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Abstract 

The theory of pretest (Bancroft (1944)) and James-Stein(James and Stein (1961)) 

type shrinkage estimation has been quite well known for the last five decades though 

its application remains limited. In this dissertation, some contributions to different 

types of parametric and semiparametric linear models based on shrinkage and prelim­

inary test estimation methods are made which improve on the maximum likelihood 

estimation method. 

The objective of this dissertation is to study the properties of improved estimators 

of the parameter of interest in parametric and semiparametric linear models and 

compare these estimators with the least absolute shrinkage and selection operator 

(Tibshirani (1996)) estimator. 

Chapter two contains a study of the properties of the shrinkage estimators of 

the parameters of interest in a Weibull regression model where the survival time 

may be subject to fixed censoring and the regression parameters are under linear 

restrictions. Asymptotic properties of the suggested estimators are established using 

the notion of asymptotic distributional risk. Bootstrapping procedures are used to 

develop confidence intervals. An extensive simulation study is conducted to assess 

the performance of the suggested estimators for moderate and large samples. 

In chapter three, we consider generalized linear models for binary and count data. 

Here, we propose James-Stein type shrinkage estimators, a pretest estimator and a 

Park and Hastie estimator. We demonstrate the relative performances of shrinkage 

and pretest estimators based on the asymptotic analysis of quadratic risk functions 

and it is found that the shrinkage estimators outperform the maximum likelihood es­

timator uniformly. On the other hand, the pretest estimator dominates the maximum 

likelihood estimator only in a small part of the parameter space, which is consistent 

with the theory. A Monte Carlo simulation study has been conducted to compare 

shrinkage, pretest and Park and Hastie type estimators with respect to the maximum 
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likelihood estimator through relative efficiency. 

In chapter four, we consider a partial linear model where the vector of coefficients 

j9 in the linear part can be partitioned as (0i,/32) where $x is the coefficient vector 

for main effects and (32 is a vector for "nuisance" effects. In this situation, inference 

about fii may benefit from moving the least squares estimate for the full model in 

the direction of the least squares estimate without the nuisance variables, or from 

dropping the nuisance variables if there is evidence that they do not provide useful 

information (pre-testing). We investigate the asymptotic properties of Stein-type 

and pretest semiparametric estimators under quadratic loss and show that, under 

general conditions, a Stein-type semiparametric estimator improves on the full model 

conventional semiparametric least squares estimator. The relative performance of the 

estimators is examined using asymptotic analysis of quadratic risk functions and it is 

found that the Stein-type estimator outperforms the full model estimator uniformly. 

On the other hand, the pretest estimator dominates the least squares estimator only 

in a small part of the parameter space, which is consistent with the theory. We 

also consider an absolute penalty type estimator for partial linear models and give 

a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty 

type estimators. 
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Chapter 1 

Introduction and Literature 

Review 

1.1 Introduction 

Statistical models are created in effort to ascertain knowledge about unknown pop­

ulation quantities. In many situations, however, consulting statisticians and bio-

statisticians investigate the statistical properties not only with data based on sample 

information but also on nonsample information. In problems of statistical inference, 

the use of nonsample information(NSI) or uncertain prior information (UPI) on some 

(all) of the parameters in a statistical model usually leads to an improved inference 

procedure for other (all) parameters of interest. However, the prior information may 

be known or uncertain. The known prior information is generally incorporated in the 

model form of a constraint, giving rise to restricted models. The statistical analysis 

of such restricted models leads to an improved statistical procedure when such re­

strictions hold in unrestricted models. The validity and efficiency of the restricted 

model analysis retains its properties over the restricted parameter space induced by 

the constraint, where the same holds for the unrestricted model analysis over the 

entire parameter space. Therefore, the results of an analysis based on restricted and 

1 
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unrestricted models need to weigh loss of efficiency against the validity of constraints 

in order to choose between the two inference techniques. 

When we encounter problems with uncertain prior information in statistical mod­

els, we may inflict some prior information on the model which may come from un­

derstanding data, statistical theory, previous empirical work, or other factors. Now 

the question arises as to how one can incorporate this uncertain prior information 

into the inference procedure. In this regard, Bancroft (1944) came up with idea of 

testing the uncertainty of the prior information in the estimation process. It is nat­

ural to perform a pretest or preliminary test on the validity of the uncertain prior 

information and then inference is developed based on the result of this test. The 

resulting estimation procedure is called pretest estimation. This estimation method 

is a compromised inference procedure between unrestricted and restricted rules. 

The James-Stein estimator, a so called shrinkage estimator, combines the sample 

and the non-sample information in a way that improves the precision of the estimation 

process or the quality of subsequent predictions. It is easy to implement and adapt 

to maximum likelihood and other classical estimators. The existing literature shows 

that the shrinkage estimator has lower risk than the classical estimators including the 

maximum-likelihood estimator in the classical linear regression model, under very 

mild conditions. 

In this dissertation, we develop shrinkage estimation methods in three different 

statistical models when non-sample information on the parameter of interest exists. 

Further, we also consider least absolute shrinkage and selection operator (Tibshirani 

(1996)) method. 

For expository purposes, let us formulate the basic problem of estimating /3, the 

regression parameter of a multiple regression model which is given in vector form as 

follows: 

Y - X / 3 + e, (1.1) 

where Y = (y1: • • • ,yn) are responses, X = ( x i , . . . , xk) are the predictors and (3 = 
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(/3i,..., Ac)' is an unknown parameter vector. The components of the error vector 
e — (£1, • • • )£n) are assumed to have mean zero vector and unknown variance a2. 

For inference purposes, we assume that the errors are independently, identically and 

normally distributed with the above mean and variance. The maximum likelihood 

estimator of the parameter vectors f3 is 

h = (X'X^X'y-

Unrestricted and Restricted Estimator: 

When an estimator relies on sample data only and is not a function of uncertain 

prior information, it is well known that the maximum likelihood estimation leads 

to the best estimate, at least in the class of linear unbiased estimates. Let (3 be the 

maximum likelihood estimator of (3 based on a sample size n. This estimator is called 

an unrestricted maximum likelihood estimator (UE) in the full model. 

On the other hand, using the available information in models may be advantageous 

to obtain improved estimates. The uncertain prior information may be explicitly 

incorporated into the estimation scheme by modifying the parameter space. In this 

case, the new (restricted) parameter space is a subspace of the original one (reduced 

in dimension). Let (3 be the restricted maximum likelihood estimator (RE) of /3 when 

the uncertain prior information is correct. This estimator (3 is more efficient (or, at 

least, no less efficient) than the unrestricted estimator when the model satisfies the 

restriction. But what happens when it does not satisfy the restriction. It is easy to 

see that the restricted estimator will, in general, be biased. 

Pretest Estimator: 

Let A be a suitable test statistic for the null hypothesis H0 : H/3 = h, where H is 

a q x k matrix of rank q < k and h is a given q x 1 vector of constants. Let cn<a be 

the critical value, i.e., the 100(1 — a)% percentile, of the distribution of A under the 
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null hypothesis. It seems natural to define an estimator of the following form: 

)9PT = ) 9 - ( ) 3 - ) 3 ) / ( A < c n i a ) , (1.2) 

where 1(A) is an indicator function of a set A. This is called a pretest estimator 

(PT). Some useful discussions about pretesting can be found in Judge and Bock 

(1978), Giles and Giles (1993), Ohtani et al. (1997), Ahmed (2001), and Ahmed et al. 
- PT 

(2006a), among others. It is important to remark here that /3 performs better than 
- PT 

0 in some part of the parameter space. The use of /3 may, however, be limited due 

to the large size of the pretest. The performance of this estimator is substantially 

better than UE when uncertain prior information is nearly correct. To overcome 

this shortcoming, we construct an estimation procedure based on the most celebrated 

James-Stein type or shrinkage estimation procedure. This rule combines the sample 

and non-sample information in a superior way compared to the preceding estimator. 

Shrinkage and Positive Shrinkage Estimator: 

Following Ahmed (2001), the shrinkage estimator (SE) of /3 is defined as: 

PS = P + 
\ (<? - 2) 

A 
(/3-/3), q>3. (1.3) 

Interestingly, the above estimator is obtained by simply replacing the binary quan­

tity 1(A) in (1.2) by a continuous quantity (q — 2)A_1. Hence, the above shrinkage 

estimator arises in a natural way. Note that 'J3 is not a convex combination of J3 and 
~ ~ s 
(3 . However, the proposed estimator J3 may have the opposite sign of f3. To avoid 

* s ~ s 

this strange behavior of (3 , we truncate 0 , which leads to a convex combination of 

$ and /3 and is called positive-part shrinkage estimator (PSE). This estimator can be 

defined as (3S+ = P + 
1 ( 9 - 2 ) 

A 0 3 - 0 ) , (1-4) 

where z+ = max(0,z). We emphasize here that (3 is particularly important to 
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- s 
control the over-shrinking inherent in (3 . 

In this dissertation, we consider the asymptotic set up to appraise the performance 

of the listed estimators. To this end, we consider the weighted quadratic loss function 

criterion to examine the performance of the estimators. 

C(f3*,/3; Q) - [vH3* - 0)]' Q [MP* ~ V)] , (1-5) 

where Q is a positive semidefinite weighting matrix and (3* can be any one of /3, /3, 

(3 ,(3 or 0 . 

Consider the Pitman type of alternatives 

tf„:H/3 = h + - ^ , (1.6) 
n 

where 6 — (<5i, S2 • • • , Sq) € 5R9 a real fixed vector. Note that for 5 = 0, H/3 = h for 

all n. 

Further, we introduce the asymptotic distribution function of (3* under Kn by 

G(y) = lim P [ v^ ( / r -0)< y\Kn] , 

where G(y) is a nondegenerate distribution function. Then, we define the asymptotic 

distributional quadratic risk (ADR) by 

#(/3*;Q) = j • • • Jy'QydG(y) 

= trace(QQ*), 

where Q* = J • • • J yy'dG(y) is the dispersion matrix for the distribution G(y). 

Based on this asymptotic risk set up, we compare the risks of the suggested es­

timators under the quadratic loss function. Our simulation study shows that our 

estimators dominate the maximum likelihood estimator in the entire parameter space. 
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Least Absolute Shrinkage and Selection Operator (LASSO): 

The Least Absolute Shrinkage and Selection Operator, first proposed by Tibshirani 

(1996), regularizes ordinary least squares regression with a L\ regularizer. This is one 

of many shrinkage regression methods, which all have the basic idea of shrinking the 

parameters towards zero. In least squares regression, these parameters are estimated 

by minimizing the residual sum of squares: 

m in (Y-X/3 ) ' (Y-X/3 ) . 

The LASSO imposes an additional restriction on the coefficients, namely: 

n 

. 7 = 1 

where r is a tuning parameter. If the tuning parameter r > 0 is large enough, this 

just gives the usual least squares estimates. However, smaller values of r produce 

shrunken estimates /3, often with many components equal to zero. Choosing r can 

be thought of as choosing the number of predictors to include in a regression model. 

Thus the LASSO can select predictors in a manner similar subset selection methods. 

However, since it is a smooth optimization problem, it is less variable than subset 

selection and can be applied to much larger problems (large in p). 

Knight and Fu (2001) established some asymptotic results for LASSO-type es­

timators. Fan and Li (2002) introduced the Smoothly Clipped Absolute Deviation 

approach and proved its optimal properties. Efron et al. (2004) introduced the Least 

Angle Regression algorithm and discussed its close connection to LASSO. Park and 

Hastie (2007) developed methods for fitting the entire coefficient path for a generalized 

linear model with L\ penalties. 

The following subsections give the introduction and literature review for three 

different problems. 
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1.2 Delineating the effect of Misspecification in a 

Lifetime Censored Regression Model 

Statistical analysis of failure-time data is an active and important area of research that 

has been received considerable attention from several applied disciplines. Survival 

analysis in clinical trials, reliability theory, industrial and manufacturing systems, 

biological sciences and social sciences provide examples where failure-time data are 

studied. Historically, failure times are modelled by fitting an exponential, Weibull, 

or log normal distribution to the data. 

Failure (or response) time data usually arise with measurements of certain auxil­

iary variables known as covariates. For example, data on the occurrence of a heart-

attack of a patient are usually coupled with measurement of blood pressure, weight, 

age, family history for heart diseases, life-style of patient and cholesterol level etc. 

Statistical analysis provides a scientific tool to investigate such relationships using 

data obtained from previous or current studies. The aim of statistical analysis is to 

identify the risk factors that contribute significantly to the presence or the occur­

rence of the event which is under investigation. Very often, the analysis is conducted 

through a statistical procedure called parametric regression modeling, where the de­

pendence of survival time on covariates or risk factors is described explicitly through 

the parameters, hazard function and survival function. For example, Breslow (1974) 

used the exponential distribution to model the remission duration of children with 

leukemia and to identify important risk factors. He modelled the rate of the expo­

nential distribution as a function of potential risk factors. 

In some studies, certain covariates present a linear relation, i.e. some variables 

depend linearly on some others. Such phenomenon is called model misspecification 

and there is an uncertainty about coefficient restrictions. Since the presence of linear 

restrictions among covariates induces large variation and uncertainty in the regression 

models, the estimates of the model parameters have large variance, and prediction 
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based on the models may perform very poorly. Therefore the models may not serve 

the needs of the investigators. In this situation, one may assume that the prior 

information about the model consists of specification of restrictions on the regression 

coefficients. Such a prior information may be derived from past experience of similar 

investigations and from the exhibition of stability of estimates of regression coefficients 

in repeated studies and/or some extraneous sources and/or from some theoretical 

considerations; see, e.g., Judge et al. (1985) and Rao and Toutenburg (1995). 

In this problem, we consider the shrinkage estimation (point and interval) method 

for the Weibull regression model where the survival time may be subject to a fixed 

censoring and the regression parameters are under linear restrictions. 

Let T represent the lifetime of an individual. To begin with, we shall assume 

that there are no covariates in the study and that we are interested only in the 

survival probability of the individual. Suppose T has a Weibull distribution with 

scale parameter A and shape parameter v. In this situation, the survival probability 

is given by 

5(t|A,i/) = exp[-(Atr], 

where A > 0 and v > 0. This Weibull model can be generalized by modelling the 

shape parameter as a function of the covariates. In this case, A is a function of 

x = (xi, • • • ,xk) involving unknown parameters and the survival probability for an 

individual given covariate vector x is 

5(t|A(x))i/) = exp[-(A(x)t)"]. 

We will return to this model in Chapter Two. 

It is also useful to model the logarithm of the lifetime given the covariate vector x. 

For Weibull distributed lifetime T with scale parameter A(x) modelled as a function 

of the covariate vector x and fixed but unknown shape parameter v, the conditional 

distribution of Y — InT, given x, has an extreme value distribution with location 
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parameter /z(x) = —lnA(x) and scale parameter a — v 1. This corresponds to a 

location scale model for the logarithm of lifetime specified by 

Y = lnT = M(X) + ere, 

where £ has a standard extreme value distribution with /x(x) = 0 and a = 1 corre­

sponding to x = (0,0, • • • , 0) as q x 1 vector. This is a fully parametric version of the 

accelerated failure time model where the distribution is specified. 

Various parametric procedures for the analysis of censored data in the presence 

of concomitant variables have been proposed. Feigle and Zelen (1965) suggested a 

regression method for relating the concomitant information to the survival times of pa­

tients with cancer. They have dealt with the situation of complete information on the 

failure of all subjects. The method has been extended by Zippin and Armitage (1966) 

so that the data sets which include censored observations can be analyzed. Feigle and 

Zelen (1965), Glasser (1967), Zippin and Armitage (1973), Lawless and Signhal (1978) 

and Peduzzi et al. (1980) analyzed data sets from multiple myeloma patients based 

on exponential regression model. Odell et al. (1992) described a Weibull regression 

model for interval-censored data with fixed (e.g. baseline) covariates. Rabinowitz et 

al. (1995) extended the accelerated failure model to the interval-censored case. They 

presented a class of score statistics for estimating the regression coefficients without 

specifying the distribution function of the residuals or the joint distribution of the 

covariates and the interval times. Ahmed and Saleh (1999) applied James-Stein es­

timation method for estimating the regression coefficients in an exponential model 

with censoring considered when it is a priori suspected that the parameters may be 

restricted to a subspace. A family of penalized partial likelihood methods, such as 

LASSO (Tibshirani (1997)) and the smoothly clipped absolute deviation method (Fan 

and Li (2002)), were proposed for the Cox proportional hazards model. By shrink­

ing some regression coefficients to zero, these methods select important variables and 

estimate the regression model simultaneously. 
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1.3 Shrinkage, Pretest and P H estimators for Gen­

eralized Linear Models 

Many popular statistical methods based on mathematical models assume that data 

follow a normal distribution. Most obvious among these are the analysis of variance 

for planned experiments and multiple regression for general analysis of independent 

and dependent variables. In many situations, the normality assumption is not plau­

sible. Consequently, the use of methods that assume normality may perform unsatis­

factorily. In these cases, other alternatives that do not require data to have a normal 

distribution are attractive. Generalized linear models are an extension of the linear 

modelling process that allows models to be fit to data that follow probability distri­

butions other than the normal distribution, such as the Poisson, the Binomial and the 

Multinomial etc. These models are defined by Nelder and Wedderburn (1972). These 

models also allow the mean of a population to depend on a linear predictor through 

a nonlinear link function and allow the response probability distribution to be any 

member of an exponential family of distributions. The motivation is to tailor the 

regression relationship by connecting the outcome to relevant independent variables 

so that it is appropriate to the properties of the dependent variable. These models 

include classical linear models with normal errors, logistic and probit models for bi­

nary data, and log-linear models for multinomial data. Many other useful statistical 

models can be formulated as generalized linear models by the selection of an appro­

priate link function and response probability distribution. Refer to McCullagh and 

Nelder (1989) for a thorough account of statistical modelling using generalized linear 

models. The books by Aitkin et al. (1989), Dobson (1990) and Agresti (2002) are also 

excellent references with many examples of applications of generalized linear models. 

Tibshirani (1996) briefly discussed using the LASSO to fit generalized linear models. 

Several other researchers have also considered using L\ penalties to fit logistic regres­

sion models (Lokhorst (1999); Shevade and Keerthi (2003); Genkin et al. (2007)). 
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In addition Zhao and Yu (2004) and Park and Hastie (2007) developed methods for 

fitting the entire coefficient path for generalized linear models and other models with 

L\ penalties. Park and Hastie (2007) developed efficient "glmpath" algorithms for 

obtaining the LASSO path for the generalized linear models. This algorithm is simi­

lar to LASSO, in which the loss function is replaced by the negative log-likelihood of 

any distribution in exponential family. 

A classical linear model is of the form 

yi = x /̂3 + Si, 

where y» is the response variable for the ith observation. The quantity Xi represents 

the ith row of the design matrix X, that is known from the experimental setting 

and is considered to be fixed or non-random. The vector of unknown coefficients 

(3 is estimated by the least squares fit to the data y. The e'i are assumed to be 

independent, normal random variables with zero mean and constant variance. The 

expected value of y,, denoted by /u,, is 

Hi = x|/3. 

When classical linear models are used extensively in statistical data analysis, there 

are some types of problems for which they are not appropriate. Firstly, it may not 

be reasonable to assume that data are normally distributed. Secondly, if the mean 

of the data is naturally restricted to a range of values, the traditional linear model 

may not be appropriate since the linear predictor x /̂3 can take on any value. Thirdly, 

it may not be realistic to assume that the variance of the data is constant for all 

observations. 

A generalized linear model extends the classical linear model and is therefore 

applicable to a wider range of data analysis problems. A generalized linear model 

consists of the following components. 
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• The linear component is defined just as it is for traditional linear models 

Vi = x^/3. 

• A monotonic differentiable link function g describes how the expected value of 

yi is related to the linear predictor rjf. 

g{m) = x'̂ /3. 

• The response variables y, are independent for i = 1,2, • • • , n and have a prob­

ability distribution from an exponential family. This implies that the variance 

of the response depends on the mean \x through a variance function V : 

var(yi) = +¥M, 
wf 

where 0 is a constant and Wi is a known weight for each observation. 

In this problem, we consider the estimation problem for the generalized linear 

models which may have a large collection of potential predictor variables and some 

of them may not have influence on the response of interest. The use of the max­

imum likelihood estimator is very common in the literature. These estimators are 

solely based on the sample information and can be extremely noisy. The shrinkage 

estimation method which contains the non-sample prior information can be intro­

duced in the estimation procedure to 'improve' the quality of the estimators. The 

natural expectation is that the inclusion of additional information would result in a 

better estimator. In this dissertation, we compare three shrinkage methods with the 

maximum likelihood method for the estimation of generalized linear models: shrink­

age type estimation method, pretest estimation method and Park and Hastie (PH) 

estimation method, so called "glmpath" algorithm. 

A Monte Carlo simulation study has been conducted to compare shrinkage, pretest 
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and PH type estimators with respect to the maximum likelihood estimator through 

relative efficiency. This comparison shows that the shrinkage method performs better 

than the PH type estimation method when the dimension of the restricted parameter 

space is large. 

1.4 Shrinkage, Pretest and Absolute Penalty Esti­

mators in Partially Linear Models 

The form of semiparametric model that has received the most attention is the partial 

linear model. In this model, the response y depends on two sets of regressors (x, £), 

where the mean response is linearly related to x 6 SRP (parametric component), but 

cannot be easily parameterized in terms of t € [0,1] (nonparametric component). 

This model can be expressed as 

Vi = x'iP + g{U) + £i, i = l,...,n (1.7) 

where x, are fixed known pxl vectors, (3 is an unknown vector of parameters, g(-) is 

an unknown (smooth) real-valued function defined on [0,1], the e^s are unobservable 

random errors and the superscript ' denotes the transpose of a vector or matrix. 

Partially linear models have many applications. Engle et al. (1986) were among 

the first to consider the partially linear model (1.7). They analyzed the relationship 

between temperature and electricity usage. Model (1.7) is very useful in sociology, 

economics, finance and biometrics. For example, in a clinical trial for the comparison 

of two treatments, a subject's response will depend on the treatment received and on 

some covariate, say age. In this case, the experimenter may be unsure of the effect 

of age on the response, but may want to estimate the treatment differences which 

are believed to be constant and independent of age, see Speckman (1988). When 

the Ei are independent and identically distributed (i.i.d.) random variables, Heckman 
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(1986), Rice (1986), Chen (1988), Speckman (1988), Robinson (1988), Eubank et al. 

(1990), Chen and Shiau (1994), Donald and Newey (1994), Hamilton and Truong 

(1997) and Fan et al. (1998) used various estimation methods, such as the kernel 

method, the spline method, series estimation expansion, local linear estimation, two-

stage estimation and others, to obtain estimators of the unknown quantities in (1.7). 

Further, the asymptotic properties of these estimators have been investigated. Shi 

and Li (1995) constructed M-estimators for (3 and <?(•). When the error is an AR(1) 

process, Schick (1994) discussed the estimation of the autocorrelation coefficient. 

Schick (1996), Schick (1998) further constructed efficient estimators for the regression 

parameter component and autocorrelation coefficient, respectively. A survey of the 

estimation and application of model (1.7) can be found in the monograph of Hardle 

et al. (2000). Some recent work on semiparametric models can be found in Wang et 

al. (2004), Xue et al. (2004), Liang et al. (2004), and Bunea (2004). 

Judge and Mittelhammaer (2004) eloquently argued that much empirical research 

proceeds in the context of partially-incomplete subject matter theories and data based 

on experimental designs not devised by or known to the experimenter. This gener­

ally leads to uncertainty concerning the statistical model describing the sample data. 

This in turn, leads to uncertainty regarding appropriate statistical inference methods. 

Specifying the statistical model is, as always, a critical component in estimation and 

inference. One typically studies the consequences of some forms of model misspec-

ification. A common type of misspecification in the models is caused by including 

unnecessary predictors in the model or by leaving necessary (lurking) variables out. 

The validity of eliminating statistical uncertainty through the specification of a par­

ticular parametric formulation depends on information that is generally not available. 

The aim of this communication is to analyze some of the issues involved in the esti­

mation of a semiparametric model that may be over-parameterized. For example, in 

the data analyzed by Engle et al. (1986) the electricity demand may be affected by 

weather, price, income, strikes and other factors. If we have reason to suspect that a 
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strike has no effect on electricity demand, we may want to decrease the influence of, 

or delete, this variable. Recently, Cui et al. (2005) developed an estimator of the error 

variance that can borrow information across genes using the James-Stein shrinkage 

concept. For linear models, Tibshirani (1996) proposed the LASSO method to shrink 

some coefficients and to set others to zero, and hence tries to retain good features of 

both subset selection and ridge regression. A penalty on the sum of the absolute ordi­

nary least square coefficients is introduced to achieve both continuous shrinkage and 

automatic variable deletion. The idea of using an absolute penalty was used by Chen 

and Donoho (1994) and Chen et al. (1999) to shrink and delete basic coefficients. In 

this problem, we propose the absolute penalty type estimation method which is the 

extended version of LASSO method. 

1.5 Highlights of Contributions 

This dissertation extends the concept of James-Stein type shrinkage estimation meth­

ods in the context of three different linear models when the nonsample information is 

available. The first one of these deals with implementation of shrinkage methodology 

for a Weibull lifetime regression model when the parameters (3 lie in the linear sub-

space H/3 = h. Further, asymptotic statistical procedures are developed for testing at 

and near the general linear hypothesis HQ : H/3 = h. The problem of interval estima­

tion is addressed by using a variety of bootstrap techniques. An extensive simulation 

study has been conducted to investigate the performance of the suggested methods 

for moderate and large sample situations. Our contribution is to study point estima­

tion, interval estimation and testing procedures of the Weibull regression parameters 

when samples are drawn from arbitrary populations. We provide a total inferential 

package in this chapter for practitioners. Finally, a real data analysis is presented to 

illustrate our proposed estimation strategies. 

In chapter 3, we study the application of shrinkage and pretest estimation methods 
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to the generalized linear model, which is the most important model for many practi­

cal situations. This chapter also addresses the comparison the shrinkage estimation 

method with the Park and Hastie type estimation method through maximum likeli­

hood estimation. Asymptotic properties of the restricted, shrinkage and positive-part 

of shrinkage and pretest estimators are discussed and compared with the unrestricted 

maximum likelihood estimator. It is demonstrated that the positive part estimator 

utilizes sample and non-sample information in a superior way relative to the ordi­

nary shrinkage estimator. The simulation results are presented in several figures and 

tables. These results reveal that the shrinkage estimators outperform the maximum 

likelihood estimators in the entire parameter space and the pretest estimators domi­

nate the maximum likelihood estimators on a small part of the parameter space. On 

the other hand, the Park and Hastie estimator performs better than the shrinkage 

estimators when the restrictions on the parameter space is small. A real life data 

analysis is presented to compare the methods. 

In chapter 4, we consider the shrinkage, pretest and absolute penalty estimator 

in a partial linear model. We investigate the asymptotic properties of shrinkage and 

pretest semiparametric estimators under quadratic loss and show that a shrinkage 

semiparametric estimator improves on the full model conventional semiparametric 

least squares estimator. The relative performance of the estimators is examined using 

asymptotic analysis of quadratic risk functions and it is found that the Stein-type 

estimator outperforms the full model estimator uniformly. On the other hand, the 

pretest estimator dominates the least squares estimator only in a small part of the 

parameter space. We also consider an absolute penalty type estimator for partially 

linear models and give a Monte Carlo simulation comparison of shrinkage, pretest 

and absolute penalty type estimators. The comparison shows that the shrinkage 

method performs better than the absolute penalty type estimation method when the 

restriction of parameter space is large. 

Chapter 5 summarizes the results and concludes the dissertation with some discus-
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sion of related research and the direction for future research as well. This includes a 

generalization of shrinkage estimation methods to the exponentiated Weibull censored 

regression model. 



Chapter 2 

Delineating the effect of 

Misspecification in a Lifetime 

Censored Regression Model 

2.1 Introduction 

Ascertaining the appropriate statistical model-estimator for use in representing the 

data sampling process is an interesting and challenging problem for statisticians. In 

this dissertation, we consider inference problems under linear restrictions in a Weibull 

lifetime regression censored model. In the classical framework, prior information may 

be introduced either by augmenting sample information, through likelihood function, 

or by modifying the parameter space. The latter is achieved through equality or 

inequality restrictions. In the case of exact restrictions, the new parameter space 

is of reduced dimensionality, which improves the precision of parameter estimates, 

because the available information is concentrated on a smaller set of parameters. 

Shrinkage methods provide useful techniques for the dealing with inference problems 

under such restrictions, and recent asymptotic theory has advanced the understanding 

of the fundamental role of the likelihood function for much the same purpose. The 

18 
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important message is that when estimating many parameters (at least more than 

2), there is a great advantage in shrinking the estimates. This procedure plays an 

important role in modern nonparametric function estimation. 

We refer to Lawless (2003), Kalbfleisch and Prentice (2002), Bugaighis (1995) and 

Smith (1991), for detailed study and applications of the Weibull regression model. 

Applications of this model can be found in research in human diseases such as cancer, 

mortality rate for aged people and lifetime analysis of animal carcinogenesis. More 

applications of this model can be found in Kalbfleisch and Prentice (2002). 

The main objective of this chapter is to estimate regression parameters /3 when 

/3 is suspected to lie in the subspace defined by 

H/3 = h, (2.1) 

where H is q x k matrix of rank q < k and h is a given q x 1 vector of constants. 

The information in relation (2.1) may be regarded as nonsample information (NSI). 

It is assumed that H has rank q, which implies that the q equations do not contain 

any redundant information about /3. This situation occurs frequently when there is 

over-modelling and one wishes to remove the irrelevant part of the model, which in 

turn will increase the efficiency of estimating /3. For instance, in some situations 

the interaction effects may not be present and we are interested in estimating the 

parameter vector on main factors only. More specifically, this research is motivated 

by the following data. 

Clinical Trial Data: Lawless (2003) and Kalbfleisch and Prentice (2002) and others 

considered the Veteran's administration (VA) lung cancer data. In this trial, patients 

were assigned to one of two chemotherapy treatments. Several factors hypothesized 

to be relevant to an individual's prognosis include, performance status, age and the 

number of months from diagnosis of cancer to entry into the study. Further, tumors 

were also classified into four categories (squamous, small, adeno, and large). Only 
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9 of the 137 survival times were censored. Both authors suggested that the Weibull 

regression model is appropriate for analyzing this data. Further, it was suggested 

that performance status and tumor type are the most important factors and the 

effect of other variables may be ignored. They fitted both full and reduced models 

for estimation purposes. 

The statistical problem here is, should we employ either the full or reduced model 

or both, for the further inferential purposes? We systematically address this issue 

and suggest the estimation strategies which improve on both components by invoking 

shrinkage techniques. It is well documented in the literature that when the parameter 

space is being reduced, estimation of regression parameters are generally improved. 

On the other hand, incorrect or imprecise restrictions on /3 may lead to biased (or even 

inconsistent) and inefficient estimators of (3. Ahmed and Saleh (1999) studied the 

properties of these estimators for the exponential regression censored model. Recently, 

a family of penalized partial likelihood methods, such as LASSO, are proposed by 

Tibshirani (1996) for variable selection for linear models and was further extended 

for the Cox proportional hazard models in Tibshirani (1997). 

In this chapter we considered the integrated estimation problem for regression 

coefficients (both point and interval) in a Weibull regression censored model by ex­

ploiting the shrinkage estimation. Most of the reviewed literature in this arena do 

not deal with confidence interval problems, so we provide a total inferential package 

to practitioners. 

The rest of Chapter 2 is organized as following. Section 2.2 introduces some 

notation and preliminaries for estimation of the Weibull regression model. In Section 

2.3 we introduce integrated estimation. Section 2.4 showcases our main results and 

provides the analysis of bias and and risk comparison of the proposed estimators 

with the classical estimator. In Section 2.5 we present the results from our simulation 

study comparing the risk performance of the estimators. Interval estimation via the 

bootstrap method is given in Section 2.6. Finally, in Section 2.7 we apply our method 
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to VA lung cancer data. Concluding remarks are given in Section 2.8 to summarize the 

findings. Throughout this chapter, the boldface symbols represent vectors/matrices. 

2.2 Notation and Preliminaries 

Let Ti,T2, ••• ,Tn denote independent life length or lifetime measurements from a 

population modeled by Weibull distribution. Then T has the following probability 

density function (pdf) fT(t) — \v(Xt)v~le~W, with t > 0, A > 0, where A and 

v are the scale and shape parameters respectively. The survival probability of the 

individual is then given by 

S(t\\,v) = exp[-{\ty], 

where A > 0 and v > 0. This is a plausible model for the lifetime T in the absence of 

any explanatory variable that may affect the lifetime, i.e., for the baseline distribution 

of T. But in the presence of concomitant information, we can extend the Weibull 

model by allowing the parameters A and v to depend on explanatory variables. Let 

x = (x\, • • • , Xfc) be a vector of covariates for an individual. The most commonly used 

form of the Weibull model assumes that the covariates change only the scale of the 

baseline distribution while still maintaining the shape of the distribution. That is, 

the scale parameter A can be modeled as a function of the covariates and the shape 

parameter v is fixed but unknown. In this case the probability density function of T, 

given x, for the individual with A = \/a is 

\ e-(=fo) , t > 0 ) a > 0 , (2.2) 
a{x)J 
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where a (x ) is a function of x = (# i , - - - ,Xk) involving unknown parameters. We 

consider here the most useful form of a (x ) given by 

a (x) = exp(xfi), (2.3) 

where fi = (/3i, • • • , (3k)' is a vector of regression parameters. 

We consider a situation where lifetimes T» may be subject to a fixed censoring. 

Specifically, we suppose that each individual has a lifetime and a censoring time. 

However, only the smaller of lifetime and censoring time is observed. In addition it is 

assumed that for each individual has a fixed censoring time Li > 0, and a regression 

vector Xj = (xi1, • • • Xik). Therefore the censored data consists of the following pairs 

(<i,7i) * = I) 2) • • • . « ) U = min(Ti,Li), 

and 

1 if Ti < ^ 

0 if Ti > Li. 

Noting that the lifetime model given in relation (2.2) is a proportional hazards model, 

which can be viewed as a location-scale model with a log transformation on the 

random variable T. Usually, we deal with In lifetimes, Yi = InTi. Thus, from 

relations (2.2) and (2.3) with a = 1/v, we obtain the probability density function of 

y , given x as follows. 

/y(y |x) = -exp 
a 

Alternatively, the above model may be rewritten as 

7t = 

y - x / 3 

a 
exp 

y--x.fi 7(—oo < y < +oo). 

Y = X/3 + CT£, (2.4) 

http://y--x.fi
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where s is assumed to have a standard extreme value distribution with pdf given by 

f{e) = exp(e — ee) I(—oo < e < +00). 

The likelihood function under the model (2.4) is based on the logarithm observa­

tions of the sample is 

L((3,a) = H 
1=1 

1 fyi-xtP fyi-Kifi 
—exp < exp 
a I CT \ a 

171 

exp< —exp 
Vi ~ x*j3 

a 

1—7f 

(2.5) 

Let C and D be the indexed sets including the censored and non-censored indi­

viduals respectively. Then (2.5) reduces to 

L(P,°) = Y[~exP 
leD 

yi-*i(3 {yi-xif3 
exp 

a 

Vi ~ x*/3 ~ TT / (Vi-'-
x I I exp < —exp I 

lee ^ \ a 

and thus, the log likelihood function based on n observations for a censored sample 

can be written as 

lnL{(3, a) = ln(f3, a) = -d ln{a) + ] T (l!L^£\ - £ exp (HL^\ , ( 2 .6) 
leD ^ ° ' i=\ \ a / 

where d is the number of observed failures. 

Let zi = Vi^i§._ Then the maximum likelihood estimates of f3 and a are obtained 

by solving the following system of equations 

•KTT = y^xir + -Y]xire
Zl = 0 , for r = l,--- ,k, (2.7) 

leD 1=1 

da a a *•—' a z-—' 
leD (=1 

(2.8) 

The maximum likelihood estimates of f3 and a are the solutions of the system of k +1 

equations (2.7) and (2.8). Those can be solved by the Newton-Raphson iterative 



Lifetime Censored Regression Model 24 

algorithm. 

Also, the second derivatives of log-likelihood of (2.6) are given by 

d2L 
'd(3rdps 

da2 

d(3rda 

1=1 

1 n 

— ^2xlrxise
Zl for r,s = I , - - - ,k, 

= i 
n n 

leD i=i i=i 
n n 

- ^2 %lr + ^2 Xlr&Zl + XI XlrZlS 

leD i=i i=i 

for r = 1, • • • , k. 

The observed information matrix I is (A; + 1) x (k + 1) and of partitioned form 

d2ln d2tn 

I = - 8/3r/3s dPrdtr 

a2en a2i„ 
d(3rda da2 (*,*) 

Further, the expected information matrix can be calculated when fixed censoring time 

is known. 

2.3 Integrated Estimation 

The statistical objective is to estimate parameter vector /3, when NSI is available. 

The unconstrained maximum likelihood (uml) estimator of (5 can be obtained by 

solving the system of equations in (2.7). Note that the unrestricted estimate J3 of 

/3 is based on sample data only and does not incorporate nonsample information 

in estimating (3. However, it may be advantageous to use the available nonsample 

information to obtain improved estimates. 

Further, for inference purposes when there is censoring, it is convenient to use the 

asymptotic distribution of $, i.e., 

\ /n(/3 — /3) —> Af{0, Io 1), —> means converges in distribution 
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where Io = limn_>00 — and suppose that I0 is invertible. The matrix 1° is the observed 

information of order k x k, with last row and last column of the matrix I deleted. 

Let /3 be the constrained maximum likelihood (cml) estimator of /3 when the NSI 

in (2.1) is correct. Since 3 is asymptotic normal, then 

v^H(3 - /3) —» JV(0, HIo^H) . 

From the asymptotic normal approximation to the distribution of 3 , the first order 

log likelihood for (5 can be written as 

-lnL(0)±(0-0)'Io(f3-0). 

Using the result of subsection l / . l [Rao (1973), p.60], the above In likelihood is 

minimized under constraints H/3 = h at 

3 = 3 " I o ^ H ' O H I o ^ H ' ) - 1 ^ - h). 

Having denned J3, note that if the restrictions are correct, then 3 is an unbiased 

estimator of /3 and will be superior to /3. However, this may not always be the case 

and the said improvement would raise the ante of imprecise estimation due to a large 

amount of the bias inherent in such estimator. 

A natural way to balance the potential bias of the estimator under the restriction 

against the benchmark estimator is to take a weighted average of 3 and (3. Such 

integrated or composite estimators may be written as 

3 ' = </>P + (1 - 0)3, (2.9) 

for a judiciously chosen weight (p (0 < <p < 1). Many of the estimators proposed 

in the reviewed literature, both design-based and model-based, have the integrated 

form (2.9). This can be viewed as a pure shrinkage estimator. So 3 is a special case 
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of /3 (<fi — 0). Bickel (1984) showed that in parametric models, such estimates are 

asymptotically optimal in a minimax sense and we conjectured the same result for 

Weibull regression model. A major drawback of J3 is that it is not uniformly better 

than either component estimator in terms of mean squared error (MSE). In passing 

we would like to remark here that integrated estimators are popular in small area 

estimation; refer to Falorsi et al. (1994) and others. 

Another approach to composite estimation is to employ James-Stein or shrink­

age type estimation method, which in turn yields the optimal weight for f3 . Stein 

(1956) and James and Stein (1961) presented an explicit form of an estimator which 

dominates the usual maximum likelihood estimator in a multi-parameter situation. 

This procedure has attracted a lot of attention in the mainstream statistical litera­

ture as evident by numerous publications. Efron and Morris (1975) gave an excellent 

expository account of the shrinkage methodology as well as examples of practical 

applications, including the popular example of batting averages of baseball players. 

In an effort to obtain a shrinkage type estimator for the problem at hand, we use 

the likelihood ratio statistic as a first step, given as: 

A - 2[lnL{0) - lnL0)} = n(H/3 - h)'fi(H)3 - h) + op(l), (2.10) 

where ft = (HIo - 1!! ' )-1 . 

2.3.1 Shrinkage Estimator 

If H/3 = h represents a set of q < k independent linear restrictions on (3, then the 

shrinkage (SE) estimator that combines the sample and non-sample information can 

be defined as: 

0S = P+(l-(q-2)A-1)(P-P), q>3. (2.11) 

Since it shrinks the uml estimator towards /3, this estimator is generally called a 

shrinkage estimator. Clearly, if the restrictions H/3 = h is true, then the likelihood 
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ratio test statistic is asymptotically distributed as Xq- In this case the value of the 

test statistic will be small and a relatively large weight is placed on the restricted 

estimator J3. Otherwise, the value of A is relatively large and more weight is placed 
~ s " i 

on 0. Consequentially, $ is a special case of /3 with 4> = (q — 2)A-1. Some of the 
salient features of the shrinkage procedure are: 

a) The shrinkage estimation strategy is attractive to users wanting good estimation 

for the problem at hand because large gains in efficiency can be achieved in the 

classical full model-based framework without assuming the correctness of the 

reduced model. 

b) This estimator is, in general, a biased estimator, although bias is accompa­

nied by reduction in risk, and hence, does not have a serious impact on risk 

assessment. 

c) In many situations the shrinkage estimator arises quite naturally in the empirical 

Bayes (EB) approach or the empirical best linear unbiased prediction (EBLUP) 

approach. 

However, an unpleasant feature of this estimator is that it may over-shrink f3 towards 

the /3, thus causing a possible inversion of the sign of the benchmark estimator. Here, 

if A < (q — 2), the proposed shrinkage estimator reverses the sign of estimator j3. This 
~ s+ 

problem is resolved by the use of the "positive rule" estimator /3 , which preserves 

the sign of estimates. 

2.3.2 Positive Shrinkage Estimator 
" S+ 

A positive shrinkage estimator (PSE) /3 is obtained from (2.11) by changing the 

factor 1 — (q - 2)/A to 0 whenever A < (q - 2), that is, 

PS+ = P + (1 - (q - 2)A"1)+ 0 - 3), (2.12) 



Lifetime Censored Regression Model 28 

where z+ = max(0,z). The PSE is particularly important to control the over-
~ s ~ s+ ~ s 

shrinking inherent in $ . The estimator 0 dominates J3 in terms of total MSE and 

hence, is useful for practical purposes. For this reason, Ahmed (2001) recommended 

that the shrinkage estimator should be used as a tool for developing the PSE and 

should not be used as an estimator in its own right. In an effort to see that $ is a 

special case of $ , we re-write $ in (2.12) in the following canonical form: 

{l-(q-2)A-1}I(A<q-2)(P-0), 

which in turns give 

<̂  = ( l - ( g - 2 ) A - 1 ) { / ( ( g - 2 ) A - 1 < l ) } . 

In parametric setups, the SE, PSE and other related estimators have been exten­

sively studied [Judge and Bock (1978), Ahmed and Ullah (1999) and the references 

cited there]. Large sample properties of these estimators were studied by Sen (1986), 

Ahmed (2005), Ahmed (1992), Ahmed (2001), Ahmed et al. (2006a) and others. 

Stigler (1990) and Kubokawa (1998) provide excellent reviews of (parametric) shrink­

age estimators. 

2.3.3 Pretesting and LASSO 

Some alternative estimators to the shrinkage estimators are based on pretesting and 

LASSO methods. Bancroft (1944) proposed an idea in the estimation of a regression 

model under a pretest for some linear restrictions (2.1) on the coefficients which is 

considered as a hypothesis. See Khan and Ahmed (2006) for some recent develop­

ments. In this set up, one can perform the pretest using an appropriate test statistic. 

If the test rejects the hypothesis, the unrestricted estimator will be used. If the 
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test fails to reject the hypothesis, the restricted estimator is selected. In the present 
- PT 

context, the pretest estimator f3 is defined as: 

0PT = 0-0-0)I(A<ca), 

where ca is some predetermined 'critical value' for the test statistic A. 

This "pretest" approach to estimation is unsatisfactory from several points of view. 

From a decision theoretic viewpoint, the discontinuity in estimation brought about 

by the hypothesis testing dichotomy means this method cannot be admissible. The 

pretest procedure often produced poor estimates. The risk function of the pretest 

estimator added to this poor performance. The risk exceeded the minimax bound 

(the risk of UE) over a substantial region of the parameter space. By contrast, 

procedures amongst a class of minimax estimators introduced by James and Stein 

(1961) achieved low risk when the reduced model was correct without sacrificing 

precision when the adequacy of the model was uncertain. Sclove et al. (1972) studied 

the properties of pretest estimators in linear models. They suggested another pretest 

estimator by replacing the restricted estimator by a shrinkage estimator. However, for 

bivariate data, pretest estimation is the only alternative to unrestricted and restricted 

estimation. 

The LASSO [Tibshirani (1996)] is a method for regularizing a least squares re­

gression. In the context of censored data, Tibshirani (1997) extended the LASSO 

procedure to variable selection with the Cox proportional hazard model. Huang 

et al. (2006) considered this LASSO procedure for variable selection and estima­

tion in an accelerated failure time model with high-dimensional covariates based on 

Stute's weighted least squares method [Stute (1996)]. They proposed to minimize the 

weighted least square objective function 

/3T = min^ Jl>W-XW/3)2 
2 

subject to 2_. IAI < T) 
i = l 
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where r is a tuning parameter and Y^ and X(j), are defined in Huang et al. (2006). 

The tuning parameter determines how many estimated coefficients are zero. The 

LASSO is computed by quadratic programming techniques, and the tuning parameter 

is selected using cross-validation and/or generalized cross-validation. Note that the 

output of the LASSO resembles shrinkage and pretest methods by both shrinking and 

deleting coefficients. However, it is different from pretest and shrinkage procedures 

and it treats all the covariate coefficients equally. 

In the present investigation, we are concentrating on shrinkage estimation and 

the LASSO method is still an ongoing research. The proposed estimators are easy 

to compute and implement. The objective is to produce natural adaptive estimators 

that are free of subjective choices and tuning parameters. 

2.4 Asymptotic Bias and Risk Comparisons 

We note that, as the test statistic A is consistent against fixed (3 such that H/3 = h, 

the SE and PSE will be asymptotically equivalent in probability to J3, for the fixed 

alternative (up to the order 0(n - 1 / 2 ) ) , so that asymptotically there is no shrinkage 

effect. Hence, in the large sample situation there is not much to investigate. This 

brings us to the usual Pitman type of alternatives 

K„ :H/3 = h + - ^ , (2.13) 

where S — (<5i, 82 • • • , 5q) G 3?9 is a real fixed vector. Note that for S — 0, H/3 = h 

for all n. Thus, the relation (2.1) is a particular case of (2.13). Even for such local 

alternatives, the SE and PSE may not be asymptotically unbiased estimators of (3. 

With that in mind, we introduce the following: 

£(/3*,/3;Q) = [y^(/3* - /3)]'Q [yft{(3* - (3)} , (2.14) 
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~ s 
where Q is a positive semidefinite weighting matrix and (3* is any one of $, $, (3 or 
~ s+ 

f3 . If we take the expected loss, using (2.14) and the distribution of \/n(/3* — (3), 

that would be called the quadratic risk i?°(/3*,/3; Q) (= trace(QS„), where E n is the 

covariance matrix of \/n(f3* — f3). Whenever lim^oo S n = £ exists, JR°(/3*, /3; Q) —» 

R°(/3*,f3;Q) = trace(QE), which is termed the asymptotic risk. In our setup, we 

denote the distribution of \fn{f3* — (3) by G„(u), u € ffl. Suppose that Gn —> G (at 

all points of continuity) as n —• oo. Let Sg be the covariance matrix of G. Then the 

asymptotic distributional risk (ADR) of (3* is denned as R((3*; Q) = t r a c e ^ E g ) . We 

shall work with the ADR results in the following discussions. In this vein, we define 

the asymptotic bias as B°(/3*,/3) = E[y/n((3* — (3)} and side by side, the asymptotic 

distributional bias (ADB) as the limit 

J ... J xdG„(x) f - B(/F, /3) = J -J xdG(x)\ . 

Two central results key to the study of ADR and ADB of the SE, and PSE are 

given in the following theorem under the following regularity conditions: 

Condition 1. The failure time T is independent of the examination times given the 

covariates. 

Condition 2. The log-likelihood function £n(f3, o) is twice differentiable, and the third 

derivatives must be bounded. 

Condition 3. The information matrix I0 is invertible. 

Theorem 2.4.1. Under local alternative and the usual regularity conditions, we have 

the following as n —» oo: 

1. ^ ( H 0 -h)±> W(tf,HIo-1H'). 

2. A converges to a non-central chi-squared distribution with q degrees of freedom 

and non-centrality parameter A = 8'Q5 where Q, is defined in (2.10). 

With the above theorems, we are in a position to use the results on the parametric 
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model, and thereby arrive at the main results of this section. For parallel results we 

refer to Ahmed and Saleh (1999), further unified in Theorem 1 of Ahmed (2001, 

p.108). Therefore, we present (without derivation) the results on SE and PSE. 

2 .4 .1 A s y m p t o t i c D i s t r i b u t i o n a l B i a s 

In the following theorem, we present expressions for the bias of the proposed estima­

tors. Note that (3 is an asymptotically unbiased estimator. 

Theorem 2.4.2. Under local alternatives Kn in (2.IS) and assume that the Theorem 

2.4-1 holds, we have the ADB of the proposed estimators as n —» oo, in the following: 

ADB0) = -AS, A = Io^H'tHIcT'H')"1 , (2.15) 

ADB0S) = -(q-2)ASE[^2(A)], (2.16) 

ADB{fi +) = -(</ - 2)A<5 [£(X-+
2

2(A)) - ^(x^ 2 (A)/ (x 2
+ 2 (A) < fo - 2)))] 

- A 5 * , + 2 ( g - 2 , A ) , (2.17) 

where the notation ^>U{Q — 2, A) is the cumulative distribution function of a non-

central chi-square distribution with v degrees of freedom and non-centrality parameter 

A. 

The bias expressions reveal that all three integrated estimators are asymptotically 

biased. However, both shrinkage estimators are bounded in A as opposed to /3. 

Theorem 2.4.3. Under local alternatives Kn in (2.13) and assume that the Theorem 

2.4-1 holds, we obtain the risk function of the proposed estimators as n —> oo, in the 

following: 

R(P; Q) = R0; Q) - irace[QAHIo_1] + S'MS, M = A'QA, 

with R(j3) = traceiQIo-1}, (2.18) 

R0S;Q) = R(P;Q)-(q-2)6'M6[2E(x£4(&))-2E(X-U&))} 
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+ (q - 2)trace[QAm0-
1} [(q - 2)£(X-+

4
2(A)) - 2E(x~U^))] 

+ (, - 2)2<5'M<5 E [(x-+
4

4(A))] , (2.19) 

R0S+;Q) = R0S;Q)-6'M6E[{l-(q-2)x&(A))2I{xi
q+A(A)<{q-2))] 

- traceiQAlilo-'jEKl -(q- 2)X-+
2

2(A))2/(X
2

+2(A) < (q - 2))] 

+ 2 S'MS E{(1 - (q - 2)X-+
2

2(A))/(X^+2(A) < (<? - 2))]. (2.20) 

Proof: See details in Chapter 3. 

Risk comparison: 

The risk of all the integrated estimators depend on SMS'. Note that Io_ 1 '2H' 

x (HI 0
_ 1 H') _ 1 H I 0

- 1 ' 2 is a symmetric idempotent matrix with rank q(< k). Thus 

there exists an orthogonal matrix T such that 

ri0-
1/2HT(Hio-1HT)-1Hio-1/2r' = L 0 

0 0 k—q 

n0-1/2Qi0-1/2r / = 

So trace [QI0
_ 1H r(HIo"1HT)-1HIo"1] 

C l l C 1 2 

C21 C 2 2 

trace 

trace 

;rio-1/2Qio-1/2r')(rio-1/2HT(Hio-1HT)-1Hi0-
1/2r') 

C l l C i 2 

C21 C 2 2 

I, 0 
0 0 k—q 

trace(cn), 

where the matrices Cn and Ci2 are of order q and k — q respectively. Further 

« ,(HIo"1H r)-1HIo-1QIo~1H /(HIo_ 1H r)-M 

s'iHio-'n^mo-^T'} x [ri0-
1/2H'(Hi(r

1HT)-1Hi0--
1/2r' 
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x 

x 

ri0-1/2Qi0-1/2r'] x [ri0-1/2H,(Hi0-1HT)-1Hio-1/2r/ 

ri0-1/2(Hi0-1Hr)-1H5 

iq o 

o o fc_q 

= (*h>»?2)' 

= »?i'cxi»7i 

en 0 

0 0 V2 

I , 0 

0 0 fe—9 

*7 

where T7 = <S'(HI0
 1HT) XHI0

 1^2T' = (?7l5 r)2)' and Tjj is a qxl vector of components 

of rj. Hence, 

R{f3) = trace[QI0
_1] - trace(cn) + ri'1cllril. (2.21) 

Further, by Courant theorem [Saleh (2006), Theorem 5, p.39], 

7? c~\ I TJ 

Chmin(cii) < —- < C/imox(c11), (2.22) 

where Chmini^u) and Chmax(cn) are the minimum and maximum characteristic 

roots of en and A = S'£15 = rj'1ri1. Therefore, 

R({3) - trace(cn) + Chmin{cn) < R{J3) < R(fi) - trace(cn) + Chmax{cn). 

n trace(cn) 
' Chmax(c\i) 

, (3 has smaller risk than The bounds are equal at A = 0. Thus, for A G 

that of f3 and outside the interval, (3 has smaller risk than /3. Clearly, when A moves 

away from null vector beyond the values of ^ — ( F v *^e ^ ^ - ^ °f 3 increases and 

becomes unbounded. This clearly indicates that the performance of /3 will strongly 

depend on the validity of the restriction. 
• s 

The risk difference of /3 and f3 is 

= (q- 2)trace[QAHI0-1][2£(x-+
22(A)) _ (g _ 2)£(X^2(A))] 

- (q - 2f6'M6 E(x-+
4

4(A)) + 2(q - 2)8'M8 [E(X£4(A)) - £(xg-+
2

2(A))] 
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= (</ - 2)2trace(cn)£(X-+
4

2(A)) + 2A(q - 2)trace(cn)£(x-+
4

4(A)) 

= (q- 2)2trace(cn)E(x^2(A)) 

+ 
x _ ((? + 2)(77'1c1irj1) 

2Atrace(cn) 

The above risk difference is positive when 

2A(q - 2)trace(Cll)£(x-+
4

4(A)). 

trace(cn) q + 2 
> —-— and q>o. Ch 

max 

Thus, under the above condition, the risk of 0 is less than or equal to the risk of 

0 in the entire parameter space. The maximum gain in risk is achieved near the 

restriction. 
* s ~ s+ 

The risk difference of 0 and 0 is 

R(0S+) - R(0S) 

= -tracelQAHIo"1] E[(l - (q - 2)X^2(A))2 /(X
2

+ 2(A) < (q - 2))] 

- 6'M8 E[(l -(q- 2)X-+
2

4(A))2/(x2
+4(A) < (g - 2))] 

- 2 6'MS E[((q - 2)X"+
2

2(A) - 1K(X2+2(A) < (? - 2))]. 

The right hand side of the above expression is positive semi-definite, since the expec­

tation of a positive random variable is positive by definition of an indicator function, 

[ g - 2 - X
2

+ 2 ( A ) ] / ( X
2

+ 2 ( A ) < g - 2 ) > 0 , 

Since P[X
2

+2(A) > 0] = 1, [(q - 2)X^2(A) - 1]/ (X
2

+2(A) < q - 2) > 0. 

Thus, for all A and q > 3 

R(0S+) < R(0S), 
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with strict inequality for some A. Hence we can conclude that the proposed estimator 

$ is asymptotically superior to (3 and hence to /3. 

More importantly, for practical reasons and to support our theoretical findings 

we conducted an extensive simulation study to investigate the performance of the 

proposed estimators for moderate sample sizes. Our simulation experiments have 

provided strong evidence that corroborates the asymptotic theory which is given in 

the following section. 

2.5 Simulation Studies 

In this section, we carry out a Monte Carlo simulation study to examine risk (namely 

MSE) performance of the proposed estimators. Indeed, this simulation study is based 

on a Weibull regression censored model with different numbers of explanatory vari­

ables. The data were generated based on the fixed censoring model through the 

statistical software R and S-PLUS. 

Our sampling experiment consists of different combinations of sample sizes i.e., 

n = 50,100,150. The proportions of censoring (pc) in the sample are pc=10%, 20%, 

30% with the shape parameter v — 2/3, i.e., a = 3/2. For simulation, we consider 

the particular case of our hypothesis H0 : (3j = 0, for j = p + 1, • • • , k with 

k = p + q. Under this hypothesis, we apply the same method as Bender et al. (2005), 

i.e., generating the survival and censoring time by using 

InTi = /3XJ + aSi, for i = 1, 2, 3, • • • , n, 

where e» is generated from an extreme value distribution. We also generated 9 

covariates from normal, uniform, exponential, binomial and Weibull distributions. 

We set the regression coefficients including intercept /3 = (/91,/32) = (/3i,0) with 

/3j = (3,0.5, —2.5) to generate survival and censoring times. Those are fixed for each 

realization. We provide detailed results for (p, q) — {(3, 3), (3,6), (3, 7), (1, 8)} and 
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a = 0.05. 

Table 2.1: Simulated RMSEs of RE, SE and PSE with respect to 0 for pc = 10%, n 
50 and q — 3. 

A* 

0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2 
4 

3 
2.251 
2.056 
1.737 
1.355 
1.077 
0.633 
0.386 
0.267 
0.059 

* " 
1.239 
1.204 
1.152 
1.094 
1.077 
1.024 
1.013 
1.007 
0.999 

r 
1.285 
1.246 
1.185 
1.106 
1.074 
1.025 
1.013 
1.007 
0.999 

The number of simulations under the null hypothesis was varied initially and it 

was determined that 2000 for each set of observations were adequate, since a further 

increase in the number of realizations did not significantly change the results. We 

define the parameter A* = | | /3-/3 ( 0 ) | |2 , where (3(0) = (/31; 0)' and || • || is the Euclidian 

norm. In order to investigate the behavior of the estimators for A* > 0, further 

samples were generated from those distributions under local alternative hypotheses 

(i.e., for different A* which lies between 0 and 6). 

The performance of an estimator of (3, say /3*, will be measured in terms of its 

total mean squared error risk. We have numerically calculated the risk of all the 

estimators studied in this chapter. The performance of the estimators was evaluated 

in terms of absolute relative bias (ARB) and relative MSE (RMSE). The simulated 

RMSE J3* to /3 is defined by 

RMSE(/3 : /3 ) = 
simulated risk(/3) 

simulated risk(/3 ) 

keeping in mind that a RMSE larger than one indicates the degree of superiority of 
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Table 2.2: Simulated RMSEs of RE, SE and PSE with respect to fa for pc = 10%, n 
50 and q = 6. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

3 
2.251 
2.056 
1.737 
1.355 
1.077 
0.633 
0.386 
0.267 
0.059 

? 
1.239 
1.204 
1.152 
1.094 
1.071 
1.024 
1.013 
1.007 
1.000 

/3 S + 

1.285 
1.246 
1.185 
1.106 
1.074 
1.025 
1.013 
1.007 
1.000 

the estimator over (3. 

We report the analysis based on the RMSE. The results are reported in Tables 

2.1 to 2.27 (only for q = 3, 6 and 8) and Figures 2.1 to 2.9. The findings can be 

summarized as follows: 

i) For all combinations of censoring levels and sample sizes, J3 outshines all the 

estimators at and near A* = 0. On the contrary, when A* deviates from the 

origin, the estimated risk of J3 increases and becomes unbounded whereas the 

estimated risk of all other estimators remains bounded and approaches the risk 

of J3 from below. It can be safely concluded that departure from the restriction 

is fatal to /3, but it has less impact on shrinkage estimators, which is consistent 

with the theory. 

ii) If the number of variables q = 3 and the sample sizes are between 50 and 150, the 

RMSE of shrinkage estimators vary from 1.14 to 1.29 when restriction holds, 

and they increase with the increase of the number of variables q (consistent 

with theory). In particular if p = 1, q = 8, sample size—100, and pc = 10%, 

the RMSE's of these estimators are 3.29 and 3.64 respectively, indicating a 
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Table 2.3: Simulated RMSEs of RE, SE and PSE with respect to 0 for pc = 10%, n = 
50 and q = 8. 

A* 

0.00 
0.02 
0.03 
0.06 
0.08 
0.10 
0.13 
0.15 

h 
73.901 
21.862 
11.998 
3.413 
1.889 
1.227 
0.695 
0.513 

P 
2.946 
2.689 
2.338 
1.525 
1.334 
1.209 
1.123 
1.088 

/3 S + 

3.131 
2.870 
2.385 
1.532 
1.334 
1.209 
1.123 
1.088 

remarkable performance of the proposed estimators. On the other hand, when 

the value of A*, increases, the RMSE's of both estimators decrease and converge 

to 1 irrespective of p, q and sample size n. The figures also reveal that the 

shrinkage estimators work better in cases with more restrictions q. 

iii) For all combinations of variables p and q, the performance of the shrinkage 

estimators depend on the magnitude of censoring percentage. Indeed, the lower 

the amount the censoring, the higher the gain in reduction of MSE. In other 

words, the risk of shrinkage estimators increases with an increase of the percent 

of censored observations irrespective of the sample sizes. 
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a. n=50, p=3, q=3 b. n=50, p=3, q=6 

LU 

IT) 

csi 
o 
c\i 

d 

o 
d 

LU 

a. 

CO -

in -

• * -

Unrestricted 
Restricted 
Shrinkage 
Positive Shrinkage 

1 I I I 1 I T 

0 1 2 3 4 5 6 

c. n=50, p=3, q=7 d. n=50, p=1,q=8 

cc R
M

S
E

 

o 
CD 

20
 

40
 

o 

-
\ 
\ 
\ 
\ 
\ 
\ 
\ 

N. 

I I I I 

0.00 0.05 0.10 0.15 

Figure 2.1: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 10% censoring. 
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a. n=50, p=3, q=3 b. n=50, p=3, q=6 
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Figure 2.2: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 20% censoring. 
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Figure 2.3: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 30% censoring 
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Figure 2.4: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 10% censoring. 
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Table 2.4: Simulated RMSEs of RE, SE and PSE with respect to /3 for pc = 20%, n = 
50 and q = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

h 
2.227 
2.010 
1.673 
1.385 
1.123 
0.728 
0.462 
0.306 
0.075 

* " 
1.233 
1.188 
1.163 
1.110 
1.076 
1.022 
1.010 
1.004 
0.996 

3S+ 

1.264 
1.240 
1.197 
1.116 
1.078 
1.025 
1.010 
1.004 
0.996 

Table 2.5: Simulated RMSEs of RE, SE and PSE with respect to fc for pc = 20%, n = 
50 and q = 6. 

A* 
0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

0 
6.271 
5.420 
4.751 
3.688 
2.982 
1.881 
1.194 
0.823 
0.222 

a* 
2.098 
2.080 
1.837 
1.694 
1.578 
1.313 
1.192 
1.118 
1.021 

r 
2.154 
2.115 
1.943 
1.717 
1.583 
1.316 
1.192 
1.118 
1.021 
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Figure 2.5: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 20% censoring. 
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Figure 2.6: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 30% censoring. 
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Figure 2.7: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 10% censoring. 



O
 

jo
 

t
O
 l
-»
 

O
 

O
S
 

o
 
o
 

l—
'
 t
O
 

t
O
 
I—

1
 

O
 

O
 

C
D
 
C
O
 

C
O
 
C
O
 

O
 

O
 

C
O
 
C
O
 

C
O
 
C
O
 

t
—
'
 

to
 

o
 453 i

—
>
 

003 i
—
1
 

003 

o
 

0
0
 

o
 756 h

-
»
 

024 i
—
"
 

024 

o
 

O
S
 

o
 

C
O
 

C
O
 

t
—
i
 

1
—
*
 

044 i
—
»
 

047 

o
 

r
f
^
 

i
—
1
 

269 i
—
>
 

093 I
—

' 102 

o
 

to
 

h
-
'
 

561 i
—
»
 

I
—
'
 

O
S
 

1
—
'
 

I
—

1
 

0
0
 

o
 
o
 

1
—
»
 

768 I
—
'
 

i
—
i
 

C
O
 

o
 

I
—
"
 

207 

>
 *
 

X
z>

 

+
 

C
D

 

to
 

•«
 

C
O

 

C
O

 

en
 

O
-

C
O

 

to
 o
 

C
O

 

O
-

TJ
 

C
O

 

M
 

CD
 

O
 o
 

to
 

o
 

O
 

CD
 

93
 

CD
 

to
 

^ 
to

 

C
O

 

en
 o- to
 

9 B
 

ce
 

o
 3 a.
 

to
 

o
 

h
-
'
 

C
n
 

o
 

I
—
*
 

C
n
 

C
O
 

1
—
>
 

o
 

to
 

o
 

1
—
>
 

o
 

C
O
 

o
 

o
 

1
—
>
 

C
O
 

o
 

f
O
 

1
—
'
 

^
4
 

l
—
»
 

r-
>
 

J
^
 

O
 

H
-
'
 

o
 *- Oi
 

o
 

1
—
»
 

o
 

o
 

C
O
 

o
n

 
oo
 

1
—
>
 

o
 

C
O
 

t
—
'
 

1
—
'
 

o
 

C
O
 

1
—
1
 

o
 

o
 

oo
 

o
 

C
n
 

C
n
 

o
 

I
—
1
 

1
—
'
 

C
O
 

to
 

1
—
1
 

h
-
'
 

C
O
 

to
 o
 
o
 
o
 

h-
*
 

o
 

~.
l
 

o
 

1
—
"
 

to
 

m
 

O
n
 

t
—
!
 

to
 

C
n
 

en
 o
 
o
 

C
O
 

r
f
^
 

o
 
o
 

4
^
 

(—
'
 

-
J
 

C
O
 

C
O
 

h-
'
 

0
0
 

C
O
 

C
O
 

o
 
o
 

to
 

-
J
 

C
O
 

*>
.
 

a>
 

to
 

C
O
 

o
 

-
4
 

to
 

C
O
 

Ĵ
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Table 2.14: Simulated RMSEs of RE, SE and PSE with respect to J3 for pc = 20%, n = 
100 and q = 6. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

P 
4.714 
4.093 
3.228 
2.494 
1.812 
1.171 
0.684 
0.426 

Vs 

1.936 
1.861 
1.657 
1.449 
1.289 
1.151 
1.071 
1.042 

^ 
2.039 
1.968 
1.682 
1.462 
1.290 
1.151 
1.071 
1.042 

Table 2.15: Simulated RMSEs of RE, SE and PSE with respect to /3 for pc = 20%, n = 
100 and q = 8. 

A* 

0.00 
0.02 
0.03 
0.06 
0.08 
0.10 
0.13 
0.15 

P 
30.870 
7.031 
4.118 
1.189 
0.656 
0.478 
0.284 
0.199 

ft* 
3.092 
2.309 
1.871 
1.311 
1.153 
1.106 
1.051 
1.034 

r 
3.469 
2.394 
1.892 
1.311 
1.153 
1.106 
1.051 
1.034 
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Table 2.16: Simulated RMSEs of RE, SE and PSE with respect to fa for pc = 30%, n = 
100 and q = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

3 
1.683 
1.500 
1.161 
0.946 
0.780 
0.499 
0.297 
0.200 

* " 
1.165 
1.143 
1.050 
1.031 
1.020 
0.995 
0.985 
0.985 

/ 3 i + 

1.187 
1.159 
1.090 
1.039 
1.020 
0.995 
0.985 
0.985 

Table 2.17: Simulated RMSEs of RE, SE and PSE with respect to /3 for pc = 30%, n = 
100 and q = 6. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

3 
4.287 
3.711 
2.881 
2.371 
1.785 
1.223 
0.750 
0.478 

/3* 
1.886 
1.852 
1.648 
1.486 
1.328 
1.173 
1.083 
1.048 

r 
1.994 
1.939 
1.702 
1.509 
1.331 
1.174 
1.083 
1.048 
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Table 2.20: Simulated RMSEs of RE, SE and PSE with respect to /3 for pc = 10%, n = 
150 and q = 6. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

0 
4.408 
3.960 
2.812 
2.158 
1.463 
0.670 
0.404 
0.254 

!? 
1.954 
1.697 
1.445 
1.260 
1.154 
1.056 
1.034 
1.019 

^ 
2.139 
1.821 
1.455 
1.260 
1.154 
1.056 
1.034 
1.019 

Table 2.21: Simulated RMSEs of RE, SE and PSE with respect to J3 for pc = 10%, n = 
150 and q = 8. 

A* 

0.00 
0.02 
0.03 
0.06 
0.08 
0.10 
0.13 
0.15 

P 
38.652 
4.849 
2.394 
0.642 
0.362 
0.218 
0.130 
0.093 

/3" 
3.239 
1.977 
1.593 
1.162 
1.088 
1.045 
1.028 
1.019 

f>'+ 

3.701 
2.013 
1.596 
1.162 
1.088 
1.045 
1.028 
1.019 
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Table 2.22: Simulated RMSEs of RE, SE and PSE with respect to fr for pc = 20%, n = 
150 and q = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

0 
2.023 
1.770 
1.151 
0.889 
0.614 
0.330 
0.204 
0.142 

If 
1.201 
1.156 
1.058 
1.034 
1.014 
1.000 
0.997 
0.996 

0U 

1.247 
1.169 
1.069 
1.034 
1.014 
1.000 
0.997 
0.996 

Table 2.23: Simulated RMSEs of RE, SE and PSE with respect to /3 for pc = 20%, n = 
150 and q — 6. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

3 
4.219 
3.507 
2.590 
2.047 
1.470 
0.719 
0.462 
0.292 

if 
1.870 
1.752 
1.456 
1.298 
1.184 
1.065 
1.038 
1.018 

P 
2.057 
1.815 
1A76 
1.299 
1.184 
1.065 
1.038 
1.018 
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Table 2.24: Simulated RMSEs of RE, SE and PSE with respect to 0 for pc = 20%, n = 
150 and q = 8. 

A* 

0.00 
0.02 
0.03 
0.06 
0.08 
0.10 
0.13 
0.15 

3 
22.798 
4.413 
2.420 
0.742 
0.426 
0.265 
0.168 
0.119 

/3S 

2.872 
2.032 
1.628 
1.181 
1.095 
1.044 
1.027 
1.016 

r 
3.376 
2.082 
1.641 
1.181 
1.095 
1.044 
1.027 
1.016 

Table 2.25: Simulated RMSEs of RE, SE and PSE with respect to 0 for pc = 30%, n = 
150 and q = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

P 
1.894 
1.664 
1.057 
0.874 
0.656 
0.356 
0.225 
0.164 

f 
1.158 
1.145 
1.064 
1.031 
1.008 
0.993 
0.990 
0.990 

r 
1.233 
1.161 
1.062 
1.032 
1.008 
0.993 
0.990 
0.990 

2.6 Bootstrap Interval Estimation 

The problem of interval estimation for shrinkage estimator is frequently neglected, 

perhaps due to mathematical intractability of the sampling distribution of shrinkage 

estimators for nonnormal populations. In recent articles Ahmed et al. (20066) and 
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a. n= 150, p=3, q=3 b. n= 150, p=3, q=6 
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Figure 2.8: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 20% censoring. 
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a. n=150, p=3, q=3 b. n=150, p=3, q=6 
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Figure 2.9: Simulated RMSE of the estimators as a function of the non-centrality 
parameter A* for different q and 30% censoring. 
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Table 2.26: Simulated RMSEs of RE, SE and PSE with respect to /3 for pc = 30%, n = 
150 and q = 6. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

3 
3.850 
3.161 
2.316 
1.950 
1.443 
0.758 
0.483 
0.329 

if 
1.945 
1.697 
1.459 
1.347 
1.204 
1.071 
1.035 
1.015 

ir 
2.032 
1.768 
1.495 
1.349 
1.205 
1.071 
1.035 
1.015 

Efron (2006) developed a general approach to calculate the minimum volume confi­

dence regions for the mean vector of a multivariate normal distribution. We investi­

gate the performance of different bootstrap methods determining confidence intervals 

for shrinkage estimators and apply the same procedure as in Kazimi and Brownstone 

(1999). There are a variety of possible bootstrap sampling schemes available in the 

literature for survival data e.g., Davidson and Hinkley (1997). For simplicity, we 

consider only the case resampling bootstrap method and the remaining discussions 

follow. The true values of all the elements of the unknown parameter vector in the 

regression model are j3 = (2,0.3, —2.5,0,0,0) and the shape parameter is a — 3. We 

used those values to generate survival and censoring times. We sample with replace­

ment from the set of 100 triples (Tk, Lfc,Xfc) where k — 1, 2, • • • , 100, to obtain the 

bootstrap data set. We then refit the Weibull regression model to these data to obtain 

bootstrap estimates. We conduct 1000 simulations in an iterative fashion. Within 

each iteration, we use 1000 bootstrap replicates to construct 95% confidence inter­

vals for shrinkage estimators. Those intervals are based upon 95% nominal coverage 

(a = 0.05). 

Table 2.28 reports simulated bootstrap confidence intervals by using the asymp-
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Table 2.27: Simulated RMSEs of RE, SE and PSE with respect to fr for pc = 30%, n = 
150 and q = 8. 

A* 

0.00 
0.02 
0.03 
0.06 
0.08 
0.10 
0.13 
0.15 

h 
12.654 
3.741 
2.218 
0.809 
0.496 
0.319 
0.198 
0.148 

* " 
3.021 
1.988 
1.621 
1.191 
1.101 
1.040 
1.016 
1.007 

r 
3.254 
2.052 
1.667 
1.191 
1.101 
1.040 
1.016 
1.007 

totic normal, percentile bootstrap and bias corrected and acceleration (BCa) method 

when the bootstrap samples are centered at the maximum likelihood estimator (MLE). 

For each method, the average upper and lower limits are reported. We also include 

the standard deviation of bounds over the Monte Carlo repetitions and the coverage 

probability computed over the repetitions. In comparing the bootstrap methods, we 

look for better coverage probability, lower standard error of bounds and the tightest 

confidence intervals. 

a) It is noted that all of the intervals in Table 2.28 have lower coverage probabilities 

than the nominal level of 95% for lower values of /3's. Perhaps, this is due to 

the systematic downward bias for the moments of the bootstrap distribution. 

b) Interestingly, the asymptotic method generates the tightest confidence intervals 

with coverage probabilities lower than the nominal level of 95%. For example, 

the average intervals for /30, ft and ft are (-1.738, 6.541), (0.247, 0.352) 

and (-3.304, -1.734) with coverage 91.4%, 88.6% and 93.6% respectively. These 

shorter confidence intervals were due to underestimation of parameter variability 

leading to a lower coverage rate for a 95% confidence interval of the MLE. This 

low coverage translates to an increased actual type I error over the nominal 5% 
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Table 2.28: 95% nominal confidence interval for the proposed estimators, with boot­
strap centered at the MLE. 

Method parameter average lower 
and upper bounds 

standard deviation 
of bound 

Coverage 
(%) 

Maximum Likelihood estimator 
Asymptotic A> 

0i 
02 
03 
04 
05 

(-1.738, 6.541) 
(0.247, 0.352) 

(-3.304, -1.734) 
(-0.960, 0.936) 
(-0.098, 0.093) 
(-2.887, 2.742) 

2.541 
0.033 
0.489 
0.589 
0.059 
1.717 

91.4 
88.6 
93.6 
90.6 
90 
91 

Shrinkage estimator 
Percentile 

BCa 

00 
01 
02 
00 
01 
02 

(-2.171, 7.122) 
(0.239, 0.361) 

(-3.433, -1.590) 
(-1.948, 7.487) 
(0.238, 0.360) 

(-3.441. -1.594) 

2.403 
0.033 
0.501 
2.87 
0.035 
0.526 

95.4 
94.6 
96.2 
93.6 
91.6 
94.4 

Positive shrinkage estimator 
Percentile 

BCa 

00 
01 
02 
00 
01 
02 

(-2.116, 7.085) 
(0.239, 0.361) 
(3.432, -1.597) 
(-1.887, 7.348) 
(0.239, 0.360) 

(-3.433, -1.593) 

2.423 
0.033 
0.502 
2.428 
0.035 
0.526 

94.6 
94.4 
96.2 
94.4 
92.2 
94.2 

significant level. Hence, inference based on the MLE may not be trustworthy. 

For percentile method, Table 2.28 reveals that the bootstrap confidence intervals 

perform well. This method produces a lower standard deviation of bounds. The 

width of the average confidence intervals for the components of SE and PSE are 

9.293, 0.122, 1.853 and 9.201, 0.122, 1.835, respectively. Further, the coverage 

probabilities are 95.4, 94.6, 96.2 and 94.6, 94.4, 96.2, respectively. Importantly, 

these coverage probabilities are very close to the nominal level of 95%. 

The BCa method not only generates wider intervals (as compare with the per­

centile method) but also lower coverage probabilities than the nominal level of 

95%. 

c) 

d) 
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In summary, the percentile method performs well in this study. This method shows 

that the confidence intervals for the shrinkage estimators provide considerable im­

provement over the MLE in terms of coverage probability and produce more mean­

ingful intervals. It is also easier to implement and its performance is better than the 

BCa method. 

2.7 Motivating Example 

We, now return to our motivating example (VA lung cancer data) and apply the 

proposed estimation strategies to clinical trial data. In this trial, males with advanced 

inoperable lung cancer were randomized to either a standard or test chemotherapy. 

The primary end point for therapy comparison was time to death. Only 9 of the 

137 survival times were censored. As is common in such studies, there was much 

heterogeneity between patients in disease extent and pathology, previous treatment 

of the disease, demographic background, and initial health status. The response 

variable is the patient survival time and the covariates are the patient's performance 

status (PS), a measure of general fitness on a scale from 0 to 100, an indicator of 

histological type of the patient's tumor where large tumor cell type is the baseline. 

We consider squamous versus large (squamous), small versus large (small) and adeno 

versus large (adeno), age in years (age), prior therapy (pth), time in months from 

diagnosis (diag), and the treatment status (test). Including the intercept, we have 

nine parameters (p = 9). The full model is 

Log(Ti) = /So + 0i PS; + 02 /(cell-type=squamous)i + 03 7(cell-type=small), 

+ 04 7(cell-type=adeno)j + 05 age^ + 06 pthj + 07 diag4 

+ 0s 7(treatment=test), + aSi. 
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According to the asymptotic likelihood inference of Kalbfleisch and Prentice (2002, 

p.72), patient survival time does not differ significantly among treatment groups, 

ages, prior therapy and the time in months from diagnosis. Here we can regard those 

variables as NSI and use the shrinkage estimators of this chapter to evaluate the 

effect of performance status and tumor cell types on survival time. More formally, 

H0 : (ft, ft, A , ft) = (0,0,0, 0) as our pivot. 

Hence, the reduced model is 

Log(T{) = (3Q + ft PSi + ft i(cell-type=squamous), + ft 7(cell-type=small)i 

+ ft 7(cell-type=adeno)i + oe^ where i — 1,2, • • • , 137. 

Table 2.29: Estimate (first row), standard error (second row) and bias (third row) of 
intercept ( f t ) , performance status ( f t ) , cell type squamous vs. large (fa), cell type 
small vs. large (ft) and Adeno vs. large (ft) on survival time. 

Estimators 

UE 

RE 

SE 

PSE 

A 
2.8421 
0.7422 
-0.0222 
3.1010 
0.3642 
0.2367 
2.8966 
0.6167 
0.0323 
2.8951 
0.5991 
0.0308 

A 
0.0308 
0.0051 
0.0007 
0.0299 
0.0050 
-0.0001 
0.0305 
0.0049 
0.0005 
0.0306 
0.0049 
0.0005 

A 
0.3861 
0.2516 
-0.0116 
0.3258 
0.2389 
-0.0719 
0.3641 
0.2468 
-0.0335 
0.3659 
0.2455 
-0.0318 

ft 
-0.4423 
0.2532 
-0.0138 
-0.3750 
0.2547 
0.0535 
-0.4224 
0.2560 
0.0061 
-0.4237 
0.2532 
0.0048 

ft 
-0.7304 
0.2073 
0.0046 
-0.7790 
0.1979 
-0.0440 
-0.7519 
0.2000 
-0.0168 
-0.7490 
0.1997 
-0.0140 

RMSE 

1.0000 

2.2085 

1.3168 

1.3764 

The point estimates, the standard errors and relative efficiency based on case-

resampling bootstrap of size B=1000 are reported in Table 2.29. The results from the 

example reveal shrinkage estimators are superior to the classical estimator, which is 

strongly in agreement with our analytical as well as simulation results. Under the null 
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hypothesis, the efficiency of (3 is higher than all other estimators but this efficiency 

becomes lower and lower as the hypothesis error grows. 

Table 2.30: 95% bootstrap confidence interval for MLE, shrinkage and positive shrink­
age estimator. 

Shrinkage estimator 
Estimator 

A> 

02 
0s 
04 

Asymptotic 

(1.549, 4.179) 
(0.021, 0.039) 
(-0.102, 0.880) 
(-0.905, 0.048) 
(-1.272,-0.198) 

Percentile 
(1.672, 4.096) 
(0.021, 0.039) 
(-0.124, 0.804) 
(-0.753, 0.081) 
(-1.149, -0.357) 

BCa 
(2.266, 4.769) 
(0.019, 0.037) 
(-0.171, 0.785) 
(-0.844, 0.232) 
(-1.185, -0.409) 

Positive-part Shrinkage estimator 

0o 
0i 
02 
03 
04 

(1.716, 4.048) 
(0.021, 0.04) 

(-0.164, 0.797) 
(-0.763, 0.064) 
(-1.155, -0.373) 

(2.318, 4.490) 
(0.018, 0.037) 

(-0.272, 0.723 ) 
(-0.797, 0.254 ) 
(-1.161, -0.396) 

Finally, we calculate bootstrap confidence intervals for the regression parameter 

based on shrinkage estimators. Recall that shrinkage and positive shrinkage estimates 

are (3.162, 0.0291, 0.321, -0.386, -0.787) and (3.159, 0.029, 0.322, -0.386, -0.786). re­

spectively. Table 2.30 summarizes 95% bootstrap confidence intervals for the shrink­

age estimators using different bootstrap methods. The percentile method generates 

the tightest confidence interval for shrinkage estimators. 

Tibshirani (1997) used the LASSO technique to choose significant variables in this 

data set. It was found that performance status is the dominant effect with treatment 

and cell type also showing the moderate effect. Our analysis is based on NSI, but 

not considering on tuning parameter. In chapter 3, we demonstrate that shrinkage 

estimators are relatively more efficient than estimates based on LASSO when q is 

large which is generally true and is in agreement with Tibshirani (1997). We strongly 

recommend the use of the suggested estimation strategy when q is large enough. 
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2.8 Conclusion 

The objective of this study is to compare the performance of shrinkage estimators to 

the maximum likelihood estimator in the context of the Weibull regression model for 

censored data. We explored the risk properties of the estimators via asymptotic dis­

tributional risk and Monte Carlo experiments. We also conducted different bootstrap 

methods to generate confidence intervals for the proposed estimators. Finally, we 

applied shrinkage estimation to a real data set to evaluate the relative performance 

of the estimators at hand. It is concluded both analytically and computationally 

that the PSE dominates the usual shrinkage estimator. Further, both shrinkage es­

timators outperform the classical estimator of the regression parameter vector in the 

entire parameter space. In contrast, the performance of the constrained estimation 

heavily depends on the quality of the NSI. Not only that, the risk of the restricted 

estimator may become unbounded when the restriction does not hold. 

Interestingly, the percentile bootstrap method yields adequate confidence intervals 

for shrinkage and positive shrinkage estimators. These confidence intervals permit 

the application of shrinkage estimators to the human disease problem like, cancer, 

mortality rate for aged people and the lifetime analysis of carcinogenesis where the 

sample size is large enough. Our simulation experiments and numerical example 

have provided strong evidence that corroborates with the usual asymptotic theory 

related to proposed estimation strategies. Importantly, we have combined the two 

most celebrated methods (shrinkage and Bootstrap estimation) to develop the point 

and interval estimation for a Weibull regression censored model. It is noted that the 

application of shrinkage estimators are subject to condition that q > 3. For q — 1, 2 

one can employ the pretest approach. 

Perhaps, the most important message in this chapter is that very large gains in 

precision may be achieved by judiciously exploiting the restriction in the parameter 

space which in practice will be available in any realistic problem. Our numerical 

findings indicate that for up to a reduction of 50% the risk seem quite realistic in 
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some situations. Thus, it seems conceivable to pay attention to these situations in 

the development of statistical inference theory. Like the statistical models underly­

ing the statistical inferences to be made, the restriction in the parameter space will 

be susceptible to uncertainty and the practitioners may be reluctant to impose the 

restriction regarding parameters in the estimation process. 

One can extend these methodologies for other accelerated failure time models such 

as log-normal, log-logistic etc. 



Chapter 3 

Shrinkage, Pretest and P H type 

estimators for Generalized Linear 

Models 

3.1 Introduction 

The term "generalized linear model" was first introduced in a landmark paper by 

Nelder and Wedderburn (1972). An important statistical development of the last 

thirty five years has been the advance in regression analysis provided by generalized 

linear models (GLMs). Much used in applications to the social sciences, biology and 

medicine, these models also play an important role in the area of survival analysis. 

These models are mathematical extensions of linear models that do not force data 

into unnatural scales, and thereby allow for non-linearity and non-constant variance 

structures in the data (Hastie and Tibshirani (1990)). They are based on an assumed 

relationship (called a link function; see next section) between the mean of the re­

sponse variable and the linear combination of the explanatory variables. Data may 

be assumed to be from several families of probability distributions, including normal, 

binomial, Poisson, negative binomial, or gamma distributions, many of which better 

68 
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fit non-normal error structures of most human ecology data. 

GLM models a random variable Y that follows a distribution in the exponential 

family using a linear combination of the predictors, x'/3 where x and (3 denote vectors 

of the predictors and the coefficients, respectively. In many cases, the parameter 

vector /3 is unknown and we wish to estimate it or to test hypotheses about it. These 

are usually done by applying the maximum likelihood method and the likelihood ratio 

test. 

In this chapter we consider the estimation problem for the GLMs which may have 

a large collection of potential predictor variables and some of them may not have 

influence on the response of interest. In this situation, selecting the statistical model 

is always a vital component in estimation. One consequence of this problem is model 

mis-specification. The mis-specification of covariates in GLMs is a common situation. 

Extraneous covariates may be included in the model, but it is more likely that rele­

vant covariates will be omitted. The latter situation may arise either because of the 

researchers' lack of understanding of the underlying theory, or because certain data 

are unavailable. With this in mind, several authors (Ahmed et al. (2007), Ahmed et 

al. (2006a), Judge and Mittelhammaer (2004) and Ahmed (1997)) have reappraised 

some of the standard pretest and shrinkage estimation strategies for parametric, semi-

parametric and nonparametric linear models. The goal of this chapter is to analyze 

some of the issues involved in the estimation of generalized linear models that may 

be over-parameterized. For example, in the data analyzed by Park and Hastie (2007) 

(this data set was originally collected by Rossouw et al. (1983)) coronary heart dis­

ease may be related to the variables: systolic blood pressure, cumulative tobacco, 

low density lipoprotein cholesterol, adiposity, family history of heart disease, type-A 

behavior, obesity, alcohol, and age. The analysis shows that cumulative tobacco, 

low density lipoprotein cholesterol, family history of heart disease, type-A behavior 

and age are the most important factors and the effect of the other variables may be 

ignored. We may use those insignificant variables as non-sample information in the 
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shrinkage and pretest estimation procedure. The main objective is to estimate the 

values of unknown parameter vector /3 under a set of linear restrictions 

tt/3 = h, (3.1) 

where H is q x k matrix of rank q < k and h is a given q x 1 vector of constants. 

Restrictions of this kind may be regarded as NSI. It is assumed that H has rank q, 

which implies that the q equations do not contain any redundant information about 

The LASSO originally proposed by (Tibshirani (1996)) is arguably one of the most 

important contributions for the problem of variable selection in the past decade, and 

has been extensively studied in the literature. See, for example, Knight and Fu 

(2001), Fan and Li (2001), Leng et al. (2006), Yuan and Lin (2007) and Zou (2006). 

Efron et al. (2004) introduced the Least Angle regression algorithm which suggested 

a very fast way to draw the entire regularization path for a LASSO estimate of /3. 

Park and Hastie (2007) proposed an algorithm (called glmpath) that generates the 

coefficient paths for the L\ regularization problems as in LASSO problems, but in 

which the loss function is replaced by the negetive log-likelihood of any distribution 

in the exponential family. 

The plan of this chapter is as follows. In Section 3.2, we present the details of 

generalized linear models with all the relevant notations. We illustrate the proper­

ties of the maximum likelihood estimation procedure and computational details for 

estimating the parameters and inferences in Sections 3.3-3.4. The proposed pretest 

estimator, shrinkage and positive shrinkage estimators and Park and Hastie (PH) 

estimators are presented in Section 3.5. Asymptotic properties of the proposed esti­

mators, bias and risk expressions and the weighted risk analysis of the estimators are 

contained in Section 3.6. The results of a simulation study that includes comparison 

with the PH estimator are reported in Section 3.7. A numerical example with nine 

regressor variables is presented in Section 3.8 to illustrate the methods. This chapter 
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concludes with some discussion in Section 3.9. Throughout this chapter, the boldface 

symbols represent vectors/matrices. 

3.2 Description of the Generalized Linear Model 

The observations belonging to a statistical model can be summarized in terms of 

a systematic component and a random component. In the GLM discussed by Mc-

Cullagh and Nelder (1989), the random component is inherent in the exponential 

family distribution of the observation, while the systematic component assumes a 

linear structure in the predictor variables for a function of the mean. This function is 

known as the link function. When the parameter 0; is modelled as a linear function of 

the predictors, the link function is known as a canonical link. Therefore for a given 

set of observations Y = (y1, y2, • • • , yn)', where y, is assumed to have a distribution in 

the exponential family of distributions with predictor values Xj = (xn, Xi2, • • • , Xin)', 

then a probability density/mass function has the form 

/y(j/»; 0h (ft) = exp{(r/A - b(6i))/at((j)) + c{yu (ft)}, 

where a(-), b(-) and c(-) are known functions and <j> is the dispersion parameter that is 

treated as a nuisance parameter if it is unknown. If (ft is known, this is an exponential-

family model with canonical parameter 0,. In this chapter, we are only interested in 

applying our proposed estimation procedure in GLMs where the dispersion parameter 

</> is known i.e., when the responses are binary and count data. In this case, the above 

density function can be written as 

fy(Vi; Oi) = ciyJexpiyA - b(9i)}. (3.2) 

GLMs have the following key features (McCullagh and Nelder (1989)). 

(1) The random component of a GLM specifies the distribution of the response 
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variable Yt. The distribution has the form (3.2) and for any distribution of this 

form, the mean and variance of Yi are given by 

E[Yi\ = £*» = —77— and Var{Y) = V{Hi) = 

(2) The systematic component of a GLM is a linear combination of regressor vari­

ables, termed the linear predictor 77, 

Vi = x-/3, 

where x^ = (xa, a^, • • • , i j j is the regressor vector and /3 is the vector of model 

parameters. The linear form of the systematic component places the regressors 

on an additive scale which makes the interpretation of their effects simple. 

Also, the significance of each regressor can be tested with linear restrictions 

H0:H[3 = h versus Ha : H/3 ^ h. 

(3) The link function of a GLM specifies a monotonic differentiable function. This 

function connects the random and systematic components. This connection 

has been done by equating the mean response jUj to the linear predictor r\i by 

Vi = 9(fM), that is 
/ x link 1 n 

9m) = Vi = Xi/3. 

The link function g(/Xj) = /Zj is the identity link function which equates the 

mean response to the linear predictor. Thus, the link function for the regression 

model with normally distributed response variable Yi is the identity link. The 

link function which equates the linear predictor to the canonical parameter is 

the canonical link. That is, ry, = x /̂3 = g(fii) = #,. 

In practice, a given data set may be distributed according to some unknown 

member of the exponential family and therefore, different link functions have to 

be evaluated. The link is a linearizing transformation of the mean—a function 
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that maps the mean onto a scale on which linearity is assumed. One purpose 

of the link is to allow ^ to range freely while restricting the range of /i;. For 

example, the inverse logit link \ii = 1/1-t-e"-^ maps (—00, 00) onto (0,1), which 

is an appropriate range if \ii is a probability. The monotonicity of the link 

function guarantees that this mapping is one-to-one. Thus we can express the 

GLM in terms of the inverse link function, 

E\Yi\ = m = j- ' txjjS). 

The canonical link is in many cases a useful link function, and is a reasonable 

function to try, unless the subject matter suggests otherwise. The canonical link 

does simplify the estimation method slightly, but there is no need to restrict 

generalized linear modelling to canonical link functions. 

In summary, generalized linear models make up a general class of probabilistic 

regression models with the assumptions that: 

(1) the response probability distribution is a member of the exponential family of 

distributions; 

(2) the responses Yi i = 1,2,- • • ,n form a set of independent random variables; 

(3) the explanatory variables are linearly combined to explain systematic variation 

in a function of the mean. 

In a practical data situation, GLM fitting involves the following: 

• choosing an error distribution that is relevant; 

• identifying the independent variables to be included in the systematic compo­

nents; and 

• specifying the link function 
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The next section presents the unrestricted maximum likelihood method for esti­

mating the regression parameters assuming that the previous assumptions have been 

specified. 

3.3 Unrestricted Maximum Likelihood Estimation 

If the probability specifications of an exponential family model are given by /(j/*; #i), 

then the best way to fit a GLM is by maximum likelihood estimation of the parameters 

/3 for the observed data (Green and Silverman (1994)). With many desirable proper­

ties of maximum likelihood estimators such as consistency, efficiency, sufficiency and 

asymptotic normality, it is natural to consider such a method for GLMs. In gen­

eral, the maximum likelihood equations which result from GLMs cannot be solved 

explicitly and hence recourse must be made to numerical methods. There are three 

methods described in this section: The Newton-Raphson method, the Fisher Scoring 

method, and the iteratively re-weighted least squares method. To derive likelihood 

equations, let the responses y1; y2, • • • , yn be generated from a member of exponential 

family (3.2). The likelihood function is written as 

n n 

n/(^^)=ric^)exp^-6^))- (3-3) 
Then the log-likelihood is given by 

n n 

where £t is the ith component of the log-likelihood and is therefore given by 

£i = (yiei-b(8i)) + \nc(yi). (3.5) 
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The likelihood implicitly depends on the parameters (3j, j = 1,2, ••• ,fc, firstly 

through the link function <?(//*) and secondly through the linearity that it encompasses 

with respect to /?,• values. The derivatives of the log-likelihood with respect to (5j are 

evaluated by the chain rule: 

, . , . , dl ^ dL d9i du,i dn „ „ , . „. 

°Pi ~l °®i °IM % °Pj 

It can be seen that the score functions reduce to 

In a vector form, the score equations are given by 

(Y - /i)'D(A*)X = 0, (3.8) 

where X = (xi,x2, • • • ,xn) ' , D(/u) = diag(djj) and du = l/1/(/j;)#'(/ii)-

The unrestricted maximum likelihood estimator (UE) of (3 is found by solving 

the score equations (3.8), for J3. The numerical methods to solve (3.8) are essentially 

iterative. We need a common starting value of the estimate for all the methods. With 

the ultimate aim of obtaining a good starting value of the estimate, the following 

technique is employed using the approximate linearized form of g(yi), where 

9{yi) ~ 9^%) + (yi - vJg'ifM) 

d\ii 

where z; is the adjusted dependent variable which depends on both y» and //,. Given 

that the variance of Zi is [g'(/Xj)]2Vr(/ij), an initial estimate of j3 may be obtained by 

weighted least squares of z on X, with variance-covariance matrix given by a diagonal 
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matrix W whose components are specified by 

Wu — 
V(m)W(lM)]2 Var(Ziy 

Clearly the score equations (3.8) can be written as 

which transformed to the adjusted dependent variables yield the following 

n 

Y2(Zi ~ 9(^i))wiiXij = 0. (3.9) 

Both z and W are used for maximum likelihood estimation through a weighted 

least squares regression. This process is iterative, since both z and W depend on 

the fitted values of current estimates available. Some scoring methods are needed to 

measure the iteration variations for a weighted least squares regression of a GLM, 

until convergence is reached. 

3.3.1 The Newton-Raphson Method 

The Newton-Raphson Method is a general purpose numerical method for finding the 

roots of an equation U(6) = 0. It is derived from a first order Taylor series expansion 

of U(6) or a second order Taylor series expansion of an objection function, 1(6), about 

a current estimate. If U(G) is nonlinear in 9 then Newton-Raphson is an iterative 

technique. In the maximum likelihood problem, the function U is a score function. 
~ (r) 

Consider a Taylor series expansion of f lU, centered at (3 . 

d(3le~ df3l^r) + d(3d0']&r){P p ' 
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/3-/3 
(r) d2£ \ - 1 d£ 

df3d(3') d~J3 
J/3' ,(••) 

An updated estimate of (3 is then obtained 

($(r+1) = P(r) + d2£ y 1 at 
d(3d(3'J d/3 

tfr) 

This is iteratively repeated until convergence is met. 

3.3.2 Fisher's Scoring Method 

If the negative second-derivative matrix or the Hessian matrix is not positive definite 

at every iteration then the Newton-Raphson algorithm is no longer valid. In this case, 

the Hessian matrix is replaced by its expectation, giving Fisher's scoring algorithm. 

Thus the iterative process for Fisher's scoring algorithm is given by 

(3ir+1) = / 3 W E 
d2£ - i - i d£ 

0(30(3'J \ 0(3)^ 
(3.10) 

For evaluating the derivatives in (3.10), the linear predictor r?; is used where 77, = x^/3: 

0£_ _ diddj _ (d£\ fdriidfij 

drji d6ldrji \ddi J \d/j,i d9i 

and S l - 0 ) = I x (gV "̂̂ ))"1 
(3.11) 

(3.12) 

Note that a2e -1 . = Wij = (g''(Hifb'1\9i)) if i = j , and it is = 0 if % ^ j . 

Let z* be the n-vector with z* = (y; — Mi)<?'(/•*») J then we have from (3.11) 

d£ 
Or) = Wz*, (3.13) 
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and from (3.12) 

£(~ai?)=w' ( 3 1 4 » 
Since t] = X/3, then by chain rule we have 

dj3 dt) df3 dr) 

= X'Ws*, (3.15) 

and 

*b&)-**(-<&)*• 
Thus Fisher's scoring algorithm (3.10) yields the following sequence of updated esti­

mates 

y9(r+1) = )9(r) + (X'WXj- 'X'Wz*. (3.17) 

3.3.3 Iteratively Reweighted Least Squares (IRLS) 

Equation (3.9) can be written as 

(z - X/3)'WX = 0 =>0= (X'WXJ- 'X'Wz. 

However, the z and W depend on the unknown ft, hence this equation gives rise to 

the iterative process 

/3 ( r + 1 ) =/3 ( r ) . 

This is known as the method of Iteratively Reweighted Least Squares. The starting 

value of the iteration is obtained by substituting (i0 = y. At each iteration i, a 

weighted least squares regression of the adjusted response variable z ^ on the design 

matrix X is obtained with the weighting matrix W'1 ', where z ^ and W ^ are obtained 

by replacing \i with p,W = p~1(X/9 ). This algorithm can be summarized as follows: 

• Start with a sufficient statistic from the data to get an initial fitted vector p,^. 
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• From this statistic, the link function g is used to derive initial linear predictor 

t)<°>. 

. Calculate ( g ) Q and V(/l<0>) = (&)„• 

These statistics are used in creating the starting adjusted dependent variable and the 

updated weighting matrix as follows: 

z<°> = 77(°) + (j, - A(0)) (P) , and 

(w«V . (g)V 
A weighted least squares regression of z^ on X is carried out for the model E[z] — 

X/3 with the adjusted weighting matrix W ^ to obtain a first maximum likelihood 

estimate: 

£ (1) = (x/w<0>x)-1x,w<0>z<0\ 

which is then used to obtain updated values of f) and (i: 

This process is repeated to update the regression estimates at each iteration via a 

scoring algorithm, until the variation from one iteration to the next is sufficiently 

small. 

An important point to note is that the weighting matrix used in IRLS, W, is 

updated at each iterative step of IRLS so that each element of W is updated too for 

each observation i. Hence, W depends entirely on the fit of the model, and not at all 

on the likelihood equation X'(y — /z) = 0, used to determine (3. 

Under some regularity conditions [see Fahrmeir and Kaufmann (1985)], 0 is con­

sistent and asymptotically normal with variance-covariance matrix (X 'WX) - 1 . 



Shrinkage, Pretest and PH type estimators 80 

3.4 Restricted Estimation 

In this section we consider the problem of estimating the regression parameters /3 

under q linearly independent restrictions H^/3 = hj, j — 1, 2, • • • , q, where H,, j — 

1, 2, • • • ,q, are fcxl vectors and hj, j — 1,2, • • • , q, are scalars, both consisting of 

known fixed numbers. The problem here is to maximize the log-likelihood function 

(3.2) under the linear restriction H/3 — h = 0, where H = (Hi, • • • , Hg) and h = 

(hi,-- • ,hq). One of the most popular and efficient methods, the so-called penalty 

function method (for details see, Fiacco and McCormick (1968)) can be applied to 

solve this constrained optimization problems. This method transforms a constrained 

problem into a.non-constrained problem by adding penalty coefficients to the objective 

function. Cysneiros and Paula (2005) and Nyquist (1991) investigated this problem 

in GLMs. We will apply this methodology of penalty functions by considering the 

quadratic penalty function 

n q 

This procedure consists in finding Max^ F(j3, A) for positive and fixed values of 

Xj, j = 1, • • • , q. The solution for (3 will be denoted by /3(A) with A=(Ai, • • • , \q) . 

The restricted estimator of /3 is given by 

/3 =• lim /3(A), [See, Cysneiros and Paula (2005)]. 
A—*oo 

Here /9(A) is an unrestricted estimator for each finite A and /3(0) equals the unre­

stricted maximum likelihood estimator. 

For computation of y9(A) we apply a similar approach to that of the unrestricted 

estimation problem that we presented in the previous section. Differentiating F((3, A) 
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with respect to /?,• yields 

n 

^ = ^ Y ^ ^ + ^HiMhi-Hlf3), j = l,...,k, 

and the expectation of the matrix with second derivative above is 

Using Fisher's scoring method and the above equation, (3.10) can be written as 

(X'WX + H'AH)/3(A)(r+1) = X'Wz + H'Ah, (3.19) 

where A is the q x q diagonal matrix with Xj, j — 1, • • • , q, as diagonal elements. If 

A and X 'WX are invertible, then by the binomial inversion theorem [Strang (2003)], 

(3.19) can be written as 

/3(A)(r+1) = (X'WX + H'AH)- 1 (X'Wz + H'Ah) 

= [(X'WX)"1 - (X 'WXj^H'A (A 

+ AH(X'WX)- 1H'A)" 1 AH(X'WX)-1](X'Wz + H'Ah) 

- (X'WX)-1X'Wz 

+(X'WX)- 1H'A (I + H(X'WX)- 1 H'A)" 1 (I + H(X'WX)"1H'A) h 

- ( X ' W X ^ H ' A (I + H(X'WX)- 1 H'A)" 1 H(X'WX)" 1X'Wz 

- ( X ' W X J - ' H ' A (I + H(X'WX)- 1 H'A) _ 1 H(X'WX)- 1H'Ah 

- (X'WX)"1 X'Wz 

+(X'WX)- 1 H' (A"1 + H(X 'WX)- 1 H') _ 1 [h - H(X'WX)"1X'Wz]. 

- (r+l) 
The (r + l)st approximation /3 of the restricted maximum likelihood estimate 
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(RE) /3 is finally obtained as 

p ( r + 1 ) = lim £(A)(r+1> 
A—>oo 

= (X'WX)-1X'Wz + (X 'WX)- 'H ' [H(X'WX) _ 1 H'] _ 1 

x [h - H(X /WX)_ 1X'Wz]. (3.20) 

Alteratively, (3.20) may be written as 

/3 ( r + 1 ) = / 3 W + (X 'WXJ- 'H ' [HfX'WXJ- 'H'] _ 1 [h - H/3W], (3.21) 

- (H-l) 
for r — 0,1, • • • , where j3 can be considered as an unrestricted weighted least 

" (r) 

squares estimate f3 = X 'WX) - 1 X'Wz (with the weights evaluated at the restricted 

estimate) to which a correction term is added. 

Under some regularity conditions (see for instance, Gourieroux and Monford 

(1995), Section 10.3), it may be showed that that /3 is a consistent estimator of 

/3, and 

v H 3 - 0 ) ^ i V f c ( o , J - ) , 

where J - is the generalized inverse [see Rao (1962)] of matrix J and 

J = lim 
A—>oo ™^("^)j-

which may be evaluated at some consistent estimators of (3, such as 0 and /3. 

3 . 4 .1 H y p o t h e s i s t e s t i n g 

In this section we consider the test of hypothesis HQ : H/3 = h against Ha : H/3 ^ h. 

The usual methods for testing these linear hypothesis are the likelihood ratio, Wald 

and Rao scores tests. 

The Likelihood Ratio test : The likelihood ratio test involves estimation of 
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both the restricted and unrestricted models and a comparison of the values of the 

log-likelihoods. If the difference is "small", we accept (or strictly speaking fail to 

reject) the restrictions on the parameters; otherwise we reject the restrictions. If 1(0) 

and 1(0) are the values of log-likelihood at the restricted and unrestricted estimates 

respectively, then the deviance measure D\, is twice the difference of the values of 

the log-likelihood functions i.e., 

Dx = 2[l(0;yu--- ,yn) -l(0;yir-- ,yn)] 

= (H0 - h)' (H(X'WX)"1H')"1 (H/3 - h) + op(l). 

Under usual asymptotic properties, the deviance follows an approximate x2 dis­

tribution with q degrees of freedom when H0 is true. 

The Wald test: Under some regularity conditions [see Fahrmeir and Kaufmann 

(1985)], the estimator H/3 — h has an approximate multivariate normal distribution 

with mean 0 and variance-covariance matrix, H(X'WX) _ 1H'. A Wald statistic can 

now be defined as 

D2 = (H/3 - h)' (H(X'WX)- 1H')" 1 (B.0 - h). 

Under the null hypothesis this statistic has an approximate %2 distribution with q 

degrees of freedom. 

The Rao scores test: This test is computed using the score vector or gradient of 

the unrestricted model evaluated at the restricted estimate 0 of 0. The score statistic 

is given by 

D3 = ( U ^ - U ^ ) ) ' ^ ^ ) ) - 1 ^ ) - ^ ^ ) ) 

= (z - r7)'W'X(X/WX)-1X'W(z - r]). 

Under the null hypothesis, the statistic has asymptotically a x2 distribution with q 
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degrees of freedom. 

The likelihood ratio statistic uses most information. When n tends to infinity 

the likelihood ratio, Wald and score tests are asymptotically equivalent. This means 

that, under the null hypothesis, as n —• oo, the test statistics all tend to the same 

random variable, which has a x2 distribution with q degrees of freedom. For small n 

the Likelihood ratio statistic is more reliable than the Wald statistic. The proposed 

estimation strategies based on the likelihood ratio statistic will be illustrated in the 

next section. 

3.5 Estimation Strategies 

3.5.1 Pretest Estimator 

The pretest estimator (PT) of (3 based on f3 and (3 is defined as 

P =(3-{(3-(3)I{D1<xla), q>l, 

where 1(A) is an indicator function of a set A and x\a ^s *n e a-level critical value of 

the distribution of Dx under HQ. This estimator is a convex combination of f3 and 
, PT 

j3 via a test statistic, Z?i, for testing H0 : H/3 = h in (3.1). The PT (3 chooses /3 

or /3 according to whether H0 is rejected or accepted. It is important to remark that 
- PT 

/3 is bounded and performs better than (3 in some part of the parameter space. 

For details, see Judge and Bock (1978), Ahmed (2001), and Ahmed et al. (2006a) 

among others. Since the PT is a discontinuous function of /3 and /3 and depends on 

the choice of the level of significance a, we may overcome this limitation by defining 

James-Stein type (shrinkage) estimator in the next section. 
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3.5.2 Shrinkage and Positive Shrinkage Estimator 

The shrinkage estimator (SE) of /3 can be defined as: 

PS = 0+(l-(q-2)D?)(0-0), q>3. 

This estimator is a weighted average of unrestricted and restricted estimators, the 

weight being a function of deviance statistics used to test the hypothesis H0 : H/3 = h. 

The major problem with this estimator is that it may have a different sign from the 

unrestricted estimator, /3, perhaps due to over-shrinking. The change of sign certainly 

would make researchers rather uncomfortable. To avoid the over-shrinking inherent 

~ s 

in 0 , we define a positive shrinkage estimator which will control the possible over-

shrinking problem, for details see Chapter 2. The positive shrinkage (PSE) estimator 

is defined as 

0S+ = P+{l-(q-2)D?)+&-0), 

where z+ = max(0, z). 

3.5.3 Park and Hastie Estimators 

The L\ regularization procedure (Park and Hastie (2007)), proposed for fitting gener­

alized linear models, is a useful tool for selecting variables according to the amount of 

penalization on the L\ norm of the coefficients, in a manner less greedy than forward 

selection/backward deletion. It is similar to the LASSO procedure, in which the loss 

function is replaced by the negetive log-likelihood of any distribution in the exponen­

tial family. Since we assume that the dispersion parameter of this family is known, 

we are interested (in comparison with the shrinkage and pretest estimation method) 

in finding the maximum likelihood solution for the natural parameter 0, and thus /3, 
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with a penalization on the size of the L\ norm of the coefficients (||/3||i) i.e., 

/9(A) = argmin{-/(/3) + X\\/3\\i} 
0 
n 

= - ^ [ ( y A - K ^ ) ) + lnc(2/i)] + A||/9||l! (3.22) 

where A > 0 is the regularization parameter. If A = 0, this just gives the maxi­

mum likelihood estimates. However, larger values of A produce shrunken estimates 

of /3, often with many components equal to zero. Park and Hastie (2007) introduce 

an algorithm that efficiently computes solutions along the entire regularization path 

of the coefficient estimates as A varies by using the predictor-corrector method of 

convex-optimization. Starting from A = Xmax, where Xmax is the largest A that makes 

/9(A) nonzero, this algorithm computes a series of solutions, each time estimating 

the coefficients with a smaller A based on previous estimate. The final estimate is 

denoted as the PH estimator. The regularization parameter A is selected using k-fold 

cross validation. For each fold, we obtain a series of models based on BIC (Bayesian 

Information Criteria) corresponding to the candidate values of A and compute log-

likelihoods using the omitted fold. Then we choose the value of A for which the 

average cross-validated (negative) log-likelihood is minimized. Note that the output 

of the L\ regularization algorithm looks like a shrinkage and pretest methods by both 

shrinking and deleting coefficients. However, it is different from the shrinkage and 

pretest estimation procedure in that it considers all the covariates coefficients equally. 

3.6 Asymptotic Results 

In this section, we obtain expressions for the asymptotic distributional quadratic bias 

(ADB) and quadratic risks (ADR) of the proposed estimators. We define a quadratic 
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loss function using a positive semi-definite matrix Q, 

£ ( / T ; Q ) = [ ^ ( r - / 3 ) ] ' Q [ V ^ ( / 3 * - / 3 ) ] , (3-23) 

where (3* can be any one of f3, /3, J3 , (3 or /3 . 

We note that, as the test statistics D\, D2 and Ds are consistent against fixed /3 

such that H/3 ^ h, so we will investigate the properties of the estimators under local 

alternatives. Thus, consider the following local alternatives: 

K(n) : H/3 = h + 4=, (3-24) 

where 8 = (61, 82 • • • ,Sq) € Uq, a real fixed vector. Note that for 6 = 0, H/3 — h, for 

all n. Hence (3.1) is a particular case of (3.24). 

Now we introduce the asymptotic distribution function of /3* under K^ by 

G(y) = lim P [VS(/F - /3) < y|tf(n)] , 

where G(y) is nondegenerate distribution function. Then, we define the asymptotic 

distributional quadratic risk (ADR) by 

i?(/3*;Q) - / • • • / y ' Q y d G ( y ) 

= trace(QQ*), 

where Q* — J • • • J yy'dG(y) is the dispersion matrix for the distribution G(y). 

Theorem 3.6.1. Under local alternatives and the usual regularity conditions [see 

Fahrmeir and Kaufmann (1985)] and as n increases, we have the following: 

1. •s/n(H.0—h) —* N(S, H _ 1H') , where B = lim^oo X ' ^ X is a nonsingular matrix 

of order k x k. 

2. The test statistics D\, D2 and D3 converge to a non-central chi-squared distribu-
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tion with q degrees of freedom and non-centrality parameter A = 5 '(HB_ 1H')_ 15. 

Now we consider the computation of biases and risks of the proposed estimators 

under local alternatives K^ny 

Theorem 3.6.2. Under local alternatives K(n) in (3.24) o,nd assume that the Theorem 

3.6.1 holds, we have the ADB of the proposed estimators as n —> oo in the following: 

ADB(/3) = 0, (3.25) 

ADB0) = -36, J = B ^ H ' f H B ^ H ' ] - 1 , (3.26) 
- PT 

ADB{f3 ) = 36^q+2{q-2,A), (3.27) 

ADB0S) = -(q-2)J5E(X£2(A)), (3.28) 

ADB0S+) = - ( g -2)J«5[E( x - +
2

2 (A)) - J E;(x- +
2

2 (A) / (^ + 2 (A)<(g-2) ) ) ] 

- 36Vq+2(q-2,A), (3.29) 

where the notation ^v{q — 2, A) is the distribution function of non-central chi-square 

distribution with v degrees of freedom and non-centrality parameter A. 

Proof: 

By definition, we have 

ADB(J3) = lim E{yfc{J3 - (3)} = 0, 

ADB0) = lim £{vH<3 " £)} 
n—>oo 

= lim E{Vn(0 - 13) - (X'WX)-1H'[H(X'WX)-1H']-1(H/3 - h)} 
n—>oo 

= 0 - B ^ H ' t H B ^ H ' ) - 1 lim >/n(H/3 - h) 
n—>oo 

= -36, 
*PT - PT 

ADB((3 ) = lim E{y/n~(f3 - P)} 
n—>oo 

= lim E{V^0 -13)}-3 lim £ { ^ ( H / 3 - h)/(L>i < xl J 

= 0 - J5*g + 2(g - 2, A) = -36Vq+2(q - 2, A), 

ABD0S) = Hm£{Vn(j3S - )3)} n—>oo 
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= limE{M0-P)-iA
K^0-P)}} 

= lim E{y/n{(3 - 0)} - (q - 2)3 lim E 
^ ( H / 3 - h) 

Dl 

= -{q- 2)J6E(x~+2(A)),by theorem 2.2.4 [Saleh (2006), p.32]. 

ADB0S+) = lim E{y/n{J3S+ - /3)} 
n—+00 

= ]imE{yft[(pS-/3)-(0-0)I(D1<q-2) 
n—>oo 

+ (^y.I(D1<q-2)&-P)}}, 

= -(q - 2)J<J£(X-+
2

2(A)) - J lim ^ { ^ ( H ^ - h)7(Di < q - 2)} 

+ J lim £ { ^ ( H / 3 - h)/(Di < q - 2)D71} 
n—»oo 

= - ( 9 - 2)38 [£(*-+
2

2(A)) - JB(X-+
2

2(A)/(X
2

+2(A) < q - 2)] 

- j a t t , + 2 ( g - 2 , A ) . 

Since bias is a component of ADR, we will discuss the ADR of the estimators from 

here onward. Under local alternatives, the ADRs of the estimators are given in the 

following theorem. 

Theorem 3.6.3. Under local alternatives K^ in (3.24) and assume that the Theorem 

3.6.1 holds, we have the ADRs of J3, J3, (3 , (3 and $ are respectively: 

R(J3;Q) = tracelQB-1}, (3.30) 

R(0;Q) = R((3;Q)-trace[QJIlB-1} + 5'(J'QJ)6, (3.31) 

R(j3 ;Q) = R{f3;Q)-trace[Q3HB-1]^q+2(q-2,A) 

+ 6'(J'Q3)6[2*q+2{q-2,A)-*q+4{q-2,A)], (3.32) 

R0S;Q) = R(P;Q)-2(q-2)trace[QJHB-1}{2E(X-U&)) 

- {q- 2)£(X-+
4

2(A))} + (<? - 2)<5'(J'QJ)<H2£(X-+
2

2(A)) 

- 2E{xqU{A)) + (q - 2)£(X"+
4

4(A))}, (3.33) 

R0S+;Q) = R(pS-Q)-6'(J'QJ)6E[(l-(q-2)x;U&))2nx2
q+i(A)<q-2)} 
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- i ruce lQJHB-^Kl - (q - 2)X^ 2 (A)) 2 / (X^ 4 (A) < q - 2)] 

+ 2(5 '(J 'QJ)<5£;[( l-(g-2)x-+
2

4(A))/(x^4(A)<9-2)] . (3.34) 

Proof: 

By definition we have R(J3;Q) = trace[QB-1]. To find the risk of (3, we need to 

evaluate the mean square error (MSE) of /3: 

MSE(/3) = lira E{n{(3 - 0)(0 - p)'\ 
n—too 

= lim nE[{0 -13)- J ( H 0 - h)}{0 - f3)' - (H0 - h)'J'}] 
n—>oo 

= lim nE[((3 -0)0- /3)' + J(H/3 - h)(H/3 - h)J ' - 2J(H/3 - h)(0 - /3)'l 
n—>oo 

First term: Under K(n), the first term can be written as 

]imE[n0-0)(0-/3)']=B-1. 

Second term: To evaluate the second term, let Vx = y/n(H.(3 — h) —* Nq(S, HB XH') 

and Ui = y/n(f3 — /3) —> A^9(0, B : ) . If Tj is a q x g symmetric and positive definite 

matrix, then 

riHB^H'r; = iq =*- HB^H' = (rir:)-1. 

Now let S = r i V x . Then 

E(s) = r ^ V i ) = r id , 

Far(s) = riVorCvor; = I^HB^HT; = ig. 

Under K(„), the second term can be simplified as 

lim E[nJ(H(3 - h)(H/3 - h)J'] 
n—»oo 

= lim JE\y1V1']3' 

= J lim ^[(r^sxr^syiJ' 
n—»oo 

= J171 lim ^[ss'irr^J' 
n—>oo 

= JKr;^)-1 + rr1(r15)(r1<5)Tr1']J' 
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= JfHB^H' + 55'J'} 

= JHB- 1 J ' + J ^ ' J ' 

- JHB^H'tB^H'tHB"1!! ')-1] ' + 355'3' 

= JHB"1 + 355'3'. 

Third term: Under K(n), the third term can be simplified as 

lim MnJ(H/3-h)(/3-/3)'l 
n~-J-OO 

= lim J£[(H/3-H/3 + H/3-h)(/3-/3)'] 
n—*oc 

= lim 3E[{H0 - /3) + H/3 - h} 0 - (3)'} 
n—>oo 

= JH lim E[n0 -0)0- p)'} 
n—foo 

= JHB-1 . 

Finally, 

MSE(/3) = B"1 + JHB"1 + 355'3' - 2JHB"1 

= B- 1 - JHB- 1 + 355'3', 

so that R0;Q) = trace[QMSE(/3)] 

= R0; Q) - tracefQJHB-1] + d'(3'Q3)5. 

The MSE for the pretest estimator is 

MSE03PT) = lim nE{0PT - P)0PT - (3)'} 
n—>oo 

= lim nE\{0-(3)-0-~P)I{Dl<xla)} 

x {0-/3)'-0-pyi(D1<xla)}} 

= lim {nE[0 -[3)0- 13)'} + nE[0 - 0)0 - fi)'I{D1 < X\ 
n—»oo * 

- 2nE[0-0)0-0),nDl<xla)}}. 

The part of third term can be written as, 
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E{E [0 - 0)0 - P)'I(D1 < xl j ] \0 - £)} 

= E{0 - ~0)E[0 - (3)'\0 - 0)]I(D1 < x\, J} 

by theorem 7.2.2 [Saleh (2006), p.343], we have 

= E{[0-0)[0-0) 

- (X'WX)-1H'[H(X'WX)-1H']-1(H/3 - h ) ]7 (A < X\ J ] } 

= E\0-~0)0-0)'l{px<x\,a)\ 

- E[0 - )9)7(A < xl J](H/3 - hJ'pHCX'WXJ-^r'HCX'WX)-1. 

Now 

MSE(/3 ) = Km nE[(& - 0){p - 0)'] 

- lim nE[0 - 0)0 - ~0)'I(D1 < xl J] 

+ 2 lim n£[(/3 - /3)7(£>i < xl J W - h) '{H(X /WX)-1H']-1H(X'WX)-1 . 

First term: 
lim nE[{0 - 0){0 - 0)'} = lim (X'WX)"1 - B - 1 . 

n—5-oo n—»oo 

Second term: 

- lim nE[0 - 0)0 - ~0)'I{D1 < xl «)] 

= - lim nE[3(H0 - h)(H0 - h)7(A < ̂  a)J'] 

= - lim 3E [VMUDt < xl J ] J' 
n—»oo *' J 

= - j r r 1 lim E[ss'i(x
2
q+2(A) < xl J i r^ ' J ' 

n—>oo 

= -J[(r'1r1)-1* (?+2(g - 2, A) + rr1(r1(5)(r1<5)'r'r1^g+4(? - 2, A) ] J ' 

= -J[HB-1H'^g + 2(9 - 2, A) + 5S'*q+t(q - 2, A)]J' 

- -JHB-1*q+2(Q - 2, A) - J<5<5'J'*g+4(g - 2, A). 

Third term: 

2 lim {E[n0 - ~0)'I{Dl < xl, «)](H/3 - h) ' [H(X'WX)-1H']-1H(X'WX)-1} 
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= 2 lim E[yfc(P - 3 ) ' J ( A < Xl aW 

- 2J lim £ { ^ ( H / 3 - h)/(Di < xl a}8'3' 
n—>oo 

= 23S6'3'^q+2{q-2,A). 

Adding first, second and third terms together we have, 

~ PT 

MSE(/3 ) = B - 1 - J H B - 1 * g + 2 ( g - 2 , A ) - J 5 5 ' J ' ^ + 4 ( g - 2 , A ) 

+ 2J55 ' J ' * g + 2 (g -2 ,A) 

= B - 1 - J H B - 1 * g + 2 ( 9 - 2 , A ) 

+ S'(3'Q3)6 [2Vq+2(q - 2, A) - tt,+4(g - 2, A)] 
- P T o P T 

so that R(f3 ;Q) = trace[QMSE(/3 )] 

= iJ()9; Q) - trace[QJHB-1]^q+2(g - 2, A) 

+ S'(3'Q3)6 [2Vq+2(q - 2, A) - ^9 + 4(g - 2, A)]. 

The MSE for the shrinkage estimator 

MSE03S) = ]im nE{{0S - 0)(J3S - P)'} 
n—>oo 

= lim {nE[{{P -f3)- Q—^0 - £)}{(£ - f3)' - £ ^ ( 0 - 3)'}]} 
n-»oo i^ j L)\ 

= lim n£[(j3 - 0)(/3 - 0)'] + (g - 2)2 lim nE[{p - 0)09 - /3)'£>r2] 

- 2(g - 2) lim n £ [ 0 - £)(£ - fl)'!^1] 
n—>oo 

= B-1 + (q-2)2limnE[(0-0)(P-P)'D;2) 
ra—>oo 

- 2(q-2)\hnnE{[(0-0)[0-P) 
n—>oo 

- (X'WX)-1H ,[H(X'WX)-1H']-1(H/3 - h)]'!)^1]} 

= B _ 1 + (g - 2)2 lim J£[n(H/3 - h)(H0 - h)'I>r2]J' 
n—••Co 

- 2(g - 2) lim J£[n(H/3 - h)(H/3 - h)'£>f ^ J ' 
n—»oo 

+ 2(g - 2) lim n{£[(|3 - /3)'L>fJ](H/3 - h) ' [H(X'WX)-1H']-1H(X'WX)-1}. 

Second term: 
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(g - 2)2 lira 3E [ViV^Df2] 3' 
n—<oo 

n—*oo 
- (g-2)2 jrr1 l i m i ^ s s ' D r ^ r ^ j ' 

= (g - ^ [ ( r i r o - ^ ^ C A ) ) + rr1(r1«5)(r1<5)'JE(x-+
44(A))rr1']J' 

= (9 - 2)2J[HB-1H'E(X-+
4
2(A)) + d<5'JB(x9-+

4
4(A))]J' 

= (g - 2)2JHB-1£(X-+
4
2(A)) + (g - 2)2J^'J'£(X-+

4
4(A)). 

Third term: 

-2(g - 2) lim J£[n(H/3 - h)(H/3 - h) ' ! )^ 1 ]^ 
n—>oo 

= -2(g - 2)JHET1£(X-+
2

2(A)) - 2(g - 2)JW'J'i?(x-+
2

4(A)). 

Fourth term: 

2(g - 2) lim n{E[0 - P)'D^}(iIp - h) '[H(X'WX)-1H']-1H(X'WX)-1} 
n—>oo 

= 2(g - 2) lim E[y/n0 - f3)'D^]8'3' 
n—»oo 

= 2(g - 2)3 lim E{y/n(H0 - i^D^S'J' 
n—»oo 

- 2(g-2)J55 'J^(x-+
2

2(A)) . 

Adding First, second, third and fourth terms we have, 

MSE035) = B - 1 + (g-2)2JHB-1
JB(x-+

4
2(A)) + (g-2)2J<5<5'J'JB(x-+

4
4(A)) 

- 2(g - 2)3HB-1E(X-U^)) ~ % ~ 2)3S6'3'E(x^(^)) 

+ 2(g-2)JM'J 'E(X-+
2

2(A)) 

= B - 1 - (g - 2)3HB~1[E(xMA)) ~ (? " 2)E(x^2(A))] 

+ (g - 2)J<W'J'[2£(X-+
2

2(A)) - 2£;(X-+
2

4(A)) + (g - 2)£(X-+
4

4(A))]. 

Now the risk of shrinkage estimator is 

R{PS;Q) = trace[QMSE03S)] 

= R0; Q) - (g - 2)trace[QJHB-1]{£(X-+
2

2(A)) - (g - 2)£(X-+
4

2(A))} 
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+ (q- 2)<5'(J'QJ)(5{2£(x-+
2

2(A)) - 2E(X-+
2

4(A)) + (g _ 2)E(X-+
4

4(A))}-

The MSE for the positive shrinkage estimator 

MSE(/35+) 

= Km nE{0S+- P)0S+- (3)'} 
n—•oo 

lim nE { ( / - (3) - (1 - q-^) 0 - (3)I{Di < 9 ~ 2)} 

{(/3S - (3)' - ( 1 - ^ ) 09 - ^ ' / ( A < q - 2)} 

l i m n E ^ - ^ ) ^ 5 - ^ ) ' 
n—>oo L 

+ lim nE 
71—>00 

{0-P)(P-py i -
9 - 2 

/(I>i < 9 - 2) 

- 2 lim n £ 
n—>oo 

= lim nE 
n—>oc 

(^-^(^-^'(l-^V^i 0 i y 
< 9 - 2 ) 

0s - P)0S - py 

+ lim n £ 
n—>oo 

(p-0)0-py i -

2 lim nE 
n—>oo 

2 lim nE 
n—»oo 

+ 2 lim nE 
n—»oo 

0-0)0-/3)' 1 

0-~P)0-~P)'(l 

0-P)0-0)'[l 

g - 2 

Ei 

g - 2 

0 i y 

g - 2 

01 

g - 2 
0 i 

7(0! < g - 2) 

Wi < g - 2 ) 

/ ( 0 i < g - 2 ) 

/ ( A < ? - 2) 

MSE(/3 ) - lim nE 

— 2 lim nE 
n—»oo 

+ 2 lim nE 
n—»oo 

= MSE(/3S) - lim nE 
n—»oo 

( / 3 - / 3 ) ( ^ - / 3 ) ' ^ l 

0-P)0-0)'(l 

0-0)0-py(l-

g - 2 

g - 2 

0 i 
7(0! < g - 2) 

7(0! < g - 2) 

g _ 2 ' ) 7 ( 0 1 < g - 2 ) 

2 

0 1 

0 i y 

2 lim nE 
n—too 

03- /3 ) ( /3 - /3 ) ' 1 

g - 2 

g - 2 

0 i 
J(£>i < g - 2) 

( /3- /3)( /3- /3) ' 1 - ^ r - / ( A < 9 - 2 ) 
0 ! 
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+ 2 lim nE (f3-^'(l-q—^)l(D1<q-2) 
D1 

x (H/3 - h)'[H(X'WX)-1H']-1H(X'WX)-1 

+ 2 lim nE 
n—»oo 

03-0)03-0)' 1 
q-2 

MSE(/3 ) - lim nE 

+ 2 lim n £ (/3-/3)' 1 

I{D, <q-2) 

q-2 
/ ( A < q - 2) 

^ i 7 
< 9 - 2 ) 

x (H/3 - h)'[H(X'WX)-1H']-1H(X'WX)-1. 

Second term: 

— lim nE 
n—>oo 

• lim JE 
n—»oo 

lim J £ 
n—»oo 

(^W-^)'i- g - 2 
/(I>i <q-2) 

n(Hj3-h) (Hj3-h) ' 1 
q-2 

V x V x ' J l - ^ ) /(£>!< g - 2 ) 

/ ( A < 9 - 2) J' 

A 
J' 

- J I V lim <̂  £ S S ' f l - ^ ) / (I>i< 9 - 2 ) - i ' - r / i y j 

= - J {(T'^r'E [(l - (q - 2)X-+
2
2(A))2 /(X

2
+2(A) < 9 " 2)] } J' 

- J { r r ^ o w i i ? [(i - (, - 2)X-+
2
4(A))2/(X

2
+2(A) < <? - 2)] r ;} J ' 

3\HB-1H'E (1 - (? - 2)X-+
22(A))J/(x'+2(A) < 9 - 2) J' 

Jd<5'J'£ ( l - ( 9 - 2 ) X ^ 4 ( A ) ) 2 / ( X 2 + 2 ( A ) < 9 - 2 ) 

JHB-XE 

- J<5(5'J'£ 

(1 - (9 - 2)X-+
2

2(A))27(x2
+2(A) < 9 - 2) 

(1 - (9 - 2)X-+
2

4(A))2 /(X
2

+ 2(A) <q-2) 

Third term: 

2 lim nE 
n—>oo 

0-0)'[l-l7^)I(D1<q-2) 
Di 

x (H/3 - h)'[H(X'WX)-1Ht1H(X'WX; - l 
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= 2 lim E 
n—>oo 

= 2J lim E 
n—>oc 

= 2i88'J'E 

^h(/3-0)'(l-L-l)l(D1<q-2) 
Di 

s'y 

y/n{HJ3 - h) (1 g - 2 
/ ( A < g - 2) 5'J' 

[ ( l - ( g - 2 ) X - | 2 ( A ) ) / ( ^ + 2 ( A ) < ? - 2 ) ] . 

Finally, the MSE of positive shrinkage estimator is 

MSE0 S + ) = M S E 0 S ) - J H B - 1 £ ; [ ( l - ( g - 2 ) x - +
2

2 ( A ) ) 2 7 ( ^ + 2 ( A ) < 9 - 2 ) 

+ 2J«55'J'£ [(1 -(q- 2)X-+
2

2(A)) /(X2
+2(A) < q - 2)] 

J<5<5'J'£ (1 - (q - 2)X-+
2

4(A))2 7(X
2

+2(A) < , - 2) 

Now the risk of shrinkage estimator is 

R0S+;Q) trace[QMSE(^S+)] 

. i.s = R(P°;Q) - tracelQJHB-1]/^ [(l - (q - 2)X-+
2

2(A))2 7(X
2

+2(A) < q - 2) 

+ 2,5'(J'QJ)<5£ [(1 - (q - 2)X"+
2

2(A)) /(X
2

+2(A) < q - 2)] 

- 5 ' (J 'QJ)5£ [(1 -{q- 2)X^4(A))2 / (X
2

+ 2(A) < g - 2) 

3.6.1 Risk Analysis 

We now investigate the risk behavior of the proposed estimators and determine their 

dominance characteristics. 

Risk comparison of 0 and /3: 

First note that the risk of maximum likelihood estimate of j3 is constant, since it does 

not depend on the non-sample information. The ADR of /3 depends on (5'(J'QJ)5. 

However, it is superior to J3 near the null hypothesis. 

Note that B - 1 / 2 H B - 1 H ' B - 1 / 2 is a symmetric idempotent matrix with rank q(< 
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k). Thus there exists an orthogonal matrix A such that 

A B - ^ K H B ^ H ' ^ B - ^ A ' = 

and A B - ^ Q B - ^ A ' = 

I , 0 

0 0k-q 

k n ki2 

k2i k22 

where the matrices kn and ki2 are of order q and k — q respectively. Further it can 

be seen that 

trace[QJ HB_ 1] = trace(kn) and 5'3'QJS = £'kn£, 

where £ = (^,£2) = AB"1/2[(HB-1H']-1H<5 is a k x 1 vector. Hence 

R(j3) = trace[QB-1] - trace(kn) + £'kn£. 

Further, by Courant's theorem [Saleh (2006), Theorem 5, p.39], 

(kn) < ^P± < C7w(ku), 
S1S1 

(3.35) 

(3.36) 

where C/imj„(kn) and C/imax(k11) are the minimum and maximum characteristic 

roots of kn and A = d'HB^H'S = ^ v Therefore, 

R0) - trace(kn) + Chmin(kn) < R0) <R(0) - trace(kn) + C T w ( k n ) . (3.37) 

When A = 0, the bounds of (3.37) are equal. Thus (3.37) means that for 

Ae 0, 
trace(kn) 

Chmax(kn) 
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3 has a smaller risk than 3. Alternatively, for 

A e ( trace(kn) ^ 

\Chmin(kn) 

/3 has smaller risk than /3. Clearly, when A moves away from H0 beyond the value 

of r,
r
>

aceL11(, the ADR of 3 increases and become unbounded. 

~ PT 

Risk comparison of 3 and 3 : 

The risk difference is given by 

~ PT 

R(P)-R(P ) = trace[QJHB-1]*9 + 2(9-2,A) 

- 6'(J'Q3)8[2<S>q+2(q - 2, A) - Vq+i(q - 2, A)]. 

" PT 

Under H0, R{3) - R(3 ) = trace[QJHB-1]^g+2(g - 2,0). When A deviates from 
- PT 

the null vector 0, the risk of 3 monotonically approaches the ADR of 3 after 
~ PT 

achieving a maximum value. More precisely, we find that 3 performs better than 

/3 whenever A G [ 0, U°], where 

trace(kn)^g + 2(g - 2, A) 
t/u = 

Chmax(kn)[2^q+2{q - 2, A) - Vq+4(q - 2, A)]' 

For A G ( L°, oo), where 

Lo = t race(kn)^ q + 2 (g-2 ,A) 

Chmin(ku)[2^q+2(q - 2, A) - Vq+4(q - 2, A)]' 

- PT 

then 3 performs better than 3 

We observe that the pretest estimator which combines the unrestricted and re­

stricted estimators to obtain a better performance of the estimators in the presence 

of NSI, H/3 = h. The gain in the risk is substantial over the classical estimation 

procedure when restrictions (3.1) are correct. 
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- PT 
Risk comparison of f3 and (3 : 

When restrictions (3.1) are correct, then the risk difference 

- PT ~ 
R((3 ) - R((3) = trace[QJHB -1]{l - Vq+2{q - 2,0)} > 0. 

~ PT 

This indicates superiority of f3 over (3 at the null hypothesis. However, under the 

local alternative, the risk difference is 

- PT 

R(/3 )-R((3) = t r ace [QJHB- 1 ] [ l - * g + 2 (5 -2 ,A) ] 

- S'(3'QJ)6[1 - 2Vq+2(q - 2, A) + *q+A(q - 2, A)]. 

Thus /3 is superior to /3 whenever 

0 < A < trace(kn)[l - #,+2(g - 2, A)] 
C 7 w ( k n ) [ l - 2Vq+2(q - 2, A) + mq+i{q - 2, A)] : 

while the opposite holds if 

t r a c e ( k n ) [ l - * , + 2 ( g - 2 , A ) ] 
A > 

(kn)[ l - 2*g+2(g - 2, A) + $>q+4(q - 2, A)]' 

„PT . 
The proposed estimators f3 and f3 both use the sample and non-sample information, 

* PT 

however, neither (3 nor f3 is superior with respect to each other. 

In light of above discussions, we may conclude that none of the three estimators 

/3, (3 and /3 dominate the other two asymptotically. However, for A = 0, the risks 

of the estimators may be ordered according to the magnitude of their risk as 

R0) < i?(/3PT) < Rtf). 

^ s 
Risk comparison of f3 and /3: 

A S 
The risk difference of J3 and (3 is 
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= (q- 2)trace[QJHB-1][2£(X-+
2

2(A)) - (g _ 2)£(X-+
4

2(A))] 

- (q-2)2S'(3Q3)SE(X^4(A)) 

+ 2(q-2)6'(JQJ)8[E(X^))-E(x«U*))}- (3-38) 

We know that 

E(X-UA)) - E(X-U^)) = 2£(X-+
4

4(A)), (3.39) 

£(x9-+VA))-(g-2)£(X-+
4

2(A)) = 2A£(X~+
4

4(A)). (3.40) 

Using (3.39) and (3.40), (3.38) can be written as 

R0S) - R0) 

= (q - 2)trace(k11) {2A£(X~+
4

4(A)) + (q - 2)£7(X^2(A))} 

- (q - 2)2trace(^'k11C)i?(X-+
44(A)) - 4(g - 2)trace(£'k110£(X-+

4
4(A)) 

= (q - 2)2trace(ku)E(X-+
4

2(A)) + 2(q - 2)Atrace(kn)£(X-+
44(A)) 

- (q2 - 4)tmce(Z'knOE(X-U&)) 

(g-2)2 trace(kn)^(X-+
4

2(A)) 

+ 
(9 + 2)trace(£'k11£) 

2Atrace(kn) 

The above risk difference is positive when 

2A(<?-2)trace(k11)£(X-.4
4(A)). 

trace(kn) q + 2 
> —-—, and q > 3. Chmax (kn) 

Under the above conditions, the ADR of /3 is smaller than the ADR of J3 in the entire 

parameter space and the upper limit is attained when A —> oo. It clearly indicates 

the asymptotic inferiority of (3 under local alternatives and the largest gain in ADR 

is achieved near null hypothesis. 

Risk comparison of J3 and j3 : 
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The risk difference of (3 and $ is 

R0S+) R{f 

- t racelQJHET 1^ [(l - (g - 2)X-+
2

2(A))2/(X
2

+2(A) <q-2) 

+ 25'(J'QJ)5E [(l - (q - 2)x^2(A)) /(X
2

+2(A) < q - 2)] 

- <5'(J'QJ)<5£ [(1 - (g - 2)X-+
2

4(A))2 7(X2
+2(A) < q - 2)" 

= - t r ace (k n )£ [(l - (g - 2)X-+
2

2(A))2/(X
2

+2(A) < g - 2) 

+ 2£'kn£ E [(1 - (g - 2)X^2(A)) /(X
2

+2(A) < q - 2)] 

- £'k„£ £ [(1 - (q - 2)X-+
2

4(A))2 /(X
2

+2(A) < g - 2) 

The right hand side of above is just real number. Since the expectation of a positive 

random variable is positive, then by definition of an indicator function, 

[g - 2 - X
2

+ 2(A)]/ (X
2

+2(A) < g - 2) > 0, 

Since P[X
2

+2(A) > 0] = 1, [(g - 2)Xg-+
2
2(A) - 1]/ (X

2
+2(A) < g - 2) > 0. 

Thus, for all A and g > 3 

R0S+) < R0S) 

with strict inequality holds for some A. Therefore, the risk of f3 is smaller than 
~ s 

the risk of 0 and hence smaller than the risk of $ in the entire parameter space and 
A S 

the upper limit is attained when A —> oo. Thus, we can order the risks of (3, 0 , and 

J3 as 

R0S+) < R0S) < R0), 
for all values of A 
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3.7 Simulation studies 

Now we return to the main problem of this chapter and provide a simulation study 

to investigate the performance of the proposed estimators for large sample sizes. 

We use Monte Carlo simulation experiments to examine the risk performance of the 

proposed estimators based on large sample methodology under various scenarios. 

Our simulation is based on a logistic regression model with different numbers of 

explanatory variables. This simulation study can be done for the log-linear model in 

case of count data. 

Our sampling experiment consists of different combinations of sample sizes, i.e., 

n = 100,150, 200. In this study we simulate a binary response from the following 

model: 

In f YZ~~. ) =r,i = x ^ ' * = !> • • - , « , 

where pi — P(Y — 1| X{) and the covariate matrix x̂  = {xn,xi2, • • • ,xin) has been 

drawn from a multivariate standard normal distribution. 

For simulation, we consider the particular hypothesis Ho : /32 = 0, where /32 is a 

k2 x 1 vector with k = fci + k2. We set the true value of j3 at /3 = {f3x, /32) = (f31, 0) 

with (5X = (1.5, 2.5) to generate the binary response y;. The summary of simulation 

result is provided for (kx, k2) = {(2, 3), (2, 5), (2, 7)} and a = 0.05. 

Under the null hypothesis, the number of simulations was varied initially and it 

was determined that 2000 of each set of observations were adequate, since a further 

increase in the number of replications did not significantly change the result. We 

define the parameter A* = ||/3 — / 3 ^ | | 2 , where /3^ = (/31; 0)' and || • || is the Euclidian 

norm. In order to investigate the behavior of the estimators for A* > 0, further 

samples were generated from those distributions under local alternative hypotheses 

(i.e., for different A* between 0 and 4). 

The performance of an estimator of /3 will be appraised using the mean squared 

error (MSE) criterion. All computations were conducted using the R statistical sys-
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Table 3.1: Simulated relative efficiencies of RE, PT, SE and PSE with respect to 0 
for n = 100, k2 = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 
4.0 

RE 

2.154 
1.947 
1.890 
1.743 
1.759 
1.650 
1.570 
1.065 
0.940 

PT 

1.318 
1.296 
1.113 
1.026 
0.945 
0.950 
0.962 
0.999 
0.999 

SE 

1.160 
1.154 
1.116 
1.098 
1.075 
1.070 
1.062 
1.049 
1.019 

PSE 

1.194 
1.175 
1.133 
1.106 
1.083 
1.070 
1.062 
1.049 
1.019 

tem (Ihaka and Gentleman, 1996). We have numerically calculated the relative MSE 

oi (3, 0 , 0 , and 0 with respect to 0 by simulation. The simulated relative effi­

ciency (SRE) of the estimator /30 to the maximum likelihood estimator 0 is defined 

by 

SRE(/3 •p ] - uswr 
keeping in mind that the amount a SRE is larger than one indicates the degree of 

superiority of the estimator /3° over 0. 

Our theoretical results were applied to various simulated data sets. Tables 3.1 

to 3.9 and Figures 3.1 to 3.3 provide the estimated relative efficiency for various 

estimators over 0 for n = 100, 150 and 200. The results can be summarized as 

follows: 

(i) Simulation studies show that maximum efficiency of all the estimators relative 

to 0 occurred at A — 0. It is apparent from these tables that /3 dominates 

the other three estimators near the null hypothesis. On the contrary, as the 

hypothesis error i.e., A* deviates from zero, the risk of 0 increases and becomes 

unbounded while the risk of shrinkage and positive shrinkage estimators remain 

below the risk of 0 and merge with it as A* —* oo. It can be safely concluded 
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Table 3.2: Simulated relative efficiencies of RE, PT, SE and PSE with respect to J3 
for n = 150, k2 = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 
4.0 

RE 

1.727 
1.749 
1.597 
1.433 
1.123 
0.913 
0.704 
0.373 
0.258 

PT 

1.340 
1.265 
1.026 
0.929 
0.957 
0.988 
0.999 
1.000 
1.000 

SE 

1.153 
1.147 
1.105 
1.069 
1.053 
1.046 
1.042 
1.032 
1.024 

PSE 

1.201 
1.171 
1.115 
1.071 
1.053 
1.046 
1.042 
1.032 
1.024 

Table 3.3: Simulated relative efficiencies of RE, PT, SE and PSE with respect to J3 
for n = 200, k2 = 3. 

A* 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 
4.0 

RE 
1.773 
1.543 
1.292 
1.046 
0.809 
0.655 
0.531 
0.246 
0.154 

PT 
1.369 
1.181 
0.950 
0.887 
0.942 
0.981 
0.996 
1.000 
1.000 

SE 

1.171 
1.115 
1.052 
1.029 
1.025 
1.025 
1.026 
1.025 
1.021 

PSE 

1.218 
1.153 
1.073 
1.033 
1.026 
1.025 
1.026 
1.025 
1.021 
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Table 3.6: Simulated relative efficiencies of RE, PT, SE and PSE with respect to j3 
for n = 200, k2 = 5. 

A* 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 
4.0 

RE 
2.260 
1.960 
1.659 
1.360 
1.038 
0.846 
0.700 
0.325 
0.202 

PT 

1.261 
1.159 
0.993 
0.961 
0.978 
0.996 
0.998 
1.000 
1.000 

SE 

1.485 
1.391 
1.232 
1.163 
1.123 
1.107 
1.100 
1.083 
1.065 

PSE 
1.574 
1.447 
1.272 
1.176 
1.124 
1.107 
1.100 
1.083 
1.065 

that the risk of (3 explodes as A* increases, but it has less impact on shrinkage 

and positive shrinkage estimators, which is consistent with the theory. 

(ii) Near the null hypothesis, the risk of the pretest estimator is less than the un­

restricted maximum likelihood estimator which keeps increasing, crosses the 

risk of unrestricted maximum likelihood estimator, reaches a maximum, then 

decreases monotonically to the risk of unrestricted maximum likelihood estima­

tor. Further, the SRE of this estimator is higher than that of the shrinkage 

and positive shrinkage estimator near the null hypothesis when k2 = 3 and the 

opposite conclusion holds for larger values of k2. Finally, we find that the per­

formance of this estimator heavily depends on the correctness of the restrictions 

on the parameters. 

(iii) If the number of variables k2 = 3, and the sample sizes are between 100 and 200, 

the SRE of pretest, shrinkage and positive shrinkage estimators vary from 1.16 to 

1.37 when the restriction holds, and they increase as the number of variables k2 

increases which is consistent with the theoretical results. For example, for k2 = 7 



Shrinkage, Pretest and PH type estimators 108 

Table 3.7: Simulated relative efficiencies of RE, PT, SE and PSE with respect to /3 
for n = 100, k2 = 7. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 
4.0 

RE 

4.045 
3.373 
3.145 
2.726 
2.123 
1.811 
1.393 
0.856 
0.612 

PT 

1.430 
1.362 
1.209 
1.069 
0.994 
0.981 
0.992 
1.000 
1.000 

SE 

1.940 
1.899 
1.777 
1.654 
1.511 
1.430 
1.353 
1.163 
1.088 

PSE 

2.029 
1.9474 
1.817 
1.686 
1.519 
1.431 
1.353 
1.163 
1.088 

Table 3.8: Simulated relative efficiencies of RE, PT, SE and PSE with respect to J3 
for n = 150, k2 = 7. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 
4.0 

RE 

3.184 
3.020 
3.061 
2.680 
2.058 
1.716 
1.352 
0.739 
0.572 

PT 

1.447 
1.421 
1.124 
0.990 
0.983 
0.993 
0.997 
1.000 
1.000 

SE 

1.822 
1.839 
1.668 
1.481 
1.388 
1.312 
1.268 
1.177 
1.118 

PSE 

1.926 
1.912 
1.709 
1.488 
1.391 
1.313 
1.268 
1.177 
1.118 
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a. n = 100, k2 = 3 

a: 

— Unrestricted 
— Restricted 

Pretest 
Shrinkage 

— Positive shrinkage 

b. n = 100, k2 = 5 

c. n = 100, k2 = 7 

a: 
<n 

Figure 3.1: Simulated relative efficiency of the estimators as a function of non-
centrality parameter A* for different k2-
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a. n = 150, k2 = 3 

LLI 
^ O , 

— Unrestricted 
— Restricted 
— Pretest 
— Shrinkage 

Positive shrinkage 

d 

b. n = 150, k2 = 5 

c. n = 150, k2 = 7 

in 

Figure 3.2: Simulated relative efficiency of the estimators as a function of non-
centrality parameter A* for different k2. 
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a. n = 200, k2 = 3 

HI 
£ o 
c/> ~L 

Unrestricted 
Restricted 
Pretest 
Shrinkage 
Positive shrinkage 

b. n = 200 , k2 = 5 

c. n = 200 , k2 = 7 

LU 

03 

"» -

CO -

CM -

O -

s 

1 

1 *T. 

1 

• • » ^ 

1 
~ 

1 1 

Figure 3.3: Simulated relative efficiency of the estimators as a function of non-
centrality parameter A* for different k2. 
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Table 3.9: Simulated relative efficiencies of RE, PT, SE and PSE with respect to J3 
for n = 200, k2 = 7. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
2.0 
4.0 

RE 

2.995 
2.547 
2.143 
1.770 
1.339 
1.127 
0.904 
0.423 
0.257 

PT 

1.494 
1.367 
1.086 
0.975 
0.964 
0.988 
0.994 
1.000 
1.000 

SE 

1.829 
1.705 
1.492 
1.358 
1.272 
1.225 
1.198 
1.146 
1.110 

PSE 
1.954 
1.792 
1.542 
1.376 
1.275 
1.225 
1.198 
1.146 
1.110 

and n = 150, the SREs of these estimators are 1.44, 1.82 and 1.93 respectively, 

indicating the outstanding performances of the proposed estimators. On the 

other hand, the SRE falls sharply as A* moves away from zero, and converges 

to one irrespective of k\, k2 and sample size n. Figures 3.1 to 3.3 exhibit that 

all the estimators dominate f3 for small values of A* and shrinkage and positive 

shrinkage estimators work better in case of large k2. 

3.7.1 PH versus Shrinkage and Pretest Estimator 

Simulation results for PH estimator are summarized in Tables 3.10 to 3.12 for A* = 0. 

These tables shows the relative efficiencies of PH, shrinkage and pretest estimators 

with respect to unrestricted maximum likelihood estimator for n — 100, 150 and 

200, when 2 out of 9 coefficients are not zero. We used the path-finding algorithm 

of Park and Hastie (2007) to estimate the entire solution path. We used a 10-fold 

cross validation procedure to choose the regularization parameter A that achieves the 

lowest BIC score. For comparison, we only consider here for A* = 0 because the PH 

estimator does not take advantage of the fact that the parameter /3 lies in a subspace 

(3.1) and is at a disadvantage when A* > 0. We see from tables that when k2 — 3 



Shrinkage, Pretest and PH type estimators 113 

and 5, the performance of the PH estimator is better than the shrinkage and pretest 

estimation methods. On the other hand, shrinkage performs better when k2 is large. 

Table 3.10: Simulated relative efficiencies of PH, PT, SE and PSE with respect to 0 
when A* = 0 and n = 100 

Method 
PH 
PT 
SE 

PSE 

n = 100 

k2 — 3 k2 = 5 k2 — 7 
1.903 2.184 1.598 
1.318 1.320 1.430 
1.160 1.463 1.940 
1.194 1.505 2.029 

Table 3.11: Simulated relative efficiencies of PH, PT, SE and PSE with respect to (3 
when A* = 0 and n — 150 

Method 
PH 
PT 
SE 

PSE 

n = 150 
k2 — 3 k2 = 5 k2 = 7 
1.637 1.709 1.476 
1.340 1.268 1.447 
1.153 1.483 1.821 
1.201 1.577 1.927 

3.8 Application: South African heart disease data 

The South African heart disease data was analyzed in Park and Hastie (2007) and we 

apply the proposed estimation strategies to this data set. This data set was collected 

on males in a heart disease high-risk region of western Cape, South Africa. A total of 

462 individuals are included in this data set. The objective of this study is to predict 

CHD=1 or 0 i.e., coronary heart disease present or absent, from the set of covariates 

listed from below: 

sbp: systolic blood pressure 



Shrinkage, Pretest and PH type estimators 114 

Table 3.12: Simulated relative efficiencies of PH, PT, SE and PSE with respect to 0 
when A* = 0 and n = 200 

Method 
PH 
PT 
SE 

PSE 

n = 200 

k2 = 3 k2 = 5 k2 = 7 
1.457 1.486 1.454 
1.369 1.261 1.494 
1.171 1.485 1.829 
1.218 1.574 1.954 

tobacco: cumulative tobacco (kg) 

ldl: low density lipoprotein cholesterol 

adiposity: Adipositylevel of fat tissue 

famhist: family history of heart disease (Present, Absent) 

typea: type-A behavior 

obesity: Obesity level 

alcohol: current alcohol intake level 

age: age in years at onset disease 

chd: response, coronary heart disease 

Consider the full model 

In Pi 
I-Pi 

= /?o + /?i sbpj + fa tobaccoj + /?3 ldl, + (3A adiposity^ 

+ /?5 famhistj + /36 typea^ + /37 obesity^ + /?8 alcohol, + /39 age,. 

Asymptotic maximum likelihood theory shows that cumulative tobacco, low den­

sity lipoprotein cholesterol, family history of heart disease, type-A behavior and age 

are the most important risk factors for coronary heart disease and the other four may 

not be risk factors for this disease. We may adopt these four factors as NSI and use 

the proposed estimation strategies to evaluate the effect of the other five factors on 

coronary heart disease. 
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Table 3.13: Estimate (first row), standard error (second row) and quadratic bias (third 
row) of tobacco (ft), ldl (ft), famhist (/3s), typea (ft) and age (ft) on coronary heart 
disease 

Estimators 

UE 

RE 

PT 

SE 

PSE 

PH 

ft 
0.120 
0.059 
0.005 
0.113 
0.053 
0.004 
0.115 
0.054 
0.004 
0.117 
0.057 
0.005 
0.117 
0.057 
0.005 
0.112 
0.057 
0.004 

ft 
0.186 
0.141 
0.020 
0.178 
0.130 
0.017 
0.182 
0.132 
0.018 
0.183 
0.136 
0.019 
0.184 
0.136 
0.019 
0.173 
0.132 
0.017 

ft 
0.390 
0.482 
0.419 
0.393 
0.441 
0.478 
0.391 
0.469 
0.496 
0.390 
0.469 
0.505 
0.392 
0.468 
0.503 
0.368 
0.433 
0.498 

ft 
0.033 
0.024 
0.001 
0.031 
0.023 
0.001 
0.032 
0.023 
0.001 
0.033 
0.023 
0.001 
0.032 
0.023 
0.001 
0.029 
0.022 
0.001 

ft 
0.042 
0.024 
0.001 
0.050 
0.019 
0.000 
0.048 
0.022 
0.000 
0.045 
0.022 
0.000 
0.045 
0.022 
0.000 
0.042 
0.022 
0.000 

SRE 

1.0000 

1.123 

1.069 

1.039 

1.044 

1.101 

Now consider the hypothesis H0 : (ft, ft, ft, ft) = (0,0, 0,0). Under this hypoth­

esis, the reduced model becomes 

In -—-— = ft + ft tobacco; + ft ldl; + ft famhist; + ft typea, + ft age. 

We draw 1000 case-resampling bootstrap samples of size n — 150 to evaluate the 

point estimates, standard errors, and relative efficiency of the proposed estimators. 

These results are reported in Table 3.13. It seems that the pretest, shrinkage and 

positive shrinkage estimators are superior to maximum likelihood estimator, which is 

strongly in agreement with our theoretical as well as simulation results. On the other 

hand, the results show that the PH estimator performs better than the shrinkage 
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and pretest estimator because of small number of k2. Interestingly, the restricted 

estimator does better than all the estimators under the null hypothesis. 

3.9 Concluding Remarks 

The objective of this chapter is to compare the performance of the shrinkage and pos­

itive shrinkage estimators, a pretest estimator, a Park and Hastie estimator and the 

maximum likelihood estimators in the context of generalized linear models, when the 

parameters lie in a subspace (3.1). We examined the risk properties of the estimators 

in terms of ADR and Monte Carlo simulation study. It is concluded both theoretically 

and computationally that the risk improvement of the restricted maximum likelihood 

estimator is substantial at and near the null hypothesis and the improvement keeps 

diminishing as A* moves further and further away from zero. The Park and Hastie 

estimator is competitive for a large number of predictors in the model with only a few 

of them being non-informative i.e., k2 is small. On the other hand, the shrinkage and 

positive shrinkage estimators with appropriate data based weights perform well when 

&2 is large. In fact, the shrinkage and positive shrinkage estimator outperforms the 

unrestricted maximum likelihood estimator uniformly in the entire parameter space 

for all &2- In contrast, the performance of the pretest test estimator heavily depends 

on the quality of the NSI. The risk of the pretest estimator is smaller than that of the 

unrestricted maximum likelihood estimator (3 for small A*, increases, crosses the risk 

of 0, attains a maximum, then decreases monotonically to the risk of 0 as A* —> oo. 



Chapter 4 

Shrinkage, Pretest and Absolute 

Penalty Estimators in Partially 

Linear Models 

4.1 Introduction 

We consider the partially linear regression model introduced by Engle et al. (1986) 

to study the effect of weather on electricity demand, in which they assumed the 

relationship between temperature and electricity usage was unknown while other re­

lated factors such as income and price were parameterized linearly. A partially linear 

regression model is defined as 

Vi = KiP + g{U) + et, i = l , . . . , n (4.1) 

where j/,'s are responses, x, = (xa,... ,xip)' and i, € [0,1] are design points, (3 — 

(/3i,..., j3p)' is an unknown parameter vector, g(-) is an unknown real-valued function 

defined on [0,1], the e '̂s are unobservable random errors. 

We consider experiments where the vector of coefficients (3 in the linear part 

117 
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of (4.1) can be partitioned as (fi'^fl1^ where (31 is the coefficient vector for main 

effects (e.g. treatment effects, genetic effects) and (32 is a vector for "nuisance" 

effects (e.g. age, laboratory). In this situation, inference about /31 may benefit 

from moving the least squares estimate for the full model in the direction of the 

least squares estimate without the nuisance variables (Steinian shrinkage) or from 

dropping the nuisance variables if there is evidence that they do not provide useful 

information (pretesting). In this framework, the Stein-type or shrinkage estimator 

combines estimation problems by shrinking a base estimator to a plausible alternative 

estimator. Our shrinkage estimate for the partially linear model is of the form 

& = *& +{!-*)&, 7r€(0,l). 

where 01 and /3j are the semiparametric estimators of /3 : for the model with and 

without the /32 components, respectively, and ir is a shrinkage factor that shrinks 

the full model estimates 0Y towards the restricted model estimates J31. Bickel (1984) 

showed that, in parametric models, such estimates are asymptotically optimal in a 

minimax sense and conjectured the same result for semiparametric models. When 

7r is an indicator function, /3j is a pretest estimator. For a particular data-based 

7r € (0,1), we show in our semiparametric model that /31 asymptotically improves on 

the unrestricted least squares estimates 0X and on the restricted model estimates 01. 

Burman and Chaudhuri (1992) considered procedures that shrink a nonparametric 

estimate /i(x) of /x(x), in the model Y = /i(x) + e, in the direction of a paramet­

ric estimate g(/3, x) of fi(x) and gave conditions under which this Steinian estimate 

asymptotically improves on /i(x) and g(/3, x). 

The rest of this chapter is organized as following. The statistical model and 

estimators are discussed in Section 4.2. The proposed pretest estimator, shrinkage and 

positive shrinkage estimators, LASSO and absolute penalty estimator are presented in 

Section 4.3. Some necessary assumptions and asymptotic properties of the proposed 

estimators are investigated in Section 4.4. The asymptotic bias and risk performance 
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of the proposed estimators are presented in Section 4.5, and results of a simulation 

study that includes a comparison with a semiparametric extension of the LASSO 

are given in Section 4.6. Section 4.7 presents a conclusion and some discussion. 

Throughout this chapter, the boldface symbols represent vectors/matrices. 

4.2 Statistical Model and Estimators 

Throughout this chapter we will assume that 1„ = (1 , . . . ,1) ' is not in the space 

spanned by the column vectors of X = (x l 5 . . . ,x„)'. Consequently, according to 

Chen (1988), under regularity conditions on g, model (4.1) is identifiable. In addition, 

we assume the design points x, and ti are fixed for i = 1, • • • , n, and we introduce a 

restriction on the parameters in model (4.1), 

2/i = x-/3 + g(ti) + Si subject to R/3 = r, (4.2) 

where R is an s x p restriction matrix, and r is an s x 1 vector of constants. 

In many applications, r = 0, that is, some of the coefficients are set to zero, 

effectively removing the corresponding terms from the model. We let X = [Xi,X2], 

where Xi is an n x p1 submatrix containing the regressors of interest and X2 is 

an n x p2 submatrix that may or may not be relevant in the analysis of the main 

regressors. Accordingly, let f3 = (/3j,/32) be the vector of parameters, where f31 and 

/32 have dimensions pi and p2 respectively with pi + p2 = p, Pi > 0 for i = 1, 2. We 

are essentially interested in the estimation of f51 when it is suspected that (32 is close 

to 0. Thus, we consider the restriction R/3 = 0 with R = [0,1], where 0 is a p2 x px 

matrix of zeroes and I is the identity matrix. Our relevant hypothesis is 

H0:/32 = 0. 

Let /3 = O&i,^) ^ e a semiparametric least squares estimator of /3 under model 
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(4.1) as defined previously. Then we call 0X the unrestricted semiparametric least 

squares estimator of f3x. If f32 = 0, then we have the restricted linear regression 

model 

Vi = xap[o) + • • • + Xintfg + 9
{°XU) + ef\ i = 1 , . . . , n, (4.3) 

We let (3X denotes the restricted semiparametric least squares estimator of (3X as 

defined previously. Generally speaking, /3j performs better than J3X when /32 is close 

to 0. But for /32 away from the origin 0, /3X may be considerably biased, inefficient, 

and even possibly inconsistent. The estimate J3X, however, is consistent for a departure 

of /32 from 0. Thus, we have two extreme estimators J3X and fix suited best for the 

partially linear regression models (4.1) and (4.3), respectively. We attempt to strike 

a compromise between f3x and (5X so that the compromise behaves reasonably well 

relative to /3X as well as (3X. We consider three estimators for the target {3X of the 

parametric component in the setting of the semiparametric regression model in (4.1). 

The first estimator is the pretest test semiparametric least squares estimator, denote 

by f3x . This estimator is a combination of f3x and (3X via the indicator function 

I(Tn < Tn:a) where Tn is an appropriate test-function to test the null hypothesis 

H0 : P2 = ° v s Ha • P2 ^ 0. Further, 

Tn,a gives an a-level critical value using the 

distribution of T„. The pretest estimator chooses 0X or (3X according as H0 is accepted 

or rejected. However, it is important to remember that our primary objective is to find 

an efficient estimator of (3X. Thus deciding against Ha does not necessarily imply that 

fi2 — 0) because we have no control of the probability of the type I error. Instead, we 

think we may get a better estimator of (3X by setting /32 = 0. Thus Tn>Q is a threshold 

that determines a hard thresholding rule, and a is a tuning parameter. 

The other two estimators are the James-Stein and positive James-Stein estimators, 

known as the shrinkage and positive shrinkage estimators respectively. The shrinkage 
- s 

estimator /3X is a smooth function of the test statistic Tn. 
In this chapter we confine ourselves to the partial kernel smoothing estimator of /3, 

which attains the usual parametric convergence rate n~1//2 without undersmoothing 
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the nonparametric component <?(•), (Speckman (1988)). Assume that {x't,ti,yi;i = 

1, • • • , n} satisfy model (4.1). If j3 is known to be the true parameter, then by 

Eei = 0 we have g(ti) — E{y^ — x /̂3) for i = 1, • • • ,n. Hence, a natural nonparametric 

estimator of g(-) given (3 is 

n 

t = l 

with the weight functions Wni(-) defined in Assumption 3 of Section 4.4 

(3, we use 

h = argmin SS(0) = ( X ' X ^ X ' Y , 

with 
n n 

SS((3) = £ > - x ^ - 9(M, 0)? = X > - m2, 

where Y = (&, • • • ,j/n)', X = (xi,--- ,x„)', & = & - Y?j=\ ̂ nj{U)Vj and x* = 
x* — 5Z?=i Wnj(*t)xj for i = 1, • • • , n. The unrestricted estimator 0X of /3X is 

& = (XiQ^XO-^iQ^Y, 

where X\ is composed of the first p\ row vectors of X, X2 is composed of the last p% 

row vectors of X and Q x = I — X ^ X ^ X ^ ) - 1 ^ . Similar to the construction of J3, 

for model (4.2), the restricted estimator 0X of f31 has the form 

& = ( X i X O - ^ i Y . 

4.3 Estimation Strategies 

4.3.1 T h e Pretes t Est imator 

Bancroft (1944) introduced the pretest test estimation procedure as one basis for 

To estimate 

(4.4) 
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dealing with model-estimator uncertainty [see Ahmed et al. (2006a)]. Let 

•n 

where 
., n n 

with $„(•) = Er=i W„i(-)(»i-Xi3) and Q ^ = I - X i C X i X i ) - 1 ^ ; . We shall later see 

that the statistic Tn converges to a chi-square distribution with p2 degrees of freedom 
~ PT 

for large n. Thus, we can choose an a-level critical value Xp2)Q and define /31 as 

follows: 
~ p T ~ ~ 
(3, =f31-(P1-/31)I(Tn<x2

P2<a), P2>1-
- PT ~ 

Thus, f}x chooses /31 when H0 is tenable, otherwise /3X is chosen. Obviously, the 
-PT 

dispersion of fi1 is now more controlled depending on the size a of the test, but 

the pretest test rule makes extreme choices of either /3X or J31. It is well documented 

in the literature that pretest test procedures are not admissible for many models, 

even though they may improve on unrestricted procedures. Thus, we consider an­

other basis for resolving model-estimator uncertainty. Stein (1956) demonstrated the 

inadmissibility of the maximum likelihood estimator when estimating a multivariate 

mean vector under quadratic loss. Making use of Stein-type estimators, Sclove et 

al. (1972) demonstrated the nonoptimality of the pretest test estimator in certain 

multi-parametric situations. 

4.3.2 The Shrinkage and Positive Shrinkage Est imators 

-s 
The shrinkage semiparametric estimator /31 is defined by 

K = PI- 0i - 3i)(P2 - 2)T-1, V2 > 3. 
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The estimator fix is in the general form of the Stein-rule family of estimators, where 

shrinkage of the base estimator is towards the alternative simpler estimator (31 • The 

estimator is pulled toward the alternative estimator when the variance of the least 

squares estimator is large, and pulled toward the general least squares estimator when 

the alternative estimator has high variance, high bias, or is more highly correlated with 
~ S ~ PT 

the least squares estimator. It should be noted that 0X is the smooth version of $x . 
~ PT ~ S 

Extending the language of Donoho and Johnstone (1998), J3l and 0X are based on 
~ s 

hard and smooth thresholds, respectively. However, f3r is not a convex combination 

0! and 01. We also consider the so called positive-rule shrinkage semiparametric 

estimator pl : 

" S 
For fixed models (not depending on n), f31 adapts to the magnitude of Tn and 

tends to 3i as Tn tends to infinity and to /3X as Tn —> p2 — 2. Similar conclusions hold 
» PT 

for [3-L . In the next section we will consider the intermediate case where Tn tends in 

probability to a constant greater than p2 — 2. That is, we will consider local Pitman 

contiguous models where /32 depends on n and tends to the zero vector as n —•> oo. 

Such sequences of models have been considered in the estimation context by Bickel 

(1984) and Claeskens and Hjort (2003), among others. 

Remark: Note that the Steinian strategy is similar in spirit to the model-

averaging procedures, Bayesian or otherwise, see Bickel (1984), Hoeting et al. (1999), 

Hoeting et al. (2002) and Burnham and Anderson (2002). 

4.3.3 LASSO and Absolute Penalty Estimator 

The LASSO originally proposed for linear regression models, has become a popular 

model selection procedure. It is a constrained version of ordinary least squares denned 
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as the solution to 

n 

(3T = min(y - x'/3)'(y - x'/3) subject to V \j3j\ < r, 
(3 *—' 

where r is a tuning parameter. If r is large enough, this just gives the usual least 

squares estimates. However, smaller values of r produce shrunken estimates /3, of­

ten with many components equal to zero. This procedure gives shrinkage, variable 

deletion and good prediction accuracy as well as effectively balancing variance and 

bias. Traditionally, the LASSO is computed by quadratic programming techniques, 

and r is selected using cross-validation (CV) and generalized cross-validation (GCV). 

Note that the output of the LASSO resembles shrinkage and pretest methods by 

both shrinking and deleting coefficients. However, it is different from the pretest 

and shrinkage procedures of Section 3.1 in that it treats all the covariate coefficients 

equally. The LASSO does not single out the nuisance covariates for special scrutiny 

as to their usefulness in estimating main effect coefficients. 

The LASSO was first introduced for linear models. We propose the absolute 

penalty type estimator (APE) for partially linear models, which is an extension of 

the LASSO method for linear models. This estimator can be obtained by applying 

the LASSO method to the residuals (x^, y,), i — 1, 2, • • • . n, defined in Section 4.2. 

4.4 First-order Asymptotic Results 

The following assumptions are required to derive the main results. These assump­

tions are quite general and can be easily satisfied (see Remarks 4.1-4.3 following the 

assumptions). 

Assumption 1. There exist bounded functions hs(-) over [0,1], s = 1, • • • ,p, such 

that 

xis = hs(U) + uis, i = 1, • • • ,n, s = 1, • • • ,p, (4.5) 
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where Uj = (un, • • • , UiP)' are real vectors satisfying 

lim i=iUlkU» = jJ for fc = l , - - - ,p , j = l , - - - , p , (4.6) 
n—too n 

and the matrix B = (by) is nonsingular. Moreover, for any permutation (j1 ; • • • ,jn) 

of (!,••• , n), as n —> oo, 

max V" Wni(i,-)uj 
l<j<n *•—' 

o(n-e), (4.7) 

where || • || denotes the Euclidean norm and Wni(-) satisfies Assumption 3. 

Assumption 2. The functions g(-) and hs(-) satisfy the Lipschitz condition of order 

1 on [0,1] for s = 1, • • • ,p. 

Assumption 3. The probability weight functions Wnj(-) satisfy 

(i) maxi<j<„ YTj=i Wni(tj) = 0(1), 

(ii) maxi<ij<n W„i(ij) = 0(n - 2 / 3 ) , 

(hi) maxi<j<n YZ=i Wni{tj)I{\U - tj\ > cn) = 0{dn), 

where / is the indicator function, cn satisfies lim supn_>00 nc?n < oo, and dn satisfies 

lim sup^oo ndl < oo. 

Remark 4.1. The above Uy behave like zero mean, uncorrelated random variables 

and hs(ti) is the regression of xis on tt. Specifically, suppose that the design points 

(xj,tj) are i.i.d. random variables, and let hs(ti) = E(xis\ti) and ha{U) 

with £[ujU^] = B. Then by the law of large numbers, (4.6) holds with probability 

1 and (4.7) holds by Lemma 1 in Shi and Lau (2000). Assumptions (4.5) and (4.6) 

have been used in Gao (1995a), Gao (1995b), Gao (1997), Liang and Hardle (1999), 

among others, and (4.7) in Shi and Lau (2000). 

Remark 4.2. Assumption 2 is very mild. The usual polynomial and trigonometric 

functions satisfy this assumption. 

Remark 4.3. Under regular conditions, the Nadaraya-Watson kernel weights, Priest­

ley and Chao kernel weights, locally linear weights and Gasser-Muller kernel weights 
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satisfy Assumption 3. For example, if we take the p.d.f. of U[—l, 1] as the kernel 

function, namely, 

# ( t ) = /[-i,i](i)/2, 

with ti = i/n, and the bandwidth equals to en -1/3, where c is a constant, then the 

Priestley and Chao kernel weights, which satisfies Assumption 3, are 

w-{t) - sjVii*--') («)• 

Lemma 1. (i) Suppose that Assumptions 2 and 3 (iii) hold. Then as n —> oo, 

max max 
0<s<pl<i<n 

Gs^-Y^Wni^Gsitj 
3=1 

= 0(Cn) + 0(dn), 

where G0(-) = g(-) and Gs{-) = ha(-), s = l,...,p. 

(ii) Suppose that Assumptions 1 to 3 hold. Then as n —̂  oo, 

max max 
l<s<p\<i<n 

ks{U) - hs{ti)\ = 0{cn) + 0(dn) + o(n_5] 

where hns{U) = YIj=i Wnj(ti)xjs. 

Lemma 2. For any sequence of independent variables {Vfc, k = 1 , . . . , n} with mean 

zero and finite (2+<5)th moment, and for a set of positive numbers {a^, k, i = 1 , . . . , n} 

such that maxi^fc^ \a,ki\ < n~Sl for some 0 < s\ < 1 and YTj=k a^i — 0(nS2) for some 

s2 > max{0,2/(2 + 5 ) - S i } , 

max 
Ki<n 

/ ,, afeiVjt 

fc=i 

O [n 2 Inn J a.s. 

The proofs of Lemmas 1 and 2 can be found in Gao (1995a) and Hardle et al. 

(2000) respectively. 

Lemma 3. Suppose that Assumptions 1 to 3 hold, and the e,- are independent with 
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mean zero, variance <x2 and /i3i = Ee? being uniformly bounded. Then we have that 

y/n{Pn-p)Z>N(Q,o2B-1) and max \gn{U) - g(ti)\ = Op (n"5 Inn) , 

where gn(t) = Y27=i ^m{t){Vi — xi/3n) and B is defined in Assumption 1. 

Proof. The proof of the asymptotic normality of 0n is similar to that of Theorem 

1 (i) of Gao (1995a). We omit the details. According to the definition of gn{U), we 

have 

max \gn{U) - g(ti)\ < max 
Ki<n l<i<n 

f^Wni&WP - Pn) 
3=1 

+ max 
Ki<n 

+ max 
Ki<n 

Y^ Wnj(ti)ej 
3=1 

4 /i + /2 + /3. 

By Assumption 1(a), I\ can be decomposed as 

L < max 
Ki<n 

+ max 
Ki<n 

p n 

s = l 3 = 1 

p n 

8=1 J = l 

= hi + h2, 

where f3ns and (5S are the sth components of J3n and f3 respectively. It is easy to see 

that 

In < V max 
~~ 1<«<P 

Ps-Pn max 
l< j<n 3=1 

oP[n sj , 

by Assumption 1 (c). Assumption 3 (i) and the root-n consistency of /3. Similarly, 

using Lemma 1 (ii), Ii2 — o(n_1/'6""1/2). Moreover, by Lemmas 1 (i) and 2, we have 

I2 = O (n 3 j , and I3 = 0p(n 3 In n J . 
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Lemma 4. Suppose that Assumptions 1 to 3 hold. Then n _ 1X'X = B + 0(n - 2 / 3 ) . 

The proof of Lemma 4 can be found in Gao (1995a). 

Lemma 5. Suppose that Assumptions 1 to 3 hold. Then 

ol = a2+0p ( n - s ) , ft = {I,B^B12)0n+Oj, ( V " ) , and Tn = n<72#,B22.i,32+op(l), 

B J I B12 
where B — | | with B defined in Assumption 1 and B22.1 = B22 

B2i B22 

B2iB^i B12. 
Moreover, we have 

lim P{Tn < x\Kn} = * w ( x ; A) where A - (u/B22.iu;)o--2. 
n—»oo 

Proof. According to the definition of <r2, we have 

2 n 2 n 2 n 

+ -J2d<(P - K) + -J2e^(ti) - 9n(U)) + - ]>>;(/3 - Pn)(g(U) - gn(U)) 

bl 

i= i «=i i= i 

^ /! + ... + /6. 

It is easy to see Ii — a2 + Op(n~1/2). Based on Lemmas 1, 3, 4 and Assumptions 1 

to 3, we can show that 7j = op(n~ll2) for i = 2,3,4 and 6. In addition, I4 can be 

decomposed as 

2 " " , x 2 A „ - 2 " 
J4 = - E E ^ M ^ ) ^ + - E £ ' X ^ - «̂) + - E £<(5(*<) - 9n(U)). 

s=l j = l ^=l 1=1 

By Lemma 2 of Gao (1995b), 

n n 

E E wnj(U)£i£j = op (n*) . 
i= i j = i 
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This implies I4 — op(n
 1 /2) . Therefore, <r2 — a2 + Op(n

 1//2). Moreover, by combining 

Lemmas 3 and 4, it is easy to prove the other results. We omit the details. 

Proof 

Using Lemma 5, we conclude that \fn(J3l — /3j) and Tn are asymptotically inde­

pendent under Kn. This implies that 

Jim P{yfr(0i ~Pi) < x,Tn < x2
P2,a\Kn} = $Pl(x+Br1

1B12w;0,a2Br1
1)*P2(x^ ;Q;A) 

By combining Lemmas 3 and 5 

lim P { V % - ft) < x,T„ > x2
P2,a\Kn\ 

= / ^ ( x - D ^ D ^ z ; 0,a2B^2)d%2(z;0,a2D22), 

where 

D - B - 1 - J D n D l 2 J and E{u>) = {z : a~2(z + a;)'B22.1(z + u) > x ^ J -

So the asymptotic cumulative distribution function of y/n((31 — (3-^) under {Kn} is 

Fw(x) - $ p > + B ^ B 1 2 W ; 0 , a 2 B r / ) ^ 2 ( x ; L ; A ) 

+ / $P l (x - D12D22z; 0, a 2 D n . 2 ) ^ P 2 (z; 0, cx2D22) 

and under {Kn}, 

(D2U + U;)'B22.l(D2U + U>) 

as n tends to infinity, where U ~ Np(0, <r2B x). Now, using Lemma 3, the proofs of 

Theorems 4.1 through 4.3 follow from direct computation and the definitions of the 
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estimators. 

4.5 Asymptotic Bias and Risk Performance 

In this section, we derive expressions for asymptotic quadratic biases and quadratic 

risks of the estimators considered in Section 4.3. Our main concern is the performance 

of the five estimators when 02 is close to the null vector, and we consider a sequence 

of local alternatives {Kn} given by 

Kn • /32(n ) = n - lw, w ± 0 fixed. (4.8) 

The objective is to estimate the unknown parameter vectors by some estimator 8 when 

performance is evaluated by squared error loss. To study the asymptotic quadratic 
~ ~ PT ~ S ~ S+ 

risks of /3 l5 /3 l5 (31 , f31 and 0l , we define a quadratic loss function using a positive 

definite matrix (p.d.m.) Q, by, 

£(8,P1) = n(8-f31)
,Q(8-(31), 

where 6 can be any one of J31: /31, $l , (3-y and /3X . Now we assume that, for the 

estimator S of f3l, the asymptotic distribution function of 8 under {Kn} exists and 

is given by 

F(x) = lim P{yfti{8 - pt) < x\Kn}, 
n—*oo 

where F(x) is nondegenerate. Then the asymptotic distributional risk (ADR) of 8 is 

defined as 

R(8, Q) = tr (Q / xxTdF(x) ) = tr(QV), 

where V is the dispersion matrix for the distribution F(x). 

Note that, under nonlocal (fixed) alternatives, all the estimators are asymptoti­

cally equivalent to /3 l5 while J3X has unbounded risk. To obtain the non-degenerate 
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asymptotic distribution F, we consider the local Pitman alternatives (4.8). 

First, we present the expression for the asymptotic distributional bias (ADB) of 

the proposed estimators. The ADB of an estimator S is defined as 

ADB(<$) = lim E in*{8 - ft)) . 
n—>oo I J 

For the next theorem, we assume that tyv(x;A) is the cumulative distribution 

function of the noncentral chi-square distribution with noncentrality parameter A 

with v degrees of freedom. Further, 

/•oo 

E(x;
2i(A))= / x-*d*v(x;A). 

Jo 

Theorem 4.5.1. Suppose that Assumptions 1 to 3 defined in Section 4-4 hold and 

that the errors e$ Are independent with mean zero, the same variance o2 and that 

fj,3i = Ee\ is uniformly bounded. Then, under {Kn}, the ADBs of the estimators /31; 

~ ~PT ~s ~s+ 

Pi, Pi , p1 and p1 are respectively 

ADB0J = 0 , 

ADBiPi) = -BrfB12e>, 
" PT 

ADBip, ) - -Br1
1B12w^ (p2+2)(X^2iQ,A), 

ADB[fi\) = -(p2 - 2)B^B1 2u,£(X-2
+ 2(A)), 

ADB0S+) = -(P2 - 2)Br1
1B12W [*(P2+2)(P2 - 2, A) + E(X;2

2
+2(A)) 

- E(Xm\2(A))I(xl+2(A)<(P2-2))}. 

Proof: See section 4.4. 

Since the bias expressions of the estimators are all not in scalar form, we convert 

them to quadratic forms. Thus, we define the asymptotic quadratic distributional 
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bias (AQDB) of an estimator 8 of f31 by 

AQDB(<5) = [ADB((5)]'BU.2[ADB(<5)], 

where B n . 2 = B H - B ^ B ^ E ^ i . 

Corollary 4 .1 . Suppose that the assumptions of Theorem 4.5.1 hold. Then, under 

{Kn}, the AQDB of the estimators are 

AQDBiPj) = 0, 

AQDB0J = 7, 
A PT 

AQDBfa ) = 7[*(P2+2)(xLa;A)]2 , 

AQDBifil) = (p 2 -2 ) 2
7 [£ ; ( x - 2

+ 2 (A)) ] 2 , 

AQDB0S+) = 7[*(p2+2)(P2-2,A) + £;(xp-
2

+2(A)) 

- JB(X-2
+2(A))/(X

2
2+2(A) < ^ - 2))]2 , 

where 7 = O/YCJ with T = B2iB5~1
1Bi1.2Bj~1

1B12. 

Remark 4.1. The above results establish the following results. 

(i) The AQDB of f3x is an unbounded function of 7. 

- PT 

(ii) The bias of (3X is a function of 7 and a. For fixed a, as a function of 7, the 

bias starts from 0, increases to a point, then decreases gradually to zero. On the 

other hand, as a function of a it is a decreasing function of a G [0,1], achieves 

a maximum value at a — 0 and is 0 at a — 1. 
~ s ~ s+ 

(hi) In order to investigate AQDB(/91) and AQDB(/91 ), we use the following result. 
By using a result from matrix algebra 

Chmin(a YB^.i) < —75 < Chmax{o YB22-1). 

*• S 

Therefore AQDB of f3x starts from 0 at 7 = 0, and increases to a point then 
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decreases towards 0 due to E (Xp2
2

+2(A)) being a decreasing log convex function 
~ s+ ~ s 

of A. The behavior of f3x is similar to (31, however, the quadratic bias curve 

of /91 remains below the curve of J31 for all values of A. 

The asymptotic dispersion matrices of the estimators are given in the following the­

orem. 

Theorem 4.5.2. Suppose the assumptions of Theorem 4-1 hold. Then, under {Kn}, 
~ ~ ~PT ~ S * S-\-

the asymptotic covariance matrices of the estimators j31} 01; f31 , /3a and (3r are 

I M & ) = a2B^2, 

r 2 ( ^ ) - a2B^ + B^B12OJU}'B21BX1\ 

^ PT 

^ ( f t ) - ^[ B n 1 2{i-% 2 + 2(x^ 2 , Q ;A)} + Br1
1^2+2(Xp2,a;A)] 

+ Br1
1B12^'B21Br1

1{2^p2+2(Xp2,Q; A) - ^P2+4(Xp2,«; A)}, 

r 4 (0?) = a2Br1
1

2-(p2-2)a2B-1B12B2-2
1

1B21Br1
1{2^(Xp"2

2
+2(A)) 

- (p2 - 2)£(X~4
+2(A))} + {pi - 4)Br1

1B12a,u,'B21Br1
1^(x;2

4
+4(A)), 

T 5 0 S + ) - r 4 ( ^ ) + (p2-2)T[2£ ; (x - 2
+ 2 (A) / ( X

2
2 + 2 (A)<(p 2 -2 ) ) 

- (p2 - 2)JB(X-4
+2(A))/(x2

2+2(A) < (P2 - 2))] 

- Br1
1B12B2-2

1
1B21Br1

1*P2+2((P2 - 2); A) 

+ B ^ B x W B a x B n 1 [2*P2+2((P2 - 2); A) - *P2+4((p2 - 2); A)] 

- (p2 - 2)B^1
1B12u;a;'B21Br1

1 [2£(X;2
2

+2(A))/(X
2

2+2(A) < (p2 - 2)) 

- 2£(X;2
2

+4(A))/(X
2

2+4(A) <\p2 - 2)) 

+ (p2 - 2)£(X-4
+4(A))/(X

2
2+4(A) < (p2 - 2))] . 

Proof: See section 4.4. 

The asymptotic distributional risk (ADR) expressions for the estimators are con­

tained in the following theorem. 

Theorem 4.5.3. Suppose the assumptions of theorem 4-1 hold. Then under {Kn}, 
~ * PT A S A S-\-

the ADRs of (3l; /31; /3X , j3x and $l are respectively, 
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R0J = a2tr{QB^2), 

Rffij) = ( ^ ^ Q B u ^ + u 'ew, 

* ( & ) = a 2 [MQBn 1
2 ){ l -* P 2 + 2 (x^ ,« ;A)} + MQBr1

1)*p2+2(x^,a;A)] 

+ w 'ew [2*P2+2(x^2,a; A) - VP2+4(x2
P2,a, A)] , 

i t ^ f ) = a2[tr{QB^2)-(p2-2)tr{0B22\)(2E(X;2
+2(A)) 

- (p2 - 2)£(X-4
+2(A))] + (p2 - 4)u/0u,£(xp-4

+4(A)), 

R(PS+) = R 4 0 f ) + (p2 - 2)tr{eB22\) [2£;(X-2
+2(A)/(x^+2(A) < fo - 2)) 

- (p2 - 2)JB(xp-4
+2(A))/(x2

2+2(A) < (p2 - 2))] 

- M©B 2 - 2
1

1 )^ 2 + 2 (b 2 -2 ) ;A) 

+ u/0u> [2*P2+2((P2 - 2); A) - tfP2+4((p2 - 2); A)] 

- ( ^ - 2)u/0u, [2£(xp-2
+2(A))/(x2

2+2(A) < (p2 - 2)) 

- 2£(X-2
+4(A))/(x2

>2+4(A) < {p2 _ 2)) 

+ (p2 - 2)£(X-4
+4(A))/(X

2
2+4(A) < (p2 - 2))] , 

where 0 = B^B^QB^Bja . 

Proof: See section 4.4. 

4 . 5 . 1 C o m p a r i s o n of r i sks a m o n g t h e e s t i m a t o r s 

Using the following identity 

£(xp-2
2

+2(A)) - ^ - 2)£(xp-4
+2(A)) = A^(xp-4

+4(A)), 

~ S 

we see that R(J31) satisfies 

R0") = a2tr(QBT1
1

2)-(p2-2)ahv(eB22
1

1) 

{ f e - W „ < A » + [ i - fe
2A

+
t^1 »*<«•«<*»} 

< i ? ^ ) , for p2 > 3, all A > 0, 
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for all Q with 
t r (eB^!i) > P2 + 2 

Ch max 

where Chmax(.) is the maximum characteristic root. 

In Theorem 4.5.3, we may discard the case Bj2 = 0, since in this situation 0 = 0 

and B11.2 = Bn . Then from Theorem 4.5.3, the ADRs of all estimators are reduced 

to the ADR of 01. In the sequel we assume that B12 ^ 0. 

Based on Theorem 4.3, the results for the estimation problem are: 

(i) For any Q e Q D and u, R(/9f+) < R(/9f) < RO^) under {Kn} where 

I Chmax(&B221) 2 J 

and (3l not only confirms inadmissibility of (3-y but also provides a simple 

superior estimator. 

(ii) When UJ — 0, the following holds: 

- ~ PT ~ 94- " S 

RCSjrCRO^ )<R((31 )<R( /3 1 )<R( /3 1 ) . 

(hi) As OJ moves away from zero, R(/3x) monotonically increases in A = w'0o> and 

goes to infinity as A goes to infinity. The ADR of (3X remains constant while 
~ PT 

R(/3X ) increases, crossing the line R(/31) as u> moves away from zero. Moreover, 

when A tends to infinity, the risks of 01 , /31 and 0 approach a common limit 
~ ~ PT ~ S ~ S+ 

i.e., the risk of $1. Thus, f3x , (3X and (3X have bounded ADRs, unlike the 

restricted estimator. 

Finally, it is important to remark here that the absolute penalty estimator for 

our criteria with Q e QD outperforms the conventional semiparametric least squares 

estimator in the entire parameter space for p2 > 3, while this least squares estimator 

is admissible for p2 = 1 and p2 = 2. 
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For practical reasons and to illustrate the properties of the theoretical results, we 

conducted a simulation study, reported in the next section, to compare the perfor­

mance of the proposed estimators for moderate and large sample sizes. 

4.6 Simulation Studies 

In this section, we use Monte Carlo simulation experiments to examine the quadratic 

risk (namely MSE) performance of the proposed estimators. Our simulation is based 

on a nonlinear regression model with different numbers of explanatory variables. 

Our sampling experiment consists of different combinations of sample sizes, i.e., 

n = 30, 50,80 and 100. In this study we simulate the response from the following 

model: 

Vi = ZiiA + «2»$2 + • • • + XpiPp + g(ti) +Si, i = 1 , . . . , n, 

where the e% are i.i.d standard normal, U = (i — 0.5)/n, xs% = (Q )2 + Q with 

CH] i.i.d. ~ JV(0,1) and £<2) i-i-d. ~ N(0,1) for all s = 1, . . . ,p, and i = 1, • • • , n. 

We consider the hypothesis H0 : j3j = 0, for j = p\ + 1, • • • ,p with p = Pi+P2-

We set the regression coefficients /3 = (f31,{32) = (/3i,0) with /3X = (1.5,3,2), and 

the nonlinear function g{t) — sin(47rt) to generate response y^. Those are fixed for 

each realization. We provide detailed results for (j>\,p%) — {(3, 3), (3, 5), (3,11)} and 

a = 0.05. 

For the weight function Wni(tj), we use 

Wni(t,) = -\-K (^) = J -^e"^ , 
nhn \ hn J n/i„V27r 

which is Priestley and Chao's weight with a Gaussian kernel. We use the cross-

validation (CV) method (Bowman and Azzalini, 1997) to select the optimal band-
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width hn, which minimizes the following CV function 

1 n 

C V{nn) = — 2_^{y ~ xl Pin ~ X2 P2n ~ x3 P3n ~ x4 Pin ~~ • • • ~ xp Ppn) > 
i=l 

where (fa,faj£,fa)' = (X'^X'^X'^y-', X_< = {xjfl, 1 < k < n, 1 < 

j <P, y~l = {yi\ • • • ,y? ) , x~k = * « * - E " # i w „ i ( t 0 ^ i . &"' = Vk - E^iWn,-(*<)%--

Here y~J is the predicted value of y= (yi, t/2, • • • yn)
 a t x* = (xu, x^i, • • • , Xpi) with y, 

and Xj left out of the estimation of the /3's. 

The number of simulations under the null hypothesis was varied initially and it 

was determined that 5000 of each set of observations were adequate, since a further 

increase in the number of realizations did not significantly change the result. We define 

the parameter A* = ||/3 — / 3 ^ | | 2 , where / 3 ^ — (/3l5 0)' and || -1| is the Euclidian norm. 

In order to investigate the behavior of the estimators for A* > 0, further samples 

were generated from those distributions under local alternative hypotheses (i.e., for 

different A* between 0 and 4). 

Table 4.1: Simulated relative efficiency with respect to 3i for n — 30, P2 — 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

Pi 
2.057 
1.600 
0.952 
0.564 
0.365 
0.187 
0.109 
0.072 
0.018 

01 
1.723 
1.219 
0.889 
0.910 
0.919 
1.000 
1.000 
1.000 
1.000 

tf 
1.042 
1.036 
1.023 
1.020 
1.011 
1.007 
1.003 
1.001 
1.000 

if 
1.103 
1.079 
1.056 
1.020 
1.011 
1.007 
1.003 
1.001 
1.000 

The performance of an estimator of [31 will be based on the mean squared error 

(MSE) criterion. All computations were conducted using the R statistical system 

(Ihaka and Gentleman (1996)). We have numerically calculated the relative MSE of 
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Table 4.2: Simulated relative efficiency with respect to (31 for n = 30, P2 = 5. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 

fa 
2.871 
2.141 
1.215 
0.668 
0.422 
0.196 
0.114 
0.075 

Pi 
2.401 
1.601 
0.861 
0.669 
0.776 
0.779 
0.829 
0.974 

rf 
1.134 
1.049 
0.889 
0.899 
0.964 
0.994 
0.985 
0.993 

It 
1.999 
1.643 
1.218 
1.055 
0.994 
0.994 
0.985 
0.993 

Table 4.3: Simulated relative efficiency with respect to /3X for n = 30, P2 = 11. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

fa 
11.782 
8.557 
4.422 
2.464 
1.519 
0.721 
0.419 
0.266 
0.069 

0i 
4.899 
3.342 
1.518 
1.076 
1.023 
0.969 
0.987 
1.000 
1.000 

rf 
3.051 
2.098 
1.468 
1.279 
1.288 
1.193 
1.111 
1.071 
1.018 

if 
5.422 
4.152 
2.490 
1.757 
1.439 
1.195 
1.111 
1.071 
0.019 

/3j, px , Pi, and 0X , with respect to (3X . The simulated relative efficiency (SRE) 

of the estimator J31 to the unrestricted least squares estimator 0X is defined by 

SRE(/31 : fa) -
M S E ^ ) 

MSE(#) 

keeping in mind that the amount by which a SRE is larger than one indicates the 
~ o 

degree of superiority of the estimator (3^ over f3l. 

Our methods were applied to several simulated data sets. We report the results in 

Tables 4.1-4.12 and Figures 4.1 and 4.2. The findings can be summarized as follows: 
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Table 4.4: Simulated relative efficiency with respect to 01 for n = 50, P2 = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

fa 
2.548 
1.242 
0.527 
0.271 
0.159 
0.074 
0.040 
0.026 
0.007 

01 
1.942 
0.906 
0.664 
0.944 
1.000 
1.000 
1.000 
1.000 
1.000 

rf 
1.226 
1.066 
1.004 
1.001 
1.000 
0.997 
0.999 
1.000 
1.000 

t 
1.257 
1.108 
1.005 
1.001 
1.000 
0.998 
0.999 
1.000 
1.000 

(i) The restricted estimator outperforms all the other estimators when the restric­

tion is at and near A* — 0. On the contrary, when A* is larger than zero, the 

estimated SREs of fix increases and becomes unbounded whereas the estimated 

SRE of all other estimators remain bounded and approach one. It can be safely 

concluded that the departure from the restriction is fatal to j3x, but it has a 

much smaller impact on the absolute penalty estimator. This is consistent with 

the asymptotic theory. 

(ii) The pretest test estimator works well near the null hypothesis, but the simu­

lation shows that the performance heavily depends on how close /32 is to zero, 

and is less efficient than the unrestricted least squares estimator 0lt for large 

values of A*. 

(iii) When A* increases, the risk of the shrinkage and positive shrinkage estimators 

with respect to unrestricted least squares estimator decreases and converges to 

1 irrespective of pi, p2 and n. Figures 1 and 2 show that the shrinkage and 

positive shrinkage estimators work better in cases with large p2. 
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a. n = 30 ,p2 = 3 b. n = 50 , p2 = 3 
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Figure 4.1: Simulated relative efficiency of the estimators as a function of non-
centrality parameter A* for different sample sizes n, and nuisance parameters p2-
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a. n = 80 , p2 = 3 b. n = 100,p2 = 3 
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Figure 4.2: Simulated relative efficiency of the estimators as a function of non-
centrality parameter A* for different sample sizes n, and nuisance parameters p2-
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Table 4.5: Simulated relative efficiency with respect to fix for n — 50, pi = 5. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

0i 
3.227 
1.589 
0.687 
0.341 
0.197 
0.094 
0.052 
0.033 
0.009 

01 
2.544 
1.051 
0.969 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

£ 
1.706 
1.306 
1.104 
1.046 
1.024 
1.011 
1.007 
1.004 
1.000 

t 
2.028 
1.340 
1.104 
1.048 
1.024 
1.011 
1.007 
1.004 
1.000 

4.6.1 Absolute Penalty Estimators 

In Tables 4.13 and 4.14, we give relative efficiencies of two absolute penalty-type 

estimators with respect to the unrestricted least squares estimator for n = 30, 50, 

80 and 100 when 3 out of 14 coefficients are not zero. The penalty parameter r is 

estimated using the CV and generalized CV (GCV). We only do the comparison when 

A* = 0 because the APEs we consider here do not take advantage of the fact that 

(3 is partitioned into main parameters and nuisance parameters, and thus are at a 

disadvantage when A* > 0. We see that, when p2 = 3, APE performs better than the 

shrinkage method. On the other hand, the shrinkage method performs better when 

P2 is large. Thus, we recommend using the shrinkage method when P2 is large. Not 

surprisingly, the pretest estimator is the best estimator when A* = 0, when compared 

with APE and shrinkage. 

4.7 Concluding Remarks 

In this dissertation we compared the performance of a shrinkage estimator, a pretest 

estimator, an absolute penalty-type estimator and the least squares estimators in the 

context of a partially linear regression model with potentially irrelevant nuisance vari-
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Table 4.6: Simulated relative efficiency with respect to flx for n = 50, p2 = 11. 

A* 

0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2 
4 

h 
9.808 
4.188 
1.611 
0.791 
0.465 
0.213 
0.119 
0.077 
0.019 

Pi 
5.145 
1.951 
0.949 
0.994 
1.000 
1.000 
1.000 
1.000 
1.000 

0 i 
3.561 
2.569 
1.612 
1.295 
1.169 
1.078 
1.042 
1.029 
1.006 

tC 
5.064 
2.817 
1.622 
1.295 
1.169 
1.079 
1.042 
1.029 
1.000 

ables. We explored the risk properties of the estimators via asymptotic distributional 

risk and Monte Carlo experiments. It is concluded both analytically and computa­

tionally that the restricted least squares estimator and pretest estimator dominate the 

usual unrestricted least squares estimators at and near the null hypothesis. The ab­

solute penalty type estimator is competitive when the number of parameters p2 in the 

nuisance parameter vector f32 is small, but the shrinkage estimator with appropriate 

data based weights performs best when p2 is large. In fact, the shrinkage estimator 

outperforms the classical full model least squares estimator of the regression parame­

ter vector in the entire parameter space for all p2. In contrast, the performance of the 

reduced model least squares estimator heavily depends on the nuisance effect. Not 

only that, the risk of this estimator may become unbounded when the reduced model 

does not hold. The risk of the pretest estimator is smaller than the risk of the full 

model least squares estimator, j31 for small | | /32 | | , increases, crosses the risk of /3 l5 

reaches a maximum, then decreases monotonically to the risk of (31 as | |/32 | | —-> oo. 

The proposed estimation strategy can be extended in various directions to more 

complex problems. Research on the statistical implications of proposed and related 

estimators is on-going. It may be worth mentioning that this is one of the two 

areas Bradley Efron predicted for the early 21st century (RSS News, January 1995). 
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Table 4.7: Simulated relative efficiency with respect to f31 for n — 80, P2 = 3. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

h 
1.863 
0.782 
0.288 
0.141 
0.082 
0.038 
0.021 
0.014 
0.004 

01 
1.681 
0.746 
0.946 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

# 
1.219 
1.054 
1.021 
1.000 
0.999 
0.998 
0.999 
0.999 
0.999 

/T 
1.295 
1.129 
1.071 
1.000 
0.999 
0.998 
0.999 
0.999 
0.999 

Shrinkage and likelihood-based methods continue to be extremely useful tools for 

efficient estimation. 
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Table 4.12: Simulated relative efficiency with respect to 3i for n — 100, p2 — 11. 

A* 

0.0 
0.2 
0.4 
0.6 
0.8 
1.2 
1.6 
2.0 
4.0 

h 
5.440 
2.016 
0.677 
0.311 
0.184 
0.084 
0.048 
0.029 
0.007 

01 
4.147 
1.105 
0.981 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

M 
3.131 
1.815 
1.259 
1.117 
1.069 
1.035 
1.018 
1.013 
1.003 

*r 
3.767 
1.849; 
1.259 
1.117 
1.069 
1.035 
1.018 
1.013 
1.003 

Table 4.13: Simulated relative efficiency of estimators with respect to / ^ when A* = 0 

Method 

APE (GCV) 
APE (CV) 
Shrinkage 

Positive Shrinkage 
Pretest 

n = 30 
p2 = 3 p2 = 11 

1.211 2.123 
1.179 2.316 
1.042 3.051 
1.103 4.431 
1.723 4.899 

n = 50 
Pi = 3 p2 = 11 
1.337 2.103 
1.387 2.208 
1.225 3.561 
1.275 3.915 
1.941 5.145 

Table 4.14: Simulated relative efficiency of estimators with respect to ^1 when A* = 0 

Method 
APE (GCV) 
APE (CV) 
Shrinkage 

Positive Shrinkage 
Pretest 

n = 80 
p2 = 3 p2 = 11 
1.552 2.252 
1.373 2.186 
1.219 3.268 
1.295 4.200 
1.681 4.450 

n = 100 
p2 = 3 p2 = 11 
1.064 2.068 
1.184 2.054 
1.238 3.313 
1.343 3.767 
1.866 4.147 



Chapter 5 

Conclusions and Future Research 

In this dissertation we have studied estimation procedures which incorporate sample 

and non-sample information for some parametric and semi-parametric linear models. 

In some cases, we also have studied the comparison of these estimation procedures 

with an extended version of the LASSO procedure for different scenarios of the pa­

rameter space. The following estimation procedures are discussed in this dissertation. 

(1) Unrestricted and restricted estimation. 

(2) Shrinkage and positive shrinkage estimation. 

(3) Pretest estimation 

(4) Absolute penalty type estimation and Park and Hastie estimation. 

We have applied the above estimation procedures in linear models to improve the 

performance of existing estimators when non-sample information is available. This 

can be successfully achieved by introducing shrinkage and positive shrinkage estima­

tors which perform uniformly better than the unrestricted estimator. The estimator 

produced by the pretest procedure is superior to the estimators based on sample data 

only in some part of the parameter space induced by the non-sample prior informa­

tion. The absolute penalty and Park and Hastie estimation methods perform better 
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than the shrinkage type estimation method when the number of restrictions on the 

parameter space is small. 

The weighted quadratic loss function was used to calculate risk. The relative mean 

square error served as a criterion for comparison of the performance of the proposed 

shrinkage estimators. The dominance ranges of the proposed shrinkage estimators 

over the unrestricted estimators are discussed analytically and computationally. Our 

analytical findings are well supported by computational work. Several important 

conclusions of this study are summarized as follows: 

In chapter two, we studied four estimators of Weibull regression parameters. We 

also applied different bootstrap methods to generate the confidence intervals for the 

proposed estimators. Finally a numerical example based on a real data set demon­

strates how to implement and use the proposed estimation procedure. The statistical 

properties of the estimators were investigated analytically and numerically. The sim­

ulation study supports our theoretical findings. Based on relative mean square error, 

our simulation study concluded that the shrinkage and the positive shrinkage estima­

tors outperform the classical estimator of the regression parameter vector in the entire 

parameter space. On the other hand, the restricted estimator is more efficient than 

shrinkage estimators at the null hypothesis but as it departs from this hypothesis the 

risk increases and becomes unbounded. 

Considering the better coverage probability and lower standard error of the bounds, 

the percentile bootstrap method performs better than other methods. This method 

showed that the confidence intervals for the shrinkage estimators provide considerable 

improvement over the maximum likelihood estimator. 

This estimation procedure can be readily extended to accommodate complex cen­

soring patterns such as interval censoring or left truncation. The latter is the case 

where patients in a clinical trial have different entry times and occurs in conjunction 

with right and/or interval censoring. 
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The Weibull family of distributions have been widely used in the analysis of sur­

vival data especially in medical and engineering applications. This family is suitable 

in situations where the risk function is constant or monotone. It is not, however, suit­

able in situations where the risk function is unimodal or presents a bathtub shape. 

Many parametric families have been considered for modelling survival data with a 

more general shape for the risk function. For example, Prentice (1974) considered 

the generalized F distribution and Mudholkar et al. (1995) presented an extension of 

the Weibull distribution, which is called the exponentiated Weibull family of distri­

butions, and can adequately fit lifetime data sets presenting unimodal, monotone and 

bathtub shaped risk functions. For future research, our regression model can be gen­

eralized to the exponentiated Weibull censored regression model and can incorporate 

non-sample prior information in the estimation procedure to increase the efficiency 

of estimates of regression parameters. 

In chapter three, we consider the unrestricted, restricted, pretest, shrinkage, posi­

tive shrinkage and PH type estimators of parameters /3 for generalized linear models 

in the context of binary and count data. A numerical example based on real life 

data is used for illustration of proposed estimators presented in that chapter. It is 

concluded that the positive shrinkage estimator dominates the usual shrinkage type 

estimator and they both dominate the unrestricted estimator 0 in terms of asymp­

totic distributional quadratic risk in the entire parameter space. On the other hand, 

the performance of the restricted estimator heavily depends on the quality of non-

sample information. Under the null hypothesis, the risk of the pretest estimator 

keeps on increasing, crosses the risk of unrestricted maximum likelihood estimator, 

reaches a maximum, then decreases monotonically to the risk of the unrestricted max­

imum likelihood estimator. The PH estimator performs better than the shrinkage and 

pretest estimators when the number of restrictions on the parameter space is small 

and opposite conclusion holds when it is large. 
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The proposed estimation method for generalized linear models is the starting point 

of this research. This estimation method can be extended to different situations for 

these models, i.e., over-dispersed count data or longitudinal data when the response 

variable y^ is related to the set of covariates Xy etc. Since the logistic regression 

model is a special case of the multinomial logit regression model, future research will 

explore the properties of the shrinkage estimation method to the generalization of the 

logistic regression model. 

In chapter 4, we compared the performance of shrinkage and positive shrinkage 

estimators, a pretest estimator, an absolute penalty-type estimator and least squares 

estimators in the context of a partially linear regression model with potentially ir­

relevant nuisance variables. The risk performance of the estimators is investigated 

through asymptotic distributional risk and Monte Carlo experiments and it is found 

that shrinkage estimators outperform the full model estimator uniformly. The abso­

lute penalty type estimator performs well when the number of parameters p2 in the 

nuisance parameter vector /32 is small, but the shrinkage estimators with appropriate 

data based weights perform best when p2 is large. For all p2, the positive shrinkage es­

timator dominates the usual shrinkage estimator and they both perform well relative 

to the classical full model least squares estimator of the regression parameter vector 

in the entire parameter space. On the other hand, the performance of the restricted 

and pretest estimators heavily depends on the quality of non-sample information. 

Finally, PH and absolute penalty type estimators heavily depend on the tuning 

parameters but shrinkage and positive shrinkage are free from tuning parameters, 

and easy to compute. On the other hand, pretest estimator performs better than 

the PH estimator in some cases although it depends on tuning parameter a. We 

will recommend to the statistical community to use shrinkage estimators when the 

number of nuisance parameters in the linear models are large. 
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