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Abstract

One of the key steps of any battery management system design is the representation

of the open circuit voltage (OCV) as a function of the state of charge (SOC). The

OCV-SOC relationship is very non-linear that is often represented using a polynomial

that has log and inverse terms that are not defined around SOC equal to zero or one.

The traditional response to this problem was only at the software level. In this

thesis, I present a formal scaling approach to the OCV-SOC characterization in Li-

ion batteries. I show that, through formal modeling and optimization, the traditional

approach to OCV-SOC modeling can be significantly improved by selecting the proper

value of ε. When the proposed technique is used a decrease in the maximum SOC error

of 9% is reported. The proposed approach is tested on data collected from multiple

cells over various temperatures for OCV-SOC characterization and the results are

presented.

State-space model (SSM) and the Kalman filter have several applications in the

emerging areas of automation and data science including in battery SOC estimation.

In many such applications, the application of Kalman filtering requires model identifi-

cation with the help of the observed data. I present the formulas with derivations for

linear state-space model parameter estimation using the expectation maximization

(EM) algorithm. Particularly, I derive the formulas for different special SSM cases of

practical interest, such as the continuous white noise acceleration (CWNA) model.

Through simulation, I show the benefits of these derivations for the special models in

comparison with the generalized approach.
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Chapter 1

Introduction

1.1 Background about battery managment systems

The use of rechargeable (secondary) batteries is steadily on the rise with wide appli-

cations from small electronic devices to electric vehicles (EV) and aerospace applica-

tions. Rechargeable batteries need to be managed by a battery management system

(BMS) to ensure the safety, efficiency and reliability of the devices powered by them.

Depending on the application the BMS is required to estimate different states of the

battery. These states can be state of charge (SOC), remaining useful life (RUL) and

time to shutdown (TTS) among other things. In some application the BMS has to

balance the SOC or temperature of individual cells. Also, the BMS is responsible for

choosing the optimal charging algorithm for some applications such as EVs.

Figure 1.1 shows the components and responsibilities of the BMS. The first com-

ponent is the battery fuel gauge (BFG). The BFG uses offline data to characterize

the battery model. It then estimates the battery states using the voltage, current

and temperature measurements and the offline data. BFG estimates battery states

such as SOC and state of health (SOH). The second component of a BMS is the

cell balancing circuitry (CBC). Which is responsible for balancing the SOC of all

the individual cells (which is very important because when cells are unbalanced the
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Figure 1.1: Battery management system (BMS). Battery fuel gauge (BFG),
cell balancing circuitry (CBC) and optimal charging algorithm (OPA) are the three
important blocks of a BMS.

battery is not performing at its most optimal point). The third component is the

optimal charging algorithm (OCA). This component is responsible for choosing the

most optimal charging algorithm to the battery the fastest without compromising its

health over time.

Although current BMS accuracy are good enough for applications such as mobile

phones where an error in the estimated states can be non-critical for the operation

of the device, in sensitive applications, such as EVs, the accuracy of the estimated

sates has to be very high, otherwise there can be serious downfalls. This is why more

research is being done now to make the BMS more accurate and adaptable to changes.

With the current battery pack prices $200-$300/kWh in 2016 and 2017 [1], and

with EVs having an average battery capacity of around 80 kWh, the battery pack

alone costs around $24,000. By managing the battery pack correctly a good BMS

can extend it’s life and save money. Furthermore, the charge time of EVs is one of

the open research challenges, where there is a trade off between the charge time and
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battery life [2]. Less charging time means using higher current to charge the battery

which lead to faster deterioration in the battery capacity. The goal is to find the

optimal charging profile/pattern where the charging time is minimized with minimal

compromise to the battery capacity over time.

Accurate SOC estimation is crucial for all aspects of a BMS. In [3] the authors

proposed an approach to estimate the SOC based on dynamic impedance technique.

While [4] proposed an approach based on multi-model switching strategy. A fractional

order extended Kalman filter approach was proposed in [5]. With all these different

approaches in hand the next important question is how to evaluate the accuracy of

the these approaches since the true SOC is almost never known. This highlights the

importance of BFG evaluation. The work [6,7] proposed different methods to evaluate

the accuracy of the BFG. Another important issue is that all the current BMS rely

heavily on offline characterization of the OCV-SOC model [8] which can change over

time and by different usage profiles. For the BMS to be efficient it needs to track

these changes effectively.

There is much to be known about the battery life and how a battery ages so that

SOH and battery capacity can be accuretly estimated. Even though many techniques

are proposed for SOH estimation [9–12], when applied to real world scenarios and

tested on real data the performance seems inadequate. Same can be said about the

battery capacity estimation techniques proposed in the literature such as [13,14].

Finally, EV batteries are discarded once they reach 70-80 % of their original capac-

ity [15]. However, this doesn’t mean that they can’t be reused in other applications.

Such batteries can be used as a stationary storage systems in residential buildings

and can improve the overall environmental sustainability [16]. For such applications

fast and accurate battery modeling is required which is one of the focuses of current

research.
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1.2 Battery Fuel Gauge

BFG is the first and most important part of the BMS. This is because neither of the

other two components of the BMS (CBC and OCA) can work properly without the

estimates that the BFG provides. BFG accuracy is very important because it can

affect the performance of the other BMS components.

Figure 1.2: Battery fuel gauge. Individual blocks of the BFG [13].

Figure 1.2 shows the individual blocks of a BFG. First some offline data is col-

lected, it is then used to get the OCV-SOC characterization and capacity/power fade

characterization. Using these offline characterization the BMS can now estimate the

ECM parameters and the battery capacity. Having all these estimates the BMS can

track the SOC and SOH of the battery. It can also forecast the TTS and RUL of the

battery.

Having the estimates provided by the BFG we need to know how accurate these

estimates are. We can then use BFG evaluation to evaluate how good our estimates
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are. There are many metrics that can be used to evaluate the accuracy of the BFG

such as: coloumb counting metric, OCV metric, TTV metric and TTS metric. These

metrics individually or combined can be used to evaluate the accuracy of the BFG.

1.3 Organization of the Thesis

I choose to present this thesis structured according to the manuscript format rather

than the traditional format. The chapters consist of manuscripts previously written

and submitted/published by the author, with first authorship. Chapters 2, and 3 are

included in this thesis as written at the times of their submissions, with minor alter-

ations to format and slight modifications to content in order to maintain a cohesive

thesis structure. As prescribed by the manuscript format, abstracts have also been

omitted.

While a traditional thesis commonly contains a general literature review and prob-

lem statement, and since each chapter has it’s own literature review I have chosen to

omit these sections from the introduction. Each of the chapters will provide a liter-

ature review and problem statement in the introduction which serve the purpose of

familiarizing the reader with both the context of the research and relevant literature.

To include a general literature review and problem statement in this thesis would be

to introduce unnecessary redundancy.

The remainder of this thesis is organized as follows: Chapter 2, presents a novel

linear scaling approach for OCV-SOC modeling. This approach is shown to minimize

the offline OCV-SOC characterization error. It also provides a formal approach that

can be used to find the optimal scaling factor. Furthermore, the scaling approach

can be incorporated in the online SOC estimation technique to minimize the error

in the estimation. Chapter 3 is a tutorial on how to use the expectation maximiza-

tion (EM) algorithm on the state space model (SSM) to estimate unknown model

parameters. It shows the derivation of the EM algorithm for scalar, matrix form
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and continuous white noise acceleration (CWNA). Additionally, in the results sec-

tion, it shows and compares the results of different cases that are tested. Moreover,

chapter 4 details some possible future work. Particularly it is shown how the EM

algorithm can be applied to the BMS state equation for SOC estimation. The bat-

tery capacity estimation equation is derived in this chapter along with an idea on

how the OCV-SOC model can be estimated online. Finally, chapter 5 concludes this

thesis.
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Chapter 2

A Scaling Approach for Improved

State-of-Charge Representation in

Li-ion Batteries

2.1 Introduction

Rechargeable batteries remain the primary source for storing electrical energy. Recharge-

able batteries have wide range of applications from electric vehicles to mobile phones

and many wireless devices used in day to day life [1].

Li-ion batteries have proven to be far superior than any other existing type of

batteries in terms of their energy density. Li-ion batteries have high energy and

power density and don’t suffer from memory effect [2]. They also have reasonable life

cycle [3]. Li-ion batteries have low self discharge rate, good charging and discharging

efficiency and they work efficiently over a broad range of temperature [4]. Due to that,

there is high demand on Li-ion batteries in the automobile and aerospace applications.

A battery management system (BMS) ensures the safety, efficiency and reliability

of a battery system. he BMS needs to estimate some important states of the battery

such as state of charge (SOC), state of health (SOH) and remaining useful life (RUL)
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need to be estimated. Battery fuel gauge (BFG) algorithm is used to estimate these

states [5]. A BFG consists of several offline and online modeling and parameter es-

timation modules, such as, OCV-SOC modeling, where OCV stands for open circuit

voltage, equivalent circuit model (ECM) parameter estimation, battery capacity esti-

mation [6], SOC tracking [6], remaining power prediction [7] and RUL estimation [8],

etc. Implementing the BFG algorithm is challenging because it is affected by many

battery parameters that vary according to the temperature, age and battery cycles [9].

The focus of this chapter is at the OCV-SOC modeling step where the objective is

to develop an accurate offline model that shows the SOC as a function of the open

circuit voltage (OCV). We also investigate the effect of using the proposed approach

on online estimations of the SOC while the battery is in use.

In order to estimate the OCV-SOC model parameters [10], a fully charged battery

is slowly discharged until it is empty; it is then slowly charged until it becomes full

again. The {Voltage , Current} pair is collected during this entire time to estimate the

OCV-SOC model parameters using a least-square estimation approach [10]. Several

models were tried in the past, from simple linear models to complex polynomial

models involving log and inverse terms. A comparative review of several OCV-SOC

models can be found in [10]. Of the many OCV-SOC models studied in [10], the

combined+3 model is considered for further analysis in this chapter. Compared to

other models, the combined +3 model is simplistic at the same time it allows fo

capture salient features of the OCV-SOC curve.

The combined+3 model relates the OCV and SOC as follows

V0(s) = k0 +
k1
s

+
k2
s2

+
k3
s3

+
k4
s4

+ k5s+ k6ln(s) + k7ln(1− s) (2.1)

where s denoted the SOC ∈ [0, 1] and V0(s) denotes the OCV. The range of OCV

depends on the type of battery; For a single li-ion cell this range is OCV ∈ [3, 4.2].

The “modeling objective” is to estimate the model parameters k0, k1, . . . , k7. By

10



collecting (OCV,SOC) data points spanning the entire range of OCV and SOC, the

model parameter vector k = [k0, k1, . . . , k7] can be linearly estimated using a least

square approach. However, as it can be seen from (2.1) the model is not defined closer

to SOC = 0 or SOC = 1. Traditional response to this problem is to “discard” data

that is closer to SOC = 0 or SOC = 1. In this chapter, we show that such a discarding

approach results in a significant worst case error and propose a better approach to

remedy this problem.

In this chapter we present the details of a novel scaling technique and detail its

performance improvement over existing methods. We also propose an optimization

approach that can be used to find the scaling factor ε (see (2.21) for more details) that

minimizes the root mean square error (RMSE) over a wide range of temperatures. We

then show how the proposed scaling technique can be used for online SOC estimation

using an extended Kalman filter (EKF). Furthermore, we present the results for online

SOC estimation with and without scaling for simulated data and show how the online

SOC estimation can be improved using the scaling approach.

The contribution of this chapter are listed below:

• A novel scaling approach. We introduce a novel scaling approach that can be

used for OCV-SOC model parameter estimation.

• An approach to optimize the scaling factor. We formulate a mathematical ap-

proach to calculate the optimal value for the scaling factor that minimizes the

RMSE the modeling error.

• Results for the scaling and optimization approaches. We test both approaches on

nine different batteries over a wide range of temperature and show the results.

• A novel approach for online SOC estimation. We present a novel approach for

online SOC estimation by combining EKF and the proposed scaling approach.

• Objective performance analysis. We present the effect of using the online SOC

11



estimation approach compared to a typical EKF (without scaling).

This chapter is organized as follows: section 2.2 explains the battery model that

was used and the OCV-SOC function. It also explains in detail how to derive the

OCV-SOC model. The novel scaling approach is introduced in section 2.3. We

also formulate a mathematical approach to find the scaling factor that leads to the

minimum modeling error. Furthermore, section 2.4 shows the results of the proposed

approach when tested and validated on real data. Additionally, section 2.5 shows

how to use the proposed scaling approach for online estimation of the SOC. We also

present in this section the results for tracking the SOC with and without the use of

the scaling approach. Finally, section 2.6 concludes the chapter.

List of Notations

Cbatt . . . . . . . . . Battery capacity in Ampere hour (see (2.4))

∆k . . . . . . . . . . . Time difference between two measurements (2.4)

ε . . . . . . . . . . . . . Scaling factor (2.21)

εopt . . . . . . . . . . Optimal value for ε that has corresponding minimum RMSE (2.27)

e . . . . . . . . . . . . Voltage error vector in the OCV-SOC model (2.22)

G[k] . . . . . . . . . Control variable of the Kalman filter at time k (2.34)

h[k] . . . . . . . . . . Hysteresis at time k (2.6)

h′[k + 1] . . . . . Linearization of measurement model (4)

i[k] . . . . . . . . . . Measured current at time k (2.4)

k0, k1, ..., k7 . OCV-SOC model parameter for combined+3 model (2.1) (also see k)

k . . . . . . . . . . . . OCV parameter vector (2.17)
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k̂ . . . . . . . . . . . . Estimate of OCV parameter vector k (2.18)

k◦ . . . . . . . . . . . OCV parameter vector without R0 (2.11)

k̂◦ . . . . . . . . . . . Estimate of k◦ (2.19)

m[k + 1] . . . . . Inovation variance of Kalman filter (6)

nv[k] . . . . . . . . . Voltage measurement noise at time k (2.5)

n . . . . . . . . . . . . N×1 vector each row is nv[k] (2.16)

Ps[k] . . . . . . . . . State variance of the Kalman filter (2)

p[k]T . . . . . . . . Measurement model for the least square algorithm (2.10)

p◦(s[k])T . . . . . First eight elements of p[k]T (2.12)

P . . . . . . . . . . . . N×8 matrix each row is p[k]T (2.15)

R0 . . . . . . . . . . . Series resistance of the battery (2.6)

Rh . . . . . . . . . . . Hysteresis equivalent resistance (2.9)

R0,h . . . . . . . . . . Effective resistance (2.9)

RMSE . . . . . . . Root mean square error in voltage of the OCV-SOC model (2.23)

RMSE(εi, tj) . RMSE for scaling factor εi and temperature tj (2.24)

RMSEav(εi) . . RMSE for scaling factor εi averaged over all temperatures (2.26)

s . . . . . . . . . . . . . State of charge (2.1)

s′ . . . . . . . . . . . . Scaled state of charge (2.20)

s[k] . . . . . . . . . . SOC at time k (2.2)

σi . . . . . . . . . . . . Standard deviation of current measurement (2.36)
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σs . . . . . . . . . . . Standard deviation of SOC estimate (2.36)

σv . . . . . . . . . . . Standard deviation of voltage measurement (5)

S[k + 1|k] . . . . Inovation variance of Kalman filter (5)

u[k] . . . . . . . . . . Control input of the Kalman filter at time k (2.35)

v[k] . . . . . . . . . . True terminal voltage at time k (2.5)

Vo(s) . . . . . . . . . OCV at SOC s (2.1)

Vo(s[k]) . . . . . . OCV at SOC s(k) (2.2)

V̂◦(s) . . . . . . . . . Estimate of Vo(s) (2.19)

V◦(xs[k]) . . . . . observation model of the Kalman filter at time k (2.38)

v . . . . . . . . . . . . N×1 vector of voltage measurements zv[k] (2.14)

W [k + 1] . . . . . Gain of Kalman filter (7)

xs[k] . . . . . . . . . State of the Kalman filter at time k (2.32)

ẑ[k + 1|k] . . . . Measurement prediction of Kalman filter (3)

zv[k] . . . . . . . . . Measured terminal voltage at time k (2.5)

2.2 Open Circuit Voltage Characterization Method

In this section, we summarize the approach presented in [10] to OCV characterization.

The OCV of a Lithium-ion battery varies with its state of charge (SOC) in a non-linear

fashion as shown by a sample curve in Figure 2.3.

The set of OCV-SOC parameters {k0, k1, k2, k3, k4, k5, k6, k7} in combined+3 model,

can be estimated offline, i.e., through a custom experimental data collection process

followed by a parameter estimation step. Next, such an approach presented in [10]
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Figure 2.3: OCV vs. SOC curve of a Li-ion battery. This particular curve is
obtained from a Samsung EB575152 battery. The state of charge (SOC) is indicated
as a ratio; sometimes SOC is referred to as a percentage.

for experimental data collection and the estimation of the OCV-SOC parameters is

briefed.

For accurate enough estimation of the OCV-SOC parameters, we need the {V◦(s), s}

pairs spanning s ∈ [0, 1]. The data was collected by discharging the battery from full-

to-empty and then charging it back from empty-to-full with a very low current (C/30

to C/40). Assuming that the data is recorded every time index k, the OCV-SOC

relationship in (2.1) can be re-written as

Vo(s[k]) =k0 +
k1
s[k]

+
k2
s2[k]

+
k3
s3[k]

+
k4
s4[k]

+k5s[k] +K6 ln(s[k]) + k7 ln(1− s[k])

(2.2)

where k0, k1, k2, k3, k4, k5, k6 and k7 are the parameters corresponding to one of the

models of OCV-SOC characterization (see (2.1)).

Figure 2.4 shows the equivalent circuit of a battery when it is slowly charged or
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Figure 2.4: Equivalent circuit model of a battery during slow
charge/discharge. It must be noted that the above equivalent circuit model is
suitable when the battery experiences constant current of very low amplitude. This
model allows us to estimate the OCV-SOC curve.

discharged with a constant rate. First, we define the SOC at a given time as

s[k] , s at time k (2.3)

The true SOC can be calculated using the Coulomb counting equation. The

authors in [11] show different sources of error in the Coulomb counting equation,

that can be a result of the integration error, the battery capacity error or current

measurement error. Since the current during the OCV experiment is usually kept

constant through highly accurate programmable charge/load devices such as Arbin

tester [12], we assume that there is no noise in the measured current. Also, the

integration error can be neglected because constant current is used [11]. Therefore,

we can use the Coulomb counting equation with confidence.

16



The Coulomb Counting equation is given below,

s[k + 1] = s[k] +
∆ki[k]

3600Cbatt

(2.4)

where ∆k is the time difference between two measurements, i[k] is the current through

the battery and Cbatt is the battery capacity in Ampere hour (Ah), considering the

voltage measurement errors, the measured voltage is written as

zv[k] = v[k] + nv[k] (2.5)

where nv[k] is the voltage measurement noise which is modeled as white Gaussian with

standard deviation (s.d.) σv. During the OCV experiment i.e., when the battery is

being slowly charged/discharged, the terminal voltage can be written as

zv[k] = V◦(s[k]) + h[k] + i[k]R0 + nv[k] (2.6)

where h[k] is the hysteresis or voltage “pull” which is a function of current and SOC

of the battery [13]. Since the OCV test is performed at a very low current, we assume

that the hysteresis is proportional to the current only [12], i.e.

h[k] ∝ i[k] (2.7)

Hence, (2.6) can be rewritten as

zv[k] = V◦(s[k]) + i[k]R0,h + nv[k] (2.8)

where the effective resistance

R0,h = R0 +Rh (2.9)
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is the summation of the battery series resistance R0 and the constant-current hys-

teresis equivalent resistance, Rh.

The parameters of the linear OCV-SOC model in (2.2) can be written as,

zv[k] =
[
p◦(s[k])T i[k]

]︸ ︷︷ ︸
p[k]T

 k◦

R0,h


︸ ︷︷ ︸

k

+nv[k] (2.10)

where

k◦ = [k0 k1 k2 k3 k4 k5 k6 k7]
T (2.11)

and

p◦(s[k])T = [1
1

s[k]

1

s2[k]

1

s3[k]

1

s4[k]
s[k] ln(s[k]) ln(1− s[k])] (2.12)

By considering a batch of N voltage observations, (2.10) can be written as

v = Pk + n (2.13)

where

v = [zv[1] zv[2] . . . zv[tN ]]T (2.14)

P = [p[1] p[2] . . .p[tN ]]T (2.15)

n = [n[1] n[2] . . . n[tN ]]T (2.16)

k = [k0 k1 k2 k3 k4 k5 k6 k7 R0,h]
T (2.17)
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The least squares estimate of the parameter vector is given by

k̂ =
(
PTP

)−1
PTv (2.18)

Now, for a given SOC, s, the corresponding OCV estimate V̂◦(s) is computed as

V̂◦(s) = p◦(s)
T k̂◦ (2.19)

where k̂◦ is formed by the first 8 elements of k̂.
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Figure 2.5: Measured voltage and current. Voltage and current during charge
and discharge at 30°C.

Figure 2.5 shows the discharging/charging process when low current (C/30) was

used to drain/charge the battery. After computing the SOC using Coulomb counting,

as shown in (2.4), it can be used along with the measured voltage and current values

to compute the OCV-SOC model using (2.18).

Finally, the OCV-SOC modeling can be summarized as follows:
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Summary: OCV-SOC Modeling at Temperature T

1. Fully charge the battery at Tmax

2. Bring the battery to temperature T

3. Collect v[k], i[k] during steps 4) and 5)

4. Slow-discharge the battery at C/N rate until empty

5. Slow-charge the battery at C/N rate until full

6. Compute battery capacity at T

7. Compute SOC s[k] using Coulomb counting through (2.4)

8. Estimate the model parameters through (2.18)

2.3 Proposed Scaling Approach

2.3.1 Proposed Scaling Approach

One of the problems of the offline OCV-SOC modeling is that models such as the

combined+3 model and others are not defined at the SOC values s = 0 and s = 1.

Considering that the OCV-SOC model has ‘log(s)’ and ‘1/s’ terms, value of SOC

that is closer to “0” and “1” will cause numerical issues. In this section we present a

formal approach to solve this problem.

The proposed scaling approach maps the range of s ∈ [0, 1] to s′ ∈ [ε, 1− ε] where

s′ = s(1− 2ε) + ε (2.20)

and

ε ∈ (0, 0.5) (2.21)
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where ε is the scaling factor. From here on, we use s′ to indicate scaled SOC

and s to indicate unscaled(true) SOC. Now s′ will be used instead of s in (2.2) and

the entire OCV-SOC parameter estimation procedure described in Section 2.2. Here,

it must be noted that s′ does not go to 0 or 1 – it always stays ε away from these

extreme values.

2.3.2 Optimization of the Scaling Parameter

In this subsection, we formulate the optimization problem. First, let us denote the

voltage modeling error as

e = v −Pk̂ (2.22)

where Nx1 vector e is the voltage error in the OCV-SOC model. Now we will

calculate the RMSE for the OCV-SOC model as follows,

RMSE =
eTe

N
(2.23)

where RMSE is the root mean square error in voltage of the OCV-SOC model.

The above experiment can be repeated in different temperatures. Now, let us denote

the voltage modeling error at ε = εi, and temperature t = tj as e(εi, tj). Then, the

RMSE at ε = εi and t = tj is given as

RMSE(εi, tj) =
e(εi, tj)

Te(εi, tj)

N
(2.24)

for m different values of ε and n different values of t, the computed RMSE becomes

the following matrix,
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RMSE(ε1, t1) RMSE(ε1, t2) . . . RMSE(ε1, tn)

RMSE(ε2, t1) RMSE(ε2, t2) . . . RMSE(ε2, tn)

...
...

...
...

RMSE(εm, t1) RMSE(εm, t2) . . . RMSE(εm, tn)


(2.25)

Through our analysis of the the data we were able to conclude that averaging the

RMSE for each ε over the entire range of temperature is a good estimate of the RMSE

(these results are shown in the next section). This can be done by taking each row

from RMSE(εi, tj) and calculating the RMSEav(εi) by,

RMSEav(εi) =

n∑
j=1

RMSE(εi, tj)

n
(2.26)

The optimal value for ε is the one that has the minimum RMSEav and it can be

calculated as follows,

εopt = arg min
ε

(RMSEav(ε)) (2.27)

2.4 Scaling Approach Results

This section is divided into three subsection. Subsection 2.4.1 shows the results of

using different scaling factors ε on real data collected from a single battery Samsung

EB575152. Subsection 2.4.2 shows the results of using different scaling factors ε on a

single battery Samsung EB575152 at multiple temperatures. Finally, subsection 2.4.3

shows the results of using different scaling factors ε on multiple batteries at multiple

temperatures.
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2.4.1 Single Battery Results
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Figure 2.6: OCV-SOC modeling error. Top row: OCV vs. SOC, Voltage error
vs. SOC and SOC error vs. OCV
Middle row: OCV vs. SOC, Voltage error vs. SOC and SOC error vs. OCV
Bottom row: RMSE as a function of ε for different temperatures.

Figure 2.6 shows the difference between a proper scaling approach and intuitive

tweaks (often done at the programing level) during battery characterization. It is

evident from Figure 2.6 that using different scaling factors can have a significant

impact on the voltage modeling error. When ε = 0.001 was used Figure 2.6(a)1 it

1This is to emulate how the numerical instability problem is typically addressed at the program-
ming level.
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showed RMSE = 25.6mV. When ε = 0.175 was used Figure 2.6(a) (this ε is close to

the optimized value) it showed RMSE = 3.3mV. This shows that using a very small

value of ε is not always the best way of mapping the SOC (s).

Figure 2.6(b) and Figure 2.6(e) show that the voltage modeling error can be sig-

nificantly reduced by using the appropriate scaling factor. It also shows that absence

of scaling, which is the traditional way for OCV-SOC modeling, can lead to gigantic

error in OCV-SOC modeling. Additionally, Figure 2.6(c) shows that not using scaling

leads to an SOC error of more than 10% around the nominal voltage of the battery.

On the other hand, when scaling is used in Figure 2.6(f) it shows a maximum SOC

error of 1%. By using the proposed scaling technique the max SOC error can be

reduced by 9%. The effect of this modeling error on the online SOC estimation is

shown in Section 2.5.2.

Figure 2.6(g) shows the RMSE as a function of ε at 25°C. It can be seen that in

this case ε = 0.2 result in the minimum RMSE equal to 3.6mV. It should be noted

that this is not the only way the RMSE behaves for different ε. Figure 2.6(h) shows

a different way in which the RMSE changes with ε. The lowest RMSE happens at

ε = 0.1 with RMSE = 3.9mV, the graph is flat after that. However, for ε = 0.2 the

RMSE = 4mV. It is clear that the difference is not that significant in terms of the

RMSE. Other relations of RMSE vs ε can appear but the goal is to find an ε value

that is best over all temperatures. We address this issue in the next subsection.

2.4.2 Multiple Temperature Results

Data sets were collected from the Samsung EB575152 over temperature ranging from

−25 to 50 °C. The data sets had contained voltage, current and time measurements.

The sampling rate for this experiment was 1 second. Four cells were tested for each

temperature and 4 data sets were collected one for each cell. The OCV-SOC model

was computed over all temperatures for ε ranging from 0.001 to 0.3. The value for

ε that showed the smallest RMSE was computed. Figure 2.7(a) shows the range of
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Table 2.1: Comparison of RMSE

Proposed [10] [10] [14]
Model Combined+3 Combined+3 Combined Combined
RMSE(mV) 4.1 10 18 5.3

temperature and the corresponding ε that showed to have the smallest RMSE.

It is clear from Figure 2.7(a) that the value for ε that is most appropriate over

most temperatures is around ε = 0.18. So we do some further data analysis and try

to reach the best ε that would result in the least RMSE. Figure 2.7(b) shows the

number of times each ε showed a corresponding minimum RMSE. From the first

look at Figure 2.7(b) it seems that the optimal value for ε is between ε = 0.15 and

ε = 0.19 since this range has the most number of corresponding minimum RMSE.

However, Figure 2.6(h) shows that different ε can have very small RMSE. This is

very important because it means that although one ε might show a minimum RMSE

for certain temperature it might not be suitable for other temperatures.

In order to find εopt, first we compute the RMSE(ε, t) for every ε in our range,

this is done for all the temperatures and the box plot is shown in 2.7(c). We then

calculate the RMSEav(εi) using (2.26). In order to find the single optimal value for

εopt over all temperatures the average RMSEav(εi) was computed and the result is

presented in Figure 2.7(d).

From the data presented in Figure 2.7(c)&(d) we propose to use ε = 0.17 since it

shows to have the minimum RMSEav over all temperatures at a value of RMSE = 4.1mV

and this value also has the smallest variance as it can be seen from the boxplot in

Figure 2.7(c).

Table 2.1 compares the RMSE derived in this chapter and the RMSE in [10] which

used the combined model and combined+3 model. It also shows the RMSE shown

in [14] which only used the combined model. Table 2.1 shows that using the proposed

scaling approach yields lower RMSE for the OCV-SOC model compared to [10] & [14].
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Figure 2.7: Modeling error vs ε. Top Left: ε vs Temperature. The ε that had
the minimum RMSE for each temperature. Top Right: ε frequency as a function of
ε. Bottom Left: RMSEav vs ε. Bottom Right: RMSE vs ε over all temperatures
shown as a box plot (the central (red) mark of the box is median; the edges of the
box are 25th and 75th percentile values; the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually with a ‘+’).

2.4.3 Multiple Batteries at Multiple Temperatures Results

In this subsection we present the results of using the proposed scaling approach on the

following batteries: LG LGIP-530B, Nokia BP-4L, Blackberry RIM FS 1, Blackberry

RIM M S1, Samsung AB463651, Samsung EB504465, Samsung EB555157VA and

Samsung EBL1A2GBA. The nominal capacities for these batteries vary from 1Ah to

2Ah. Table 2.2 shows the number of cells that were tested at different temperatures.

Figure 2.9 summarizes the RMSEav(εi) for all the batteries that were used to test

the scaling approach. It can be observed that there an ε that shows a significantly
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Table 2.2: Number of cells tested for each temperature

Temp (°C) −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50
Samsung EB575152 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
LG LGIP-530B 2 2 1 2 1 2 2 2 2 2 2 2 2 2 3 2
Nokia BP-4L 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4
Blackberry RIM FS 1 2 2 1 2 2 2 2 2 2 2 1 2 1 2 1 0
Blackberry RIM M S1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Samsung AB463651 1 1 1 1 1 1 4 1 1 1 4 1 4 1 4 0
Samsung EB555157VA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Samsung EBL1A2GBA 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Samsung EB504465 4 4 4 3 4 3 4 4 4 4 4 3 4 3 4 2

smaller value of corresponding RMSEav. This shows that choosing the correct scaling

factor for your battery is of paramount importance to minimize the modeling error.

Figure 2.10 shows the corresponding box plot for the batteries over all tempera-

tures. It is very clear that the values that εopt not only show the minimum RMSEav

but also the smallest variance over all temperatures.

It should be noted that most of the graphs in Figure 2.9 and Figure 2.10 look

similar. However, they show slightly different εopt. It can be seen from Figure 2.9

that εopt is within the range of [0.175, 0.2] and it has a corresponding RMSEav within

this range [3, 4.45] mV. Additionally, Figure 2.10 shows that the εopt has the smallest

RMSE variance over all temperatures.

2.5 State of Charge Tracking with Scaling

The primary application of the OCV-SOC parameter is to estimate the SOC in real

time. The authors in [15] presented a literature review on the estimation of the

SOC for Li-ion batteries. Many algorithms can be used for SOC estimation and

tracking such as: Kalman filter [16], Unscented Kalman filter [17–19], Fading Kalman

filter [20], Particle Filter [21] among may others. Out of the many SOC tracking

algorithms developed, the Extended Kalman filter (EKF) based approach is well

known [16, 22–25]. However, all the EKF approach presented in the past did not
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consider scaling. In this section, we re-introduce the EKF based approach to SOC

tracking with proper incorporation of scaling and discuss its benefits.

2.5.1 Scaled Extended Kalman Filter

In order to derive the SOC tracking equations, we will start with the Coulomb count-

ing equation (2.4)

s[k + 1] = s[k] +
∆ki[k]

3600Cbatt

(2.28)

where the SOC is assumed to be in s[k] ∈ [0, 1]. First, let us re-write the above by

replacing s[k] with the scaled version of SOC s′[k] that is obtained based on (2.20) as

s′[k + 1]

1− 2ε
=

s′[k]

1− 2ε
+

∆ki[k]

3600Cbatt

(2.29)

where

s′[k] = s[k](1− 2ε) + ε (2.30)

The scaled version of the Coulomb counting equation is then

s′[k + 1] = s′[k] + (1− 2ε)
∆ki[k]

3600Cbatt

(2.31)

Now, let us denote the scaled SOC at time k as

xs[k] , s′[k] (2.32)

and write the process model of the EKF as follows

xs[k + 1] = xs[k] +G[k]u[k] + ni[k] (2.33)
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where

G[k] =
(1− 2ε)∆k

3600Cbatt

(2.34)

u[k] = zi[k] (2.35)

and the noise ni[k] is the current measurement noise which is assumed to be zero-

mean Gaussian with standard deviation σi. The standard deviation σs for the state

estimation xs can be written as

σs = (1− 2ε)
∆kσi

3600Cbatt

(2.36)

For the battery equivalent circuit model provided in Figure 2.4, the measurement

model can be written as

zv[k] = V◦(xs[k]) + i[k]R0,h + nv[k] (2.37)

where the noise nv[k] is the voltage measurement noise which is assumed to be zero-

mean Gaussian with standard deviation σv.

The observation model above is non-linear in terms of the SOC, i.e.,

V◦(xs[k]) = K0 +
K1

xs[k]
+

K2

x2s[k]
+

K3

x3s[k]
+

K4

x4s[k]
+K5xs[k]

+K6 ln(xs[k]) +K7 ln(1− xs[k])]

(2.38)

Now, the online SOC tracking problem can be formally stated as follows: Given

zv[k] and zi[k], the the voltage and current measurements respectively, at time k,

recursively estimate the (scaled) SOC of the battery x̂x(k|k) and the associated esti-

mation error covariance Ps(k|k). The Algorithm 1 summarizes the extended Kalman

filter approach to SOC tracking.

The Algorithm 1 works by taking as an input the previous state x̂s[k|k], previous
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covariance Ps[k|k], current measurement zi[k+ 1] and voltage measurement zv[k+ 1].

It outputs the state x̂s[k + 1|k + 1] and covariance estimate Ps[k + 1|k + 1] using

(8) and (9) respectively. In the process, it calculates the state prediction x̂s[k + 1|k]

using (1), state prediction variance Ps[k+ 1|k] using (2) and measurement prediction

ẑ[k + 1|k] using (3). Finally, the innovation variance S[k + 1|k], innovation m[k + 1]

and filter gain W [k + 1] are calculated using (5),(6) and (7) respectively.

Algorithm 1[
x̂s[k + 1|k + 1], Ps[k + 1|k + 1]

]
=

EKF-SOC(x̂s[k|k], Ps[k|k], zi[k + 1], zv[k + 1])

1: State prediction: x̂s[k + 1|k] = x̂s[k|k] +G[k]u[k]
2: State prediction variance: Ps[k + 1|k] = Ps[k|k] + σ2

s

3: Measurement prediction: ẑ[k + 1|k] = V◦(x̂s[k + 1|k]) + zi[k + 1]R0,h

4: Linearization of observation model: h′[k + 1] = − K1

x̂2s[k+1|k] −
2K2

x̂3s[k+1|k] −
3K3

x̂4s[k+1|k] −
4K4

x̂5s[k+1|k] +K5 + K6

x̂s[k+1|k] −
K7

1−x̂s[k+1|k]
5: Innovation variance: S[k + 1|k] = σ2

v + h′[k + 1]P [k + 1|k]h′[k + 1]′

6: Innovation: m[k + 1] = zv[k + 1]− ẑ[k + 1|k]
7: Filter gain: W [k + 1] = P [k + 1|k]h′[k + 1]′S[k + 1]−1

8: State estimate: x̂s[k + 1|k + 1] = x̂s[k + 1|k] +W [k + 1]m[k + 1]
9: State estimate variance: Ps[k+ 1|k+ 1] = Ps[k+ 1|k]−W [k+ 1]S[k+ 1]W [k+ 1]′

2.5.2 Scaled EKF Results

In this subsection, we present a numerical analysis of the proposed EKF algorithm

for SOC tracking. The goal of the analysis is to demonstrate the performance of the

algorithm with and without scaling. In order to do that, we need data that is free of

other uncertainties such as parameter estimation errors. First, we explain how such

evaluation data was simulated for two different analyses:

1. SOC tracking without scaling. For this analysis we set ε = 0.001 allowing the

scaled SOC to vary between s′ = xs[k] = 0.001 and s′ = xs[k] = 0.999 — this is

almost equivalent to not scaling at all.

2. SOC tracking with scaling. For this analysis we set ε = 0.175, to its optimal

value. This allows the scaled SOC to vary between s′ = xs[k] = 0.175 and
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s′ = xs[k] = 0.825.

Under the above two assumptions the data for the analysis is constructed as follows.

1. First, the OCV parameters K0, . . . , K7 were estimated based on the assumed ε

as discussed above. The data for the OCV parameter estimation was collected

from Samsung EB575152 battery (this is real OCV characterization data - not

simulated one).

2. Then, the estimated OCV parameters, a certain current profile shown in Figure

2.8(a), and the observation model (2.37) is used to simulate the voltage across

the battery terminals. The simulated voltage is shown in Figure 2.8(b).
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Figure 2.8: SOC tracking using EKF with and without scaling. Current and
voltage profile used along the the SOC tracking.

The SOC tracking algorithm described in Section 2.5.1, is used to track the SOC

of the battery for two different cases: with and without scaling. Figure 2.8(c) shows

the SOC tracking results. Since simulated current profile is being used we can apply

Coulomb counting to estimate the true SOC.

The average load is kept constant implying that the SOC should decrease linearly

on an average sense. However, the unscaled version of the SOC estimates are not seen

to decrease/increase in a linear fashion. The performance of the scaled version of the

SOC tracking satisfies this expectation. The Coulomb counting method provides a
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reference SOC because it was computed based on true value of the battery capacity

and noiseless current.

It is clear from this figure that the scaled version of the EKF is superior to the

unscaled version and it follows the true SOC compared to the un-scaled version that

deviates from the true SOC. The reason for the unstable performance can be traced

back to two things. First, the SOC modeling error that is shown in Section 2.4.1 Fig-

ure 2.6(c). Second, the numerical instability issue resulting from computing log(xs[k])

and 1/xs[k] when xs[k] approaches zero and from computing log(1−xs[k]) when xs[k]

approaches one. The proposed scaling scheme effectively avoided this situation in the

EKF.

2.6 Conclusions and Discussions

In this chapter we considered the problem of OCV-SOC characterization in Li-ion

batteries. OCV-SOC models often employ log and inverse terms that will lead to

numerical instability and increased errors during characterization. In this chapter we

proposed a solution to this problem using a linear scaling approach. The proposed

scaling approach uses a scaling factor ε that can be anywhere between 0 and 0.5. We

developed an approach to find the optimal value of this parameter that leads to the

minimum modeling error and is stable across multiple temperatures. More batteries

should be tested to see if the optimal scaling factor found here is consistent with other

batteries. We showed that by using the proposed scaling approach the maximum

SOC error can be decreased by 9%. The proposed approach in this chapter was

tested on multiple batteries at multiple temperatures ranging from −25◦C to 50◦C.

We also used EKF to track the SOC online and showed that estimation error can be

significantly decreased by using the appropriate scaling factor ε.
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Figure 2.9: Average RMSE for different Batteries. Average RMSE vs ε for
different Li-ion batteries over multiple temperatures and multiple cells as indicated
in Table 2.2.
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Figure 2.10: Boxplot for different batteries at multiple temperatures. RMSE
vs ε for multiple temperatures and multiple cells as indicated in Table 2.2. Shown
as a box plot (the central (red) mark of the box is median; the edges of the box are
25th and 75th percentile values; the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted individually with a ‘+’). The best ε
values are those with small RMSE in terms of mean and variance.
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Chapter 3

Linear State-Space Model

Parameter Estimation Using the

EM Algorithm

3.1 Introduction

State-space models (SSM) and Kalman filtering have a wide ranging applications:

Aerospace systems [1], autonomous vehicles [2], wireless communication (channel es-

timation) [3], robotics [4], battery state of charge (SoC) estimation [5], chaotic sig-

nals [6] [7], computer vision [8], power system state estimation [9], seismology [10],

simultaneous localization and mapping [11], and weather forecasting [12], are just few

examples. Recently, advances in sensory technology and communication has ushered

to the era of internet of things (IoTs) where everything from household items to indi-

vidual parts of equipment and vehicles are equipped with the technology to continu-

ously collect data. State-space models and Kalman filtering proves to be a useful tool

in analyzing these data for effective information fusion and system automation [13].

The Kalman filter provides the best instantaneous estimate to a linear-Gaussian SSM

given that the model parameters are known. In many of the emerging applications,
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such as IoTs, the underlying physical system is not fully understood, as such deriving

an accurate state-space model is not yet feasible; there are also cases where the SSM

is partially known.

One approach to solve this problem is to add SSM parameters as additional states

to the state vector in a Kalman filter [14]. Another approach is to run different

models at the same time and run an adaptive filter that chooses the best model.

The authors in [15] proposed a reduced state estimation technique that makes use

of a multiple model estimator [14], where an adaptive filtering algorithm chooses the

best model from different predefined model dynamics in real time. The generalized

pseudo-Bayesian estimator and the interactive multiple model estimators procedure

are among the best known examples of this type of method [14]. A survey on this

method is given in [16, 17]. However, this approach only performs well in scenarios

where the model dynamics are predictable but when applied to models with high

uncertainty they don’t perform well. Additionally, they often require a long time for

computation [18].

The third and final approach, which is the one used in this chapter, works by

breaking the problem into an iterative process of estimating the state parameters and

estimating the state itself. The first part is to start with an initial guess of what

the state parameters are and then estimate the states using a Kalman filter or an

extended Kalman filter. The second part is to use these estimates states to estimate

the model parameters. With each iteration the estimates should converge to the true

value. For this approach it can be formulated as expectation maximization (EM)

algorithm proposed in [19, 20]. This chapter serves as a tutorial on using the EM

algorithm to estimate unknown state parameters for a SSM. The goal of this chapter

is to present the approach and equation in an easy to understand way with all the

derivations shown in details so the reader can follow easily. We also test the algorithm

on different scenarios and compare the results.

This chapter is structured as follows, section 3.3 is a review of the EM algorithm
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and explains in details the steps of the algorithm. In section 3.4 shown how the EM

algorithm is applied on a scalar SSM and shows in detail the derivation of the unknown

parameters. Furthermore, the EM algorithm is derived for a matrix case of the SSM

and the derivation is shown in detail in section 3.5. Then, the discretized continuous

white noise acceleration (CWNA) model is presented in section 3.6. Additionally, in

section 3.7 we run a statistical test for different scenarios and compare the results, also

a comparison between the general form presented in section 3.5 is compared with the

CWNA form presented in section 3.6 where a scalar parameter is estimated instead

of a matrix. Finally, section 3.8 concludes the chapter.

3.2 Problem Definition

Let us consider a linear state-space model consisting of a process of an mx × 1 state

xk and its mz × 1 observation zk summarized by

xk+1 = Fxk + vk

zk = Hxk + wk

(3.1)

where F is an mx × mx state transition matrix, H is an mz × mx observation

matrix, the process and measurement noise v(k) and w(k), respectively, are assumed

to be zero-mean Gaussian noise vectors with the following covariance matrices

E{vkvTk } = Q

E{wkw
T
k } = R

(3.2)

Given the observation zk and the knowledge of the initial state x0 ∼ N (µ0, Σ0)

the Kalman filter [14] produces the best estimate of xk if the model parameters F,H,Q

and R of the SSM are known.

The objective of this chapter is to estimate the model parameters assuming only
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the observation zk, The general problem definition of SSM identification can be for-

mally stated as follows: Given a batch of observations zk, k = 1, 2, . . . , n, estimate the

model parameters F,H,Q and R as well as the parameters µ0 and Σ0 of the initial

state x0 ∼ N (µ0, Σ0).

The general SSM identification problem defined above was already solved in [20]

using the EM algorithm. In the next two sections we summarize this general SSM

identification approach. Then we will present specific state-space models of practical

importance and derive their SSM parameters using similar approach.

3.3 Review of the EM Algorithm

In this section, we give a brief review of the Expectation Maximization (EM) algo-

rithm [20–22]. Consider the following scenario where N observations

Z = {zi}Ni=1 (3.3)

are generated from a set of parameters Θ. The likelihood of the parameter Θ given

the above observations (that is assumed independently and identically distributed –

iid) is given by

L(Θ) = p(Z|Θ) =
N∏
i=1

p(zi|Θ) (3.4)

Now, the maximum likelihood estimation of the parameters is given by

Θ̂ML = arg max
Θ
L(Θ) (3.5)

The above optimization in (3.5) is sometimes intractable because the nature of

the observation model. The EM algorithm offers an approximate, iterative way to

perform this optimization.
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The EM algorithm starts by considering that the observed data Z is incomplete;

i.e., it assumes that there is a certain information that the observations Z doesn’t

have; let us denote this missing information as X . With that, the complete data

is written as Z = (Z,X ). Using Bayes’ theorem, the joint density function of this

complete data can be written as

p(z|Θ) = p(z, x|Θ) = p(z|x,Θ)p(x|Θ) (3.6)

Now, instead of writing the likelihood function as a function of Θ, such as L(Θ)

in (3.4), a new function is defined as follows

Q(Θ,Θi−1) = E
[
log p(Z,X|Θ)|Z,Θi−1] (3.7)

where the expectation is with respect to the probability density function of X ; as such,

the resulting quantity Q(Θ,Θi−1) is not a function of X . In summary, we introduced

a variable X to define the likelihood function and then removed that same variable

by taking an expectation. The positive effect of this process is that the resulting

Q(Θ,Θi−1) is in a form that can be easily maximized.

Similar to the likelihood function L(Θ), Q(Θ,Θi−1) is dependent on Θ; in addi-

tion, it is also dependent on Θi−1, the initial guess on Θ. Now, the expectation step

above is formally written as:

Expectation Step:

Q(Θ,Θi−1) = E
[
log p(Z,X|Θ)|Z,Θi−1]

=

∫
x

log p(Z, x|Θ)f(x|Z,Θ(i−1))dx
(3.8)

It must be noted that the probability density of x, f(x|Z,Θ(i−1)), is not yet defined;

how to find such a density is one of the practical aspects of EM algorithm design.

In the next section, we will show how to select (and estimate) such a density using
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Gaussian mixture density estimation as an example. It is important to note that

such selection will be different for each type of density, such as a Poisson density or

Bernoulli density; and it will differ depending on the problem.

Now, the new value of Θ is obtained as:

Maximization Step:

Θ(i) = arg max
Θ

Q(Θ,Θi−1) (3.9)

The important difference between the cost function L(Θ) and Q(Θ,Θi−1) is that

unlike L(Θ), Q(Θ,Θi−1) can be optimized in a closed form. Starting from an initial

guess for Θi−1, the EM algorithm iterates between the Expectation Step and the

Maximization Step until the estimated parameters converge.

3.4 Scalar State-Space Model

Using usual notations, a scalar SSM is given as follows

xk+1 = Fxk + vk

zk = Hxk + wk

(3.10)

where F , H are scalars and the process and measurement noise v(k) and w(k),

respectively, are assumed to be zero-mean noise with the following variance

E{v2k} = σ2
v

E{w2
k} = σ2

w

(3.11)

and the initial state is assumed to be normal, x0 ∼ N (µ0, σ0) .

Given a batch of observations zk, k = 1, 2, . . . , n, the objective is to estimate

F,H, σ2
v and σ2

w as well as the initial state mean µ0 and σ0.
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3.4.1 Complete Data Likelihood

The joint density of the complete data (i.e., assuming Xn is observed) is written as

p (Zn,Xn|Θ) = p(x0)
n∏
k=1

p(xk|xk−1)
n∏
k=1

p(zk|xk) (3.12)

where Θ = {σv, σw} and

p(x0) =
1√

2πσ0
exp

{
−(x0 − µ0)

2

2σ2
0

}
p(xk|xk−1) =

1√
2πσv

exp

{
−(xk − Fxk−1)

2

2σ2
v

}
p(zk|xk) =

1√
2πσw

exp

{
−(zk −Hxk)2

2σ2
w

} (3.13)

Now, the complete-data likelihood of Θ can be written as

−2 ln p(Xn,Zn|Θ) = c+ lnσ2
0 +

(x0 − µ0)
2

σ2
0

+ n lnσ2
v

+
n∑
k=1

(xk − Fxk−1)
2

σ2
v

+ n lnσ2
w +

n∑
k=1

(zk −Hxk)2

σ2
w

(3.14)

where c is a constant.

3.4.2 Expectation

The expectation step is written as

Q(Θ,Θi−1) = E
{

ln p(Z,X|Θ)|Z,Θi−1} = E {−2 ln p(Xn,Yn|Θ)} (3.15)

which can be written as

Q(Θ,Θi−1) = lnσ2
0 +

1

σ2
0

(
(x0|n − µ0)2 + P0|n

)
+ n lnσ2

v +
1

σ2
v

(
S11 − 2FS10 + F 2S00

)
+ n lnσ2

w +
1

σ2
w

(
n∑

k=1

(zk −Hxk|n)2 +H2Pk|n

) (3.16)
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where

S11 =
n∑
k=1

(
x2k|n + Pk|n

)
(3.17)

S10 =
n∑
k=1

(
xk|nxk−1|n + Pk,k−1|n

)
(3.18)

S00 =
n∑
k=1

(
x2k−1|n + Pk−1|n

)
(3.19)

3.4.3 Maximization

To maximize for F we will take the partial derivative of (3.16) with respect to F and

equate it to zero. Where we get,

F̂ =
S10

S00

(3.20)

We then maximize for σ2
v , and it will be as follows

σ̂2
v =

1

n

(
S11 − 2FS10 + F 2S00

)
(3.21)

if we maximize for F , we can substitute (3.20) in (3.21) then we get

σ̂2
v =

1

n

(
S11 −

S2
10

S00

)
(3.22)

We then maximize for H and it can be written as

Ĥ =

∑n
k=1 zkxk|n∑n

k=1 x
2
k|n + Pk|n

(3.23)
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We can then maximize for σ2
w. It can be shown to be as follows

σ̂2
w =

1

n

(
n∑
k=1

(
zk −Hxk|n

)2
+H2Pk|n

)
(3.24)

if we maximize for H using (3.23) then

σ̂2
w =

1

n

(
n∑
k=1

z2k −
(∑n

k=1 zkxk|n
)2∑n

k=1 x
2
k|n + Pk|n

)
(3.25)

The mean and covariance of the initial state can be estimated as follows

µ̂0 = x0|n (3.26)

σ̂2
0 =

(
x0|n − µ0

)2
+ P0|n (3.27)

(3.27) can be written as follows if we substitute (3.26) in it

σ̂2
0 = P0|n (3.28)

3.5 General State-Space Model

3.5.1 Complete Data Likelihood

The joint density of the complete data (i.e., assuming Xn is observed) is written as

p (Zn,Xn|Θ) = p(x0)
n∏
k=1

p(xk|xk−1)
n∏
k=1

p(zk|xk) (3.29)
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where Θ = {Q,R} and

p(x0) =
1

(2π)
m
2 |Σ0|

1
2

exp

{
−1

2
(x0 − µ0)

TΣ−10 (x0 − µ0)

}
p(xk|xk−1) =

1

(2π)
m
2 |Q|

1
2

exp

{
−1

2
(xk − Fxk−1)

TQ−1(xk − Fxk−1)

}
p(zk|xk) =

1

(2π)
m
2 |R|

1
2

exp

{
−1

2
(zk −Hxk)

TR−1(zk −Hxk)

} (3.30)

Now, the complete-data likelihood of Θ can be written as

−2 lnp(Xn,Zn|Θ) = c+ ln |Σ0|+ (x0 − µ0)
TΣ−10 (x0 − µ0) + n ln |Q|+ n ln |R|

+
n∑
k=1

(xk − Fxk−1)
TQ−1(xk − Fxk−1) +

n∑
k=1

(zk −Hxk)
TR−1(zk −Hxk)

(3.31)

where c is a constant.

3.5.2 Expectation

The expectation step is written as

Q(Θ,Θi−1) = E
{

ln p(Z,X|Θ)|Z,Θi−1} = E {−2 ln p(Xn,Yn|Θ)} (3.32)

which can be written as

Q(Θ,Θi−1) = ln |Σ0|+ tr
{
Σ−10

[
P0|n + (x0|n − µ0)(x0|n − µ0)

T
]}

+ n ln |Q|+ tr
{
Q−1

[
S11 − S10F

T − FST10 + FS00F
T
]}

+ n ln |R|+ tr
{
R−1

[
M11 −M10H

T −HMT
10 + HM00H

T
]} (3.33)

where
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S11 =
n∑
k=1

(
xk|nx

T
k|n + Pk|n

)
(3.34)

S10 =
n∑
k=1

(
xk|nx

T
k−1|n + Pk,k−1|n

)
(3.35)

S00 =
n∑
k=1

(
xk−1|nx

T
k−1|n + Pk−1|n

)
(3.36)

M11 =
n∑
k=1

zkz
T
k (3.37)

M10 =
n∑
k=1

zkx
T
k|n (3.38)

M00 =
n∑
k=1

(
xk|nx

T
k|n + Pk|n

)
(3.39)

3.5.3 Maximization

To maximize for F we will take the partial derivative of (3.16) with respect to F and

equate it to zero. [23] can be used to derive the differentiation of matrices.

By using the fact that Q−1 and S00 are symmetric and using (3.69)(3.70)(3.71)

we can show that

∂Q(Θ,Θi−1)

∂F
= −2Q−1S10 + 2Q−1FS00 = 0 (3.40)

After premultiplying by Q we get,

F̂ = S10S
−1
00 (3.41)

We then maximize for Q. We can use (3.65)(3.66)(3.67)(3.68) to show that

∂Q(Θ,Θi−1)

∂Q
= nQ−1 −Q−1

[
S11 − S10F

T − FST10 + FS00F
T
]
Q−1 = 0 (3.42)
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We will pre and post multiply by Q,

Q̂ = 1
n

[
S11 − S10F

T − FST10 + FS00F
T
]

(3.43)

If we maximize for F, we can substitute (3.41) in (3.43) then we get

Q̂ =
1

n

[
S11 − S10S

−1
00 ST10

]
(3.44)

We then maximize for H by noting that R−1 and M00 are symmetric and using

(3.69)(3.70)(3.71) and it can be written as

Ĥ = M10M
−1
00 (3.45)

We can then maximize for R using (3.65)(3.66)(3.67)(3.68). It can be shown to be as

follows

R̂ =
1

n

[
M11 −M10H

T −HMT
10 + HM00H

T
]

(3.46)

if we maximize for H using (3.45) then (3.46) can be written as

R̂ =
1

n

[
M11 −M10M

−1
00 MT

10

]
(3.47)

The initial mean and covariance can be shown to be as follows,

µ0 = x0|n (3.48)

Σ0 = P0|n + (x0|n − µ0)(x0|n − µ0)
T (3.49)

if we estimate the initial mean using (3.48) then the initial covariance can be written
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as follows

Σ0 = P0|n (3.50)

3.6 CWNA State-Space Model

x =
[
x ẋ

]T
(3.51)

The state vector above is modeled to undergo the following process model

x(k + 1) = Fx(k) + v(k) (3.52)

where the elements of the 2 × 1 vector v(k) are assumed to be zero-mean Gaussian

noise,

F =

1 ∆T

0 1

 (3.53)

where ∆T is the sampling time that is assumed to be a constant. The process noise

covariance, Q, can be shown to be [14]

Q = E
{
vkv

T
k

}
= q̃

1
3
∆T 3 1

2
∆T 2

1
2
∆T 2 ∆T

 = q̃Q̄ (3.54)

where Q is the covariance of the process noise.
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|Q| = q̃2
1

12
∆T 4 (3.55)

Q̄−1 = q̃−1

12∆T−3 −6∆T−2

−6∆T−2 4∆T−1

 (3.56)

z(k) = Hx(k) + w(k) (3.57)

where

H =
[
1 0

]
(3.58)

where w(k) is assumed to be zero-mean Gaussian noise with standard deviation σv.

Consequently, the measurement model covariance is written as

R = E
{
wkw

T
k

}
= σ2

w (3.59)

The problem formulation is the same as in Subsection 3.5 except now F & H are

known. Same steps can be used to reach (3.31) but now it can be written as

3.6.1 Complete Data Likelihood

−2 ln p(Xn,Zn|Θ) =c+ ln |Σ0|+ (x0 − µ0)
TΣ−10 (x0 − µ0) + n ln

(
q̃2

1

12
∆T 4

)
+ q̃−1

n∑
k=1

(xk − Fxk−1)
T Q̄−1(xk − Fxk−1) + n ln |R|

+
n∑
k=1

(zk −Hxk)
TR−1(zk −Hxk)

(3.60)
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3.6.2 Expectation

The expectation step can we written as

Q(Θ,Θi−1) = ln |Σ0|+ tr
{
Σ−10

[
P0|n + (x0|n − µ0)(x0|n − µ0)T

]}
+ n ln

(
q̃2

1

12
∆T 4

)
+ q̃−1tr

{
Q̄−1

[
S11 − S10F

T − FST
10 + FS00F

T
]}

+ n ln |R|+ tr
{
R−1

[
M11 −M10H

T −HMT
10 + HM00H

T
]}

(3.61)

for the sake of simplification we will use the following equation

t = tr
{
Q̄−1

[
S11 − S10F

T − FST10 + FS00F
T
]}

(3.62)

3.6.3 Maximiation

Maximizing for q̃

∂Q(Θ,Θi−1)

∂q̃
= 2nq̃−1 − q̃−2t = 0 (3.63)

̂̃q =
t

2n
(3.64)

Now Q can be estimated easily using (3.54), and R can be estimated using (3.24)

since it is scalar.

3.7 Results

In this section, we demonstrate the the performance of the proposed algorithms us-

ing simulated data. The performance comparison is done in terms of the following

measures:

• True Log-Likelihood: We calculate the value of the true Log-Likelihood (LLh)

[ln p(Xn,Zn|Θ)] using (3.14). We substitute in this function the true value of

the terms (xn, zn, F,Q,H and R) that was used to simulated the data. When
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all ground truth are assumed known, the true LLh will be at its highest value.

• Estimated likelihood: This is the value of the Log-Likelihood function shown

in eq (3.14) [ln p(Xn,Zn|Θ)] when we substitute the estimated values of the

unknown parameters with the estimated values (x̂n, F̂ , Q̂, Ĥ and R̂). The closer

it is to the true LLh value the more accurate our estimation is.

• Root mean square error (RMSE): We calculate the value of the RMSE in the

estimated parameters (x̂n, F̂ , Q̂, Ĥ and R̂). This measure was only done for the

scalar case.

In this section, we present several numerical studies to evaluate the performance

of the SSM identification methods summarized in this chapter. Table 3.3 shows a list

of four different scenarios for the evaluation of the proposed algorithm. For this test

we assumed that the initial state and covariance are known for simplicity.

Table 3.3: Different SSM scenarios

F H Q R
Case 1 Known Known Est. Est.
Case 2 Known Est. Est. Est.
Case 3 Est. Known Est. Est.
Case 4 Est. Est. Est. Est.

3.7.1 Scalar SSM

In Figure 3.11 we show the EM algorithm for the four different scenarios listed in Table

3.3 and the corresponding unknowns that were estimated. The value of F is changed

from 0.1 to 0.9 by increments of 0.1 i.e., as F increases it reaches the boundary of

stability. For each value of F the true LLh value was calculated and compared to the

estimated LLh of the four cases listed in Table 3.3. This test was done with a good

initialization of the unknown values. The initial values of the unknowns Q,R and H

54



was chosen randomly from the range [0.5, 1.5] of the true value. While the initial value

for F was randomly chosen from the range [0, 1] of the true value. The comparison

of the LLh values is shown in the Figure 3.11.
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Figure 3.11: Scalar SSM parameter estimation. The estimated LLh is shown for
different scenarios; the true LLh is shown for comparison; the results are averaged
over 1000 Monte-Carlo run with good initialization.

In Figure 3.12 we show the root mean square error (RMSE) in the estimation

of the unknown parameters. It is clear from the graph that as the error decreases

the estimated LLh gets closer to the true LLh value indicating that our estimate is

close to the true value. Figure 3.11 shows that case 2 and case 4 always have lower

estimated LLh compared to cases 1 and case 3. The only common thing between case

2 and case 4 that is different from case 1 and case 3 is that H is being estimated,

where in case 1 and 3 H is known. As a result, we can conclude that when H is

being estimated the performance drops significantly specially when F is closer to the

stability boundary. Furthermore, Figure 3.12 shows that the reason for this decline

in the performance is due to the significant error in the estimation of Q in case 2 and

case 4 as F gets closer to the stability boundary.

The same scenarios were tested again with the only difference of having a worse

initialization of the unknown parameters Q,R and H were it was initialized randomly

in the range [0, 5] of the true value. However, F had the same initialization as before
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Figure 3.12: RMSE of our estimate. Root mean square error (RMSE) in estimates
averaged over 1000 Monte-Carlo runs good initialization experiment for all four cases.

to ensure the system stability, this is shown in Figure 3.13. When compare to Figure

3.11 we can see that the two figures have the same pattern where the estimated LLH

increases with F for case 1 and case 3, while it drops with F for case 2 and case 4.

However, the only difference being that the estimated LLh is less for all cases when

compared to its good initialization counterpart. This shows that a better initialization

leads to a better estimate and an estimated LLh that is closer to the true LLh. It is

also important to mention that around 1% of the data for this run didn’t converge

and were considered outliers, as a result, they were removed.
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Figure 3.13: Scalar SSM parameter estimation. The estimated likelihood is
shown for different scenarios; the true likelihood is shown for comparison; the results
are averaged over 1000 Monte-Carlo run with bad initialization.

3.7.2 CWNA SSM

In this section we compare between the general matrix form presented in section 3.5

and the CWNA model shown in section 3.6. We apply case 1 for both algorithms

where only Q and R are being estimated. For the moderate initialization of Q and

R it was initialized randomly in the rage [2, 3] of the true value. While, the range for

bad initialization was [0, 20] of the true value.

Figure 3.14 shows the true LLh and estimated LLh for different values of q̃ and

compares between the moderate and bad initialization. The figure shows that using

the CWNA form where only q̃ is being estimated instead of the whole Q matrix results

in at least equal accuracy if not a batter estimate when moderate initialization is used.

It can be seen that even when the bad initialization is used, which is a more realistic

scenario, the CWNA form is always performing better, as it is always converging

faster and more accurately to the true value of Q and R. This can be seen in Figure

3.14 (b) where the estimated LLh of the CWNA form is always closer to the True

LLh and the estimated LLh of the general form is always further away from the true

LLh.
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Figure 3.14: Matrix SSM case 1. The estimated likelihood is shown for the matrix
form case 1; the true likelihood is shown for comparison; the results are for 1000
Monte-Carlo run.

3.8 Conclusion

In conclusion, we formulated the problem in SSM where a Kalman filter can’t be used

due to unknown state transition parameters or unknown state and measurement co-

variance. We proposed the use of the EM algorithm to estimate the unknown system

parameters. Additionally, we showed all the steps of the EM algorithm with all the

equations that were used to reach the final formulas. Furthermore, we introduced

the use of the EM algorithm on the CWNA model and shown how this model can be

used to reduce the complexity of the EM algorithm where a scalar quantity is being

estimated instead of a matrix. Finally, the EM algorithm was tested on different

scenarios for the scalar case. For all four cases of the SSM the RMSE and estimated

log-likelihood were reported and their performance compared. Furthermore, the re-

sults show that using the CWNA will at least have the same performance accuracy

when used if not even higher accuracy compared to using the general form.
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3.8.1 Matrix Identities

Here we show some matrix identities that were used through out the chapter; these

identities were obtained from [23]. The numbers on the left of the equation is the

equation number in the matrix cookbook and the numbers on the right are used to

refer to these equations throughout the chapter.

(4) (A + B)T = AT + BT (3.65)

(5) (AB)T = BTAT (3.66)

(57)
∂ln|X|
∂X

= (X−1)T = (XT )−1 (3.67)

(100)
∂

∂X
tr(AX−1B) = −(X−1BAX−1)T (3.68)

(101)
∂

∂X
tr(AXB) = ATBT (3.69)

(104)
∂

∂X
tr(AXT ) = A (3.70)

(118)
∂

∂X
tr(AXBXTC) = ATCTXBT + CAXB (3.71)

3.8.2 Prediction, Filtering & Smoothing

Here we show below the equations for prediction, filtering then the smoothing respec-

tively.

Prediction:

xk|k−1 = Fxk−1|k−1 (3.72)

Pk|k−1 = FPk−1|k−1F + Q (3.73)
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Filtering:

xk|k = xk|k−1 + Kk

[
zk −Hxk|k−1

]
(3.74)

Pk|k =
[
I−KkH

]
Pk|k−1 (3.75)

Where the kalman gain is Kk is given as

Kk = Pk|k−1F
T
[
FPk|k−1F

T + R
]

(3.76)

Smoothing:

xk−1|n = xk−1|k−1 + Jk−1
[
xk|n − xk|k−1

]
(3.77)

Pk−1|n = Pk−1|k−1 + Jk−1
[
Pk|n −Pk|k−1

]
JTk−1 (3.78)

Jk−1 = Pk−1|k−1F
T
[
Pk|k−1

]−1
(3.79)

Finally, the Lag-one covariance smoother can be used to derive Pk,k−1|n using the

following equations

Pn,n−1|n =
[
I−KnH

]
FPn−1|n−1 (3.80)

Pk−1,k−2|n = Pk−1|k−1J
T
k−2 + Jk−1

[
Pk,k−1|n − FPk−1|k−1

]
JTk−2 (3.81)
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Chapter 4

Future Work

This chapter shows how a battery management system (BMS) can use the EM algo-

rithm to estimate the OCV-SOC model and battery capacity online. First the EM

algorithm is shown for a general state space model (SSM). Then, it is applied to our

BMS application by using its equations.

The SSM with a control input can be written as follows,

xk = Fxk−1 +G1Uk + vk (4.1)

zk = h(xk) + aT b+ wk (4.2)

we can assume that the initial state is known and assume white gaussian noise vk and

wk.

p(xk|xk−1) =
1√

2πσv
exp

(
−(xk − Fxk−1 −G1Uk)

2

2σ2
v

)
(4.3)

p(zk|xk) =
1√

2πσw
exp

(
−(zk − h(xk)− aT b)2

2σ2
v

)
(4.4)
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The log-liklihood equation can be written as follows:

−2 ln p(xn, yn|Θ) = c + n lnσ2
v +

n∑
k=1

(xk − Fxk−1 −G1Uk)
2

2σ2
v

+ n lnσ2
w +

n∑
k=1

−(zk − h(xk)− aT b)2

2σ2
v

(4.5)

The expectation step:

Q(Θ,Θi−1) = E{−2 ln p(xn, yn|Θ)} = c+ n lnσ2
v

+
1

σ2
v

(
S11 − 2FS10 + F 2S00 +

n∑
k=1

(2Fxk−1|nG1Uk +G2
1U

2
k − 2G1Ukxk|n)

)

+ n lnσ2
w +

1

σ2
w

[
n∑
k=1

(zk − h(xk|n)− aT b)2 + h′(xk)Pk|nh
′(xk)

] (4.6)

where h′ is ∂h(x)
∂x
|x̂k|n

If we apply (4.1) & (4.2) to the BMS problem where the state being tracked (x)

is the state of charge then

F = 1

G1 =
1

3600Cbatt

Uk = ∆kik

h(xk) = k0 +
k1
xk

+
k2
x2k

+
k3
x3k

+
k4
x4k

+ k5xk + k6ln(xk) + k7ln(1− xk)

aT =
[
vdk−1 −vdk−2 ik ik−1 −ik−1

]
b =

[
α β R0 Ř1 Ř2

]T
h′(xk) = −k1

x2k
− 2k2

x3k
− 3k3

x4k
− 4k4

x5k
+ k5 +

k6
xk
− k7

1− xk

see [1] for further information on vdk−1, −vdk−2, ik, ik−1, −ik−1, α, β, R0, Ř1& Ř2.
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The maximization step:

∂Q(Θ,Θi−1)

∂G1

=
1

σ2
v

n∑
k=1

(−2Ukxk|n + 2Fxk−1|nUk + 2G1U
2
k ) = 0 (4.7)

=
n∑
k=1

−Ukxk|n + Fxk−1|nUk =
n∑
k=1

−2G1U
2
k (4.8)

n∑
k=1

G1Uk =
n∑
k=1

xk|n − Fxk−1|n (4.9)

G1 =

∑n
k=1 xk|n − Fxk−1|n∑n

k=1 Uk
(4.10)

using 4.7 we can write 4.9 as follows,

1

3600Cbatt
=

∑n
k=1 xk|n − xk−1|n∑n

k=1 ∆kik
(4.11)

Cbatt =

∑n
k=1 ∆kik

3600
∑n

k=1 xk|n − xk−1|n
(4.12)

Cbatt =

∑n
k=1 ∆kik

3600(xn|n − x0|n)
(4.13)

Same approach can be used to find h(x). This part is left as the future work along

with testing this algorithm on simulated and real data.
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Chapter 5

Conclusion

This thesis composed of three chapters. The first chapter served as an introduction

to battery management system (BMS) and its components. It also provided a brief

literature review on the current topics of research in the BMS domain.

Chapter 2 introduced a novel scaling approach that can be employed to further

enhance the OCV-SOC characterization by reducing the modeling error. In this

chapter a novel scaling approach was presented and tested on nine different Li-ion

batteries. All the batteries showed similar results with an optimal scaling factor

around 1.75. Additionally, the scaling approached showed that it can minimize the

state of charge (SOC) modeling error by 9%. Furthermore, the coulomb counting

equation were adjusted to count for the scaling factor and a novel extended Kalman

filter is presented for online SOC estimation where the SOC estimation error was

reduced by around 8% with the scaling approach.

In chapter 3, the SSM problem where a Kalman filter can’t be used due to un-

known state transition parameters or unknown state and measurement covariance

was introduced. The expectation maximization (EM) algorithm was proposed to

solve this problem. The EM algorithm was applied on the CWNA model and shown

how this model can be used to reduce the complexity of the EM algorithm where a
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scalar quantity is being estimated instead of a matrix. Furthermore, the EM algo-

rithm was tested on different scenarios for the scalar case. For all four cases of the

SSM the RMSE and estimated log-likelihood were reported and their performance

compared. Furthermore, the results show that using the CWNA will at least have

the same performance accuracy when used if not even higher accuracy compared to

using the general form.

Finally, Chapter 4 presents future work based on this thesis.
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