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Abstract 

Object tracking is one of the fundamental topics of computer vision with diverse appli­

cations. The arising challenges in tracking, i.e., cluttered scenes, occlusion, complex 

motion, and illumination variations have motivated utilization of depth information 

from 3D sensors. However, current 3D trackers are not applicable to unconstrained 

environments without a priori knowledge. 

As an important object detection module in tracking, segmentation subdivides 

an image into its constituent regions. Nevertheless, the existing range segmenta­

tion methods in literature are difficult to implement in real-time due to their slow 

performance. 

In this thesis, a 3D object tracking method based on adaptive depth segmentation 

and particle filtering is presented. In this approach, the segmentation method as the 

bottom-up process is combined with the particle filter as the top-down process to 

achieve efficient tracking results under challenging circumstances. The experimental 

results demonstrate the efficiency, as well as robustness of the tracking algorithm 

utilizing real-world range information. 
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Chapter 1 

Introduction 

1.1 Motivation 

Visual tracking is the process of detecting objects of interest from background and 

tracking them through consecutive frames in a video sequence. It has been one of 

the important topics of computer vision as it finds application in areas such as video 

surveillance, human-computer interaction, intelligent transportation, driver monitor­

ing, pedestrian protection, medical diagnostics, and video compression. 

There are several challenges that exist in tracking, including occlusion, noise in 

images, complex object motion, cluttered background, illumination variations, and 

real-time requirements. To address these challenges, extensive research activity has 

been dedicated to object tracking during the past years. Among different approaches, 

color tracking has been one of the most popular methods because of rich information 

content provided by using color as a feature for tracking. However, there is a limitation 

in choosing color for tracking due to its sensitivity to illumination variations, hence 
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1. INTRODUCTION 

encouraging incorporation of other features to increase the tracker efficiency. 

In recent years, usage of depth information for object tracking is becoming popu­

lar due to the availability of information about the third dimension, which provides 

the distances of objects from the sensor. Stereo vision systems have been prevalently 

exploited to determine the depth-map of the scene by means of calculating disparities 

from images captured from two cameras separated by a baseline. Nevertheless, the 

process of stereo matching to obtain depth-map information tends to be computa­

tionally intense, and the results are not adequately accurate. In addition, passive 

stereo sensors require the presence of sufficient ambient illumination so that they can 

produce good quality shots. These limitations have motivated development of active 

depth sensors such as laser range scanners and time-of-flight (TOF) sensors [41]. TOF 

sensors have significant advantages over laser range scanners, which include higher 

accuracy, existence of vertical as well as horizontal scanning capability, pixel-level 

measurement quality, and considerably smaller weight and size [51]. 

Visual tracking can be further classified into low-level and high-level approaches. 

In a low-level approach, an image is segmented or classified in order to localize the 

blob or object without any initial hypothesis. The high-level approach, on the other 

hand, performs object association from one frame to the next, by generating an 

object hypothesis and then evaluating the likelihood of a set of given hypotheses for 

each frame, based on the most recent measurement. The particle filter [25, 27, 9] 

is one of the most successful object tracking methods that solves nonlinear cases in 

which noise may be non-additive and non-Gaussian, by representing simultaneous 

alternative hypotheses. The particle filter has been adopted as a recursive Bayesian 

filter in many research works such as [1, 11, 29, 39]. Besides, it has been shown to 

produce superior results as compared to mean shift, Kalman filter and the extended 

Kalman filter [1, 39]. 

This thesis aspires to develop a 3D object tracking algorithm based on a TOF 
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1. INTRODUCTION 

sensor, combining the high-level approach of particle filtering with a proposed bottom-

up technique for object segmentation in depth images. One of the main applications 

of this research is in intelligent transportation systems, where the 3D profile of the 

driver and passengers are tracked to accomplish certain tasks. The corresponding 

environment consists of cluttered backgrounds, involving object occlusions and with 

possibly inadequate illumination settings or drastic lighting changes. 

1.2 Thesis Organization 

Following this chapter, chapter 2 presents a brief review of the literature in 2D and 3D 

visual tracking. Furthermore, the state of the art time-of-flight sensing technology 

for capturing 3D scene structure is described. This is followed by a review of the 

tracking approaches that exploit 3D sensors for acquiring input video sequences. 

Chapter 3 describes the fundamentals of nonlinear Bayesian tracking and current 

approaches including the particle filtering method. It also presents a review of the 

significant research contributions in the area of particle filter tracking. 

Chapter 4 is devoted to the elaboration of the developed probabilistic 3D tracking 

which is mainly based on adaptive depth segmentation of TOF range images. It is 

shown that depth histograms can be leveraged to derive a range segmentation ap­

proach, in order to be applied in object detection. In addition, the developed method 

is exploited to define parameters of the particle filter, which is used to associate and 

track objects throughout the video sequence. 

Chapter 5 covers experimental results of both the adaptive depth segmentation 

and the probabilistic tracking presented in chapter 4. 

Chapter 6 concludes this thesis by summarizing the contributions of this thesis 

and outlining suggestions regarding further development of the proposed research. 
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Chapter 2 

Visual Tracking Literature 

2.1 Overview 

In visual tracking, there are three main factors that need to be considered in order 

to design an object tracking system. First, a suitable representation of the object 

should be defined. Another important step is to choose the appropriate input image 

features, and finally a strategy for detection of objects needs to be selected [53]. 

Objects can be represented by a point or by a set of points, geometric shapes, con­

tours, silhouette representations, or using cylinders and ellipses. Point representation 

is generally used for tracking objects that occupy small regions in an image [48, 45]. 

Geometric shapes such as a rectangle, ellipse, etc. are more appropriate for repre­

senting simple rigid objects as well as nonrigid objects [13], and for tracking complex 

nonrigid shapes, contour and silhouette representations are exploited, which define 

the boundaries of an object and the region inside the object boundaries, respec­

tively [54, 7]. Finally, cylinders or ellipses are used to model articulated objects such 
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2. VISUAL TRACKING LITERATURE 

as human body parts [53]. Also, object appearances can be represented using prob­

ability densities, which can be either parametric (Gaussian, mixture of Gaussians) 

or nonparametric (Parzen windows, histograms) [53]. Template representation is an­

other approach that is most suitable for tracking objects whose poses do not change 

noticeably during tracking. One of the advantages of templates is that they convey 

both spatial and appearance information, but from a single view. There also exist 

other appearance representations including active models and multi-view models. 

Common visual features that are used in tracking are color, edge, optical flow, 

and texture information [53]: 

• Color: The color of an object is mainly affected by the environmental illumina­

tion as well as the reflectance properties of the object. Different color spaces are 

used for color representation in tracking, such as RGB, HSV, L*U*V, L*a*b, 

etc. Color is one of the most popular features used for tracking in the litera­

ture. However, color is sensitive to illumination variations, hence encouraging 

the incorporation of other features to increase the efficiency of the tracker. 

• Edges: Edge information generally convey drastic intensity variations in an 

image, extracted using edge detection techniques. One of its significant proper­

ties is that edges are less sensitive to illumination variations compared to color 

features. 

• Optical Flow: Optical flow is a dense field of displacement vectors which defines 

the translation of each pixel in a region. It is computed using the brightness 

constraint, which assumes brightness constancy of corresponding pixels in con­

secutive frames. Optical flow is commonly used as a feature in motion-based 

segmentation and tracking applications. 

• Texture: Texture is a measure of intensity variation of a surface which quantifies 

properties such as smoothness and regularity. Texture requires a processing 

5 



2. VISUAL TRACKING LITERATURE 

step to generate descriptors compared to color. Also, texture features are less 

sensitive to illumination changes than color. 

Each tracking algorithm is composed of an object detection module. Object de­

tection is performed either once the object appears in the scene or in every frame, 

considering the temporal information of consecutive frames to increase the detection 

efficiency. Common object detection methods include point detection, segmentation, 

background modeling, and supervised classifiers [53]. 

2.2 Segmentation 

Segmentation subdivides an image into its constituent regions or objects [24]. The 

level to which this subdivision is carried out depends on the problem being solved. In 

other words, the segmentation task should end when the objects of interest have been 

isolated. An optimal depth segmentation algorithm should partition an image into 

more meaningful and easier to analyze regions with no overlap, where the final depth 

scene is generated by arranging all these regions together. Furthermore, segmentation 

methods in tracking applications should consume the least amount of processing time, 

as well as incur the fewest possible computational operations, due to the real-time 

requirement in tracking approaches. On the other hand, increasing the time efficiency 

should not hinder achieving acceptable results. There are two main factors to be 

considered in order to evaluate the performance (speed) of segmentation algorithms, 

i.e. number of iterations, and computational complexity. 

Image segmentation methods are generally based on one of the following: disconti­

nuity and similarity of the image values. In the first category, an image is partitioned 

based on abrupt variations in pixel values, i.e., image edges. The methods in the 

second category partition an image into regions that are similar according to a set 

of predefined criteria. These approaches include thresholding, region growing, and 
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2. VISUAL TRACKING LITERATURE 

region splitting and merging. 

Edge detection has been one of the popular segmentation algorithms for years. 

Edge-based segmentation techniques apply edge detection to extract discontinuities 

in the scene and segment the image [20]. In order to segment the image correctly, 

the identified edges should form closed boundaries. However, the resulting edge maps 

are often disconnected. Hence, additional processing should be performed on edge 

boundaries to connect isolated edges if they are within a distance-threshold from each 

other. Another main drawback of edge-based range segmentation algorithms is that 

discontinuities are smooth and hard to locate for curved surfaces in depth images, 

resulting in under-segmentation of range images. Thus, it is essential to inspect each 

of the edge-separated regions iteratively to assure that no object of interest is missed. 

As a result, edge detection segmentation methods are computationally intense and 

therefore have limited applications in real-time vision systems. 

Thresholding is another popular approach for segmentation especially in applica­

tions where speed is important, mainly because of its simplicity of implementation 

and intuitive properties. For instance, in a gray-level histogram of an image com­

posed of light objects on a dark background, the objects can be separated from the 

background using a threshold level determined from the histogram. In this case, seg­

mentation is carried out by scanning the image pixel by pixel and labeling each pixel 

as object or background, depending on whether the gray level of that pixel is greater 

or less than the threshold value. In general cases where there are three or more modes 

characterizing the image histogram, multilevel thresholding can be used to classify 

each object [24]. Note that the success of thresholding depends entirely on how well 

the histogram can be partitioned. 

Region growing is a procedure that groups pixels or subregions into larger regions 

based on predefined criteria [24]. The basic approach is to start with a set of "seed" 

points and iteratively grow regions by appending to each seed those neighboring pixels 
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2. VISUAL TRACKING LITERATURE 

that have properties (e.g. color ranges) similar to the seed [2]. Generally, there can 

be one or more starting points based on the application. In cases where a priori 

information is not available, the same set of properties that will be used to assign 

pixels to regions during the growing process is calculated at each pixel. Based on the 

results of these calculations which form clusters, pixels close to the cluster centroids 

can be used as seeds. The selection of similarity criteria is crucial in the success of 

region growing and it depends on both the problem type and the type of image data 

available. Another issue in this technique is the determination of a stopping rule. 

As a rule, growing a region should stop when no more pixels satisfy the criteria for 

inclusion in that region. 

Object tracking based on region growing in range images has been considered 

in [36], which mainly relies on road modeling. Here, a distance map is first calculated, 

and a region growing segmentation is performed within simulated and uncluttered 

traffic scenes. In [33], a depth-based tracking system in traffic scenes is described, 

where the employed segmentation method is based on a region growing scheme in­

troduced in [36]. In order to achieve reliable results, it is necessary to apply some 

constraints regarding the identification of the ground surface. The background and 

foreground range images have to be predefined in this method, which is not suitable 

for real-time depth traffic environments where the camera is non-stationary. Fur­

thermore, an additional preprocessing step is required to remove edges from objects 

using an edge detection technique. As discussed earlier, incorporating edge detection 

modules reduces the segmentation speed drastically, without even considering the 

usage of the computationally intense region growing algorithm. Depth and intensity 

information can be used together as in [52], where a visual surveillance system is 

presented based on depth sensing. Prospective locations of the objects of interest are 

determined through evaluation of intensity data, whereas the discontinuities among 

the detected objects are considered through processing of depth images. Evidently, 
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2. VISUAL TRACKING LITERATURE 

relying on intensity values requires the use of edge detection, not to mention the 

vulnerability to illumination variations. In addition, the distance map calculation is 

carried out in order to locate object boundaries in the scene. One necessary prepro­

cessing step in this method is to eliminate out-of-range background clutter — which 

is done manually in each scenario, hence restricting its application. 

2.3 Kernel Density Estimation 

Kernel density estimation is a broadly applied technique in statistics and pattern 

recognition (also known as Parzen window method) [47, 19]. A kernel density esti­

mate is a continuous function derived from discrete data [35]. To accurately determine 

the mode locations of a random variable x, which are the local maxima of its proba­

bility density function p{x), a continuous estimate of the underlying density p(x) has 

to be defined. However, since only the discrete values of x are available, the data is 

convolved with a symmetric kernel function by placing a kernel in each point. There­

fore, the density estimate in a given location is the average of the contributions from 

each kernel. However, due to the finite nature of the kernel support, only some of the 

points contribute to the density estimate. Let Xi, i — 1 , . . . , n, be scalar measurements 

drawn from an arbitrary probability distribution p(x). The kernel density estimate 

p(x) of this distribution is achieved using a kernel function K(u) and a bandwidth h 

i—l x ' 

The most significant properties of kernel functions are that they should be sym­

metric with bounded support and satisfy the following: 

K{u) = 0 |w| > 1 

J~1 V ; (2.2) 
K{u) = K(-u) > 0 

K(Ul) > K(u2) K| < \u2\ 
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2. VISUAL TRACKING LITERATURE 

The above formulation can be further expanded by replacing the kernel bandwidth 

h with a symmetric, positive definite bandwidth matrix H to include multivariate 

measurements. 

2.4 Time-of-Flight Sensors 

Time-of-flight (TOF) depth sensors are non-contact optical measurement devices that 

are able to acquire the entire depth image of a scene in real-time. Depth informa­

tion is delivered by the solid-state sensor without any need for external circuitry. 

They consist of a modulated light source such as infrared, a CMOS imaging sensor 

consisting of an array of pixels, as well as an optical focusing system [40, 41]. 

Overall, TOF sensors have significant advantages over laser range scanners, in­

cluding higher accuracy, existence of vertical as well as horizontal scanning, pixel-

level measurement quality, and considerably smaller weight and size. A comparison 

of TOF sensors and laser range scanners can be found in [51]. 

2.4.1 TOF Principle 

TOF systems operate based on the TOF principle [32]. An intensity modulated wave 

is synchronously emitted through the light source, propagating from the TOF sensor 

to the scene and is reflected by the scene back to the sensor where the sensor captures 

its time of flight. The phase delay between the two signals is used to determine the 

object's distance from the sensor. The signal phase is detected by synchronously 

demodulating the incoming modulated light within the detector. Let s(t) and g(t) be 

the incoming optical signal (with amplitude A and phase ip) and the demodulation 

signal, respectively. 

s(t) = 1 + A cos(ut - <p) (2.3) 

g(t) = cos(ut) (2.4) 
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2. VISUAL TRACKING LITERATURE 

The cross correlation between the demodulation signal and the incoming signal is 

computed as: 

1 f+% 
C{T) = s(t) <g> g(t) = UrriT^ocj; / T s(t) • g(t + r)dt (2.5) 

Evaluating (2.5) for phase delays of r0 = 0°, n = 90°, r2 = 180°, and r3 = 270°, the 

phase ip, the offset B, and the amplitude A of the incoming signal are determined as 

follows. 

<p = arctan (°^\ ' °^\) (2.6) 
Vc(r0) - C(T2) J 

B = C ( T o ) + C ( r l ) + C ( r 2 ) + C ( r 3 ) /2 7x 

^ = _V _ ( 2 .8) 

The object's distance from the sensor d is thus determined from tp in 

d=l£ (2.9) 

where, 

represents the non-ambiguity distance range, / m the modulation frequency, and c the 

speed of light [40]. 

2.5 TOF Literature 

Since the introduction and implementation of TOF sensing systems, many researchers 

have contributed to the development of tracking approaches using TOF sensors. This 

section presents a review of the leading TOF-based tracking methods in recent years. 
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2.5.1 TOF Application in Head Tracking 

In [23], a head-tracking algorithm using a time-of-flight depth sensor is described, 

where the depth sensor is exploited to segment the background and foreground. A 

depth signature is determined for each segmented foreground, followed by a compari­

son with depth signatures collected in training. K-means algorithm is used to cluster 

the training data to account for all possible cases. A correlation-based method al­

locates weights to the most possible head locations, and the final head location is 

determined by weighted-interpolating among these locations. Although it reported 

promising results, this work only addresses the tracking problem for one person sit­

ting in front of the camera. Furthermore, only partial self occlusion between the 

object's head and hand is considered and the inter-object occlusion or occlusion by 

the background structure are not studied. The training session is required to obtain 

a good model for the head location, where the head location is chosen manually. 

Another head tracking algorithm using model fitting of the head's 3D depth map 

as an ellipse and shape matching is presented in [37]. The ellipse properties, i.e., 

position and size are constantly updated by a local search. Edge detection is applied 

on depth maps to provide depth discontinuities, followed by a Chamfer distance-based 

ellipse detection. The initialization of head position is not addressed in their paper 

and reader is referred to [44, 42]. The reason to use distance transform instead of the 

edge image is that the similarity measure becomes a smooth function of the shape 

model parameters and matching location, also allowing some degree of dissimilarity. 

2.5.2 TOF Application in Visual Surveillance 

Xu and Fujimura [52] present a visual surveillance method using depth and gray 

information from a single camera in a user-specified 3D environment. Depth data is 

used to extract the discontinuities between multiple objects in the scene, and gray 

data is exploited to extract contextual information about the location of the objects of 

12 



2. VISUAL TRACKING LITERATURE 

interest. This method can be used in non-stationary camera situations since it is not 

dependent upon background subtraction. The reported depth resolution for a 2.5 m 

range is 1 cm. The out-of-range background clutters are eliminated by manually 

setting a maximum acceptable distance, which is a constraint on its application. 

Region segmentation is performed based on a split-and-merge algorithm. Basically, 

foreground areas are split into smaller regions by separating their depth values into 

predefined depth layers (8 to 32) depending on each application. In this method, 

regions are grouped into sub-areas based on connected component analysis. Later on, 

sub-areas from different layers are merged with each other if the connections between 

them are regular and their layers are continuous. Next, a geometric representation 

is used to fit ellipses into the detected silhouette. Finally, tracking is performed 

by a simple method of identifying similar ellipses in the next frame. This method 

will achieve good results only if the relative movements are small and occlusions are 

rare. Also, the size of ellipsoidal model will vary for different object poses, causing 

inefficient results. Above all, this method depends much on the particular scene that 

is under investigation since it is dependent on manual selection of a depth threshold 

for foreground detection. 

In [38], a method is presented for illumination-invariant tracking (head, hand, 

and body) in indoor cluttered environments using depth edges from a depth sensor. 

It mainly focuses on tracking the object as a whole, instead of using features for 

tracking. The operational domain is limited such that the target holds a distinct 

depth difference with respect to its surrounding environment. This technique uses 

potential fields, where the target is modeled as an attractor and each point outside 

the target is assigned a value based on its distance from the target. This task is carried 

out using depth image edges, based on distance transform and contour tracking. 

An initial investigation of the use of TOF sensors for people tracking is studied 

in [6]. 3D tracking methods based on stereo vision and plan-view maps deal with 
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major issues such as occlusions and quick variations in body pose and appearance 

effectively. However, stereo systems degrade in performance in situations where there 

are untextured scenes because of homogeneous objects or poor lighting condition. 

The solution presented in this paper is to use TOF sensors that can operate under 

severe low-lighting conditions. Several geometrical constraints and invariants have 

been considered in order to simplify tracking. A simple background subtraction al­

gorithm based on a pixel-wise parametric statistical model is applied to construct 

the background model. This model is not maintained over time once constructed, 

since the camera and background are assumed to be stationary. A plan-view map is 

also built using the intrinsic and extrinsic parameters of the camera considering the 

orthographic projection of the scene. This requires camera calibration which is done 

offline in the training stage. Tracking is performed over connected components in 

the blob level using a limited set of geometric features. This paper handles occlusion 

using Kalman filter which produces efficient results in linear situations. Based on the 

plan-view setup assumptions people cannot overlap each other and also should enter 

the scene separately. 

2.5.3 TOF Application in Traffic Environment 

A 3D multiple object tracking in traffic scenarios is investigated in [33]. The authors 

use a TOF range sensor mounted on a vehicle to acquire depth images. At first, 

several preprocessing filters are applied to eliminate noisy pixels from the image, as 

follows: 

• Analysis of an amplitude minimum filter, which requires sorting all the ampli­

tude values on the image and choosing an adaptive threshold to reject those 

pixels with low amplitude values as noise. 

• Ground surface segmentation, which requires pre-defining a foreground range 
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image as well as a background range image to reject pixels with values outside 

the range of these two images. 

• Edge pixel removal, which removes the edge pixels between objects as a neces­

sary step before region growing. 

The traditional region growing is exploited on the range image to segment regions 

of different objects. This is followed by a detailed region post-processing to deal 

with the problem of object over-segmentation caused by region growing. Next, the 

segmented objects in the current frame are associated with the objects in the previ­

ous frame. An object association strategy is proposed to deal with object tracking 

robustly in case of merging and splitting. A Kalman filter model is constructed in 

the last step to correct the object positions in the current frame and predict their 

positions in the next frame. These predictions will be used in the next iteration for 

the corresponding object association. 

2.6 TOF Applications in Other Areas 

Except for tracking, TOF sensors have been used in other research areas such as face 

detection, 3D pose estimation, human computer interaction, etc. 

2.6.1 Face Detection 

Hansen et al. [26] have developed a face detection method using images from a TOF 

sensor. They use cascade classifiers for face detection using both gray and depth 

information. Based on their argument, the distance to the object provides an impor­

tant cue for face detection and size verifications. Depending on the distance from the 

camera, the apparent face size changes as well as the number of detailed face features. 
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2.6.2 3D Pose Estimation 

In [55], the authors present a 3D head pose estimation technique using both gray and 

depth information from a TOF range sensor. Depth information is used for successful 

head segmentation even in a cluttered scene, where a sparse optical flow is exploited 

at head region to estimate the 3D head motion. 

Also in the paper by Fujimura et al. [22], the authors present a 3D head pose 

estimation approach from a sequence of images taken by a single TOF camera. They 

partition the human body into a number of clusters and use machine learning tech­

niques for pose extraction. 

2.6.3 Human Computer Interaction 

In [18], a virtual keyboard system consisting of a pattern projector and a TOF range 

sensor is presented. The depth information from the TOF sensor is used to detect 

the hand region with respect to a reference frame. Furthermore, the feature models 

of the depth curve is analyzed to determine the exact key that was pressed. 

2.7 Stereo Vision Methods 

In addition to TOF systems, passive sensors such as stereo vision cameras have been 

used for retrieving depth information for many years. They are less expensive than 

active sensors, but rely on 2D information in order to calculate the range values in the 

scene. Therefore, their performance is degraded in low illumination environments. 

2.7.1 Integrated Stereo Visual Tracking 

Darrell et al. [15] present a visual person tracking system combining stereo, color, and 

face detection modules. Depth information, through real-time stereo processing, is 
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used to localize users from other objects in the background. Also, skin classification 

detects body parts within the isolated user silhouette, and face detection localizes 

the faces within those identified body parts. Each method alone can track a user 

under optimal conditions, but each has substantial failure modes in unconstrained 

environments. They find that these failures are often independent, thus by combin­

ing them one can achieve relatively robust results. Head-size objects can cause false 

positives in the depth module, skin-colored objects can cause false positives in the 

color module, and face pattern detectors typically are slower and cause false positives 

in non-canonical poses or expressions. It is also mentioned that a key strength of this 

system is the use of depth estimation hardware. Tracking is performed on three differ­

ent time-scales: short-term, i.e. frame to frame changes, medium-term for temporary 

occlusions or absences for a few minutes, and long term for absences of hours or more. 

In short-term tracking, region correspondences based on region position and size are 

considered. Here, a statistical model of multi-modal appearance is considered to re­

solve correspondences between tracked users over time. The incorporated features 

are body shape, face appearance location, color of hair, skin, and clothes determined 

at each time-step. Also, mean and covariance of the represented features are used to 

identify users on their return to the scene. In medium term tracking, lighting con­

stancy and stable clothing color are assumed, as opposed to long-term tracking, where 

these criteria are neglected. In the dense domain, raw range signals are smoothed 

to reduce the effect of low confidence stereo disparities, using a morphological clos­

ing operator. A gradient operator is applied on the image, thresholded at a critical 

value based on the maximum expected depth discontinuity in the depth profile of one 

person (determined as 8 inches). Connected component analysis is performed on the 

regions of smoothly varying range, returning only those areas greater than a mini­

mum threshold. Furthermore, estimates of head location, which are positioned below 

the vertical maxima, are calculated for each silhouette. Depth silhouettes are tracked 
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at each frame using position and size constancy through comparison of the centroid 

and size of each new depth region with those of the previous frame. In other words, 

for each new region, the closest old region within a minimum threshold is marked as 

the correspondence match. In the range module and for long-term tracking, height 

of the user is estimated and used as an attribute of identity. In the color module, 

the average color of skin and hair regions, as well as an optional color histogram of 

clothing are considered for identification. Although stereo is used in this paper, it 

mainly relies on intensity features rather than depth information. 

2.7.2 Head Detection Using Stereo 

In this paper, Krotosky et al. [31] propose a real-time head detection algorithm using 

stereo vision. Their work is based on posture analysis of occupants using a stereo 

camera mounted inside a car. Their method is intended to detect 3D head location 

information for in-car applications such as smart airbag deployment. Statistical back­

ground subtraction is used in their approach, constructing a background model from 

an empty car frame. Stereo-related post processing is carried out in order to obtain 

the disparity image, followed by its subtraction from the background model estimate. 

To eliminate small disparity blobs, median filter along with morphological opening 

and connected component analysis are applied to the result. The errors occur in 

the case of poor illumination, occlusion and competing objects. Since stereo sensors 

rely on texture of the objects in the scene, overexposed faces are impossible to be 

processed in order to produce elliptical objects using this method. In the case of low 

illumination, it is suggested to use near-infrared illumination, however with no fur­

ther elaboration. As for occlusion handling, this method is able to resume detection 

after momentary partial occlusions. Competing objects cause errors in head detection 

since they have the same size, shape and disparity as the desired head. 

18 



2. VISUAL TRACKING LITERATURE 

2.8 Active Triangulation Methods 

Active sensors have been exploited in [34] to present a head tracking algorithm using 

3D data. A 3D sensor composed of a closed-circuit TV (CCTV) color camera and a 

standard slide projector is employed to acquire 3D data as well as color information. 

This method is based on the active triangulation principle, where color-encoded light 

pattern is projected onto the scene, and its deformation on the object surfaces is mea­

sured. The authors use an appearance-based 3D pose detection in a Bayesian tracking 

framework. Depth information is used to separate body from the background, while 

segmentation of the head from body relies on statistical modeling of the head-torso 

points in 3D space. However, their approach assumes only one person in the scene. As 

a result, the background separation technique will encounter difficulty when applied 

to a complicated setting with more than one person. 

2.9 Summary 

In this chapter, the key components of 2D and 3D visual tracking systems have been 

presented. Furthermore, TOF sensors and their applications have been discussed, 

followed by literature review of stereo vision and triangulation tracking methods. 

The TOF sensor has been chosen for this research due to its advantages over other 

3D sensors, one of which is its ability to provide 3D depth profiles without further 

processing. 

The following chapter addresses the probabilistic filtering approaches in nonlinear 

Bayesian domain, followed by a review of their applications in tracking. 
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Chapter 3 

Nonlinear Bayesian Tracking 

Tracking is one of the problems that require estimation of the state of a system 

using noisy measurements. l In this regard, the state-space approach is used to 

model discrete-time dynamic systems. In order to analyze a dynamic system, two 

models should be known: The system model, describing the evolution of the state 

with time, and the measurement model describing the relation between the noisy 

measurements and the state. In the Bayesian approach to dynamic state estimation, 

one can construct the posterior probability density function (pdf) of the state based on 

all available information, including the set of received measurements. In principle, this 

pdf is the complete solution to the estimation problem since it includes all available 

statistical information. Thus, an optimal estimate of the state may be obtained from 

the pdf. However, for many problems an estimate is required at each time-step when 

a measurement is received, which leads to a recursive filter solution. In a recursive 

filtering approach, received data can be processed sequentially rather than as a batch 

lrThis chapter includes parts of material in [3], reproduced with the authors' permission. 
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so that it is not necessary to store the complete data set nor to reprocess existing 

data if a new measurement becomes available [3]. A recursive filter consists of two 

main stages: prediction and update. The prediction stage uses the system model to 

predict the state pdf from one time-step to the next. Prediction generally translates, 

deforms, and spreads the state pdf, since the state is subject to unknown disturbances 

modeled as random noise. The update step uses the latest measurement to modify 

the prediction using the Bayes theorem. In the problem of tracking, the target is 

characterized by the state sequence {xt,t € IN}, assuming IN as the set of natural 

numbers. The evolution of the state sequence is determined by the system model: 

xt = ft(xt-i,vt-i) (3.1) 

where ft is in general a nonlinear function of the state xt~i, and {vt-\, t e IN} is an 

i.i.d. process noise sequence. The objective of tracking is to recursively estimate xt 

from measurements 

zt = ht(xt,nt) (3.2) 

where ht is in general a nonlinear function, {nt,t € IN} is an i.i.d. process noise 

sequence. In other words, we are interested in filtered estimates of xt based on the 

set of all available measurements z\:t = {zi,i = 1 , . . . , t} up to time t. Therefore, it 

is necessary to have the pdf p(xt\zi:t). The initial pdf p(xo\zo) = P(XQ) of the state 

vector, prior, is assumed to be known. Then, in principle, the pdf p(xt\zi.,t) may be 

obtained recursively in two stages: prediction and update. In the prediction stage, 

the system model (3.1) is utilized to obtain the prior pdf of the state at time t using 

the following equation, knowing that the pdf p{xt-\\z\.t-x) at time f — 1 is available. 

p(xt\z1:i-i) = I p(xt\xt-i)p(xt-i\zi:t-i)dxt-i (3.3) 

In tracking, the system model is assumed to be a first order Markov process. Hence, 

p(xt\xt-i,Zi:t-i) = p(xt\xt-i), defined by the system model and the known statistics 
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oivt-i- In the update stage and at time-step t, the measurement zt becomes available, 

and this is used to update the prior using Bayes' rule 

= P^MPM^) (3 4) 

where the normalizing constant 

p(zt\zi:t-i) = / p(zt\xt)p(xt\zilt-i)dxt (3.5) 

depends on the likelihood function p(zt\xt) defined by the measurement model and 

the known statistics of n*. Note that in the update stage (3.4), the measurement zt 

is used to modify the prior density to obtain the required posterior density of the 

current state. 

The optimal Bayesian solution is based on the recursive equations (3.3) and (3.4). 

However, this recursive propagation of the posterior density cannot be determined 

analytically. Instead, there are analytical recursive solutions, i.e., the Kalman filter. 

Furthermore, in cases where an analytical solution is not present, extended Kalman 

filters and particle filters are the popular solutions that approximate the optimal 

Bayesian solution. 

3.1 Kalman Filter 

The posterior density in the Kalman filter is assumed to be Gaussian and parametrized 

by a mean and covariance. If p(xt-\\z\.t-\) is Gaussian it can be shown that p{xt\z\:t) 

is also Gaussian with the following assumptions: 

• vt-\ and nt are drawn from Gaussian distributions of known parameters. 

• ft{xt-i,vt-x) is a known linear function of xt-\ and vt-\. 

• ht(xt, nt) is a known linear function of xt and nt. 
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As a result, the system and measurement models, (3.1) and (3.2), become as follows: 

xt = Ftxt-\ +vt-i (3.6) 

zt = Htxt + nt (3.7) 

Ft and Ht are known matrices defining the linear functions. The covariances of vt-\ 

and nt, which are assumed to be of zero-mean and statistically independent, are Qt-i 

and Rt, respectively. Note that the system and measurement matrices as well as noise 

parameters can be time variant. 

The Kalman filter, derived from (3.3) and (3.4), can be expressed as the following 

recursive equations: 

p{xt-\\z\*-\) =J\f(xt-i;mt-i\t-i;Pt-i\t-i) (3-8) 

p(xt\zi..t-i)=M(xt;mt\t-i;Pt\t-i) (3.9) 

p(xt\zi:t) = M (xt; mm; Pt\t) (3.10) 

where 

mt\t-i = Ftmt-i\t-i (3.11) 

Pt\t-i = Qt-i + FtPt^t_xF? (3.12) 

mt\t = mt\t-i + Kt(zt - Htmt\t-i) (3.13) 

Pt\t = Pt\t-i ~ KtHtPt\t-i (3.14) 

and where M(x; m, P) is a Gaussian density with argument x, mean m, and covariance 

P. Moreover, 

St = HtPt^H? + Rt (3.15) 

Kt^Pn-iHfSr1 (3.16) 

are the covariance of the innovation term zt — Htmt\t^i, and the Kalman gain, respec­

tively. 
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The above is the optimal solution to the tracking problem as long as the highly 

restrictive assumptions hold. According to literature, the Kalman filter provides the 

best result in a linear Gaussian environment. 

3.2 Extended Kalman Filter 

The above assumptions do not hold in most cases, and as a result, the Kalman filter 

cannot be exploited. In general, the system and measurement models, (3.1) and (3.2), 

are nonlinear and thus cannot be written as (3.6) and (3.7). The Extended Kalman 

Filter (EKF) approximates nonlinearity by local linearization of these functions. In 

this algorithm, p(xt\zi-t) is approximated by a Gaussian 

p(xt-i\zi-.t-i) ~ A r(a;t_i;mt-i|t-i;i 't-i|t-i) (3.17) 

p(xt\zi-.t-i) ~ M (a;t; mtit-x; Pt\t-i) (3.18) 

P(xt\zv.t) ^M(xt;mtlt;Ptlt) (3.19) 

where, 

mt\t-i = ft(mt-i\t-i) (3.20) 

Pt\t-i = Qt-i + FtPt^t^F? (3.21) 

mt\t = mt\t-i + Kt (zt - ht(mt\t-i)) (3-22) 

Pt\t - Ptlt-i - KtHtPt\t-i (3.23) 

and where ft(-) and ht(-) are nonlinear functions, and Ft and Ht are local linearization 

of these nonlinear functions: 

P dft{x) 

dx 

H = dht^ 
dx 

(3.24) 
x = m t _ 1 i t _ 1 

(3.25) 
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St = HtPt^H? + Rt (3.26) 

Kt = Pt\t^HjS-t
x (3.27) 

The EKF achieves linearization using the first term of the Taylor series expansion 

of the nonlinear function. A higher order EKF that considers further terms of the 

Taylor series has been achieved, but its intensive complexity has prevented it from 

being widely used. 

3.3 Unscented Kalman Filter 

Some researchers have proposed the use of the unscented transform in EKF, which 

yields the unscented Kalman filter (UKF) [30, 49, 50]. UKF considers a set of points 

that are deterministically selected from the Gaussian approximation to p(xt\z\-_t). 

These points are all propagated through the nonlinearity, and the parameters of the 

Gaussian approximation are re-estimated. This filter has been shown to outperform 

EKF in some problems, mainly because of its better approximation of nonlinearity. 

Nevertheless, the EKF and UKF both approximate p(xt\zi[t) to be Gaussian. If 

the true density is non-Gaussian (i.e., bimodal), then a Gaussian will never be able to 

represent it satisfactorily, in which case, the particle filter will produce better results 

compared to EKF and UKF [4]. 

3.4 Particle Filter 

The particle filter [9] or the sequential importance sampling (SIS) algorithm is a 

Monte Carlo (MC) method that forms the basis for most sequential Monte Carlo 

(SMC) methods developed so far [16, 17]. This SMC approach is also known as the 

CONDENSATION algorithm [27] and bootstrap filtering [25]. This technique imple­

ments the recursive Bayesian filter by MC simulations. In this approach, the posterior 
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density is represented by a set of random samples with associated weights, which are 

used to compute estimates. As the number of samples becomes very large, this MC 

approximation becomes an equivalent representation to the usual functional descrip­

tion of the posterior pdf, and the particle filter approaches the optimal Bayesian 

estimate. 

Let {^ot'^tli^i denote a random measure that approximates the posterior pdf 

p(%0:t\zi:t)> where {XQ.V i = 0 , . . . , Ns} is a set of support points with associated weights 

{wl
t, i = 1 , . . . , iVs} and Xo-t = {xj,j = 0 , . . . , t} is the set of all states up to time t. 

The weights are normalized such that £V wt = 1 • Then, the posterior density at t 

can be approximated as 

p(x0:t\z1:t) » ^T w%
t8(x0..t - x%

0.t) (3.28) 

which is a discrete weighted approximation to the true posterior, p(x0:t\zi:t)- The 

weights are chosen using the principle of importance sampling [5, 17]: 

Let p(x) oc 7r(x) denote a probability density function from which it is difficult 

to draw samples but for which n(x) can be evaluated (as well as p(x) up to propor­

tionality). Let x1 ~ q(x),i = 1,...,NS be samples that are easily generated from 

a proposal q(-) called importance density. Then, a weighted approximation to the 

density p(-) is given by: 
Ns 

p(x)^Yjwi6(x-'xi) (3-29) 

where 

w* oc ̂ 1 (3.30) 

is the normalized weight of the i-th particle. As a result, considering the samples xl
0:t 

being drawn from the importance density q{xo-t\zi.t), the weights in (3.28) are defined 

by (3.30) to be 

*"'K SS3 (3'31) 
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At each iteration of the sequential case, an approximation to p(xo-.t-i\zi:t-i) is 

available, and it is desirable to approximate p(xQ[t\zi:t) with a new set of samples. If 

the importance density is chosen such that 

q{xo-.t\zi:t) =q(xo-.t-i\zi:t)q(xo..t-i\zi..t-i) (3.32) 

then samples xl
0.t ~ q(x0:t\z1:t) can be obtained by augmenting each of the existing 

samples xl
0.t_x ~ q(xo:t-\\z\-.t-\) with the new state x\ ~ q(xt\xo:t-i,Zi..t). To ob­

tain the weight update equation, p{xQ-t\zi-t) is expressed in terms of p(a;o:t-i|2i:t-i), 

p{zt\xt), andp(a;t|a;t_i). 

P(zt\x0:t\zi;t-i)p{x0:t\z1:t-i) 
P(x0:t\zi;t) 

V\Zt\Z\;t-\) 
n(y.AT.n Ay-, . 1 \r>( r. I T ^ , i I 7-, , -, 

-p(x0:t-i\zi:t-i) (3.33) 

p(Zt\Zl:t-l) 

p(zt\x0:t\zi.t-i)p(xt\xo.i-l\zl..t-i) 

P{Zt\Zi:t-l) 
p(zt\xt)p(xt\xt-i) . , . 

= _ - p{XM-x\Z\:t-\) 

p{zt\zv.t-\) 

p(xo-.tW:i) (xp{zt\xt)p(xt\xt-i)p{xQ..t-i\zi;t-i) (3.34) 
The weight update equation can be derived by substituting (3.32) and (3.34) into (3.31): 

• p(ztNM^k-lM4:t-lk:t-l) 
yj (x .—_ . _ — . . _ 

q{AWo-.t-i,Zv.t)q{xl:t_1\z1,t-.i) 

i P{zt\x^p{x\\x\_l) 
_ Wt_i i . i r -

q\Xt\XQ:t-\i Z^t) 

In the common case when only a filtered estimate of p{xt\z\.t) is required at 

each time-step, the importance density becomes only dependent on xt-i and zt, i.e., 

q(xt\xo:t-i, z1:t) = q(xt\xt-i,Zt). Therefore, only x\ need to be stored and the history 

of the states (a^t-i) a n d observations {zvt_x) is disregarded. The weight in this case 
becomes 

i , piztlxppixWxU) 
w'"w" M^,*) (3"36) 

Finally, the posterior filtered density p(xt\zi:t) can be approximated as 

p(xt\z1:t)^J2wiS(xt-xi) (3.37) 
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It can be shown that as Na —• oo, this approximation approaches the true posterior 

density p{xt\zv.t)- The particle filter consists of recursive propagation of the weights 

and support points as each measurement is received sequentially. 

3.5 Particle Filter in Tracking 

In the high-level approach to tracking, objects are associated between consecutive 

frames by generating a set of object hypotheses, followed by evaluation of the cor­

responding likelihood for each frame based on the most recent measurement. The 

particle filter is able to represent multiple hypotheses simultaneously. In addition, 

it is one of the most efficient object tracking methods in nonlinear situations that 

involve non-additive and non-Gaussian noise. 

3.5.1 CONDENSATION 

CONDENSATION algorithm [27] uses "factored sampling", in which the probability 

distribution of possible interpretations is represented by a randomly generated set. It 

exploits dynamic models (transition or prior densities) along with visual observations 

(measurements), to propagate the random set over time. Given the prior, and an 

observation density that characterizes the statistical variability of image data z given 

a state x, a posterior distribution can, in principle, be estimated for xt given zt at 

successive times t. 

Spatio-temporal tracking has been dealth thoroughly by Kalman filtering, in the 

relatively clutter-free case in which densities can be modeled as Gaussian. These 

solutions produce relatively poor results in clutter which causes the density for xt to 

be multi-modal and therefore non-Gaussian. 

The state of the modeled object at time t is denoted xt and its history is Xt = 

{xi,..., xt}. The set of observations at time t is zt with history Zt = {z\,..., zt}. 
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No assumptions on linearity, Gaussian behavior or unimodal distribution are made. 

CONDENSATION is an iterative algorithm with each time-step a self-contained iter­

ation of factored sampling. The output of an iteration at each time-step is a weighted 

sample set 14" > n = 1,.. .,N> with weights 717, representing approximately the 

conditional state density p(xt\Zt) at time t. The method begins with a prior density 

at time t, which is the posterior prediction at time t — 1, i.e., p(xt\Zt-i). This prior 

is derived from the output of the previous time-step, < ( st-i) flt-i )> n — I,..., N> 

o{p(xt-i\Zt-i). The aim is to maintain, at successive time-steps, sample sets of fixed 

size N. The first step is to sample N times from the set \ s|_! >, choosing a given 

element with probability < 7rt_\ >. The elements with high weights may be chosen sev­

eral times in the new set, while others with relatively low weights may not be chosen 

at all. Next, each element in the new set undergoes the predictive steps, i.e., drift 

and diffusion. At this stage, the sample set < ŝ  !> for the new time-step has been 

generated with no associated weight. In the final step, the observation density p(zt\xt) 

is used to generate weights, leading to the sample-set representation < (s\n , ir\; ) [ 

of state-density for time t. 

3.5.2 ICONDENSATION 

Followed by the introduction of CONDENSATION algorithm for visual tracking, 

a probabilistic framework, i.e. ICONDENSATION [28], was proposed to integrate 

the low-level and high-level tracking approaches using the statistical approach of 

importance sampling combined with the CONDENSATION algorithm. 

Importance sampling provides a mathematically principled way of directing search, 

combining prediction based on the previous object state with any additional measure­

ment available from auxiliary sensors. As a result, it allows the system to benefit from 

the diversity of information sources and avoid temporary tracking failures imposed 

by one of the measurement processes. An implementation of ICONDENSATION has 

29 



3. NONLINEAR DAYESIAN TRACKING 

been performed using color segmentation to detect skin-colored blobs and incorpo­

rating this information with a hand contour tracker. 

3.5.3 Color-based Probabilistic Tracking 

The deterministic methods exploiting color histogram principle rely on the determin­

istic search of a window whose color content matches a reference histogram color 

model. Bradski [8] uses a histogram of skin color in HSV color space to determine the 

likelihood of skin occurring at each pixel, using histogram back-projection to replace 

each pixel with the probability associated with that HSV value in the skin color his­

togram. In [12] the target appearance model is a distribution of colors represented by 

a histogram probability qu, which is compared with a histogram of target candidate 

pu observed within the current mean-shift window. The comparison is based on the 

histogram similarity using the Bhattacharyya coefficient. Basically, the current frame 

is deterministically searched for a region, a fixed-shape variable-size window, whose 

color content best matches a reference color model. Starting from the final location 

in the previous frame, it proceeds iteratively at each frame so as to minimize a dis­

tance measure to the reference color histogram. Excellent tracking results on complex 

scenes are demonstrated in [8, 10, 12]. This deterministic search might however run 

into problems when parts of the background nearby exhibit similar colors or when 

the tracked object is completely occluded for a while. 

Perez et al. [43] have applied the SMC tracking technique on a tracker based on 

the color histogram distance. Incorporating the particle filter allows better handling 

color c lu t te r in t he background, as well as complete occlusion of t h e t racked objects 

over a few frames. Their goal is to track objects of a priori unknown nature but 

of a specific interest, e.g., moving objects. In their approach, the input video frame 

is searched against a global color reference model describing the appearance of the 

object, and endogenous initialization, i.e., extracted from the initial frame of the 
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studied sequence. This type of tracker is very useful for tracking objects of interest 

that are of any kind and show drastic spatial changes through the sequence, due to 

pose changes, partial occlusions, etc. It relies on the same principle of comparing color 

contents of candidate regions with a reference color histogram, while being embedded 

within a SMC framework. This requires construction of a color likelihood based on 

color histogram distances, coupling of this data model with a dynamical state space 

model, and sequential approximation of the resulting posterior distribution with a 

particle filter. The use of a sample-based filtering technique allows the simultaneous 

tracking of multiple posterior hypotheses, which is very crucial to avoid background 

distraction and recover after partial or complete occlusions. A second-order auto-

regressive dynamics is chosen as the dynamic model of the system. The color model 

is obtained by histogram technique in the HSV color space [21]. Within the candidate 

region, a kernel density estimate of the color distribution at each time t, qt(x) = 

{qt{n;x)}n_1 N, is used as the color model. This model associates a probability 

to each of the N color bins. At time t, the color model qt{x) associated with a 

hypothesized state x is compared to the reference color model q* = {q*(n)}n=l N, 

which is normalized and constructed at an initial time t0 at a location x*o, either 

manually or automatically by a detection module. The likelihood function must 

give importance to the candidate histograms with minimum distance to the reference 

histogram. The Bhattacharyya distance based on the Bhattacharyya coefficient is 

used to identify the closest matches. 

Another approach for applying the particle filter method in visual tracking was 

developed in [14]. Here, a color distribution in an upright circular region is used as 

target models, and an unconstrained Brownian model is considered for the dynamic 

model. In the tracking stage, the estimated state is updated at each time-step by in­

corporating new observations, using the Bhattacharyya coefficient as their similarity 

measure. In other words, the tracker uses the Bhattacharyya distance to update a 
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priori distribution provided by the particle filter. To weigh the sample set, the Bhat-

tacharyya coefficient is computed between the target histogram and the histogram of 

the hypotheses. 

3.6 Other Methods 

3.6.1 Mean Shift Embedded Particle Filter 

The particle filter performs a random search guided by a stochastic motion model to 

obtain an estimate of the posterior distribution describing the object's configuration. 

On the other hand, mean shift, a typical and popular variational method, localizes an 

object based on minimizing a cost function. The search method of the particle filter is 

stochastic and model-driven, while in mean shift, it is deterministic and data-driven. 

In addition, the particle filter applies a recursive Bayesian filter based on propagation 

of sample set over time, maintaining multiple hypotheses at the same time and using 

a stochastic motion model to predict the position of the object. Maintaining multi­

ple hypotheses allows the tracker to handle clutters in background, also recover from 

failure or temporary distraction. Mean shift, on the other hand, uses only one hypoth­

esis, which is computationally effective but is prone to converge to local maximum. 

A common problem in conventional particle filters is the degeneracy phenomenon, 

where all but one sample will have negligible weight after a few iterations [3]. In 

other words, these samples may have very low likelihood and their contribution to 

the posterior estimation becomes insignificant, which is computationally ineffective. 

In [46], a combination of particle filtering and mean shift for object tracking is pre­

sented in the form of the mean shift embedded particle filter, integrating advantages 

of both methods. One outcome is to overcome the degeneracy problem of particle 

filters. They applied their algorithm on hand tracking, choosing skin color as the 

feature of the hand. The skin color model is adapted frame-by-frame during track-
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ing to handle skin color variations over time due to illumination changes. In their 

approach, mean shift analysis is applied to each sample based on observation den­

sity, after being weighted by observation. After mean shift iterations, samples are 

"herded" to the local modes of the observation. Since the samples are moved to have 

large weights, the algorithm concentrates on samples with large weights. Therefore, 

the degeneracy problem is efficiently overcome. Also, if the iteration times are set 

properly, the resultant samples will not contain too many repeated points and the 

problem of impoverishment is reduced. 

3.7 Summary 

The probabilistic Bayesian filtering approaches including Kalman filter, EKF, UKF, 

and the particle filter have been discussed in this chapter. The particle filtering 

technique is chosen to be incorporated in this research, mainly because it is efficient 

in sampling the underlying state-space distribution of non-linear and non-Gaussian 

processes. 
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Chapter 4 

Probabilistic 3D Tracking Based 

on Adaptive Depth Segmentation 

This chapter presents the problem formulation and implementation steps of the pro­

posed probabilistic object tracking based on the TOF sensor data. The goal is to 

detect objects of interest in the scene and consecutively track them through video 

sequences obtained by TOF sensor. 

The 3D TOF sensor delivers for each pixel the coordinates x,y,z as well as the 

gray-scale intensity value i. By constructing an image of z values for all the pixels in 

the scene, the depth map image becomes available. As mentioned before, this work 

is focused on exploiting depth information for applications where intensity data are 

not promising — due to environmental illumination changes, absence of light source, 

etc. The depth and intensity outputs of the TOF sensor are shown in Fig. 4.1, and 

the corresponding 3D depth map is demonstrated in Fig. 4.2. The environment in 

which the tracking task is expected is supposed to be unconstrained. That is, the 
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(a) Depth image (b) Intensity image 

Figure 4.1: Depth and gray-scale intensity outputs of a TOF sensor 

Figure 4.2: 3D Depth map representation of the depth output obtained from a TOF 

sensor 
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scene can have 

• cluttered background 

• various lighting settings 

• and complex motion patterns. 

Also, multiple people can be present in the scene, navigate, enter, and exit the tracking 

environment. 

4.1 Adaptive Depth Segmentation 

This section describes a novel approach to segment objects in cluttered 3D environ­

ments using depth map distribution produced from a depth histogram of the scene. 

In the initial processing stage, depth images derived from the TOF sensor are passed 

through a noise-removing filter to remove noisy depth measurements around the ob­

ject boundaries. The following processing steps are depth histogram evaluation, de­

termination of the depth density function, segmentation using depth extrema, object 

detection and object association. 

4.1.1 Depth Histogram Evaluation 

Interpretation of depth histogram differs from color histogram in several aspects. The 

most important advantage of using depth histogram is that it provides the user with 

depth guidance to evaluate the scene. As shown in Fig. 4.3, the horizontal axis (bins) 

in this type of histogram represents the distance to the origin, i.e. the camera, and 

the vertical axis represents density of the pixels that fall into each distance bin. More 

specifically, higher values on the depth bin axis correspond to farther distances in the 

actual scene. Hence, using the depth histogram one can achieve a better depiction of 

the depth layout, which is not available in 2D images or color histograms. The depth 
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Figure 4.3: Depth histogram presentation of a 3D scene 

image is denoted by I : 5ft2 —> (a, /?) where (a, /?) is the dynamic range of the pixel 

values. The discrete depth histogram of I over iV bins is defined as 

K = {hzm^,2,...,N (4-1) 

where, hz(i) corresponds to the number of pixels that are located at distance i from 

the camera. 

4.1.2 Depth Density Function 

In order to segment depth images, it is necessary to form the underlying continu­

ous distribution that the discrete histogram measurements hz are drawn from. For 

this purpose, the kernel density estimation technique is applied to approximate this 

distribution from depth histogram information to facilitate gradient estimation and 

local extrema detection. Denoting the scalar measurements Zj, i = 1,... ,N from a 

depth distribution H(z), the corresponding kernel density estimate is achieved using 
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0.5 0.6 07 0.8 

Figure 4.4: Depth density function of a depth histogram 

a kernel function K(u) with a bandwidth A as 

Z — Z; 

A 
(4.2) 

H(z) has all the properties of a pdf, and thus is called the depth density function. 

The resulting depth density function for the depth histogram of Fig. 4.3 is given in 

Fig. 4.4. 

4.1.3 Range Segmentation from Extremum Data 

In the next step, the resulting depth density function H(z) is further analyzed to 

derive the local maxima and minima vectors, T and 7 from equations (4.3) and (4.4), 

respectively. The i-th element of T over an interval [a, b] where the distribution is 

unimodal is expressed as: 

Tj = argmaxH(z) . (4.3) 
ze[a,b] 
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Figure 4.5: Range dividers for extremum segmentation 

Then, 

7j = argmmH(z) , (4.4) 

Ri = {r, < z < rj+1] (4.5) 

where, j — 1, 2 , . . . , M — 1, and M is the total number of the local maxima. 

Upon determination of the local extremum points of the depth density function, 

a set of range dividers Sk, k — 1 , . . . , M + 1, can be evaluated from (4.6). To better 

illustrate this process, the corresponding local extremum points as well as range 

dividers for Fig. 4.4 are highlighted in Fig. 4.5. 

Sk=< 

a 

fc-i 

0 

k=l 

2<k<M 

k = M + l 

(4.6) 

These dividers are used to partition the scene into different depth divisions D; in 
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Figure 4.6: Binary depth divisions resulted from the range segmentation approach 

order to separate adjacent and overlapping objects, denoted by: 

&i(x,y) = 
1 Si < I(x, y) < Si+i 

0 otherwise 
(4.7) 

where / = 1,2,..., M, and I is the depth image, (x, y) correspond to the horizontal 

and vertical pixel coordinates in the image, respectively. 

In essence, each division forms a binary image containing pixels with depth values 

between two consecutive range dividers. A set of depth divisions achieved with this 

approach is demonstrated in Fig. 4.6. It is noteworthy to mention that range dividers 

are chosen adaptively for each image. Adaptive selection ensures that the algorithm 

can be applied on unconstrained environments without a priori information about 

the scene, including number of objects and background settings. 

4.1.4 Object Detection 

In the final stage of segmentation, connected component analysis is exploited on each 

of the derived depth divisions to detect object blobs in the scene. This is followed by 

a size filter with a minimum area threshold of Aa to eliminate insignificant and trivial 
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regions of isolated noises or inter-objects pixels. There exists at least one object for 

each division D; that is localized in that depth range. 

D, = £ a + 5 > > (48) 

where N\ and N2 represent the total number of significant objects and insignificant 

regions in the corresponding depth division, respectively. 

The total number of objects in the scene is determined by inspecting each divi­

sion's objects, as stated above. These objects can be further classified based on their 

properties such as their associated mean depth in order to be exploited in the sub­

sequent procedures. Also, human candidates are detected based on their geometric 

features, e.g., aspect ratio and relative size to depth mean. Segmentation output of 

this method is further illustrated in Fig. 4.7, where each object is assigned a seg­

mentation label. By further analyzing the properties of segmented objects, objects of 

interest can be detected, as demonstrated in Fig. 4.8. 

4.1.5 Object Association 

To compare and match two objects from consecutive frames, it is necessary to form 

a similarity measure using a distance metric between their signatures. An object 

signature is defined by a concatenation of its X, Y, and Z histograms as 

s = [hx hy hz] . (4.9) 

There exist several metrics including the Euclidean distance, histogram intersec­

tion, Bhattacharya distance, etc. Here, a similarity metric derived from the Bhat-

tacharya coefficient is used since it has been established as an efficient metric for 

comparing arbitrary histogram-based distributions [13]. The distance between two 

discrete distributions is defined as 

d(fu, hj) = y/l - p[hi, hj) (4.10) 
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20 40 60 60 100 120 140 160 

Figure 4.7: Object segmentation output from analysis of depth divisions 

where 
N 

p[hi, hj] = ] T hi(n)hj(n) (4.11) 
n = l 

4.2 Probabilistic Method: Particle Filter 

In this work, the particle filter is employed to probabilistically associate objects be­

tween consecutive frames. The advantage of incorporating particle filtering in tracking 

is that it is highly efficient in cluttered environments as well as being robust to object 

occlusion. This section aspires to explain the characteristics of the particle filter, in­

cluding the proposal and likelihood distributions, as well as the required formulation 

to update the particle weights during the update stage. By employing the particle fil-
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Figure 4.8: Objects of interest, detected from segmentation image using geometric 

features 

ter, it is feasible to achieve an efficient, depth-based human tracking algorithm using 

a TOF range sensor. 

Based on the discussed information in chapter 3, particle filtering — as a nonlinear 

filtering method — characterizes the tracking target by the state sequence {xt}t=xQ r , 

whose transition density is specified by the dynamic model xt = ft{xt-\,vt^\). Only 

the measurements {zt}t=1 2 are available, which are used along with the likelihood 

model to estimate the state xt through the prediction and update stages. In the 

particle filter, the posterior density is given by (3.37) and the weight update equation 

is determined from (3.3(3). In order to determine an estimation of the state at time t, 

the posterior density should be known, necessitating the calculation of the transition, 
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likelihood, and proposal distributions of (3.36). 

4.2.1 Proposed Transition Distribution 

Human body at time t is represented by a scalable rectangle, xt = {cf,cf,wt, ht} 

where, (cf, cv
t) are the center coordinates and (wt, ht) are the corresponding width and 

height of the bounding box. Human motion is modeled with a first order dynamic 

model as (4.12): 

x4 = A x t _ i + K t . 1 N w (4.12) 

where, A and N t_i represent the deterministic component of this model and a multi­

variate Gaussian random variable, respectively. Constant velocity model with A — I 

is chosen for the nature of random human walk. K is related to the object's velocity in 

the sense that it increases when the person is moving with higher velocity — causing 

an increase in the variance of the process noise. As a result, samples are propagated 

over a larger area in the state space to increase the efficiency of object localization 

for faster human motions. 

4.2.2 Proposal Distribution 

The proposal distribution is a combination of high- and low-level approaches in 

the sense that particles are drawn from the transition prior distribution by using 

the CONDENSATION algorithm for tracking. In addition, samples are propagated 

through a Gaussian distribution obtained from low-level processing of the proposed 

adaptive depth segmentation in Section 4.1, centered at the object's center coordi­

nates. The proposed segmentation process is exploited to detect human objects as 

they enter the scene, while detecting them in each frame, using the corresponding 

depth density function. A Gaussian distribution is considered as the system's pro­

posal, having the object's center and covariance. 
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4.2.3 Likelihood Distribution 

For each particle i, a likelihood distribution is considered by using a distance measure 

between the corresponding target and the object model. 

P{zt\x\)=l-di{ST)SM) (4.13) 

dl is the distance measure between the depth signatures of the object model and the 

target corresponding to particle i. As mentioned before in Section 4.1.5, the Bhat-

tacharya distance is employed to derive a similarity measure that can be leveraged to 

form the likelihood model in (4.13). 

4.2.4 Weight Measurement 

At each iteration, samples are drawn from the discussed proposal distribution in the 

previous frame. The prediction step includes sampling from a Gaussian distribution 

resulted from the segmentation algorithm, as well as sampling from the predicted area 

determined by the transition density. At the update stage, each of the new samples 

is weighted based on the available measurements zt obtained from segmentation of 

the current frame. Sample weights are then normalized such that: 

Ns 

E^ = 1 (4-14) 
In the final step, the person's location is determined as follows: 

• The achieved weights are categorized into L clusters. 

• Centers of the clusters are assigned to their corresponding segmented objects, 

known from the most recent measurement. 

• The Bhattacharya distance metric is calculated between the signatures of the 

object model in the previous frame and the object candidates defined by cluster 

means in the current frame. 
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• The cluster with the least Bhattacharya distance is investigated and if the cor­

responding distance satisfies a high confidence, the person's location is updated 

to be the expected value of that cluster. 

4.3 Summary 

In this chapter, design and implementation of the proposed TOF object tracking 

method has been demonstrated. An adaptive depth segmentation technique has been 

developed to detect objects of interest in each frame. The depth histogram of TOF 

input has been leveraged to derive a depth density distribution conveying key range 

segmentation information. For tracking the objects, the particle filter has been uti­

lized to perform object association between frames. Also, the proposal distribution 

used in the particle filter has been designed so that it includes both bottom-up and 

top-down approaches to enhance the tracking efficiency in nonlinear and complex 

situations. 

The next chapter will address the experimental results performed in order to verify 

the operational efficiency and performance of the developed TOF object segmentation 

and tracking approach discussed in this chapter. 
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Chapter 5 

Experimental Results 

Performances of the proposed segmentation and tracking algorithms have been eval­

uated by carrying out experiments using SR-3000 TOF sensor with a resolution of 

176x 144 pixels. The operating range of this sensor is from 30 era to 7.5 m with a field 

of view (FOV) of 47.5° x 39.5°. Range images can be acquired up to a frame rate of 

29 fps with and without environmental illumination. More than 10 video sequences, 

each including over 200 frames, were used for the experiments. Various object track­

ing scenarios have been considered, while no constraint has been assumed on the 

environment. There has been diversity in background selection including cluttered, 

semi-cluttered, and plain cases. Also, a diverse number of people with differences in 

size and sex have been present in tracking scenes. 
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5.1 Proposed Depth Segmentation Evaluation 

5.1.1 Performance Comparison 

As the representative of iterative segmentation techniques, an edge-based segmenta­

tion method is chosen for comparison with the proposed approach in chapter 4. Both 

algorithms have been applied to the same TOF dataset for all of the sequences. As 

discussed earlier, the performance of edge-segmentations highly depends on the num­

ber of iterations, as well as the choice of edge threshold. The edge-based algorithm 

has been applied with two and three iteration cycles, and with adaptive thresholds. 

The results were compared to those of the proposed segmentation (Fig. 5.1), where it 

was observed that the edge-method produces under-segmented results, even though 

the number of iterations has been increased. This is due to the fact that disconti­

nuities in curved surfaces are not easily recognized by edge detection. Furthermore, 

edge removal at each iteration leads to distortion of the neighboring regions, as seen 

in Fig. 5.1. 

5.1.2 Operational Efficiency 

To verify the operational efficiency of the proposed segmentation method, perfor­

mance analysis has been exploited on a diverse database of TOF depth images. Ta­

ble 5.1.2 demonstrates the significant efficiency of the adaptive depth segmentation 

method compared to the employed edge segmentation technique. On average, the 

proposed algorithm operates 1.5 times faster than an edge segmentation with two it­

eration levels, and 2.5 times faster than a three iteration-level edge segmentation. In 

addition, the number of segmented objects using the proposed method is significantly 

higher compared to the other methods. These experiments show the non-promising 

results of iterative segmentation approaches, and verify the efficiency and high per­

formance of incorporating depth-based segmentation in the tracking problem. 
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Figure 5.1: Comparison, of the proposed depth-based segmentation (left) with edge 

segmentation algorithms (right) 
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Segmentation Method 

Proposed adaptive depth approach 

Two iteration edge-based method 

Three iteration edge-based approach 

Mean No. of objects 

17.97 

7.92 

6.70 

Run-time 

l x 

1.49x 

2.55x 

Table 5.1: Performance Analysis of the proposed depth segmentation method 

5.2 Proposed Tracking Approach Evaluation 

5.2.1 Handling Scale Variations in Cluttered Scenes 

The proposed tracker was evaluated in a cluttered office environment with a person 

entering the scene and moving through the background. The corresponding tracking 

results of this person is demonstrated in Fig. 5.2. The tracker has been shown to be 

efficient throughout rapid scale changes. 

5.2.2 Handling Occlusions in Inadequate Illumination 

In low illumination settings, successful tracking is feasible, as the results show the 

robustness of the tracking system against weak lighting conditions in Fig. 5.3. Fur­

thermore, the tracker is able to handle occlusions since it uses particle filtering with 

multiple hypothesis consideration. In Fig. 5.3 and Fig. 5.4, multiple people enter 

and walk through the scene, while coinciding with each other sporadically from dif­

ferent directions and with various poses. Tracking each of the objects is achieved in 

spite of undergoing several partial and complete occlusions for a few frames, in which 

case particles are diffused around the proximity of the previous state until one of the 

hypotheses satisfies the confidence measure and updates the measurement weights 

accordingly. 
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Figure 5.2: The proposed tracker's results for rapid scale variation in cluttered back­

ground setting 
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Figure 5.3: Tracking results under low illumination and occlusion 
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Figure 5.4: Tracking results of multiple people under low illumination and occlusion 
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5.2.3 Handling Rotation, Complex Motion and Self-Occlusion 

One of the circumstances in which tracking methods fail is the occurrence of out-of-

plain rotation. Since the exploited detection method in this thesis mainly relies on 

the depth information of the object, out-of-plain rotation will not issue a problem 

since depth values of the person's body do not change radically. In addition, complex 

object motion and rapid scale changes could result in tracking failure. In these cases, 

the transition distribution in section 4.2.1 is challenged, as the object motion does not 

comply with the considered constant velocity model. Fig. 5.5 and Fig. 5.6 summarize 

the output of the proposed algorithm, while evaluated under rapid scale changes and 

complex motion, as well as out-of-plain rotation and self-occlusion. 

5.2.4 Performance in Noisy Environments Due to the TOF 

Nature 

To evaluate the noise response of the system, the system has been set up in a noisy 

environment composed of a long, narrow hallway. The reflectance of the surrounding 

walls as well as the floor and ceiling on the TOF sensor leads to incorrect depth 

measurement of the objects. Nevertheless, the tracker is able to track the object 

and retrieve from noisy readings although the detection results are highly distorted. 

However, as the object moves away from the camera, it is impossible to distinguish its 

depth from noisy surroundings, which eventually results in tracking failure. Later on, 

as the object moves toward the camera, distortion in the detection stage is reduced 

and the tracker picks up the object again. The results of this test are demonstrated 

in Fig. 5.7. 
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Figure 5.5: Successful tracking results under out-of-plane rotation with rapid pose 

change and complex motion 
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Figure 5.6: Successful tracking results under self-occlusion, rapid pose change and 

complex motion 
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Figure 5.7: Tracking evaluation under noisy depth measurements 
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Chapter 6 

Conclusions and Future Work 

The main contributions of this thesis are summarized in this chapter, followed by 

suggestions regarding future development of the proposed research. 

Visual tracking has been an active area of research for many years. With the 

advent of active 3D sensors such as TOF systems, which provide system designers 

with accurate pixel-level depth measurements with no post-processing, there has been 

an increasing interest in deploying these sensors in tracking systems. However, the 

massive dimensions as well as high costs of early active sensors have been an issue 

in developing tracking approaches using depth information. In recent years, CMOS-

based implementation has led to the development of small TOF cameras with much 

lower cost. Benefits of exploiting TOF sensors are their low sensitivity to lighting 

variations and the availability of the third dimension that was not feasible without 

extensive computation in previous years. Using this added information, tracking 

system designers can develop more efficient algorithms to handle challenging cases 

including occlusion, rotation, and insufficient illumination. 
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6.1 Contributions 

This thesis proposed a 3D object tracking methodology using TOF sensor information, 

which combines bottom-up and top-down approaches to achieve more efficient results. 

The main idea was to develop an adaptive depth segmentation method for object 

detection as the bottom-up process, while integrating it with the particle filter as the 

top-down association approach. 

The major contributions of this thesis are as follows: 

• An original range segmentation approach was presented, which segments im­

ages based on the depth density of the corresponding range histograms. The 

motivation to use depth histograms for segmentation originates from the fact 

that other segmentation techniques in literature do not translate to operate on 

depth images efficiently, as discussed in earlier chapters. The performed experi­

ments verify the efficiency of the proposed segmentation algorithm as compared 

to other techniques. 

• The segmentation process is adaptive to any scene structure since there is no 

manual threshold selection for object and background segmentation. In essence, 

depth density of each environment is evaluated independently to derive the 

required range dividers. 

• An improved particle filter was introduced to be exploited in tracking. The 

proposal distribution of the particle filter was improved so that particles were 

drawn both from bottom-up and top-down approaches in order to achieve more 

efficient tracking results. As previously mentioned, the proposed depth seg­

mentation method was chosen as the bottom-up process, while the transition 

distribution was selected to propagate particles in the top-down process. 

• The proposed method is unaffected by illumination variation, as it relies on 

TOF information, which are not sensitive to environmental lighting changes. It 
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also produces promising results under no illumination due to the near-infrared 

nature of the sensor, as illustrated in chapter 5. 

• The tracker produces efficient outcomes in cluttered backgrounds. This is due to 

the fact that particle filtering assumes multiple hypotheses simultaneously and 

evaluation of these hypotheses are maintained through a confidence measure. 

Therefore, clutter will not distort the results of tracking. 

• One of the main challenges in tracking is object occlusions. Object — either 

in part or as a whole — can become occluded by itself (self occlusion) or by 

another object (inter-object occlusion). The proposed method has been verified 

to successfully track and retrieve objects after all of the discussed occlusion 

types. 

• The proposed particle filter tracker has been designed and verified to succeed 

in complex object motion and in the case of multiple objects present in the 

sequence. 

6.2 Future Work 

The following are some of the possible avenues of future research that may be taken 

to further enhance the performance and functionality of the probabilistic 3D tracking 

approach: 

• Current detection accuracy is at the blob level, since object details or micro-

features cannot be determined based on range images alone, if not in close 

proximity. Thus, one approach would be to integrate range information with 

color data, leading more detailed detection results and enhanced tracking per­

formance. 
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• The proposed research can be further expanded to include human behavior 

analysis and pose estimation based on the tracking outcomes. 

• Current TOF sensors are applicable in indoor environments only, although the 

proposed method is not restricted to indoor scenes. With future advancements 

in design and implementation of TOF sensors, probabilistic 3D tracking can be 

achieved in outdoor applications by further investigating the proposed particle 

filter tracker using outdoor depth information. 
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