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Abstract 

Evaluating the ecological of condition streams can be accomplished by assessing the 

community composition of macroinvertebrates whose differential sensitivity to perturbations 

reflect the conditions of their habitat. Two sampling protocols used to assess Ontario streams 

(Canadian Aquatic Biomonitoring Information Network (CABIN) (employed across Canada), and 

the Ontario Benthic Biomonitoring Network (OBBN)) recommend using D-framed dip nets (D-

nets) to effectively assess streams, most of which have rapid flow and either hard bottoms or coarse 

sediment.  I assessed the relative effectiveness of D-nets and Petite Ponar grabs to sample 

macroinvertebrates during the summer in 19 southwestern Ontario clay-plain streams, which 

typically have fine sediments and slow or nondetectable velocity.  The two methods identified 

similar community composition; but the D-net captured more aquatic invertebrates and greater 

family richness than the Petite Ponar grabs. 

Although both protocols recommend processing and subsampling samples using a 

Marchant Box I found that sorting up to 300 animals per size fraction of a series of nested sieves 

took approximately half the time, yielded significantly greater richness estimates and reduced the 

marked overestimates of abundance sometimes observed when subsampling to fixed counts with 

the Marchant Box. Effective bioassessment of southwestern Ontario clay plain streams can be 

achieved by collecting 2-3 jab-and-sweep D-net samples from glide region in late April-early May 

and processing subsamples separated into size fractions using nested sieves. Most streams sampled 

were dominated by tolerant organisms producing HBI scores ranging from 7-8. Tolerance scores 

for streams in Essex County were significantly higher than scores for streams in the Lower Thames 

Valley conservation region.  
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Chapter 1: General Introduction 

Project Summary and Objectives 

Streams are an important component of the ecosystem surrounding the Great Lakes. They 

are the channels that not only transport water into the lakes but also collect and carry the nutrients, 

chemicals, and organisms contributed along their length from the surrounding land. Varying 

geographical features along the length of streams alter macroinvertebrate community composition 

and functions (Vannote et al. 1980; Lenat and Crawford 1994; Sciera et al. 2008). It is important 

to recognize the contributing factors that affect macroinvertebrate community composition and 

abundance and how this can impact the Great Lakes (Økland and Økland 1986).  

One way to assess streams is by studying their macroinvertebrate fauna as an indicator of 

the system’s ecological condition or ‘health’, as well as the degree of anthropogenic effects (Resh 

et al. 1998; Bailey et al. 2004; Hilsenhoff 1982). Stream organisms vary in their tolerances to 

habitat perturbations. Consequently, the presence of sensitive macroinvertebrates implies that a 

stream is relatively unaffected by anthropogenic stress, whereas disturbed streams are dominated 

by tolerant organisms (Hilsenhoff 1987; 1977). 

In Canada, two protocols have been developed and recommended to assess aquatic 

invertebrate communities in Ontario streams. Environment Canada has developed and oversees 

the Canadian Aquatic Biomonitoring Information Network (CABIN; Environment and Climate 

Change Canada, 2019), which is employed across Canada. The CABIN program maintains a 

national database that permits comparisons of multiple stream ecosystems across the regions 

because they prescribe use of a standardized set of sampling protocols (Reynoldson et al. 1999; 
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ECCC 2018). This allows for the comparison of data and streams themselves since collection 

methods are the same.  

The Ontario Benthic Biomonitoring Network (OBBN) is a protocol co-founded by the 

Ontario Ministry of the Environment (MOE) and Environment Canada (Ecological Monitoring 

and Assessment Network – EMAN; Jones et al., 2004). Because it was derived from CABIN, 

OBBN has similar goals, including recommending use the of standardized methods, as well as 

providing a database to allow the comparison of data and focusing on providing a rapid 

bioassessment of the streams using macroinvertebrates as an ecological measure (Boyle 2003; 

Jones et al. 2007). Like CABIN, the OBBN describes methods to assess lakes and wetlands in 

addition to wadeable streams. 

Both programs use Rapid Bioassessment Protocols (RBP; Plafkin et al. 1989; Barbour et 

al. 1999) for field sampling, meaning that they promote an efficient, easy and cost-effective 

approach to stream assessment (Resh and Jackson 1993; Buss and Vitorino 2010). Both CABIN 

and OBBN field methods are designed to effectively assess the fauna of wadeable streams that 

have relatively rapid flow and coarse sediment by using a D-framed sweep net. Yet, much of the 

southwestern Ontario landscape sits on a glacial-remnant clay plain (Figure. 1.1). The parent 

materials of the St. Clair Clay Plains and other clay plains largely dictate the sediment texture. 

Stony streams (coarse substrate) provide habitat for benthic invertebrates that can be disturbed 

during sampling, resulting in the invertebrates being dislodged and swept into a downstream net 

by the current (Knight and Gaufin 1967; OBBN 2007). Because topographic relief is minimal in 

the St. Clair Clay Plain region, stream velocities are slow, and often negligible during low 

discharge periods. Consequently, riffles and pools can be difficult or impossible to locate. 
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Figure 1.1: The physiographic regions of Southwestern Ontario. (Map Series: Physiographical 
Series, Ontario Department of Mines and Northern Affairs, Ontario Research Foundation, Maps 
2224-2227. Physiographic Series, Ministry of Natural Resources, Ontario Research Foundation, 
Map 2228.) 
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Streams that have clay-dominated sediment are considered to be soft-bottomed (Stark 

2001), a substrate that is more typical of a wetland or pond than of a river (Faulkner and Richardson 

1989). Thus, in some respects southwestern Ontario streams are more similar to wetlands than to 

riffle-and-pool streams. The lack of discernable current and soft mud or clay substrate may 

compromise the D-net’s effectiveness due to back flow and a tendency for the fine particles to clog 

the net. Therefore, the methods used to sample benthos in wetlands and ponds may be more 

effective than dip net sampling in these slow-flowing, soft bottomed streams. One such possible 

alternative to the D-net is the Petite Ponar grab since it is best used in low-flow, muddy areas 

(Elliott and Drake 1981). 

Both the CABIN and OBBN protocols recommend using the Marchant Box (Marchant 

1989) in the laboratory when subsampling is necessary to reduce the time devoted to sample 

processing. The Marchant Box was designed to process a whole sample by distributing the sample 

evenly into 100 cells, a subset of which are randomly selected and individually sorted to enumerate 

the invertebrates. However, this method can be time consuming and, if biased, can ultimately alter 

assessment of ecological condition (Valois et al. 2016). When a sample is comprised of a large 

amount of organic material it can then be difficult to distribute the material evenly among the cells 

when flipping the box upright. Furthermore, the Marchant Box method is a fixed-count protocol 

that requires examining cells until at least 300 organisms have been retrieved. Although the 

protocol is intended to reduce sorting time, the fixed-count stopping rule can result in the omission 

of rare macroinvertebrates when only a small number of cells are examined. The exclusion of rate 

and sensitive taxa can bias metrics of richness and ultimately bias assessments of a site’s ecological 

condition.  
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An alternative procedure is the Nested Sieve-Fractioning approach (Ciborowski 1991; 

Bourassa and Morin 1995; Vinson and Hawkins 1996) whereby a sample is subdivided by particle 

size using a series of sieves. Each subsample is sorted independently according to size-specific 

criteria, which improves sorting efficiency and the detection of large, rarer taxa (Ciborowski 

1991). For each size fraction at least 300 organisms may be counted but typically as the size 

fraction gets smaller there are more invertebrates. For the finer sieves (i.e. 0.05 mm) a ¼ of the 

size fraction can be counted. The detritus weight of what was unsorted can be compared to the 

sorted weight to estimate the individuals of the whole size fraction. This provides a better idea of 

what is in the entire sample rather than the sub-samples taken by the Marchant Box. 

Around the world, agencies may use region-specific procedures to assess the streams 

within their jurisdictions. In the United States, the National Rivers and Streams Assessment 

(NRSA) collects information to describe the nation’s stream and river ecological condition under 

the USEPA (Barbour et al. 1999). In Europe, multiple countries were involved in The 

Development and Testing of an Integrated Assessment System for the Ecological Quality of 

Streams and Rivers throughout Europe using Benthic Macroinvertebrates, (AQEM) project from 

2000 to 2002 (AQEM 2002). These stream assessment procedures are now incorporated into the 

STAR (Standardization of River Classifications) project, which uses the rapid bioassessment 

protocol (Barbour et al. 1999). In 2002, the EU Water Framework Directive (WFD) was created 

to provide a collaborative effort amongst European countries to clean, protect and manage the 

waterbodies they share (EC 2000). In Canada, water quality guidelines were created to focus on 

the chemical, physical, and biological aspects of water quality, administered under the Canadian 

Water Quality Guidelines for the Protection of Aquatic Life (Canadian Council of Ministers of the 

Environment 2014; Reynoldson 2007).  
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For this study on the effectiveness of sample collection, I compared two alternative 

methods that accommodated the difficulties associated with sampling slow-flowing habitats that 

have soft substrates. 

The objectives of my thesis were to  

a. propose field sampling protocols (timing, site selection, and intensity of sampling informed by 

OBBN and CABIN) suitable for conducting aquatic invertebrate bioassessments of low-

gradient clay plain streams of southwestern Ontario;  

b. evaluate the effectiveness of two collection methods (D-frame kick net sampling and Petite 

Ponar grabs); and 

c. compare the efficiency of two laboratory subsampling and processing methods (Marchant Box 

vs. nested sieves) to determine which procedures can best characterize the streams’ ecological 

condition.   

 

I addressed these questions by using inventories of second to fifth-order streams for which 

the intensity of agricultural and rural/urban land use in contributing watersheds had been 

determined (Jones 2012) to stratified-randomly select a set of study streams representing the 

maximum range of potential disturbances to stream communities. Alterations in habitat, flow, and 

the materials transported in run-off due to human activity in watersheds can both directly and 

indirectly affect the invertebrate communities of receiving streams. Dance and Hynes (1980) found 

that two streams that were similar in community composition in 1840 had changed to having 

different communities due to changes in the surrounding agricultural land use. Similarly, 
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Stepenuck et al. (2002) found that the ecological condition of streams (measured in terms of the 

Hilsenhoff biotic index) became progressively poorer as urbanization increased.  

With these guidelines, I sampled 19 streams in midsummer 2016 and 40 streams in April 

and May 2017. In 2017, I sampled within a seasonal timeframe based on long-term 

discharge/temperature records for the Thames River (see below) to ensure that discharge would be 

relatively high and that water temperatures below thresholds that might stimulate emergence of 

spring-developing aquatic insects.   

The suitability of sampler type and intensity and habitat was assessed using the 2016 

dataset.  The efficiency of processing method was determined using samples from a subset of these 

streams by comparing sorting time, family richness and Hilsenhoff Biotic Index (HBI; Hilsenhoff 

1987; Smith 2009) scores. Based on those findings, I subsequently processed triplicate D-net 

samples collected from the streams sampled in 2017 using the nested sieve protocol, and inferred 

stream condition from HBI scores for those samples (Appendix E).   

This thesis is organized into 4 chapters. Chapter 1 introduces the research topic and 

describes my expectations. Chapter 2 compares the relative effectiveness of the CABIN and 

OBBN field protocols and the efficiency of two methods of sampling – a traveling sweep using a 

D-frame dip net, and Petite Ponar grabs. In Chapter 3, I assess the relative effectiveness of two 

methods of sample processing and subsampling – the Marchant Box method recommended by 

CABIN and OBBN, and the sieve fractionation method. In Chapter 4, I reiterate the strengths and 

weaknesses of the various protocols, recommend standard procedures for conducting 

macroinvertebrates rapid bioassessments, and identify future research needs. In Appendix B, I 

describe the general methods by which I selected sampling locations, determined the season during 



 8 

which samples should be collected, and the environmental and biological sampling conducted 

during field visits. The relative condition of southwestern Ontario clay plain streams as 

summarized by HBI scores calculated from samples collected and processed according to the 

recommended procedures is documented in Appendix C.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

Chapter 2: Comparison of Benthic Macroinvertebrate Field Collection Methods: Assessing 
Abundance, Richness and Community Composition from D-frame Sweep Net and Petite 

Ponar Grab Samples. 
 

Introduction 

The ecological status of streams and rivers is determined by its valley, including the 

surrounding land use and activities (Hynes 1975). Understanding the health of a region’s 

watercourses is essential to conservation, preservation and restoration. The macroinvertebrate 

fauna is an especially good indicator of the system’s ecological condition in relation to the degree 

of anthropogenic effects (Resh et al. 1998; Bailey et al. 2004; Hilsenhoff 1982). Benthic 

macroinvertebrates are indicative of stream water quality because they are small, which limits their 

mobility, and they are also a diverse group whose tolerances vary (Stewart and Loar 1994; Hynes 

1960, 1970; Cummins 1979; Weber 1973; Platts et al. 1983; Patrick 1975). Consequently, the 

presence of pollution-sensitive macroinvertebrates at a site implies that a stream is relatively 

unaffected by anthropogenic stress, whereas disturbed streams are dominated by tolerant 

organisms (Hilsenhoff 1977; 1987). 

 Most methods recommended for assessing benthic macroinvertebrates are designed to 

sample relatively fast-flowing streams that have coarse substrate. However, these methods may 

not be equally effective for other stream types. Much of the southwestern Ontario landscape sits 

on a glacial-remnant alluvial clay plain. Consequently, streams are slow-flowing and have 

substrate composed largely of soft mud or clay, which in some respects are more similar to 

wetlands than to riffle-and-pool streams. The fauna of soft-bottomed streams tend to be dominated 

by invertebrates that are more tolerant of warm hypoxic conditions than the invertebrates of hard-

bottom streams, and are less affected by sedimentation (Stark and Maxted 2007). Thus, the fauna 

expected to be found in stony reference streams are not very suitable indicators of conditions 
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expected in reference clay plain streams. In this study I compared two sampling protocols and 

equipment in streams in the Essex and Lower Thames Valley regions of southwestern Ontario, 

which flow through the St. Clair Clay Plain ecoregion (Baldwin et al. 2000; Richards et al. 1949). 

Because of the low relief of the region, the streams have little discharge and minimal velocity. 

Furthermore, many watercourses have been straightened to accommodate agricultural activity and 

resemble ditches rather than meandering natural streams, (Government of Canada: GeoGratis – 

Canada Base Map, 2010). Run-off from agricultural activity results in turbid water and significant 

sedimentation. 

 

Stream Sampling Equipment 

The guidelines and criteria by which to sample and assess macroinvertebrates vary among 

jurisdictions around the world (reviewed in detail in Chapter 1). Various samplers have been 

recommended for collecting invertebrates, yet these are typically used in fast flowing and rocky 

streams. They are less effective in atypical, slow flowing, and soft-substrate streams. I compared 

two samplers - D-frame sweep net and the Petite Ponar grab - as potential options to use in the 

clay-plain streams of southwestern Ontario.  

In this study, I compared the D-framed sweep net using the jab and sweep method, and the 

Petite Ponar, since both instruments are used in still water, soft-bottom habitats (wetlands and 

lakes) similar to those of the Clay Plain streams and ditches of southwestern Ontario. The objective 

of this study was to contrast the sampling effectiveness of Petite Ponar grabs relative to D-frame 

net sampling in 19 southwestern Ontario streams. I predicted that:  
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1. The Petite Ponar grab would collect a representative benthic aquatic invertebrate sample in 

streams having soft sediment and little flow;  

2. Invertebrate community composition would be better represented by ponar grab samples than 

by sweep net samples; 

3. The relative effectiveness of sampler type (sweep net samples vs. Petite Ponar grabs) would 

depend on whether or not streams are stony (i.e., not within the clay plains) vs. silty or 

muddy (within the clay plain ecoregion). Sweep nets were expected to sample more 

effectively in streams outside of the clay plains, whereas the ponar was proposed to collect a 

more representative sample of the invertebrates in streams within the clay plains. 

 

 The findings of this study could result in a proposal to revise the methods for benthic 

macroinvertebrate sample collection be revised for slow-flowing, fine-sediment streams of the St. 

Clair Clay Plain region of southwestern Ontario. 

 

Methods 

Study Sites 

 For this part of the study, 19 streams were sampled in July and August 2016 in 

collaboration with the Essex Region Conservation Authority (ERCA) and the Lower Thames 

Valley Conservation Authority (LTVCA) to assess water quality and macroinvertebrate 

community composition in a cross-section of southwestern Ontario streams. Samples from a subset 

of these streams were chosen for the methods comparison study described herein.  
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Nineteen streams were visited -12 within the Lower Thames region, and 7 in the Essex 

County region of southwestern Ontario (Table 2.1; Fig. 1.1). As this was the first sampling season 

these sites were recommended by the Conservation Authorities administering each region.  

 

Habitat Assessment and Physicochemical Measurements 

On arrival, sites were inspected to confirm that they were accessible and wadeable. This 

was accomplished by either determining the water depth with a sweep net handle if there was a 

bridge or by entering the stream downstream of the sampling reach. Following inspection, stream 

habitat features were identified. A subjective visual assessment was made of the locations of 

riffles, runs and pools, meanders, location of the thalweg, and streambank/riparian features, as 

outlined in CABIN (Reynoldson et al. 2002) and OBBN (Jones 2015) guidelines. Where there was 

no evidence of rapidly flowing water at a site, the shallowest, most rapidly-flowing sections of the 

study area, containing the coarsest substrates were located and designated as riffles/glides (MPCA 

2014). The areas immediately upstream and downstream of these locations were designated as 

pools - deeper, slower-flowing depositional zones that accumulate finer sediments (Hauer and 

Lamberti 2006). A sampling reach was on average 15 to 20 m in length for each site. 

Environmental variables were sampled following protocols common to both CABIN and 

OBBN (Appendix A). Standard field-record sheets of both OBBN and CABIN (Appendix B) were 

used and completed on-site at the time of sampling. Measurements of stream temperature, 

dissolved oxygen concentration, electrical conductivity and pH were taken using a YSI Model 85 

(Yellow Springs Instruments, Dayton, OH). All sections of the OBBN field sheets were completed; 

however, for CABIN field sheets, the sections labelled Slope, Velocity and Depth, and Substrate 
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Data were excluded. Slope could not be determined because the landscape is so flat. Furthermore, 

the 100-pebble count (designed to estimate particle size-frequency distribution of coarse 

substrates) was not conducted because pebbles were either rare or absent at sites. Instead, sediment 

samples were taken in a riffle and pool using a 4.5-cm diameter coring tube and processed in the 

laboratory using sediment particle size analysis procedures (Appendix F). 

Upon arrival, after safety checks and habitat location assessments had been completed 

water quality measurements were made using a YSI Model 85 meter before entering the stream. 

Five Petite Ponar samples were collected and 3 D-net traveling sweep samples were collected in 

the riffle and pool as described below. Point measurements of stream depth were taken with a 

meter stick within each habitat (two riffles/glides, one pool) at the deepest point. Habitat 

assessment attributes such as reach data (i.e. habitat types present, canopy coverage, riparian 

vegetation) were noted, along with stream width and bankfull width. Velocity measurements were 

not collected in2016.  

Macroinvertebrate Sampling 

A total of 8 samples were collected at each stream site, consisting of 3 D-frame sweep net 

samples and 5 Petite Ponar grab samples.  

Petite Ponar grab Samples: The Petite Ponar grab collects a sample of substrate that is 15 

cm x 15 cm in area and 15 cm deep (Mudroch and Azcue 1995). Samples were collected in a 

downstream-to-upstream order to minimize disturbance to the sediments prior to sampling. Grabs 

were collected from five locations in each stream; three in a pool, (one in the center and two along 

the edges of the stream) and two in a riffle/glide, (one-third of the distance from each streambank). 

This provided samples from across the range of habitat locations, ideally reflecting the diversity 
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of taxa present in the stream. Because all sites were wadeable, the sampler was placed on the 

stream bottom and manually pushed into the sediment rather than being dropped onto the substrate. 

The grab was then tripped by hand and manually closed. The sediment was then emptied into an 

enameled tray.  

D-frame Sweep Net Samples: Sweep net samples were collected after Petite Ponar grab 

sampling had been completed, in two riffles/glides and one pool habitat. A 500-µm mesh net was 

used, performing the kick-and-sweep procedure whenever there was noticeable velocity and coarse 

sediment. Alternatively, the jab-and-sweep method was used when there was little or no detectable 

flow and where fine sediment occurred (Stark et al. 2001). For both methods, sweeping was 

conducted with the net held slightly downstream while moving backwards in a zig-zag pattern 

across the stream for 3 min (Jones et al. 2004, Reynoldson et al. 1999). Area sampled varied 

depending on each site but averaged 2.75 m x 30 cm (the width of the net). 

Each Petite Ponar sample was emptied into an enameled pan. The pan was topped up with 

stream water, the contents were swirled to suspend organic debris, and the water and debris were 

carefully poured into a 250-µm mesh sieve bag. This ‘gold-panning’ procedure was repeated 

several times until only inorganic sediment remained in the pan. The sieve bag was repeatedly 

rinsed in the stream to remove fine sediments. Each D-net sample was rinsed in the stream while 

it was still in the D-net until most fine sediments passed. All sample contents were then placed 

individually in a labelled heavy-duty polyethylene soil bag, preserved with a formal-ethanol 

mixture (2.5:1 v/v 95% ethanol and 100% buffered formalin diluted 1:1 with stream water) 

(Pennak 1978; Edmunds et al. 1976; Wiggins 1927;1977; Krogmann and Holstein 2010) and the 
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bag was sealed with a twist-tie. Sample bags were returned to the laboratory where they were 

inventoried, heat-sealed to prevent leakage, and stored for later processing (Chapter 3). 

Laboratory Procedures 

Preservation and Sorting 

In the laboratory, samples were processed and sorted in stratified-random order. 

Samples were emptied into a 0.180-mm mesh 20-cm diameter brass soil test sieve to drain and 

were then rinsed under running tap water to remove residual preservative. They were then 

subsampled according the Nested Sieving procedures as outlined in Chapter 3. Invertebrates 

recovered from sample debris were identified to at least the family level and stored in scintillation 

vials containing 70% ethanol.  
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Table 2.1: Site names, coordinates and sampling date for 2016 benthic sampling year. Locations 
are illustrated in Fig. A.3. 

ERCA 
Stream Name Latitude Longitude Sampling Date 

Belle River 42.251012 -82.714411 10-Aug-16 

Little River 42.311337 -82.926891 05-Aug-16 

Muddy Creek (M7) 42.080434 -82.489117 30-Aug-16 

Sturgeon Creek (M5) 42.038942 -82.645428 25-Aug-16 

Turkey Creek (M2) 42.244982 -83.065452 11-Aug-16 

West Branch Drain 42.043116 -82.83671 11-Aug-16 

Wigle Creek (E9) 42.029794 -82.773231 30-Aug-16 

* Codes in brackets coincide with the Provincial (Stream) Water Quality Monitoring Network 
(PWQMN) for ERCA. 
 
 
LTVCA 

Stream Name Latitude Longitude Sampling Date 

Big Creek 42.190845 -82.47773 27-Jul-16 

Hendry Drain 42.767545 -81.547026 11-Jul-16 

McCarson Drain 42.517856 -82.015933 13-Jul-16 

Natural Watercourse 
(Central) 42.675337 -81.616317 11-Jul-16 

Natural Watercourse 
(Northeast) 

42.737229 -81.48414 05-Jul-16 

Newbiggen Creek 42.717937 -81.66988 11-Jul-16 

Sharon Creek 42.87404 -81.400377 04-Jul-16 

Sixteen Mile Creek 42.527415 -81.647913 12-Jul-16 

South Dales Creek 42.106112, -82.483699 07-Jul-16 

Talbot Creek 42.681609 -81.374632 05-Jul-16 

Two Creeks 42.117999 -82.461325 07-Jul-16 

White Ash Creek 42.540209 -81.963236 13-Jul-16 
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Statistical Analyses 
 
 To assess the effectiveness of samplers, data from the 19 streams sampled in 2016 and 

sorted using Nested Sieves were analyzed. Analyses were conducted using STATISTICA 7.0 

software, unless stated otherwise. 

 

Stream Specific Biodiversity 

 The variability in family richness among streams was assessed from the 8 samples collected 

from the 19 streams (Appendix C). Family richness was calculated for each sample and 

collectively for each sampler (Petite Ponar vs. D-frame dip net). A two-way ANOVA was 

performed to estimate the among-stream variability and the effects of sampler type within streams 

on family richness. An Analysis of covariance (ANCOVA) was performed to compare family 

richness captured by each sampler type while accounting for differences in family richness among 

streams.  

 

Invertebrate Community Composition 

 Both the abundance (numbers per sample) and relative abundance (Octaves – 

Log2(percentage of a sample comprised of a family)) of each taxon were tabulated. Non-metric 

Multidimensional Scaling (NMDS), with Bray-Curtis (Sorensen) distances, was used to portray 

similarity or dissimilarity between relative abundances of invertebrate collections for each sampler 

between different sites. Counts of all individuals belonging to a family that were collected by each 

sampler were pooled together for each site (i.e., specimens in the 5 Petite Ponar grabs from a 

stream were pooled, as were specimens from the 3 sweep samples). Relative abundances of 

families in each pooled sample were then calculated). Invertebrate families represented by fewer 
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than 50 individuals per sampler and site, or that had a frequency of occurring in 5 or fewer samples 

were considered outliers and were removed from the analysis so as to not skew the outcome. This 

resulted in 39 families being included in the analysis and the exclusion of 30 families that did not 

meet the inclusion criteria. The relative abundance (octaves) of each common family then was 

calculated. The octaves were calculated according to the formula  

(4+Log2 (0.625+RA))*(RA>0) 

where RA is relative abundance (percent). The constant (4) at the beginning of the formula was 

added to prevent negative numbers from occurring when relative abundance values were less than 

0.0625 (Log2 (0.0625) = -4). The NMDS analysis was performed using PC-ORD Version 6 

(McCune and Mefford 2011) and illustrated using the scatterplot feature of STATISTICA 7.  

 

Effectiveness of Sampler using Bioassessment Measures. 

 A rarefaction curve was compiled to evaluate how many samples were necessary to reach 

the asymptotic family richness collected from a stream. The first point in each of the stream’s 

rarefaction curve was the individual sample in each stream containing the highest richness. The 

second point was determined by identifying the sample from a stream yielding the greatest number 

of additional families and calculating the richness of the first and second samples combined. The 

third point in the cumulative richness curve consisted in the set of three samples yielding the 

greatest number of families per stream. The process was continued until all 8 samples, from both 

D-net and ponar samples from a stream had been incorporated into the cumulative curve. The 

progressive cumulative richness totals were then standardized by dividing the richness numbers 

by the overall family richness for a stream. Finally, the mean value and standard deviation were 
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calculated for each of the 8 cumulative values for the 19 streams sampled. A main-effects ANOVA 

between each of the samplers was calculated to determine their significance (Table 2.4 results). 

An NMDS analysis with Bray-Curtis distances was performed to ordinate the community 

composition among all of the streams and to determine if there were differences in community 

composition collected by the two sampler types. Hilsenhoff Family Biotic Index tolerance scores 

were also calculated for each stream based on pooled samples collected using a D-net only, using 

ponars only, and using both samplers combined. Tolerance scores were based on the biotic 

tolerance values for New York State stream invertebrates (Smith et al. 2009), provided in the Guide 

to Developing Conservation Authority Watershed Report Cards provided by Katie Stammler 

(Essex Region Conservation Authority, pers. comm.). A scatterplot and regression of these 

tolerance scores was created to predict how well the actual tolerance score (based on D-net and 

ponar samples combined) was predicted by the samples collected using only one type of sampler. 

For each plot, the y-axis was the tolerance score based on all samples combined and the x-axis was 

the tolerance scores calculated for only one type of sampler. A scatterplot was created for each 

sampler individually.  

 

Results 
 
Biodiversity and Community Composition among Streams 
 

Oligochaetes and chironomids were the most abundant taxa encountered (each totaling 

over 46,000 individuals), occurring at every site. The 5 most frequently encountered invertebrate 

families present among all the streams were Chironomidae, Oligochaeta (Naididae), Asellidae, 

Elmidae, and Sphaeriidae (last three all under 10,000 individuals). The overall number of taxa 

encountered in the study is summarized in Appendix C. 
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The streams within Essex and Lower Thames regions differed in that a larger proportion 

of LTVCA streams contained visible riffles (8/12) than did ERCA sites (1/7) (Appendix D). 

Streams in ERCA region had a mean±SD richness of 8.66±4.90 families (n=50) whereas LTVCA 

streams had 12.96±6.05 families (n=67; based on all 152 samples for each region).  

Trends in biodiversity between ERCA and LTVCA streams (Appendix D) were similar, 

with some exceptions. McCarson Drain (LTVCA) was unique in supporting a variety of aquatic 

macrophytes. It was the only site at which emergent and rooted floating macrophytes were 

abundant. Sturgeon Creek had the lowest family richness (13), and McCarson Drain had the 

greatest number of families (43).  

The invertebrates most frequently encountered in the streams regardless of abundance were 

Chironomidae, Oligochaeta, and Asellidae, each occurring in 19, 19, and 17 stream sites 

respectively. Chironomidae, Oligochaeta, Elmidae were the most abundant taxa in 17 streams. All 

the other macroinvertebrate families that we in the top 5 most frequently encountered were only 

captured in 6 or fewer streams (Table 2.3). Oligochaeta or Chironomidae were the most abundant 

taxa collected with the Petite Ponar grab; and were often more abundant than what the D-net 

collected. In contrast, the D-net samples typically had a larger variety of abundant taxa; Corixidae, 

Oligochaeta, Sphaeriidae, Chironomidae, Elmidae, Gammaridae. Most taxa were more abundant 

(total count) in the D-net samples than in Ponar grabs (Fig. 2.1) except for Chironomidae, 

Oligochaeta, and other invertebrates that are typically found within the substrate as opposed to 

being epibenthic.  
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Biodiversity differences due to Sampler Type 

Overall, mean±SD family richness estimated from D-net samples (22.9±8.1; n=19) was 

greater than richness estimated from Petite Ponar grabs (20.4±7.3; Fig.2.1). Mean richness 

estimated from the 3 D-net samples exceeded richness estimated by the 5 Petite Ponar grabs in 16 

of the 19 streams sampled (Fig. 2.1). Overall the difference in richness was statistically 

significantly different between sampler type when accounting for among stream variation (main 

effects ANOVA, F=2.78, p>0.05; Table 2.2). However, when among-stream variation in overall 

family richness was incorporated as a covariate, there was a significant effect of sampler type on 

richness (ANOVA, F=4.135, p<0.04; Table 2.3; Fig. 2.3). The slopes of the two regression 

equations were not significantly different (D-net: y = -1.7475 + 0.8467*x, and ponar: y = -2.3343 

+ 0.78*x). but the intercepts were significantly different (F= 4.136; p = 0.048; Table 2.3). Thus, 

across all the levels of among-stream richness 3 D-net samples collected a significantly larger 

proportion of the families present in a stream (85%) than the 8 Petite Ponar grabs (78%). A 

categorized scatterplot of family richness in individual samples illustrated the consistency of the 

differences (Fig. 2.3).  The estimated percentage of the families collected by a single D-net (58%) 

and by a single ponar grab (44%) shows the D-net is closer to what is available in the entire stream 

(Figure 2.4).  
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Figure 2.1 Bar graph of the mean abundance of invertebrates (the sum of all individuals collected by each sampler) arithmetically 
averaged across all streams) collected using either the D-net (black) or the ponar (grey). Note the octave (Log2) scale. 
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Figure 2.2: Arithmetic mean ± SE invertebrate family richness of D-net and Ponar samplers. 

There is a significant difference between sampling devices (ANOVA, F=4.14, p=0.050). 
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Table 2.2: Main effects ANOVA table illustrating effects of sampler types and streams on family 

richness; samples pooled together based on sampler type. 

Effect D.F SS MS F p 

Stream 18 1627.07 1627.07  110.98    0.001** 

Sampler 1   60.63 60.63    4.14    0.050* 

Discrepance 18  513.15 14.66   

Total  37 2200.85    
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Figure 2.3: Number of families collected from D-net (red diamonds, n=3) and Petite Ponar grabs 

(blue triangles, n=5) as a function of stream-specific family richness. Dotted line represents 

equal richness. D-net: R
2
 = 0.75; SE= 7.89; y = -1.7475 + 0.8467*x. Petite Ponar: R

2
 = 0.78; 

SE=10.07; y = -2.3343 + 0.78*x. Each point represents one of the 19 streams sampled in 2016 

(Table 2.1).  
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Figure 2.4 Number of families collected from D-net (red diamonds, n=3) and Petite Ponar grabs 

(blue triangles, n=5). Dotted line represents equal richness. D-net: R
2
=0.4883; SE=18.28;          y 

= -2.6852 + 0.5751*x. Petite Ponar: R
2
=0.5202; SE=20.33; y = -2.9754+ 0.4389*x. Each point 

represents one sample collected in each stream of the 19 streams sampled in 2016. 
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Overall, the D-net collected more families in 13 streams and in only 5 streams did the ponar 

collect the most (mean±SD= 5.5±3.7; ANOVA, F=2.782). The largest difference in family 

richness between D-net and Petite Ponar samplers was observed where the Petite Ponar collected 

13 more families than the D-net. The next greatest difference was where the D-net collected 12 

more families than the Petite Ponar.  

The 5 most common animals collected using the D-net were Chironomidae (22,546 

individuals), Oligochaeta (18,798), Asellidae (6,597), Gammaridae (4,894), and Elmidae (2,765). 

The five most common for ponars were Oligochaeta (27,598), Chironomidae (25,343), Asellidae 

(3,516), Elmidae (1,276), and Caenidae (762). (Table 2.3). 

According to the rarefaction curve (Figure 2.5) each of the three of the D-net samples 

provides the largest increase in the mean number of macroinvertebrate families, indicating that 

they would provide more information (invertebrates) than if the ponar samples were included next. 

The mean±SD proportion of the richness collected by D-net 1 (riffle habitat) was, 0.47±0.13; when 

combined with another sample (D-net 3 (riffle)) the  mean±SD rose to  0.70±0.16, and if a third 

sample was combined (D-net 2 (pool)) the  mean±SD was 0.77±0.17. D-net 1 is significantly 

different from any other sample, and D-net 3 is significantly different from all but D-net 2. A 

plateau is reached at Ponar 4, which was also in a riffle, and is not significantly different than the 

previous sample (D-net 2) as shown in Table 2.4. There was no significant difference among the 

cumulative values for any of the ponar samples.  
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Table 2.3: The 5 most abundant taxa collected by each sampler in each stream. Abundances are 

based on values extrapolated from the mass of sorted detritus relative to the unsorted biomass in 

the 4.0, 1.0, and 0.5 mm sieve size fractions. 

 

ERCA 

Belle River D-net (91% of 734 animals) Ponar (98% of 923 animals) 

 1. Corixidae                                333 

2. Chironomidae                        154 

3. Oligochaeta                            131 

4. Elmidae                                    31 

5. Acari (Hydracarina)               18 

 

1. Oligochaeta                           555 

2. Chironomidae                       240 

3. Corixidae                                 52 

4. Elmidae                                    44 

5. Ceratopogonidae                     14 

Little River D-net (99% of 4090 animals) Ponar (96% of 8714 animals) 

 1. Oligochaeta                        3595 

2. Chironomidae                      475 

3. Sphaeriidae                              12 

4. Ceratopogonidae                        3 

5. Nematoda                                   2 

 

1. Oligochaeta                         8299 

2. Ceratopogonidae                      42 

3. Nematoda                                28 

4. Sphaeriidae                             16 

5. Planorbidae                                4 

Muddy Creek D-net (88% of 3426 animals) Ponar (97% of 1156 animals) 

 1. Sphaeriidae                          1533 

2. Oligochaeta                           859 

3. Nematoda                              384 

4. Chironomidae                       145 

5. Culicidae                               101 

 

1. Oligochaeta                            693 

2. Sphaeriidae                             326 

3. Asellidae                                  44 

4. Nematoda                                 33 

5. Chironomidae                          25 

Sturgeon Creek D-net (98% of 376 animals) Ponar (100% of 660 animals) 

 1. Oligochaeta                            184 

2. Coenagrionidae                      125 

3. Chironomidae                          47 

4. Collembola                              10 

5. Hydracarina                               4 

 

1. Oligochaeta                            615 

2. Chironomidae                          37 

3. Coenagrionidae                         3 

4.2 Nematomorphe                          1 

4.2 Tricladida                               1 

4.2 Collembola                              1 

4.2 Sphaeriidae                             1 

4.2 Dolichopodidae                        1 

 

Turkey Creek D-net (99% of 6920 animals) Ponar (98% of 2678 animals) 

 1. Oligochaeta                         5495 

2. Chironomidae                        935 

3. Ceratopogonidae                     192 

4. Branchiobdellida                   146 

5. Planorbidae                             52 

 

1. Oligochaeta                          1789 

2. Chironomidae                       717 

3. Nematoda                                   60 

4. Ceratopogonidae                         29 

5. Branchiobdellida                        21 

 

West Branch Drain D-net (87% of 1238 animals) Ponar (97% of 3627 animals) 

 1. Chironomidae                            439 

2. Asellidae                                   277 

1. Oligochaeta                          2317 

2. Chironomidae                        977 
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3. Oligochaeta                              271 

4. Gammaridae                             56 

5. Physidae                                     37 

 

3. Sphaeriidae                             76 

4. Planorbidae                             71 

5. Elmidae                                   69 

Wigle Creek D-net (90% of 1228 animals) Ponar (94% of 610 animals) 

 1. Chironomidae                       616 

2. Oligochaeta                             227 

3. Caenidae                                130 

4. Coenagrionidae                       82 

5. Elmidae                                   45 

 

1. Chironomidae                         295 

2. Oligochaeta                             220 

3. Acari (Hydracarina)                   30 

4. Caenidae                                   14 

5. Hydridae                                     12 

 

 

 

LTVCA 

Big Creek D-net (69% of 6015 animals) Ponar (80% of 2017 animals) 

 1. Oligochaeta                        1450 

2. Coenagrionidae                       988 

3. Physidae                                817 

4. Gammaridae                         532 

5. Asellidae                                371 

 

1. Oligochaeta                           870 

2. Asellidae                               288 

3. Caenidae                               199 

4. Coenagrionidae                    144 

5. Physidae                                  108 

Hendry Drain D-net (95% of 1049 animals) Ponar (96% of 2682 animals) 

 1. Chironomidae                        546 

2. Oligochaeta                            183 

3. Caenidae                                112 

4. Elmidae                                  101 

5. Sphaeriidae                              52 

 

1. Chironomidae                     1323 

2. Oligochaeta                           991 

3. Caenidae                               119 

4. Elmidae                                 101 

5. Nematoda                                33 

McCarson Drain D-net (87% of 8857 animals) Ponar (88% of 6620 animals) 

 1. Chironomidae                     3408 

2. Oligochaeta                         1585 

3. Valvatidae                           1508 

4. Tricladida                              742 

5. Acari (Hydracarina)              471 

 

1. Chironomidae                      3503 

2. Oligochaeta                          1452 

3. Valvatidae                              403 

4. Tricladida                             270 

5. Acari (Hydracarina)               209 

Natural Watercourse (C) D-net (98% of 846 animals) Ponar (99% of 1774 animals) 

 1. Chironomidae                       663 

2. Oligochaeta                              89 

3. Elmidae                                      60 

4. Acari (Hydracarina)                  8 

5. Glossiphoniidae                          6 

 

1. Chironomidae                       1059 

2. Oligochaeta                            623 

3. Elmidae                                      41 

4. Nematoda                                 17 

5. Corixidae                                   9 

 

Natural Watercourse (NE) D-net (93% of 2842 animals) Ponar (97% of 7820 animals) 

 1. Chironomidae                      2154 

2. Elmidae                                 185 

1. Chironomidae                     6289 

2. Oligochaeta                           919 
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3. Oligochaeta                            126 

4. Asellidae                                108 

5. Corixidae                                75 

 

3. Elmidae                                 183 

4. Asellidae                               122 

5. Corixidae                                 66 

Newbiggen D-net (83% of 2863 animals) Ponar (90% of 1490 animals) 

 1. Elmidae                                   781 

2. Chironomidae                         540 

3. Hydropsychidae                    395 

4. Caenidae                                 387 

5. Baetidae                                  264 

 

1. Chironomidae                         653 

2. Elmidae                                    260 

3. Caenidae                                  188 

4. Oligochaeta                             157 

5. Chloroperlidae                           83 

Sharon Creek D-net (67% of 1205 animals) Ponar (93% of 1451 animals) 

 1. Chironomidae                         306 

2. Tricladida                                177 

3.5 Baetidae                                  125 

3.5 Hydropsychidae                    125 

5. Asellidae                                   77 

 

1. Chironomidae                         949 

2. Oligochaeta                                238 

3. Hydropsychidae                       67 

4. Sphaeriidae                              49 

5. Asellidae                                    41 

Sixteen Mile Creek D-net (94% of 4502 animals) Ponar (97% of 2587 animals) 

 1. Gammaridae                        3046 

2. Oligochaeta                            416 

3. Chironomidae                       403 

4. Elmidae                                 265 

5. Acari (Hydracarina)                  86 

 

1. Oligochaeta                           1550 

2. Chironomidae                       706 

3. Gammaridae                          113 

4. Elmidae                                109 

5. Sphaeriidae                                33 

South Dales Creek D-net (94% of 14504 animals) Ponar (97% of 15212 animals) 

 1. Chironomidae                      5475 

2. Asellidae                             3826 

3. Oligochaeta                          2763 

4. Gammaridae                          973 

5. Elmidae                                 639 

 

1. Chironomidae                     6251 

2. Oligochaeta                         5573 

3. Asellidae                             2529 

4. Elmidae                                 286 

5. Gammaridae                           151 

Talbot Creek D-net (96% of 905 animals) Ponar (98% of 1355 animals) 

 1. Chironomidae                         355 

2. Oligochaeta                             221 

3. Caenidae                                  125 

4. Acari (Hydracarina)               123 

5. Elmidae                                     47 

1. Chironomidae                           834 

2. Oligochaeta                               392 

3. Caenidae                                  56 

4. Elmidae                                      25 

5. Acari (Hydracarina)                   17 

 

Two Creeks D-net (95% of 9065 animals) Ponar (93% of 2045 animals) 

 1. Chironomidae                       5386 

2. Asellidae                               1527 

3. Oligochaeta                          782 

4. Physidae                                743 

5. Nematoda                               149 

 

1. Chironomidae                        662 

2. Physidae                                   503 

3. Asellidae                                392 

4. Oligochaeta                            309 

5. Gammaridae                                42 
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White Ash Creek D-net (89% of 659 animals) Ponar (82% of 690 animals) 

 1. Elmidae                                   214 

2. Simuliidae                                131 

3. Hydropsychidae                       104 

4. Chironomidae                           81 

5. Baetidae                                   57 

 

1. Chironomidae                         445 

2. Hydropsychidae                        36 

3. Elmidae                                      31 

4. Oligochaeta                              30 

5. Caenidae                                    24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

 

 

 

Figure 2.5 Rarefaction curve of the number of samples that should be collected in the field. 

Mean±SD values of richness based on 19 sites from 2016 sampling year. Letters represent a 

significant difference for that sample. Samples with the same letter indicates no significant 

difference between them. Calculations illustrated in Table 2.4. 
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Table 2.4: Table of significance values between difference samples using a t-test. Bolded 

numbers indicate statistical significance. (α=0.05) 

 D-net 1 D-net 3 D-net 2 Ponar 4 Ponar 3 Ponar 2 Ponar 1 Ponar 5 

D-net 1  0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
D-net 3   0.22392 0.01557 0.00835 0.00029 0.00012 0.00002 
D-net 2    0.18192 0.12191 0.01721 0.00951 0.00239 
Ponar 4     0.85336 0.45094 0.35700 0.18330 

Ponar 3      0.58129 0.47233 0.25546 

Ponar 2       0.84139 0.45006 

Ponar 1        0.56218 

Ponar 5         
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An NMDS ordination was performed to illustrate the relationship between the ponar and 

D-net invertebrate collections (Figure 2.6; stress=11.25).  An NMDS represents the distribution of 

communities in relation to one another in a multidimensional space. It incorporates multiple 

variables in reduced dimensionality that is more easily interpreted. The dimensions then are a 

reflection of the variables that were more or less related with each invertebrate spreading them 

across the dimension. What is plotted are the streams associated with the invertebrates along that 

dimension. A cloud of points representing the different streams can be compared to each other. 

The taxa whose relative abundances were most highly correlated with the two dimensions 

were Elmidae, Hydropsychidae, Baetidae, Empididae, Tipulidae, Simuliidae, Hydroptilidae, 

(positively associated with scores of Dimension one; Appendix B) and Branchiobdellida, and 

Oligochaeta (negatively correlated with scores of dimension one). Acari, Elmidae and 

Heptageniidae were most highly positively correlated with Dimension two scores, and 

Glossiphoniidae, Planorbidae, Ceratopogonidae, Asellidae, Physidae, Sphaeriidae, Erpobdellidae, 

Nematoda, Mesoveliidae, and Lymnaeidae were negatively correlate with scores of dimensions 

two .  The vectors created by connecting the D-net sample point with its Petite Ponar counterpart 

for each stream tended to be oriented in a bottom left to top right direction, indicating that Elmidae, 

Hydropsychidae, Baetidae, Empididae, Tipulidae, Simuliidae, Hydroptilidae, Acari, and 

Heptageniidae were relatively more abundant in D-frame dip net samples than in Ponar grabs, 

whereas the Ponar grab samples had greater relative abundances of Branchiobdellida, Oligochaeta, 

Glossiphoniidae, Planorbidae, Ceratopogonidae, Asellidae, Physidae, Sphaeriidae, Erpobdellidae, 

Nematoda, Mesoveliidae, and Lymnaeidae. 

The vectors for three pairs of streams cross each other (Sharon and 16 Mile Creek, West 

Branch and South Dales Creek, and Talbot Creek and Belle River), indicating that interpretation 
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of the community compositional similarities between these pairs would depend on the method by 

which they had been sampled. Otherwise, the ordination indicates that each stream was distinctive 

enough that Ponar Grab sampling collects community composition similar to D-net sampling. The 

fauna are similar in McCarson Drain and Turkey Creek between each sampler since their points 

are close together.  

Three axes captured most of the variation in the macroinvertebrate communities in streams 

sampled in 2016 (n=19) across southwestern Ontario. Higher dimensions did not further reduce 

the stress to improve the model. The final instability for a 3-dimensional solution is 0.00000 and 

the number of iterations was 64.  

An NMDS ordination plot was created for all of the samples showing the relationship 

between D-net for both the D-net and ponar combined (Figure 2.7). Only 1 pair of streams cross 

in this ordination (Sharon Creek and McCarson Drain), illustrating that the information provided 

by including Petite Ponar grab samples did not alter the pattern of community composition derived 

from D-net sampling alone. The final stress was = 12.42, for a 3-dimensional solution. South Dales 

Creek and Muddy Creek are the two streams that illustrate similarities in fauna collected since 

their points on the plot are close together.  
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Figure 2.6: NMDS ordination plot showing the relationship between D-net and ponar collections 

for each stream based on invertebrate community compositions. Stress = 11.25, dim=3. Lines 

connect the D-net and Ponar grab samples from each stream. Sampler type influences 

interpretation of stream community composition only for pairs of streams whose lines cross. 
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Figure 2.7: NMDS ordination plot showing the relationship between D-net and all samples 

collected (both D-net and ponar combined) for each stream based on invertebrate community 

compositions. Stress = 12.42, dim=3.  
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Sampler Effectiveness with Biotic Indices.  
 

Table 2.5 shows the Hilsenhoff Biotic Index (HBI) scores calculated for the taxa found in 

each sampler separately and when they are combined. A scatterplot and regression based on these 

scores was performed for the D-net samples and the Petite Ponar grab samples individually 

compared to the scores found when all samples are combined (Figure 2.8 (D-net), Figure 2.9 

(Ponar)). A paired comparison test showed there was a significant difference between the HBI 

scores of the D-net and the Petite Ponar samples (p<0.012, Table 2.6). 

A one-way ANOVA comparing HBI scores was performed for all the samples combined 

and it was found that there was a significant difference between streams located in the Essex region 

when compared to the streams found in the Lower Thames region (ANOVA, p<0.05, Table 2.7, 

Figure 2.10). 
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Table 2.5: Hilsenhoff Biotic Index scores calculated from D-net, Ponar grab and combined samples 

for 2016 streams. 

 

ERCA 

Stream D-net & Ponar 

combined 

D-net only Ponar only 

Belle River 7.43 6.23 8.36 

Little River 9.74 9.50 9.84 

Muddy Creek 8.42 8.18 9.09 

Sturgeon Creek 9.35 8.66 9.66 

Turkey Creek 9.29 9.41 8.93 

West Branch Drain 8.96 9.78 8.75 

Wigle Creek 7.19 6.96 7.67 

 

LTVCA 

Big Creek 9.01 8.72 9.76 

Hendry Drain 7.31 6.58 7.54 

McCarson Drain 7.14 7.14 7.15 

Natural Watercourse (C) 7.09 6.36 7.43 

Natural Watercourse (NE) 6.56 6.44 6.60 

Newbiggen 5.72 5.62 5.93 

Sharon Creek 6.20 6.59 6.86 

Sixteen Mile Creek 8.01 7.15 8.48 

South Dales Creek 9.81 10.35 9.42 

Talbot Creek 7.14 7.08 7.17 

Two Creeks 8.58 8.40 9.42 

White Ash Creek 5.63 5.32 5.93 
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Figure 2.8: Scatterplot and regression of the Hilsenhoff scores for samples from 19 streams 

(ERCA: solid black circle; LTVCA: open black circles) collected using only the D-net compared 

to scores calculated for all samples from a stream combined (D-net and ponar samples combined). 

Y = 1.929+0.7809x. R
2
 = 0.8848, R = 0.9406, p = <0.001 The dashed line represents expected 

perfect correspondence. R
2
 = 0.8923, r = 0.9446, p=0.0000000001, y=1.4108 + 0.8429x. 
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Figure 2.9: Scatterplot and regression of the Hilsenhoff scores for samples collected using only 

the ponar compared to scores for all samples combined (D-net and ponar samples combined). 

ERCA: solid black circles, LTVCA: open blue circles. y=1.5605+0.7017*x. R
2
 = 0.4453, R = 

0.6673, p = 0.0018*** 
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Table 2.6: Paired comparison test of difference between HBI calculated from D-Net samples vs. 

Petite Ponar grab samples. The mean (±SE) difference was -0.50 ±0.18 (n=19), which was 

significantly different from zero t= 2.8, p < 0.012.  

 

Mean Diff.         SD.                 N         SE.                 DF                     t-value       p   

-0.501053    0.778288  19   0.178552 18 -2.80621    18          0.011680 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.7.  One-way ANOVA comparing Hilsenhoff Biotic Index scores for Essex Region 

Conservation Area streams (n=7) with Lower Thames Valley Conservation Area streams (n=12)  

 

 

 
    D.F. SS MS F        p 

ERCA vs. LTVCA 1     7.195       7.195 5.028 0.039 
Error   17    24.328     1.431 

  

Total      18    31.523       
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Figure 2.10: The mean ± SE of the Hilsenhoff Biotic Index Scores (HBI) between the Essex 

County and Lower Thames Regions (ERCA and LTVCA respectively). There is a significant 

difference between these regions (ANOVA, F=5.028, p=0.039). 
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Discussion 
 

 Streams in the southwestern Ontario region are unique in that traditional samplers like the 

D-net may be difficult to use. Since streams in the study region do not follow the stereotypical 

rocky-substrate and instead have fine-grained, muddy substrates, it was thought that a Petite Ponar 

grab may be more effective than a D-frame net at collecting a representative sample of the 

macroinvertebrate community. There were highly significant differences in family richness which 

reflects inherent differences among streams, in that no two streams are exactly alike. Certainly, 

overall abundance of invertebrates varied greatly among streams (Table 2.3), and so D-net samples 

were found to collected significantly higher richness of invertebrates than the Petite Ponar grabs 

(ANOVA Table 2.2). It is noteworthy that even though more Ponar grab samples than D-net 

samples were collected, the D-net collected a greater number of invertebrate families per stream. 

Across all 19 streams the invertebrates that were collected using the D-net but not the Petite Ponar 

were Calopterygidae, Polycentropodidae, Notonectidae, Dixidae, Athericidae, Carabidae, 

Belostomatidae, Dryopidae, and Stenasellidae. The only family of invertebrates that was collected 

by the Petite Ponar but not the D-net was Crangonyctidae. (Figure 2.1). This may be because the 

D-nets sampled a variety of the microhabitats present across the entire width of the stream (on 

average 2.75 meters sampling track) and amongst the water column, whereas the Ponar grabs 

collected only a smaller portion of the stream’s habitat diversity (collected 15x15x15 cm
3
 volume 

within the sediment, not along the water column and not along the entire width of the stream). 

Carter and Resh (2006) described larger samples as beneficial when collecting from microhabitat 

patches, allowing widespread degradation across the stream to be detected, which can be more 

informative than interpreting one sample representing an entire stream. Stark et al. (2001) also 

concluded that in soft-bottomed streams multiple habitats should be sampled using semi-
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quantitative methods (i.e. kick-net) in an area of 3 m
2
 since it may provide important information 

on environmental condition and no one area can represent the other microhabitats in that stream. 

 The rarefaction curve (Figure 2.5) illustrated that the D-net samples contributed the most 

to the biodiversity and richness estimates. A single D-net sample collected ~45% of the mean 

richness, 2 D-net samples collected an average of 70%, and 3 samples acquired just under 80%. 

Collecting until at least 70% of the total number of invertebrate taxa are detected is a common cut 

off point that allows a practical coverage of present taxa and minimizes the time spent going 

through samples (Mackey 2006). Furse (1981) found that within the first three samples, 62, 78, 

and 87% of families were collected, and Morgan and Egglishaw (1965) found that 51-87% of the 

total number of species were found within the first two kick-samples and an additional 9-36% were 

found in the next two samples. Thus, I recommend collecting 3 D-net samples from a stream -two 

in riffles and one in a pool because this strategy provides the greatest cumulative richness before 

reaching a plateau (approximately 90% of the total) and ensures that a representative sample of the 

invertebrate community is collected. Merritt and Cummins (1996) suggest that the numbers of 

samples depend on the site and the type of study, but generally with samples that have a low 

invertebrate density more samples are needed. Since the cumulative richness added by Petite ponar 

sample #4 was not significantly greater than from D-net sample #2 nor from any of the other Petite 

ponar samples (Table 2.4), I conclude that 3 samples per stream are sufficient for general 

bioassessment. 

It also appears that samples taken in riffle/glide habitats have a higher mean richness than 

those taken in pool habitats. Even though riffles and pools were difficult to identify, they still seem 

to play a role in richness. Carter and Resh (2006) found that most sampling protocols (63.4%) only 

involved sampling from one habitat type (riffles: 25.6% and riffle and run: 24.4%) since these are 
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also considered the areas where there is high species richness. This is evident in Figure 2.5. 

However, since these are soft-bottomed streams, multiple microhabitats should be sampled as well 

(Carter and Resh 2006; Stark et al. 2001; Poulton et al. 2003).  

 Poulton et al. (2003) compared how well a rock basket artificial substrate, a kicknet, and a 

Petite Ponar performed - the former two methods in rocky habitats and the latter behind wing dikes. 

They found that kicknets collected a larger mean number of taxa that were in the community 

(88.4%) and that community composition was similar in rock baskets and kicknet methods, where 

75.3% of the taxa were the same. The rock baskets and Ponar were similar in 73.1% of the taxa 

the yet was speculated that invertebrates captured with the Ponar grab in the slower flowing waters 

had been transported there due to drift (Poulton et al. 2003). Overall kicknets collected a higher 

richness in less-tolerant organisms, whereas the Ponar collected a higher-tolerant organisms, 

however the ponar collected the most unique taxa (Poulton et al. 2003). In contrast, I collected 

only one (relatively uncommon) family exclusively with Petite ponar sampling. In conclusion, the 

qualitative method of the D-net is more effective and provides a greater estimate of taxa richness 

than using the Petite Ponar grab. For the clay plains of Essex and Lower Thames, 3 samples should 

be collected, 2 in riffle habitats and one in a pool to generate a sufficiently representative collection 

of the macroinvertebrates present.  

Examination of the most common taxa found among streams by each sampler indicated 

that more families were collected by the D-net than by the ponar. This was especially evident when 

only looking at the single most abundant family for each of the streams (Table 2.4, see also Figure 

2.1, illustrating that chironomids and oligochaetes are the most abundant invertebrates). This may 

be because the Ponar collects quantitative samples and was consistently deployed in the same 

habitat among streams (within the sediment). Chironomidae can be abundant and species-rich, 
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especially in pool habitats (Ferrington et al. 1995), and in detritus and sand (Mackay 1969). They 

are also used as bioindicators of water quality due to their sensitivity (Richardson 1928), and the 

ratio of oligochaetes to chironomids is useful to locating areas of pollution (Saether 1979).  

The NMDS analysis (Figure 2.6) illustrated the distinction between the D-net and the ponar 

grab. Since only a few site vectors crossed, it suggests the community composition identified by 

the two types of samplers are not distinct relative to among stream variation in community 

composition. The same pattern was evident when comparing all samples to the D-net (Figure 2.7). 

This finding is consistent with those of Poulton et al. (2003) since ponar and D-net richness, 

number of taxa and mean number of taxa were not statistically significant. These results suggest 

that since the samplers are similar in community composition that they collect, ponar grabs need 

not be included in sampling procedures. The paired-comparison analysis (Table 2.8) also suggests 

there is a significant difference in HBI tolerance scores between the two sampling methods. It 

suggests the score calculated from D-net samples is 0.5 units less (less tolerant overall score) than 

the score calculated from Petite Ponar grab samples from the same stream. This may be a result of 

the collection of invertebrates that have a higher tolerance in the Petite Ponar than in the D-net. 

For instance, Oligochaeta has a higher tolerance score (8) and was found more frequently in the 

Petite Ponar. 

Conclusion 

 When comparing the effectiveness of the D-net and the Petite Ponar, results of the analyses 

indicate that the D-net is more suitable for rapid bioassessment since it collects a more 

representative sample of the stream community (greater proportion of the families present) than 

the ponar. Three D-net samples should be collected. Additional Petite Ponar grab samples need 

not be taken because they do not add family richness that the D-net samples don’t already collect.  
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Chapter 3: Efficiency of Laboratory Macroinvertebrate Sample Processing; A Comparison 

of the Marchant Box and Nested Sieves Methods. 

Introduction 

When stream or wetland benthic materials are collected, the benthic macroinvertebrates 

are typically either hand-picked from the detritus in the field, while they are living, or the entire 

sample is preserved, and individuals are sorted from the sample in the laboratory. Field sorting is 

much more time-effective than lab processing. However, field-picked samples may not be 

representative of macroinvertebrate community composition.  Large or active organisms are more 

likely to be seen and selected than smaller, inactive, or cryptic individuals (Payne 2017). Lab-

sorted samples are less subject to these potential biases because sorting is normally done with the 

aid of a dissecting microscope. Different methods have been suggested or compared (Brinkman 

and Duffy 1996; Fairchild et al. 1987), with aims to reduce sample sorting time by using 

subsampling methods or devices, (Ciborowski 1991; Marchant 1989; Wrona et al. 1982; Hickley 

1975), or fixed number counts (Barbour and Gerritsen 1996; Somers et al. 1998). Finding ways to 

reduce processing time allows more samples to potentially be included in study designs and/or 

reduces research costs (Brinkman and Duffy 1996).  

Various subsampling methods have been proposed to reduce the amount of time required 

to sort a sample. Wrona et al. (1982) proposed using an Imhoff cone with an air supply at the tip 

of the cone to mix the invertebrates without damaging them. Although the subsampler is easy to 

build, this method requires a count of 100 individuals taken from at least 5 subsamples, which is 

a disadvantage because the combined subsamples will often yield a count of more than 100 

individuals.  
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Hickley (1975) proposed placing the sample on a sieve resting on top of a subsampling 

chamber that would randomly split the sample. A lid with a hole in it allows water to be added, 

which will begin to bubble and gently separate the sample once compressed air is turned on. This 

allows invertebrates to be subsampled and avoids them becoming damaged during washing. Even 

though this method allows for the division of the sample, this apparatus is expensive to build.  

In Ontario, two subsampling/sorting methods are commonly used - the Marchant Box 

(Marchant 1989) and a stack of nested sieves (e.g., Ciborowski 1991). The former is a plexiglass 

box that is subdivided internally into 100 cells in which components of a sample become evenly 

distributed and which can then be randomly selected for sorting. A count of 300 individuals must 

be collected and if this is reached before the contents of the 50
th

 cell have been enumerated the 

sorting may stop; otherwise, the sorter must sort the materials within the entire box (CABIN 2011; 

Jones 2007).  The advantage is that of only a subset of the sample needs to be sorted; yet, it is time-

consuming to initially spread the sample evenly across the box, and subsequently to remove 

subsamples from the randomly selected cells. If a cell contains few invertebrates, then time that 

could otherwise be spent sorting is needed to remove the many individual subsamples from the 

box. The Marchant Box is also heavy and difficult to manipulate if one is to comply with the 

recommended methods of mixing the sample by repeatedly inverting the container. Furthermore, 

rare organisms (those that may be present in only a few cells) may not be encountered during the 

subsampling process and thus are not incorporated into the analyses. Depending on the metric 

used, this could affect the assessment of ecological condition.  

An alternative approach is the Nested Sieve-Fractioning Method. This method involves 

devoting differential effort to sample fractions differing in particle size. The sample is elutriated 

in a pan and slowly poured into the topmost of a nested stack of sieves with mesh sizes of 4.00, 
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1.00, 0.50, and 0.25 mm. This not only prevents the sample’s denser inorganic material (which 

remains in the pan for separate inspection) from being incorporated into the sample, but it also 

facilitates sorting because the materials in a single sieve are similar in size. This, in turn, should 

speed the inspection process, thus reducing processing time, allowing more samples to be sorted 

and hence increasing the precision of information about the stream (Vinson and Hawkins 1996; 

Colwell and Coddington 1995; Allanson and Kerrich 1961).  

The frequency with which these two methods are used varies geographically and by 

jurisdiction, reflecting both the sampling environment (e.g. stream size and substrate 

characteristics) and the history of regional sampling programs.  

 

Great Lakes Region  

Sorting protocols used by agencies adjacent to southwestern Ontario were reviewed 

because the streams in these jurisdictions are likely to be similar to my study area. The Michigan 

Department of Environment, Great Lakes, and Energy may either hand pick invertebrates from 

samples in the field, or use the bucket-and-swirl method in the lab, whereby a sample is placed in 

a bucket and stirred, which suspends lighter, fine material and leaves coarse, inorganic materials 

on the bucket bottom (Michigan Department of Environment, 2008). Subsamples are taken from 

the bucket using a small, 1-mm mesh net and sorted for approximately 20 min until a total count 

of 300±60 organisms are acquired (without the aid of a microscope). This procedure was derived 

from the United States Environmental Protection Agency (USEPA) Rapid Biological Assessment 

Protocols (Barbour et al. 1999), Ohio Environmental Protection Agency protocols (Ohio 

Environmental Protection Agency 1987a, 1987b, and 1987c), Illinois biological procedures, and 

tested by the Michigan Department of Environmental Quality (MDEQ). The protocols are 
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inexpensive, and flotation and elutriation methods such as this work well for highly inorganic 

samples (Rosenberg et al. 1998). However, these procedures are less effective for samples 

collected from areas where substrates are fine-grained (mud or clay). Instead, such samples may 

be field-rinsed through a sieve to eliminate inorganic materials, which can make up 50% of sample 

volume (Rossillon 1987; CABIN Field Manual 2009).  

The Ohio EPA recommends sorting samples using a Caton tray (Caton 1991), sampling at 

least 10% of the tray, counting to at least 500 individuals, and using a microscope at 6X to 10X 

magnification. This is based on the RBPs of the US EPA (Barbour et al. 1999). The Caton tray is 

similar to the Marchant Box in that the sample is spread evenly over a grid within a container. In 

this case, a tray, where any overhanging material or material that crosses the grid can be cut, and 

a scoop is used to remove the contents from the randomly selected grids. Material is sorted under 

a dissection microscope (Barbour et al. 1999). Although this method counts to a larger number of 

individuals providing potentially greater richness, it is still time-consuming because only small 

sections of the Caton tray are sampled at a time. Another limitation is that multiple-sized organic 

particles are present, which makes it difficult for the sorter to inspect. 

Texas is another jurisdiction in which stream substrates mostly comprise clay (Miller and 

White 1998). The Texas Commission on Environmental Quality (TCEQ) created the Surface 

Water Quality Monitoring Procedures, Volume 2 (2007). This protocol involves rinsing samples 

through a ≤595μm mesh, or a No. 30 sieve, or sieve bucket (≤595 μm) to remove preservative and 

fine sediments. The material is then distributed evenly over the bottom of a white pan. 

Subsequently, a cookie cutter or Mason jar lid is used to isolate and allow removal of 4 subsamples, 

which are sorted beneath a stereo dissecting microscope to a count of 140 individuals (Surface 

Water Quality Monitoring Procedures, Volume 2, 2007). This approach is similar to the Caton tray 
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and the Marchant box in that subsamples (albeit large ones) are taken and examined. Although this 

method might be time-efficient, the 140-specimen count criterion might not represent the full 

diversity of the stream community composition. This is especially true when large, rare organisms, 

such as crayfishes, are present.  

Several national programs have developed protocols that regions can employ, using various 

approaches. For example, Moulton et al. (2000) compared quantitative and qualitative sample 

sorting methods by the U.S. Geological Surveys National Water Quality Laboratory Biological 

Group. The qualitative method focuses on estimating the abundance of each taxon by sorting a 

sample for approximately 2 h, collecting only undamaged invertebrates. The sample is elutriated 

in a bucket, poured over 4.75-mm aperture sieve, and the coarse material retained is examined for 

15 min. The remaining (finer) material is examined for 105 min. The quantitative method consists 

of collecting either 100 or 300 individuals from an elutriated sample placed on a gridded 

subsampling frame. However, because 3 subsampling frames and 2 estimation trays can be used, 

this leads to increasing variation amongst sorters. Moulton et al. (2000) even state that the number 

of possible combinations of frames and trays is too large, may have influence the analyses, and 

that a more standard approach is preferred.  

 

International: Europe, New Zealand 

Hasse et al. (2004) compared the River InVertebrate Prediction And Classification System 

(RIVPACS) (Wright 2000) and The Development and Testing of an Integrated Assessment System 

for the Ecological Quality of Streams and Rivers throughout Europe using Benthic 

Macroinvertebrates/ STAndardisation of River Classifications (AQEM/STAR) protocols (Furse et 

al. 2006; STAR consortium 2003). RIVPACS is a model that uses environmental data to predict 
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the macroinvertebrate assemblage expected in a location in the absence of anthropogenic 

environmental stress, which is a tool to assess the quality of rivers (Wright 2000). To sort samples, 

the investigator hand-picks invertebrates in the lab from a fraction (i.e., ½, or ¼) of a sample 

without magnification, and looks through the unsorted fraction for taxa that were not found in the 

sorted fraction (Haase et al. 2004). AQEM/STAR aims to standardize macroinvertebrate sampling 

protocol and assessments. In the sorting protocol, at least 700 individuals comprising at least 1/6
th

 

of the sample are identified without magnification (Haase et al. 2004). Estimates made using the 

RIVPACS were highly variable in terms of the fraction that had to be sorted; and the AQEM/STAR 

approach was very time-consuming. Haase et al. (2004) proposed an alternative modified 

AQEM/STAR method (MAS method), which consisted of using a 2-mm aperture sieve. This 

reduced sorting time and associated costs compared to RIVPACS and AQEM/STAR. This 

procedure is similar to using nested sieves in that similarly sized objects remain together, which 

eases processing.  

New Zealand recognized the challenges and created a protocol to accommodate sampling 

soft-bottomed streams within their National River Water Quality Network (NRWQN). Maxted et 

al. (2003) observed a difference in abundance of invertebrates between soft-bottomed and hard 

bottomed streams, and consequently recommended that soft-bottomed samples should be entirely 

processed to increase information obtained. Stark et al. (2001) contrasted the three major methods 

of processing macroinvertebrates used by New Zealand biologists - full counts, fixed counts, and 

coded abundance (semi-quantitative assessments of samples from hard-bottomed streams). Stark 

et al. (2001) prepared a manual for the Ministry for the Environment of New Zealand and 

elaborated on all three methods; but only the first two will be summarized. The fixed count 

protocol consisted of counting up to 200 individuals and then scanning for rare taxa first by 
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washing the sample on a 0.5-mm aperture sieve (and 4.0 mm if desired), and distributing the 

retained material evenly in a white, gridded sorting tray (6 cm by 6 cm). Grids are randomly 

selected for examination (without a microscope) until 200 individuals are reached. The entire tray 

is subsequently examined for rare taxa. The second method is full count enumeration with a 

subsampling option. Stark et al. (2001) describe the latter as time-consuming and expensive but 

having the benefit of allowing for a direct measure of abundance and percent composition. Thus, 

it can be used for comparisons of abundance or calculation of metrics.  

The full count protocol consists of pouring the sample through a stack of sieves (4.0, 2.0, 

1.0, 0.5 mm) and inspecting the fractions to make sure materials are separated by size 

appropriately. The 4.0- and 2.0-mm size fractions are examined first, without the aid of a 

microscope. Subsampling is an option for reducing sorting time if more than 500 individuals are 

present (Stark et al. 2001). Thus, using sieves reduces sample sorting time and they have been 

recommended for samples from both coarse, and fine-grained substrates.  

As reviewed above, although sample sorting protocols vary among programs, sieves are 

commonly used to speed the sorting process. Ciborowski (1991) found that for samples from two 

stony-bottomed streams, the processing time for samples that have abundant invertebrates can be 

greatly reduced by subsampling or simply using a smaller sampler. Allanson and Kerrich (1961) 

also recommended using sieves to reduce sorting time for samples collected from streams with 

sandy, muddy or stony substrates.  

This study investigated which of two widely used laboratory processing protocols 

(Marchant box and nested sieve-fractioning) was better suited to sorting the invertebrates from 

clay plain stream samples. The efficiency (total processing time), effectiveness (number of 
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individuals and family richness) and accuracy (nearness of an estimate extrapolated from a 

subsample to the actual number) of the two subsampling techniques were compared.  

The objectives were to: 

1. Compare sample total processing times of each procedure. I predicted the Sieve-Fractioning 

Method to require less sorting time than the Marchant Box; 

2. Compare the estimated family richness of samples processed by each method. I predicted the 

Sieve-Fractioning Method to have a larger family richness than the Marchant Box; 

3. Assess the similarity in community composition estimated from samples processed by each 

method. 

4.  Determine the relative precision and accuracy of extrapolated counts estimated from 

subsamples using each procedure 

 

Methods 

Method comparisons were conducted on 40 samples (3 D-frame sweep and 5 Petite Ponar 

grab samples collected from each of 5 streams in 2016 - Big Creek, Little River, Sharon Creek, 

Sixteen Mile Creek, and White Ash Creek; Table 2.1 in Chapter 2). Samples were examined in 

stratified-random order. Each sample was first processed using the Marchant Box method 

(recommended by OBBN and CABIN). Subsequently, all invertebrates and detritus were 

recombined and processed according to the sieve-fractioning and subsampling method of 

Ciborowski (1991).  
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Marchant Box Method 

A sample was washed through a 0.50-mm aperture soil test sieve stacked on top of a 0.25-

mm sieve using a gentle stream of water from a faucet equipped with an aerator. Particles retained 

on the 0.25-mm sieve were archived due to time constraints but may be used for other future 

projects. Materials in the 0.50-mm sieve were rinsed into a Marchant box (Marchant 1989), which 

was then completely filled with water. The box lid was secured, and the entire box inverted to 

distribute the debris in the sample evenly in the water. The box was quickly returned to its upright 

position, allowing the sample contents to randomly settle into the 100 cells. A photo was taken 

after each inversion to illustrate how the sample may be distributed, and the number of inversions 

was recorded. The material from a randomly selected cell was removed with a pipette, transferred 

into a Petri plate, and all invertebrates were removed and identified at 10X magnification beneath 

a dissecting microscope. The procedure was repeated by sampling randomly selected cells (using 

numbers obtained from a random number generator) until the required number of animals was 

recovered. Wash time and sorting time were recorded to the nearest minute. 

Sorting stopped once a total of 300 animals had been found, but only if this total was 

achieved by examining between 5 and 50 cells. The material from the cell in which the 300
th

 

organism was found was sorted entirely. If 300 individuals were found before the 5
th

 cell, sorting 

continued until the biota in at least 5 cells had been enumerated. This did not occur in my study. 

If more than 50 cells had to be examined, detritus from the full complement of 100 cells was sorted. 

The sample (detritus + invertebrates from all cells) was then recombined and subsequently sorted 

using the Sieve-Fractioning Method.  
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Nested Sieve Fractioning Method 

The sample was emptied from its storage bag into a white enameled tray containing 5 cm 

depth of tap water, and clumps of debris were gently teased apart with a pair of forceps. A nested 

stack of standard soil test sieves was placed in a sink and was used to split the sample into fractions 

sorted according to particle size. The stack was composed of a 4.00-mm, 1.00-mm, 0.50-mm and 

0.25-mm US standard brass sieves. The 0.25-mm sieve was included to incorporate materials that 

did not pass through the D-net or the sieve bag while sampling. The tray contents were slowly 

poured through the top sieve. Additional water was repeatedly added to the tray to resuspend debris 

that remained on the bottom of the tray, and that water (and suspended debris) was also poured 

into the top sieve. Once all organic material from sample had been poured onto the top sieve, a 

gentle stream of running water was used to wash smaller particles through the largest-aperture 

sieve. Materials retained on the top sieve were then rinsed back into the pan, and the process was 

repeated to ensure that all fine material had passed through the coarsest sieve. Subsequently, the 

material remaining on the 4-mm sieve was rinsed into the enameled tray, the contents poured onto 

a 0.18-mm sieve (to drain off the water), and the material in that sieve was emptied into a Petri 

dish for later inspection under the microscope. The same steps were repeated for the 1.00-mm, 

0.50-mm, and 0.25-mm size fractions. Depending on the volume of the entire sample, sieves could 

become clogged, causing them to begin to fill with water. In such cases, I carefully lifted and 

separated one sieve from another and allowed the water to drain into the sieve below.  

Once the size fractions had been placed in individual Petri dishes, the materials were 

examined under the microscope. For this study, the 0.25-mm size fraction was archived (placed 

into a scintillation vial with ethanol for other potential projects). 
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For most samples, the entire subsample was sorted, but where there was a lot of detritus 

and more than 300 organisms were suspected to be in a size fraction, that size fraction was quarter-

sampled using a right-angled plastic wedge that would isolate ¼ of the dish contents from the 

remainder. Typically, the 4-mm and 1-mm size fractions were completely sorted, and the 0.5-mm 

size fraction was quarter-sampled. All detritus aliquots (sorted or unsorted) were kept separate and 

placed in an oven at 70°C and dried to constant mass (at least 24 h). The masses of both the sorted 

and (if applicable) unsorted sample fractions were recorded. These proportions of detritus were 

then used to estimate the total number of invertebrates present in a size fraction by extrapolating 

the number of invertebrates in the sorted fraction of detritus to the total mass of detritus in the 

sample.   

The total processing time needed to prepare and sort each sample (sum of washing time + 

handling time + sorting time to achieve the appropriate criterion) by each subsampling method 

was recorded to the nearest minute. 

 

Invertebrate Identification 

 Invertebrates were identified to the family level of taxonomic resolution using keys of 

Merritt et al. (2008), typically as the sample was sorted. The identification times for each sample 

were recorded separately from the sorting time by using a stopwatch and recording the length of 

time it took for each. Invertebrates were stored in shell vials separated by fraction size and placed 

into scintillation vials for later verification. The time needed to identify taxa to the appropriate 

level of resolution is assumed to be independent of the processing method and thus was recorded, 

but not included in the comparison of lab techniques. 
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Statistical Analysis 

Various measures of sample-processing efficiency were assessed. An effective process 

provides a precise and accurate estimate of the true number and kinds of organisms present, 

requiring the shortest possible period of time to sort organisms from detritus. Unfortunately, 

washing and sorting times were lost due to misplacing the written data for 14 of the 40 samples 

and a regression analysis was conducted to estimate these missing times. For each sample, I 

determined the following aspects of processing, identification and sample composition (Table 3.1): 

 

Table 3.1. Summary of variables determined for assessment of processing efficiency of Marchant 

Box vs. Nested Sieve procedures.  

 

Independent variables (units) Dependent Variables (units) 

• Stream name 

 

• Sampler type (D-frame net; Petite 

Ponar) 

 

• Processing method (Marchant box; 

nested sieves) 

 

• Detrital mass (g dry mass) 

 

• [Actual] abundance (total number of 

invertebrates in a sample) 

 

• [Actual] sample richness (total 

number of families observed in a 

sample) 

 

• Sample preparation time (min) 

 

• Sample sorting time (min) 

 

• Estimated invertebrate abundance 

(number of invertebrates in sample, 

extrapolated from subsamples where 

appropriate) 

 

• Estimated sample family richness 

(based on 300-animal count; families 

per sample) 

 

• Estimated streamwide family richness 

(based on processing method; families 

per stream) 

 

• NMDS axes of community 

composition (dimension score; 

sampler & process type specific) 
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Subsampler Efficiency – Processing Time 

The relationship between the length of time taken to process each sample using the 

Marchant Box vs. sieve-fractionation method was assessed by regression. To account for variation 

in human factors, samples were sorted in a randomized order. A distance-weighted least squares 

line was fitted through the data to summarize the trend. Main effects (unreplicated; processing type 

x sample number) ANOVA was performed to compare the mean processing time of each procedure 

accounting for inter-sample variation. Because both processing times and the size of samples 

varied greatly, multiple regression analysis was performed to determine the degree to which other 

covariates influenced processing time (washing time + sorting time). The independent variables 

included both dummy variables (sorting method (Marchant Box vs. Sieves), sampling method (D-

net vs. Petite Ponar), habitat type (riffle vs. pool)), stream sampled (4 variables to summarize the 

5 streams) and quantitative variables (total detrital mass). In addition, variables representing 

several interactions (sorting method x detritus mass, sampler type x detritus) were included. 

Relationships were assessed by both forward and reverse stepwise regression.  Because the same 

results were achieved by both methods, forward stepwise results are reported here. 

 

Estimated Richness and Abundance 

Abundance was expressed as the total number of invertebrates estimated to be present in a 

sample collected from a stream by one of the subsampling methods. Taxa were identified to family 

unless otherwise noted (depicted in Appendix C). Richness was variously expressed as the number 

of families present in a sample (sample richness; families per sample), the mean number of families 

collected by a particular sampler type in a particular stream (sampler richness; D-frame net vs. 

Petite Ponar grab), the cumulative number of families encountered in a particular stream (stream 
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richness; families per stream) or processing-specific richness (mean number of families observed 

per sample using the Marchant box procedure vs. nested sieve procedure).  Regression analysis 

was used to estimate the relationship between estimated (extrapolated) abundance determined from 

the Marchant box procedure vs. the estimated (extrapolated) abundance determined from nested 

sieve procedure.  

The relationship between best estimate of stream richness (based on the combination of 

subsamplers) compared to what is indicated by each subsampler individually was also considered. 

The absolute difference in abundance between the sieves and the Marchant Box relative to the 

estimated abundance from the sieves as a percent of the Marchant Box was also evaluated. 

 

Community Composition 

Community composition data were analyzed using the abundance and relative abundance 

using Octaves – Log2(percentage of a sample comprising of a family) (as in Chapter 2). Non-

metric multidimensional scaling (NMDS) with Bray-Curtis distances was performed to express 

community composition along a reduced number of biological axes and graphically illustrating the 

within vs. among sample differences of each subsampling procedure. The NMDS analysis was 

performed using PC-ORD Version 6 (McCune and Mefford 2011), and the scatterplot using 

STATISTICA 7. 
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Results 

Subsampler Efficiency – Processing Time 

The time in minutes was recorded for 40 samples collected with either a D-frame net or a 

Petite Ponar grab from among 5 streams for each processing method. Processing times that were 

not recorded for 12 out of 40 samples were interpolated using regression analysis to estimate what 

the time may have been to be included in the analysis. The equation used was The sieve-

fractionation method was most efficient when samples required less than about 230 min of sorting 

time ((Sorting time =229 + 0.1189 x mg detritus; Figure 3.1). A main effects ANOVA showed a 

significant difference between sorting times of the two subsampling methods (Figure 3.2 and Table 

3.2: ANOVA, F(1,31) = 9.15, p=0.005).   

Multiple regression was performed to determine whether sorting time was significantly 

influenced by subsampling method (Marchant Box vs. Sieves), field method (D-net vs. Petite 

Ponar), habitat type (riffle and pool), and detritus mass in a sample. Sorting time was independent 

of all variables except for detritus mass (Table 3.3). A simple regression with detritus mass (mg 

dry mass) was significant (p=0.0095) and the equation of the line is Sorting time (min) 

=160.1841+4.6673xDetrital mass (mg). Thus, at an increase in one gram of detritus will increase 

the total time to go through a sample by 5 minutes. Because detritus was significant at the a=0.05 

level, a standard stepwise regression analysis was conducted with interactions between sorting, 

sampling, and habitat with detritus. There was a significant effect of sorting method on sorting 

time, but it depended on the amount of detritus present in the sample (Table 3.4).  
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Figure 3.1: Scatterplot of the time taken to process one sample using nested sieves (squares and 

dotted line) and the Marchant box (triangles and solid line). The lines represent distance-weighted 

least squares fits through the data points (stiffness = 0.5). 
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Figure 3.2: Mean ±SE; n=31 processing time for samples using the Marchant Box and sieving 

subsampling methods (note the Log scale). There is a significant difference between sorting 

methods (ANOVA, F(1,31) = 9.14.589, p=0.005). 
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Table 3.2. Main Effects (unreplicated) ANOVA of effects of sampler type on Log10 transformed 

combined processing time. 

 

Effect D.F. SS MS F p 

Subsampler 1 0.9541 0.9541 9.139 0.005087 

Sample 30 3.6086 0.1203 1.152 0.350312 

Discrepance 30 3.1321 0.1044 
  

Total 61 7.6947       
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Table 3.3 Results of multiple regression analysis of the effects of subsampling method (Marchant 

Box = 1; Sieves = 0), sampling method (D-net =1; Petite Ponar = 0), habitat type (riffle = 1; pool 

=0) and detritus mass (grams) on Log-transformed total time required to process a sample 

(minutes; n=36 samples; R
2
 = 0.256)  

 

 

n=36  

            

Variable   All variables 

             

    Reg.  S.E.  p  R
2
 

    Coeff. 

             

Intercept   123.691 32.662  0.00068 

Sorting Method  49.167  31.136  0.124 

Sampling Method  25.239  33.445  0.456 

HabitatType   -0.831  32.965  0.980 

Detritus Mass (g)  5.009  1.811  0.009 
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Table 3.4 Results of standard stepwise multiple regression analysis of the effects of the interaction 

between detritus mass (grams) with subsampling method (Marchant Box = 1; Sieves = 0), sampling 

method (D-net =1; Petite Ponar = 0), and habitat type (riffle = 1; pool =0) on total time required 

to process a sample (minutes; n=36 samples). R2 = 0.141 

 

n=35              

Variable   All variables 

             

    Reg.  S.E.  p  R
2
 

    Coeff. 

             

Intercept   169.139 18.71  0.000   

SortingxDetritus  8.870  4.272  0.047 
SamplingxDetritus  -4.675  9.109  0.612 

HabitatxDetritus  -1.769  8.569  0.838 
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Richness and Abundance 

  The actual abundance of invertebrates in samples (those that were entirely sorted by at 

least one processing method) was compared to the estimated abundance extrapolated from the 

subsample of the other sorting method (Figure 3.3). The equation of the line for the Marchant box 

was y = -102.6804+3.2853*x and for the sieves was y = -46.268+1.164*x. The Marchant box 

method sometimes greatly overestimated the abundance of invertebrates in a sample, whereas the 

nested sieve procedure slightly overestimated true abundance when over 300 individuals were in 

subsamples. The slopes of the two lines were highly significantly different from each other 

(Marchant Box: R
2
 = 0.22, p = 0.09; Sieves: R

2
 = 0.89, p<0.001). The regression line for the sieve 

method was relatively unbiased (similar to the dashed line in Figure 3.3, which represents perfect 

prediction of invertebrate abundance in the whole sample extrapolated from the partial subsample).  

A comparison of the richness estimated by the two sorting methods revealed that D-net 

samples processed by the sieving method collected more families than samples processed by the 

Marchant box in only 2 streams and equal in richness to the Marchant Box in one stream. Petite 

Ponar samples processed by the sieving method contained more families than when processed by 

the Marchant Box in 3 streams and an equal number in 1 stream (Table 3.5). There was a significant 

difference in richness between each sorting method (Main Effects ANOVA, F(1,19)= 5.959, p<0.05; 

Figure 3.4, Table 3.6).  

  The sieving method detected, on average, 94% of the families estimated to be present in a 

stream (estimated by regression; y = -0.8341+0.9421*x, SE = 0.139, R
2
= 0.9380, p=0.0067; 

Figure. 3.5).  In contrast, the Marchant Box only detected about 83% of the families (y = 0.0835 

+ 0.827*x, SE = 0.118, R
2
= 0.9709, p=0.0059). Neither equation differed significantly from a 

slope of 1.0.  



 47 

 

 

Figure 3.3: Estimated invertebrate abundance extrapolated from subsamples versus true 

abundance. Each point represents one sample (n=27). The solid blue line represents the projected 

estimates of the Marchant Box (Estimated abundance = -102.6804+3.2853*true abunance), and 

the solid red line represents that of the sieve method (estimated abundance=46.0799+0.784*true 

abundance). The dotted line indicates the expected extrapolated abundance in a sample if the 

subsampling method is unbiased (Extrapolated abundance = actual abundance) .  
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Table 3.5. Cumulative family richness when all 3 (D-net) and 5 (Petite Ponar) samples were pooled 

together (p>0.05). 

 

 

 

              

Stream   Sample Type     

   D-net (n=3)    Petite Ponar (n=5)    

   Marchant Box       Sieves  Marchant Box         Sieves      

Big Creek       26              31                30                    29               

Little River        8                  8                  9                     13 

Sharon Creek       23              21     22                       29 

Sixteen Mile       15                18                 13                14 

White Ash Creek      24                23                     20                    20   
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Figure 3.4. The mean(±SE) family richness found using the Marchant Box and nested sieves 

fractionation method. (n=40). 
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Table 3.6. Main Effects (unreplicated) ANOVA of effects of processing type on number of 

families recovered from sweep and Petite Ponar samples collected from 5 streams. 

 

 

Effect 
df 

SS MS F p 

Sample 
9 1079.050 119.894 19.601 0.000070 

Process 
1 36.450 36.450 5.959 0.037295 

Discrepance 
9 55.050 6.117 

  

Total 
19 1170.550   
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Figure 3.5: Scatterplot and regression line of family richness estimated from Marchant Box and 

sieve fractionation processing methods vs. total number of families observed in source stream. The 

x-axis is a combination of both samplers. Each point represents the mean richness for 8 samples 

per stream using the respective subsampler. The dotted line represents equal richness for both axes. 

The Sieve standard error is 0.139 and for the Marchant Box it is 0.118. The slope of the equation 

for both sorting methods is not significantly different from a slope of 1.0. (Marchant Box: t=1.47, 

p>0.05, Sieves: t=0.41, p>0.05) 
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Figure 3.6 Scatterplot and regression with polynomial fit of the absolute difference between the 

Marchant Box and Sieves, to the Sieves as a percentage of the Marchant Box. Each point represents 

one sample. R2 = 0.2981, p=0.0015, y=208.9075+0.1009*x. 
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Community Composition 

Non-metric multidimensional scaling (NMDS) ordination of the invertebrate families 

collected in the D-net samples from the 5 streams represented community composition in 2 

dimensions (stress=12.22). The similarity in community composition of Marchant Box vs. sieve 

subsampling was represented by connecting the two estimates from each sample with a line (Figure 

3.7). Ellipses were drawn by eye to enclose the sample estimates from each of the 5 streams.  

The NMDS indicated that community composition of each stream was relatively distinct 

from the others. There was little or no overlap among the ellipses for Little River and Sixteen Mile 

Creek, indicating that the fauna within these streams are different in composition from the 

communities of the other streams. White Ash Creek and Big Creek overlap, suggesting these two 

streams have similar community composition. Big Creek and Sharon Creek also overlap. The 

invertebrates whose relative abundances are positively associated with scores of Dimension 1 are 

Chironomidae and the dragonfly family Gomphidae, whereas many other families’ relative 

abundances were negatively correlated with scores of Dimension 1 (Appendix B). The 

invertebrates whose relative abundances were positively correlated with scores of Dimension 2 

were Corixidae, Elmidae, Heptageniidae, Hydropsychidae, Hydroptilidae, Simuliidae, and 

Tipulidae. Relative abundances of Oligochaeta were negatively correlated with scores of 

Dimension 2. Accordingly, one can infer that Sixteen Mile Creek is predominately influenced by 

oligochaetes, chironomids and Gomphidae. Little River is influenced by many invertebrates in the 

negative direction of Dimension 1, but minimally influenced by those associated with Dimension 

2 (Appendix B). Sharon Creek is not dominated by any particular taxon. White Ash Creek and Big 

Creek are similar in composition, so their fauna are composed predominately of Corixidae, 

Elmidae, Heptageniidae, Hydropsychidae, Hydroptilidae, Simuliidae, and Tipulidae. Overall, 
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sorting method did not produce  large differences in community composition except for samples 

from Big Creek (D-net sample 2 taken in pool habitat) and White Ash Creek (D-net sample 3 taken 

in a riffle).  

 

Discussion 

Minimizing sample sorting effort is one of the objectives of a rapid bioassessment protocol,  

(Resh et al. 1995; Barbour et al. 1999), because sample processing can be much more time-

consuming than field collection. Several investigations have suggested that using sieves will 

reduce sorting time, (Ciborowski 1991; Vlek, Šporka, and Krno 2006; Barba et al. 2010). The goal 

of this chapter was to determine whether sieving procedures are more effective in sample 

processing than the recommended Marchant Box method (Marchant 1989; CABIN 2011; Jones et 

al. 2004, (OBBN)). 

Comparisons of sorting times using the two subsampling methods indicate the sieve 

subsampling protocol is indeed more time-efficient than the Marchant Box. When using the sieves, 

a sample was completed in about 1 to 2 h, whereas the Marchant box typically took 4 h or more 

(Figure 3.1). The length of time taken to sort through a sample increased as a function of the 

amount of detritus in the sample until about 6 g of detritus. When more than 6 g of detritus occurred 

in a sample, the Marchant Box sorting time increased slightly, whereas sorting time required using 

the sieves method actually decreased, presumably because the finer sieve fractions could be 

subsampled. There was great variability in the time required to go through a sample.  

I had hypothesized that invertebrate abundance may have been a contributing factor to 

overall processing time, as reported by Ciborowski (1991). However, multiple regression analysis 

indicated that this factor was not significant (p=0.177). This may be because the Marchant box  
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Figure 3.7: NMDS ordination of invertebrate community composition estimated from D-net 

samples collected from 5 streams, illustrating compositional differences inferred by subsampling 

methods. The red dots represent samples sorted using Sieve fractionation and the black dots 

connected to each red dotrepresents the same sample sorted using the Marchant box procedure. 

Ellipses enclose the replicate samples collected from each stream. (BC = Big Creek; LR = Little 

River; SC = Sharon Creek; SM = Sixteen Mile Creek; WA = White Ash Creek; #S = rep number 

of sample sorted by Sieves; #M = rep number of sample sorted by Marchant Box). 
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method uses a fixed count approach (300 individuals), whereas the sieve fractionation protocol is 

a fixed fraction subsampling method, so sieving only partially relies on the number of 

individuals present in the sample. Carter et al. (2006) found that fixed-count subsampling 

(typically 100 or 300 individuals but ranging up to 550) is the most common approach in Canada 

and the US. Carter, (2006) reported that almost 70% of studies reviewed reported using sieves to 

remove the large, rare organisms before going through the sample. 

An important determinant of the length of time spent using the Marchant box method is 

the handling time spent removing materials from each cell. If few animals are present in a sample, 

then a considerable time is spent removing the cell contents and less time is devoted to searching 

for animals. The size fractionation achieved by the nested sieve method allows time to be spent 

primarily in sorting a single aliquot rather than having to handle many small subsamples, as is 

required using the Marchant box.  

The amount of detritus in a sample was an important determinant of the time needed to sort 

samples, as has been frequently reported (Culp et al. 1983; Reice 1980).   Each additional gram of 

detritus in a sample increased the sorting time by about 5 min using the sieve fractionation protocol 

(Table 3.3). In contrast, the Marchant box protocol required 8.87 minutes longer per gram of 

detritus to complete a sample (Table 3.4). This difference is especially noticeable for clay plain 

stream samples because the fine sediments or large quantities of debris can sometimes make it 

difficult to wash samples thoroughly.  Overall, it takes significantly more time to extract materials 

from the Marchant box cells than it does to sort the contents of a sieve fraction in one go on a petri 

plate. Clearly, thorough field-washing of samples is an important aspect of removing as much fine 

sediment and detritus as possible. But when residual materials remain in samples, the sieve 

fractionation method is particularly more efficient than the Marchant Box.  
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 A comparison of the estimated numbers of invertebrates in samples revealed that the 

Marchant Box sometimes markedly overestimated abundance compared to the sieving method 

(Figure 3.3).  This was a function of the degree and method of subsampling.  On average, sieves 

slightly overestimated the true abundance (by a factor of about 1.16 times; (R
2
 = 0.94), whereas 

the Marchant box overestimated abundance on average by a factor of 3.29 (R
2
 = 0.22). This may 

be due to too few cells in the Marchant Box being sorted, producing an overestimate of the 

abundance since there is increased variability. For example, if 10 cells are sorted and 300 animals 

are found, the resulting estimated abundance is 3000, but if sorting continued it could be found 

that when the 50
th

 cell is reached there are only 1000 individuals, which changes the estimated 

abundance from 3000 to 2000 organisms. The estimated abundance accuracy would increase if 

more cells were sorted since the values are closer to the true abundance. Courtemanch (1996) 

identified this limitation of the fixed count method with respect to invertebrate richness. He 

commented that a fixed number of organisms is not consistent because two communities cannot 

be assumed to be similar, and that when only collecting to a certain number the proportion of the 

total community that has been found is unknown; therefore, rare organisms may be missed, thus 

altering the estimate of biological integrity. Courtemanch (1996) discussed 3 options to resolve 

the short-coming - whole sample processing, two-phase processing, and serial processing. Of all 

of these, the sieving method is consistent with both the first and second approaches. When using 

the sieve fractionation approach, a larger proportion of the sample is processed. Furthermore, large 

organisms (in the coarsest size fraction) are collected first, and then the remainder of the sample 

is subsampled. The abundance of invertebrates in several samples was strongly overestimated by 

the Marchant box procedure (Figure 3.3), likely due to the very small proportion of cells that were 

examined by the time a stopping point (300 organisms) had been reached. 
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The result of the ordination analysis suggests that the community composition of Little 

River and Sixteen Mile Creek differed from the other streams, whereas White Ash Creek, and Big 

Creek were very similar in composition. The Sharon Creek ellipse slightly overlapped with that of 

Big Creek, so their community compositions are also similar. The dominant invertebrates in 

Sixteen Mile Creek were Chironomidae, Gomphidae, and Oligochaeta, suggesting that this stream 

is more degraded than the others. This is because these are deemed to be tolerant taxa, which can 

withstand degraded conditions, compared to the fauna that dominated the other streams which are 

not as tolerant. Although the family richness varied greatly among streams, the tolerance scores of 

the communities were relatively similar.  

When looking at each of the streams individually there are a few distinct patterns that 

suggest the Marchant Box is different than sieves in Dimension 1 because the orientation between 

each of the connected points in Figure 3.7 tend to be separated in a left to right pattern. Distinct 

differences in sorting methods were seen in Big Creek sample 2 (D-net in pool habitat) and White 

Ash Creek sample 3 (D-net in riffle habitat)). In conjunction with the richness of each of the sorting 

methods, this coincides with the significant difference between what each collected (Table 3.6).  

 

Recommendations 

Several lines of evidence indicate that the sieve fractionation method is more effective than 

the Marchant box for processing samples collected from clay plain streams of southwestern 

Ontario. Although both subsampling techniques yield comparable overall community 

composition, the sieve method requires less washing and sorting time, recovers more specimens 

(leading to more precise abundance estimates) and greater family richness, and does not 

overestimate abundance of invertebrates. The efficiency of the sieve fractionation method can be 
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increased by ensuring that samples are thoroughly field-washed before preservation to ensure that 

fine materials are rinsed through the D-net and that large twigs and coarse detritus are removed 

from the sample. This also reduces the amount of preservative needed. Although both the Marchant 

box and sieve fractionation procedures characterize community composition similarly, the sieve 

methodology is preferable because it provides a more precise estimated abundance and is more 

time-efficient than the Marchant Box protocol.  
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Chapter 4: General Discussion 

Project Overview 

The objective of this study was to review, assess, and recommend sampling and sorting 

methods to optimize stream sample collections that would reflect the zoobenthic community 

composition of the streams in southwestern Ontario. Because streams in this region are slow 

flowing and have soft, largely clay-dominated sediments, currently used provincial and national 

protocols, which are designed for assessing faster-flowing, hard-bottomed streams, may not be 

appropriate or effective for the low gradient, fine-substrate systems of the St. Clair Clay Plain 

region. I compared two methods of sample collection from 19 streams, and two macroinvertebrate 

subsampling methods of processing the collections.  

I found that using a D-framed sweep net as recommended by the Canadian Aquatic 

Biomonitoring Information Network (CABIN) and Ontario Benthic Biomonitoring Network 

(OBBN) protocols was as or more effective than using a Petite Ponar grab, even in locations that 

had deep water, muddy substrate and negligible flow. In the laboratory, the use of nested sieves 

was more time efficient and better represented the family richness of streams than the Marchant 

Box method recommended by CABIN and OBBN. Three D-frame sweep net samples per stream 

(two from riffles and one from a pool) each collected more invertebrates and a larger number of 

families than five Petite Ponar grabs. The samples from the 19 sites surveyed in 2016 were 

collected in July and August. During this season many other headwater streams that were visited 

had dried up, and this was a significant limitation to sampling during the summer. Consequently, 

I examined a 10-y temperature and discharge record for the Thames River to determine the 

duration and timing of spring melt conditions. On that basis, I determined the period of time during 

which discharge was likely to be low enough to permit safe access and yet cool enough (<20 
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degrees C) that eurythermic overwintering taxa were unlikely to have emerged. The recommended 

interval is between April 1st and May 7th. In 2017, samples were collected between April 18
th

 and 

June 10
th. 

Water temperatures were 20 degrees C or less in most of the streams at the time of 

sampling.  

Of the two sample processing methods, the Marchant Box procedure took on average about 

160 min longer per sample (62.5 percent longer) to process than the sieve fractionation protocol. 

The amount of detritus was a significant determinant of the variation in the time needed to go 

through a sample. There was a significant difference in the number of families recovered per 

sample by each method and the sieve fractionation procedure detected a higher proportion of the 

taxa found per stream (92%) than the Marchant Box method (82%), especially when 

macroinvertebrate densities were high. Although, an ordination of the two subsampling procedures 

found no evidence of bias in community composition, the sieve subsampling procedure produced 

consistently accurate estimates of actual macroinvertebrate density, whereas the Marchant Box 

procedure often greatly overestimated the number of animals in a sample. The differences in 

precision were associated with the proportion of a total sample that was sorted.  

In conclusion, the D-framed sweep net and the nested sieves are the methods that should 

be used in the field and laboratory processing, respectively. These methods collect representative 

samples from the stream, allow efficient processing and provide a more accurate assessment of the 

streams than the complementary methods. 

OBBN is the provincial protocol for benthic assessment and is the condensed version of 

CABIN, which is the national protocol. Because both approaches are available to use in the region, 

the question arises as to which protocol is best suited and most feasible for use in terms of 

efficiency and data collection. The stream habitat assessment features that OBBN does not require 
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include slope, velocity and pebble count (which are part of the CABIN protocol field data sheets) 

because these data are used in assigning test sites to the most appropriate suites of reference sites 

under the reference condition approach (Jones et al. 2007, Reynoldson 2002). Many streams in the 

Essex and Lower Thames region have minimal slope and negligible velocity (even during spring) 

due to the flatness of the local topography (Appendix B). Consequently, stream slope is likely best 

determined using map-based estimates of changes in elevation; and velocity records of <5 cm/s 

(the lowest effective reading of many current meters) will have to be used to estimate discharge of 

the sites that are sampled across the region. OBBN does, however, include elevation on the field 

data sheets. Because the streams are within the clay plains, it is impractical to conduct the pebble 

count protocol stipulated by CABIN. However, the sandy or muddy substrates can be sampled 

with sediment cores (which was done for 2017 field sampling), and particle size can be reported 

using the Wentworth scale after conducting appropriate particle size frequency analysis in the 

laboratory (Wentworth 1922). This was completed for 2017 samples, but due to time constraints, 

it has not been analyzed in conjunction with other factors that were presented in this thesis. Overall, 

there really is no true basis for comparison between CABIN and OBBN because there is no benthic 

information on reference streams in the clay plains regions. Yet, I recommend using the OBBN 

protocol to assess southwestern Ontario streams because it is a condensed rapid approach and does 

not include the sections of CABIN that would be difficult to assess.  

 

Major Findings and Recommendations for Regional Conservation Authorities 

The D-frame sweep net collected a higher abundance of invertebrates and greater family 

richness than the Petite Ponar grab samples. Although sweep-netting is a more qualitative method 

than fixed-area sampling with a Petite Ponar grab, the sweep net procedure collected 
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macroinvertebrates across the entire width of the stream and thus the fauna encountered were more 

representative of the range of microhabitats. Samples taken from both riffle (or glide) and pool 

areas are needed to represent the biodiversity that is present. Of the two types of sampling used to 

estimate community condition as represented by the Hilsenhoff Biotic Index, the D-net-derived 

estimates produced values closest to those determined from both D-net and Ponar grabs combined. 

However, NMDS ordination indicated that the type of sampler used had little influence on the 

interpretation of overall community composition among streams.  

Of the two laboratory processing and subsampling methods, the Marchant box took about 

160 minutes longer to complete a sample than the sieve fractionation method. The quantity of 

detritus significantly affected the time needed to complete a sample, even though both protocols 

entail subsampling of large samples. Ponar grabs required less time to sort, especially when 

processed using the sieve fractionation technique, because sieving removes residual clay in the 

samples during the washing process. Samples processed using the sieving procedure had 

significantly higher family richness, presumably because all large, rare individuals (those in the 

coarse size fraction) were found and identified. However, there was no significant difference in 

community composition between processes detected by the NMDS ordination relative to among-

stream variation. Overall, the weight of evidence indicates that sieve fractionation is the more 

effective method, and it is highly recommended over the Marchant box for the Clay Plain streams 

assessed in this study.  

 

Limitations 

Limitations to this work include the relatively small number of samples for which data were 

available to compare the subsampling methods. Although 40 samples from 5 streams were used in 
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the analysis, the loss of the written records of detritus biomass data compromised the power of the 

analysis to identify the covariates that contributed most to variation in sorting time. Nevertheless, 

the data were sufficient to show that sieving is a more effective protocol than using the Marchant 

Box. However, to increase the power of the study more samples should be sorted through 

comparing both methods. 

Another limitation is in my reporting identity of macroinvertebrates only to the family level 

of taxonomic resolution. I identified invertebrates to genus or species where possible, but very 

immature animals lack certain features needed for identification to the genus level. The family 

level of resolution is recommended for many studies because it reduces the time needed for 

identification providing more time in a limited budget for additional samples to be processed. The 

family level of resolution is reported to be sufficient for conducting multivariate analyses 

(Bowman and Bailey 1997) and for calculating tolerance indices (Hilsenhoff 2017), but 

researchers often advocate genus- or species-level identification for biomonitoring studies (Bailey 

et al. 2006). According to Milošević (2014) for any study the taxonomic resolution depends on 

where the threshold of information loss is acceptable. It should be at a level where the community 

can still be detected to have changes in response to differences in the environmental conditions it’s 

subject to (Milošević et al. 2014). 

 

Future Studies and Implications 

Further research on factors influencing invertebrate community composition could include 

observing the effects of alterations to the stream- comparing the effects of excavation or 

maintenance of streams used as agricultural drains to streams that are left unaltered. Most streams 

in southwestern Ontario serve as agricultural drainage systems, and some are physically 
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manipulated. Ward-Campbell et al. (2017) studied the effects of excavation to fish communities 

in 8 southwestern Ontario streams. They found there was no significant difference in abundance 

or composition in fish communities (Ward-Campbell et al. 2017), possibly because fishes are able 

to travel larger distances than invertebrates. It would be interesting to assess the alterations in 

invertebrate community composition since it may be difficult for the slow-moving invertebrates 

(in comparison to faster moving fish) to repopulate the affected area. 

Further research could also include developing a better understanding the relationship 

between macroinvertebrate community composition and the sediment type together with the role 

of sediment in determining the benthic community of clay plain streams, independent of 

anthropogenic activities. It would also be beneficial to understand the potential differences in the 

benthic community with respect to changes in season (Furse et al. 1984; Humphrey et al. 2000; 

Buss et al. 2015). Because streams of the clay plain are maintained largely by surface water rather 

than groundwater (due to clay’s impermeability), these streams likely exhibit much greater 

seasonal variation in discharge and temperature than predominantly groundwater fed streams.  

For this project, the 0.25-mm sieve size fraction was archived. Although this fraction 

contains many immature organisms (often dominated by small chironomids and oligochaetes) few 

programs report densities of such small individuals because sampling is conducted with 0.5-mm 

or coarser nets. However, examination of this size-fraction could provide complementary 

information about the zooplankton and benthic microcrustaceans.  

This study provides important baseline information and an objective assessment of 

sampling methodology of special value to the Conservation Authorities of southwestern Ontario. 

Implementation of the recommended protocols will generate data that are representative of local 

streams and do so efficiently. The survey data collected by my study is of value in informing 
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regional authorities and the community at large about the ecological condition of southwestern 

Ontario’s river systems, which have a role in and flow into larger systems, i.e. the Great Lakes. 

Although this study is a synopsis of only summer and spring conditions during 2016 and 2017, it 

provides an important baseline of the local fauna and a frame of reference against which to 

compare clay plain streams with other rivers of Ontario.  
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Appendices 

Appendix A: General methods of field and laboratory sampling for 2016 and 2017.  

Environmental Surveys:    

During field trips, I measured and recorded data using standard field procedures and record 

sheets prescribed by both OBBN and CABIN. Field observations were completed and transcribed 

on-site at the time of sampling. Several procedures of the CABIN field surveys were omitted. In 

particular, slope could not be determined in the field because the landscape was essentially flat. 

The 100-pebble count (designed to estimate particle size-frequency distribution of coarse 

substrates) was not undertaken because pebbles were either rare or absent at sites. Instead, 

sediment cores were collected and used for laboratory sediment particle size analysis (see 

Appendix F). 

Several stream habitat features are particularly important predictors of aquatic invertebrate 

community compostion, including indices such as ‘residual depths’ (to determine the depth of 

pools; Lisle, 1987) or Froude number velocity/depth ratio as suggested by Jowett (1993). Although 

riffles and pools can easily be located in stony streams, Essex and Lower Thames Valley streams 

are often so slow-flowing and turbid that these features may be difficult to locate. As an alternative, 

stream width and depth were measured at several transects. Because riffles were typically absent, 

I located and sampled glides (MPCA, 2014), characterized as the shallowest, most rapidly flowing 

sections of a study area that contain the coarsest substrates.  

Site Selection: 

Streams were sampled within the St. Clair Clay Plain region of Essex County and the 

Lower Thames River valley. In 2016, 19 streams were sampled based on recommendations from 
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the Conservation Authority representatives for each region. The candidate stream sites for 2017 

were selected from an inventory of 808 locations for Essex County and 716 locations for Lower 

Thames, compiled as part of the Ontario Benthic Biomonitoring Network (OBBN) program by 

Jones (2015). This extensive list consisted of second to fifth order streams in 31 physiographic 

regions in Southwestern Ontario. The sites had been selected based on accessibility and uniform 

spatial distribution across each region. Jones (2015) also calculated various catchment- scale 

attributes representing anthropogenic stresses, of which I used areal percentage of the drainage 

basin devoted to crop row agriculture (PCTCR) and areal percentage of the drainage basin used 

for municipal development (PCTDEV). Values for each site were determined using ArcMap 9.3.1 

(ArcInfo) and the SOLRIS v.1.2 land inventory. I created a bivariate scatterplot of the two values 

for all streams in the inventory that occurred within the Essex region (Figure 1.2) and Lower 

Thames region (Figure 1.3). 

In Essex County region (Figure 1.2), the overall level of land use for either municipal 

development or agriculture tended to be high, in that as the percentage of agriculture land use (crop 

row) increases, the percentage of development decreases. The percentage of land in row crops 

ranged from zero to 100%, and the proportion of land that was rural or municipal ranged from zero 

to over 80%. A similar trend is evident in the Lower Thames region. However, in this region all 

sites (except for one) had over 40% of the landscape devoted to row crops and (with one exception) 

less than 25% of the watershed area was developed for rural or urban use (Figure 1.3). Clearly, all 

of the sites identified in Essex (Figure 1.2) and Lower Thames Valley (Figure 1.3) are subject to 

some degree of disturbance as a consequence of agriculture and development. Nevertheless, I 

wished to sample streams that represented the broadest possible range of disturbances to ensure 

that my methodological comparisons pertained throughout the clay plain region. Accordingly, for 
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each of the stream locations illustrated in Figures 1.2 and 1.3, I calculated the Euclidean distance 

of the candidate sample sites from the graph’s origin (the square root of the sum of the squares of 

the values of the two stress scores; “AgDev composite stress score”; Host et al. 2019) and arranged 

the sites in order of increasing stress for each region.  

The list of sites within each region was then ordinated by composite stress score and the 

cumulative distribution was divided into deciles (10 sections). Two sites were then randomly 

selected from each decile using a random number generator to provide 20 candidate sampling sites 

per region. Therefore, in spring 2017, I sampled 20 sites in each region (Table 1.1), resulting in a 

total of 40 sites visited in 2017. Combined with 19 sites that were visited in the summer of 2016 

for the pilot study, a total of 59 streams were sampled for this project (Figure 1.5, 1.6). Sites that 

were situated within 3 km of another site were replaced with other sites randomly selected from 

the same decile to ensure that coverage across each region as a whole was spatially relatively 

uniform. 
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Figure A.2: Scatterplot of land use (areal percentage of land in row crops (X-axis; areal percentage 

of developed land) in the contributing watershed upstream of 809 stream sites within the Essex 

County region of Southwestern Ontario, and associated site numbers. 

 



 85 

 

Figure A.3: Scatterplot of land use (areal percentage of land in row crops (X-axis; areal 

percentage of developed land) in the contributing watershed upstream of 717 sites within the 

Lower Thames Valley region of Southwestern Ontario and associated site numbers. 

 

 

 

 

 

 

 

 



 86 

Sampling Period 

Although CABIN recommends that sampling typically be conducted in the late summer or 

fall (when discharges typically become more stable and lower than earlier in the season), sampling 

in other seasons is permitted, as long as the timing of sampling is consistent from year to year. In 

contrast, OBBN allows sampling to be completed at any season and even lists costs and benefits 

for sampling in each season. OBBN also acknowledged that seasonal differences in abundance 

and the taxa captured can be expected due to variation in macroinvertebrate life histories. Most 

sediments of the Clay Plain region of southwestern Ontario are impermeable. Thus, streams are 

primarily surface-water fed. This makes them susceptible to very low summer discharges and high 

water temperatures. I wished to identify a sampling period that would ensure temperatures were 

low enough and discharges were high enough to support invertebrate fauna typical of perennial 

streams. To determine seasonal criteria for sampling streams I used a 10-y water temperature 

record provided by LTVCA for the Thames River. Data from 2007 to 2016 were plotted to 

illustrate variation in temperature by calendar date (Figure 1.4). To determine the time frame 

during which streams should be visited, the Thames River water temperature record (Figure 1.4) 

was analysed and compared to the temperatures at which many overwintering macroinvertebrate 

taxa emerge.  

Most overwintering or early-spring developing taxa emerge when the water temperature 

reaches 12-24°C (Corbet, 1957; Trottier, 1973; Singh, 2008; Cushing, 2006; Becker, 2005; 

Milošević, 2013). Typically, the mean stream water temperature common macroinvertebrates of 

the region emerge is between 12°C and 20°C. As shown in Figure 1.4, that period in which 

sampling was therefore suggested to occur was from April to the beginning of May. Using the 

Thames River 10-year data I was able to determine which calendar dates would  
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Figure A.4: Water temperature readings for the Thames River in Southwestern Ontario from 

2007 to 2016. Black horizontal lines represent temperatures at 12°C and 20°C. Black vertical 

lines depict the sampling window.  
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best delineate the beginning and end of the sampling season. This was done by determining the 

date on which the water temperature first reached 12°C each year, and the last date in spring on 

which it reached 20°C for each year of the 10-y record. I then selected the first date on which the 

12°C and 20°C temperatures were observed. On this basis I determined that the annual sampling 

period should begin in April and end at the end of the first week of May. The dataset on which this 

determination was based was interpreted in fall 2016 after the season’s sampling had been 

concluded Samples in 2016 were collected between July 4 and August 30 (Figure 1.4).  

Macroinvertebrate Sampling  

At each study site, macroinvertebrates were collected using two sampling instruments. 

Three samples were taken using a 30-cm wide, 0.50-mm mesh D-frame sweep net, and 5 Petite 

Ponar grab samples were collected (Chapter 2). Each sample was emptied into a 0.25-mm mesh 

sieve bag, which was repeatedly rinsed in the stream to remove fine sediments. All samples were 

placed in a labelled heavy-duty polyethylene soil bag, to which formalin-ethanol solution (2.5:1 

v/v 95% ethanol and 100% buffered formalin diluted 1:1 with stream water) was added (Wiggins, 

1977). Samples were returned to the laboratory where they were inventoried, heat-sealed to prevent 

leakage, and stored for later processing. 
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Figure A.5. Map of the Essex County and Lower Thames Valley region of Southwestern Ontario 

showing stream sites sampled in 2016 with the associated stream names. (n=19) 
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Figure A.6. Map of the Essex County and Lower Thames Valley region of Southwestern Ontario 

showing stream sites sampled in 2016 and 2017 with the associated stream names. 
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Table A.1. Sampling site, GPS coordinates, and sampling year. 

═══════════════════════════════════════════════════════ 

ERCA Sampling Sites 

 

            Local Name                                                                            Latitude            Longitude 

─────────────────────────────────────────────────────── 

2016 

Belle River       42.251012 -82.714411 

Turkey Creek (M2)      42.311337 -82.926891 

Little River       42.311337 -82.926891 

Wigle Creek (E9)      42.029794 -82.773231 

West Branch Drain      42.043116 -82.836710 

Sturgeon Creek (M5)      42.038942 -82.645428 

Muddy Creek (M7)      42.080434 -82.489117 

 

2017 

 6
th

 Concession Drain      42.254569 -82.970914 

 East Townline Road Drain     42.298428 -82.870118 

Washbrook Drain      42.233626 -82.941704 

Kerr Drain       42.246375 -82.858947 

Hyland & Seymour Drain     42.204002 -82.760201 

 Barlow Drain       42.146528 -82.798416 

CN/Clickener Branch Drain of Renaud Line Drain  42.296646 -82.734088 

South Townline Drain      42.089439 -83.101978 

9
th

 Concession Drain      42.111351 -82.882197 

Soncrainte Drain      42.160257 -83.101978 

Titcombe Road Drain      42.266166 -83.083087 

Big Creek       42.126318 -83.072629 

Taylor Drain       42.035720 -82.869176 

Desjardins Drain      42.291887 -82.541526 

Sturgeon Creek      42.061702 -82.619199 

Wilkinson-Shilson Drain     42.084918 -82.543369 

Coulson Drain       42.032362 -82.559704 

Mill Creek       42.038161 -82.746721 

McMahon Drain      42.150684 -82.703198 

East Branch of the No 47 Drain    42.089470 -82.735803 

─────────────────────────────────────────────────────── 
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Table A.1 (Cont’d). Sampling site, GPS coordinates, and sampling year 

═══════════════════════════════════════════════════════ 

 

LTVCA Sampling Sites 

 

            Local Name                                                                            Latitude           Longitude 

─────────────────────────────────────────────────────── 

2016 

Sharon Creek       42.874040 -81.400377 

Newbiggen Creek      42.717937 -81.669880 

Sixteen Mile Creek      42.527415 -81.647913 

Big Creek       42.190845 -82.477730 

Talbot Creek       42.681609 -81.374632 

White Ash Creek      42.540209 -81.963236 

South Dales       42.106082 -82.483055 

Two Creeks       42.117999 -82.461325 

McCarson Drain      42.517856 -82.015933 

Natural Watercourse (NE)      42.737229 -81.484140 

Natural Watercourse (C)     42.675337 -81.616317 

Hendry Drain       42.767545 -81.547026 

2017 

Two Creeks Drain      42.105010 -82.458764 

10
th

 Concession Road Drain     42.143959 -82.504970 

Lundy Drain       42.145377 -82.542982 

Campbell Sideroad Drain     42.159987 -82.405549 

David Drain       42.206589 -82.258832 

Government Drain #1      42.221670 -82.553368 

Simpson Drain      42.241828 -82.156474 

Moore Drain       42.272022 -82.185406 

18 & 19 Sideroad Drain     42.272089 -82.087772 

Nelles Drain       42.301417 -81.928453 

Lewis Drain       42.337092 -82.115209 

Cameron Drain      42.339162 -82.066617 

Coleman Drain      42.349840 -81.892920 

Upper Portion Cartmill Drain     42.399063 -81.850859 

Oullete Drain Branch      42.408963 -82.250456 

Harrison Drain      42.453757 -81.905205 

Cornwall Drain      42.455744 -81.749775 

King Drain       42.546554 -81.759285 

McArthur East Drain      42.327350 -81.952723 

─────────────────────────────────────────────────────── 
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Appendix B: Summary Tables of NMDS Analyses 
 

Table B1: Summary of Pearson correlations between relative abundances of families collected in 

D-net and Petite Ponar samples and their scores along NMDS axes as described in detail in 

Chapter 2 (ordination stress = 11.25). Bold-faced correlations are statistically significant (p< 

0.05; uncorrected for multiple tests). Taxa names are sorted in decreasing order of their strength 

of correlation with then NMDS axis with which they are most highly associated. 

 

Taxon 
NMDS Axis 

1 

NMDS Axis 

2 

NMDS Axis 

3 

Elmidae 0.781 0.522 0.134 

Hydropsychidae 0.760 0.178 -0.381 

Baetidae 0.714 0.146 -0.205 

Empididae 0.709 -0.067 -0.439 
Tipulidae 0.675 -0.161 -0.362 

Simuliidae 0.656 0.166 -0.266 

Hydroptilidae 0.614 -0.167 -0.288 

Leptoceridae 0.503 0.277 0.290 

Tabanidae 0.446 -0.069 -0.280 

Haliplidae 0.147 -0.058 0.031 

Chloroperlidae 0.364 0.238 0.087 

Branchiobdellidae -0.550 -0.184 0.050 

Oligochaeta -0.797 -0.286 0.097 

Acari 0.233 0.587 -0.107 

Heptageniidae 0.410 0.503 -0.018 

Caenidae 0.130 0.393 -0.029 

Hydridae 0.011 -0.099 0.043 

Gammaridae 0.361 -0.472 -0.403 
Glossiphoniidae 0.113 -0.529 0.043 

Planorbidae -0.252 -0.529 -0.499 
Ceratopogonidae -0.260 -0.532 0.505 
Asellidae 0.262 -0.534 -0.346 

Physidae 0.200 -0.582 -0.339 

Sphaeridae 0.230 -0.590 -0.034 

Erpobdellidae 0.155 -0.622 -0.085 

Nematoda 0.354 -0.648 0.204 

Mesoveliidae 0.088 -0.655 -0.001 

Lymnaeidae 0.068 -0.718 -0.050 

Hyalellidae -0.002 -0.412 0.602 
Corixidae 0.139 0.187 0.581 
Culicidae -0.132 -0.462 0.572 
Chironomidae 0.294 0.314 0.419 
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Nematomorpha -0.262 -0.099 0.449 
Cambaridae 0.262 -0.162 0.340 

Hydrophilidae 0.175 -0.166 0.186 

Collembola -0.088 -0.240 -0.286 

Tricladida 0.374 0.144 -0.395 
Coenagrionidae -0.333 -0.379 -0.415 
Veliidae 0.293 -0.238 -0.470 
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Table B2: Summary of Pearson correlations between relative abundances of families identified 

using the Marchant Box and Nested Sieves protocols and their scores along NMDS axes as 

described in detail in Chapter 3 (ordination stress = 12.22). Bold-faced correlations are 

statistically significant (p< 0.05; uncorrected for multiple tests). Taxa names are sorted in 

decreasing order of their strength of correlation with then NMDS axis with which they are most 

highly associated. 

 

 

Taxon NMDS Axis 1 
NMDS 

Axis 2 

Chironomidae 0.555 -0.155 

Leptoceridae 0.366 0.080 

Sphaeriidae 0.027 0.011 

Gomphidae -0.420 -0.036 

Gammaridae -0.496 0.078 

Glossiphoniidae -0.514 0.011 

Ceratopogonidae -0.539 -0.187 

Haliplidae -0.579 0.105 

Nematoda -0.600 -0.144 

Dytiscidae -0.643 -0.026 

Hydrophilidae -0.673 0.012 

Asellidae -0.688 0.354 

Corduliidae -0.721 -0.031 

Libellulidae -0.746 -0.077 

Baetidae -0.748 0.214 

Physidae -0.749 -0.086 

Caenidae -0.823 -0.078 

Coenagrionidae -0.841 0.067 

Tipulidae 0.128 0.826 
Simuliidae 0.032 0.753 
Corixidae -0.158 0.636 
Hydroptilidae -0.057 0.487 
Elmidae 0.050 0.400 
Hydropsychidae -0.046 0.396 
Heptageniidae -0.071 0.329 
Siphlonuridae -0.030 0.295 

Empididae 0.162 0.243 

Polycentropodidae -0.059 0.211 

Planorbidae -0.097 0.202 

Hydracarina 0.128 0.159 

Oligochaeta -0.345 -0.751 
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Appendix C: List of taxa observed in at least one sample (3-D-net and 5 Petite Ponar grabs) in 19 streams sampled in 2016 
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PHYLUM                  
 SUBPHYLUM                 
  CLASS                  
   ORDER                
    SUBORDER              
     Family              
      Subfamily              
       Genus              
        species             
CNIDARIA                  
  HYDROZOA                
   ANTHOATHECATA              
     Hydridae              
      Hydra  X X X X X X X    X  
NEMATODA      X X X X X X X  X X X X 
NEMATOMORPHA       X X X    X    
ANNELIDA                  
  CLITELLATA                
   OLIGOCHAETA   X X X X X X X X X X X X 
   ARHYNCHOBDELLIDA              
    ERPOBDELLIFORMES              
     Erpobdellidae  X  X X       X  
       Erpobdella          X  X  
        punctata      X   X  X  
       Motobdella    X      X    
       Other         X     
   BRANCHIOBDELLIDA    X    X  X X X  
   RHYNCHOBDELLIDA         X     
     Glossiphoniidae  X  X X  X   X    
       Glossiphonia              
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        elegans   X   X       
       Helobdella            X  
        papillata    X         
        stagnalis X  X     X X  X  
       Placobdella  X  X X  X       
        montifera      X       
       Other              
   OTHER              
MOLLUSCA                  
  BIVALVIA                
   SPHAERIIDA              
     Sphaeriidae  X X X X X X X X X X X X 
       Sphaerium              
       Musculium              
       Sphaerium/ 

Musculium 
 X       X X    

       Pisidium  X  X X X X  X X    
  GASTROPODA                
   ARCHITAENIOGLOSSA              
     Viviparidae    X          
       Bellamya    X          
       Other              
   BASOMMATOPHORA              
     Ancylidae              
       Ferrissia/ 

Laevapex 
 X X    X X X X  X  

       Other              
     Lymnaeidae  X        X  X  
       Lymnaea          X    
        palustris     X        
        stagnalis X            
       Other              
     Physidae   X     X X X  X  
       Physa  X  X  X X  X X X X  
       Other              
     Planorbidae        X  X X X  
       Helisoma          X    
       Other              
   HETEROSTROPHA              
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     Valvatidae  X  X    X      
       Valvata              
        tricarinata   X        X  
       Other              
PLATYHELMINTHES                 
  TURBELLARIA                
   TRICLADIDA              
     Planariidae  X X X  X X X    X X 
ARTHROPODA                  
 CHELICERATA                 
  ARACHNIDA                
   TROMBIDIFORMES              
    HYDRACARINA  X X X X X X X  X X X X 
 CRUSTACEA                 
  MAXILLOPODA               
  MALACOSTRACA               
   AMPHIPODA  X    X   X X  X  
     Crangonyctidae              
       Crangonyx          X    
     Gammaridae   X X  X X X  X  X  
       Echinogammarus              
        ischnus      X   X  X  
       Gammarus  X X X  X X X X X  X  
        fasciatus   X          
        lacustris             
        tigrinus   X          
       Other              
     Hyalellidae              
       Hyalella   X X X X    X  X  
       Other              
   DECAPODA              
     Cambaridae     X X X X  X    
       Cambarus              
       Orconectes          X X   
       Other              
   ISOPODA              
     Asellidae          X  X X 
       Caecidotea  X  X  X X X X X X X X 
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       Other              
     Stenasellidae            X  
   OTHER              
 HEXAPODA                 
  COLLEMBOLA    X X X X   X  X  X X 
  INSECTA                 
   EPHEMEROPTERA              
    PISCIFORMA              
     Baetidae  X X X  X X X  X   X 
       Baetis       X X      
       Callibaetis  X     X  X     
       Cloeon              
        dipterum             
       Procloeon      X        
       Other              
     Heptageniidae   X    X X   X  X 
       Stenacron       X       
       Stenonema              
        femoratum      X    X   
       Other              
      Heptageniinae              
       Macdunnoa        X      
     Metretopodidae              
       Other              
     Siphlonuridae             X 
    FURCATERGALIA              
     Caenidae  X  X   X   X X   
       Caenis  X X X   X   X X  X 
     Ephemerellidae  X           X 
       Hexagenia   X        X   
        limbata          X   
       Other              
   ODONATA              
    ANISOPTERA              
     Aeshnidae      X X   X  X  
       Aeshna            X  
       Anax            X  
       Other              
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     Corduliidae  X            
       Cordulia              
       Other              
     Libellulidae  X            
       Erythemis              
       Libellula          X    
       Other              
     Corduliidae/ Libellulidae  X        X    
     Other              
    ZYGOPTERA              
     Calopterygidae    X    X      
       Calopteryx              
       Other              
     Coenagrionidae  X X X   X X  X  X  
       Amphiagrion              
       Argia              
       Enallagma              
       Enallagma/ 

Coenagrion 
             

       Ishnura              
       Nehalennia              
       Other              
   PLECOPTERA              
      Chloroperlidae   X X X  X X X  X   
      Other              
   THYSANOPTERA              
   HEMIPTERA              
    HETEROPTERA              
     Belostomatidae  X            
     Corixidae  X X X X X X X  X X   
      Corixinae              
       Callicorixa     X X  X      
       Corisella    X X         
       Dasycorixa    X          
       Hesperocorixa    X  X        
       Palmocorixa        X  X    
       Sigara    X  X    X    
       Trichocorixa  X  X    X   X   
       Other   X X  X        
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     Hebridae              
       Merragata              
     Gerridae    X        X  
     Mesoveliidae    X          
       Mesovelia        X    X  
       Other              
     Mesoveliidae/ Veliidae              
     Notonectidae  X  X          
     Veliidae        X      
       Microvelia       X X  X  X X 
       Rhagovelia        X      
       Other              
    OTHER              
   MEGALOPTERA          X    
     Corydalidae              
       Chauliodes    X          
     Sialidae              
       Sialis    X  X        
     Other              
   COLEOPTERA               
    ADEPHAGA              
     Carabidae       X       
     Curculionidae  X     X  X  X X  
     Dytiscidae  X  X          
      Agabinae            X  
       Agabus            X  
       Hydrotrupes            X  
      Hydroporinae            X  
       Hydroporus            X  
      Matinae              
       Matus            X  
      Other              
     Gyrinidae    X          
      Gyrininae              
       Dineutus              
       Gyrinus          X    
     Haliplidae  X  X      X   X 
       Brychius    X          
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       Haliplus    X        X  
       Peltodytes  X X X  X    X  X  
       Other              
    POLYPHAGA              
     Dryopidae              
     Elmidae  X X X X X X X X X X X X 
      Elminae              
       Ancyronyx     X  X       
       Dubiraphia  X X X X X X X X X X X X 
       Dubiraphia/ 

Narpus 
         X    

       Maxronychus         X     
       Optioservus       X  X X    
       Ordobrevia      X X       
       Oulimnius   X   X        
       Stenelmis   X X   X X X     
     Hydrophilidae  X          X  
      Georissidae              
       Georissus  X       X     
      Hydrophilinae              
       Berosus  X          X  
       Helochares  X            
       Tropisternus  X  X          
      Helophorinae              
       Helophorus     X   X      
     Scirtidae              
     Staphylinidae   X X          
   TRICHOPTERA              
    ANNULIPALPIA              
     Hydropsychidae  X  X   X X X X  X X 
      Hydropsychinae              
       Cheumatopsyche   X X   X X  X  X  
       Hydropsyche       X       
       Other              
      Macronematinae              
       Smicridea       X     X X 
     Philopotamidae       X       
       Chimarra       X       
       Other              
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     Polycentropodidae       X X X     
     Other              
    INTEGRIPALPIA              
     Hydroptilidae  X  X  X X X X X  X X 
      Hydroptilinae              
       Hydroptila    X   X  X   X X 
       Oxyethira    X          
      Other              
     Leptoceridae    X X X   X X   X 
       Oecetis   X X   X  X X  X  
       Trianodes    X          
       Other              
     Helicopsychidae       X       
       Helicopsyche       X       
       Other              
   DIPTERA               
    NEMATOCERA              
     Ceratopogonidae  X     X   X X X  
      Ceratopogoninae   X X X         
       Bezzia/ 

Palpomyia 
 X  X X X X   X  X  

       Culicoides              
       Serromyia   X           
       Stilobezzia          X    
       Other              
     Chaoboridae           X   
       Chaoborus              
       Mochlonyx              
       Other              
     Chironomidae  X X X X X X X X X X X X 
     Culicidae     X         
       Aedes              
       Anopheles      X    X    
       Culex              
       Other              
     Dixidae              
       Dixa              
     Limoniidae              
       Limonia          X    
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      Limoniinae              
       Antocha        X      
     Simuliidae    X   X X    X X 
     Tipulidae  X X X    X X   X X 
      Tipulinae              
       Tipula       X X  X  X  
    ORTHORRHAPHA              
     Athericidae       X       
       Atherix          X    
       Other              
     Dolichopodidae       X     X  
     Empididae  X  X  X X X X X X X X 
     Psychodidae            X  
      Psychodinae   X           
      Other              
     Stratiomyidae      X        
     Tabanidae  X X X  X X X X X X X X 
      Chrysopsinae              
       Chrysops  X  X  X        
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PHYLUM             
 SUBPHYLUM            
  CLASS             
   ORDER           
    SUBORDER         
     Family         
      Subfamily         
       Genus         
        species        
CNIDARIA             
  HYDROZOA           
   ANTHOATHECATA         
     Hydridae         
      Hydra   X     X 
NEMATODA      X X X  X X X 
NEMATOMORPHA     X   X X X X 
ANNELIDA        X     
  CLITELLATA           
   OLIGOCHAETA   X X X X X X X 
   ARHYNCHOBDELLIDA         
    ERPOBDELLIFORMES         
     Erpobdellidae    X   X  
       Erpobdella         
        punctata   X     
       Motobdella         
       Other         
   BRANCHIOBDELLIDA      X X  
   RHYNCHOBDELLIDA         
     Glossiphoniidae    X     
       Glossiphonia         
        elegans        
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       Helobdella    X     
        papillata        
        stagnalis   X     
       Placobdella      X   
        montifera        
       Other         
   OTHER         
MOLLUSCA             
  BIVALVIA           
   SPHAERIIDA         
     Sphaeriidae  X X X X X X  
       Sphaerium         
       Musculium         
       Sphaerium/ 

Musculium 
 X  X   X  

       Pisidium    X X  X  
  GASTROPODA           
   ARCHITAENIOGLOSSA         
     Viviparidae         
       Bellamya         
       Other         
   BASOMMATOPHORA         
     Ancylidae   X      
       Ferrissia/ 

Laevapex 
     X X X 

       Other         
     Lymnaeidae    X   X  
       Lymnaea    X     
        palustris      X  
        stagnalis        
       Other         
     Physidae    X     
       Physa   X X  X X X 
       Other         
     Planorbidae   X X X X X X 
       Helisoma         
       Other         
   HETEROSTROPHA         
     Valvatidae         
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       Valvata         
        tricarinata        
       Other         
PLATYHELMINTHES            
  TURBELLARIA           
   TRICLADIDA         
     Planariidae     X   X 
ARTHROPODA             
 CHELICERATA            
  ARACHNIDA           
   TROMBIDIFORMES         
    HYDRACARINA  X X X X X X X 
 CRUSTACEA            
  MAXILLOPODA          
  MALACOSTRACA          
   AMPHIPODA  X  X X  X  
     Crangonyctidae         
       Crangonyx         
     Gammaridae    X   X  
       Echinogammarus         
        ischnus        
       Gammarus    X  X X X 
        fasciatus        
        lacustris       X 
        tigrinus        
       Other         
     Hyalellidae         
       Hyalella  X  X  X X X 
       Other         
   DECAPODA         
     Cambaridae    X   X  
       Cambarus       X  
       Orconectes         
       Other         
   ISOPODA         
     Asellidae       X  
       Caecidotea  X X X X X X  
       Other         
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     Stenasellidae         
   OTHER         
 HEXAPODA            
  COLLEMBOLA    X   X  X  
  INSECTA            
   EPHEMEROPTERA         
    PISCIFORMA         
     Baetidae  X     X  
       Baetis         
       Callibaetis         
       Cloeon         
        dipterum X       
       Procloeon         
       Other         
     Heptageniidae  X     X X 
       Stenacron  X     X X 
       Stenonema         
        femoratum        
       Other         
      Heptageniinae         
       Macdunnoa         
     Metretopodidae   X      
       Other         
     Siphlonuridae         
    FURCATERGALIA         
     Caenidae        X 
       Caenis  X    X X X 
     Ephemerellidae         
       Hexagenia         
        limbata        
       Other         
   ODONATA         
    ANISOPTERA         
     Aeshnidae         
       Aeshna         
       Anax         
       Other         
     Corduliidae        X 
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       Cordulia   X      
       Other         
     Libellulidae         
       Erythemis      X   
       Libellula         
       Other         
     Corduliidae/ Libellulidae         
     Other         
    ZYGOPTERA         
     Calopterygidae  X      X 
       Calopteryx        X 
       Other         
     Coenagrionidae  X X X X X X X 
       Amphiagrion         
       Argia       X X 
       Enallagma      X   
       Enallagma/ 

Coenagrion 
      X X 

       Ishnura        X 
       Nehalennia  X  X     
       Other         
   PLECOPTERA         
      Chloroperlidae         
      Other         
   THYSANOPTERA        X 
   HEMIPTERA        X 
    HETEROPTERA         
     Belostomatidae         
     Corixidae  X    X X X 
      Corixinae         
       Callicorixa         
       Corisella  X       
       Dasycorixa         
       Hesperocorixa         
       Palmocorixa  X       
       Sigara         
       Trichocorixa  X       
       Other  X       
     Hebridae         
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       Merragata     X    
     Gerridae        X 
     Mesoveliidae    X  X X  
       Mesovelia    X  X X  
       Other         
     Mesoveliidae/ Veliidae  X       
     Notonectidae         
     Veliidae         
       Microvelia      X X  
       Rhagovelia         
       Other         
    OTHER         
   MEGALOPTERA         
     Corydalidae       X  
       Chauliodes       X  
     Sialidae         
       Sialis         
     Other         
   COLEOPTERA          
    ADEPHAGA         
     Carabidae         
     Curculionidae         
     Dytiscidae         
      Agabinae         
       Agabus         
       Hydrotrupes         
      Hydroporinae         
       Hydroporus         
      Matinae         
       Matus         
      Other         
     Gyrinidae         
      Gyrininae         
       Dineutus      X   
       Gyrinus         
     Haliplidae   X      
       Brychius         
       Haliplus         
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       Peltodytes  X X      
       Other         
    POLYPHAGA         
     Dryopidae        X 
     Elmidae  X     X X 
      Elminae         
       Ancyronyx         
       Dubiraphia  X     X X 
       Dubiraphia/ 

Narpus 
        

       Maxronychus         
       Optioservus         
       Ordobrevia         
       Oulimnius        X 
       Stenelmis         
     Hydrophilidae         
      Georissidae         
       Georissus         
      Hydrophilinae         
       Berosus         
       Helochares         
       Tropisternus         
      Helophorinae         
       Helophorus  X       
     Scirtidae  X  X   X  
     Staphylinidae         
   TRICHOPTERA         
    ANNULIPALPIA         
     Hydropsychidae         
      Hydropsychinae         
       Cheumatopsyche         
       Hydropsyche         
       Other         
      Macronematinae         
       Smicridea         
     Philopotamidae         
       Chimarra         
       Other         
     Polycentropodidae         
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     Other         
    INTEGRIPALPIA         
     Hydroptilidae      X   
      Hydroptilinae         
       Hydroptila         
       Oxyethira      X   
      Other         
     Leptoceridae         
       Oecetis  X       
       Trianodes         
       Other         
     Helicopsychidae         
       Helicopsyche         
       Other         
   DIPTERA          
    NEMATOCERA         
     Ceratopogonidae  X X X  X X X 
      Ceratopogoninae         
       Bezzia/ 

Palpomyia 
   X  X X  

       Culicoides  X X   X   
       Serromyia         
       Stilobezzia         
       Other         
     Chaoboridae  X    X   
       Chaoborus      X   
       Mochlonyx      X   
       Other         
     Chironomidae  X X X X X X X 
     Culicidae  X  X     
       Aedes    X     
       Anopheles    X  X X  
       Culex    X     
       Other         
     Dixidae         
       Dixa       X  
     Limoniidae         
       Limonia         
      Limoniinae         
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       Antocha         
     Simuliidae         
     Tipulidae    X   X  
      Tipulinae         
       Tipula        X 
    ORTHORRHAPHA         
     Athericidae         
       Atherix         
       Other         
     Dolichopodidae     X    
     Empididae    X   X X 
     Psychodidae        X 
      Psychodinae         
      Other         
     Stratiomyidae    X     
     Tabanidae    X    X 
      Chrysopsinae         
       Chrysops         
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Appendix D – 2016 Field Data. 
Field measurements recorded at the 19 streams sampled in 2016. 
**NR: no data were recorded during sampling. 

Site Name 
ERCA 

Water Temperature  
( ℃ ) 

Air Temperature 
( ℃ ) DO (mg/l) Conductivity (uS/cm) pH 

Belle River 25.22 24.4 NR NR 8.86 
Little River 21.30 24.7 NR NR 7.67 
Muddy Creek 18.63 26.0 NR 3 8.28 
Sturgeon Creek 22.27 29.0 NR 30.6 8.15 
Turkey Creek 25.70 27.7 NR 1234 7.63 
West Branch Drain 19.50 NR NR 735 7.85 
Wigle Creek 19.57 NR 54.3 NR 8.09 
LTVCA      
Big Creek 21.60 29.0 0.34 NR 8.13 
Hendry Drain 18.26 21.0 57.3 567 7.73 
McCarson Drain 23.46 28.0 7.59 754 7.9 
Natural Watercourse (C) 18.09 24.0 4.2 625 7.53 
Natural Watercourse (NE) 20.20 29.8 10.08 671 7.98 
Newbiggen 20.20 22.0 8.72 633 7.62 
Sharon Creek 18.60 26.0 9.36 552 7.5 
Sixteen Mile Creek 21.46 24.0 7.86 581 7.86 
South Dales Creek 19.86 26.0 5.67 642 7.05 
Talbot Creek 21.80 27.1 6.62 76.2 8.08 
Two Creeks 18.00 25.5 7.72 487 6.97 
White Ash Creek 19.80 25.5 7.62 612 8.62 
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 Site Name Substrate: Dominant Substrate: 2nd Dominant 
 

Substrate Notes 
ERCA 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Belle River 2 2 2 1 1 1 Backhoe tracks present 

Little River 4 3 4 2 1 2 
beer cans and styrofoam; 

Sulphur pockets 
Muddy Creek 1 3 3 2 3 1 NR 
Sturgeon Creek 5 3 3 3 4 1 Sulphur pockets 
Turkey Creek 3 3 3 2 2 2 NR 
West Branch Drain 6 3 4 5 4 3 NR 
Wigle Creek 4 3 4 3 4 3 Many boulders present 
LTVCA        
Big Creek 1 1 2 2 2 3 Boulders present 

Hendry Drain 4 4 4 3 3 3 
many large rocks - hard to 

ponar 

McCarson Drain 3 3 3 2 2 2 
Soft; duck weed and a lot 

of macrophyte present 
Natural 
Watercourse (C) 1 1 3 3 3 1 Mucky; sulphur pockets 
Natural 
Watercourse (NE) 1 1 1 3 3 3 Mucky 

Class Description 
1 Clay (hard pan) 
2 Silt (gritty, < 0.06 mm particle diameter) 
3 Sand (grainy, 0.06 - 2 mm) 
4 Gravel (2 - 65 mm) 
5 Cobble (65 - 250 mm) 
6 Boulder (> 250 mm) 
7 Bed Rock 
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 Site Name Substrate: Dominant Substrate: 2nd Dominant 
 

Substrate Notes 
LTVCA 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Newbiggen 4 4 4 3 3 3 Mucky pool bottoms 
Sharon Creek 5 3 5 3 5 3 NR 

Sixteen Mile Creek 3 3 3 1 4 4 
Pool middle with rocks, 

ponar done to side 
South Dales Creek 1 2 4 3 1 3 NR 
Talbot Creek 1 1 1 4 4 4 NR 

Two Creeks 3 4 2 2 3 3 
Little to no clay; cobble is 

present 
White Ash Creek 7 1 5 6 3 3 NR 
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Site Name 

Organic Matter Areal Coverage:  

Woody Debris 

Organic Matter Areal Coverage:  

Detritus 

ERCA 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Belle River 2 2 2 2 2 2 
Little River 2 2 2 2 2 2 
Muddy Creek 2 2 2 2 2 2 
Sturgeon Creek 2 2 2 2 2 2 
Turkey Creek 2 2 2 2 2 2 
West Branch Drain 1 1 1 2 2 2 
Wigle Creek 2 1 2 2 1 1 
LTVCA             
Big Creek 2 2 2 2 2 2 
Hendry Drain 2 2 2 2 2 2 
McCarson Drain 2 2 2 2 2 2 
Natural Watercourse (C) 2 2 2 2 2 2 
Natural Watercourse (NE) 1 1 1 1 1 1 
Newbiggen 2 2 2 3 2 3 
Sharon Creek 2 2 2 2 2 2 
Sixteen Mile Creek 2 2 2 2 2 2 
South Dales Creek 1 1 1 1 1 1 
Talbot Creek 2 2 2 2 2 2 
Two Creeks 1 1 1 2 2 2 
White Ash Creek 2 2 2 2 2 2 
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Site Name Riparian Vegetative Community: Left Bank Riparian Vegetative Community: Right Bank 

ERCA 
1.5 - 10 m from 

water's edge 
10 - 30 m from 

water's edge 
30 - 100 m from 

water's edge 
1.5 - 10 m from 

water's edge 
10 - 30 m from 

water's edge 
30 - 100 m from 

water's edge 
Belle River 4 2 2 5 2 2 
Little River 4 2 2 4 2 2 
Muddy Creek 4 2 2 2 2 2 
Sturgeon Creek 4 2 2 4 2 2 
Turkey Creek 5 4 5 3 2 2 
West Branch Drain 6 6 6 6 6 6 
Wigle Creek 6 2 2 6 2 2 
LTVCA             
Big Creek 4 2 2 4 2 2 
Hendry Drain 5 5 5 5 5 5 
McCarson Drain 3 2 2 3 2 2 
Natural 
Watercourse (C) 5 5 5 5 5 5 

Natural 
Watercourse (NE) 4 3 3 4 5 5 

Newbiggen 5 5 2 5 5 2 
Sharon Creek 6 6 6 6 3 3 
Sixteen Mile Creek 3 5 5 3 5 2 
South Dales Creek 1 1 1 5 1 1 
Talbot Creek 3 3 3 6 6 6 
Two Creeks 6 6 6 6 6 6 
White Ash Creek 4 3 2 4 2 2 
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Site Name % Canopy Cover 

ERCA 0-24 25-49 50-74 75-100 
Belle River ✓       
Little River   ✓     
Muddy Creek       ✓ 
Sturgeon Creek ✓       
Turkey Creek ✓       
West Branch Drain       ✓ 
Wigle Creek    ✓ 
LTVCA         
Big Creek ✓       
Hendry Drain   ✓     
McCarson Drain ✓       
Natural Watercourse (C)   ✓     
Natural Watercourse (NE) ✓       
Newbiggen   ✓     
Sharon Creek   ✓     
Sixteen Mile Creek ✓       
South Dales Creek     ✓   
Talbot Creek ✓       
Two Creeks       ✓ 
White Ash Creek ✓       
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 
Site Name Macrophytes: Emergent Macrophytes: Submergent 

ERCA 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Belle River 3 3 3 3 3 3 
Little River 3 3 3 2 2 2 
Muddy Creek 3 3 3 3 3 3 
Sturgeon Creek 3 3 3 3 3 3 
Turkey Creek 3 3 3 2 2 2 
West Branch Drain 3 3 3 2 2 2 
Wigle Creek 3 3 3 3 3 3 
LTVCA             
Big Creek 3 3 2 2 2 2 
Hendry Drain 3 3 3 2 2 3 
McCarson Drain 1 1 1 1 1 1 
Natural Watercourse (C) 3 3 3 3 3 3 
Natural Watercourse (NE) 3 3 3 3 3 3 
Newbiggen 3 3 3 2 2 2 
Sharon Creek 2 3 2 3 3 3 
Sixteen Mile Creek 3 3 3 3 2 2 
South Dales Creek 3 3 2 3 2 2 
Talbot Creek 3 3 3 3 3 3 
Two Creeks 3 3 1 2 3 3 
White Ash Creek 3 3 3 1 2 2 
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 
Site Name Macrophytes: Rooted Floating Macrophytes: Free Floating 

ERCA 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Belle River 3 3 3 3 3 3 
Little River 2 2 2 3 3 3 
Muddy Creek 3 3 3 3 3 3 
Sturgeon Creek 3 2 2 3 3 3 
Turkey Creek 2 2 2 3 3 3 
West Branch Drain 3 3 3 2 2 2 
Wigle Creek 2 2 2 3 3 3 
LTVCA             
Big Creek 2 2 3 3 3 3 
Hendry Drain 3 3 3 3 3 3 
McCarson Drain 1 1 1 2 2 2 
Natural Watercourse (C) 3 3 3 3 3 3 
Natural Watercourse (NE) 3 3 3 3 3 3 
Newbiggen 2 2 2 3 3 3 
Sharon Creek 3 3 3 3 3 3 
Sixteen Mile Creek 3 3 2 3 3 3 
South Dales Creek 3 2 2 2 3 3 
Talbot Creek 3 3 3 3 3 3 
Two Creeks 3 2 2 3 3 3 
White Ash Creek 2 3 3 2 3 3 
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 
Site Name Algae: Floating Algae Algae: Filaments 

ERCA 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Belle River 3 3 3 3 3 3 
Little River 3 3 3 2 2 2 
Muddy Creek 3 3 3 3 3 2 
Sturgeon Creek 3 3 3 3 3 3 
Turkey Creek 3 3 3 2 2 2 
West Branch Drain 3 3 3 3 3 3 
Wigle Creek 3 3 3 2 2 2 
LTVCA             
Big Creek 3 2 2 3 2 1 
Hendry Drain 3 3 3 3 3 3 
McCarson Drain 3 3 3 3 3 3 
Natural Watercourse (C) 3 3 3 2 2 2 
Natural Watercourse (NE) 3 3 3 2 2 2 
Newbiggen 3 3 3 2 2 2 
Sharon Creek 3 3 3 3 3 3 
Sixteen Mile Creek 3 3 3 2 3 2 
South Dales Creek 3 3 3 3 3 3 
Talbot Creek 3 3 3 2 2 2 
Two Creeks 2 3 3 2 2 2 
White Ash Creek 3 3 3 2 3 2 
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 
 
Site Name Algae: Attached Algae Algae: Slimes or Crusts 

ERCA 
Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Belle River 2 2 2 2 2 2 
Little River 2 2 2 2 2 2 
Muddy Creek 3 2 2 2 2 2 
Sturgeon Creek 2 2 2 2 2 2 
Turkey Creek 2 2 2 2 2 2 
West Branch Drain 2 2 2 2 2 2 
Wigle Creek 2 2 2 2 2 2 
LTVCA             
Big Creek 2 2 3 2 2 3 
Hendry Drain 3 3 3 3 3 3 
McCarson Drain 2 2 2 3 3 3 
Natural Watercourse (C) 2 2 2 3 3 3 
Natural Watercourse 
(NE) 2 2 2 3 3 3 

Newbiggen 2 2 2 3 3 3 
Sharon Creek 2 2 2 2 2 2 
Sixteen Mile Creek 2 2 2 3 3 3 
South Dales Creek 2 2 2 3 3 3 
Talbot Creek 2 2 2 3 3 3 
Two Creeks 1 2 1 3 3 2 
White Ash Creek 1 3 2 2 2 2 
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Site Name Widths and Depths 

ERCA Bankfull Width (m) Wetted Stream Width (m) Bankfull - Wetted Depth (cm) 
Belle River 16.4 14.1 1 
Little River 15 N/R 1 
Muddy Creek 4.8 1.1 0.56 
Sturgeon Creek 12.32 6.48 1.5 
Turkey Creek N/R N/R N/R 
West Branch Drain N/R N/R 0.4 
Wigle Creek 9 6.4 2 
LTVCA       
Big Creek 4.2 2.7 58.5 
Hendry Drain 6.07 5.2 0.55 
McCarson Drain 5 4.8 90 
Natural Watercourse (C) 7 4.3 1.3 
Natural Watercourse 
(NE) 3.3 2.25 34 

Newbiggen 6.52 6.52 2.16 
Sharon Creek 7.8 5.71 200 
Sixteen Mile Creek 5.5 4.6 1.3 
South Dales Creek 5.3 3.6 130 
Talbot Creek 13.1 10.4 2 
Two Creeks 5.7 N/R N/R 
White Ash Creek 7.5 5.5 7.5 
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Site Name Reach Data: Habitat Type Reach Data: Canopy Coverage 

ERCA Riffle Rapids 
Stright 

Run 

Pool/ 
Back 
Eddy 0% 1-25% 26-50% 51-75% 76-100% 

Belle River     ✓     ✓       
Little River     ✓       ✓     
Muddy Creek     ✓           ✓ 
Sturgeon Creek     ✓     ✓       
Turkey Creek     ✓     ✓       
West Branch Drain NR NR NR NR NR NR NR NR NR 
Wigle Creek ✓  ✓      ✓ 
LTVCA                   
Big Creek     ✓     ✓       
Hendry Drain ✓   ✓ ✓     ✓     
McCarson Drain     ✓ ✓   ✓       
Natural Watercourse (C) ✓   ✓     ✓       
Natural Watercourse 
(NE) ✓  ✓   ✓    

Newbiggen ✓           ✓     
Sharon Creek ✓     ✓     ✓     
Sixteen Mile Creek ✓         ✓       
South Dales Creek ✓     ✓       ✓   
Talbot Creek     ✓ ✓   ✓       
Two Creeks NR NR NR NR NR NR NR NR NR 
White Ash Creek ✓   ✓ ✓ NR NR NR NR NR 
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Site Name Reach Data: Macrophyte Coverage Reach Data: Streamside Vegetation 

ERCA 0% 1-25% 26-50% 51-75% 76-100% 
Ferns/ 
grasses shrubs 

deciduous 
trees 

coniferous 
trees 

Belle River   ✓       ✓   ✓   
Little River     ✓     ✓   ✓   
Muddy Creek   ✓       ✓       
Sturgeon Creek   ✓       ✓   ✓   
Turkey Creek   ✓           ✓   
West Branch Drain NR NR NR NR NR NR NR NR NR 
Wigle Creek  ✓      ✓  
LTVCA                   
Big Creek   ✓       ✓       
Hendry Drain   ✓       ✓   ✓   
McCarson Drain       ✓     ✓ ✓   
Natural Watercourse (C)   ✓       ✓ ✓ ✓   
Natural Watercourse 
(NE) 

 ✓    ✓    

Newbiggen   ✓       ✓       
Sharon Creek       ✓   ✓   ✓   
Sixteen Mile Creek ✓         ✓   ✓ ✓ 
South Dales Creek   ✓       ✓   ✓   
Talbot Creek   ✓           ✓   
Two Creeks NR NR NR NR NR NR NR NR NR 
White Ash Creek NR NR NR NR NR NR NR NR NR 
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Site Name Reach Data: Dominant Streamside Vegetation 

Reach Data: Periphyton Coverage on 

Substrate 

ERCA Ferns/grasses shrubs 
deciduous 

trees 
coniferous 

trees 1 2 3 4 5 
Belle River ✓         ✓       
Little River     ✓ ✓ ✓         
Muddy Creek ✓         ✓       
Sturgeon Creek ✓   ✓   ✓         
Turkey Creek ✓   ✓     ✓       
West Branch Drain NR NR NR NR NR NR NR NR NR 
Wigle Creek   ✓    ✓   
LTVCA                   
Big Creek ✓           ✓     
Hendry Drain ✓       ✓         
McCarson Drain ✓       ✓         
Natural Watercourse (C) ✓         ✓       
Natural Watercourse 
(NE) ✓     ✓   

  
Newbiggen     ✓ ✓   ✓       
Sharon Creek     ✓     ✓       
Sixteen Mile Creek ✓         ✓       
South Dales Creek     ✓     ✓       
Talbot Creek ✓       ✓         
Two Creeks NR NR NR NR NR NR NR NR NR 
White Ash Creek NR NR NR NR NR NR NR NR NR 
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Appendix E: Invertebrate Species List (2017)  
List of taxa observed in at least one sample (3-D-nets) in 40 streams sampled in 2017. 
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PHYLUM                
 SUBPHYLUM               
  CLASS                
   ORDER              
    SUBORDER            
     Family            
      Subfamily            
       Genus            
        species           
CNIDARIA                
  HYDROZOA              
   ANTHOATHECATA            
     Hydridae            
      Hydra  X     X X   X 
NEMATODA      X X X X X X X X X X 
NEMATOMORPHA     X          
ANNELIDA                
  CLITELLATA    X          
   OLIGOCHAETA   X X X X X X X X X X 
   ARHYNCHOBDELLIDA            
    ERPOBDELLIFORMES            
     Erpobdellidae   X   X X X X   
       Erpobdella            
        punctata X X     X X   
       Motobdella       X     
       Other            
   BRANCHIOBDELLIDA            
   RHYNCHOBDELLIDA            
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     Glossiphoniidae       X   X  
       Glossiphonia            
        elegans           
       Helobdella  X          
        papillata           
        stagnalis X X     X X X X 
       Placobdella            
        montifera           
       Other            
   OTHER            
MOLLUSCA                
  BIVALVIA              
   SPHAERIIDA            
     Sphaeriidae     X  X X    
       Sphaerium            
       Musculium            
       Sphaerium/ 

Musculium 
 X X  X  X     

       Pisidium   X  X       
     Rissooidea   X  X  X     
     Bithynidae            
       Bithynia            
        Bithynia 

tentaculata      X     

  GASTROPODA              
   ARCHITAENIOGLOSSA            
     Viviparidae            
       Bellamya            
       Other            
   BASOMMATOPHORA            
     Ancylidae            
       Ferrissia/ 

Laevapex 
           

       Other            
     Lymnaeidae     X  X X    
       Lymnaea       X     
        palustris           
        stagnalis      X X    
       Stagnicola            
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        catascopium       X    
       Other            
     Physidae       X     
       Physa  X   X  X X  X  
       Other            
     Planorbidae       X     
       Biomphalaria            
       Gyraulus            
       Helisoma            
       Lavapex/ 

Ferrissia 
           

       Other            
   HETEROSTROPHA            
     Valvatidae            
       Valvata            
        tricarinata           
       Other            
PLATYHELMINTHES               
  TURBELLARIA              
   TRICLADIDA  X X X   X  X X X 
     Planariidae            
ARTHROPODA                
 CHELICERATA               
  ARACHNIDA              
   TROMBIDIFORMES            
    HYDRACARINA       X   X X 
 CRUSTACEA               
  MAXILLOPODA             
  MALACOSTRACA             
   AMPHIPODA   X     X X   
     Crangonyctidae   X         
       Crangonyx  X X X X X X  X   
     Gammaridae  X   X     X  
       Echinogammarus            
        ischnus   X        
       Gammarus   X       X  
        fasciatus           
        lacustris           
        tigrinus         X  
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       Other            
     Hyalellidae            
       Hyalella  X      X X   
       Other            
   DECAPODA            
     Cambaridae      X  X    
       Cambarus            
       Orconectes            
       Other            
   ISOPODA            
     Asellidae      X      
       Caecidotea  X X X X X X X X X X 
       Other            
     Stenasellidae            
   OTHER            
 HEXAPODA               
  COLLEMBOLA      X    X   X 
  INSECTA               
   EPHEMEROPTERA            
    PISCIFORMA            
     Baetidae       X  X   
       Baetis            
       Callibaetis       X     
       Cloeon            
        dipterum           
       Procloeon            
       Other            
     Heptageniidae            
       Stenacron            
       Stenonema            
        femoratum           
       Other            
      Heptageniinae            
       Macdunnoa            
     Metretopodidae            
       Other            
     Siphlonuridae            
    FURCATERGALIA            
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     Caenidae            
       Caenis          X  
     Ephemerellidae            
       Hexagenia            
        limbata           
       Other            
     Leptophlebiidae            
       Paraleptophlebia            
       Other            
   ODONATA            
    ANISOPTERA            
     Aeshnidae            
       Aeshna            
       Anax            
       Other            
     Corduliidae            
       Cordulia            
       Other            
     Libellulidae            
       Erythemis            
       Libellula         X   
       Plathemis            
       Sympetrum  X          
       Other            
     Corduliidae/ Libellulidae            
     Other            
    ZYGOPTERA            
     Calopterygidae            
       Calopteryx      X      
       Other            
     Coenagrionidae            
       Amphiagrion            
       Argia            
       Enallagma            
       Enallagma/ 

Coenagrion 
     X      

       Ishnura      X      
       Nehalennia            
       Other            
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     Lestidae            
       Lestes   X         
       Other            
   PLECOPTERA            
      Chloroperlidae            
      Other            
   THYSANOPTERA            
   HEMIPTERA            
    HETEROPTERA            
     Belostomatidae         X   
     Corixidae           X 
      Corixinae            
       Callicorixa            
       Corisella            
       Dasycorixa            
       Hesperocorixa            
       Palmocorixa            
       Sigara            
       Trichocorixa            
       Other            
     Hebridae            
       Merragata            
     Gerridae            
     Mesoveliidae            
       Mesovelia    X        
       Other            
     Mesoveliidae/ Veliidae            
     Notonectidae            
     Veliidae            
       Microvelia            
       Rhagovelia            
       Other            
    OTHER            
   MEGALOPTERA            
     Corydalidae            
       Chauliodes            
     Sialidae            
       Sialis            
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     Other            
   COLEOPTERA             
    ADEPHAGA            
     Carabidae            
     Curculionidae       X     
     Dytiscidae  X X  X  X X X   
      Agabinae            
       Agabus   X    X     
       Hydrotrupes            
      Hydroporinae  X X    X    X 
       Hydroporus       X     
       Liodessus       X     
       Oreodytes       X     
      Laccophilus   X         
      Matinae            
       Matus            
      Other            
     Gyrinidae            
      Gyrininae            
       Dineutus            
       Gyrinus      X      
     Haliplidae            
       Brychius            
       Haliplus    X X X  X X  X 
       Peltodytes  X X  X    X  X 
       Other            
    POLYPHAGA            
     Chrysomelidae       X     
     Dryopidae            
     Elmidae    X      X  
      Elminae            
       Ancyronyx            
       Dubiraphia    X      X  
       Dubiraphia/ 

Narpus 
           

       Maxronychus            
       Optioservus            
       Ordobrevia          X  
       Oulimnius            
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       Stenelmis    X      X  
     Hydrophilidae            
      Georissidae            
       Georissus            
      Hydrophilinae            
       Berosus            
       Enochrus           X 
       Helochares            
       Tropisternus       X     
      Helophorinae            
       Helophorus            
     Lampyridae            
     Scirtidae            
     Staphylinidae            
   TRICHOPTERA            
    ANNULIPALPIA            
     Hydropsychidae            
      Hydropsychinae            
       Cheumatopsyche            
       Hydropsyche            
       Other            
      Macronematinae            
       Smicridea            
     Philopotamidae            
       Chimarra            
       Other            
     Polycentropodidae            
       Polycentrpus  X          
     Other            
    INTEGRIPALPIA            
     Hydroptilidae          X  
      Hydroptilinae            
       Hydroptila            
       Orthotrichia            
       Oxyethira            
      Other            
     Leptoceridae            
       Oecetis            
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       Trianodes            
       Other            
     Helicopsychidae            
       Helicopsyche            
       Other            
     Phryganeidae  X          
   DIPTERA             
    NEMATOCERA            
     Ceratopogonidae   X  X  X X X   
      Ceratopogoninae   X         
       Bezzia/ 

Palpomyia 
           

       Ceratopogon   X     X    
       Culicoides            
       Serromyia           X 
       Stilobezzia            
       Other            
     Chaoboridae            
       Chaoborus            
       Mochlonyx            
       Other            
     Chironomidae  X X X X X X X X X X 
     Culicidae            
       Aedes            
       Anopheles            
       Culex            
       Other            
     Dixidae            
       Dixa            
     Limoniidae            
       Limonia            
      Limoniinae            
       Antocha            
       Other            
     Simuliidae    X  X    X  
       Prosimulium            
       Simulium            
       Other            
     Tipulidae            
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      Tipulinae            
       Tipula            
     Psychodidae            
      Psychodinae            
       Pericoma/ 

Telmatoscopus 
       X    

      Other            
    BRACHYCERA            
     Athericidae            
       Atherix            
       Other            
     Dolichopodidae       X     
     Ephydridae   X         
      Ephydrinae            
       Setacera   X         
     Empididae    X   X X  X  
     Sciomyidae            
       Sepedon        X    
       Other            
     Stratiomyidae        X    
      Stratiomyinae            
       Odontomyia/ 

Hedriodiscus 
  X         

       Other            
     Tabanidae   X         
      Chrysopsinae            
       Chrysops            
       Other            



 138 

Appendix E: Invertebrate Species List (2017) continued 
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PHYLUM                
 SUBPHYLUM               
  CLASS                
   ORDER              
    SUBORDER            
     Family            
      Subfamily            
       Genus            
        species           
CNIDARIA                
  HYDROZOA              
   ANTHOATHECATA            
     Hydridae            
      Hydra   X  X  X X   X 
NEMATODA       X X X X  X X X X 
NEMATOMORPHA      X  X X      
ANNELIDA                
  CLITELLATA              
   OLIGOCHAETA    X X X X X X X X X 
   ARHYNCHOBDELLIDA            
    ERPOBDELLIFORMES            
     Erpobdellidae    X X  X X X   
       Erpobdella        X    
        punctata           
       Motobdella            
       Other            
   BRANCHIOBDELLIDA            
   RHYNCHOBDELLIDA            
     Glossiphoniidae            
       Glossiphonia            
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        elegans           
       Helobdella            
        papillata           
        stagnalis       X X   
       Placobdella            
        montifera           
       Other            
   OTHER            
MOLLUSCA                
  BIVALVIA              
   SPHAERIIDA            
     Sphaeriidae     X X X  X X  
       Sphaerium            
       Musculium         X   
       Sphaerium/ 

Musculium 
 X X    X    X 

       Pisidium   X  X X  X    
     Rissooidea       X X    
     Bithynidae            
       Bithynia            
        Bithynia 

tentaculata           

  GASTROPODA              
   ARCHITAENIOGLOSSA            
     Viviparidae            
       Bellamya            
       Cipangopaludina        X    
       Other            
   BASOMMATOPHORA            
     Ancylidae            
       Ferrissia/ 

Laevapex 
           

       Other            
     Lymnaeidae       X  X   
       Lymnaea       X X X   
        palustris           
        stagnalis     X      
       Stagnicola            
        catascopium  X    X  X   
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       Pseudosuccinea            
        columella  X    X     
       Other            
     Physidae          X  
       Physa   X X X X X X X   
       Other            
     Planorbidae    X   X     
       Biomphalaria            
       Gyraulus            
       Helisoma        X    
       Lavapex/ 

Ferrissia 
           

       Other            
   HETEROSTROPHA            
     Valvatidae            
       Valvata            
        tricarinata           
       Other            
PLATYHELMINTHES               
  TURBELLARIA    X X X X  X   X X 
   TRICLADIDA            
     Planariidae            
ARTHROPODA                
 CHELICERATA               
  ARACHNIDA              
   TROMBIDIFORMES            
    HYDRACARINA  X   X       
 CRUSTACEA               
  MAXILLOPODA             
  MALACOSTRACA             
   AMPHIPODA     X      X 
     Crangonyctidae            
       Crangonyx   X  X  X X X  X 
     Gammaridae    X  X      
       Echinogammarus            
        ischnus           
       Gammarus  X  X        
        fasciatus           
        lacustris           



 141 

        tigrinus           
       Other            
     Hyalellidae            
       Hyalella   X         
       Other            
   DECAPODA            
     Cambaridae     X   X X   
       Cambarus            
       Orconectes            
       Other            
   ISOPODA            
     Asellidae            
       Caecidotea  X X X X   X X X X 
       Lirceus            
       Other            
     Stenasellidae            
   OTHER            
 HEXAPODA               
  COLLEMBOLA         X     
  INSECTA               
   EPHEMEROPTERA            
    PISCIFORMA            
     Baetidae            
       Baetis            
       Callibaetis            
       Cloeon            
        dipterum           
       Procloeon            
       Other            
     Heptageniidae            
       Stenacron            
       Stenonema            
        femoratum           
       Other            
      Heptageniinae            
       Macdunnoa            
     Metretopodidae            
       Other            
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     Siphlonuridae            
    FURCATERGALIA            
     Caenidae            
       Caenis  X  X X     X  
     Ephemerellidae            
       Hexagenia            
        limbata           
       Other            
     Leptophlebiidae           X 
       Paraleptophlebia            
       Other            
   ODONATA            
    ANISOPTERA            
     Aeshnidae            
       Aeshna            
       Anax            
       Other            
     Corduliidae            
       Cordulia            
       Other            
     Libellulidae   X         
       Erythemis            
       Libellula            
       Plathemis         X   
       Sympetrum            
       Other            
     Corduliidae/ Libellulidae            
     Other            
    ZYGOPTERA            
     Calopterygidae            
       Calopteryx  X          
       Other            
     Coenagrionidae            
       Amphiagrion            
       Argia            
       Enallagma            
       Enallagma/ 

Coenagrion 
 X X    X     

       Ishnura            
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       Nehalennia            
       Other            
     Lestidae            
       Lestes            
       Other            
   PLECOPTERA            
      Chloroperlidae            
      Other            
   THYSANOPTERA            
   HEMIPTERA            
    HETEROPTERA            
     Belostomatidae            
       Belastoma         X   
     Corixidae            
      Corixinae            
       Callicorixa            
       Corisella            
       Dasycorixa            
       Hesperocorixa            
       Palmocorixa            
       Sigara            
       Trichocorixa            
       Other            
     Hebridae            
       Merragata            
     Gerridae            
     Mesoveliidae            
       Mesovelia    X      X  
       Other            
     Mesoveliidae/ Veliidae            
     Notonectidae            
     Veliidae            
       Microvelia            
       Rhagovelia            
       Other            
    OTHER            
   MEGALOPTERA            
     Corydalidae            



 144 

       Chauliodes            
     Sialidae            
       Sialis            
     Other            
   COLEOPTERA             
    ADEPHAGA            
     Carabidae            
     Curculionidae      X      
     Dytiscidae   X    X    X 
      Agabinae            
       Agabus           X 
       Hydrotrupes            
      Hydroporinae         X  X 
       Hydroporus            
      Laccophilus            
      Matinae            
       Matus            
      Other            
     Gyrinidae            
      Gyrininae            
       Dineutus            
       Gyrinus   X         
     Haliplidae            
       Brychius            
       Haliplus  X X     X    
       Peltodytes   X  X     X  
       Other            
    POLYPHAGA            
     Chrysomelidae            
     Dryopidae            
     Elmidae    X X     X  
      Elminae            
       Ancyronyx            
       Dubiraphia   X X X       
       Dubiraphia/ 

Narpus 
           

       Maxronychus            
       Optioservus            
       Ordobrevia    X      X  
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       Oulimnius            
       Stenelmis            
     Hydrophilidae           X 
      Georissidae            
       Georissus            
      Hydrophilinae            
       Berosus            
       Enochrus   X         
       Helochares            
       Tropisternus            
      Helophorinae            
       Helophorus            
     Lampyridae       X     
     Scirtidae          X  
     Staphylinidae            
   TRICHOPTERA            
    ANNULIPALPIA            
     Hydropsychidae            
      Hydropsychinae            
       Cheumatopsyche            
       Hydropsyche            
       Other            
      Macronematinae            
       Smicridea            
     Philopotamidae            
       Chimarra            
       Other            
     Polycentropodidae            
     Other            
    INTEGRIPALPIA            
     Hydroptilidae   X         
      Hydroptilinae            
       Hydroptila   X         
       Orthotrichia          X  
       Oxyethira            
      Other            
     Leptoceridae            
       Oecetis            
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       Trianodes            
       Other            
     Helicopsychidae            
       Helicopsyche            
       Other            
   DIPTERA             
    NEMATOCERA            
     Ceratopogonidae   X X X      X 
      Ceratopogoninae            
       Bezzia/ 

Palpomyia 
 X          

       Ceratopogon            
       Culicoides            
       Serromyia            
       Stilobezzia            
       Other            
     Chaoboridae            
       Chaoborus            
       Mochlonyx            
       Other            
     Chironomidae  X X X X X X X X X X 
     Culicidae            
       Aedes            
       Anopheles            
       Culex            
       Other            
     Dixidae            
       Dixa            
     Limoniidae            
       Limonia            
      Limoniinae            
       Antocha            
       Other            
     Simuliidae  X X X X       
       Prosimulium          X  
       Simulium   X  X       
       Other            
     Tipulidae            
      Tipulinae            
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       Tipula            
     Psychodidae            
      Psychodinae    X        
      Other            
    BRACHYCERA           X 
     Athericidae            
       Atherix            
       Other            
     Dolichopodidae            
     Ephydridae            
      Ephydrinae            
       Setacera            
     Empididae            
     Sciomyidae        X    
       Sepedon            
       Other            
     Stratiomyidae   X         
      Stratiomyinae            
       Odontomyia/ 

Hedriodiscus 
           

       Other            
     Tabanidae    X        
      Chrysopsinae            
       Chrysops            
       Other            
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Appendix E: Invertebrate Species List (2017) continued 
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PHYLUM                
 SUBPHYLUM               
  CLASS                
   ORDER              
    SUBORDER            
     Family            
      Subfamily            
       Genus            
        species           
CNIDARIA                
  HYDROZOA              
   ANTHOATHECATA            
     Hydridae            
      Hydra  X X X  X    X X 
NEMATODA      X  X X X X X X X  
NEMATOMORPHA               
ANNELIDA                
  CLITELLATA              
   OLIGOCHAETA   X X X X X X X X X X 
   ARHYNCHOBDELLIDA            
    ERPOBDELLIFORMES            
     Erpobdellidae       X    X 
       Erpobdella            
        punctata         X  
       Motobdella            
       Other            
   BRANCHIOBDELLIDA            



 149 

   RHYNCHOBDELLIDA            
     Glossiphoniidae            
       Glossiphonia            
        elegans           
       Helobdella            
        papillata           
        stagnalis           
       Placobdella            
        montifera           
       Other            
   OTHER            
MOLLUSCA                
  BIVALVIA              
   SPHAERIIDA            
     Sphaeriidae    X X X    X  
       Sphaerium  X          
       Musculium            
       Sphaerium/ 

Musculium 
 X   X X   X X X 

       Pisidium   X X   X     
     Rissooidea   X  X X      
     Bithynidae            
       Bithynia            
        Bithynia 

tentaculata        X   

  GASTROPODA              
   ARCHITAENIOGLOSSA            
     Viviparidae   X         
       Bellamya            
       Other            
   BASOMMATOPHORA            
     Ancylidae            
       Ferrissia/ 

Laevapex 
           

       Other            
     Lymnaeidae   X X X X X   X  
       Lymnaea           X 
        palustris           
        stagnalis  X         
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       Stagnicola            
        catascopium       X   X 
       Other            
     Physidae  X          
       Physa  X X X X X X  X X X 
       Other            
     Planorbidae    X X  X    X 
       Biomphalaria   X         
       Gyraulus     X       
       Helisoma           X 
       Lavapex/ 

Ferrissia 
           

       Other            
   HETEROSTROPHA            
     Valvatidae            
       Valvata            
        tricarinata           
       Other            
PLATYHELMINTHES               
  TURBELLARIA              
   TRICLADIDA    X   X  X X X 
     Planariidae   X         
ARTHROPODA                
 CHELICERATA               
  ARACHNIDA              
   TROMBIDIFORMES            
    HYDRACARINA            
 CRUSTACEA               
  MAXILLOPODA             
  MALACOSTRACA             
   AMPHIPODA     X X X   X  
     Crangonyctidae  X          
       Crangonyx     X X X  X  X 
     Gammaridae   X         
       Echinogammarus            
        ischnus           
       Gammarus   X X X     X  
        fasciatus           
        lacustris           
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        tigrinus           
       Other            
     Hyalellidae            
       Hyalella    X X       
       Other            
   DECAPODA            
     Cambaridae       X   X X 
       Cambarus            
       Orconectes            
       Other            
   ISOPODA            
     Asellidae  X  X        
       Caecidotea   X X X X X  X X X 
       Lirceus   X         
       Other            
     Stenasellidae            
   OTHER            
 HEXAPODA               
  COLLEMBOLA     X X        
  INSECTA               
   EPHEMEROPTERA            
    PISCIFORMA            
     Baetidae            
       Baetis            
       Callibaetis            
       Cloeon            
        dipterum           
       Procloeon            
       Other            
     Heptageniidae            
       Stenacron            
       Stenonema            
        femoratum           
       Other            
      Heptageniinae            
       Macdunnoa            
     Metretopodidae            
       Other            
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     Siphlonuridae            
    FURCATERGALIA            
     Caenidae            
       Caenis     X       
     Ephemerellidae            
       Hexagenia            
        limbata           
       Other            
     Leptophlebiidae      X     X 
       Paraleptophlebia    X        
       Other            
   ODONATA            
    ANISOPTERA            
     Aeshnidae            
       Aeshna            
       Anax   X         
       Other            
     Corduliidae     X       
       Cordulia            
       Other            
     Libellulidae            
       Erythemis            
       Libellula       X     
       Plathemis     X       
       Sympetrum   X         
       Other            
     Corduliidae/ Libellulidae     X       
     Other            
    ZYGOPTERA            
     Calopterygidae            
       Calopteryx            
       Other            
     Coenagrionidae     X       
       Amphiagrion            
       Argia            
       Enallagma            
       Enallagma/ 

Coenagrion 
        X   

       Ishnura       X     
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       Nehalennia            
       Other            
     Lestidae            
       Lestes            
       Other            
   PLECOPTERA            
      Chloroperlidae            
      Other            
   THYSANOPTERA  X          
   HEMIPTERA            
    HETEROPTERA            
     Belostomatidae            
     Corixidae    X X  X   X  
      Corixinae            
       Callicorixa            
       Corisella            
       Dasycorixa            
       Hesperocorixa            
       Palmocorixa            
       Sigara            
       Trichocorixa            
       Other            
     Hebridae            
       Merragata            
     Gerridae            
     Mesoveliidae            
       Mesovelia            
       Other            
     Mesoveliidae/ Veliidae            
     Notonectidae     X       
     Veliidae            
       Microvelia            
       Rhagovelia            
       Other            
    OTHER            
   MEGALOPTERA            
     Corydalidae            
       Chauliodes            
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     Sialidae            
       Sialis            
     Other            
   COLEOPTERA             
    ADEPHAGA            
     Carabidae            
     Curculionidae   X X        
     Dytiscidae   X X X      X 
      Agabinae            
       Agabus          X  
       Hydrotrupes            
      Hydroporinae      X     X 
       Hydroporus            
      Laccophilus            
      Matinae            
       Matus            
      Other            
     Gyrinidae            
      Gyrininae            
       Dineutus            
       Gyrinus            
     Haliplidae            
       Brychius            
       Haliplus            
       Peltodytes     X       
       Other            
    POLYPHAGA            
     Chrysomelidae            
     Dryopidae            
     Elmidae    X        
      Elminae            
       Ancyronyx            
       Dubiraphia            
       Dubiraphia/ 

Narpus 
           

       Maxronychus            
       Optioservus            
       Ordobrevia            
       Oulimnius            
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       Stenelmis            
     Hydrophilidae            
      Georissidae            
       Georissus            
      Hydrophilinae            
       Berosus         X   
       Enochrus            
       Helochares            
       Tropisternus            
      Helophorinae            
       Helophorus            
     Lampyridae     X       
     Scirtidae            
     Staphylinidae            
   TRICHOPTERA            
    ANNULIPALPIA            
     Hydropsychidae            
      Hydropsychinae            
       Cheumatopsyche            
       Hydropsyche            
       Other            
      Macronematinae            
       Smicridea            
     Philopotamidae            
       Chimarra            
       Other            
     Polycentropodidae            
     Other            
    INTEGRIPALPIA            
     Hydroptilidae            
      Hydroptilinae            
       Hydroptila            
       Orthotrichia            
       Oxyethira            
      Other            
     Leptoceridae            
       Oecetis            
       Trianodes            
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       Other            
     Helicopsychidae            
       Helicopsyche            
       Other            
   DIPTERA             
    NEMATOCERA            
     Ceratopogonidae  X X  X     X  
      Ceratopogoninae            
       Bezzia/ 

Palpomyia 
    X       

       Ceratopogon    X      X  
       Culicoides            
       Serromyia     X       
       Stilobezzia            
       Other            
     Chaoboridae            
       Chaoborus            
       Mochlonyx            
       Other            
     Chironomidae  X X X X X X X X X X 
     Culicidae            
       Aedes            
       Anopheles            
       Culex            
       Other            
     Dixidae            
       Dixa            
     Limoniidae            
       Limonia            
      Limoniinae            
       Antocha            
       Other            
     Simuliidae         X X  
       Prosimulium            
       Simulium    X        
       Other            
     Tipulidae    X        
      Tipulinae            
       Tipula        X    
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     Psychodidae         X   
      Psychodinae            
      Other            
    BRACHYCERA    X        
     Athericidae            
       Atherix            
       Other            
     Dolichopodidae            
     Ephydridae       X   X  
      Ephydrinae            
       Setacera            
     Empididae            
     Sciomyidae            
       Sepedon            
       Other            
     Stratiomyidae  X          
      Stratiomyinae            
       Odontomyia/ 

Hedriodiscus 
  X       X  

       Other            
     Tabanidae  X  X X       
      Chrysopsinae            
       Chrysops     X       
       Other            



 158 

Appendix E: Invertebrate Species List (2017) continued 
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PHYLUM                
 SUBPHYLUM               
  CLASS                
   ORDER              
    SUBORDER            
     Family            
      Subfamily            
       Genus            
        species           
CNIDARIA                
  HYDROZOA              
   ANTHOATHECATA            
     Hydridae            
      Hydra   X   X  X   X 
NEMATODA      X X   X  X X X X 
NEMATOMORPHA               
ANNELIDA                
  CLITELLATA              
   OLIGOCHAETA   X X X X X X X X X X 
   ARHYNCHOBDELLIDA        X    
    ERPOBDELLIFORMES            
     Erpobdellidae   X     X   X 
       Erpobdella            
        punctata X    X      
       Motobdella            
       Other            
   BRANCHIOBDELLIDA    X        
   RHYNCHOBDELLIDA            
     Glossiphoniidae            
       Glossiphonia            
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        elegans           
       Helobdella            
        papillata           
        stagnalis  X     X  X  
       Placobdella            
        montifera           
       Other            
   OTHER            
MOLLUSCA                
  BIVALVIA              
   SPHAERIIDA            
     Sphaeriidae    X        
       Sphaerium            
       Musculium            
       Sphaerium/ 

Musculium 
 X      X X   

       Pisidium   X   X  X  X X 
     Rissooidea  X          
     Bithynidae            
       Bithynia            
        Bithynia 

tentaculata           

  GASTROPODA              
   ARCHITAENIOGLOSSA            
     Viviparidae      X      
       Bellamya            
       Other            
   BASOMMATOPHORA            
     Ancylidae            
       Ferrissia/ 

Laevapex 
           

       Other            
     Lymnaeidae   X   X     X 
       Fossaria            
        Truncatula

/humilis X          

       Lymnaea     X       
        palustris           
        stagnalis           
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       Stagnicola            
        catascopium  X         
       Other            
     Physidae            
       Physa  X X   X   X   
       Other            
     Planorbidae   X   X   X   
       Biomphalaria            
       Gyraulus   X   X      
       Helisoma      X      
       Lavapex/ 

Ferrissia 
     X      

       Other            
   HETEROSTROPHA            
     Valvatidae            
       Valvata            
        tricarinata           
       Other            
PLATYHELMINTHES               
  TURBELLARIA     X X    X  X X 
   TRICLADIDA            
     Planariidae            
ARTHROPODA                
 CHELICERATA               
  ARACHNIDA              
   TROMBIDIFORMES            
    HYDRACARINA    X       X 
 CRUSTACEA               
  MAXILLOPODA             
  MALACOSTRACA             
   AMPHIPODA   X   X    X  
     Crangonyctidae  X          
       Crangonyx  X X  X X X  X   
     Gammaridae        X    
       Echinogammarus            
        ischnus           
       Gammarus        X    
        fasciatus           
        lacustris           
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        tigrinus           
       Other            
     Hyalellidae            
       Hyalella       X     
       Other            
   DECAPODA            
     Cambaridae  X X  X X   X   
       Cambarus            
       Orconectes            
       Other            
   ISOPODA            
     Asellidae   X         
       Caecidotea  X X X X X X X X X X 
       Lirceus      X  X    
       Other            
     Stenasellidae            
   OTHER            
 HEXAPODA               
  COLLEMBOLA             X 
  INSECTA               
   EPHEMEROPTERA            
    PISCIFORMA            
     Baetidae            
       Baetis            
       Callibaetis            
       Cloeon            
        dipterum           
       Procloeon  X          
       Other            
     Heptageniidae            
       Stenacron            
       Stenonema            
        femoratum           
       Other            
      Heptageniinae            
       Macdunnoa            
     Metretopodidae            
       Other            
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     Siphlonuridae            
    FURCATERGALIA            
     Caenidae         X   
       Caenis            
     Ephemerellidae            
       Hexagenia            
        limbata           
       Other            
     Leptophlebiidae            
       Paraleptophlebia            
       Other            
   ODONATA            
    ANISOPTERA            
     Aeshnidae    X        
       Aeshna            
       Anax            
       Other            
     Corduliidae   X         
       Cordulia            
       Other            
     Libellulidae            
       Erythemis            
       Libellula            
       Plathemis            
       Sympetrum            
       Other            
     Corduliidae/ Libellulidae            
     Other            
    ZYGOPTERA            
     Calopterygidae            
       Calopteryx            
       Other            
     Coenagrionidae   X         
       Amphiagrion            
       Argia            
       Enallagma            
       Enallagma/ 

Coenagrion 
           

       Ishnura   X   X     X 



 163 

       Nehalennia            
       Other            
     Lestidae            
       Lestes            
       Other            
   PLECOPTERA            
      Chloroperlidae            
      Other            
   THYSANOPTERA         X   
   HEMIPTERA            
    HETEROPTERA            
     Belostomatidae            
     Corixidae      X X     
      Corixinae            
       Callicorixa            
       Corisella            
       Dasycorixa            
       Hesperocorixa            
       Palmocorixa            
       Sigara            
       Trichocorixa            
       Other            
     Hebridae            
       Merragata            
     Gerridae            
     Mesoveliidae            
       Mesovelia           X 
       Other            
     Mesoveliidae/ Veliidae            
     Notonectidae            
     Veliidae            
       Microvelia            
       Rhagovelia            
       Other            
    OTHER            
   MEGALOPTERA            
     Corydalidae            
       Chauliodes   X         
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     Sialidae            
       Sialis            
     Other            
   COLEOPTERA             
    ADEPHAGA            
     Carabidae            
     Curculionidae   X         
     Dytiscidae  X X   X  X    
      Agabinae            
       Agabus  X       X   
       Hydrotrupes            
      Hydroporinae         X   
       Hydroporus            
      Ilybius   X         
      Laccophilus   X         
      Matinae            
       Matus            
      Other            
     Gyrinidae            
      Gyrininae            
       Dineutus            
       Gyrinus            
     Haliplidae            
       Brychius            
       Haliplus   X     X    
       Peltodytes            
       Other            
    POLYPHAGA            
     Chrysomelidae            
     Dryopidae            
     Elmidae            
      Elminae            
       Ancyronyx            
       Dubiraphia        X    
       Dubiraphia/ 

Narpus 
           

       Maxronychus            
       Optioservus            
       Ordobrevia            
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       Oulimnius            
       Stenelmis            
     Hydrophilidae            
      Georissidae            
       Georissus            
      Hydrophilinae            
       Berosus            
       Enochrus            
       Helochares            
       Tropisternus            
      Helophorinae            
       Helophorus            
     Lampyridae            
     Scirtidae        X    
     Staphylinidae            
   TRICHOPTERA            
    ANNULIPALPIA            
     Hydropsychidae            
      Hydropsychinae            
       Cheumatopsyche            
       Hydropsyche            
       Other            
      Macronematinae            
       Smicridea            
     Philopotamidae            
       Chimarra            
       Other            
     Polycentropodidae            
       Polycentropus      X      
       Other            
     Other            
    INTEGRIPALPIA            
     Hydroptilidae            
      Hydroptilinae            
       Hydroptila            
       Orthotrichia            
       Oxyethira            
      Other            
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     Leptoceridae            
       Oecetis            
       Trianodes            
       Other            
     Helicopsychidae            
       Helicopsyche            
       Other            
   DIPTERA             
    NEMATOCERA            
     Ceratopogonidae   X    X   X X 
      Ceratopogoninae            
       Bezzia/ 

Palpomyia 
  X      X   

       Ceratopogon          X  
       Culicoides            
       Serromyia            
       Stilobezzia            
       Other            
     Chaoboridae            
       Chaoborus            
       Mochlonyx            
       Other            
     Chironomidae  X X X X X X X X X X 
     Culicidae            
       Aedes            
       Anopheles            
       Culex            
       Other            
     Dixidae            
       Dixa            
     Limoniidae            
       Limonia            
      Limoniinae         X   
       Antocha     X       
       Other            
     Simuliidae    X    X    
       Prosimulium            
       Simulium            
       Other            
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     Tipulidae         X   
      Tipulinae            
       Tipula            
     Psychodidae            
      Psychodinae            
      Other            
    BRACHYCERA            
     Athericidae            
       Atherix            
       Other            
     Dolichopodidae            
     Ephydridae           X 
      Ephydrinae            
       Setacera            
     Empididae   X         
     Sciomyidae  X          
       Sepedon            
       Other   X         
     Stratiomyidae            
      Stratiomyinae            
       Odontomyia/ 

Hedriodiscus 
           

       Other            
     Tabanidae   X       X  
      Chrysopsinae            
       Chrysops         X   
       Other            
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Appendix F: 2017 Field Data:  
Field measurements were collected in the field during the 2017 sampling season of 40 sites across southwestern Ontario. 
*NR indicates there was no record taken in the field 

Site Name 
ERCA 

Water 
Temperature 

( ℃ ) 

Air 
Temperature 

( ℃ ) DO (mg/l) 
Conductivity 

(uS/cm) pH 

 
Turbidity 

(cm) 

Time  Elevation 
(m asl)  

6th Concession Drain 16.1 14.3 9.60 797 8.37 29.8 1:10 PM 177.5 

9th Concession Drain  19.2 24.4 10.65 7.66 8.27 30 2:30 PM 185.7 

Barlow Drain 27.2 19.6 19.21 837 10.40 22 4:45 PM 193 

Big Creek 17.3 24.9 20.5 435 8.84 45 2:00 PM 4665868 
CN/Clickener Branch 
Drain of Renaud Line 
Drain  

17.2 21.2 7.02 723 8.66 45 
1:15 – 

3:00 PM 
216.4 

Coulson Drain 25.8 NR 8.38/%101.2 795 8.47 NR 2:30 PM 169.1 
Campbell Sideroad 
Drain 

18.2 14.8 18.39 696 9.03  4:00PM 190.2 

Coleman Drain 14.2 16.0 9.71 723 8.24 9 4:24PM  

Cornwall Drain 16.6 21.8 14.55 494 8.61 21 1:35PM 205 

Taylor Drain 18.4 23.0 6.77 554 8.74 66 10:30AM 181.2 

Titcombe Road Drain 17.2 24.1 6.70 919 8.85 9 1:00PM 181.4 

Washbrook Drain 12.5 11.7 9.51 870 7.16  11:15AM 185.7 
Wilkinson-Shilson 
Drain 
 

12.3 13.0 7.57 661 8.65 120 10:30AM 181.3 

LTVCA         

10th Concession Drain 24.0 23.2 13.34 987 8.34 61 2:30PM 184.8 
18 & 19 Sideroad 
Drain 

 
16.0 

 
15.3 

8.96 652 8.44 32 1:30PM 195.8 

Cameron Drain 13.7 15.8 8.75 618 8.40 4 11:45AM NR 
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Simpson Drain 23.0 NR 14.5 603 8.46 NR 3:00PM NR 

Moore Drain 19.6 21.6 8.07 428.4 8.6 2 12:10PM 179.6 

Miller Drain 19.1 22.0 7.88 352.4 8.67 4 12:00PM  

Lundy Drain 12.1 10.8 9.66 630 8.78 38 2:30PM 186.4 

Lewis Drain 16.0 15.8 8.45 961 8.42 15 3:50PM 185.2 

McArthur East Drain 13.8 16.7 9.84 600 8.38 NR NR NR 

Nelles Drain 14.7 19.7 14.51 791 8.49 105 1:15PM NR 

Two Creeks Drain 19.6 14.4 10.71 755 8.54 77 3:00PM 176.0 
Upper Portion 
Cartmill Drain 

13.0 18.8 10.66 663 8.68 40 10:40AM NR 

Ouellette Drain 
Branch 

23.8 21.2 14.4 800 8.5 104 3:50PM 180.0 
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Site Name Sample 1: Riffle (Cross-Over) 

ERCA 

Sampling 
Distance 

Covered (m)  
Time 
(min) 

Max. Depth 
(m)  

 
Wetted Width 

(m) 

 
Max. Hydraulic 

Head (mm) 
# Grabs Pooled per 

Sample 
6th Concession Drain 2.7 3 0.34 3.9 0.5 0 

9th Concession Drain  2 3 0.124 1.70 NR NR 

Barlow Drain 3 3 0.081 0.58 5 2 

Big Creek 1.9 3 0.254 12.4 0 2 
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

NR 3 0.48 3.45 0 2 

Coulson Drain 4 3 0.17 1.0 3 2 
10th Concession 
Drain 

2.5 3 0.265 0.60 3 0 

18 & 19 Sideroad 
Drain 

1.5 3 0.22 2.3 0 2 

Cameron Drain 2 3 54 1.44 40 2 
Campbell Sideroad 
Drain 

2 3 16 2 0 0 

Coleman Drain 2 3 57 1.3 1 2 

Cornwall Drain 1.5 3 0.27 2.15 1 2 

Simpson Drain NR 3 0.15 0.83 0 NR 

Moore Drain 1 3 0.28 1.68 0 2 

Lundy Drain 2.5 3 0.09 0.76 2 2 

Miller Drain 3 3 0.35 1.5 2 0 

Taylor Drain 2 3 0.14 1.62 2 2 
Titcombe Road 
Drain 1.5 3 0.21 2.29 0 0 

Washbrook Drain 2 3 11 0.88 1 3 
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Wilkinson-Shilson 
Drain 

2.5 3 23.5 1.40 0 2 

Lewis Drain 1,5 3 0.16 0.9 50 NR 

McArthur East Drain 2.5 3 32 2.1 3 2 

Nelles Drain 2.5 3 0.58 6.11 0 NR 
Ouellette Drain 
Branch 

2.5 3 0.75 3.05 0 2 

Two Creeks Drain NR  0.11 2.30 25 2 
Upper Portion 
Cartmill Drain NR 3 0.14 3.5 2 NR 
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Site Name Sample 2: Pool 

ERCA 

Sampling 
Distance 

Covered (m)  
Time 
(min) 

Max. Depth 
(m)  

 
Wetted Width 

(m) 

 
Max. Hydraulic 

Head (mm) 
# Grabs Pooled per 

Sample 
6th Concession Drain 3 3 0.54 5.2 1.5 3 

9th Concession Drain   3 20.8 2.09 NR NR 

Barlow Drain 2 3 0.144 1.66 1 3 

Big Creek 3 3 0.393 7.2 0 3 
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

2 3 0.48 3.47 0 3 

Coulson Drain 2 3 0.25 2.22 1 3 
10th Concession 
Drain 

1.5 3 0.34 2.5 3 0 

18 & 19 Sideroad 
Drain 

2 3 0.25 2.61 0 3 

Cameron Drain 2 3 49 2.1 30 3 
Campbell Sideroad 
Drain 

2 3 20 2.13 0 3 

Coleman Drain 2.5 3 57 2.0 1 3 

Cornwall Drain 2 3 0.25 2.30 1 3 

Simpson Drain NR 3 0.4 2.5 0 NA 

Moore Drain 2 3 0.18 2.22 5 3 

Lundy Drain 1.5 3 0.16 1.28 0 3 

Miller Drain 2 3 0.49 3.4 3 3 

Taylor Drain 3 3 0.245 0.15 4 0 

Titcombe Rd Drain 2.25 3 0.19 2.39 0 3 

Washbrook Drain 2.5 3 12 1.89 1.5 0 
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Wilkinson-Shilson 
Drain 

2 3 0.495 1.90 0 3 

Lewis Drain 2 3 0.35 2.25 NR NR 

McArthur East Drain 2.5 3 50 3.8 0.5 3 

Nelles Drain 2.5 3 0.52 6.1 1 2 
Ouellette Drain 
Branch 

2 3 0.14 3.13 0.5 3 

Two Creeks Drain NR NR 0.505 4.76 2 3 
Upper Portion 
Cartmill Drain NR 3 0.12 2.1 0 NR 
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Site Name Sample 3: Riffle (Cross-Over) 

ERCA 

Sampling 
Distance 

Covered (m)  
Time 
(min) 

Max. Depth 
(m)  

 
Wetted Width 

(m) 

 
Max. Hydraulic 

Head (mm) 
# Grabs Pooled per 

Sample 
6th Concession Drain 2.7 3 0.54 5.0 0.5 2 

9th Concession Drain  3 3 9.8 1.65 NR NR 

Barlow Drain 2 3 0.079 0.84 4 0 

Big Creek 2.8 3 0.433 12.0 0 0 
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

2 3 0.38 3.22 0 0 

Coulson Drain 3.5 3 0.18 1.7 2 0 
10th Concession 
Drain 

2 3 0.25 1.75 2 2 

18 & 19 Sideroad 
Drain 

1.25 3 0.31 2.33 0 0 

Cameron Drain 2 3 56 1.85 55 0 
Campbell Sideroad 
Drain 

2 3 16 1.64 0 2 

Coleman Drain 2 3 57 1.5 2 0 

Cornwall Drain 1.5 3 0.255 2.5 1 0 

Simpson Drain  3 0.19 1.5 0 NR 

Moore Drain 1.5 3 0.16 0.35 3.5 0 

Lundy Drain  3 0.09 0.74 1 0 

Miller Drain  3 0.46 1.5 2 2 

Taylor Drain 1.5 3 0.15 2.4 4 0 

Titcombe Rd. Drain 1.5 3 0.13 2.58 1 2 

Washbrook Drain 2 3 14 1.85 1.5 0 
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Wilkinson-Shilson 
Drain 

3 3 19 1.66 0 0 

Lewis Drain 2 3 0.30 1.34 0 NA 

McArthur East Drain 2 3 21 2.5 7 0 

Nelles Drain 2.5 3 0.4 6.3 1 2 
Ouellette Drain 
Branch 

1.5 3 0.17 2.5 0 0 

Two Creeks Drain 3  0.08 5.65 5 0 
Upper Portion 
Cartmill Drain 2.5 3 0.9 3.2 1 NR 
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 Site Name Substrate: Dominant Substrate: 2nd Dominant 

ERCA 

Sample 
1 

(Riffle 
1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

6th Concession Drain 2 2 2 1 1 1 

9th Concession Drain  NR NR NR NR NR NR 

Barlow Drain  1 1 1 1 1 1     
Big Creek 2 2 2 1 1 1 
CN/Clickener Branch Drain of 
Renaud Line Drain 

NR 2 NR NR 3 NR 

Coulson Drain NR NR NR NR NR NR 

Campbell Sideroad Drain 1 1 1 3 3 3 

Coleman Drain 3 3 3 5 5 5 

Cornwall Drain 2 2 2 1 1 1 

Taylor Drain 3 3 3 2 2 2 

Titcombe Rd Drain 2 2 2 3 3 3 

Washbrook Drain 1 1 1 1 1 1 

Wilkinson-Shilson Drain 3 3 3 2 1 2 

       

Class Description 
1 Clay (hard pan) 
2 Silt (gritty, < 0.06 mm particle diameter) 
3 Sand (grainy, 0.06 - 2 mm) 
4 Gravel (2 - 65 mm) 
5 Cobble (65 - 250 mm) 
6 Boulder (> 250 mm) 
7 Bed Rock 
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 Site Name Substrate: Dominant Substrate: 2nd Dominant 

LTVCA 

Sample 
1 

(Riffle 
1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

10th Concession Drain 3 1 1 4 3 3 

18 & 19 Sideroad Drain 1 1 1 1 1 1 

Cameron Drain 3 3 3 4 4 4 

Simpson Drain  1 1 1 2 2 2 

Moore Drain 1 3 1 3 4 4 

Lundy Drain 5 4 5 4 3 4 

Miller Drain 1 3 3 4 4 4 

Lewis Drain 3 3 3 4 1(4) 1 

McArthur East Drain 3 1 3 1 2 1 

Nelles Drain 1 1 1 2 2 2 

Two Creeks Drain 6 3 3 5 6 2 

Upper Portion Cartmill Drain 1 1 1 2 2 2 

Ouellette Drain Branch 1 1 1 1 1 1 
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Site Name 
Organic Matter Areal Coverage:  

Woody Debris 
Organic Matter Areal Coverage:  

Detritus 

ERCA 
Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

6th Concession Drain 2 2 2 1 1 1 

9th Concession Drain  NR NR NR NR NR NR 

Barlow Drain 2 2 2 2 2 2 

Big Creek NR NR 1 NR NR 1 
CN/Clickener Branch Drain 
of Renaud Line Drain 

NR 1 NR NR 1 NR 

Campbell Sideroad Drain 2 2 2 2 2 2 

Coleman Drain 3 3 3 2 2 2 

Cornwall Drain 3 3 3 2 2 2 

Taylor Drain 2 3 1 3 3 2 

Titcombe Rd Drain 1 1 1 1 1 1 

Washbrook Drain 2 2 2 2 2 2 

Wilkinson-Shilson Drain 2 NR 2 2 2 2 

LTVCA       

 10th Concession drain 2 2 2 2 2 2 

 18 & 19 Sideroad Drain 3 3 2 2 2 2 

Cameron Drain 1 1 1 1 1 1 

Simpson Drain 3 3 3 2 2 2 

Moore Drain 2 2 2 2 2 3 

Lundy Drain 3 2 2 2 2 2 

Miller Drain 3 3 3 2 2 2 

Lewis Drain 2 2 2 2 2 2 

McArthur East Drain 2 2 2 2 2 2 

Nelles Drain 2 2 2 2 2 2 
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Two Creeks Drain 3 3 2 3 3 2 
Upper Portion Cartmill 
Drain 

2 2 2 2 2 2 

Ouellette Drain Branch 3 3 3 1 3 3 
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Site Name Riparian Vegetative Community: Left Bank Riparian Vegetative Community: Right Bank 

ERCA 

1.5 - 10 m 
from water's 
edge 

10 - 30 m from 
water's edge 

30 - 100 m from 
water's edge 

1.5 - 10 m from 
water's edge 

10 - 30 m from 
water's edge 

30 - 100 m from 
water's edge 

 6th Concession Drain 2 2 2 2 2 2 

9th Concession Drain  NR NR NR NR NR NR 

Barlow Drain 4 4 4 4 4 4 

Big Creek 4 2 2 4 2 2 
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

4 2 2 4 2 St. Clair Lake 

Campbell Sideroad 
Drain 

2 2 2 4 2 2 

Coleman Drain 3 2 2 3 2 2 

Cornwall Drain 2 2 2 2 2 2 

Taylor Drain 2 2 2 2 2 2 

Titcombe Rd Drain 6 6 6 6 6 6 

Washbrook Drain 2 2 2 2 2 2 
Wilkinson-Shilson 
Drain 

4 2 2,6 4 2 2,6 

LTVCA       

 10th Concession 
Drain 

2 2 2 2 2 2 

 18 & 19 Sideroad 
Drain 

2 2 2 2 2 2 

Cameron Drain 2 2 2 2 2 2 

Simpson Drain 2 2 2 2 2 2 

Moore Drain 2 2 2 2 2 2 

Miller Drain 2 2 2 2 2 2 
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Lewis Drain 2 2 2 2 2 2 

McArthur East Drain 6 2 2 6 2 2 

Nelles Drain 2 2 2 2 2 2 

Two Creeks Drain 6 6 2,6 6 6 2,6 
Upper Portion 
Cartmill Drain 

2 2 2 2 2 2 

Ouellette Drain 
Branch 

2 2 2 2 2 2 
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Site Name % Canopy Cover 
ERCA 0-24 25-49 50-74 75-100 
6th Concession Drain     ✓   
9th Concession Drain          
Barlow Drain ✓       
Big Creek ✓       

CN/Clickener Branch Drain of Renaud Line Drain       ✓  
Campbell Sideroad Drain ✓    
Coleman Drain ✓    
Cornwall Drain ✓    
Taylor Drain  ✓   
Titcombe Rd Drain    ✓ 
Washbrook Drain    ✓ 
Wilkinson-Shilson Drain ✓    
LTVCA         
 10th Concession Drain ✓        

 18 & 19 Sideroad Drain ✓        
Cameron Drain ✓    
Simpson Drain  ✓    
Moore Drain ✓    
Lundy Drain ✓    
Miller Drain ✓    
Lewis Drain ✓    
McArthur East Drain    ✓ 
Nelles Drain ✓    
Ouellette Drain Branch ✓    
Two Creeks Drain ✓    
Upper Portion Cartmill Drain ✓    
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 

Site Name Macrophytes: Emergent Macrophytes: Submergent 

ERCA 
Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

6th Concession 3 3 3 3 3 3 

9th Concession Drain  NR NR NR NR NR NR 

Barlow Drain 2 2 2 3 3 3 

Big Creek 1 1 1 1 1 1 
CN/Clickener Branch Drain 
of Renaud Line Drain 

NR 2 NR NR 2 NR 

Campbell Sideroad Drain 2 2 2 2 2 2 

Coleman Drain 2 2 2 3 3 3 

Cornwall Drain 1 1 1 2 2 2 

Taylor Drain 3 3 3 1 1 2 

Titcombe Rd Drain 2 3 3 3 2 3 

Washbrook Drain 3 3 3 3 3 3 

Wilkinson-Shilson Drain 3 3 3 3 3 3 

LTVCA       

 10th Concession Drain 2 2 2 3 3 3 

 18 & 19 Sideroad Drain 2 3 2 1 1 1 

Cameron Drain 2 2 2 3 3 3 

Simpson Drain 2 2 1 3 3 3 

Moore Drain 3 3 2 3 3 3 

Lundy Drain 3 3 3 2 2 2 

Miller Drain 2 2 2 3 3 3 

Lewis Drain 2 2 2 3 3 3 

McArthur East Drain 3 3 3 3 3 3 
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Nelles Drain 1 1 1 3 3 3 

Two Creeks Drain 3 3 3 1 3 2 
Upper Portion Cartmill 
Drain 

2 2 2 3 3 3 

Ouellette Drain Branch 1 2 2 3 2 2 
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 

Site Name Macrophytes: Rooted Floating Macrophytes: Free Floating 

ERCA 
Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

6th Concession Drain 3 3 3 3 3 3 

9th Concession Drain  NR NR NR NR NR NR 

Barlow Drain 2 2 2 3 3 3 

Big Creek 2 2 2 3 3 3 
CN/Clickener Branch Drain 
of Renaud Line Drain 

NR 2 NR NR 3 NR 

Campbell Sideroad Drain 3 3 3 3 3 3 

Coleman Drain 3 3 3 3 3 3 

Cornwall Drain 3 3 3 3 3 3 

Simpson Drain 3 3 3 3 3 3 

Taylor Drain 3 3 3 3 3 3 

Titcombe Rd Drain 3 3 3 3 3 3 

Washbrook Drain 3 3 3 3 3 3 

Wilkinson-Shilson Drain 3 3 3 3 3 3 

LTVCA       

 10th Concession Drain 3 3 3 3 3 3 

  18 & 19 Sideroad Drain 13 13 13 3 3 3 

Cameron Drain 3 3 3 3 3 3 

Moore Drain 3 3 3 3 3 3 

Lundy Drain 3 2 3 3 3 3 

Miller Drain 3 3 3 3 3 3 

Lewis Drain 3 3 3 3 3 3 

McArthur East Drain 3 3 3 3 3 3 
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Nelles Drain 3 3 3 3 3 3 

Two Creeks Drain 3 3 3 3 3 3 
Upper Portion Cartmill 
Drain 

3 3 3 3 3 3 

Ouellette Drain Branch 3 3 3 3 3 3 
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 

Site Name Algae: Floating Algae Algae: Filaments 

ERCA 
Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

6th Concession Drain 3 3 3 3 3 3 

9th Concession Drain  NR NR NR NR NR NR 

Barlow Drain 3 3 3 3 3 3 

Big Creek 3 3 3 3 3 3 
CN/Clickener Branch Drain 
of Renaud Line Drain 

NR 2 NR NR 3 NR 

Campbell Sideroad Drain 3 3 3 2 2 2 

Coleman Drain 3 3 3 3 3 3 

Cornwall Drain 1 1 1 3 3 3 

Taylor Drain 3 3 3 3 3 3 

Titcombe Rd Drain 3 3 3 3 3 3 

Washbrook Drain 3 3 3 3 3 3 

Wilkinson-Shilson Drain 3 3 3 3 3 3 

LTVCA       

 10th Concession Drain 2 2 2 1 1 1 

  18 & 19 Sideroad Drain 2 2 2 2 2 2 

Cameron Drain 3 3 3 3 3 3 

Simpson Drain 2 2 2 2 2 2 

Moore Drain 3 3 3 3 3 3 

Lundy Drain 3 3 3 2 2 2 

Miller Drain 3 3 3 3 3 3 

Lewis Drain 3 3 3 3 3 3 

McArthur East Drain 3 3 3 3 3 3 
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Nelles Drain 3 3 3 3 3 3 
Two Creeks Drain 3 3 3 2 3 3 
Upper Portion Cartmill 
Drain 

3 3 3 3 3 3 

Ouellette Drain Branch 2 2 2 2 2 2 
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Aquatic Macrophytes and Algae:  
1 (Abundant), 2 (Present), 3 (Absent) 
 
 
Site Name Algae: Attached Algae Algae: Slimes or Crusts 

ERCA 
Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

Sample 1 
(Riffle 1) 

Sample 2 
(Pool) 

Sample 3 
(Riffle 2) 

6th Concession 3 3 3 2 2 2 

9th Concession Drain  NR NR NR NR NR NR 

Barlow Drain 3 3 3 3 3 3 

Big Creek 3 3 3 3 3 3 
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

NR 2 NR NR 2 NR 

Campbell Sideroad Drain 2 2 2 2 2 2 

Coleman Drain 2 3 2 3 3 3 

Cornwall Drain 3 3 3 3 3 3 

Taylor Drain 3 3 3 3 3 3 

Titcombe Rd Drain 3 3 3 3 3 3 

Washbrook Drain 3 3 3 3 3 3 

Wilkinson-Shilson Drain 3 3 3 3 3 3 

LTVCA       

 10th Concession Drain 2 2 2 3 3 3 

  18 & 19 Sideroad Drain 2 2 2 2 2 2 

Cameron Drain 3 3 3 3 3 3 

Simpson Drain 3 3 3 3 3 3 

Moore Drain 3 3 3 3 3 3 

Miller Drain 3 3 3 3 3 3 

Lundy Drain 2 2 2 2 3 2 
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Lewis Drain 3 3 3 3  3 

McArthur East Drain 3 3 3 3 3 3 

Nelles Drain 3 3 3 3 3 3 

Two Creeks Drain 1 3 2 1 3 2 
Upper Portion Cartmill 
Drain 

3 3 3 3 3 3 

Ouellette Drain Branch 2 1 2 3 3 3 
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Site Name Candidate Reference Site   
ERCA Yes No Comments 
6th Concession Drain       
9th Concession Drain        
Barlow Drain      
Big Creek  ✓ Sediment smells like rotten eggs - sulphur 
CN/Clickener Branch Drain 
of Renaud Line Drain ✓   
10th Concession Drain ✓   
18 & 19 Sideroad Drain  ✓  
Cameron Drain ✓   
Campbell Sideroad Drain  ✓  
Coleman Drain  ✓  
Cornwall Drain  ✓  
Simpson Drain  ✓  
Moore Drain  ✓  
Miller Drain ✓   
Taylor Drain ✓   
Titcombe Rd Drain ✓   

Washbrook Drain  ✓ 
Turb tube : 98cm, lady who lives next door says it smells, 

especially when it rains  
Wilkinson-Shilson Drain    
Lewis Drain  ✓  
Nelles Drain ✓   
Upper Portion Cartmill 
Drain ✓   
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Site Name Geographical Description: Surrounding Land Use 

ERCA Forest 
Field/ 

Pasture Agriculture 
Residential/ 

Urban Logging Mining 
Commercial/ 

Industrial  Other 
6th Concession Drain          

9th Concession Drain    ✓      

Barlow Drain   ✓      

Big Creek ✓ ✓ ✓ ✓     
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

 ✓  ✓     

10th Concession Drain  ✓ ✓ ✓     
18th & 19th Sideroad 
Drain 

 ✓ ✓ ✓     

Cameron Drain ✓ ✓ ✓      
Campbell Sideroad 
Drain 

✓  ✓      

Coleman Drain  ✓ ✓ ✓     

Cornwall Drain  ✓ ✓ ✓     

Simpson Drain ✓ ✓ ✓      

Moore Drain   ✓ ✓   ✓  

Lundy Drain ✓  ✓ ✓     

Miller Drain  ✓ ✓      

Taylor Drain   ✓ ✓     

Titcombe Rd Drain ✓   ✓     

Washbrook Drain  ✓ ✓      
Wilkinson Shilson 
Drain 

 ✓ ✓ ✓     

Lewis Drain   ✓ ✓     

McArthur East Drain ✓ ✓ ✓ ✓     
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Nelles Drain  ✓ ✓ ✓     
Ouellette Drain 
Branch 

        

Two Creeks Drain ✓  ✓ ✓     
Upper Portion 
Cartmill Drain 

 ✓ ✓      
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Site Name Geographical Description: Dominant Surrounding Land Use 

ERCA Forest 
Field/ 

Pasture Agriculture 
Residential/ 

Urban Logging Mining 
Commercial/ 

Industrial  Other 
6th Concession Drain          

9th Concession Drain    ✓      

Barlow Drain    ✓      

Big Creek   ✓      
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

   ✓     

10th Concession Drain   ✓      
18th and 19th 
Sideroad Drain 

  ✓      

Cameron Drain   ✓      
Campbell Sideroad 
Drain 

  ✓      

Coleman Drain   ✓      

Cornwall Drain   ✓      

Simpson Drain   ✓      

Moore Drain   ✓      

Lundy Drain   ✓      

Miller Drain   ✓      

Taylor Drain   ✓      

Titcombe Rd Drain ✓        

Washbrook Drain   ✓ ✓     
Wilkinson-Shilson 
Drain 

  ✓      

Lewis Drain   ✓ ✓     

McArthur East Drain   ✓      
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Nelles Drain    ✓     
Ouellette Drain 
Branch 

        

Two Creeks Drain ✓        
Upper Portion 
Cartmill Drain 

  ✓      
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Site Name Widths and Depths 
ERCA Bankfull Width (m) Wetted Stream Width (m) Bankfull - Wetted Depth (cm) 
6th Concession  6.4 5.2 88 

9th Concession Drain  3.46 NR  

Barlow Drain 4.25 NR 80 

Big Creek 9.1 NR 73 
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

5.66 NR 62 

Campbell Sideroad Drain 3.06 NR 33 

Coleman Drain 8.2 NR NA 

Cornwall Drain 7.5 NR 1.10 

Taylor Drain 4.45 NR 44 

Titcombe Rd Drain 5.65 NR 46 

Washbrook Drain 4.2 1.89 126 

Wilkinson-Shilson Drain 3.17 NR 32 

LTVCA    

 10th Concession Drain 4.54 NR 79 
 18th and 19th Sideroad 
Drain 

4.25 NR 62 

 Cameron Drain 8.2 NR 134 

Simpson Drain 4 NR 100 

 Moore Drain 3.08 NR 40 

 Lundy Drain 7.8 NR 2.77 

 Miller Drain 6.51 NR 1.3 

 Lewis Drain 4.15 7 71 

 McArthur East Drain 6.9 NR 1.0 

 Nelles Drain NA NR 23 
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 Ouellette Drain Branch NR NR 20 

 Two Creeks Drain 8.77 NR 192 
 Upper Portion Cartmill 
Drain 

NR NR 77 
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Site Name Reach Data: Habitat Type Reach Data: Canopy Coverage 

ERCA Riffle Rapids 
Stright 

Run 
Pool/ Back 

Eddy 0% 1-25% 26-50% 51-75% 76-100% 
6th Concession Drain           

9th Concession Drain  ✓   ✓ ✓     

Barlow Drain ✓   ✓  ✓    

Big Creek    ✓  ✓    
CN/Clickener Branch 
Drain of Renaud Line 
Drain 

  ✓      ✓ 

Campbell Sideroad Drain   ✓   ✓    

Coleman Drain   ✓       

Cornwall Drain   ✓  ✓     

Taylor Drain ✓      ✓   

Titcombe Rd Drain   ✓      ✓ 
Washbrook Drain   ✓      ✓ 
Wilkinson-Shilson Drain   ✓   ✓    

LTVCA          

 10th Concession Drain   ✓   ✓    

 18th and 19th Sideroad 
Drain 

  ✓   ✓    

 Cameron Drain   ✓  ✓     

 Simpson Drain   ✓  ✓     

 Moore Drain   ✓   ✓    

 Lundy Drain ✓     ✓    

 Miller Drain   ✓   ✓    

 Lewis Drain   ✓   ✓    

 McArthur East Drain ✓        ✓ 
Nelles Drain   ✓   ✓    
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 Two Creeks Drain ✓         
 Upper Portion Cartmill 
Drain 

  ✓   ✓    
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Site Name Reach Data: Macrophyte Coverage Reach Data: Streamside Vegetation 

ERCA 0% 1-25% 26-50% 51-75% 76-100% 
Ferns/ 
grasses shrubs 

deciduous 
trees 

coniferous 
trees 

6th Concession Drain           

9th Concession Drain     ✓  ✓    

Barlow Drain  ✓    ✓ ✓   

Big Creek  ✓     ✓ ✓  

CN/Clickener Branch 
Drain of Renaud Line 
Drain 

 ✓    ✓ ✓ ✓  

Campbell Sideroad Drain   ✓   ✓ ✓   

Coleman Drain  ✓        

Cornwall Drain          

Taylor Drain    ✓  ✓ ✓ ✓  

Titcombe Rd Drain  ✓    ✓ ✓ ✓  

Washbrook Drain ✓       ✓  

Wilkinson-Shilson Drain ✓     ✓ ✓ ✓  

LTVCA          

 10th Concession Drain     ✓ ✓ ✓   

 18th and 19th Sideroad 
Drain 

    ✓ ✓ ✓   

 Cameron Drain  ✓    ✓    

 Cornwall Drain      ✓ ✓ ✓  

 Simpson Drain  ✓    ✓    

 Moore Drain  ✓    ✓ ✓ ✓ ✓ 
 Lundy Drain   ✓   ✓ ✓   

 Miller Drain  ✓    ✓ ✓ ✓  

 Lewis Drain   ✓   ✓ ✓ ✓  

 McArthur East Drain ✓     ✓  ✓  
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 Nelles Drain    ✓  ✓  ✓  

 Two Creeks Drain 
✓ ✓   

✓ 
 

✓ ✓   

Upper Portion Cartmill 
Drain  ✓    ✓  ✓  
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Site Name Reach Data: Dominant Streamside Vegetation 
Reach Data: Periphyton Coverage on 

Substrate 

ERCA Ferns/grasses shrubs 
deciduous 

trees 
coniferous 

trees 1 2 3 4 5 
6th Concession Drain           

9th Concession Drain  ✓    ✓     

Barlow Drain ✓    ✓     

Big Creek   ✓   ✓    

CN/Clickener Branch 
Drain of Renaud Line 
Drain 

✓     ✓    

Campbell Sideroad Chain ✓     ✓    

Coleman Drain ✓    ✓     

Cornwall Drain ✓    ✓     

Taylor Drain ✓    ✓     

Titcombe Drain   ✓  ✓     

Washbrook Drain   ✓  ✓     

Wilkinson-Shilson Drain ✓         

LTVCA          

 10th Concession Drain ✓     ✓    

 18th and 19th Sideroad 
Drain ✓     ✓    

  
 Cameron Drain ✓    ✓     

 Simpson Drain ✓    ✓     

 Moore Drain ✓         

 Lundy Drain ✓     ✓    

 Miller Drain ✓    ✓     

 Lewis Drain ✓     ✓    

 McArthur East Drain ✓    ✓     
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 Nelles Drain ✓    ✓     

 Two Creeks Drain   ✓     ✓  
Upper Portion Cartmill 
Drain 

✓    ✓     
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Appendix G: Sediment Analysis Data (2017 Sampling Year):  

Two sediment samples taken at each site (riffle and pool) for the locations listed that were sampled in 2017. LOI is the total loss of 
ignition and the incremental measurements represent the different sizes of sieves that were used to separate the sediment particles. 
 
ERCA 

Site Name Habit
at 

LOI < 63 um 63 um 90 um 125 um 250 um 500 um 1.4 um 2.0 um Total 
grams 

CN/Clickener 
Branch 

pool 0.89 2.68 2.61 4.24 10.86 9.75 6.35 0.43 0.21 37.13 

CN/Clickener 
Branch 

riffle 0.62 0.61 0.42 0.67 1.55 1.19 0.95 0.00 0.00 5.38 

Coulson Drain pool 0.15 1.66 1.77 7.85 25.69 25.31 35.73 8.61 32.71 139.33 
Coulson Drain riffle 0.4 2.72 1.64 4.17 31.43 21.37 21.63 0.00 0.00 82.96 

Desjardins Drain pool 0.22 3.04 0.73 6.19 21.43 11.99 13.95 3.38 5.00 65.71 
Desjardins Drain riffle 0.2 4.78 11.87 21.80 27.51 25.74 14.92 0.00 0.00 106.62 

East Branch 
No.47 Drain 

pool 0.12 2.30 6.76 25.76 66.29 54.18 49.81 4.28 14.48 223.86 

East Branch 
No.47 Drain 

riffle 0.5 1.16 0.91 5.49 50.66 70.76 47.48 5.05 11.11 192.62 

Hyland & 
Seymour Drain 

riffle 0.36 0.96 0.49 2.39 26.90 37.56 24.12 1.57 0.72 94.71 

Hyland & 
Seymour Drain 

pool 0.49 1.63 0.44 3.78 8.05 7.63 8.11 0.60 0.31 30.56 

Sturgeon Creek pool 0.1 0.31 0.44 0.81 19.05 43.01 43.29 31.29 105.00 243.20 
Sturgeon Creek riffle 0.09 2.85 2.41 2.64 20.54 20.59 18.97 6.38 51.78 126.16 

Taylor Drain pool 0.09 2.71 2.05 9.96 127.92 7.76 4.09 1.07 0.87 156.43 
Taylor Drain riffle 0.01 3.39 2.07 3.88 138.11 67.29 7.55 0.58 1.81 224.68 

Titcombe Road 
Drain 

pool 0.4 0.77 0.74 1.85 15.25 30.60 10.34 0.00 0.00 59.55 

Titcombe Road 
Drain 

riffle 0.94 2.08 1.51 2.89 15.54 16.52 11.77 0.00 0.00 50.31 

Wilkinson-
Shilson Drain 

riffle 0.13 4.62 6.60 13.58 35.65 20.19 11.20 1.74 7.25 100.83 
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LTVCA 
 

Site Name 
Habitat LOI < 63 um 63 um 90 um 125 um 250 um 500 um 1.4 um 2.0 um Total 

grams 
10th Concession 

Rd Drain 
pool 0.33 1.95 2.30 7.52 14.71 10.81 11.28 1.76 2.77 53.10 

10th Concession 
Road Drain 

riffle 0.03 0.22 0.32 0.56 4.92 5.71 7.21 3.43 40.04 62.40 

18 & 19 
Sideroad Drain 

pool 0.27 1.32 0.45 6.34 22.75 14.68 18.31 2.17 2.04 68.06 

18 & 19 
Sideroad Drain 

riffle 0.29 1.58 2.91 6.29 13.04 9.89 10.27 0.94 0.74 45.66 

Cameron Drain pool  1.20 0.63 0.72 4.39 9.04 19.14 6.15 79.93 121.19 
Cameron Drain riffle  1.47 0.55 0.67 2.87 8.59 15.69 3.97 29.79 63.61 
Coleman Drain pool 0.09 0.49 0.32 0.48 2.29 2.99 2.64 0.45 27.04 36.69 
Coleman Drain riffle 0.04 3.02 1.79 1.61 5.79 8.64 15.04 4.08 140.71 180.68 
Cornwall Drain pool 0.18 4.54 3.62 8.85 33.14 12.22 13.20 2.75 7.94 86.26 
Cornwall Drain riffle 0.1 2.17 2.16 4.00 34.28 16.19 21.48 6.64 12.67 99.59 

David Drain pool 0.27 0.88 1.92 7.04 31.43 23.69 21.68 2.45 2.94 92.03 
David Drain riffle 0.33 1.89 1.19 3.47 23.28 14.31 18.08 1.69 1.04 64.95 
Government 

Drain #1 
riffle 0.16 4.88 11.38 23.24 40.51 27.94 32.71 5.89 6.49 153.04 

Harrison Drain pool 0.05 1.54 1.40 1.76 5.92 13.22 25.12 7.02 1143.98 1199.96 
Mill Drain pool  2.41 2.02 10.69 52.65 33.93 29.29 4.21 5.33 140.53 

Harrison Drain riffle 0.02 0.00 0.09 0.11 0.24 0.73 5.94 4.47 1112.63 1124.20 
Mill Drain riffle 0.14 8.62 8.43 15.16 48.51 45.88 38.03 3.11 8.19 175.94 
King Drain pool 0.29 3.55 7.00 26.92 42.12 35.41 26.36 0.00 0.00 141.36 
King Drain riffle 0.22 1.46 0.45 2.61 19.63 18.48 16.62 1.31 7.54 68.10 

Lewis Drain pool 0.15 1.52 1.68 5.33 13.07 14.91 19.44 2.36 7.05 65.36 
Lewis Drain riffle  1.12 0.94 3.73 17.52 22.34 37.72 12.60 55.12 151.09 
Government 

Drain #1 
pool 0.11 4.28 13.72 18.36 58.02 46.04 18.23 1.46 5.43 165.54 

Lundy Drain pool 0.22 0.64 0.54 3.36 12.51 10.82 8.80 0.69 2.99 40.34 
Lundy Drain riffle 0.09 1.73 2.45 4.61 8.69 10.22 9.52 1.84 60.54 99.60 

McArthur East 
Drain 

pool 0.16 4.24 3.63 10.70 20.79 28.05 27.66 1.17 1.30 97.54 

McArthur East 
Drain 

riffle 0.16 1.60 1.11 2.71 4.81 6.60 9.06 2.11 5.07 33.07 

Miller Drain pool 0.16 1.43 0.50 3.06 21.92 21.17 24.42 8.91 30.45 111.86 
Miller Drain riffle 0.22 2.80 1.66 1.67 6.40 8.04 17.12 7.97 70.57 116.23 
Moore Drain pool 0.15 1.39 1.54 5.41 19.41 20.84 36.88 12.74 68.90 167.11 
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Site Name Habitat LOI < 63 um 63 um 90 um 125 um 250 um 500 um 1.4 um 2.0 um Total 
grams 

Moore Drain riffle 0.17 2.02 1.71 5.96 16.03 21.96 27.11 6.58 49.23 130.60 
Nelles Drain pool 0.37 1.07 0.47 2.58 13.73 8.51 2.01 0.00 0.00 28.37 
Nelles Drain riffle 0.32 5.09 3.52 10.59 33.75 20.40 22.61 1.02 1.06 98.04 
Oullete Drain 

Branch 
pool 0.19 2.39 5.37 19.20 51.35 31.71 14.38 0.00 0.00 124.40 

Oullete Drain 
Branch 

riffle 0.22 5.00 5.61 8.73 6.30 5.03 6.00 1.10 0.04 37.81 

Simpson Drain pool 0.15 16.93 24.33 21.05 66.60 57.44 61.56 6.13 12.55 266.59 
Simpson Drain riffle 0.27 3.48 5.91 19.31 38.20 38.05 43.56 2.89 4.75 156.15 

Two Creeks 
Drain 

pool 0.02 0.80 0.41 0.39 46.38 312.46 96.33 2.26 3.98 463.01 

Two Creeks 
Drain 

riffle  0.00 0.00 0.00 0.00 0.00 0.00 0.00 2000.00 2000.00 

Upper Portion 
Cartmill Drain 

pool  0.96 0.69 0.69 3.99 5.41 7.54 1.61 51.28 72.17 

Upper Portion 
Cartmill Drain 

riffle  2.19 0.87 1.58 4.52 5.77 5.44 0.00 0.00 20.37 

Wilkinson-
Shilson Drain 

pool  3.21 2.99 9.82 47.01 23.65 9.15 1.21 2.02 99.06 
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ERCA 
Site Name Habitat 62 63 90 125 250 500 1400 2000 Total 

percent  
CN/Clickene

r Branch 
pool 7.22 7.04 11.42 29.25 26.26 17.11 1.15 0.56 100.00 

CN/Clickene
r Branch 

riffle 11.27 7.86 12.39 28.79 22.10 17.59 0.00 0.00 100.00 

Coulson 
Drain 

pool 1.19 1.27 5.63 18.44 18.17 25.64 6.18 23.48 100.00 

Coulson 
Drain 

riffle 3.28 1.98 5.03 37.89 25.76 26.07 0.00 0.00 100.00 

Desjardins 
Drain 

pool 4.63 1.11 9.42 32.61 18.25 21.23 5.14 7.61 100.00 

Desjardins 
Drain 

riffle 4.48 11.13 20.45 25.80 24.14 13.99 0.00 0.00 100.00 

East Branch 
No.47 Drain 

pool 1.03 3.02 11.51 29.61 24.20 22.25 1.91 6.47 100.00 

East Branch 
No.47 Drain 

riffle 0.60 0.47 2.85 26.30 36.74 24.65 2.62 5.77 100.00 

Hyland & 
Seymour 

Drain 

riffle 1.01 0.52 2.52 28.40 39.66 25.47 1.66 0.76 100.00 

Hyland & 
Seymour 

Drain 

pool 5.33 1.44 12.37 26.34 24.97 26.54 1.98 1.02 100.00 

Sturgeon 
Creek 

pool 0.13 0.18 0.33 7.83 17.68 17.80 12.87 43.17 100.00 

Sturgeon 
Creek 

riffle 2.26 1.91 2.09 16.28 16.32 15.04 5.06 41.04 100.00 

Taylor Drain pool 1.73 1.31 6.37 81.77 4.96 2.61 0.68 0.56 100.00 
Taylor Drain riffle 1.51 0.92 1.73 61.47 29.95 3.36 0.26 0.81 100.00 

Titcombe 
Road Drain 

pool 1.29 1.24 3.11 25.61 51.39 17.36 0.00 0.00 100.00 

Titcombe 
Road Drain 

riffle 4.13 3.00 5.74 30.89 32.84 23.39 0.00 0.00 100.00 

Wilkinson-
Shilson 
Drain 

riffle 4.58 6.55 13.47 35.36 20.02 11.11 1.73 7.19 100.00 
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LTVCA 
Site Name Habitat 62 63 90 125 250 500 1400 2000 Total 

percent  
10th 

Concession Rd 
Drain 

pool 3.67 4.33 14.16 27.70 20.36 21.24 3.31 5.22 100.00 

10th 
Concession 
Road Drain 

riffle 0.34 0.51 0.90 7.88 9.15 11.55 5.50 64.17 100.00 

18 & 19 
Sideroad Drain 

pool 1.94 0.66 9.32 33.43 21.57 26.90 3.19 3.00 100.00 

18 & 19 
Sideroad Drain 

riffle 3.45 6.38 13.78 28.56 21.66 22.49 2.06 1.61 100.00 

Cameron Drain pool 0.99 0.52 0.59 3.62 7.46 15.79 5.07 65.95 100.00 
Cameron Drain riffle 2.31 0.87 1.06 4.51 13.51 24.67 6.24 46.83 100.00 
Coleman Drain pool 1.33 0.86 1.31 6.24 8.15 7.20 1.22 73.70 100.00 
Coleman Drain riffle 1.67 0.99 0.89 3.20 4.78 8.32 2.26 77.88 100.00 
Cornwall Drain pool 5.26 4.20 10.26 38.42 14.17 15.30 3.19 9.20 100.00 
Cornwall Drain riffle 2.18 2.17 4.02 34.42 16.26 21.57 6.67 12.72 100.00 

David Drain pool 0.96 2.09 7.65 34.15 25.74 23.56 2.66 3.19 100.00 
David Drain riffle 2.91 1.83 5.34 35.84 22.03 27.84 2.60 1.60 100.00 
Government 

Drain #1 
riffle 3.19 7.44 15.19 26.47 18.26 21.37 3.85 4.24 100.00 

Government 
Drain #1 

pool 2.59 8.29 11.09 35.05 27.81 11.01 0.88 3.28 100.00 

Harrison Drain pool 0.13 0.12 0.15 0.49 1.10 2.09 0.59 95.33 100.00 
Harrison Drain riffle 0.00 0.01 0.01 0.02 0.06 0.53 0.40 98.97 100.00 

King Drain pool 2.51 4.95 19.04 29.80 25.05 18.65 0.00 0.00 100.00 
King Drain riffle 2.14 0.66 3.83 28.83 27.14 24.41 1.92 11.07 100.00 

Lewis Drain pool 2.33 2.57 8.15 20.00 22.81 29.74 3.61 10.79 100.00 
Lewis Drain riffle 0.74 0.62 2.47 11.60 14.79 24.97 8.34 36.48 100.00 
Lundy Drain pool 1.57 1.33 8.33 31.01 26.82 21.82 1.71 7.41 100.00 
Lundy Drain riffle 1.74 2.46 4.63 8.72 10.26 9.56 1.85 60.78 100.00 

McArthur East 
Drain 

pool 4.35 3.72 10.97 21.31 28.76 28.36 1.20 1.33 100.00 

McArthur East 
Drain 

riffle 4.84 3.34 8.20 14.55 19.96 27.40 6.38 15.33 100.00 

Mill Drain pool 1.72 1.44 7.61 37.47 24.14 20.84 3.00 3.79 100.00 
Mill Drain riffle 4.90 4.79 8.62 27.57 26.08 21.62 1.77 4.66 100.00 

Miller Drain pool 1.28 0.45 2.74 19.60 18.93 21.83 7.97 27.22 100.00 
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Site Name Habitat 62 63 90 125 250 500 1400 2000 Total 
percent  

Miller Drain riffle 2.41 1.43 1.44 5.51 6.92 14.73 6.86 60.72 100.00 
Moore Drain pool 0.83 0.92 3.24 11.62 12.47 22.07 7.62 41.23 100.00 
Moore Drain riffle 1.55 1.31 4.56 12.27 16.81 20.76 5.04 37.70 100.00 
Nelles Drain pool 3.77 1.66 9.09 48.40 30.00 7.08 0.00 0.00 100.00 
Nelles Drain riffle 5.19 3.59 10.80 34.42 20.81 23.06 1.04 1.08 100.00 
Oullete Drain 

Branch 
pool 1.92 4.32 15.43 41.28 25.49 11.56 0.00 0.00 100.00 

Oullete Drain 
Branch 

riffle 13.22 14.85 23.09 16.66 13.29 15.87 2.92 0.12 100.00 

Simpson Drain pool 6.35 9.13 7.90 24.98 21.55 23.09 2.30 4.71 100.00 
Simpson Drain riffle 2.23 3.78 12.37 24.46 24.37 27.90 1.85 3.04 100.00 

Two Creeks 
Drain 

pool 0.17 0.09 0.08 10.02 67.48 20.81 0.49 0.86 100.00 

Two Creeks 
Drain 

riffle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 

Upper Portion 
Cartmill Drain 

pool 1.33 0.95 0.96 5.53 7.50 10.45 2.23 71.05 100.00 

Upper Portion 
Cartmill Drain 

riffle 10.75 4.27 7.76 22.19 28.33 26.71 0.00 0.00 100.00 

Wilkinson-
Shilson Drain 

pool 3.24 3.02 9.91 47.46 23.87 9.24 1.22 2.04 100.00 
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ERCA 
Site Name Habitat 4.25 4 3.5 3 2 1 -0.5 -1 D50 (50th 

percentile 
particle 

diameter) 
CN/Clickener 

Branch 
pool 7.22 14.26 25.68 54.93 81.19 98.30 99.44 100 0.118 

CN/Clickener 
Branch 

riffle 11.27 19.13 31.52 60.31 82.41 100 100 100 0.111 

Coulson Drain pool 1.19 2.46 8.10 26.53 44.70 70.34 76.52 100 0.289 
Coulson Drain riffle 3.28 5.26 10.28 48.17 73.93 100 100 100 0.131 

Desjardins Drain pool 4.63 5.74 15.16 47.77 66.02 87.25 92.39 100 0.136 
Desjardins Drain riffle 4.48 15.62 36.06 61.86 86.01 100 100 100 0.107 

East Branch 
No.47 Drain 

pool 1.03 4.05 15.55 45.17 69.37 91.62 93.53 100 0.144 

East Branch 
No.47 Drain 

riffle 0.60 1.07 3.92 30.23 66.96 91.61 94.23 100 0.182 

Hyland & 
Seymour Drain 

riffle 1.01 1.53 4.05 32.46 72.11 97.58 99.24 100 0.170 

Hyland & 
Seymour Drain 

pool 5.33 6.77 19.14 45.49 70.46 97.00 98.98 100 0.142 

Sturgeon Creek pool 0.13 0.31 0.64 8.48 26.16 43.96 56.83 100 0.811 
Sturgeon Creek riffle 2.26 4.17 6.26 22.54 38.86 53.90 58.96 100 0.418 

Taylor Drain pool 1.73 3.04 9.41 91.18 96.15 98.76 99.44 100 0.106 
Taylor Drain riffle 1.51 2.43 4.16 65.62 95.57 98.93 99.19 100 0.115 

Titcombe Road 
Drain 

pool 1.29 2.54 5.64 31.25 82.64 100 100 100 0.161 

Titcombe Road 
Drain 

riffle 4.13 7.14 12.88 43.77 76.61 100 100 100 0.143 

Wilkinson-
Shilson Drain 

riffle 4.58 11.13 24.60 59.95 79.98 91.08 92.81 100 0.107 
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LTVCA 
Site Name Habitat 4.25 4 3.5 3 2 1 -0.5 -1 D50 (50th 

percentile 
particle 

diameter) 
10th 

Concession Rd 
Drain 

pool 3.67 8.00 22.17 49.87 70.23 91.47 94.78 100 0.126 

10th 
Concession 
Road Drain 

riffle 0.34 0.85 1.75 9.63 18.78 30.34 35.83 100 1.515 

18 & 19 
Sideroad Drain 

pool 1.94 2.60 11.91 45.34 66.91 93.81 97.00 100 0.145 

18 & 19 
Sideroad Drain 

riffle 3.45 9.84 23.61 52.17 73.83 96.33 98.39 100 0.122 

Cameron Drain pool 0.99 1.51 2.10 5.72 13.18 28.97 34.05 100 1.526 
Cameron Drain riffle 2.31 3.18 4.24 8.75 22.26 46.93 53.17 100 0.830 
Coleman Drain pool 1.33 2.19 3.50 9.74 17.89 25.09 26.30 100 1.570 
Coleman Drain riffle 1.67 2.66 3.55 6.76 11.54 19.86 22.12 100 1.591 
Cornwall Drain pool 5.26 9.46 19.72 58.14 72.30 87.61 90.80 100 0.117 
Cornwall Drain riffle 2.18 4.35 8.36 42.79 59.04 80.61 87.28 100 0.170 

David Drain pool 0.96 3.04 10.69 44.84 70.59 94.14 96.81 100 0.144 
David Drain riffle 2.91 4.74 10.08 45.93 67.96 95.80 98.40 100 0.142 
Government 

Drain #1 
riffle 3.19 10.62 25.81 52.28 70.54 91.91 95.76 100 0.122 

Government 
Drain #1 

pool 2.59 10.87 21.96 57.01 84.83 95.84 96.72 100 0.117 

Harrison Drain pool 0.13 0.25 0.39 0.89 1.99 4.08 4.67 100 1.659 
Harrison Drain riffle 0.00 0.01 0.02 0.04 0.10 0.63 1.03 100 1.659 

King Drain pool 2.51 7.46 26.51 56.30 81.35 100 100 100 0.117 
King Drain riffle 2.14 2.80 6.64 35.46 62.60 87.00 88.93 100 0.181 

Lewis Drain pool 2.33 4.90 13.05 33.05 55.86 85.60 89.21 100 0.209 
Lewis Drain riffle 0.74 1.36 3.83 15.43 30.21 55.18 63.52 100 0.433 
Lundy Drain pool 1.57 2.90 11.23 42.24 69.06 90.89 92.59 100 0.153 
Lundy Drain riffle 1.74 4.20 8.83 17.55 27.81 37.37 39.22 100 1.491 
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Site Name Habitat 4.25 4 3.5 3 2 1 -0.5 -1 D50 (50th 
percentile 

particle 
diameter) 

McArthur East 
Drain 

pool 4.35 8.07 19.04 40.35 69.11 97.46 98.67 100 0.158 

McArthur East 
Drain 

riffle 4.84 8.18 16.38 30.92 50.88 78.29 84.67 100 0.242 

Mill Drain pool 1.72 3.15 10.76 48.23 72.37 93.21 96.21 100 0.132 
Mill Drain riffle 4.90 9.69 18.31 45.88 71.96 93.57 95.34 100 0.139 

Miller Drain pool 1.28 1.73 4.46 24.06 42.98 64.81 72.78 100 0.312 
Miller Drain riffle 2.41 3.84 5.27 10.78 17.70 32.43 39.28 100 1.491 
Moore Drain pool 0.83 1.75 4.99 16.61 29.08 51.15 58.77 100 0.482 
Moore Drain riffle 1.55 2.86 7.42 19.69 36.51 57.27 62.30 100 0.392 
Nelles Drain pool 3.77 5.43 14.52 62.92 92.92 100 100 100 0.115 
Nelles Drain riffle 5.19 8.78 19.58 54.01 74.82 97.88 98.92 100 0.120 
Oullete Drain 

Branch 
pool 1.92 6.24 21.67 62.95 88.44 100 100 100 0.113 

Oullete Drain 
Branch 

riffle 13.22 28.06 51.15 67.81 81.10 96.97 99.88 100 0.088 

Simpson Drain pool 6.35 15.48 23.37 48.35 69.90 92.99 95.29 100 0.132 
Simpson Drain riffle 2.23 6.01 18.38 42.84 67.21 95.11 96.96 100 0.153 

Two Creeks 
Drain 

pool 0.17 0.26 0.34 10.36 77.85 98.65 99.14 100 0.188 

Two Creeks 
Drain 

riffle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 1.673 

Upper Portion 
Cartmill Drain 

pool 1.33 2.29 3.25 8.77 16.27 26.72 28.95 100 1.556 

Upper Portion 
Cartmill Drain 

riffle 10.75 15.02 22.78 44.97 73.29 100 100 100 0.141 

Wilkinson-
Shilson Drain 

pool 3.24 6.26 16.17 63.63 87.50 96.74 97.96 100 0.114 
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