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ABSTRACT 

Object-oriented databases have the potential to be used for data-intensive, multi-user 

applications that are not well served by traditional applications. Despite the fact that there 

has been extensive research done for relational databases in the area of concurrency 

control; many of the approaches are not suitable for the complex data model of object-

oriented databases. This thesis presents a self-adjusting multi-granularity locking protocol 

(SAML) which facilitates choosing an appropriate locking granule according to the 

requirements of the transactions and encompasses less overhead and provides better 

concurrency compared to some of the existing protocols. Though there has been another 

adaptive multi-granularity protocol called AMGL [1] which provides the same degree of 

concurrency as SAML: SAML has been proven to have significantly reduced the number 

of locks and hence the locking overhead compared to AMGL. Experimental results show 

that SAML performs the best when the workload is high in the system and transactions 

are long-lived. 
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CHAPTER I 

INTRODUCTION 

Numerous large, multi-user, advanced computer applications, like software development, 

computer aided design (CAD) and manufacturing (CAM), network management, 

knowledge-based systems, financial forecast, medical informatics, complex scientific and 

business applications and multi-media information systems involve computations on a 

large amount of objects with a complex data model. Object-oriented databases (OODBs) 

can deal with these applications more efficiently while other types of databases might 

fail. 

There are certain benefits that these applications can derive by using an object-

oriented database. OODBs handle complex data structures in a way which is similar to 

that of an object-oriented programming language and hence provides lesser 

developmental cost and better performance through better integration to the application 

tier. This in turn reduces both development time and maintenance costs. The main 

objective of object-oriented database systems is to provide consistent, data independent, 

secure, controlled and extensible data management services to support the object-oriented 

model. Storing Java or .NET objects 'just as they are in memory' is the best way to 

implement a persistence solution. The schema for an object database takes form naturally 

as per the application objects' persistence. By using an object-oriented database instead 

on an RDBMS, the overhead of object-relational mapping can be avoided which 

otherwise would have resulted in an increased demand on resources. Object databases' 

true zero-administration nature as well as a small footprint, removal of the need for OR 

mapping tools makes it a good technology for these kinds of applications. Complex cross 

referencing among objects can be difficult and error-prone to model in a relational 

database system. Relationships among objects are often dealt with using foreign keys in 

RDBMSs. So, fetching an object and then fetching objects it references, and then the 

objects they reference; can result in complicated and difficult-to-maintain code. 

Most ODBMSs implement reachability persistence. That means that any object 

referenced by a persistent object is also persistent. This means a whole lot of objects can 
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be stored or fetched with a single call. The ODBMS engine handles the details of 

maintaining the references when objects are stored, and fulfills them when objects are 

fetched. Highly-connected object structures are not easily translated to "fit" into a 

relational database and the conversion is often confusing and difficult to maintain. On the 

other hand, an ODBMS requires no translation of the original structure into a model for 

the database. If the ODBMS provides programmer control over the depth of reachability 

persistence, the developer can control whether a whole tree is fetched or stored, a branch 

is fetched or stored, or individual twigs are fetched and stored. And, again, the integrity 

of the structure is preserved by the database engine itself. In many cases class structures 

of an application changes over time, new data members are added or new object 

relationships needs to be included. As most applications evolve as they age so should the 

data structures they support. An ODBMS has the capability to adapt to data structure 

changes more easily than a RDBMS. If a RDBMS is used, the schema might have to be 

changed to fit the new object structure and then the query code will have to be altered to 

handle the changes. Some ODBMSs allow the change of the structure of objects "on the 

fly" and "old" and "new" objects can come together in the same database. If the new 

object structure has additional fields, reading an old object into the new application 

simply loads the additional fields with default (i.e., null or zero) values. If the new object 

structure has fewer fields, reading an old object into the new application skips the now 

non-existent fields. If ODBMs are used instead of RDBMs then there would be no need 

of writing translation code to pass data back and forth between row objects fetched from 

the database and actual objects in an application. This is an important consideration if 

multiple applications that access the same database have to be maintained but in 

somewhat different ways. In such a situation, all of the translation codes for all of the 

different applications have to be synchronized. 

While programming using Object-oriented languages, if an ODBMS is used, the 

access is the same for all applications as the objects being fetched and stored are being 

manipulated in the same way. Again if the application is factored properly then in a 

change in the class structure means only a change to a single library. They were created 

to handle large and complex data that relational databases could not and hence it is 

believed that they have the potential to be applied widely. 



In recent years, there has been much interest in object-oriented databases for 

advanced database systems and because of that; the performance of object-oriented 

databases has become a significant issue. Past researchers mainly focused on single-user 

performance issues but in a multiple user and applications environment, their 

performance issues have not been studied thoroughly. However, to be accepted widely, 

object-oriented databases will have to have a good performance in an environment with 

multiple users and/or multiple applications. The problems of concurrency control in a 

relational database, for example: the lost update problem and the uncommitted 

dependency problem, remain in object-oriented database. In addition to that, the 

complexity of the object-oriented data model and the object-oriented database paradigm 

introduces some unique challenges in concurrency control when multiple applications use 

the same object-oriented database. 

In order to control the concurrent accesses from multiple transactions, the 

object-oriented database system uses a variety of concurrency control techniques. Many 

of the current object-oriented databases use concurrency control techniques that are 

borrowed from relational database systems. They were not modified to match the 

performance requirements of an object-oriented application as they are quite different 

from the relational database applications. Depending on the implementation of the 

concurrency control protocol, there could be considerable performance differences 

among object-oriented systems. One of the main techniques used for concurrency control 

is based on the concept of locks. In the case of object-oriented applications' concurrency 

control, they could involve a huge number of objects and thus require significant 

overhead for the locks used for each object. These applications might operate on these 

objects for a long time and be interactive in nature and so the transactions involved are 

usually long-lived. Holding locks for a long time is problematic for object-oriented 

databases as most of them use a navigational mode of access. Severe performance 

degradation can occur if locking a wrong granularity is chosen. Some granularity 

protocols as well as a multi-granularity protocol and an adaptive multi-granularity 

protocol are available for improving performance and reducing the overhead incurred but 

they all posses some weaknesses. This thesis proposes a self-adjusting multi-granularity 

protocol called SAML to improve the degree of concurrency of object-oriented databases 



that can be achieved while alleviating certain locking overhead issues that is often 

encountered. 

The rest of the thesis is organized as follows. CHAPTER II briefly discusses 

some basic concepts and provides a literature review of related work done in the field of 

database concurrency control protocols. CHAPTER III contains a detailed description of 

the design and development of the proposed SAML protocol. The major components 

such as the granularity units, lock request protocols, lock compatibility matrix and lock 

de-escalation are explained clearly. CHAPTER IV deals with the simulation of the 

proposed protocol. The simulation methodology and models are illustrated and 

CHAPTER V presents the results of experimental studies using different parameters. The 

entire thesis work has been summarized in CHAPTER VI along with some suggestions 

and directions for future research in this area. 
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

This chapter focuses on object-oriented databases and reviews some basic concepts of 

these databases. A brief review on the work that has been done in the field of 

concurrency control of relational databases as well as object-oriented databases is 

presented. The concept of granularity locking used for concurrency control of object-

oriented database is addressed elaborately. 

2.1. Object-Oriented Database 

"An object database management system (ODBMS, also referred to as object-

oriented database management system or OODBMS), is a database management system 

(DBMS) that supports the modelling and creation of data as objects " [2], 

According to Won Kim [3], the lead developer of one of the earliest commercial 

object-oriented databases (ORION), an object-oriented database is "a database system 

which directly supports an object-oriented data model". A data model is a logical 

organization of real world entities or objects, their relationship and constraints on them 

and a data model capable of capturing the object oriented concept is an object oriented 

data model. An object oriented database is a collection of objects and these objects' 

behaviour and relationship is defined according to object oriented concepts. An object in 

an object database is comparable to an object in application memory. In most object 

databases, there are language bindings that allow the usage of persistent objects in 

applications. The database schema itself is created using an object definition language, 

which defines the object classes that can be stored and their relationships. The main 

objective of OODBMS is to provide consistent, data independent, secure, controlled and 

extensible data management services to support the object-oriented model. They were 

created to handle voluminous and complex data that relational databases could not. 

Object oriented concepts facilitate a rich data model for the next- generation database 

applications like CAD/CAE/CASE/CAM systems, knowledge-based systems and multi­

media information systems. 
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According to ODMG2.0 (The Object Data Management Group), an object 

database management system is "a database management system that integrates database 

system capabilities with object-oriented programming language capabilities'' The Object 

Oriented Database Manifesto [4] specifically lists the following features as mandatory for 

a system to support before it can be called an OODBMS; complex objects, object 

identity, encapsulation, types and classes, class or type hierarchies, overriding, 

overloading and late binding, computational completeness, extensibility, persistence , 

secondary storage management, concurrency, recovery and an ad hoc query facility. 

2.2. A Brief History 

During the early to mid-1970s, object-oriented database management systems were used 

as a database support for graph-structured objects. In the late 1980s object databases 

started to evolve, but they acquired wide usage only in a few markets; namely telecom, 

scientific and financial applications. Some outstanding research projects of that time 

included Encore-Ob/Server, EXODUS, IRJS, ODE, ORION, Vodak and Zeitgeist. The 

ORION project has more published papers than any of their contemporary projects. Some 

of the early commercial products incorporate Gemstone, Gbase, and Vbase. In early to 

mid-1990s additional commercial products like ITASCA, Jasmine, Matisse, 

Objectivity/DB, ObjectStore, ONTOS, O2, POET, and Versant Object Database came 

into existence. Some of these products still remain on the market. These early 

commercial OODBs were integrated with various languages: GemStone used Smalltalk, 

Gbase used LISP, whereas Vbase used COP. Most of 1990s, C++ was used widely in the 

commercial object database management market. Vendors started to use Java in the late 

1990s and more recently, C# (C# is a multi-paradigm programming language that 

encompasses functional, imperative, generic and object-oriented programming 

disciplines; It is developed by Microsoft as part of the .NET initiative). 2004 onwards 

object databases have experienced an exponential growth period when open source object 

databases emerged. OODBs have benefited from the popularity of object oriented 

languages like Java and C#. These databases were commonly affordable and user-

friendly as they were entirely written in OOP languages like Java or CP. Db4o 
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(db4objects) and Perst (McObject) are two of these databases. In recent times another 

open source object database Magma (written in Squeak) has been in development. 

Object databases have been accepted as a solution for the object-relational (OR) 

impedance mismatch: a set of conceptual and technical difficulties which are often 

encountered when a relational database management system is being used by a program 

written in an object-oriented programming language or style; particularly when objects 

and/or class definitions are mapped in a straightforward way to database tables and/or 

relational schema. This is undoubtedly the biggest problem faced in the era of object-

oriented programming. The wide use of OOP languages like Java and .NET has made the 

dilemma even more crucial. As a result of this, object databases are getting recognition as 

a complement but not replacement for solving OR mismatch effectively. 

Besides applications areas like engineering and spatial databases, as well as 

scientific research areas like high energy physics, molecular biology, object databases are 

being used in embedded systems as well as real-time systems. They are providing 

embeddable persistence solution in devices, on clients, in packaged software, in real-time 

control systems and to power websites. Now, they are typically being used as an 

embedded database but most vendors do have a network version available and clients can 

access a running server via TCP/IP. 

2.3. Object-Oriented Database Definitions 

The data models of relational databases and object oriented database are considerably 

different and by databases, people often mean the relational database. But the increasing 

use of object-oriented languages has made people look for an alternative. So it is vital to 

understand the main concepts of OODBMS and how they have emerged from the object 

data model. 

• Object: Real world entities that are of some meaning are referred to as 

Objects. An object consists of a set of values for its attributes. The values of the attributes 

of an object constitute the state of the object. The domain of an attribute is the class to 

which the values of the attribute belong; the domain of an attribute may be any class 
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including a primitive class, for example, integer, string, etc. Again, an attribute may have 

a single value or a set of values from its domain. So these values can also be objects, thus 

forming relationships among objects. 

• Object Identifier: This is a system-wide unique identifier that an object is 

associated with. This acts as a reference to the object and is used to indicate other objects 

to which it is related. Thus, an object identifier makes a convenient way of navigating 

through a complex network of objects. As object identifiers are the only means of 

accessing objects, most of the existing object-oriented applications use navigational 

model of computation. Nevertheless, there are also other declarative methods of 

manipulating data in object-oriented databases. 

• Class: All objects that share the same set of attributes belong to the same 

class. An object belongs to a class and is an instance of that class. A class consists of 

attributes as well as methods, which define the behaviour of a class. The concept of class 

directly captures the concept of instance-of relationship between an instance and the class 

to which it belongs. In most systems, an instance belongs to one class only. But some 

object-oriented databases use the concept of multiple-inheritance which makes it possible 

for an instance to logically belong to more than one class. 

• Class Inheritance: In any object-oriented system, a class may have any 

number of subclasses. However, some systems allow a class to have only one superclass 

and in this case, the class inherits attributes and methods from only one class. This 

phenomenon is known as single inheritance. On the contrary, some systems allow a class 

to have any number of super classes and the class inherits attributes and methods from 

more than one superclass; this is called multiple-inheritance. Together, the classes in a 

system form a hierarchy called the class hierarchy. It captures the generalization 

relationship between a class and its direct and indirect subclasses and captures the IS-A 

relationship between a class and its superclass/es. 
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2.4. Concurrency Control 

A transaction is a unit of a program execution that accesses and possibly updates various 

data items [5], These updates of data in a database have to be done in such a way so that 

concurrent executions and failures of various forms do not result in an inconsistency in 

the database. Transactions are required to have the ACID properties: atomicity, 

consistency, isolation and durability. Atomicity ensures that either all of the effects of a 

transaction are reflected in the database or none of them are. Consistency ensures the 

same consistent state of a database is maintained before and after a transaction has been 

executed. Isolation ensures that concurrently executing transactions are isolated from 

each other in a way that each of them gets the impression that no other transaction is 

executing concurrently with it. Durability ensures that even on an event of a system 

failure, the updates of a committed transaction is not lost. 

Though isolation is one of the fundamental properties of a transaction, it may not 

be preserved any longer while several transactions are being executed concurrently. In 

order to maintain the isolation property, the system has to control the interaction among 

the concurrent transactions. Concurrency control protocols are used to attain this control. 

2.4.1. Concurrency Control in Relational Databases 

When multiple transactions are trying to access the data, conflicts among the data 

accesses is unavoidable and it is the concurrency control mechanism's responsibility to 

resolve these conflicts. If isolation property of a database cannot be protected, then the 

consistency of a database cannot be maintained either. In the 1970's researchers first 

worked on the concurrency control mechanisms and since then a number of variations 

and improvements have been done on them ever since. All of these mechanisms use the 

concept of serializability to guarantee the consistency of a database, i.e. all these 

mechanisms make sure that the schedule is serial. According to the concept of 

serializability, any schedule that is produced by the concurrent processing of a set of 

transactions to be an effect equivalent to a schedule produced when these transactions are 

run serially in some order. A few of these protocols are lock-based protocols, timestamp-

based protocols and validation based protocols. 
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In lock-based protocols, serializability is maintained by letting the data items to 

be accessed in a mutually exclusive manner. Data items can only be accessed if the 

transaction puts a lock on that item. A Lock is a database system object associated with a 

database object that prevents undesired operations of other transactions by blocking 

them. There are two basic modes of locking: shared and exclusive. If a transaction obtains 

a shared lock on a data item, then it can read the data item but cannot write. On the 

contrary, if a transaction has obtained an exclusive lock on a data item then it can both 

read and write the item. Every transaction requests for an appropriate mode of lock on a 

data item, depending on the types of operations that it wants to perform on that data. The 

protocol follows a set of rules indicating when a transaction may lock and unlock the data 

items. Deadlock is very common in this protocol. Deadlock is a state when two or more 

transactions are waiting for the other to release a resource, or more than two processes are 

waiting for resources in a circular chain. Locks are the most common mechanism for 

maintaining consistency is a database system [4], One commonly used protocol is called 

two-phase locking. Two-phase locking has two phases, namely the growing phase and a 

shrinking phase. In the growing phase locks are accumulated which is followed by 

shrinking phase where locks are released. So a lock request is always followed by a lock 

release. If for any reason, this rule is violated during the lifetime of a transaction, then 

that transaction has to be aborted. Two-phase locking also has the problem of 

encountering deadlocks. One modification of two-phase locking is called strict two-phase 

locking. In this protocol the locking is done in two phases and all exclusive mode locks 

obtained by a transaction be held until that transaction commits. Another variety of two-

phase locking is called rigorous two phase locking. It requires all locks to be held until 

the transaction commits. Another modification of two-phase locking is conservative two 

phase locking where transactions obtain all the locks they need before the transactions 

begin. This is to ensure that a transaction that already holds some locks will not block 

other transactions' waiting for other locks. Conservative two-phase locking can prevent 

deadlocks. Two-phase locking is known as a pessimistic method of concurrency control 

as it requires locks to be obtained before data can be accessed. 

Another method for determining the serializability order of transactions is to 

select an ordering among transactions in advance. Timestamping uses this concept. 
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Though it was originally designed for distributed database systems, many centralized 

databases use it too [5]. Timestamping has the potential to solve the problem of 

deadlocks during locking-based protocol. In this method, the database system assigns a 

unique number to each transaction, called a timestamp, before the transaction starts its 

execution. In this method, a transaction's timestamp is equal to the value of the clock 

when the transaction enters the system and a logical counter is used the value of the 

counter is the value is equal of a transaction's timestamp when it enters the system. The 

timestamps of the transactions determine the serializability order. Conflicting transactions 

are always processed in timestamp order and as no transaction ever waits, there is no 

deadlock either. Timestamping is also a pessimistic protocol in that it forces a wait or 

rollback whenever a conflict is detected, even though the schedule might be conflict 

serializable [5], 

A concurrency control scheme incurs overhead of code execution due to 

possible delays of transactions. Again, in cases where a majority of transactions are read­

only, the conflicts among transactions might be low. So, in these cases, even if there is no 

concurrency control scheme, the transactions might leave the system in a consistent state. 

With this assumption validation-based protocols try to use a method that imposes less 

overhead but as we do not know in advance which transactions are going to be in 

conflict, it uses a monitoring scheme to predict that. In this scheme the actual writes take 

place only after the transaction issuing the write has committed. A validation test is used 

to check whether the serializability is maintained till the end or not. This is an optimistic 

concurrency protocol as transactions are executed optimistically assuming they will be 

able to finish execution and validate at the end. 

Until now, this discussion mentioned only protocols that work on a single data 

item. However, it is often useful to access a set of data items as a single unit as this 

allows fewer locks to be used. The multiple granularity locking protocol [7] aims to 

present a concurrency control protocol that minimizes the number of locks while 

accessing sets of objects in a database. The data items are organized in a tree structure 

and the smaller data items are contained in larger ones. The root of the tree represents the 

entire database. When a transaction locks a node, its nodes are also locked implicitly as 
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well. Locks can be shared or exclusive and a third kind of lock called intention lock has 

been introduced which works as a lock for all ancestors of a node that is explicitly 

locked. They have also defined a compatibility matrix to resolve lock conflicts. This 

protocol has the potential of increasing concurrency and decreasing overhead. 

2.4.2. Concurrency Control in Object Oriented Databases 

When database functionality was combined with object-oriented concepts then Object-

oriented databases became the ideal information repository that is shared by multiple 

users and, multiple applications on different platforms. Though many of the techniques of 

traditional concurrency control can be carried over to object oriented databases but the 

model for transactions supported in conventional database is not suitable for long-

duration transactions. Supporting concurrency control in an OODB is more difficult 

compared than in a relational database because of some issues; for example, the 

semantics of methods, nested method invocation and referentially shared objects. In 

addition to that, conventional approaches for transaction management do not work well 

on OODBMS because of the complex objects and complex transactions OODB deal with. 

In OODBMS, the methods represent the behavioral aspects of objects and exploiting the 

semantics of these methods can help in eradicate data contention problem. New 

semantics in object-oriented databases need to be used to improve concurrency. There is 

still a lack of efficient concurrency control in OODBMS. 

While designing a concurrency control protocol for object-oriented databases, 

many researchers did adopt some concepts from the existing protocols for relational 

databases, some re-implemented existing protocols like two-phase locking and time-

stamping and made them suitable for object-oriented databases. Some other protocols 

were modified according to the nature of object-oriented databases to better serve their 

needs. Semantic-based locking, versioning [7] and simple hierarchical locking schemes 

are some examples of that. Most of the hierarchical schemes are some variations of the 

multi-granularity locking [7]. 

To avoid the potential data contention, most researchers have looked into the 

objcct structure and operation semantic while designing an appropriate concurrency 
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control mechanism. That is why; the researchers started exploiting the rich semantics of 

object-oriented data model to achieve better performance for OODBMS. Various 

researchers have taken up either the transaction semantics or the data semantics for SCC 

in OODBMS. A technical report was published [8] which summarized the use of 

application and data semantics to optimize concurrency. They have explained three 

models of transaction approach: first of which is the compatibility set approach and the 

second one is constraint-based approach. The compatibility set based approach [9] is one 

of the earliest efforts of using transactions semantics, whereas the constraint-based 

approach has the capability of handling nested transactions in OODB. The latter makes 

use of patterns to express correctness constraints to allow higher concurrency. The other 

approach called the data approach contains two models. The first of them redefines a 

transaction as a sequence of typed operations on objects and the second one uses a serial 

dependency concept. A semantic-based concurrency control scheme for OODB is 

presented in [11], In this paper, they have used the semantics of methods and the conflict 

between lower level operations or methods was ignored due to the commutativity of 

methods invoked at the higher level in nested method execution. They require a lock on 

an object if a method or operation is invoked on the object. These locks are converted to 

retained locks at the end of a sub-transaction. If a top-level transaction commits, all the 

locks held are released. 

A semantic two-phase locking protocol for OODB is presented in [12]. They 

consider nested method invocations in their work. They also exploit semantics of 

methods for better concurrency. They have allowed any two methods to communicate 

with each other if application programmers think their execution orders not important and 

this is done by using semantics of methods. Thus, by taking semantics into consideration, 

higher concurrency can be achieved. The only condition for this to work was that, the 

semantically communicating methods should be executed atomically. The one drawback 

of this method is the big overhead which incurs while using locking for each atomic 

operation. A method and an algorithm which is capable of real-time scheduling of the 

SCC in OODB were initiated in [13]. They describe their work as the realization of 

scheduling of concurrency control based on a combination of databases and operating 

systems. To avoid the worst case, they have made the early invoked transaction w ait for a 
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long time to avoid deadlock in the scheduling of the Object-oriented Database systems. A 

locking scheme which is the same as the locking scheme of [12] was proposed in [14] as 

they also consider semantics of methods and RSO. In their method, called Enhanced 

Semantic Locking, they argue semantics can be provided at the discretion of the 

application programmer in methods. On the other hand, in order for ESL to support RSO, 

they adopt "in-place" conflict resolution policy. According to this, lock modes are not 

associated with methods. Commutativity of methods is determined when methods invoke 

shared sub-objects at the same time. This scheme requests a lock whenever a read or 

write atomic operation is invoked. However, ESL is different from [12] in that lock 

conversion for retained lock is prohibited. 

A locking-based concurrency control method was introduced in [14], It deals 

with three important issues in object-oriented databases: semantics of methods, nested 

method invocation and referentially shared objects. In their proposed scheme, locks are 

required for the execution of each of the methods instead of atomic operations. Also, a 

way of automating commutativity of methods is provided. One shortcoming of this 

method is that they have not considered inheritance hierarchy. The semantics of multi­

level transactions was exploited in [16], in the environment of linear hash structures to 

increase concurrency. They have designed a three-tier client/server layered architecture 

and an object-oriented implementation of multi-level transactions accessing linear hash 

structures. Multi-level transactions enhance the concurrency in the linear hash structure 

and handle transaction aborts. 

Multi-granularity locking [7] was originally developed to reduce locking 

overhead in relational databases. According to this protocol, the database is organized in 

the form of a hierarchy and locking a higher level means implicitly locking the lower 

levels. In case of a relational database, the hierarchy is formed by database, relation and 

row where the dataset is the root and row is the leaf. The designers of earlier object-

oriented databases, for example, ORION and 02 followed the same principle and created 

protocols [3] by replacing database hierarchy with simple class and object hierarchy. 

These protocols have used strict two phase locking for these protocols but the rich 
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semantics contained in object-oriented databases have not been exploited in these 

methods. 

A performance evaluation of three multi-granularity locking options for 

concurrency control was done in [17], The three protocols taken into consideration were: 

non-class hierarchy locking, class granularity locking and class hierarchy locking 

protocol. All of these protocols used strict two phase locking. In class granularity locking, 

two types of objects can be locked: instance object and class object. Each instance 

requires a separate lock but locking a class means implicitly locking all instances of the 

class. In the class hierarchy protocol, apart from instances and classes, a class hierarchy 

can be a locking unit too. Setting a lock on a class hierarchy would mean implicit locks 

on all subclasses of that class. In non-class hierarchy locking, locks have to be set on 

every object to be accessed. Their experimental result indicates that class granularity 

locking is the better approach in terms of lock overhead in most of the cases that they 

have considered. However, they have assumed that the option chosen for locking cannot 

be changed during a transaction's execution. Although they have locks the objects 

dynamically but the type of object that will be locked was chosen statically before the 

transactions began. 

The multi-granularity model for object-oriented databases has be to quite 

different from that of relational database. A multi-granularity concurrency control [18] 

was proposed which took some features of object databases like class hierarchy, 

composite object hierarchy and schema evaluation into account while designing. 

This method was inspired by Gray's protocol [7] and it tried to accommodate the concept 

of composite objects as a logical lockable granules for locking which was not addressed 

by Gray. In their protocol, locking in schemas and locking in instances were developed 

separately and then they were integrated. For instance locking, composite objects were 

distinguished from primitive objects. They have also proposed a dual-queue scheduling 

for improving concurrency. With some examples, they have proved that their multi-

granularity protocol for object-oriented database works delivers a better degree of 

concurrency than the protocol used in ORION. 
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AMGL [5] is a concurrency control protocol for object-oriented databases, 

which is adaptive to the transaction requirement. The ability to use different lock 

granularity units dynamically at run time enables this protocol to reduce lock ov erhead in 

some situations compared to the conventional locking protocols. They have used three 

lockable granules namely, instance, class and class hierarchy and by using lock escalation 

and de-escalation, these lock granules can be adjusted to suit the requirements of a 

transaction dynamically. As no application specific information is needed for this 

protocol, it can be employed in any object-oriented databases. They have taken composite 

objects as well as schema modification into consideration. The locks that this protocol 

uses are soft locks and firm locks. A soft lock is similar to an intention lock with the 

added power of being able to keep track of the information about underlying objects 

covered by the lock. This information is used in lock escalation and de-escalation 

process. It also is a notification to all ancestor objects that the object is locked. A firm 

lock is like a regular lock with the added advantage of lock escalation and de-escalation 

being performed on that. AMGL was compared against instance granularity locking, 

class granularity locking and multi-granularity locking. A series of experiments [1] were 

found and found out that their protocol is the best choice amongst those protocols when 

the lock conflicts are not high. Again, in terms of locking overhead, in most cases, 

AMGL was even worse than instance granularity locking. 
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CHAPTER III 

DESIGN AND DEVELOPMENT OF SAML 

SAML is a Self-Adjusting Multi-granularity Locking protocol that is proposed to 

improve the concurrency control of object-oriented databases. It aims to maximize 

parallelism of transactions while keeping the locking overhead as low as possible. This 

protocol facilitates choosing appropriate locking granularity according to the 

requirements of the transaction. This protocol uses three levels of granularity for locking, 

namely instance lock, class lock and class hierarchy lock. SAML uses lock de-escalation 

which enables the lockable granules to be adjusted automatically during the lifetime of a 

transaction. This optimistic locking protocol uses conservative two-phase locking to 

avoid deadlocks. 

This chapter presents the development of the SAML protocol. First, determining 

the appropriate lockable granules has been discussed and then the lock types, modes as 

well as the lock compatibility matrix have been designed. After that, the main 

components of SAML and the locking rules are developed and discussed. The chapter 

concludes with a discussion on LG graph and the usage of lock de-escalation in SAML. 

3.1. Lockable Granularity Units 

The size of the objects that can be locked is known as the granularity unit. These 

granularity units are used for ensuring consistency. The finer the granularity, the greater 

would be the potential for parallelism. But lock overheads are increased in this case. On 

the other hand, a coarse granularity unit would lead to fewer locks and as a result there 

will be fewer overheads in testing, setting and maintaining the locks. This can lead to less 

concurrency as the active transactions may hold lock on more resources than required, 

which in turn can result in the rejection of a lock request by other transactions. Hence, it 

would be more beneficial if the database management system provides a variety of 

granularity units depending on the different requirements of different transactions. 
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Tuples 

Database 

Areas 

Relations 

Figure 3-1. Lock hierarchy in RDBMS 

In relational databases, a simple lock hierarchy is followed to organise the 

lockable granularity units or the resources. In relational databases, granularity units can 

be records, files, fields etc. Figure 3-1 demonstrates the basic set of resources in a 

Relational Database. The lines between these resources represent the containment 

relationship. Every database has one or more areas and each area contains one or more 

relations. Again, each relation contains many tuples. In RDBMS, despite the fact that all 

the resources are in a parent-child relationship, they are independent from each other in 

terms of their content. That means, even though some relations of an area are changed, 

those relations will still be contained in that area. While each of these nodes in the 

hierarchy can be locked, the children of those nodes are also locked implicitly. 
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Figure 3-2. An Object Oriented Database 

In an object-oriented database, the information contained in the data model is 

not application dependent. Moreover, this kind of database has a rich semantic data 

model. This information can be used for concurrency control by determining the 

appropriate granularity units for locking. Figure 3-2 is an example of an object-oriented 

database. There is only one root super class in this database and it represents all the 

objects of the database. All the classes are subclasses of the object class. The object class 

has two children subclasses: owner and vehicle. The other subclasses are inherited from 

these two classes. For example, here bicycle is a subclass of two-wheeler which in turn is 

a subclass of class vehicle. So this relationship is generalization-specialization 

relationship. All the classes may have one or more instances too. For example, CI. C2 are 

instances of Car, whereas Ml is an instance of mountain bike. 

As shown in Figure 3-2, there are three kinds of resources that can be used as 

lockable granularity units to increase the concurrency in object-oriented databases. 

SAML uses these resources namely instance, class and class hierarchy as the granularity 

units for the protocol. Though SAML locks the coarse most granule and keeps on 

reducing the granule size on the event of a conflict, it should be noted that it is not 
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similar to a relational database as changing the content of one resource could potentially 

affect another resource on a higher level of object oriented databases. 

3.2. Explicit Lock and Implicit Lock 

SAML proposes some lock modes for the three above discussed granularity units which 

has been discussed in section 3.4. Apart from that, two additional types of locks are used. 

Explicit Lock 

Implicit Locks 

Figure 3-3. Explicit and Implicit Locks 

A lock on recourse of the database can either be explicit or implicit. An explicit 

lock is a lock that is explicitly requested by and is granted to a transaction directly. An 

implicit lock is derived from an explicit lock. Implicit locks are the locks that need to be 

acquired, in either direction of the database hierarchy, for explicit locks. In the proposed 

SAML protocol, the term implicit lock has been used to represent the lock which 

propagates down the hierarchy as a result of the lock on the current node. This implies 

that the modes of the implicit locks will be the same as the explicit lock on the current 

node. 

3.3. Soft Lock 

Soft locks are basically the implicit locks that propagate upwards in a class hierarchy 

because of an explicit lock on a node. In an object-oriented database any instance or class 

is dependent on its class or super-classes. Therefore to lock any resource (instance/ class/ 

class hierarchy) explicitly in shared or exclusive mode all the ancestors of that resource 

must be locked in shared mode so that no one can modify them. If any node is explicitly 

locked by a transaction, soft locks are implicitly applied on the ancestors to prevent 

granting of exclusive lock requests on the ancestors. 
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3.4. Lock Modes in SAML 

Here are the lock modes being proposed for the self-adjusting multi-granularity locking 

protocol. Based on the granularity units used in this locking protocol, the lock modes 

have been categorized into three different groups: instance lock, class lock and class 

hierarchy lock. 

Two locks of the same or different modes on the same object are considered 

compatible if they can be granted concurrently for different transactions. All the lock 

modes used in this protocol are either shared lock or exclusive lock or variations of these 

two modes. 

3.4.1. Instance Locks 

In reality, transactions deal with a set of instances of one or more classes. Instances are 

the smallest granularity unit of the SAML protocol. According to this protocol, an 

instance can be locked either in shared (IS) or exclusive (IX) mode. 

3.4.1.1. IS (Shared Instance Lock) 

A shared instance lock on an instance means that the instance can be read by one or more 

transactions but can be modified by none of them. 

3.4.1.2. IX (Exclusive Instance Lock) 

An exclusive lock on an instance means that the instance can be read and modified only 

by a transaction holding the lock. No other transaction can read or modify the instance. 

3.4.2. Class Locks 

Class locks are the next higher granule for locking after instances. A class can have 

several instances. So, a lock on a class means that one or more instances of that class are 

locked by one or more transactions. A class can be locked in shared (CS), exclusive 

(CX), soft shared (CST) or soft exclusive (CXT) mode. A CS or CX lock on a class 

means that there is an explicit lock on the class itself, i.e., one or more transactions are 

holding explicit lock(s) on the class. On the other hand, CST or CXT lock on a class 

means one or more instances of the class are locked in IS or IX mode respectively. 
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3.4.2.1. CS (Shared Class Lock) 

A shared lock on a class C means that all the instances of the class are implicitly locked 

in IS mode. The instances of the class can be read by the transactions that are holding the 

CS lock on the class C. But none of them can modify any instance of C. 

3.4.2.2. CX (Exclusive Class Lock) 

An exclusive lock on a class C means that all the instances of the class are implicitly 

locked in IX mode. Only the transaction holding the CX lock on a class can read or 

modify its instances. No other transaction can have any access to any of the instances of 

that class. 

3.4.2.3. CST (Soft Shared Class Lock) 

A soft shared lock on a class means that one or more instances of the class is/are 

explicitly locked in IS mode by one or more transactions. The locked instances as well as 

the other instances of the current class can be locked explicitly by other transactions as 

long as these lock requests by other transactions do not conflict with the existing locks by 

the existing transactions. 

3.4.2.4. CXT (Soft Exclusive Class Lock) 

A soft exclusive lock on a class means that one or more instances of the class is/are 

explicitly locked in IS or IX modes, with at least one IX lock, by one or more 

transactions. The locked instances as well as the other instances of the current class can 

be locked explicitly by other transactions as long as these lock requests by other 

transactions do not conflict with the existing locks by the existing transactions. 

3.4.3. Class Hierarchy Locks 

Locking a class in hierarchy mode means all its instances along with all the descendents 

of the class and their instances are locked in the same mode. In a situation w here a 

transaction is accessing instances of multiple classes, it is better to lock the super class in 

hierarchy mode. This can reduce locking overhead greatly. In SAML, four kinds of 

hierarchy lock modes are provided: 



3.4.3.1. HS (Shared Hierarchy Lock) 

A shared hierarchy lock on a class means the class, its subclasses and all the instances of 

those classes are implicitly locked in shared mode. This includes the entire tree structure 

rooted at the current class and recursively traversing down to the leaves of the tree. The 

whole hierarchy rooted at class C can be read by the transactions that are holding a HS 

lock on the class C. But none of them can modify any instance of any class of the 

hierarchy. 

3.4.3.2. HX (Exclusive Hierarchy Lock) 

An exclusive hierarchy lock on a class means the class, its subclasses and all the 

instances of those classes are implicitly locked in exclusive mode. This includes the 

entire tree structure rooted at the current class and recursively traversing down to the 

leaves of the tree. The whole hierarchy rooted at class C can be read and modified only 

by the transaction that is holding the HX lock on the class C. But no other transaction can 

access any instance of any class of the hierarchy. 

3.4.3.3. HST (Soft Shared Hierarchy Lock) 

A soft shared hierarchy lock on a class C means that one or more descendent classes of C 

or the class C itself is/are locked in CS or CST mode or HS (only for descendent classes) 

mode by one or more transactions. Other transactions can lock the entire hierarchy or any 

part of it only in shared mode (IS, CS or HS). 

3.4.3.4. HXT (Soft Exclusive Hierarchy Lock) 

A soft exclusive hierarchy lock on a class C means that one or more descendent classes of 

C or the class C itself is/are locked in CS, CX, CST, CXT mode or HS/HX mode (only 

for descendent classes), with at least one lock in exclusive mode, by one or more 

transactions. No transaction can lock the entire hierarchy but any part of it can be locked 

by other transactions in shared or exclusive mode (IS/IX, CS/CX or HS/HX) only if they 

do not conflict with any of the existing locks. 
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3.5. Why Soft Lock? 

A soft lock on any level of the hierarchy indicates the presence of an explicit lock-

somewhere down the hierarchy. This prevents a transaction to be granted a conflicting 

lock on the hierarchy. 

Let us assume that there is a shared (IS) lock on an instance of a class C. In this 

situation, if another transaction appears and tries to lock the super class of C in HX mode, 

it would be granted if the super class does not have any information about the presence of 

a lock in any part of its sub hierarchy. To prevent this kind of conflict, soft locks are 

used. 

3.6. Precedence of lock modes 

Figure 3-4 shows the precedence and lock coverage of the lock modes discussed for the 

SAML protocol. A lock of lower granularity is contained in a lock of higher granularity. 

For example, an IS lock in contained in a CS/CST lock whereas a CS/CST lock is 

contained in a HS/HST lock. Again, in the same granularity level, an exclusive lock has 

higher precedence over a shared lock and an explicit lock has higher precedence over a 

soft lock. 

& 

3 1 
HST HS HXT HX 

CST CS CXT CX 

IS IX 

c==^> 

Precedence of locks 

Figure 3-4. Precedence of lock modes 

3.6.1. Lock Coverage 

A lock Li is said to be covered by another lock L; if L: has higher granularity than I; or if 

L2 has a higher precedence over Li where both L; and Z? have the same granularity level. 
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3.7. Lock Compatibility Matrix 

Based on the proposed lock modes, the 10^6 compatibility matrix is shown in Table 3-1. 

Compatibility among the lock modes has been determined from their semantics. In 

SAML, a transaction can only request explicit locks. The soft locks are implicitly applied 

by the SAML protocol because of the existence of some explicit locks. So, the new lock 

mode being requested can only be one of the six explicit locks, i.e. IS, IX, CS, CX, HS or 

HX. 

Each cell in the lock compatibility matrix represents whether the requested new 

lock mode in the column is compatible with the existing lock mode in the row. A "Y" 

means compatible and hence the lock request is granted. A "N" means conflicting lock 

request which will not be granted according to SAML. A "D" means the de-escalation of 

the new lock. It denotes that there is an existing soft lock on the current object and the 

new lock requested is a conflicting one but it may be granted on a lower granularity unit. 

A "DD" means the de-escalation of both the existing and the requested lock. It denotes 

that there is an existing explicit lock on the current object and the new lock requested is a 

conflicting one. According to SAML, in this case, the existing lock must de-escalate first 

in order to accommodate any new lock on a smaller granularity level. So, the existing 

lock de-escalates first and after that the requested lock may be granted on a lower 

granularity unit. 
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New Lock Modes 

IS IX CS CX HS HX 

IS Y N 

IX N N 

CST Y D Y D 

CS Y DD Y DD 

CXT D D D D 

CX DD DD DD DD 

HST Y Y Y D 

HS Y DD Y DD 

HXT Y Y D D 

HX DD DD DD DD 

Table 3-1. Lock Compatibility Matrix 

In Table 3-1, N = conflicting lock request that will not be granted, Y = 

lock request granted, D = de-escalation of the new lock, DD = de-escalation of both 

existing and requested lock. 

3.8. Main Components of SAML 

Unlike the other existing locking protocols, in SAML the lock table alone does not 

maintain all the locks in the system. Along with the lock table, a class inheritance graph 

of the database is used for this purpose. The main purpose of a class inheritance graph is 

to maintain the soft locks as they propagate recursively upwards in the class hierarchy till 

the root. In this section, the class inheritance graph, the lock table and the transaction list 

of SAML is discussed. 

3.8.1. Class Inheritance Graph 

The Class Inheritance Graph (CIG) is used only to maintain the soft locks as well as the 

existence of explicit locks on a class or class hierarchy. This graph enables navigation 

from a class to its subclasses or its super classes. Unlike AMGL [1], the lock table in 

SAML does not have to retain any information about the soft locks because of the 

presence of CIG. This significantly reduces the size of the lock table. 
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For example, if n transactions concurrently acquire explicit shared locks on an 

object at the /-th level of the class hierarchy, then according to AMGL, the lock table has 

to preserve the information of additional n y (1-1) soft locks along with the n explicit 

locks. On the contrary, SAML deals with all the soft locks using only the class 

inheritance graph which is static in size. So, the lock table in SAML does not have to 

maintain any information about the soft locks. 

Figure 3-5 represents an example of a class inheritance graph along with the 

some locks on objects. Each node in CIG stands for a class and each node has two colors: 

class color and hierarchy color. The term "color" has been used for CIG to indicate the 

lock modes on the nodes. In the following figure the shaded half of a node represents 

hierarchy color and the other half represents class color. 

HXT HST HXT 

HS HX 

Figure 3-5. Class Inheritance Graph 

3.8.2. Lock Table 

A lock table is the list of explicit locks present in the system. Each entry of the lock table 

is a lock with the following information: 

1) Lock ID (Lid) 

2) Transaction ID (TId) 

3) Set of target resources (instances) {RT} = {(r,. m,)} 
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Where, r, is the target resource to be locked and m, is the mode with which r, 

is to be locked 

4) Current resource locked (RC) 

5) Mode of the lock (LM) 

So, a lock L can be represented as follows: 

L = {Lid, TId, {(n, mt), m2),.... , (r„ m,)\, RC, LM| 

V i, (r„ mi) is covered [section 3.6] by (RC, LM) 

3.8.3. Transaction List 

The transaction list contains the list of the transactions that are currently present in the 

system. Each entry of the transaction list is a transaction with the following information: 

1) Transaction ID (TId) 

2) Set of locks held by the transaction { L }  

3) Set of instances to be locked with mode \(r, m)\ 

So, a transaction T can be represented as follows: 

T = {TId, {Li, Lj ,  . . . .  , Li}, {(/-/, m { ) ,  (r2, m:) (rk, mk)}} where i < k 

3.9. Rules for Requesting Locks 

3.9.1. Locking an instance 

3.9.1.1. Shared Lock (IS) 

1) To lock an instance in shared mode, an IS lock must be obtained for the instance. 

2) Before an IS lock can be obtained, we must 

a) search the lock table to check whether there is any conflicting lock 

b) the class must be locked in CST mode 

3) Add a corresponding entry to lock table 
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3.9.1.2. Exclusive Lock (IX) 

1) To lock an instance is shared mode, an IX lock must be obtained for the instance. 

2) Before an IX lock can be obtained, we must 

a) search the lock table to check whether there is any conflicting lock 

b) the class must be locked in CXT mode. 

3) Add a corresponding entry to lock table. 

3.9.2. Locking a class 

3.9.2.1. Shared lock (CS/CST) 

1) To lock a class is shared mode, a CS/CST lock must be obtained for the instance. 

2) Before a CS/CST lock can be obtained for class C, the super class, if there is one, 

must be locked in HST mode. 

3) Before locking a class in CS mode, 

a) check the corresponding node's colour in the class inheritance graph to see 

whether there is any conflicting lock. 

b) colour the node in CS, if it is not already coloured or coloured in CST. 

c) add an entry in the lock table. 

4) Before locking a class in CST mode, 

a) colour the node in CST, if the node is not coloured. 

3.9.2.2. Exclusive mode (CXJCXT) 

1) To lock a class in exclusive mode, a CX/CXT lock must be obtained for the class. 

2) Before a CX/CXT lock can be obtained for a class C, the super class, if there is one, 

must be locked in HXT mode. 

3) Before locking a class in CX mode 

a) check the corresponding node's colour in the class inheritance graph to see 

whether there is any conflicting lock. 

b) colour the node in CX, if the node is not coloured. 

c) add an entry in the lock table. 

4) Before locking a class in CXT, 

a) colour the node in CXT, if it is not coloured or coloured in CST mode. 
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3.9.3. Locking a class hierarchy 

3.9.3.1. Shared mode (HS/HST) 

1) To lock a hierarchy in shared mode, a HS/HST lock must be obtained for the class 

hierarchy. 

2) Before a class hierarchy can be locked in HS/HST mode, its super class, if there is 

one, has to be locked in HST mode. 

3) To lock a class hierarchy in HS mode 

a) Check the corresponding node's color in the class inheritance graph to see if there 

is any conflicting lock. 

b) Colour the node in HS, if it is not coloured or is coloured in HST mode. 

c) Add an entry in the lock table. 

4) Before locking a class hierarchy in HST mode, 

a) Colour the node in HST if the node is not coloured. 

3.9.3.2. Exclusive mode (HX/HXT) 

1) To lock a class hierarchy in exclusive mode, a HX/HXT lock must be obtained. 

2) Before a HX/HXT lock can be obtained for a class hierarchy, the super class, if there 

is any, must be locked in HXT mode. 

3) Before locking a class hierarchy in HX mode 

a) Check the corresponding node's colour in the class inheritance graph to see if 

there is any conflicting lock. 

b) Colour the node in HX mode, if the node is no coloured. 

c) Add an entry in the lock table. 

4) Before locking a class hierarchy in HXT mode 

a) Colour the node if it is not coloured or is coloured in HST mode. 

3.9.4. Lock Release 

When a transaction commits/aborts, all the locks held by the transaction must be released. 

To release a lock: 

1) Delete the lock from the lock table. 

30 



2) Search the remaining lock table to check if there is any other explicit lock on the 

object. 

a) If yes, then there is no change in colour. 

b) If there is no other lock, 

i) check the colour of all the children of current node 

ii) update the colour of the node accordingly in the class Inheritance graph. 

iii) re-colour the super class of current node in class inheritance graph 

To re-colour a node in class inheritance graph, 

1) Decide the new colour of the node from the colour of its sub-classes. 

2) If the new colour is different from the old colour 

a) colour the node with new colour 

b) re-colour the super class of current node. 

3) If the new colour is same as the colour 

a) return 

3.10. Lock Granularity Graph 

The database resources are grouped and structured in a manner much like a tree and it is 

called a Lock Granularity (LG) graph. Although it looks like a tree, it is a Directed 

Acyclic Graph (DAG) when the class hierarchy is considered. The resources are arranged 

according to the varying depth of their granularity. The source node, or the root, of the 

graph represents the entire database and the intermediate nodes in the graph correspond 

to consecutively finer granularity units. The nodes of the graph depict the successive 

refinements of granularity from coarse towards finer granules from the root to the leaf 

level of the tree. 
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Figure 3-6. Lock Granularity Graph 

3.10.1. Formal Definition 

The lock granularity graph is a Directed Acyclic Graph (DAG) where each node of the 

graph is a granularity unit of the database. 

DAG is a type of graph which is part tree and part graph. A DAG is a pair (V, E) 

where V is a set of nodes, and E is a set of edges between the nodes E £ {(U, V) | U, V e 

V} with no path that starts and ends at the same node, that is, E Q {(U, V) j U, V e V A 

U ^ V} [19]. A node p is a parent of a child c and c is a child of parent p, if <p,c>€ E. 

Again, a path is any route along the edges of a graph. A path may follow a single edge 

between two nodes or multiple edges through multiple nodes. So, a path is any sequence 

of two or more nodes <n, | /'= 1, ..., k>, such that for each 1< i < k, <rii, ni+i> e E. Node n 

is an ancestor of node c if n is on some path from a root to node c. 

In the single root lock granularity graph the root node is used to represent the 

whole database or in other words, the class inheritance tree rooted at the root class. There 

are three different types of nodes in the graph corresponding to the different lockable 

granularity units: 
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• Instance Node: A single instance of class 

• Class Node: A single class 

• Class Hierarchy Node: A set of classes that forms a class hierarchy. 

The set of edges of the Lock Granularity graph follows these rules: 

1) <p,c> exists if p is a class and c is an instance node where c represents an 

instance of p. 

2) <p,c> exists if a p is a class hierarchy node and c is a class hierarchy node, 

where c is an immediate subtree ofp in the class hierarchy tree. 

3) <p,c> exists if p is a class hierarchy node and c is a class node, where c is 

the class of p. 

Each of the nodes of the LG graph can be locked as each node represents a 

lockable unit in the graph. As the child node is absolutely contained in a parent node, so, 

the child node represents a granularity unit which is contained within the granularity unit 

represented by the parent node. 

3.11. Lock De-Escalation in SAML 

Like all other granularity locking methods, SAML tries to minimize the number of locks 

implemented to access a database. The lock modes of SAML defined in section 3.1, if 

used for locking, can guarantee that the various updates by different transactions of the 

system will be reflected correctly as well as consistently. But, maintaining these locks 

could incur high overhead. The number of objects being locked, the kind of object being 

locked and the lock coverage of the lock being implemented can affect the level of 

overhead of lock maintenance. 

For example, if most of the instances of a class need to be accessed then 

acquiring one lock for the entire class, instead of acquiring one lock for each instance, 

can greatly reduce the number of locks being maintained. A lock on a class means a lock 

on each instance of the class. On the other hand, if a few instances of a class are to be 

accessed, it is better to acquire individual locks for the instances so that other transactions 

get to access the rest of the instances concurrently. So, the optimal choice of locking 

33 



granularity will vary from one transaction to another. In addition to that, this optimal 

choice might vary for a single transaction at different times. Hence the optimal 

granularity of locking for each transaction can only be determined dynamically at run­

time. 

Most of the available locking protocols choose lock granularity for all 

transactions in a database statically which produces average result. If these protocols are 

choosing the fine granularity unit unless there is other guidance, then they would get the 

maximum degree of concurrency but the lock maintenance might result in a huge 

overhead. Again, if they are choosing a coarser granularity unit, then the lock 

maintenance issue can be resolved but as the granularity unit is not changing, even when 

there is a better granularity unit to lock later in the transaction, the desired level of 

concurrency cannot be achieved. As a result, over time, this results in a granularity unit 

that is not the best choice for being locked by the transactions of the system. 

To resolve these issues, lock de-escalation has been used in SAML so that it can 

facilitate choosing the appropriate locking granularity according to the requirement of the 

transaction. This operation is performed dynamically during the transaction. The largest 

granularity unit is locked at the beginning of a transaction even if most of the objects 

being locked are not necessary at first. However, it keeps track of the objects being 

accessed and the modes they are being accessed in. This information is used while de-

escalation is performed. Later, if there is any conflict from other transactions, lock de-

escalation is performed. Each conflicting transaction then would lock the next higher 

granularity unit that is not in conflict. So when the locks of two transactions conflict, both 

transactions keep on reducing their granule size until the conflict is resolved. Therefore, 

the protocol adjusts itself to the transaction requirements by using multiple granularity 

units to provide maximum concurrency but keeping minimum locking overhead. Thus, 

the Self Adjusting Multi-Granularity Locking (SAML) protocol aims for a fair trade-off 

between locking overhead and concurrency. 

Among the three levels of granularity, namely instance level, class level and 

hierarchy level, a hierarchy lock on a class C after de-escalation can generate one or more 
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locks which are either a class lock on C or hierarchy locks on the sub classes of C'. A 

hierarchy lock can be represented as follows: 

L = {ID, TID, {(r, m)}, RC, M] 

t* 7i .. f HS if 771;= IS Vi 
Where'M = l/« otherwise 

A hierarchy lock can be de-escalated like this: 

L —• {{LH}, Lc) or {Lh} or Lc 

Here, Lh is hierarchy lock on a sub- hierarchy of RC 

Lc is a class lock on RC. 

Lh and Lc can be defines as follows: 

Lh = {/£>//, TID, {(r", mH ) } , R C H ,  MH\ 

Where, 

pi _ [ HS if m f  = / 5 V i  
H I HX otherwise 

{ ( r H , m H )} Q  {(r , m )} and 

RCh is a sub class of RC 

Again, 

Lc = {IDc, TID, {(rc, mc)}, i?C, Mc} 

M c  =  \  C S  l f  m i  = I S V i  

1CX otherwise 

and{(rc,mc)} £ {(r,m)} 

A class lock on a class C after de-escalation can generate one or more instance 

locks on the instances of class C. 

If L = {ID, TID, {(r, m)}, RC, M} is a class lock, i.e. M = CS/CX, then after de-

escalation, for each (/-„ /»,•) in {(r, m)}, a new lock Li is created such that, 

Li = \ID„ TID, (77. »?,), /•„ m,} 
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This section outlined the types of locks, the lock modes, the lock request rules as 

well as the lock de-escalation concept used for the design and development of SAML. 

The following section provides a simulation overview of SAML, The database, 

the transaction model and the simulation model used for the purpose has been discussed 

in details. 
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CHAPTER IV 

SIMULATION OVERVIEW 

This chapter elaborates on the simulation of the concurrency control protocols. It 

discusses the database model, the transaction model, as well as the simulation model used 

for implementation of the protocols. The pseudo code for procedure SAML has been 

provided in this section too. 

4.1. Database System Model 

The database model used in the simulation of SAML is similar to the one used in AMGL 

proposed by C.T.K. Chang [1]. The database consists of a number of classes and 

instances. The classes form a class hierarchy. The exact nature of the database class 

hierarchy is controlled by two parameters: numSubClassPerClass and numClassLevel. 

The parameter numSubClassPerClass outlines the number of sub classes per class and 

numClassLevel stands for the depth of the class hierarchy tree or the number of class 

levels. The total number of classes in the database is determined by these two parameters. 

£71 +1 ^ 
The total number of classes in the database will be £f_0 Cl or where C is the 

number of sub classes per class and n is the number of levels in the class hierarchy. Each 

class has a number of instances which is defined by the parameter 

numlnstancesPer Class. 

Each class contains the following attributes: a class id, the class level in the 

hierarchy, a reference to its parent class, a list of its sub classes and a list of instances of 

that class. Each instance has two attributes: an instance id and a reference to its class. 

Parameters Description 

numSubClassPerClass Number of sub classes per class 

numClassLevel The depth of the class hierarchy 

numlnstancesPerClass Number of instances in a class 

Table 4-1. Summary of Database Parameters 
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4.2. Transaction Model 

The transactions required for the simulation were generated offline by a transaction 

generator. During simulation, a transaction injector injects those transactions into the 

system following a Poisson distribution pattern. Each transaction has the following 

parameters: transactionID, numlnstances, writeRatio, duration, positionlnDB and 

instanceList. The workload of the transaction is controlled by the parameter 

numlnstances. It is the total number of instances that a transaction works with. The ratio 

of number of instances written to the number of instances read is characterized as 

writeRatio. The parameter duration controls the lifetime of a transaction. The parameter 

positionlnDB indicates the part of database hierarchy (namely: first half, second half and 

overall) from which the instances are chosen. The set of instances used by the transaction 

is stored in instanceList. For each transaction, the list of instances is generated from the 

database by a transaction generator based on the parameters numlnstances and 

positionlnDB. The pseudo code for transaction generator is given in section 4.2.1. 

Parameters Description 

transactionID Id of the transaction 

numlnstances Total number of instances a transaction works with 

Duration The lifetime of a transaction 

positionlnDB 
The part of database class hierarchy from which instances are 
chosen 

writeRatio Number of instances written to the number of instances read 

instanceList Set of instances used by the transaction 

Table 4-2. Summary of Transaction Parameters 

4.2.1. Pseudo Code for Transaction Generator 

Input: database, positionlnDB, numlnstances 

Output: Transaction 

Procedure Generate Transaction-. 

1) instanceRemaining = numlnstances 
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2) minLevel =0 

3) maxLevel - depth of database class hierarchy 

4) if positionlnDB = First half 

a) maxLevel = maxLevel!2 

5) if positionlnDB = Second half 

a) minLevel = maxLevel!2 

6) Create a new transaction T 

7) while instanceRemaining > 0 

a) maxInstanceFromAClass = minimum of instanceRemaining and 

numlnstancePerClass of the database 

b) noOflnstance = a random number between 1 and maxInstanceFromAClass 

c) Choose a class C randomly from the database having level between minLevel and 

maxLevel 

d) Choose noOflnstance instances of C randomly and add them to the instanceList of 

transaction T 

e) instanceRemaining = instanceRemaining - noOflnstance 

8) return transaction T 

4.3. Simulation Model 

The simulation model is constructed by abstracting i.e., by performing the process of 

generalization by reducing the information content of an object-oriented database 

management system, in order to retain only information which is relevant for simulation 

purpose. It has been assumed that there is no schema change and no multiple inheritances 

in the database. This condition is a basic model in the experiments done. It simulates the 

execution of transactions in a database management system. In addition, the transaction 

generator and database generator have also been simulated. For each of the locking 

protocols, the concurrency control protocol along with lock manager and transaction 

manager have been simulated to control the database operations. 

The simulation environment was built using Java. Java's multi-threading feature 

has been used to simulation concurrent processing of multiple transactions. Each 

component of the simulation environment, for example, the concurrency control 
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manager, the lock manager and the transaction manager runs concurrently in separate 

threads during the simulation process. In addition to that each active transaction runs in 

separate threads as well. 

Transactions are generated offline by a transaction generator prior to the 

simulation. During the simulation, a transaction injector injects the transactions into the 

system using a Poisson distribution [1], with mean rate of 10 transactions per unit time, 

and puts them at the end of ready queue. The concurrency control protocol takes one 

transaction at a time from the front of the ready queue and requests a lock for the 

transaction. If the request is granted, then the transaction is put into the active transaction 

list and a new thread is created for the transaction which remains alive during the lifetime 

of the transaction. On failure of the lock request, it goes to the waiting transaction list 

and the conflicting transaction in the active transaction list is updated with this 

information. When a transaction ends, it is removed from the active transaction list. If 

there is any transaction waiting for the completion of that transaction, it is removed from 

the waiting transaction list and put at the front of the ready queue. Figure 4-1 is a pictorial 

representation of the simulation model discussed. 
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Figure 4-1. Simulation Model 

4.4. Pseudo Code for SAML Protocol 

The SAML protocol discussed in chapter CHAPTER III has been implemented using the 

simulation model described in section 4.3. The pseudo code for the implementation of 

SAML protocol is given below: 

• Proc edure SAML: -

A) For each transaction T in the Ready Queue 

1) Request lock for transaction(7) and obtain the lock set L 

2) If L is null then 

a) Put the transaction T in Wait Queue 

b) Find the existing conflicting transaction ( C T )  

c) Add T to the waiting transaction list of CT 
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3) If L is not null then 

a) For each lock / in L 

i) Apply the lock / 

ii) update the color of the corresponding node in the class hierarchy graph 

4) Put T in the active transaction list 

• Procedure Request lockJ~or_transaction(T):~ 

A) Create an empty lock set L for the transaction T 

B) Create a new hierarchy lock / for transaction T with root as the hierarchy granularity 

unit 

C) Insert / into L 

D) / = 0 

E) while i < size of L 

1) currentLock = i th lock of L 

2) request Lock(currentLock) 

a) if successful then 

i )  z++ ;  

b) if failure then 

i) if current lock is instance lock then 

find conflicting transactions from lock table 

return null (lock request for T failed) 

ii) if not then 

- remove current lock / from L 

de-escalate current lock and obtain de-escalation lock set 

insert all the locks from de-escalation lock set to the end of L 

F) Return L (lock request for T succeeded) 

• Procedure Request Lock (currentLock) 

A) if current lock is a class lock or hierarchy lock then 

1) Check the color of the corresponding mode in the class hierarchy graph to find 

lock compatibility 

42 



a) If current lock is compatible, 

i) return success 

b) else 

i) return failure 

B) If current lock is instance lock then 

I) Search lock table to find if there is any conflicting lock 

a) If no conflicting lock is found 

i) return success 

b) else 

i) return failure 

• When a transaction T finishes: 

A) For each lock / of the transaction 

1) Remove lock / from lock table 

2) update the color of the corresponding node in the class hierarchy graph 

3) Remove transaction T from the active transaction list 

4) For each transaction t in the waiting list of T 

a) Put t in Ready Queue 

Remove t from waiting transaction 

In the next section an experimental comparison of SAML with ILP and CLP has 

been done and an analytical comparison of SAML and AMGL has also been presented. 
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CHAPTER V 

EXPERIMENTS, RESULTS AND ANALYSIS 

This chapter gives a detailed description of the simulation experiments that were 

performed. Two different protocols were tested and compared experimentally against the 

SAML protocol. For each of these three protocols, several sets of experiments were done. 

The simulation parameters for each experiment as well the performance criteria have 

been discussed. At the end of each experiment, the results are presented, the data has 

been analyzed and the performance statistics have been determined. SAML was 

compared against another multi-granularity protocol AMGL. The AMGL protocol has 

not been implemented and hence was not compared experimentally with SAML but a 

mathematical comparison is discussed in this chapter. 

SAML and AMGL have a completely different locking granularity compared to 

CLP and ILP. So at any given instance, it is difficult to predict how many instance, class 

and/or hierarchy locks are present at the system as it depends completely on transaction's 

workload, duration, access area, write ratio, the incoming rate of transactions in the 

system. So it is difficult to predict mathematically, beforehand how many locks and 

which locks these two protocols might need. As a result SAML was compared against 

ILP and CLP experimentally. Again, the key difference between SAML and AMGL is 

the way each protocol handles the soft locks. So an analytical comparison between them 

can properly indicate their variation. Hence, SAML was compared against AMGL 

analytically. 

5.1. Locking Protocols 

Three locking protocols have been used for experimental purposes. All three of the 

locking protocols use different granularity units for locking. While instance granularity 

locking uses instances as the lock granule and class granularity locking used class for the 

same, SAML has a self-adjusting lock granule which uses instance, class or class 

hierarchy as the lock granule depending on the requirement of the transaction. SAML has 
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been compared mathematically with another multi-granularity locking protocol AMGL 

which has been discussed in this section as well. 

5.1.1. Instance Granularity Locking 

This protocol uses instances as the lockable granule. So locks arc set on instances that 

transactions want to access. If a read or write access is needed by a transaction on an 

instance of a class, an explicit shared or explicit exclusive lock has to be acquired and set 

on the instance. Again, if a read access on all instances of a class is needed, a lock on 

each of the instances has to be acquired and if a read access on all instances of a class 

hierarchy is needed, a lock for each of the instances of the parent class as well as all the 

instances of the subclasses has to obtained. In this locking, the maximum number of locks 

that can be set on a database is equal to the total number of instances of the classes of that 

database. 

5.1.2. Class Granularity Locking 

This protocol considers classes as granularity units. Here, locking a class implicitly locks 

all its instances too. To access an instance the class of that instance has to be locked 

explicitly in shared or exclusive mode. If a class hierarchy has to be accessed, an explicit 

shared or exclusive lock has to be set not only on the class but also each of the subclasses 

of that class and the subclasses of those subclasses. In this case, if a granularity unit for 

the lock remains fixed at class level and does not change during the lifetime of the 

transaction. 

5.1.3. Adaptive Multi-granularity Locking (AMGL) 

This is the only adaptive multi-granularity protocol available. In this locking protocol, 

instance, class and class hierarchy locking is supported. Locking a class or an instance is 

conducted in the same manner as in class granularity locking. Locking a class hierarchy 

is performed in the same manner as in multi-granularity locking [17]. They have used 

firm locks and soft locks. Soft locks are like intention locks [7] but this also keeps track 

of information about underlying objects covered by the lock Once a lock is obtained for 

any granularity unit, according to this protocol, the degree of granularity can be adjusted 
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during the lifetime of the transaction. The granularity is adjusted according to the 

transaction requirements by using lock escalation and de-escalation. This is done to try to 

reduce the lock overhead and increase the degree of concurrency amongst transactions. 

5.1.4. Self Adjusting Multi-Granularity Locking (SAML) 

Like existing multi-granularity locking protocols, the SAML protocol also supports 

instance, class and class hierarchy locking. Instances are locked in the same way as in the 

instance lock protocol. To lock a class, a class lock is applied like the class granularity 

locking protocol, which implicitly locks all the instances of the class. If a class hierarchy 

has to be locked, a hierarchy lock has to be set on the root class of the hierarchy. 

However, once a lock is obtained, the granularity of the lock can be adjusted during the 

transaction so that the concurrency among transactions can be increased. It is an 

optimistic locking, so it starts with the largest possible granularity lock possible, 

assuming there will be no conflict, and on the event of a conflict with another transaction, 

it de-escalates to the next possible granule for locking. The details of this protocol have 

been discussed in CHAPTER III. 

5.2. Criteria for Performance Evaluation 

In the simulation experiments, three criteria have been measured to evaluate the 

performance of each protocol. 

• Active Transactions (AT): At a certain instance, the number of transactions in 

running state in the system. 

• Lock Count (LC): It is the size of the lock table at a certain instance. It 

represents the number of explicit locks on various resources of the database. 

• Waiting Transactions (WT): It is the total number of transactions that are 

waiting for the completion of other transactions because of the presence of 

some conflicting transactions in the active transaction list. 

5.3. Values of Simulation Parameters 

For experiment purposes, three kinds of databases have been used. The Type 1 database 

has a lot of instances but a lesser number of subclasses per class. The Type 2 database is 
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similar to the first type but the hierarchy depth of the database is double that of Type 1. 

The Type 3 database has the same depth as Type 1, but with more subclasses per class 

and lesser instances per class. 

Database Database Type 

Parameters Type 1 Type 2 Type 3 

numSubClassPerClass 3 3 10 

numlnstance perClass 50 50 15 

numClassLevel 5 10 5 

Table 5-1. Database Generation Parameters 

The transactions used for the experiments can be classified into two categories 

depending on the number of instances they work with: a large load or a small load. Large 

load transactions work with 200 instances whereas small load transaction works with 20 

instances. Each of these two types of transactions has been tested for two different 

durations. Short duration transactions exist for 2 units of time and long duration 

transactions stay in the system for 4 units of time. Again these transactions with different 

loads and different durations can have three types of access areas in the database. This 

signifies the area of database from where the instances, with which the transactions work 

with, have been chosen. These accesses can either be concentrated near to the root; near 

to leaf or the access area can be from the overall database. 

5.4. Experiments 

Depending on the types of the databases used, the experiments performed can be 

categorized into three major groups. For each type of databases, transactions of different 

workloads and various durations have been run on three different access areas of the 

database. Ti, T2, T3 are the three types of databases used. AR, AL, AO defines the access 

areas, namely near root, near leaf and overall respectively. LS and LH stands for small 

load and heavy load and Di, D2, D4 represents the different durations of transactions. Di 

uses one unit of time as the duration of transaction, D? and D4 uses two and four units ot 

time respectively. According to the notation provided here, an experiment denoted by 

TjAqLhD4 means that the experiment has been done on type-3 database with an overall 
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access area for transactions with heavy load and 4 units of duration. For simulation 

purposes, 1 unit time = 100 milliseconds has been used. Heavy load transactions consist 

of 200 instances whereas small load transactions use 20 instances. For each experiment, a 

total of 400 transactions have been run which were injected into the system using a 

Poisson distribution with mean rate of 10 transactions per unit of time. 

The simulation results of each experiment have been presented in three charts in 

Appendix. The first chart of each experiment shows the number of locks held by different 

locking protocols at different instances of time during the lifetime of all the transactions. 

The second chart denotes the number of active transactions present in the database 

management system for different locking protocols at different instances of time during 

the lifetime of all the transactions. The third chart denotes the same for the number of 

waiting transactions that are waiting for some resources to be released. The x-axis of the 

charts represent the time in milliseconds and the y- axis denotes the values of lock count, 

active transactions and waiting transactions respectively. 

5.4.1. Type-1 Database 

Type 1 database has very few numbers of classes. Each class has three sub-class and 50 

instances. The depth of the class hierarchy is 5. So the total number of classes in the 

database is only 121. Therefore the degree of conflict among the transaction is very high 

in this type of database. 
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Lock Count Avg) Active Transaction (Avg) Waiting Transaction (Avg) 

SAML CLP ILP SAML 1 CLP ILP SAML CLP ILP 

T1ANLC>D? 364 58 367 19 7 18 7 126 ; 7 

TIANL<,D4 656 61 664 33 7 33 27 160 ! 26 

T-TA0LHD7 454 17 454 2 1 3 154 166 ! 165 

TI A0LH D4 460 18 455 2 1 3 169 180 186 

TI A| L<;D? 362 58 369 19 7 18 7 119 7 

TALJA, 648 62 648 33 7 33 30 155 30 

T A LHD? 451 16 438 2 1 2 151 173 169 

TA LHD4 453 18 457 2 1 3 166 178 186 

TIARL5D2 365 57 372 19 7 19 7 122 7 

TIARLSD^ 670 61 670 34 7 34 28 156 28 

WHD2 460 18 432 2 1 2 157 164 166 

TALHA 449 18 457 2 1 3 160 174 185 

Table 5-2. Experimental results of type-1 database 

Experiments show that the performance of the SAML protocol is exactly similar 

to Instance Locking protocol in terms of lock count, active transactions and waiting 

transactions. The reason behind this is that, due to the high rate of conflicts among the 

transactions, SAML has to deescalate almost all the locks to instance level, which is the 

smallest granularity unit to accommodate more transactions to run concurrently. Whereas 

in the CLP protocol each transaction holds locks on a good portion of the database until it 

completes, which leads to the worst concurrency in the database. Although the locking 

overhead of CLP is very low compared to SAML or ILP, our simulations show that, in 

type 1 database, the total time required by the Class Lock protocol to complete all the 400 

transactions is always almost three to five times than the time required by ILP or SAML 

protocol. 

Although ILP and SAML performs similarly in terms of locking overhead, 

number of active and waiting transactions, the SAML protocol has additional overhead 
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for lock de-escalations and maintaining the class inheritance graph. Therefore, for Typel 

databases the instance locking protocol will be the best choice for concurrency control 

and the class locking protocol will be the worst choice. 

5.4.2. Type-2 Database 

The type-2 database has similar characteristics like the type-1 database, but the difference 

is that the depth of the class hierarchy is twice that of a type-1 database. As a result it has 

much more number of classes than a type-1 database and hence less conflicts among the 

transactions. 

Lock Count Avg) Active [ransaction (Avg) Waiting Transaction (Avg) 

SAML CLP ILP SAML CLP ILP SAML CLP ILP 

T,ANL,D? 174 169 383 19 19 19 <1 <1 <1 

346 329 741 37 37 37 <1 1 <1 

T2A0LHD7 707 493 3809 19 18 19 2 5 2 

TAUA 1685 920 4374 37 34 37 6 19 6 

TAUD7 170 167 382 19 19 19 <1 <1 <1 

TAUD, 344 328 744 38 37 37 1 1 1 

TA^D;, 725 502 3788 19 19 19 3 5 3 

TA 1763 920 7330 37 34 37 7 20 7 

T2ARLSD2 172 169 382 19 19 19 <1 <1 <1 

343 329 742 37 36 37 1 1 1 

WHD2 706 496 3774 19 19 20 2 4 2 

WHD4 1681 935 7331 37 35 37 6 18 6 

Table 5-3. Experimental results of type-2 database 

Table 5-3 presents the experimental results of the three locking protocols 

performed on various access areas of type-2 database for transactions with different 

workloads and durations. It has been observed that, for small workload the locking 

overhead of SAML is similar to CLP and much lower than ILP protocol whereas it has 
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same degree of concurrency like the ILP protocol. For large workload the number of 

locks held by SAML is a little bit more than CLP but again it is much lower than ILP 

Also SAML has same degree of concurrency like ILP as both of these protocols have 

almost same number of active and waiting transactions. The CLP protocol is worse than 

both SAML and ILP in terms of concurrency, as it has less active transactions and more 

waiting transactions in the system at any point of time and hence requires much more 

time to complete all the transactions, especially for transactions with heavy workload and 

long durations. 

Though both SAML and ILP provide the same degree of concurrency, the 

locking overhead of SAML is significantly less than ILP in spite of the additional 

overhead of maintaining the class inheritance graph. Therefore, for this type of database, 

the SAML protocol will be a better choice for concurrency control for transactions with 

heavy workload, whereas with a small workload the CLP protocol will be the better 

choice. 

5.4.3. Type-3 Database 

Type-3 database has more number of classes and less number of instances per class. Each 

class has 10 subclasses and 15 instances and the depth of the class hierarchy is 5. Because 

of the presence of more classes and less instances per class, each lock in the class locking 

protocol blocks a very small portion of the database and hence the CLP protocol can 

provide better concurrency in this type of database than a type-1 or type-2 database. 

Table 5-4 presents the experimental results of the three locking protocols 

performed on various access areas of type-3 databases for transactions with different 

workloads and durations. It is observed that for transactions with small workload all the 

three protocols provide a similar degree of concurrency as the conflicts among the 

transactions is very low. The ILP protocol has a high locking overhead, whereas the CLP 

and SAML protocol have a similar locking overhead which is much less compared to the 

ILP protocol. As the SAML protocol has additional overhead for maintaining the Class 

Inheritance Graph and lock de-escalations, for type-3 databases the CLP protocol will be 

the better choice for small load transactions. 
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Loc k Count(Avg) Active Transaction (Avg) Waiting Transaction (Avg) 

SAML CLP ILP SAML CLP ILP SAML : CLP ILP 

TAUD, 180 173 381 19 19 19 <1 : i <1 

T,AnLc,D4 358 329 740 37 36 37 
1 

1 4 1 

T^A^D; 1900 657 3419 17 11 17 
1 ! 

27 ! 90 26 

"TA)LHD<I 2661 749 4794 21 13 24 

| 
53 j 142 , 82 

—
1 

>
 

i—
 

O
 

VJ
 180 175 382 19 19 19 <1 i j <i 

!A.L<;D4 361 342 747 37 40 37 1 4 1 

"""A LHD? 1862 667 3410 16 11 17 28 88 29 

TALHD4 2770 751 4725 21 13 24 59 138 85 

T3ArLsD2 180 175 385 19 19 19 <1 1 <1 

T3ArLsD4 364 341 744 37 37 37 1 5 1 

^AR^D;, 1801 356 3384 16 11 17 29 90 29 

WHD4 2725 735 4677 21 12 24 53 138 84 

Table 5-4. Experimental results of type-3 database 

Transactions with a heavy workload have much more conflicts, especially for 

long duration transactions. So the CLP protocol provides less concurrency and takes 

much more time to finish all the 400 transactions compared to the ILP or the SAML 

protocol. The locking overhead of SAML in this case is higher than the CLP protocol, but 

it is much less than the ILP protocol. Although the degree of concurrency in the SAML 

protocol in this scenario is not exactly similar to the ILP protocol like the other cases, it is 

very close to ILP protocol. Therefore, considering concurrency and locking overhead, the 

SAML protocol will be the better choice for type-3 databases for transactions with heavy 

workload. 

5.5. Experiment Summary 

Table 5-5 lists the best and the worst locking protocol among SAML, ILP and CLP 

protocols on different types of databases for transactions of different workloads, 

considering both locking overhead and the degree of concurrency. The experiments in 

section 5.4 show that the performance of the locking protocols does not change 
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significantly in different access areas of the database. So the access area criterion has 

been excluded from the summary in Table 5-5. Also if the duration of the transactions 

increases, the relative performance of the locking protocols remains the same. Hence the 

duration of a transaction has also been excluded from the summary table. Only the 

workload of the transaction significantly affects the concurrency and locking overhead of 

the locking protocols. For type-1 databases the ILP protocol has the best performance as 

it has a very high degree of conflicts among the transactions. For type-2 and type-3 

databases the SAML protocol has the best performance for heavy workload whereas the 

CLP protocol performs well for a small workload. In all cases the performance of the 

SAML protocol is never the worst. 

Database type Workload Best Worst 

Type-1 
Small ILP CLP 

Type-1 
Heavy ILP CLP 

Type-2 
Small CLP ILP 

Type-2 
Heavy SAML ILP 

Type-3 
Small CLP ILP 

Type-3 
Heavy SAML CLP 

Table 5-5. Best and Worst Protocol of Experiments 

5.6. SAML vs. AMGL 

Both SAML and AMGL are adaptive multi-granularity locking protocols for concurrency 

control in object oriented databases. The SAML protocol can be considered as a 

simplified version of AMGL protocol. AMGL has treated composite objects differently 

than other database objects and it assumes the presence of schema modifications but 

SAML does not handle composite objects differently than regular instance objects and 

assumes that there is no schema change in the database. 

The SAML protocol is similar to AMGL in terms of the number of lock de-

escalations and it provides the same degree of concurrency. Both of these protocols 

require exactly the same number of lock de-escalations to lock any object in the database. 

But to lock any class or instance explicitly in any mode, the AMGL protocol must apply 

corresponding soft locks explicitly on all the ancestors of that class or instance and it 
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keeps all the soft locks in the lock table along with the explicit firm locks. This makes the 

AMGL protocol even worse than the ILP protocol in terms of locking overhead in some 

cases [5]. SAML, on the other hand, takes a different approach to deal with soft locks. To 

maintain the soft locks it uses a Class Inheritance Graph which is static in size. The color 

of each node of the graph denotes the soft lock present on that object in the database at 

that point. The use of CIG significantly reduces the number of locks and hence the 

locking overhead compared to AMGL. 

To lock any class or instance at level /, the AMGL protocol needs (/—1) explicit 

soft locks along with the explicit firm lock. Whereas to lock any class or instance. SAML 

needs to apply a new color on the corresponding node in CIG (only for class or hierarchy 

locks) and update the color of its immediate ancestor node. It does not require more than 

one entry in the lock table for a lock. This significantly reduces the locking overhead in 

SAML. For example, if n different transactions simultaneously lock an object o at level I 

of the class hierarchy, then according to the AMGL protocol there will be «*(/-1) soft 

locks and n firm locks in the lock table. Hence the total number of locks for AMGL 

protocol in this scenario will be (HX (1-1) + n) = »*/, which is directly proportional to the 

level of the class in the hierarchy. Whereas the number of locks required by SAML 

protocol is only n, this is independent of the level of the object in the hierarchy. So, the 

space complexity will be the main comparison parameter here as the larger the lock table 

size, the more it will need to search the lock table and time complexity will vary 

accordingly. The space complexity associated with the AMGL protocol would be O(nxl) 

and for SAML it would be O(«). This proves that the SAML protocol will have less 

locking overhead than AMGL in all cases. 
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CHAPTER VI 

CONCLUSION AND RECOMMENDED FUTURE WORK 

In the preceding chapters, to improve the concurrency in Object Oriented Databases, a 

self-adjusting multi-granularity locking protocol (SAML) has been presented which 

facilitates choosing appropriate locking granularity according to the requirement of the 

transactions and encompasses less overhead in various situations compared to some of 

the existing protocols. This chapter gives a summary of the protocol, highlights the 

contribution and recommends some directions where the future research efforts could be 

made. 

The most attractive feature of SAML is that it maximizes the parallelism of 

transactions while keeping the locking overhead as low as possible. This protocol uses 

three levels of granularity for locking, namely instance lock, class lock and class 

hierarchy lock. SAML uses lock de-escalation which enables the lockable granules to be 

adjusted automatically during the lifetime of a transaction. This optimistic locking 

protocol uses conservative two-phase locking to avoid deadlocks. This protocol uses 

mainly three types of locks: explicit locks, implicit locks and soft locks. SAML consists 

of three components. First is the ten lock modes on different granules; second, a 10x6 

compatibility matrix which is used to decide whether two lock modes are compatible to 

be set on the same object and the third is a complete protocol to guide how lock requests 

are issued. The basic idea is to lock the largest granularity unit is at the beginning of a 

transaction even if most of the objects being locked are not necessary at first. Later, if 

there is any conflict from other transactions, lock de-escalation is performed. Each 

conflicting transaction then would lock the next higher granularity unit that is not in 

conflict. So when locks of two transactions conflict, both locks keep on reducing their 

granule size until the conflict is resolved. Therefore, the protocol adjusts itself to the 

transaction requirements by using multiple granularity units to provide maximum 

concurrency but keeping minimum locking overhead. 

SAML protocol was compared against instance, class and class hierarchy 

locking experimentally for three different types of databases and transactions having 
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various access areas, different workload and duration. Out of all the situations it was 

found that SAML performs the best, in terms of better concurrency and less overhead, 

when the transactions are long-duration transactions with heavy workload. SAML was 

compared analytically with another adaptive multi-granularity protocol called AMGL. 

Both of these protocols provide same degree of concurrency. Both of these protocols 

require exactly the same number of lock de-escalations to lock any object in the database. 

But to lock any class or instance explicitly in any mode, the AMGL protocol must apply 

corresponding soft locks explicitly on all the ancestors of that class or instance and it 

keeps all the soft locks in the lock table along with the explicit firm locks. This makes 

AMGL protocol even worse than ILP protocol in terms of locking overhead in some 

cases and SAML uses a class inheritance graph which significantly reduces the number 

of locks and hence the locking overhead compared to AMGL. 

One possible improvement of SAML in terms of reducing locking overhead can 

be achieved if we can figure out beforehand whether a lock de-escalation is going to 

result in resolving the existing lock conflict or not. If it does, then only the de-escalation 

would be allowed to take place. This scenario is most critical for a lock de-escalation of a 

class lock to instance locks. 

We have only considered a single inheritance scenario in our protocol but 

SAML can easily be extended to incorporate multiple inheritances. In SAML, while 

locking an object explicitly, soft locks are applied on all the ancestors of that object and 

the class inheritance graph has been used to navigate from that object to all its ancestors. 

So, if multiple-inheritance is present in a database, this graph would be able to find all the 

ancestors through multiple parents and apply a soft lock on them. 

We have not considered composite objects separately from primitive objects in 

SAML. If there is a composite object in the system, then each component object of the 

composite object has to be locked separately as individual primitive objects. Recognizing 

composite objects as being different could be investigated for the existing SAML 

protocol. 
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We have assumed that there will be no schema modification of the database. But 

in reality, that might not be the case always. So, including the effects of schema 

modification in SAML protocol could be an interesting area to explore. 
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