employed to solve the MINLP and the results are compared with proposed 

nonlinear B&B. Since there are a lot of considerations in the process of branch 
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and bound as discussed in Chapter 5, this frame work successfully build a 

platform for future research to this kind of problems with discount segments. 

7.3 Recommendations to Future Research 

As is discussed previously, this work can be continued in many possible ways. Specially, 

the following considerations could be considered as extensions: 

••• More accurate approximations of the integral part could be explored, please refer 

to Abdul-Malek and Areeratchakul (2007) for information. 

••• The specific algorithm for inner quadratic problem after approximation could be 

developed to ease the solving process. 

• For inner nonlinear problem, the exact and more efficient algorithm would be 

expected and this should be jointly considered with the newest development of 

solutions approaches to Newsstand models. 

• Open-source solver packages may be used in a more flexible way if good 

algorithms for inner problems are available. 

• Possible improvements can be made to tighten the bound and relaxed solution in 

each node, such as Branch-and-Cut and other related techniques. 
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APPENDIX 

APPENDIX A: Kim's case 1 

Table 17: Product specification - input requirements g(i,k) 

Product Component(i) 
Component 1 Component 2 Component 3 Component4 components 

Product 1 1 0 1 1 0 
Product2 0 1 1 0 1 

Table 18: Supply Costs (c(ij) and q(i)) 

Supplier 

Supplierl 
Supplier2 

Supplier3 

Supplier4 

Capacity 
(qi) 

39.4 
34.6 
36.7 

41.8 

Component 1 

115 

Component 
(i) 

Component2 Component3 Component4 

285 155 
135 
147 

171 

Components 

181 

Table 19: Production Information 

Product 

Product 1 

Product2 

r(k) 

525 

720 

t(k) 

80 

80 

H(k) 
25.1 

25.15 

o(k) 

3.972 

3.747 

a(k) 

10 

12 

b(k) 

100 

170 

APPENDIX B: Kim's case 2 

Table 20: Product-related Parameters 

k 

r(k) 
t(k) 

H(k) 

otk) 
a(k) 

b(k) 

1 

150 
1 

200 
80 
100 

60 

2 

200 
2 

160 
60 
90 

40 

3 

220 
2 

180 
70 
50 

20 

4 

230 
2 

160 
60 

90 

10 

5 

250 
3 

200 
80 
150 

100 
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Table 21: Input Requirements g(i,k) 

i/k 

component 1 
component2 
component3 
component4 
components 

product 1 

2 
1 
3 
2 
1 

Table 22: Supply Costs a 

i/j 
component 1 
component2 
component3 
component4 

component5 

supplier 1 

8 
10 
5 

9 

12 

Table 23: Resource usage 

i/j 
component 1 
component2 

component3 
component4 

components 

supplier 1 

1.5 
2 

2 

1.5 

3 

product2 

1 

3 
2 
1 
3 

(id) 

supplier2 

8 
15 
7 

5 

9 

i of supplier j per 

supplier2 

2 

1 

1.5 
3 

2 

product3 

3 
2 
1 
2 
2 

supplier3 

12 
8 
14 

10 

5 

product4 

1 
1 
4 

3 
2 

supplier4 

6 
10 
9 

13 

7 

unit of component i produced 

supplier3 

3 
1 

1 

2.5 

3 

supplier4 

1 

3 
3 

2 

2 

product5 

3 
2 
1 
4 

3 

supplier5 

15 
5 
8 

8 

6 

n(i,j) 

supplier5 

3 
1 

2.5 
3 

1.5 

Table A-8 Capacity of supplier ( qf) 

Table 24: Capacity of supplier q(j) 

j 

q(i) 

supplier 1 

10000 

supplier2 

7500 

supplier3 

9000 

supplier4 

6000 

supplier5 

12500 

APPENDIX C: Zhang's case 

On top of Kim's case two, Zhang (2007) added 
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Table 25: Setup cost for order component i from supplier j (ksetup(ij)) 

i/i 
component 1 
component2 
component3 
component4 

component5 

supplier 1 

150 
200 
200 
150 

300 

supplier2 

300 
100 
150 
300 

200 

supplier3 

200 
100 
100 
250 

300 

supplier4 

200 
300 
300 
200 

200 

supplier5 

200 
100 
250 
300 

150 

Table 26: Unit hold cost for component i from supplier j , (h(i,j)) 

i/i 
component 1 
component2 
component3 
component4 

components 

supplier 1 

1.5 
1.6 
1.6 
1.6 

1.6 

supplier2 

1.5 
1.6 
1.6 
1.6 

1.6 

supplier3 

1.5 
1.6 
1.6 
1.6 

1.6 

supplier4 

1.5 
1.6 
1.6 
1.6 

1.6 

supplier5 

1.5 
1.6 
1.6 
1.6 

1.6 

Table 27: Unit prices of component i from supplier j on price segment 1 (c(ijl)) 

i/i 
component 1 
component2 

components 
component4 

components 

supplier 1 

8 

10 
5 
9 

12 

supplier2 

8 

17 
7 
5 

9 

supplier3 

12 
8 
14 
10 

5 

supplier4 

6 
10 
9 
13 

7 

supplier5 

15 

5 
8 
8 

6 

Table 28: Unit prices of component i from supplier j on price segment 2 (c(ij2)) 

i/j 
component 1 
component2 

component3 
component4 

components 

supplier 1 

6.5 

8 
4 

7 

10 

supplier2 

6 

14 
6 
4 

8 

supplier3 

10 

6 
11 
8 

4 

supplier4 

5 

8 
7 
10 

6 

supplier5 

11 

5 
6 

4.5 

5.5 
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Table 29: Segments specification 

Upper Limit Lower Limit 

segment 1 

segment2 

1000 

10000 

0 

1000.001 

APPENDIX D: Results for Kim's case 2 

Table 30: Results for Kim's case 2 using E-CRTO 

Q 
yi 
y2 
y3 
y4 

y5 

Q 
yi 
y2 
y3 
y4 

y5 

1500 

190.6 

132.191 

143.854 

150.249 

152.271 

1900 

215.666 

167.511 

190.745 

185.57 

198.894 

1550 

193.733 

136.606 

149.716 

154.664 

158.098 

1950 

218.799 

171.926 

196.607 

189.985 

204.722 

1600 

196.866 

141.021 

155.577 

159.079 

163.926 

2000 

221.932 

176.342 

202.468 

194.4 

210.55 

1650 

199.999 

145.436 

161.438 

163.494 

169.754 

2050 

223.03 

183.131 

209.161 

197.694 

215.666 

1700 

203.133 

149.851 

167.3 

167.909 

175.582 

2100 

226.163 

187.546 

215.023 

202.109 

221.494 

1750 

206.266 

154.266 

173.161 

172.324 

181.41 

2150 

229.296 

191.961 

220.884 

206.524 

227.322 

1800 

209.399 

158.681 

179.023 

176.74 

187.238 

2200 

231.143 

193.786 

224.339 

209.32 

230.928 

1850 

212.533 

163.096 

184.884 

181.155 

193.066 

APPENDIX E: A sample of the nonlinear B&B output 

COMPILATION TIME = 0.004 SECONDS 3 Mb LEX225-148 May 29, 2007 

ALGAMS Rev 148 x86_64/Linux 12/14/07 11:59:47 

Page 8 

Final Model for Discount Model with case 2 

E x e c u t i o n 

— 494 PARAMETER bblog logging information 

node ub solvestat modelstat obj integer 

nodel 1.00 +INF 1.00 2.00 63263.77 

node2 2.00 63263.77 1.00 2.00 62190.92 

node3 3.00 63263.77 1.00 2.00 63256.06 

best waiting 

2.00 

3.00 

4.00 
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1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

59573.80 

63059.41 

60391.22 

62963.53 

60263.90 

62733.07 

61672.81 

5.00 

6.00 

7.00 

8.00 

9.00 

10.00 

11.00 

62445.12 1.00 1.00 

node4 6.00 63256.06 

node5 7.00 63256.06 

node6 10.00 63059.41 

node7 11.00 63059.41 

node8 14.00 62963.53 

node9 15.00 62963.53 

node10 18.00 62733.07 

node11 19.00 62733.07 

— 499 PARAMETER bestu record best solution 

segm2 

compl.supp4 1.00 

comp2.supp5 1.00 

comp3.suppl 1.00 

comp4.supp2 1.00 

comp5.supp3 1.00 

— 499 PARAMETER bestv record best solution 

suppl supp2 supp3 supp4 supp5 

compl 1.00 

comp2 1.00 

comp3 1.00 

comp4 1.00 

comp5 1.00 

— 499 PARAMETER bestw 

suppl 1.00, supp2 1.00, supp3 1.00, supp4 1.00, supp5 1.00 

— 499 PARAMETER bestx 

segm2 

compl.supp4 2048.64 

comp2.supp5 1773.00 

comp3. suppl 2188.23 
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comp4.supp2 2444.25 

comp5.supp3 2178.24 

— 499 PARAMETER besty 

prodl 217.25, prod2 178.24, prod3 200.91, prod4 191.28, prod5 213.96 

— 499 PARAMETER bestfound = 62445.12 lowerbound in B&B tree 

EXECUTION TIME = 1.661 SECONDS 4Mb LEX225-148 May 29, 2007 

USER: Guoqing Zhang G070507:1625AP-LNX 

University of Windsor, Industrial and Manufacturing SystemsDC6434 

License for teaching and research at degree granting institutions 

**** FILE SUMMARY 

ALGAMS Rev 148 x86_64/Linux 12/14/07 11:59:47 

Page 9 

Final Model for Discount Model with case 2 

E x e c u t i o n 

Input /home/chen 11 q/GAMS/BB_debug.gms 

Output /home/chenl lq/GAMS/BB_debug.lst 

APPENDIX F: Detailed output of nonlinear B&B for testing substances 

Please refer to the attached CD for the comprehensive information about nonlinear B&B, 
GAMS-SBB and AMPL-BONMIN. The following shows CONOPT as inner solver. 

Table 31: A, B, C calculation of sl0-pl0-cl0-seg2 

ak 
130 

125 
125 
105 
115 
80 
120 

55 
100 

75 

bk 

70 
95 
90 

30 
105 
40 
10 

105 
35 

55 

rk 

300 
360 

380 
220 
340 
420 
480 
480 
320 

380 

Mean 

210 
160 
180 

200 
190 
180 
190 
140 

140 

160 

Std.Dev 

20 
30 
50 

20 
30 
50 
50 

10 
30 

30 

Ak 
-3.90 

-3.02 

-1.86 

-2.77 

-2.91 

-1.69 

-1.90 

-9.99 

-2.37 

-2.65 

Bk 
1818.64 

1160.50 

876.06 

1255.53 

1281.99 

836.76 

1018.50 

3011.61 

855.24 

1048.97 

Ck 
-150861.9 

-57808.14 

-41035.24 

-99146.63 

-80542.34 

-31221.90 

-45797.10 

-161225.8 

-34008.30 

-45245.09 

delta(k) 

0.02 

0.01 

0.01 

0.02 

0.01 

0.01 

0.01 

0.03 

0.01 

0.01 

y(U) 
177.96 

111.94 

99.90 

167.96 

141.94 

99.90 

109.90 

123.98 

91.94 

111.94 
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Table 32: Detailed solution of si l-p5-c5-seg2 

x(142) 

x(252) 
x(312) 

x(462) 

x(572) 

CPU time (s) 

2098.26 

1817.82 

2236.15 

2502.58 

2233.1 

5.602 

yi 
y2 

y3 

y4 

y5 
nodes 

220.4 

183.1 

206.58 

195.62 

219.66 

43 

Table 33: A, B, C calculation of sl5-pl0-cl0-seg2 

ak 

100 

90 

50 

90 

150 

120 

80 

100 

95 

60 

bk 

60 
40 

20 

10 

100 

50 

75 

55 

70 

65 

rk 

150 

200 

220 

230 

250 

265 

250 

180 

200 

280 

Mean 

200 
160 

180 

160 

200 

210 

150 

170 

190 

175 

Std.Dev 

80 
60 

70 

60 

80 

65 

75 

70 

65 

60 

Ak 

-0.6 
-0.9 

-0.6 

-0.9 

-1.0 

-1.0 

-0.8 

-0.7 

-0.9 

-1.1 

Bk 

336.9 

399.7 

357.8 

429.7 

540.2 

606.2 

380.3 

366.4 

445.5 

506.2 

Ck 

-23121 
-17903 

-11978 

-17903 

-35035 

-36907 

-12751 

-19501 

-24512 

-17055 

delta(k) 

0.0039 

0.0052 

0.0045 

0.0052 

0.0039 

0.0048 

0.0042 

0.0045 

0.0048 

0.0052 

y(i,k) 
71.8 

63.9 

67.9 

63.9 

71.8 

105.9 

29.9 

57.9 

85.9 

78.9 

Table 34: Detailed solution of sl5-pl0-cl0-seg2 

x(l,4,2) 
x(U5,2) 

x(2,5,2) 

x(3,l,2) 

x(4,6,2) 

x(4,9,2) 

x(5,3,2) 

x(5,7,2) 

x(6,3,2) 

x(6,10,2) 

x(7,7,2) 

x(7,8,2) 

x(8,4,2) 

x(9,10,2) 

x(10,2,2) 

1000 
2378.92 

2944.54 

3211.32 

1500 

2658.24 

1461.91 

1800 

1165.3 

1919.46 

1000 

2545.68 

3044.79 

4161.08 

1875.66 

prodl 
prod2 

prod3 

prod4 

prod5 

prod6 

prod7 

prod8 

prod9 

prod10 
CPU 

time (s) 

nodes 

183.01 
162.09 

152.06 

147.68 

192.31 

221.08 

158.29 

171.49 

182.81 

181.26 

486.62 

555 
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I x( 10,6,2) | 1000 

Table 35: Detailed solution of sl5-plO-clO-

x( 1,4,3) 

x(1,15,2) 

x(2,l,3) 

x(2,5,l) 

x(3,ll,3) 

x(4,2,3) 

x(4,13,3) 

x(5,3,3) 

x(5,7,2) 

x(6,3,3) 

x(6,10,2) 

x(7,7,2) 

x(7,15,3) 

CPU 
time (s) 

2536.57 

1000 

2745.84 

328.9 

3371.43 

2345.88 

2000 

2202.13 

1216.48 

2239.09 

1000 

1729.4 

2000 

17131 

yi 
y2 
y3 
y4 
y5 

y6 
y7 
y8 
y9 
ylO 

x(8,4,3) 

x(9,ll,3) 

x(10,l,3) 

nodes 

192.47 

168.87 

164.34 

158.91 

200.96 

227.34 

164.7 

179.51 

187.51 

187.34 

3179.15 

4368.72 

3005.55 

12919 

Table 36: Solution of sl5-pl5-cl5-seg2 

x( 1,5,2) 

x(2,4,2) 

x(3,3,2) 

x(4,2,2) 

x(4,5,2) 

x(5,l,2) 

x(6,6,l) 

x(6,7,2) 

x(7,6,2) 

x(7,10,2) 

x(8,l,2) 

x(8,9,2) 

x(9,6,2) 

x(10,8,2) 

x(l 1,15,2) 

x(12,3,2) 

x(12,14,2) 

x(13,3,l) 

x(13,ll,2) 

4452.8 

5032.23 

4736.09 

2366.67 

2272.55 

4776.15 

571.44 

3799.99 

2000.01 

2196.24 

2000.01 

3081.67 

4524.85 

4532.05 

5224.63 

2178.95 

2994.75 

142.35 

4077.16 

yi 
y2 
y3 
y4 

y5 
y6 

y7 
y8 
y9 

ylO 

yii 
yi2 
yi3 
yl4 

yi5 
x(14,ll,l) 

x(14,12,2) 

x(l5,8,2) 

x(15,13,2) 

161.51 

146.21 

172.45 

162.33 

155.79 

192.41 

218.41 

207.23 

184.52 

163.51 

165.95 

166.44 

148.67 

161.24 

128.59 

445.69 

3120 

2000.01 

2934.22 



x(14,7,2) 2000.01 
CPU 

time(s) 815.69 

Table 37: A, B, C calculation of sl5-pl0-cl0-seg2 

ak 

100 

90 
50 
90 
150 
120 

80 
100 

95 
60 

110 
85 
160 
90 

75 

bk 
60 

40 
20 
10 
100 
50 

75 
55 

70 
65 

45 
50 

60 
65 

55 

rk 

150 

200 
220 
230 
250 
265 

250 
180 

200 
280 

200 
150 
130 
220 

180 

Mean 

200 

160 
180 
160 
200 
210 

150 
170 
190 

175 
180 
175 
200 
150 

140 

Std.Dev 

80 

60 
70 
60 
80 
65 

75 

70 
65 
60 

80 
60 
65 
70 

75 

Ak 
-0.60 

-0.86 

-0.65 

-0.86 

-0.98 

-1.04 

-0.84 

-0.75 

-0.88 

-1.05 

-0.69 

-0.74 

-0.84 

-0.84 

-0.65 

Bk 

337 

400 
358 
430 
540 
606 

380 
366 

446 
506 
382 
352 
451 
373 

281 

Ck 

-23121 

-17903 

-11978 

-17903 

-35035 

-36907 

-12751 

-19501 

-24512 

-17055 

-21661 

-19488 

-39724 

-14699 

-10754 

delta(k) 

0.004 

0.005 

0.004 

0.005 

0.004 

0.005 

0.004 

0.004 

0.005 

0.005 

0.004 

0.005 

0.005 

0.004 

0.004 

y(l,k) 

71.8 

63.9 

67.9 

63.9 

71.8 

105.9 

29.9 

57.9 

85.9 

78.9 

51.8 

78.9 

95.9 

37.9 

19.9 

Table 38: Solution of s20-pl5-cl0-seg2 

yi 
y2 

y3 
y4 
y5 
y6 
y7 
y8 
y9 
ylO 

yll 
yl2 
yi3 
yl4 

yi5 

183.02 

158.79 

149.71 

144.83 

190.74 

220.61 

156.54 

168.2 

182.95 

180.48 

174.42 

142.57 

202.88 

146.88 

119.72 

x(l,4,2) 

x(l,15,2) 

x(2,5,2) 

x(3,l,2) 

x(4,9,2) 

x(5,3,2) 

x(5,7,2) 

x(6,3,2) 

x(6,10,2) 

x(7,8,2) 

x(7,19,2) 

x(8,4,2) 

x(8,20,2) 

x(9,10,2) 

x(9,20,2) 

2062.45 

2680 

4231.67 

4900.59 

5052.97 

2158.51 

2600 

2524.48 

2087.52 

3291.69 

1500 

3476.29 

1000 

3824.96 

1900 

x(10,18,2) 

x(5,5,l) 

NODES 
CPU time (s) 

4315.86 

97.14 

71 

28.116s 
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Table 39: Solution of sl5-pl5-cl5-seg3 

x(l,8,3) 

x(2,9,3) 

x(3,ll,3) 

x(4,5,3) 

x(5,3,3) 

x(6,7,3) 

x(7,3,3) 

x(8,l,3) 

x(9,15,3) 

x(10,l,3) 

x(l1,6,3) 

x(l 1,10,3) 

x(12,13,3) 

x(13,3,l) 

x(13,6,l) 

x(13,14,3) 

x(14,7,l) 

x(14,ll,3) 

x( 15,10,3) 

4466.54 

5042.12 

4738.52 

4639.94 

4780.35 

4393.85 

4201.1 

5085.51 

4528.89 

4534.91 

3000.01 

3000.01 

5179.68 

109.46 

248.58 

3866.67 

137.04 

5440.99 

4948.86 

yi 
y2 
y3 
y4 
y5 
y6 

y7 
y8 

y9 
ylO 

yii 
yi2 
yi3 
yl4 

yi5 
N O D E S 
C P U time 

(s) 

166.97 

146.77 

171.6 

160.59 

156.27 

192.91 

217.48 

206.59 

184.96 

162.85 

167.26 

164.4 

150.69 

161.32 

128.91 

779 

1054.261 

Table 40: Solution to sl5-pl5-c20-seg2 

yi 
y2 
y3 
y4 

y5 
y6 
y7 

y8 

y9 
ylO 

yii 
yi2 
yi3 
yl4 

yl5 

160.62 

142.3 

167.18 

158.28 

153.83 

190.27 

215.22 

210.03 

179.28 

163.49 

163.49 

165.71 

144.79 

159.52 

125.6 

x(l,3,2) 

x(2,ll,2) 

x(3,l,2) 

x(3,12,2) 

x(4,8,2) 

x(4,10,2) 

x(5,6,2) 

x(6,9,2) 

x(7,3,l) 

x(7,7,l) 

x(7,14,2) 

x(8,2,2) 

x(8,9,l) 

x(8,13,2) 

x(9,l,2) 

4306.65 

4269.87 

2000.01 

2514.11 

2518.12 

2000.01 

4759.23 

4548.15 

661.6 

416.82 

3840 

2675.56 

58.31 

2191.53 

5471.28 

x(10,4,2) 

x(10,12,l) 

x( 11,5,2) 

x(12,6,l) 

x(12,13,2) 

x(13,7,2) 

x(14,15,2) 

x(l5,5,2) 

x(16,ll,2) 

x( 16,14,2) 

x( 17,2,2) 

x( 17,15,2) 

x(18,l,2) 

x(18,6,2) 

x(19,3,2) 

4560 

24.18 

4521.77 

489.46 

3811.3 

4549.54 

4196.35 

4358.21 

2435.02 

2000.01 

3086.67 

2307.31 

2347.68 

2880.92 

2560.38 

x(19,8,2) 

x(20,9,2) 

x(20,10,2) 

Nodes 

C P U time 

(s) 

2193.96 

2051.43 

2799.99 

1981 

2973.754 

96 
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