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Abstract 

The aim of this work is to explore the range of validity of the asymptotic expansion 

method for a nuclear charge Z > 3. The asymptotic expansion method provides a 

simple analytical method to calculate the energies and properties of atoms with one 

electron in a highly excited state called a Rydberg state. The method was originally 

developed by Drachman from an expansion of the optical potential [7,8] for the Ryd­

berg electron in powers of the perturbing potential and later reformulated by Drake 

based on a simple perturbation expansion for the total wave function. The method 

takes advantage of the fact that, with increasing angular momentum, the overlap of 

the Rydberg electron wave function with the core consisting of a Is electron and the 

nucleus becomes vanishingly small. For a helium atom (Z — 2) with an angular 

momentum L>7, the asymptotic method can be used as a high precession computa­

tional method, but for Z > 3 we have to increase the angular momentum to consider 

the asymptotic expansion as a high precession computational method as explained 

in chapter two. It provides a simple picture of the complex physics involved. This 

thesis extends the asymptotic expansion method to helium like ions for any value of Z 

and tests its accuracy against high precision variational calculations [31] for angular 

momentum L up to 7 and nuclear charge up to 18. For the exited states variational 

calculations become more difficult and the results' accuracy is inversely proportional 

with increasing angular momentum, in this case the asymptotic expansions take over 

variational calculations. 
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Chapter 1 

Introduction 

The asymptotic expansion method is based on the physical picture of a single Rydberg 

electron moving in the field of a polarizable core consisting of the nucleus and the 

Is electron. The Rydberg electron is moving in the effective field generated by the 

remaining two-body problem (hydrogenlike atom) see figure 1.1. This treats the outer 

electron as if it were a distinguishable particle so that both exchange effects and core 

penetration effects can be neglected. These approximations will be further discussed in 

the thesis. As a physical picture the Coulomb field of the Rydberg electron induces a 

shift in the charge distribution in the core, the positive charge of the core moves toward 

Rydberg electron at the same time the negative charge of the core moves away from 

the Rydberg electron. This will produce a diploe moment, and that diploe interacts 

with outer electron and shifts its energy downward. As a result the field experienced 

by the Rydberg electron can expanded asymptotically in the form [30] 

V{X) = -V^±-\Y.cix-t (1.1) 

where Z is the nuclear charge of the nucleus, c, some coefficients related to the mul-

tipole moments of the core, p < 2L + 2, and x is the distance of the Rydberg electron 

from the nucleus. We can visualize the exited states as containing one electron in the 

1 



1. INTRODUCTION 

e 

Figure 1.1: Shows the Rydberg electron moving in the field of the polarizable core 

ground state Is of a hydrogenlike atom but with nuclear charge Z, and the other elec­

tron in the exited state nL, n is the principal quantum number, and L is the orbital 

angular momentum quantum number, again of a hydrogenlike atom of nuclear charge 

(Z— 1) which is called the screened nuclear charge. Simply we have two electrons each 

of which belongs to a hydrogenlike atom, and since we know the energies of that kind 

of atoms, the total energy will be the sum of these two energies as follows 

Z2 ( Z - l ) 2 , x 

the energy expressed in atomic units (a.u). With this trivial relation we can calcu­

late the nonrelativistic energy for the state of 10G EQ(10G) = —2.005 a.u while the 

spin average variational results [31] for same state is Eav — —2.005000112 770 a.u. 

We can see that the difference is only about one part in 107, while the difference 

in the singlet and triplet spin states of the two electrons is about one part in 1011 

Est = 0.000000000012 a.u, and rapidly becomes smaller with increasing L. These 

considerations lie behind the asymptotic expansion method. The central problem is 

to calculate the tiny difference between the exact E^r and hydrogenic value -2...5 a.u, 

from equation (2). We will show that a simple analytic picture involving core polar­

ization provides a complete physical account of the correction -0.11277xl0 - 6 a.u. In 

2 



1. INTRODUCTION 

the next chapter we will develop perturbation expansion involving terms up to fourth 

order to account for the correction. A question maybe asked, if our visualize of the 

problem is right, why there is a difference between the two methods, to answer this 

question we would say that the picture is not that easy since the Rydberg electron 

has to spend some time close to the nucleus, and the other factor comes from the 

movement of the outer electron, during the time of establishing the diploe moment 

in the core, the Rydberg electron has moved from its initial position which reduces 

the effect of the diploe field. Considering factors like these will reduce the differences 

between the two results as we will see in the next chapter. 

1.1 Asymptotic Expansion 

When a function depends on a small parameter, and when the parameter appears as 

a multiplicative factor in a term in the governing equation, a power series solution 

is a possible approach. The resulting series need not converge for any value of the 

parameter; nevertheless the solution can be useful in approximating the function when 

the parameter is small. Computationally, a convergent series is not always useful, 

because convergence is a concept relating to the behavior of the terms in the series at 

the tail end. That a series converges says nothing about how rapidly the terms early 

in the series will decrease in magnitude. On the other hand, in asymptotic series, the 

terms will usually decrease rapidly for a sufficiently small parameter. Sometimes, they 

may begin to increase at some point after decreasing initially and then diverge. When 

the terms are decreasing rapidly, if we sum just the first few terms and we know that 

the error is of the order of the next term, we can get a good estimate of the sum. This is 

why asymptotic series are practically useful. We do not know how accurate the answer 

is, this is the main problem with asymptotic series. The results must be validated by 

comparison with some other representation of the expected answer (in our case we 

compare with variational calculations). Obtaining an analytical solution is often a 

difficult problem. We can define an asymptotic expansion for the function as a series 

of functions which has the property that truncating the series after a finite number of 

3 



1. INTRODUCTION 

terms gives an accurate representation of the function being approximated, but which 

eventually diverges. This will provide (in most cases) an accepted approximation to 

the main function as the argument of the function tends towards a particular point. If 

we have a continuous function f(x) on the domain of the asymptotic scale, then that 

function has an asymptotic expansion of order N with respect to the scale as a formal 

series. 
oo 

^ C n l M * ) (1-3) 
n=0 

If 
J V - 1 

f(x) - J2 CnMx) = 0{CN^N{x)) (1.4) 
n=0 

Then we can say 
N 

f{x)^y£jCni>n{x) (1.5) 
n=0 

In any place at the series we allowed to truncate, but if we are looking for the best 

approximation then we have to truncate at the smallest term of the series. This way 

of optimally truncating an asymptotic expansion is known as superasymptotics, and 

the error is thus less than any of the expansion terms. The potential that mentioned 

in equation 1.1 has to be truncated at the value of p = 10 because the series after that 

will diverge because the expectation values of ( i ) with respect to Rydberg electron 

will diverge for j >2L + 2. 

1.2 Helium and Heliumlike Ions 

An introduction to some of the basic properties of helium and heliumlike ions (three-

body atoms consisting of nucleus and two electrons) is necessary in order to understand 

the context of some of the calculations in this work. Helium and heliumlike ions 

represent the quantum analogue of the classical three-body problem and is the simplest 

system next to hydrogen. Unlike hydrogen, however, the helium and heliumlike ions 

problem is not separable and can not be solved exactly due to the correlated motion 

of the two electrons. As such, helium provided the first significant test of the new 

Quantum Theory initiated by Schro'dinger in 1925. 

4 



1. INTRODUCTION 

1.3 Two Fundamental Approximate Methods 

Since we are going to compare our asymptotic results with variational ones for all 

the three levels of energies (Em, Eie\, and, £ Q E D ) the nonrelativistic, the relativistic, 

and the quantum electrodynamic energies respectively, so we need to briefly explain 

the method. At the same time we have to use the perturbation theory in our cal­

culations, so it is a good place to explain both of the approximation methods. We 

need mathematical methods which will allow us to obtain approximate solutions of 

the Schrodinger equation. These methods are, the variational method and the pertur-

bational approach. 

1.3.1 Variational Principle 

In quantum mechanics the variational method is one way of finding approximations 

to the lowest energy eigenstate (ground state), and some of the exited states. The 

basis of this method is the variational principle. The method consists of choosing a 

trial wave function depending on one or more parameters, and finding the values of 

these parameters for which the expectation value of the energy is the lowest possible. 

The expectation value of an operator in one of its eigenstates is the corresponding 

eigenvalue. So if the expectation value of the Hamiltonian for a bound particle is 

evaluated using the correct ground state eigenfunction, the result is the ground state 

energy E is 

H | * ) = E | * ) . (1.6) 

Multiplying through by (* |, and rearranging, gives the equation for energy, 

(* | H | *> = (* | E | *> 

= E{*\V) 

F = < * I g I * > 
( * I * ) 

where the denominator is just a normalization factor, and 

(* | H | *> = I V*H * dr 

5 
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1. INTRODUCTION 

If we replace the ground state eigenfunction \& by any other wave function (satisfying 

the correct boundary conditions), the expectation value must be greater than E, this 

is the basis for variational methods. Remember that a trial function approximating 

the exact wave function to arbitrary state of a particle can be expanded as a linear 

superposition of its energy eigenfunctions, so we may expand the wave function because 

we do not know the exact form of it and we are going to call it a trial function ^ r . 

In practice, we write a trial wave function in the form 

N 

i=0 

where the basis set of functions fa becomes complete only when the summation is 

carried out over an infinite number of terms and the trial energy has form 

(tt trlgl*tr) n i m 
EtT ~ <*tr I *tr> ( L 1 0 ) 

To improve the result we have to write the trial wave function in terms of some param­

eters, then we have to differentiate En with respect to each one of the parameters and 

set the derivatives to zero to minimize the energy. For example the set of coefficients 

Ci in equation (1.9) form a set of linear variational parameters. 

1.3.2 Perturbat ion Theory 

Let us start with the Hamiltonian H such that it can be written into two parts, 

H = H0 + V (1.11) 

where the V — 0 problem is solved and both the exact energy eigenfunctions | ip(°)) 

and the energy eigenvalues En are known 

H0\TpM) = EnV\^0)). (1.12) 

Our goal to find approximate eigenfunctions and eigenvalues for the total Hamiltonian 

(H0 + V)\il>)=En\il>). (1.13) 

where V is the perturbation part in the Hamiltonian. Let us consider the hydrogen 

atom in an external electric field. The unperturbed Hamiltonian HQ is taken to be 

6 



1. INTRODUCTION 

the kinetic energy p2 /2m and the Coulomb potential due to the presence of the core 

e2/r. Only that part of the potential due to the interaction with the external electric 

field is represented by the perturbation V. With the introduction of a real parameter 

A can take values between 0 and 1, we can write the Schrodinger equation in the form 

(H0 + W)\ipn)=En\iPn). (1.14) 

The parameter A is introduced to keep track of the order of the perturbation. Setting 

A to 1 will send the Hamiltonian back to the full-strength case. Thus A controls the 

strength of the perturbation where setting A to 0, is equivalent to imperturbation case, 

and setting it to 1 as mentioned will involve the full perturbation, so we can control 

the strength of the perturbation by controlling the value of A. Now each eigenvalue 

and eigenfunction of the Hamiltonian H is expanded as a power series in A 

En = EnV + \EnV + \2EW + ... (1.15) 

V>n = V40) + AV4X) + A 2 ^ 2 ) + .- (1.16) 

Where En ' is the nth eigenvalue of H (and is the zeroth-order approximation to 

the eigenvalues En of H). En , En , En', ... are the higher order corrections, the 

superscript denotes the order of the correction. Similarly tpn , ipn , ipn \ ... are the 

first, second, third, ... order corrections to the zeroth-order approximation tpn' for 

the eigenfunction of the nth eigenstate. We substitute equations (1.15), and (1.16) in 

equation (1.14) and each side can be arrange as a power series in A. Then, by equating 

the coefficients of successive power of A we obtain 

H0 | Vo> = E0 | Vo>. (1-17) 

(H0 - Eo) | Vi> + (V- Et) | i>0) = 0 (1.18) 

and 

(H0 - Eo) | V2> + (V- £ i ) | Vi) - E2 | Vo> = 0 (1.19) 

For the nth order we obtain 

(Ho - EQ) | Vn) + (V - Ex) | t/>n_i) - E2 | i/>n-2> + ... - En | Vo) = 0 (1.20) 

7 



1. INTRODUCTION 

1.4 Simple Examples 

The hydrogen atom in an electric field (we can consider that field due to the Rydberg 

electron in the helium atom case) is a good example to explain the polarizability. An 

atom or molecule, when located in an electric field undergoes a deformation. We will 

show this in detail, taking the example of the hydrogen atom. We will consider a weak 

electric field, therefore the perturbation theory is applicable, this means just small 

corrections to the unperturbed situation. In our case the first-order correction to the 

wave function will be expanded in the series of hydrogenic wave functions 

| # ) = — L - f y W - ^ ) ! * ) ) (1.21) 
tiQ — Ho 

Pi ^-Bi 

where the unity has been used 

l = £ | n ) < n | 
i 

Where V ^ — rlPi(cosO) (the multipole expansion), and Pi(cos6) is Legendre poly­

nomial. For the simplest case of I = 1, and the field points in z direction, then we 

need to sum over all the state. The hydrogen atom is in the ground state so | i/'o) is 

the | Is) state. The states we going to sum over for now are only 25, 2PX, 2Py, and 

2P2, these represent j = 1,2,3, and 4 respectively, where j — 0 is the ground state 

itself. The contribution of the 2s is equal to zero, because (2s | z | Is) = 0 due to the 

antisymmetry of the integrand with respect to reflection z goes to —z (V changes its 

sign, while the orbital Is and 2s do not). A similar argument excludes the 2py and 

2px orbital. Hence, for the time being we have only a single candidate 2pz. This time 

the integral is not zero. If the candidates from the next shell (n — 3) are considered, 

similarly, the only nonzero contribution comes from 3p2. We will however stop our 

calculation at n = 2, because the goal is only to show how the machinery works. Thus 

we need to calculate {2pz | z | Is) divided by =£ — ^ = ^ a.u. Calculating the 

integral gives us 0.7449, now we are ready to calculate the diploe polarizability 

(2pz\z\\s)2 



1. INTRODUCTION 

a\ = 2.96 a.u which is not bad compared to the exact value of 4.5 a.u. This result is 

expected to be off by not a small amount because of the simplicity of the perturbated 

wave function. Maple can sum over more sates, for example we let Maple to sum over 

the p states from n — 2 to n — 500 gives a value of 3.66 a.u for a i , to get the exact 

number we need to sum over all the states. Graph 1.2 and table 1.1 show that the 

diploe polarizability components (in a.u) go to zero exponentially with n. The other 

method to calculate the polarizability is by solving Schrodinger equation (the first 

order perturbted wave function) 

(Eo - Ho)il>i = Vxjio (1.23) 

Where E\ = 0 (it will be explained in detail in the next chapter), see Appendix I for 

the solution of equation (1.23) . 

* " lvkzr + iF l^"- )^-* (1-24) 

This form of the perturbated wave function allows us to obtain a closed expression for 

the multipolar polarizabilities of the one electron atom or ions. It gives 

ai = 2(Vo | rlPi(cosO) | V>i) 

(21 + 1)1(1 + 2) 

i(2zy 

Equation 1.26 gives the exact value for an, and more than that it gives us an(Z) as a 

function of the nuclear charge Z, so we can use it for any value of Z as in the following 

equations 

«« = 4 , / o ^ a + a ( L 2 5 ) 

<*i(Z) = 

a2(Z) --

<*s(Z) = 

rv.m = 

9 
2Z4 

15 

" z* 
525 

" 4ZS 

8505 
- v ~ > - 4 Z i o (1-26) 

Now if we go back to equations (1.1), and (1.2) and using the results from equation 
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1. INTRODUCTION 

Figure 1.2: Shows contributions to the diploe polarizability and the principal quantum 

number n 

Table 1.1: The components of the diploe polarizability a\c in atomic units, vs the 

principal quantum number 

n 

2 

3 

4 

5 

6 

7 

8 

9 

10 

-aic(a.u) 

-2.959621067 

-.4004516551 

-.1319413939 

-0.06049628344 

-0.03300617942 

-0.02006648572 

-0.01314116210 

-0.009087430981 

-0.006551851038 
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1. INTRODUCTION 

Table 1.2: The differences between the variational and asymptotic calculations, all the 

energies in (a.u) 

State -^var ^1 $2 

10G -2.005 000112 7706610315 -1.13 x HT 7 1.76x10-° 

10H -2.0050000392144059740 -3.92 x 10~8 2.32 x lO"10 

101 -2.0050000160865162071 -1.61 x 10~8 4.22 x lO"11 

10K -2.005000007388375 8768 -7.39 x 10"9 9.31 x HT1 2 

(1.27) we can write the equation of the energy eigenvalues as below 

l=i 

Where (xn) is the mean value of the hydrogenic radius. Now let us show some improved 

results by programming equation (1.28) so we can see the differences in the energy 

eigenvalues between the spin average variational calculations and equation (1.28) as an 

asymptotic calculations. In table (1.2) Eyax is the spin-averaged variational eigenvalue, 

5\ = Evax — Eo, where EQ is the energy calculated by equation 1.2, and S2 = Ewax — E2, 

where E2 is the energy calculated by equation (1.28). It is very clear to see that the 

differences between the two cases (S\, and £2) have been reduced about 100 times 

in the state of 10G, while the improvement in the state of 10K is about 1000 times, 

which means that the overlap of the Rydberg electron wave function with the core 

consisting of a Is electron and the nucleus in the 10K state is much smaller than the 

10G state. We can say as the angular momentum L increases the core penetration 

decreases see table (2.1), at the same time increasing L allow higher order terms in 

asymptotic expansion to contribute. 

11 



Chapter 2 

Theory and Method of Calculations 

In this chapter, we will describe the three-body Schrodinger equation which is can not 

be solved exactly, but there are available methods of successive approximations such 

that variational calculations, configuration interaction approach CI, and asymptotic 

expansion method. The asymptotic expansion method takes advantage of the face 

that, as the angular momentum of the Rydberg electron increases, the overlap of its 

wave function with the core electron becomes vanishingly small because of the positive 

term in the effective potential. The Rydberg electron can be treated as a distinguish­

able particle moving in the field of the polarizable core if we neglect the exchange and 

the short-range effects. The core becomes distorted as a consequence of the Rydberg 

electron movement, which results in the asymptotic potential expressed as an expan­

sion in powers of 1 as shown in equation (1.1). The potential acts asymptotically in 

both senses, physical and mathematical. From the physical point of view, increasing L 

causes the asymptotic behavior because of the centrifugal barrier. The mathematical 

point of view asymptotic expansions are well known and widely used for the calcula­

tion of special functions such as Bessel functions. In both cases, one must truncate 

the series after a finite number of terms in order to avoid a divergence. The history of 

asymptotic expansion for Rydberg states dates back to the early days of quantum me-

12 



2. THEORY AND METHOD OF CALCULATIONS 

chanics, as summarized by Bethe and Salpeter [2] (1957, Section 29). The asymptotic 

potential has found wide applications in scattering problems, and in electron-nuclear 

coupling problems in molecules. Applications to energy level calculations in helium 

was revived by Deutsch(1970,1976) and refined in a series of papers by Drachman 

(1982, 1992) and Au et al (1991). The relativistic and relativistic recoil corrections 

were added by Drake and Yan [26] (1992), and also QED corrections. There are two 

ways that have been used to derive the asymptotic expansion approach. The first 

approach by Drachman [28] is based on a Feshbach projection operator P —\ Is) (Is | 

and expand the optical potential for the Rydberg electron in powers of the perturb­

ing potential. The other approach by Drake [31] is based on a simple perturbation 

expansion for the total wave function. The later procedures is more transparent and 

the book keeping is more straight forward, they both lead to the same results. 

At the end of this chapter we are going to compare our results with the variational 

calculation results and the CI results. The configuration-interaction CI method is 

based on a wave-function expansion in terms of sum of antisymmetrized products of 

functions of the electron radial coordinates r*, and spherical harmonics Yt
m(fi) coupled 

to form states of the same total angular momentum L. For Rydberg states, great care 

must be taken to include all angular momentum couplings, for example for S-states ss', 

pp', dd' all contribute. Hylleraas-like expansions are usually used to express the wave 

function. The solution of the Schrodinger equation for a given angular momentum 

L and its projection M can be expressed as a sum over the product of the Sturmian 

functions 5 ^ for the two electrons 

Skm = JV^r'+1e-*»-Lj+1_1(2*r) 

where A; is a nonlinear parameter, L^l_x(2kr) is the Laguerre polynomial, and N^ is 

a normalization factor. 

2.1 The Hamiltonian 

The Schrodinger equation for heliumlike two-electron atomic system is defined by 

HxRip = Eip 

13 



2. THEORY AND METHOD OF CALCULATIONS 

The nonrelativistic Hamiltonian is 

h2
 2 h2

 2 h2 o 
— V«2 

Ze2 Ze2 e2 

(2.1) 
2M v " 2m V r t l 2m v " 2 | i ? - i ? i | |i? - i?2 | j-Ri - R2\ 

where h is the Planck constant, e is the electronic charge, R is the position vector 

of the nucleus of mass M, R\ and R2 are the position vectors of the two electrons 

with mass m. We now make the standard transformation to scaled center-of-mass and 

relative coordinates defined by 

MR + mR\ + mR2 
X 

(M + 2m)aM 
(2.2) 

n = 
Ri — R 

(2.3) 

r2 

R2 ~ R 
(2-4) 

where o^ = ^ao is reduced Bohr radius, /i — ™+M is the reduced electron mass, and 

ao — -^-i is the Bohr radius. The center-of-mass X is an ignorable coordinate and the 

Schrodinger equation reduces to the dimensionless form 

1 o 1 o u - - Z 
- « Vi - 5 V2 —J7V1 • V2 - - - - + — 

2 I M T"i r2 r\2 

ip(ri,r2) = EuRil>(ri,r2) (2.5) 

where r\2 — | n — rsslj -^NR = %-E is the nonrelativistic energy. The unit of energy 
2 2 

is | - = 2Ru, where RM ~ ^-Roo is the reduced mass Rydberg, and | - = 2-RQQ is 

the atomic unit of energy. The mass polarization term —-j^Vi • V2 in Equation 2.6 

produces the state-dependent special isotopic shift. If jfe «C 1, then this term can be 

dropped to a first approximation. In this approximation, we obtain the Schrodinger 

equation for infinite nuclear mass 

r i 2 
- 5 V 1 -

2 

1 2 z 
-2^-;r 

Z 1 1 
- —+— T2 7*12 J 

ip(ri,r2) = ENRi)(n,r2) (2.6) 

with a change in notations more suitable for asymptotic expansions, Schrodinger equa­

tion becomes 

1 „ 2 1 „ 2 Z Z 
2 r 2 x r x r — x 

*( r ,x ) = £ * ( r , x ) . (2.7) 
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2. THEORY AND METHOD OF CALCULATIONS 

Figure 2.1: Helium atom in internal and center-of-mass coordinate system. 

Where r is the position vector for the inner electron, and x is the position vector for 

the Rydberg electron [30] as shown in figure 2.1. Now we can write the Hamiltonian 

as two parts 

H(r, x) = H0(r.x) + V(r, x) (2.8) 

where we add 1/x to Ho and subtract it from V(r, x) to obtain 

lv72_Z_l2 (Z-l) 
2 r r 2 * 

HQ(r.x) = -^V2----Vi-

= hQ(r,Z) + ho(x,Z-l) (2.9) 

where ho(r,Z) is a one electron hydrogenic Hamiltonian for the inner electron with 

full nuclear charge Z, and ho(x, Z — 1) is the Hamiltonian for Rydberg electron with 

screened nuclear charge Z-l. The remanning perturbations is 

V(r,x) 
1 

r — x \ x 

In the case where x > r, the potential V(r, x) has the multipole expansion 

V(r,x) = -Y,QnPn(cos6) 

(2.10) 

(2.11) 
n = l 

were 6 is the angle between the two. The advantage gained is that the leading monopole 

term n — 0 no more appears, vectors r, and x. The solutions to the full Schrodinger 
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2. THEORY AND METHOD OF CALCULATIONS 

equation 

H(r, x)*(r, x) = EV(r, x) (2.12) 

will now be expanded as perturbation series with V(r, x) as the perturbation according 

to 

*(r, x) = V0(r, x) + $ i ( r , x) + ... (2.13) 

E = Eo + Ei + ... (2.14) 

as explained in chapter (1) sec 1.3.2. Now 

#o*o(r , x ) = Eo*o(r, x) (2.15) 

is the zero-order equation. The j t h perturbation equation can be expressed as 

j 

(H0 - Eo)Vj + VVy-i = £ E k V j - k (2.16) 
fc=i 

Our wave functions are normalized such that (\&j | ^o) = 0 for j > 1, from equation 

(2.16) we can get the jth-order energy 

Ej = <*o I V | ^ _ i ) (2.17) 

and E\ — (^o I V I &o) — 0 since the monopole term is missing from equation (2.10) 

in the dominant region x > r, while the monopole is present for the region r > x 

which is V(°) — r ~ h- ^ ° c a l c l u a t e E\ we have to integrate first over r from x to oo 

Ei = (<t>u(r)XnL(x) I F ( 0 ) I <h.(r)XnL(x)) 

Ei = -(XUL(X) I (Z + -)e~2Zx | XUL(X)) (2.18) 
X 

which goes to zero exponentially with increasing L. Table (2.1) shows some of the 

values of Ei. For angular momentum L > 4, Ei can be neglected in comparison with 

spectroscopic accuracies, hence Ei ~ 0. Then the solution of equation 2.14 for the 

zero-order will be written as 

Vo(r,x) = (f>i3 (r)xnL(x) 

= Mr)xo(x) (2.19) 
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2. THEORY AND METHOD OF CALCULATIONS 

Table 2.1: Energy shift Ei in MHz due to penetration of the core 

L n=7 n—8 n = 9 

3 -18.97 -13.69 -10.10 

4 -5.39 x 10"2 -4.33 x 10~2 -3.42 x 10~2 

5 -7.07 x 10-5 -7.06 x 10~5 -6.32 x 10~5 

6 -3.46 x 10~8 -5.70 x 10~8 -6.48 x 10~8 

7 -1.80 x HT1 1 -3.45 x lO"11 

8 -7.43 x 10-1 5 

with neglect of exchange and the zero-order energy EQ can be written as two hydrogenic 

parts 

EQ — so + eo 

Z2 (Z-l)2 , x 

2.2 Recursion Relation for (l/xp) 

Since the early days of quantum mechanics the hydrogen atom and hydrogenic systems 

have been studied intensively because of their simplicity. Many interesting relations 

related to their wave functions have been used in different applications. One of these 

is the expectation values of the hydrogenic systems radii (l/xp) which are needed to 

calculate the energy shifts in our calculations for the Rydberg states of two-electron 

atoms. There are different methods to derive the recursion relation of (l/xp). One 

of the methods (which uses the hypervirial theorem) was derived by Killingbeck [23], 

and the other one by Drake and Swainson [15,20]. We may replace ( i ) by f[j], the 

final form of the recursion relation obtained by Killingbeck 

m _ 4(Z - 1)[(5 - 2j)f\j - 1] - iS=^=Hf]j _ 2]] 
/ U J _ (2-j)(2L + j-l)(2L-j + 3) [2'n) 

To start using this recursion relation we need to know two terms, but if we start with 

j = 3 then the second term in the numerator of equation 2.21 will vanish, so all what 

17 



2. THEORY AND METHOD OF CALCULATIONS 

we need to get /[3] is /[2] only 

f^'^WTT) <2 '22> 
so /[3] will get the following form 

/f31 - 2(
z-vm = 2(z-i)3 

/ l d J ~ L(L + 1 ) n3L(L + 1)(2L + 1 ) [ ] 

Feeding Maple version 9.5 with equations 2.21, and 2.22 we can get any j t h term, we 

are going to stop the restriction at j — 10 because of the divergence in our series (see 

equation 1.1) 

(Z-lf(Zn2-L2-L) 
f[A] ~ 4n5 (L + 1) L (2 L + 3) (4 L2 - 1) ( 2 - 2 4 ) 

(Z - l ) 6 (35n4 - 30n2L2 - 30n2L + 25n2 + 3L 4 + 6L 3 - 3L 2 - 6L) 

™ ~ 4 n7L(L + 2) (2L + 5) (4L2 - 1) (L2 - 1) (4L2 - 9) 
(2.25) 

(Z - l ) 7 (63n4 - 70n2L2 - 70n2L + 105n2 + 15L4 + 30L3 - 35 L2 - 50L + 12) 
/ [ 7 ] ~ 4 n7L(2L + 5) (L + 3) (4L2 - 1) (L2 - 1) (4L2 - 9) (L2 - 4) 

(2.26) 

8(Z - l)8(231n6 - 315n4L2 - 315n4L + 735n4 + 105n2L4 + 210n2L3 - 420n2L2 

m ~ n9L(L + 3)(2L + 7)(4L2 - 1)(L2 - 1)(4L2 - 9)(L2 - 4)(4L2 - 25) 

- 525n2L + 294n2 - 5L6 - 15L5 + 25L4 + 75L3 - 20L2 - 60L) (2.27) 

2 0 4 8 ( Z - l ) 9 ( 2 L - 7 ) ! 
7 1 J (2L + 8)!n9 

x [429n6 + [2310 - 693L(L + l)]n4 

-I- [2121 + 315L(L + 1) (L(L + 1) - 7)]n2 

- 35L6 - 105L5 + 280L4 + 735L3 - 497i2 - 882L + 180] (2.28) 

_ 1024(Z , - l ) 1 0 (2L-8) ! 
7 1 J n u ( 2 L + 9)! 

x {6435n8 + [54054 - 12012L(L + l)]n6 

+ 1155[6L4 + 12L3 - 50L2 - 56L + 81]n4 

+ [-1260L6 - 3780L5 + 14490L4 + 35280L3 - 41118L2 

- 59388L + 27396]n2 + ^ ^ f } (2.29) 

all these results agree with Drake and swainson. 
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2.3 Polarizabilities 

The response of atoms, and ions to external fields is important in the description of 

the interaction with each other and with other systems. This response is described 

by the changes in their properties, for example, multipole moments induced in them, 

which in turn interact with the sources which induce the multipole moments. The 

induced multipole moments and their interactions are given in terms of multipolar 

polarizabilities. Consider a spherically symmetric system S subjected to an external 

electric field e in the z direction, this induces a diple moment p in S. 

p = axe (2.30) 

where ai is the diple polarizability of the system. The diple moment can also be 

written in terms of effective charges +q separated by a distance of x as p = qx. The 

change in the energy of the system is then given by 

6E = - j e.(qdx) 

SE = — I e.aide 

8E = ~aie2 (2.31) 

Thus the change in the energy of the system is given in terms of its diple polarizability 

a i . Now consider the following perturbing potential 

y » = -erlPi(cosB) 

for I = 1, V becomes 

V (1) = -ercos(0) 

The second order energy shift is given by 

£(2) = £2 f* ( ^ | V ( 1 ) I ^ X ^ | V ( 1 ) | ^ > ( 2 - 3 2 ) 

,n EQ — -î n 

where the summation excludes the n = 0 term. Comparing this with equation (2.31) 

we can write the diple polarizabilty in the following form 

a i ~ 2 ^ n Eo~^En
 ( 2-3 3) 
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2. THEORY AND METHOD OF CALCULATIONS 

in more general form 

a | _ _ 2 f : < » | V | * J < * . | V | » > (2.34) 
^ ho- En 

The polarizability can also be written as 

at = 2(^o | V1 | V1X)) (2.35) 

where 

itf^E'^J^'1^ (2.36) 

This can also be viewed as the solution to the first-order perturbation equation (see 

equation 1.18), and E™ = 0 if (t/,{0) | V1 | V>{0)) = 0 

This problem is treated early by Dalgarno and Lewis [1] in a transparent way 

J..g :(P|V|.>(.|V|0) 
njtQ 

where 

and 

(n | V | m) = fi>nV*/>md3r (2.38) 

1/ = V( r , X) = - £ ( I ) p<(COs0) (2.39) 
x l=i x 

which is the exact potential we are using for helium and heliumlike ions, but the 

summation over n is just a single complete set of quantum numbers. Since the wave 

function we are using for heliumlike ions can be expressed in form of simple product 

then the Hamiltonian can be written as a sum of two hydrogenic Hamiltonian. Now 

we can change notations to | M), where M represents two complete sets of quantum 

numbers m, and m' for the inner electron and Rydberg electron. Even the excitation 

energies at the denominator(J?o — En) similarly can be partitioned according to [30] 

A M = Dm + dm> — (e0 - em) + (e0 - em>) (2.40) 

where eo — sm represent a big excitation of the inner electron and eo — em> represent 

a small excitation of the outer electron, see equation (2.20) for the definitions of the 
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excitation energies. The summations are over all single and double excitations, includ­

ing integrations over the continuum. Dalgarno and Lewis [1] found exact evaluation 

of the summation in equation ( 2.37) by eliminating the excitation energies from the 

denominator as below 

^ i r = <01/M (2.41) 

where / is a function related to V by the implicit definition [Ho, f] — V and we have 

to find, then the summation will reach a simpler form 

f w i y f r m q . f(0|/l„)(„|V|o> 
= ( 0 | V / | 0 ) (2.42) 

Finally the 2L-pole polarizability can be calculated from a single integral 

OLL = (0 | VLf | 0) (2.43) 

The calculation of f(r) for particular states described in Appendix I. Now let us go 

back to the excitation energies 

IT- = n * . (2.44) 
A M Dm + dmt 

The adiabatic approximation and corrections to it are obtained by assuming that 

dmi <C Dm for M / Mo and expanding 

1 _ 1 / dm, d2
m, \ 

A^-DZV-D^ + D2----) (2-45) 

The first term corresponds to the adiabatic approximation as already treated in the 

equations leading to (2.43) but if we consider the first correction term then we are 

getting an extra Dm in the denominator giving the leading nonadiabatic correction. 

Then it is necessary to insert / in both factors (using the Dalgarno-Lewis method two 

times) in the numerator, thus canceling both factors of Dm, and the integral we have 

to calculate looks like (0 | f2 | 0). We did see that Q.L OC -p- and it follows that 

PL OC -^2- (2-46) 

7 i oc - p - (2.47) 
TO 
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h oc - ^ (2.48) 

where /3L, JL, and 8L are the first, second, and third nonadiabatic corrections to at, 

2.4 T h e Second-Order Energy Shift E2 

Start with the excitation energies and keep in mind the nonadiabatic corrections due 

to the motion of the Rydberg electron. Now if we hold the Rydberg electron fixed 

(adiabatic approximation) then dm> = 0, and so A M = Dm. The second-order energy 

is defined as 

E2 = (*0 I V | *i> (2.49) 

where 

w^T* <2-50> 
M 

For the adiabatic case the energy becomes 

^ (0 j V | M)(M | V j 0) 

M Um 

The matrix elements (0 | V \ M) of V in equation (2.10) can be expressed as a sum of 

multipole [30] 

v(l) = ^ r W * ) (2-5i) 

where / = 0 for monopole (not included), I — 1 for diple etc ... If we use the spherical 

harmonic addition theorem to write 

m=l 
P ' ( ^ } = 27TI ^ (-l)mrfm(W l(*) (2-52) 

m=—l 

then the matrix element of each multipole V® can be corrospondingly factorized 

according to 

(M\V®\W = Y,U%n'ti,« (2-53) 

where 

u%» = V ^ T T ( < ^ ' ^^' ^ (2-54) 
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for the inner electron 

"&'= i^\{Xm'' x"i-1 *̂(&)' *»'> (2-55) 
for the outer electron The second-order energy E2 can then be written as a summation 

of energies arising from each multipole rank 

E2 = J2E2l) (2-56) 
l 

In the adiabatic approximation, the Zth multipole contribution to E2 is then 

yd) yd) 
?d) _ V ^ y0,MvM,0 

M 

or, inserting the above factorization, 

E%> = V ° '„ M'° (2.57) 
Dm 

rrC./OrrC./*') 

second summation (the summation over m! ) can be completed by closure resulting in 

TO' 

= ( 2 ^ ; ) (-irs^ixo I o.-2'-2|y^(£)|21 Xo> 

then the Zth multipole contrbution to the energy becomes 

E2 = ( a T l ) S f ( - l ) ^ % ^ : / ) ( x o I x-»-2\Yr(x)\2 I Xo>) (2.59) 

we can set fi to zero because the summation over magnetic quantum numbers for 

intermediate states is independent of \i as in the following equation 

£ | 1 T ( * ) | 2 = ^ (2.60) 

The final form of the energy will be 

Ef = -\cnixo I x~2l~2 I Xo> (2.61) 

where 
U(l) U® 

«/ = - 2 E ^ # ^ (2-62) 
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2. THEORY AND METHOD OF CALCULATIONS 

is the 2'-pole polarizability and 

U$ln = {4>o I rtPi(coaO) \ 4>m) (2.63) 

finally the second-order energy E2 in the adiabatic approximation can be written 

as follows 

E2 = . l ^ ^ - ^ . ^ - e j . l ^ ^ . ^ - i O ) 

= ~\ ( f ^ ( O + 15^- 6 (^ 6 ) + ^ Z " 8 ( x - 8 ) + 8-^Z-™(x-")ty. 64) 

where (x j),j — 4,6,8, and 10 are defined in equations (2.24), (2.25), (2.27), and 

(2.29) respectively, and ai are gicen in equations (2.103-2.105). 

2.5 The Third-Order Energies E3 

To derive the third-order energy we have to start with equation 2.16 for j = 3 

#3 = <*o I V | *2> (2.65) 

This term is derived by Drake [32], by using equation (2.15) for j = 2, and multiplying 

both sides of the equation by (*I>i | from the left, we get 

(tf i | Ho | *2> + <*i I V | *i> = 0 (2.66) 

Next we have to use same equation (2.15) but for j — 1, and multiply both sides of 

the equation by (\&2 I from the left, we get 

(*2 I H0 | * i ) + (#2 I V | * 0 ) = 0 (2.67) 

the third-order energy can be expressed as 

E3 = <#o I V | *2> = (*i I V | *i> (2.68) 

In the adiabatic approximation the energy becomes 

F _\^\^(0\V\N)(N\V\M)(M\V\0) 
i ? 3 - ^ £ ^ - p - (2.69) 

M N "m^n 
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We next follow the same steps we used for E2' (see equation 2.57), except that there 

will be three spherical harmonic terms instead of two. In this case we are going to use 

so called the Wigner 3-j symbols instead of the orthogonality [28] 

/•7T /•27T 

/ / Yl™
1(x)Yl™

2(x)Ylf
i(x)Sm0d0d(f> = 

Jo Jo 

(2V + l)(2Z" + l)(2l + l) I I' I" I \ I V I" I 
47r ' 0 0 0 / I m! m" m 

(2.70) 

This expression will vanish unless /', I", and I satisfy two conditions. First they have to 

satisfy the triangular inequality (I' +1" > 1), and second the sum of I' +1" +1 — p must 

be an even integer. Therefore p = 4 will be the first term with I — I' — 1 and I" = 2 

and this corresponds to (x~7) (see equation 2.26). The second term (which is the last 

for this case) is p — 6, which comes from (222), or (123) indices corresponding to 

(x~9) (see equation 2.28). Now we can write the third-order energy for the adiabatic 

approximation as follows 

& = £ < ' ' " ' (2.71) 
ll'l" 

and the nonvanishing terms are 

E3 = 4 u a > + 4123> + i#22> (2.72) 

and in terms of the polarizability coefficients 

Ez = \r)(x-7)+ \K(X-»)+ \\(x-») 

\ (™Z-8(x~7) + lG20Z-lo(x-g) + 153Z-1 0(*-9>) (2. 73) 

where rj (defined in equation 2.74), K, and A are calculated by using the Dalgarno-Lewis 

method [1], details for their calculation will be explained in section (2.7). 

Jjd) Tjd') Tjd") 
„ V—•* ^~* ^ 0 mUm,nun 0 

r? = 2 £ £ n n (2-74) 
m,n l,l',l" ^m^n 

The superscrips (112) belong to r\ , similarly /c, and A have the same form as 77, but 

with two different indices (123), and (222) respectively. 
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2.6 The Fourth-Order Energies E4 

This is term derived by Drake also [30], by starting employing equation (2.16) for 

j = 4 and the fourth-order energy can be written as 

£ 4 = <*o I V I #3) (2.75) 

This can be simplified in the same way we did for E3 again by using equation (2.15) 

but for j — 3, and multiplying both sides of the equation from the left by ($1 | we get 

<*i I Ho I *3> + (*i I V I *2> = £2(^1 I * 1) (2.76) 

Next we have to use equation 2.16 for j — 1, and multiply both sides of the equation 

by (*3 I from the left, we get 

(# 3 I Ho I *i> + <*3 I V I $0} = 0 (2.77) 

and the fourth-order of energy can be expressed as 

£ 4 = (*! I v I *2> - £2<#1 I * l ) (2.78) 

where 

M N M JV 

in more detail the energy become 

E = V V V (° ! v l p){p' v l N){N l v ' M ) ( M ' V ' 0) 

4 M N P A M A J V A J V A P 

_ ETV{Q\V\N)(N\M}(M\V\O) ( 2 8 0 ) 

vv A**A" 
for the adiabatic approximation the energy becomes 

F = V W ( 0 ' v ' p ) ( p ' y ' N){N l v ' M ) < M I y I 0) 

MNP DmDnDnDp 

^ £ £ ( 0 | V | i V ) ( J V | M ) ( M | y | 0 ) (2-81) 
M N DmDn 

The normalization term and the second-order correction (e2) to the energy of the 

Rydberg electron due to part of \&2 will be added later. As we did in the previous 
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section we can write the fourth-order energy in terms of its components 

S) !/(«') vd")vd" 
\4,N VN,P ' 

M,N,P ->rnDnDp 

„(ll'l"l'") V ^ vO,MVM,NVN,PvPfi ,_ ao. 
Ei = 2 ^ D D D ( } 

^STn. Un JSix 

we can write it explicitly in terms of the two summations (the inner electron sum and 

the Rydberg electron sum) 

TM,n)nd'y)TTd",n")nd'"y") 
„{U'l"l'") _ V ^ V ° ' m um;n Un,p Upfl 
^4 - L. L. DmDnDp 

C O n V V,0 (2-83) 
m',n',p' 

the last sum over m',n', and p' can be completed by closure, and following the same 

steps we did for E2 

Tjd) Tjd') Tjd") Tjd"') 

Eiwm = y, W v ^ {x-s} (284) 
™ „ „ UmL'nL/p 
m,n,p * 

which is the only term corresponding to (x - 8 ) where all the indices have the same value 

I = l' = I" = I'" — 1, and there are two successive cases of (1113), and (1122) both 

correspond to (x~10). The total fourth-order energy in the adiabatic approximation is 

£;4 = 4 m i ) + 4 1 1 1 3 ) + 4 1 1 2 2 ) (2-85) 

where the adiabatic coefficients are defined as below 

Tjd) Tjd') Tjd") Tjd'") 

e-£P ww\ <2'86) 
similarly p, and a have the same form as e does but with different indices (1113), and 

(1212) respectively as shown in the following section. By calculating the integrals we 

get 
4329 i n C = -STZ (2-87) 

4905 „ 12 

P = — Z (2-88) 

98511 7 _ 1 2 
a — 16 

•Z~" (2.89) 
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2.7 Dalgarno-Lewis Method 

So far we used the adiabatic approximation for the energy shifts. In this section we 

are going to explain the Dalgarno-Lewis method [1] that we used to calculate the 

polarizabilities. Let us start with 2'-pole polarizability 

Tjd) Tjd) 

^ - Z r 0 ' ! " 1 ' 0 (2-90) 
™ L)m 

m 
this can be written explicitly as 

n ^ (fa 1 ^P^cosO) | cj>m){<t>m I rl P^cosd) \ <j>o) 
<*i = -2 2_s 7-£ =r-x (2.91) 

TO (E° _ E™> 
our aim is to eliminate the excitation energy in the denominator, by interducing a 

corrosponing term in the numenator such that 

(Em - E0){<pm \f\<fo) = (</>TO I [/, Ho] I cf>0) = (<t>m I rl P^cosO) \ <j>0) (2.92) 

where (j>o is the Is state for the inner electron with nuclear charge Z, f = f(r) is the 

function we are looking for, and HQ is the Hamiltonian for the inner electron only, 

because we already sperate the inner electron terms from the Rydberg electron terms. 

The advantage gained is that the sum over m can be complited by closure. Letting 

the Hamiltonian acts to the right first and to the left for the second time, then we get 

(EQ - Em)((j>m | / | fo) = (4>m I rlPi(cos8) \ fo) (2.93) 

The summation over m (excludes the ground state) can be then completed by a closure 

at = -2((j>o | / rlPi(cos6) \ fo) (2.94) 

now we have to solve the differential equation to find f(r), it is easy to see that f(r) 

must be equal to g(r) Pi(cos6) otherwise (0 | fV | 0) will vanish, where g(r) is an 

arbitrary function we have to fined. Let the commutator act on the ground state 

[/, H0]<fo = r Pi (cos9)(t>o (2.95) 

then we get 

(Eo - H0)g(r) Pi(cose)(f>o = r Pi(cos0)(j)o (2.96) 
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which is the same as the first-order perturbation equation (see equations 1.24 and 2.16 

) and the differential equation for g(r) will be 

d g(r) + 2 ( i - Z)^g(r) - ^g(r) = 2r 
dr2 

with a solution of 

dr~ 

r r 
9{r)^-Z^~2Z 

as shown in Appendix I. Thus 

f(r) = -P^cosO) 

now we are ready to calculate the polarizability 

ai = -2{ls | fiVM | Is) 

d\e~2Zr 

9 

r r 
Z2 + 2Z 

(2.97) 

(2.98) 

(2.99) 

- - / • 

2 r 2 r 3 

Z2_ + ~z 
[ Pi(cosO)) 

- -\z~l (2.100) 

To solve for a2, a.$, and 0:4 we need to consider the cases of I = 2, 3, and 4 for both 

V^ and fi(r), so the more general form for the differential equation is 

^gi(r) + 2(\ - Z)±9l(r) - ^ W ) = 2r< (2.101) 

and its solution is [28] 

9l(r) = - W l 

J+i 

Z(l + 1) 

By solving a similar integral we did for &i we can get the other polarizabilities 

(2.102) 

OJ2 = — 15Z - 6 

525 „_ 8 
c*3 = —j-Z 

8505 
Q 4 = 

r-10 

(2.103) 

(2.104) 

(2.105) 

Now for the third-order energy £3 we have two terms in the denominator which is not 

a problem, all what we have to do is just to apply the Dalgano function two times, 

and the coefficients we are going to solve have the form 

m,n 1,1' ,1" 

Tjd) Tjd') Trd") 

L'm.L'n 
(2.106) 
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the sum can be simplified to 

£ < 0 | / ' | m > < m | V ' ' | n > ( n | / ' " | 0 > 
TO,Tl 

Completing the summations over m and n by two closures we get 

(0 | flVvf" | 0) 

(2.107) 

(2.108) 

and the integral we have to calculate is 

£3 

7T Jo 
dre -2Zrr2 

J+i 

+ 2rl 
J" J"+ i 

4(p + 2)! 1 +p + 3 

zn z(i + i)_ 

\i[i" + i] + i"[i + i]J 

+ Z2l" Z(l" + 1) 

(p + 3)(p + i) 
+ (2.109) 

(2Z)P+4TT [IV 2 \l[l" + \) 1"[1 + 1] / 4(Z + 1)(J" + 1). 

where p = I -I- V +1". Now all that we have to do is just to subsittute the values of the 

indices to get final forms for the polarizability coefficients 

V 
(112) _ 213 8 

«(123) = 1620Z"10 

A(222) = 1 5 3 Z-10 

(2.110) 

(2.111) 

(2.112) 

The calculation of fourth-order energy E4 has a problem comeing from the three 

different energy denominators, and the Dalgarno method cannot handle this problem 

directly because the coefficients have the following form 

Tjd) Tjd') Tjd") Tjd'") 

= £ 
mtn,p 

Dm*-'nl~'p 
(2.113) 

where the first and the last energy denominators (Dm, and Dp) can be eliminated 

in same way as we did before, but the the middle one Dn causes a problem. After 

eliminating the two energies, the sum simplifies to 

(0 I fV I n)(n I fV I 0) £ Dn 
(2.114) 

To eliminate the third energy denominator and summing over n by closure we have to 

solve another Dalgarno equation F(r) which can be done by following the same way 

we got f(r), but the inhomogeneous term in this case will be more complicated 

[F,H0]\0) = Vf\0) (2.115) 
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After the commutator acts on the ground state to get 

Dn(n | F | 0) = (n | Vf | 0) (2.116) 

by using the results of the last equation, the sum can be simplified to 

(0\fV\ ( 1 - | 0)(0 I) I F | 0) (2.117) 

yielding the final form 

(0 | fVF | 0) - (0 | fV | 0)(0 | F | 0) (2.118) 

We have only one set (1111) of indices for the case of p — 4 which is expressed by e, 

and for p = 6 cases we have two sets (1113) that is for p, and the last set for a (1212) 

as follows 

e(ini) = 32®Z-io ( 2 . 1 1 9 ) 

p (ui3) = 4905 z _ 1 2 ( 2 1 2 Q ) 

,(1212) = 98^1 z_ 1 2 ( 2 1 2 1 ) 

These are the adiabatic fourth-order contributions to the energy, but it does not include 

the term that comes from the normalization of the perturbed wave function. That term 

will be discussed in the next sections. The adiabatic corrections for the second-order 

and third-order are fully completed at this point. 

2.8 Nonadiabatic Corrections 

Now we consider the motion of Rydberg electron and let us start with an expansion 

form of the perturbed wave function of the form 

dm' d2, d 3 , 
_ " * I TO' TO' I 

J-Sr 
(2.122) 

which include the nonadiabatic corrections. In order to have a means to complete the 

sum over m!, we first define h — ho(x, Z — 1) — eo where eo is defined in equation 

(2.40). Then we can make the replacement 

-dm> \m')-*h\ rri) (2.123) 
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*!>=£ .,hm' h2
m, h3

m, + W WW 
ISm. •*-^vn -ISm 

(2.124) 

to obtain equation (2.122) in the form 

"" I M)VM,o 
'TO J - 'TO - ^ T O •*-'m 

The second term in the parentheses represents the first nonadiabatic correction cor­

respond to Pi (to be calculated below). The third and the fourth terms in the same 

parentheses represent the second and the third nonadiabatic corrections respectively 

(see equations 2.47 and 2.48). The following commutation relation will be used to 

calculate the nonadiabatic corrections by simplifying | ^i) 

[h, u('--'l)] = - W ' - ^ . V (2.125) 

using h | xo) = 0, and following the same technique we did in section 2.4 then we can 

express the leading nonadiabatic correction as 

Tjd) Tjd) 

AE2 = J L — n 2 Z ^ ( u hhm'Um'to 

= A £ > o I U<''">fcu<''-"> | xo) (2.126) 
A* 

where Pi, is the leading nonadiabatic correction to the diple polarizability a>i 

Tjd) Tjd) 

A = £ ^ # £ (2-127) 
TO m 

Letting the operator h act to the right in equation 2.126 and integrating by part, then 

the first nonadiabatic correction can be written as 

LET" = ;^<V2(x-2/-2)> 

= -^(2Z + l)(2Z + 2)<x-2*-4) (2.128) 

Next we calculate nonadiabatic polarizability coefficient Pi by using again Dalgarno-

Lewis method 

^ (0 | V | m)(m \V\0) 
Pi = X. n5 

m m 

= £ ( 0 | / | m ) ( m | / | 0 ) 
TO 

= ( 0 | / ( 1 - | 0 ) ( 0 | ) / | 0 ) 

= (0 I f2 I 0) (2.129) 
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Performing the integral gives [28] 

R 16(2Z-l)!(2Z4 + llZ3 + 18Z2-H0Z + 2) 
A = (2zr+H(i+1) (2-130) 

Now let us go to the second nonadiabatic correction. In this case the denominator has 

the third power of energies Dm, and nominator involving h2 

TO
 m m',n 

= H £(xo I t ^ / iV ' - "> | xo) (2.131) 
A * 

By using the same steps we did for the first nonadiabatic corrections we can get [32] 

^ = 2^«>2 [fw<*"2'"6> " (i + 2,(2! + 1J (' + g f f ^ + 3)) <*-2"6> 
(2.132) 

As we did with Pi use the Dalgarno-Lewis method to calculate 7* (the second nonadi­

abatic correction) 

_ l y (0| V I m)(m I V\0) li 2 ^ Dm 
m m 

= - ^ £ ( 0 | / | m ) ( m | F | 0 ) 
2 

TO 
= - i ( 0 | / ( l - | 0 ) ( 0 | ) F | 0 > 

= ~(0\fF\0) (2.133) 

Performing the integral gives 

7 ( 1 1 ) = f ^ 8 (2.134) 

for l — l' — l, and 

7(22) = 2^^_10 ( 2 1 3 5 ) 

for I = V = 2 

The third nonadiabatic correction for E2 can be calculated by following the same 

steps as we did for the first and second corrections 

Tjd) Tjd) 

TO m TO',// 

= «, ^ ( X 0 I M^)fc3u(i,-/.) I XQ) ( 2 - 1 3 6 ) 
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where 

* = E (0 | V | m)(m | V | 0) 

Dt 
m m 

= Y,(0\F\m)(m\F\0) 
TO 

= <0 I F(l- | 0)(0 \)F | 0) 

= ( 0 | F 2 | 0 ) - ( 0 | F | 0 ) 2 
(2.137) 

performing the two integrals gives 

( n ) = 9673 10 

1152 
(2.138) 

We have now completed calculation of the nonrelativistic second-order energy correc­

tions including the nonadiabatic terms. The final result can be summarized by 

E2 = - i [ a i <x- 4 )+a2<x- 6 ) + a3(x-8) + a4(x-10)] 

+ 1 [6^(x~6) + 15p2(x~8) + 28p3(x-10)] 

+ 7lg(Z-l)(x-7)-36(l + ^ ± i l ) ( x - 8 ) 

+ 1872 [\(Z - l)<x-9) - 10 ( l + ^ f ^ ) (x~w) 

8Si 51 
21 

3L(L +1) y(Z-l)(x-9)-90(l + ^ p ^ ) ( x - 1 0 ) 
) 

(2) 

(2.139) 

;i(2) We are ready to program equation (2.139) and define £3 = E^ar — E2 where E. 

(E{
2
2) = E^ + E{

2
0)) is the sum of equations (1.2), and (2.139). Table 2.2 shows 

the improvement in the energies after adding the polarizability corrections. We can 

see that the improvement is approximately eight times compared to equations (1.28) 

for 10G state, and for 10K state the improvement is 66 times which shows the dra­

matic improvement that results from increasing the angular momentum L from 4 to 

7. We next calculate the nonadiabatic corrections for the third-order energy shift 

£3 by following the same steps we did for the second-order energy corrections E2 

and considering only the first nonadiabatic correction corresponding to 7^- term, the 
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Table 2.2: The differences between the variational and asymptotic calculations, all 

the energies in (a.u) 81 and 52 are the same as in table 1.2, and £3 is defined by 

£3 = Eva,T — E2 

State Evar Si 82 53 S2/83 

10G -2.0050001127706610315 -1.13 x lO"7 1.76 x 10~9 2.35 x lO"10 8 

10H -2.0050000392144059740 -3.92 x 10~8 2.32 x lO"10 1.79 x 10 - 1 1 13 

101 -2.0050000160865162071 -1.61 x 10~8 4.22 x 10~ n 1.11 x 10~12 38 

10K -2.0050000073883758768 -7.39 x 10~9 9.31 x 10~12 1.41 x 10~13 66 

polarizability coefficient can be written as 

Tjd) Tjd') Tjd") 

m,n 1,1',I" ^m^n 

(0 I V I m){m I V I n)(n \V\0) 

DnD2
m 

(0 I / I m)(m I V I n)(n | / | 0) 

= E 

= ^ ( 0 I F I m)(m I V \ n){n | / | 0) 
7n,n 

= <0 I FWvWfW I 0) (2.140) 

Performing the integral we get 

^ 2 8 4 9 1 ^ 0 

and the correction term is 

*<ua> = ^ i z - 1 0 (2.141) 
8 

A£j 1 1 2 ) = -e (112)<*-9> (2.142) 

The third-order energy shift then becomes 

£3 = ^ ( X - 7 ) + ^(-i + K + X)(X~9) (2.143) 

where the rj, K and A terms are the adiabatic terms, and £ is the nonadiabatic cor­

rection. For convenience we lump all four together to see the explicit improvement 

achieved by adding these terms. By defining £23 = -Evar - (E2 + E3) table 2.3 shows 

the improvement is about 23 times for 10G state and 104 times for 10K state. 
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Table 2.3: The differences between the variational and asymptotic calculations, all the 

energies in (a.u) 

State 2?var $1 $2 #23 ^ / ^ 2 3 

10G -2.0050001127706610315 -1.13 x 10~7 1.76 x 10~9 7.72 x lO"11 23 

10H -2.0050000392144059740 -3.92 x 10~8 2.32 x 10~10 -1.28 x 10 -12 181 

101 -2.0050000160865162071 -1.61 x 10~8 4.22 x 10"11 -4.24 x lO"13 100 

10K -2.0050000073883758768 -7.39 x 10~9 9.31 x 10~12 -8.99 x 10~14 104 

For E4 there is one nonadiabatic term comes from considering the factor of 77-
•Urn 

which is similar to the one corresponds to the third-order energy E3. The first nona­

diabatic correction to the adiabatic polarizability coefficient e (see equation 2.85) can 

be calculated as below 
Tjd) Tjd') Tjd") Tjd") 

fl(llll) _ V U0,PUP'TnUm>nUn,0 
~ 2-^ D2D D 

(0 I V I p)(p I V I m){m I V \ n)(n \ V | 0) 

n,n,p D2DpDm 

(0\ f \p)ip\V \m)(m\V \n)(n\ F\0) 
^ Dm 

m,n,p 
= £ T T - { K ° \fV\m)-(0\f\ 0)(0 I V I m)][(m \VF\0)-(m\V\ 0)(0 | F | 0)]} 

•Urn 
m 

= (0\gfVVF\0)-(0\gfV\0)(0\VF\0)-(0\fVf\0) (2.144) 

Performing the three integrals gives 

0 ( m l ) = Z? i^ Z -12 (2 M 5 ) 

128 

and for the term corresponding to the Rydberg electron we let h act to the right as 

we did in equation (2.61), then we get a factor of V2, which gives (x-10) term, and 

finally the nonadiabatic correction becomes 

A£<lin> = ^ ( " " V 1 0 ) (2.146) 

Now let us go back and calculate the normalization term which is the second term 

in the fourth-order energy shift E4, considering both terms, the adiabatic and the 
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nonadiabatic contributions. Let us start with the adiabatic corrections 

E2(^I | *i> = 2 ^ F T T T T ; l^ 1 47) 
M,N,P 

L'nL'pLfm 

where \&i is already defined in equation 2.123, and E2 in equation 2.49. We again use 

the same steps we did in section 2.4 to separate the two summations 

Tjd) Tjd) Tjd')TJd') 

£2<*l |* l ) = £ 
0,TO^m,0 0,n n,0 

TO,n A ^ 

aiPi'(x-2i-2)(x-21'-2) 

£*> U0,m'Um',0U0,n'Un',0 

(2.148) 

we have three successive sets (Z = Z' = 1). This set corresponds to an (x - 8 ) term, and 

two sets of (Z = 1, /' = 2) and (I — 2,1' — 1) corresponding to an (x - 1 0 ) . By following 

the same steps we already did for both adiabatic and nonadiabatic corrections the 

fourth-order energy shift becomes 

EA = §[-6<x-8> + (6-p-a)(x-w) + aiPi <x~4)2 
- 1 0 > 

2 \ / „ - 4 \ / „ - 6 \ + (aip2 + a2pi - 1 2 a m - 6^)(x- 4 ) (x" b ) ] (2.149) 

Note that equation (2.149) does not include the second order energy e2 = (^i | V \ 

</>oXo ) contained in equation (2.79). This will be calculated in detail in the following 

section. 

2.9 Second-Order Correction e^ due to | </>oXo ) 

In this section we calculate the additional second-order term contained in equation 

(2.79) due to | 4>oXo ) where Xo satisfies the first-order perturbation (equation 1.18). 

Let us recall the definition 

*2>= £ 
M,N,N^N0 

N)(N | V | M)(M \V\0) 

L'm'-'n 

dm' un' 

Dm Lfn 

where 

A*?*) = £ 
Af,JV0 

NQ)(N0 I V I M)(M \V\0) \ dm' dm, 
D D2 

(2.150) 

(2.151) 
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Table 2.4: Adiabatic and nonadiabatic coefficients 

Coef 

Q l 

a2 

a3 

aA 

Pi 

P2 

Pz 

71 

72 

Value 

9 7 - 4 
2 Z 

15Z-6 

525 7-8 

8505 7-IO 

437-6 

107 7-8 

3265 7-IO 
~32"Z 

319 7-8 
*48"Z 

2399 7-10 
192 ^ 

I 

1 

2 

3 

4 

1 

2 

3 

1 

2 

Z' 

1 

2 

3 

4 

1 

2 

3 

1 

2 

Coef 

<Si 

?? 

c 
K 

X 

e 

e 

p 

a 

Value 

9673 7-10 
1152 ^ 

213^-8 

28491 v-10 
8 Z 

1620Z-10 

153Z-10 

4329 7-10 
"32"^ 

791313 7-12 
128 * 

4905 7-12 

98511 ^7-12 
16 ^ 

I V 

1 1 

1 1 

1 1 

1 2 

2 2 

1 1 

1 1 

1 1 

1 2 

I" 

2 

2 

3 

2 

1 

1 

1 

1 

V" 

1 

1 

3 

2 

The adiabatic part of | <£oXo ) corresponds to the leading term 

\<t>oXo ) = -«Z^<xi I <P0)2-, "} (2.152) 
Z l n> an' 

and the nonadiabatic corrections are negligible. Summing over M in equation (2.155) 

is the same as that leading to equation (2.61) for E2 . The sum over n' ̂  0 define the 

solution to the perturbation equation 

W 2 i + 2 ) ( x ) = « x - 2 ' - 2 ) - x-2 ' -2)xo(*) (2.153) 

where h is defined in equation (2.124) and thus 

I x ^ ) = ~ « £ a H «>(2'+2)) + nonadiabatic corrections (2.154) 

Equation (2.157) can be solved analytically (Drake and Swainson 1991) [18]. The 

leading two adiabatic parts of e2 = (*i | V | <£oXo ) c a n D e written in the form 
e2,o = 41615 + e2!o2)' where 

4 f e ) = 7(2 - hk)^k(xo I x-2^-21 ww+2)) (2.155) 

We can write the two energies as functions of n, and L (Swainson and Drake 1992) 

[24] as 

egsV, L) = --a\S2,2(n, L) (2.156) 
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and 

«1¥)^«. TA = -e^2)(n, L) = -laia2S2A(n, L) (2.157) 

where 

SPl,P2(n,L) = (nl | r-pi~2G(n)r-p2-2 | nl) (2.158) 

and G(n) is the reduced Schrodinger-Couloumb-Green function, defined by its spectral 

representation 
• I^WI ( 2 1 M ) 

the term n = n' is omitted. The results for the two cases pi = p2 — 2, and pi = 

2,p2 = 4are [24] 

(1.1)/ r \ X 2 1 0 2 7 ["(2Z-2)!"12 

n° (2Z + 3)! (2(2Z + 5^! ) !{ [9 ( / l " 2 ) ~ 6 n ~ 2 ^ 4 5 + 6 2 3 / i + 3640/2 

+560/3)n-4/i /j(3 + 40/i + 240/2)} + 277T1 - 30rT3/i + 7n-5 /2) (2.160) 

and 

- 18931770/3 - 11171160/4 - 1029600/5 - 18304/6) 

- 15n-2 (94500 - 444150/i + 7747425/2 + 337931880/3 + 375290190/4 

+ 66518760/5 + 2880416/e + 29568/7) -I- 9rT4/i (90300 - 177450/ l 

+ 1738450/2 + 133125575/s + 160040870/4 + 29322216/5 + 1293600/6 + 13440/7) 

+ 2n-6/i/2/3(45 + 252/i - 1680/2 - 2240/3)] 

+ 315n-1 + 1 2 5 n - 3 ( 3 - 5 / i ) - 7 n - 5 / i ( 4 3 - 3 9 / i ) - 2 7 n " 7 / i / 2 } (2.161) 

where 

/„«) = { £ $ (2.162) 

Adding e2 to equation (2.149) gives 

£4 = l[-e(x-8) + (e-p-a)(x-10) + aipi(x-4)2 

+ (aiP2 + a2pi- 28a l 7 l - 10ft2) (x"4) (x~6)] 

+ 41ol) + (1 - 6AA*2)4!o2) (2-163) 
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Table 2.5: Adiabatic second-order energies e 2 0 (n,L) calculated from equation 2.160 

in (MHz) 

z 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

10G 

-0.206399 

-0.515461 

-0.587799 

-0.554101 

-0.491588 

-0.427677 

-0.370565 

-0.321807 

-0.280836 

-0.246522 

-0.217723 

-0.193437 

-0.172836 

-0.155252 

-0.140148 

-0.127095 

-0.115748 

10H 

-0.019208 

-0.047970 

-0.054702 

-0.051566 

-0.045748 

-0.039801 

-0.034486 

-0.029948 

-0.026135 

-0.022942 

-0.020262 

-0.018002 

-0.016085 

-0.014448 

-0.013043 

-0.011828 

-0.010772 

101 

-0.002640 

-0.006594 

-0.007520 

-0.007089 

-0.006289 

-0.005471 

-0.004741 

-0.004117 

-0.003593 

-0.003154 

-0.002785 

-0.002475 

-0.002211 

-0.001986 

-0.001793 

-0.001626 

-0.001481 

10K 

-0.000468 

-0.001168 

-0.001332 

-0.001255 

-0.001114 

-0.000969 

-0.000839 

-0.000729 

-0.000636 

-0.000558 

-0.000493 

-0.000438 

-0.000392 

-0.000352 

-0.000317 

-0.000288 

-0.000262 

10L 

-0.000098 

-0.000244 

-0.000279 

-0.000263 

-0.000233 

-0.000203 

-0.000176 

-0.000153 

-0.000133 

-0.000117 

-0.000103 

-0.000092 

-0.000082 

-0.000074 

-0.000066 

-0.000060 

-0.000055 

10M 

-0.000023 

-0.000056 

-0.000064 

-0.000061 

-0.000054 

-0.000047 

-0.000041 

-0.000035 

-0.000031 

-0.000027 

-0.000024 

-0.000021 

-0.000019 

-0.000017 

-0.000015 

-0.000014 

-0.000013 

Tables (2.5) and (2.6) show the adiabatic second-order energies expressed in MHz 

and KHz respectively. 
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(1 2̂  

Table 2.6: Adiabatic second-order energies e 2 0 (n,L) calculated from equation 2.161 

in (KHz) 
10G 10H 101 10K 10L 10M 

2 -7.011397 -0.208526 -0.011786 -0.000968 -0.000098 -0.000011 

3 -31.129340 -0.925819 -0.052330 -0.004296 -0.000436 -0.000047 

4 -44.927034 -1.336176 -0.075524 -0.006200 -0.000629 -0.000068 

5 -48.186530 -1.433117 -0.081003 -0.006649 -0.000675 -0.000073 

6 -46.386940 -1.379595 -0.077978 -0.006401 -0.000650 -0.000070 

7 -42.695174 -1.269798 -0.071772 -0.005892 -0.000598 -0.000064 

8 -38.551085 -1.146549 -0.064806 -0.005320 -0.000540 -0.000058 

9 -34.549913 -1.027550 -0.058080 -0.004768 -0.000484 -0.000052 

10 -30.909628 -0.919284 -0.051960 -0.004265 -0.000433 -0.000047 

11 -27.683873 -0.823347 -0.046538 -0.003820 -0.000388 -0.000042 

12 -24.858971 -0.739331 -0.041789 -0.003430 -0.000348 -0.000037 

13 -22.396063 -0.666082 -0.037649 -0.003091 -0.000314 -0.000034 

14 -20.249859 -0.602252 -0.034041 -0.002794 -0.000284 -0.000030 

15 -18.376723 -0.546543 -0.030892 -0.002536 -0.000257 -0.000028 

16 -16.737357 -0.497786 -0.028136 -0.002310 -0.000234 -0.000025 

17 -15.297762 -0.454971 -0.025716 -0.002111 -0.000214 -0.000023 

18 -14.028926 -0.417235 -0.023583 -0.001936 -0.000196 -0.000021 
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2. THEORY AND METHOD OF CALCULATIONS 

2.10 Total Nonrelativistic Energies 

We have all the energy shifts for terms up to (x - 1 0 ) except the mass polarization (which 

will be calculated in the next chapter). The complete expression for the asymptotic 

expansions energy for the helium atom (Z=2) can be expressed in the form 

1 

where 

AEQ 

E0 

E2 + E3 + E4 

2n2 + AE0 (2.164) 

= \{-*i(x-A) - (a2 - 6pi)(x~6) + [r, + j(Z - l )7 i ] + <x~7) 

+ -a3 + 15p2 -e + aiPi - 7271 1 + ( l + ffi^) ( x - ) 

36, 816 
(Z-l)5i)(x-») + [-C + R + \+-(Z-\)y. 

+ [-c*4 + 28/53 + 0- p-a + aip2 + a2pi - 28«i7i 

- 10/3? - 36O72 1 + 
L(L + 1) 

21 

+ i 4 4 0 ^ ( l + ^ i ) ) ] ( x - ^ } 

=(1-1) (1,2) + e ^ + ( l - 6 ^ 1 / o : 2 ) e 2 ^ + 0 ( ( x - 1 1 ) ) (2.165) 

Now equation (2.164) is ready to be compared with the nonrelativistic variational 

calculations (see table 2.7), and for higher angular momentum L see tables (2.8, 2.9, 

and 2.10) which compare our results [46] with the CI results [38]. Recently G. Lag-

mago Kamta, B. Piraux, and A. Scrinzi [38] performed what they claimed were high 

precision CI calculations. However, our asymptotic expansions showed that not even 

the leading diple correction term proportional to a ( x - 4 ) was contained correctly in 

their calculation (see tables 2.9 and 2.10). We proposed that there is an important 

class of configurations missing from the CI calculations, subsequent calculations by 

them verified that this is indeed the case. Table (2.12) shows the contributions to the 

nonrelativistic energy eigenvalue for the helium atom at a state of 10M, where half of 

the contribution correspond to (x - 1 0) term is the uncertainty in our calculations. The 

important point is that the first two entries in table 2.12 —Z2/2 — l/2n2 are indepen­

dent of L, they therefore cancel exactly for transitions between states with the same 
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n but different L. Thus a CI calculation that does not get the leading dipole polar­

ization correction correct will give grossly incorrect results for transition frequencies 

with An = 0. 

Table 2.7: The differences between the variational and asymptotic calculations, all the 

energies in (a.u) 

State -Evar -Z?AE -Z?var — -E?AE 

10G -2.005000112 7706610315 -2.0050001125249762383 -2.5 x l O - 1 0 

10H -2.0050000392144059740 -2.0050000392138561930 -5.5 x lO" 1 3 

101 -2.0050000160865162071 -2.0050000160865115598 -4.6 x K T 1 5 

10K -2.0050000073883758768 -2.0050000073883758121 -6.5 xlO" 1 7 
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2. THEORY AND METHOD OF CALCULATIONS 

Table 2.8: shows the energy eigenvalues for (L — 7) states for helium atom, Ei is our 

results by using the asymptotic expansion method [46], E2 is the CI results obtained 

by [36] (CI method), E[ = Ex - 2 - ^ , E'2 = E2 - 2 - ^ , A is the difference between 

our and the CI results, and 6 is the uncertainty in our results 

n 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

-Ex 

2.0078125125702293 

2.006172 8490963298 

2.0050000073883758 

2.0041322371767153 

2.0034722267972703 

2.0029585835592145 

2.002 5510234029097 

2.002 2222246900460 

2.0019531270556670 

2.0017301055354200 

-E'l 

0.0000000125702293 

0.0000000095901569 

0.0000000073883758 

0.0000000057717567 

0.0000000045750481 

0.0000000036775577 

0.0000000029947464 

0.0000000024678238 

0.0000000020556670 

0.0000000017291916 

~E'2 

0.000000012 570227 

0.000000009590156 

0.000000007388375 

0.000000005 771758 

0.000000004575059 

0.000000003677554 

0.000000002994 744 

0.000000002467821 

0.000000002055667 

0.000000001729190 

A x 1016 

2. 

1. 

1. 

2. 

11. 

3. 

3. 

3. 

0. 

2. 

Sx 1 

1. 

2. 

2. 

2. 

2. 

2. 

1. 

1. 

1. 

1. 
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Table 2.9: shows the energy eigenvalues for (L = 10) states, note that A is multiplied 

by 10~ n (a.u) while 5 is multiplied by 10_19(a.u) which is 108 times smaller 

n -Ei -E[ -E'2 

11 2.004132 232 2802270202 0.0000000008752683426 0.000000000417089 

12 2.003472222 9432002286 0.0000000007209780063 0.000000000343625 

13 2.002 9585804773706029 0.000000000595 713 7981 0.000000000283955 

14 2.002 551020903322 9573 0.0000000004951596920 0.000000000236054 

15 2.002 222222 6367415704 0.000000000414 5193482 0.000000000197624 

16 2.001953125 3496026708 0.000000000349602 6708 0.000000000166681 

17 2.0017301041032560302 0.000000000 2970276565 0.000000000141623 

18 2.0015432101306918405 0.0000000002541486306 0.000000000121186 

19 2.0013850417701666786 0.0000000002189201413 0.000000000104390 

20 2.0012500001897647724 0.0000000001897647724 0.000000000090496 

Table 2.10: shows the energy eigenvalues for (L — 11) states 

n —Ei ~~Ei —E2 

12 2.0034722226476697866 0.0000000004254475644 0.000000000203585 

13 2.002 9585802380569723 0.0000000003564001676 0.000000000170565 

14 2.0025510207073500718 0.0000000002991868065 0.000000000143197 

15 2.002222 2224745453235 0.0000000002523231013 0.000000000120776 

16 2.0019531252140263817 0.0000000002140263817 0.000000000102 446 

17 2.0017301039888911831 0.000000000182662 8094 0.000000000087441 

18 2.0015432100334067279 0.0000000001568635180 0.000000000075090 

19 2.0013850416867704310 0.0000000001355238936 0.000000000064880 

20 2.0012500001177668599 0.0000000001177668599 0.000000000056391 

21 2.0011337869509726642 0.0000000001029001018 0.000000000049265 

A x 1011 

45 

37 

31 

25 

21 

18 

15 

13 

11 

09 

SxU 

11 

18 

22 

23 

23 

22 

21 

20 

18 

16 

A x 1011 

22 

18 

15 

13 

11 

09 

08 

07 

06 

05 

SxU 

18 

30 

37 

40 

41 

41 

39 

37 

34 

32 
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Table 2.11: shows the nonrelativistic energy eigenvalues E calculated by the asymp­

totic method for states of angular momentum L up to 14, S is the uncertainty expressed 

in atomic units (e2/av) 

L n E 8x 1016 

8 -2.0078125125702292996 11 

9 -2.006172 849096329752 3 16 

10 -2.005 0000073883758341 18 

11 -2.004132 2371767153281 18 

12 -2.003472 226 797270345 7 16 

13 -2.002 9585835592144831 15 

14 -2.002 551023402 9096757 13 

15 -2.002 222 2246900460238 11 

16 -2.0019531270556670379 10 

17 -2.001730105 5354199837 8 

n E 8x 1017 

9 -2.0061728441745603823 8 

10 -2.005000003675 2444880 12 

11 -2.004132 2343174141204 14 

12 -2.003472 2245541251837 14 

13 -2.0029585817699747581 14 

14 -2.002 5510219544970730 12 

15 -2.002222223502 0388183 11 

16 -2.0019531260697700146 10 

17 -2.001730104 708 628242 2 9 

18 -2.0015432106441745268 8 
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L n E 8x 1018 

9 

L 

10 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

n 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

-2.0050000019346753805 

-2.004132 232 9665563192 

-2.003472 2234883471731 

-2.002958580916 242012 5 

-2.0025510212611234163 

-2.002222 222 9318545171 

-2.001953125 595 605 870 9 

-2.001730104310311145 0 

-2.0015432103065035639 

-2.001385 041920 650 045 0 

E 

-2.004132232 2802270202 

-2.003 472 222 943 200 228 6 

-2.002 958 580 477 370 602 9 

-2.002 551020 903 322 957 3 

-2.0022222226367415704 

-2.0019531253496026708 

-2.0017301041032560302 

-2.0015432101306918405 

-2.001385 041770166 678 6 

-2.001250 000189 764 772 4 

8 

13 

15 

16 

16 

15 

14 

12 

11 

10 

8 x 1019 

11 

18 

22 

23 

23 

22 

21 

20 

18 

16 
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L 

11 

L 

12 

n 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

n 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

E 

-2.003 472 222 647 669 786 64 

-2.002 958 580 238 056 972 34 

-2.002 551020 707 350 07178 

-2.002 222 222 474 545 323 49 

-2.001953125 214 026 38170 

-2.001730103 988 891183 07 

-2.001543 210 033 406 727 88 

-2.001385 041686 770 430 98 

-2.00125000011776685986 

-2.001133 786 950 972 66417 

E 

-2.002 958 580101207 765 823 

-2.002 551020 594 708187 804 

-2.002 222 222 380 947 857 240 

-2.001953125135 545 320 024 

-2.001 730103 922 521924 511 

-2.001543 209 976 832 911265 

-2.001385 041638190 382 080 

-2.001250 000 075 766 338 519 

-2.001133 786 914 431440 619 

-2.001033 057 909 639 997 850 

8 x 1020 

18 

30 

37 

40 

41 

41 

39 

37 

34 

32 

8 x 1021 

35 

59 

74 

83 

86 

86 

83 

80 

75 

70 
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L n 

13 14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

-2.002551020 

-2.002 222 222 

-2.001953125 

-2.001 730103 

-2.001543 209 

-2.001385041 

-2.001250000 

-2.001133786 

-2.001033057 

-2.000945179 

L n 

14 15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

-2.002 222 222 

-2.001953125 

-2.001730103 

-2.001543209 

-2.001385041 

-2.001250000 

-2.001133 786 

-2.001033057 

-2.000945179 

-2.000868055 

E 8x 1021 

5273477792229 

324 7215580267 

0882318559071 

882396195 792 2 

942 5499700924 

608695107822 7 

0502248982304 

8921797581709 

8901450575266 

6185842032802 

7 

13 

16 

19 

20 

20 

20 

19 

18 

17 

E 8x 1022 

2897939535366 20 

0587219075487 33 

8572888278194 43 

9210426752949 49 

5901517072309 52 

0341385633900 53 

8781442522437 53 

8778326237321 52 

6077286198077 50 

5765920206874 48 
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Table 2.12: Breakdown of contributions to the nonrelativistic energy for the n=10, 

L—% state of helium. 

Quantity value in (a.u) 

- Z 2 / 2 -2.000000000000000000 

- l / 2 n 2 0.0050000000000000000 

c4(x-4)/2 -0.0000000019349845201 

C6(x-6)/2 0.0000000000003090600 

c7(x-7)/2 0.0000000000000081755 

c8(x~8)/2 -0.0000000000000046695 

c9(x~9)/2 -0.0000000000000000111 

cio<ar10)/2 0.000000000000000016 5 

Second order -0.000 000 000 000 003 4318 

Uncertainty 0.000 000 000 000 000 008 25 

Total -2.0050000019346753805 
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Chapter 3 

Mass Polarization Corrections 

In this chapter we will calculate the mass polarization term that we postponed in 

chapter (2). As for the total energy itself, an asymptotic expansion method can be 

developed to obtain the mass polarization correction. The key point is to introduce 

Jacobi coordinates to treat the motion of the nucleus in the center-of-mass frame. 

The center-of-mass and relative coordinates transformation equation (2.4) generates a 

mass polarization term — J/V1.V2 where y = p/M (p is the reduced mass, and M is the 

mass of the nucleus). For the asymptotic expansion method we use Jacobi coordinates 

instead of the center-of-mass and relative coordinates, the Jacobi coordinates give us 

advantages which eliminate the mass polarization term in the main Hamiltonian, but 

with an extra term in the potential V(r, x). 

Even though and extra term has been added in the potential, V(r, x) still has the 

simple multipole expansion form (see equation 3.10) 

3.1 The Jacobi coordinates 

Jacobi coordinates can be defined as 

r = (Ri- Ro)/a^ (3.1) 
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3. MASS POLARIZATION CORRECTIONS 

x = A[R2 -RQ- y(Ri - Ro)}/^ 

X = A[R0 + y(Ri + R2- Ro)]/a„ 

where A = l / (1 — y2). The derivatives transform according to 

V*x = a'^Vr - AyVx + AyVx) 

Vfl2 = a -^AV* + AyVx) 

Viio = -%HVr + AVX - AyVx) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3-6) 

X is the ignorable coordinate in the center-of-mass frame, the Hamiltonian becomes 

H = 
r 2 r + A ' *r ,2 Z ~ l 

—v 
2 x 

x 
+ V(r, x) 

In terms of a single electron Hamiltonian 

H = hr + Ahx + V(r, x) 

where 

V(r,x) = A 
Z-l 

x \x + Ayr 

which has the following multipole expansion 

• + 
|x — A(l — y)r\ 

1 °° ; 

V(r,x)^-YdCl(^-)pl(f.x) 

with 

Ci = 
[(1 - y)1 - Z(-y)1] 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.H) ( l _ y 2 ) m 

Each coefficient in equation (2.168) is multiplied by combinations of Ci factors accord­

ing to the combinations of multipolarities that contribute. For example, the 2^-pole 

polarizability a/ is quadratic in Ci and so it is replaced by Cfai. The same is true for 

Pi and 7J. The Cj can be expanded according to 

Ci 

C2 

c3 

c4 

l + (Z-l)y + 2y2 + 

l-2y + (A-Z)y2 + 

l-3y + 7y2 + + ... 

1 - Ay + l ly 2 + + . . . (3.12) 
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The leading term —ai(x_ 4)/2 in equation 2.168 becomes —aiC2(x_ 4) /2. The lead­

ing mass polarization terms can be calculated by finding the differences between the 

infinite mass and finite mass Hamiltonian, for the above term this will be — oti(C2 — 

l)(x~4)/2. 

3.2 The Mass Polarization Energy Coefficients 

Adding the mass polarization corrections to the energy in equation (2.169) the total 

nonrelativistic energy becomes 

EM = £oo + yeM
] + y2eM

) + yh™ + y*e$ (3.13) 

The expansion in (3.12) causes the first and the second-order contributions to the cor­

responding mass polarization energy coefficients eM' and eM' to be separated (second 

term corresponds to sM', and third term corresponds to eM'). 

There is another contribution which comes from expanding A (A = 1/(1 — y2)) in 

the screened hydrogenic energies 

£0 + e0 = - f _ ^ i l ! ( l + y
2
 + y4 + ..0 (3.14) 

Collecting the preceding contributions, and defining 

Zi = 4 + ( Z - l ) 2 

Zn = 2[7 + 3Z(Z-2)\ 

Zv = 13+ Z(Z-7) 

Z12 = - l l + ( Z - 6 ) 2 (3.15) 

for the y2 coefficients of C2, C\, C2C2, and C2C2, respectively, the final results are 
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(i) = _ ( ^ _ i ) _ a i ( : r - 4 ) + [2a2 + 6 ( Z - l ) ^ ] ( x - 6 ) 
-M 

+ l(Z-2)n + f(Z-l)hi](x-7) 

+ {3a3-30P2 + 2(Z-l)(aipi-e) 

72(Z - 1)71 1 + 
L(L + 1) 

10 }<^8) 

+ [ - ( Z - 2 ) C + - ( Z - 6 ) K - 3 A 

- f ( Z - l ) 7 2 - ^ ( Z - l A ] ( x - 9 ) 

+ [4a4 - 84/33 + 2(Z - 1)(0 - 28«i7i - 10/?2) 

- ^(Z-2)p+(Z-3)(-<r + aiP2 + a2Pi) 

+ 72072 1 + 
L(L +1) 

2 1 ) + 1 4 4 0 ( Z - l M 1 ( l + ^ ± H ) ] ( x - 1 0 ) 

+ 4(Z - 1 ) 4 ^ + 2[Z - 3 

- 1 2 ( Z - l ) ^ / a 2 ] e 2 ^ ) + 0((x-11)) (3.16) 

$ = - ^ ( Z - l ) 2 n - 2 - i z i a i ( x - 4 ) + [ (Z-6)a 2 

+ 3Zi^i](x-b) + iz^+|(Z-l)Zl7i (x-7 ) 

+ {-23a3/2 - 15(Z - 6)/?2 + ^Zn(aipi - e) 

- 36Z17i(l + ^ f ^ ) } ( x - 8 ) 

+ {-Z„< - 3(Z - 4)«/2 - | ( Z - 8)A - y (Z - 1)(Z - 6)72 

- ^ ( Z - l)Z151}(x-9) + {-1904 + 322^ 

+ ±Zn(9 - 28ai7i - 10ft2) - ^[25 + 3Z(Z - 5)]p 

+ •zZi2(-o + aiP2 + a2Pi) 

- 360(Z- 6)72 ( l + ^ f ^ ) 

+ 7 2 Z A ( l + ^ ± l ) ) } ( x - > 

+ Z i i4y } + (Z12 - 6Z11/31/a2)e2;0
2) + 0((x" n ) ) (3-17) 
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e g = -4(Z - l)ax(x-4) + 0((x"6)) (3.18) 

and 

e<£ = -\(Z-l)in-2 + 0((x-*)) (3.19) 

Tables (3.1) and (3.2) show a comparison between the asymptotic and variational 

methods for the first and second-order mass polarization coefficients. From the two 

tables, the comparison at 5G state shows that the asymptotic results are sufficient to 

replace the variational calculations, because the uncertainty in the asymptotic expan­

sion result is in the range of the difference between the two calculations. As the angular 

momentum L goes higher we can see that the differences between the variational and 

asymptotic methods can be neglected. 
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3. MASS POLARIZATION CORRECTIONS 

Table 3.1: 

(equation 3 

State 

4F 

5F 

6F 

7F 

8F 

9F 

10F 

5G 

6G 

7G 

8G 

9G 

10G 

6H 

7H 

8H 

9H 

10H 

71 

81 

91 

101 

8K 

9K 

10K 

Comparison between variational (calculated by Drake) and asymptotic 

.16) for the first-order mass polarization coefficient, units in 10_3a.u 

Variational 

-0.0098469545(2) 

-0.0055553923(6) 

-0.003375358(7) 

-0.00218629(5) 

-0.00149097(1) 

-0.001059809(2) 

-0.000779184(9) 

-0.00140420744(5) 

-0.000898352(1) 

-0.000598201(1) 

-0.00041484720(5) 

-0.0002981435(1) 

-0.000220883(3) 

-0.0002903469081(3) 

-0.00020109752(3) 

-0.0001426489(4) 

-0.00010400205(2) 

-0.00007780645(4) 

-0.000077775523(4) 

-0.00005693591(2) 

-0.00004231360(6) 

-0.0000320589(3) 

-0.000025111331651(1) 

-0.0000191516196(3) 

-0.0000147514111(7) 

Asymptotic 

-0.0101(4) 

-0.0057(3) 

-0.0035(2) 

-0.0023(1) 

-0.00155(9) 

-0.00110(7) 

-0.00081(5) 

-0.0014037(9) 

-0.000898(1) 

-0.0005978(8) 

-0.0004146(6) 

-0.0002979(5) 

-0.0002207(4) 

-0.000290348(3) 

-0.000201098(3) 

-0.000142650(3) 

-0.000104003(3) 

-0.000077807(2) 

-0.00007777554(3) 

-0.00005693594(5) 

-0.00004231367(5) 

-0.00003205900(5) 

-0.000025111332(1) 

-0.000019151621(2) 

-0.000014751390(2) 

Diferences 

0.0003(4) 

0.002(3) 

0.0001(2) 

0.0001(1) 

0.00006(9) 

0.00004(7) 

0.00003(5) 

-0.0000005(9) 

-0.000000(1) 

-0.0000004(8) 

-0.0000002(6) 

-0.0000002(5) 

-0.0000002(4) 

0.000000001(2) 

0.000000001(3) 

0.000000001(3) 

0.000000001(3) 

0.000000001(2) 

0.00000000002(3) 

0.00000000003(5) 

0.00000000006(8) 

0.0000000000(3) 

0.000000000001(1) 

0.000000000002(2) 

-0.000000000021(7) 



3. MASS POLARIZATION CORRECTIONS 

Table 3.2: Comparison between variational (calculated by Drake) and asymptotic 

(equation 3.17) for the second-order mass polarization coefficient, units in 10~3a.u 

State 

4F 

5F 

6f 

7F 

8f 

9F 

lOf 

5G 

6G 

7G 

8G 

9G 

10G 

6H 

7H 

8H 

9H 

10H 

71 

81 

91 

101 

8K 

9K 

10K 

Variational 

-31.276 164(4) 

-20.015 030(7) 

-13.898 10(3) 

-10.209 9(4) 

-7.816 5(3) 

-6.175 61(1) 

-5.000 55(3) 

-20.003 562 72(7) 

-13.891 18(1) 

-10.205 61(7) 

-7.813 566(3) 

-6.173 586(4) 

-5.000 55(3) 

-13.889 619 02(4) 

-10.204 589(2) 

-7.812 857(6) 

-6.173 103(3) 

-5.000 081(1) 

-10.204 276 76(2) 

-7.812 642 91(4) 

-6.172 945 9(2) 

-5.000 081(1) 

-7.812 563 02(1) 

-6.172 887 59(1) 

-5.000 036 88(5) 

Asymptotic 

-31.276 1(1) 

-20.014 96(9) 

-13.898 05(6) 

10.210 04(4) 

-7.816 57(3) 

-6.175 74(2) 

-5.002 14(2) 

-20.003 568(3) 

-13.891 183(3) 

-10.205 613(2) 

-7.813 564(2) 

-6.173 605(1) 

-5.000 568(1) 

-13.889 619 36(7) 

-10.204 588 4998) 

-7.812 859 93(7) 

-6.173 102 12(6) 

-5.000 196 56(5) 

-10.204 276 794(4) 

-7.812 642 992(5) 

-6.172 945 836(5) 

-5.000 196 56(5) 

-7.812 563 0145(4) 

-6.172 887 5893(5) 

-5.000 037 0503(5) 

Diferences 

-0.000 0(1) 

-0.000 07(9) 

-0.000 05(7) 

0.000 1(4) 

0.000 1(3) 

0.000 13(3) 

0.000 06(2) 

0.000 005(3) 

0.00 00(1) 

0.000 00(7) 

-0.000 002(3) 

0.000 019(5) 

0.000 02(3) 

0.000 000 34(8) 

-0.000 000(2) 

0.000 003(6) 

-0.000 000(3) 

0.000 003 1(2) 

0.000 000 04(2) 

0.000 000 08(4) 

-0.000 000 1(2) 

-0.000 000(1) 

-0.000 000 01(1) 

-0.000 000 00(1) 

0.000 000 17(5) 
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Chapter 4 

Relativistic and QED Corrections 

In this chapter we need to find nonrelativistic operators whose expectation values 

with respect to nonrelativistic solutions to the Schrodinger equation are equal to the 

corresponding relativistic operators from the Dirac equation evaluated with respect 

to relativistic wave functions. The matrix elements will be calculated with respect to 

V>NR satisfying the nonrelativistic Schrodinger equation. All the relativistic corrections 

are going to be separated into terms of lowest order a2, relativistic reduced-mass 

corrections of order ya2, (y = p/M) and anomalous magnetic moment corrections of 

order a 3 [2, 26, 32]. This corresponds to the expansion 

E = ENR + a2E™ + a*E™ + a2±E™ + a?E™ (4.1) 

4.1 Lowest-Order Relativistic Corrections 

The lowest order 0(a2) relativistic correction is 

£ r i 0 ) = <V>NR|tfre#NR) (4.2) 

^NR is the nonrelativistic two-electron wave function, 
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4. RELATIVISTIC AND QED CORRECTIONS 

where Hie\ — £*=i E%, a n ^ {Ei} are Breit operators 

a 

ft - a 
B 2 - -

* i = - y ( V 4 + V4) 

— V x • V2 + ^ - r r 2 ( r i2 • Vi)V2 
T\2 12 

(4.3) 

(4.4) 

B3 = 
2 

7^3- \(ri ~ r!) x Pi • (al + 2sa) + (rl - rj) x P2 • («2 + 2sl)l 
2 r 3

2 . 

Za 2 
1 .. ^ ^ 1 ^ * _ 

-^ri x Pi • si + -^r2 x P2 • S2 (4.5) 

P 4 = -7ra2Z[5(rD + 5(r2)] (4.6) 

B 5 a 
1 3 

— Si • S2 g-(ii • n2)(s2 • H2) 
12 12 

(4.7) 

o 

#6 = —£KOL28(ri2)§i • s2 (4.8) 

Here Bi is the relativistic correction due to the variation of mass with velocity. B2 

corresponds to the classical relativistic orbit-orbit interaction between the electrons. 

#3 describes the spin-other-orbit interaction and the spin-orbit interaction between 

the two electrons. B± represents the contact terms. B$ represents the interaction 

between the spin magnetic diple moments of the two electrons. #6 represents the spin-

spin contact term which accounts for the interaction of the spin magnetic moments 

of two electrons. It only affects singlet states since (8(ri2)) — 0 for triplet states. 

The one-electron parts B\, B4, and the spin-orbit interaction come directly from a 

nonrelativistic reduction of the Dirac equation, and the remaining two-electron terms 

from the relativistic Breit operator (see Araki) [48]. 

4.2 Relativistic Reduced Mass and Recoil Corrections 

The relativistic reduced mass correction comes from the reduced mass scaling of the 

above Bi terms upon the replacement r —> ™-r together with additional terms A2 and 
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4. RELATIVISTIC AND QED CORRECTIONS 

A3, generated by the transformation of the Breit interaction to center-of-mass and 

relative coordinates [2]. There are three sources of relativistic terms of order a2p/M. 

1. Reduced mass scaling corretions to the Breit operators Bi to P>6 

2. New operators genrated by transformation the Breit operators to center-of-mass 

plus relative coordinates (same as in chapter 2 section 1) 

3. relativistic recoil corrections due to changes in the wave function ?/>NR due to the 

- j ^ V i . V 2 term 

{ERR)M = £<*«"> 

in units of f-, where 

Bi 
M 

i = l 

M 1 

B2 = — 2—B 2 + A2 

B3 = -2-r-,B3e + A3 

B, M 

M 

-2^-Bi, i = 4,5,6 
M 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

7 = 1 V J 

fj • (Vi + V2)Vj 

+ 2 

3 = 1 K 3 

5^E{i(v I + v2).v,} 
. 7 = 1 v J ' 

} 

A 3 = Z a 2J^_ 
M 

1 .. * .. 1 ^ ^ J 
-3-7*1 x P2 • si + -^r2 x Pi • s2 

(4.14) 

(4.15) 

The recoil correction arises from second-order cross terms between Bi and the mass 

polarization operator — -^V • V denoted by 

(ERR)X = £(sf) 
i = l 

where 

«?>--*& £ 
,.(»> 7„l»/,(fc)\/„/,(*) I ,.("h 

x , _ o M v - ( C R I V I • V 2 1 < R ) ( C R I ^ I C R ) 

k^n 
En - Ek 

(4.16) 

(4.17) 
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4. RELATIVISTIC AND QED CORRECTIONS 

4.3 Spin-Dependent Anomalous Magnetic Moment Cor­

rections 

The spin-dependent parts of the anomalous magnetic moment correction to Bi can be 

included by replacing each spin factor Si by \giSi, where gi ~ 2(1 -I- ^). The result is 

expressed as 

<£anom) = (B?) + (BA) + (BA) (4 .18) 

where 

BA = | ^ 3 (4.19) 

BA = ^ B 5 (4.20) 

,A a 

B£ = -B6 (4.21) 
TT 

4.4 The Singlet-triplet Mixing Term 

EST is due to the singlet-triplet mixing caused by the spin-dependent Breit operators, 

the anomalous magnetic moment, and finite mass corrections providing off-diagonal 

singlet-triplet coupling terms. It is the difference between the energies of state n 1Lj 

before diagonalization and after diagonalization of the Hamiltonian matrix in the two-

dimensional basis sets of LS-coupled states with the same n, L, and J. 

4.5 Quantum Electrodynamics Corrections 

To order a3 , the total QED energy shift can be written as the sum of an electron-

nucleus correction and an electron-electron correction as derived by Kabir and Salpeter 

so that 

E$$, = EL,1 + EL,2 (4.22) 
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4. RELATIVISTIC AND QED CORRECTIONS 

4.5.1 Electron-Nucleus QED Correct ion 

The general form of the electron-nucleus part denoted as EL,I for helium is simply 

obtained from the corresponding hydrogenic case by inserting the correct electron 

density at the nucleus in place of the hydrogenic matrix element (8(r)) = ( ^ 3 , , and 

the correct two-electron value of the Bethe logarithm. The lowest-order QED shift is 

EL,i = ^ - p W r i ) + S(fi)) [ln(Za)"2 + 19/30 - P(lsnl)] , (4.23) 

where P(nls) is the two-electron Bethe logarithm term defined by 

Ei#o KVClPl +V2\^)\2(EJ - J%)ln|Ej - Eo| 

£ * o l<AlPi +P2\^)\2(Ei - Eo) 

4.5.2 Electron-Electron QED Correct ion 

Araki and Sucher [48] derived the electron-electron QED shift as 

^ ( 1 S n Z ) = ^ , , . ( 0 ) , - . ~ . . ^ . . . w - — ( 4 - 2 4 ) 

•^L,2 = <* 

where 

14, , , 164 
T ln(a) + l 5 " <*(ri2)> - y " 3Q, (4.25) 

Q = -L Um<rr2
3(e) + 47r(7 + ln(e))*(r12)> (4.26) 

7 is Euler's constant, and e is the radius of a sphere centered about 7*12 that is excluded 

from the range of integration. 

4.5.3 Correction Due to Fini te Nuclear Size 

The lowest-order correction due to finite nuclear size is 

EDUC =2jf{^) <*Vi) + 53(r2)), (4.27) 

where R is the root-mean-square (rms) radius of the nuclear charge distribution and 

OQ is the Bohr radius. 
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4. RELATIVISTIC AND QED CORRECTIONS 

4.6 Total Energy 

Accounting for the relativistic corrections and QED corrections, the total energy [22, 

23, 26] for state 2S+lLj may be expressed as 

Etot = ENR + EM
) + E{2) + EREL + (ERR)M + (ERR)X + 

EANOM + EL,I + EL,2 + Exu + EST, (4.28) 

where 

E (i) 
M 

MJi ) 
'M£M (4.29) 

E (2)_ f M 2 ^ ) 
M 

The asymptotic form of Ere\ is 

£rei ~ hi(nL) + Bi(arel) + B^fa) + (B2) 

after lengthy derivations given by Drake and Yan [26] with the result 

hi(nL) 
a2(Z-l)4 

2n3 4n2 L + \ 

ABi(arel) = -(Zay[ai,rei{x-*) + (a2,rel - 6pi,rel)(x~b) + . . . ] , 

AB^i) = I a V { 3 ( ^ ) <x-*) - (Z - l)(x-*) 

(2L + 3)\[ \ n J V <!&zmfl(*=iY(n+*£g 
+ (z-m^)^7^-H»-

(B2) = =5 I <*-> + ^%r^<*-5> - i 
Z2 

2L + 

51 27(Z - 1 ) 3L(L + 1) 
4 2Z + 4 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

<*-6)J , 
(4.35) 

_ 14 ,_ _ 879 . _ J o _ 2063 
al,rel — 3~z*i a2,rel — 40Z6 ' Pl,rel — 288Ze ' 

The asymptotic form of .Eanom is 

£ a 27e{Z - 2 + (2 + 7e)St(J) - y[Z - 2 + 4SL(J)]}Tn L(J) (4.36) 
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4. RELATIVISTIC AND QED CORRECTIONS 

where 

SL(J) 

= ± 

l,forJ = L 

1 
2J + 1 

for J = L ± 1 (4.37) 

and 

or TnL(L-l) = --(L + l)(x-i) 

a ' TnL(L) = -^(x-*) (4.38) 

a TnL(L + 1) = y L(x"3) 

E'st is the singlet-triplet mixing term obtained by diagonalizing all other contributions 

in the n ZLL, n 1LL two-dimensional subset of states. The asymptotic form of the 

off-diagonal matrix element of .Btot is 

(n 3LL | Btot | n XLL) ~ (Z + 1 - 2y + 2 7 eZ - 27eyZ)[L(L + l)]1 / 2Tn L(J) (4.39) 

and the diagonal matrix element is 

2/c = 1 + — ) 
2L-1) 

1/2 

7r(^(^12))singlet (4.40) 

where 

cNR I /-IN ft 

T<*(ri2)> = 2 y liJi.^ZJpliZniCr.Z-lJlVdr 

2Z3(n + 1)! 
Z - 1 ] 2 X + 4 

(2L + l ) ! ( n - L - l ) ! [ nZ 

(ERR)M asymptotically goes to 

(ERR)M~ - 3y[hi(nL) + ABi(arei) + ABi(<f>i)]+y 

ZL + 1 
Z-l 

0-2(Z-l)/Z 

235 

(4.41) 

Zh2(nL) + l 6 ^ 2 ^ [ l + (Z - 2)/6](x-4) 

+ y« 
31 1447 

where 

4 Z > > + 32Z^~b) 

a2(Z-l)3 

2y{(b2) + [Z - 3 + 1 + 2SL(J)]TnL(J)8s,i\AA2) 

h2(nL) — 
nd n 2(L + \) 

(4.43) 
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4. RELATIVISTIC AND QED CORRECTIONS 

(ERR)X ~ ya 
rrl.r, ,x 20 25 
Z2(Z - l ) a l i r d - —2 + (x 4) - yh2(nL) 

9Z2 16Z2. 

+ 2y(Z - l )A5 i (^ i ) - (4 ± l)ya2(aT6) - 2yTnL(J) 

+ y' 12 V 
a Z ( Z - 1) 

71 
\ +4hi(nL) + -y 

6y 

aZ(Z - 1) n2 

n 

Enuc ~ o(-^/°o) 2 Z 2 ^ ; + 1 6 Z 4 ^ ' 

(4.44) 

(4.45) 

Where i? is the rms nuclear radius 

EL,\ ~ *£«*-»*-»<,->+ ^Z-V«»x 
19 

[ln(Za)^ + - - / 3 i s -
Z - l 

n"3AiL - 0.31626Z-6(x~4) 

+2.296vraZ + 0(aiZi) + yCM]} - AEL(ls) (4.46) 

Where the /3nL are hydrogen-atom Bethe logarithms, the finite mass corrections de­

noted by yCM. and AEL(1S) is the He+(ls) Lamb shift. 

Finally the electron-electron QED energy shift 

EL,2(nLS) = a 3 ( y l n a + ^ ) < * ( n 2 ) ) - y a 3 Q 

Where 

Q=te«x ) + *z <x )) 

(4.47) 

(4.48) 

and (8(ri2)) can be neglected, since it decreases exponentially with L. 
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Chapter 5 

Results and Conclusion 

In this thesis we have studied the comparison between the predictions of the asymptotic 

expansion method and the results of high precision variational calculations for a range 

of values of nuclear charge. We have found that the asymptotic expansion method 

is not useful for small values of angular momentum L, because of the divergence of 

the series for inverse powers of x beyond l / x 2 j + 2 (see equation 1.1) and because of 

exchange and core penetration effects. Only the first one or two terms can be included 

in the asymptotic series, which is not enough to obtain high precision in comparison 

with other methods such that the variational or configuration interaction (CI) [36] 

methods. Howaver,there is a rapid improvement with increasing angular momentum 

L for the nonrelativistic energies (see below for further discussion). For purposes 

of comparison with experiment, the asymptotic expansions become very accurate for 

L > 7 and it is sufficient to replace the variational calculations (see fig 5.1) for the case 

of helium atom Z = 2, and for lithium ion Li+ the angular momentum L > 8, and 

for all other nuclear charge Z > 4 the asymptotic expansions can replace variational 

calculations if L > 9 (see fig 5.2) . 

Recently G. Lagmago Kamta, B. Piraux, and A. Scrinzi [36] performed what they 

claimed were high precision CI calculations. However, our asymptotic expansions 
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5. RESULTS AND CONCLUSION 

showed that not even the leading diploe correction term proportional to ai(x~4) was 

contained correctly in their calculation. For example, table 2.12 shows a detailed 

breakdown of contributions for n = 15, L = 10. 

We proposed that there is an important class of configurations missing from the CI 

calculations. Subsequent calculations by them verified that this is indeed the case. As 

L increases the uncertainty in our calculations decreases rapidly. For example when 

L = 7 the uncertainty is 15 x 10 - 1 6 a.u and when L = 14 the uncertainty decreases 

by over a million to 40 x 10~22 a.u (see table 2.11). 

We next consider the errors resulting from neglecting exchange and core penetra­

tion, with increasing nuclear charge Z for the nonrelativistic energies. For same values 

of angular momentum L the error increasing with increasing nuclear charge Z (see fig­

ures 5.2), that come from neglecting the exchange corrections and the core penetration 

(see figures 5.9 and 5.15 ). The core penetration correction for n — 8 is 13.69 MHz 

and 0.0433 MHz for L = 3 and L = 4 respectively, which cannot be neglected, but 

for L — 7 this correction becomes 1.8 x 10 - 1 1 MHz which is negligible for experiment 

purposes. The short-range corrections rapidly become insignificant as the angular mo­

mentum increases, although they may not be negligible for lower values of L. For the 

leading relativistic corrections the differences between the asymptotic and variational 

calculations oscillate when Z increases. Although there is oscillation, for practical 

purposes, it is negligible. Computing the energies and properties of Rydberg states for 

heliumlike ions can be done more simply using the asymptotic methods rather than 

employing the more difficult variational calculations. 

5.1 Total Energies 

Tables 5.1 to 5.3 collect together all the finite nuclear mass ( EM', EM') relativistic 

(-EREL)) anomalous magnetic moment (2?ANOM)) singlet-triplet mixing (EST), rela­

tivistic recoil ((ERR)M), (ERR)X), finite nuclear size ( £NUC) , and QED (EL,i, EL,2) 

corrections from chapters 2, 3, and 4 in order to get total energies that can be com­

pared with experiment for the case of helium. Figure 5.1 presents a comparison with 
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5. RESULTS AND CONCLUSION 

the high precision measurement of Lundeen [47]. For the 4-5 transition, the difference 

between theory and experiment is much less than the uncertainty of ±0.5MHz. For 

all the other transitions, the differences are well within the combined theoretical and 

experimental error bars. The result of this thesis allow similar tables to be constructed 

for the heliumlike ions. A general purpose program has been written to produce tables 

of this type for any n, L, and Z. The next two figures show a comparison between 

the asymptotic expansions and variational calculations as a function of Z for the 10K 

state. The quantity plotted is the fractional difference (A-V)/A. It can be seen that 

the differences increase rapidly with Z up to Z = 7, and then start decreasing again. 

To understand this behavior, it is instructive to write equation (2.9) in Z-scaled atomic 

units with distances in units of CLQ/Z and energies in units of Z2e2/ao with the result 

H0(r.x) 

and 

For large Z, the electron-electron interaction represented by V(r, x) becomes negligible 

compared to electron-nucleus interaction, and so the difference ultimately decrease 

as 1/Z. For small Z the polarization model gets worse with increasing Z because 

the expansion parameter is ^ ^ , and this increases with increasing Z. For example, 

<*i(\) scales as (^§-^) • The behavior of the corresponding relativistic corrections as 

a function of Z is shown in figures 5.4 to 5.7, These similarly show relatively large 

deviations that fluctuate in sign with increasing Z but that ultimately tend to zero 

for Z > 10. 

For the singlet-triplet splittings in the nonrelativistic energies, figure 5.8 shows that 

the splittings go to zero exponentially fast with increasing L, verifying that electron 

exchange effects become negligible for large L. Figure 5.9 shows one example of the 

behavior of the nonrelativistic singlet-triplet splittings as a function of Z for the 10H 

state. As expected, they increase linearly with Z, while the total energies increase in 

proportion to Z2 . The final singlet-triplet splittings are the result of diagonolizing the 

2x2 matrix, including also the off-diagonal spin-orbit and spin-other-orbit interactions 

! ^ 2 1 
= — V 

2 r r 

V(r,x) = ± 

_V-
2 x 

1 

.lr — x\ 

\{Z-1)] 

z 

1' 
X 

1 
X 
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5. RESULTS AND CONCLUSION 

given by equation (4.39). Figure 5.10 compares the variational and asymptotic results 

for the final diagonolized energies. There are similar oscillations for small Z, with the 

differences ultimately decreasing for large Z. Figures 5.11 to 5.14 present similar com­

parisons for the first and second-order mass polarizations, Eh^ and E2^, the relativistic 

recoil correction .ERRX and the electron-nucleus QED correction J£LI- They all show 

a similar pattern of oscillations for small Z with differences alternately decreasing for 

large Z. Finally, figure 5.15 shows the calculated energy shift due to core penetration 

for the 8H state as a function of Z as estimated from equation (2.18). The first entry 

0.000071 MHz agrees with the value for n=8, L=5 in table 2.1. The extended results 

in figure 5.15 show that this effect, which is not included in the asymptotic expansion, 

increases linearly with Z for large Z, and so L must be correspondingly bigger for this 

effect to be negligible. 

Thus, by including all of these effects, we can get accurate total energies for all n 

and L, provided that L > 8 for Z = 3 and L > 9 for Z > 4. 

Table 5.1: Contributions to the energies of 4He, relative to He+(ls) in MHz (9L state) 

Term 

AEDT 

AEM(1) 

AEM(2) 

AETei 

^ • " a n o m 

AEst 

( A £ R R ) M 

(A£ R R )x 

AEnuc 

AELA 

AEh,2 

Total 

9 % 

-30.712 304 

-0.008414 

-0.763037 

-8.235 266(9) 

0.000000 

4.90683(2) 

-0.005 219 

0.004225 

-0.000001 

-0.000722(3) 

-0.002128 

-34.81603(2) 

9 3 L 7 

-30.712 304 

-0.008414 

-0.763037 

-6.232928(9) 

0.000547 

0.000000 

-0.006252 

0.004709 

-0.000001 

-0.000722(3) 

-0.002128 

-37.72053(1) 

9 3 L 8 

-30.172304 

-0.008414 

-0.763037 

-8.431574(9) 

-0.000911 

-4.90683(2) 

-0.005219 

0.004279 

-0.000001 

-0.000722(3) 

-0.002128 

-44.82687(2) 

9 3 L 9 

30.712 304 

-0.008414 

-0.763 037 

-9.640416(9) 

0.000384 

0.000000 

-0.004403 

0.003795 

-0.000 001 

-0.000722(3) 

-0.002128 

-41.12725(1) 
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Table 5.2: Contributions to the energies of 4He, relative to He+(ls) in MHz (10L state) 

Term 

AEnT 

AEM(1) 

AEM(2) 

AETei 

^ ^ a n o m 

AEst 

( A £ R R ) M 

( A £ R R ) X 

A^nuc 

AEL,i 

AEL,2 

Total 

9 ^ 8 

-24.178633 

-0.006623 

-0.618060 

-7.462659(8) 

0.000000 

3.57708(1) 

-0.004 271 

0.003607 

0.000000 

-0.000557(3) 

-0.001551 

-28.69167(2) 

9 3 L 7 

-24.178633 

-0.006623 

-0.618060 

-6.002954(8) 

0.000398 

0.000000 

-0.005025 

0.003960 

0.000000 

-0.000557(3) 

-0.001551 

-30.809045(9) 

9 3 L 8 

-24.178633 

-0.006623 

-0.618060 

-7.605 767(8) 

0.000664 

-3.57708(1) 

-0.004271 

0.003646 

0.000000 

-0.000557(3) 

-0.001551 

-35.98956(2) 

9 3 L 9 

-24.178633 

-0.006623 

-0.618060 

-8.487013(8) 

0.000 280 

0.000000 

-0.003677 

0.003293 

0.000000 

-0.000557(3) 

-0.001551 

-33.292 541(9) 
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Table 5.3: Contributions to the energies of 4He, relative to He+(ls) in MHz (10M 

state) [26] 

Term 

AEni 

AEU(1) 

AEM(2) 

A.Erel 

Z^-t^anom 

AEst 

( A £ R R ) M 

( A £ R R ) X 

A-Enuc 

A£ L , i 

AEh,2 

Total 

9 ^ 8 

-12.727808 

-0.003488 

-0.618059 

-5.297028(3) 

0.000000 

2.868615(6) 

-0.003380 

0.002715 

0.000000 

-0.000 285(2) 

-0.001110 

-15.779827(7) 

9 3 L 7 

-12.727808 

-0.003488 

-0.618059 

-4.152161(3) 

0.000280 

0.000000 

-0.003975 

0.002995 

0.000000 

-0.000285(2) 

-0.001110 

-17.503610(3) 

9 3 L 8 

-12.727808 

-0.003488 

-0.618059 

-5.399463(3) 

0.000475 

-2.868615(6) 

-0.003380 

0.002 743 

0.000000 

-0.000285(2) 

-0.001110 

-21.619941(7) 

932,9 

-12.727808 

-0.003488 

-0.618059 

-6.131145(3) 

0.000204 

0.000000 

-0.002 898 

0.002462 

0.000000 

-0.000 285(2) 

-0.001110 

-19.482127(3) 
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5. RESULTS AND CONCLUSION 

L — V Tboorv Ex|x«BM>nt Exp-Th«wy 

4 — 5 490 9506 ± 521 491 0052 ± 0005 0.0480x 521 

5— 6 J57 0499 ± 0059 157 0524 ± 0002 0 0025 ± 0059 

6—7 608148 ±00014 608159 ±0002 00011 ±0002 

7—8 2717502 271747±O005 -00003 ±0005 

Figure 5.1: The theoretical energy differences in MHz in the n=10 manifold, with Z=2 
72 

by Ref [28], are compared with the accurate measurements of Ref [47] 
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Asymptotic Unce 
-2.00500000738837581 1.90E-15 
-4.52000002333936401 3.30E-14 
-8.04500003737463989 1.10E-13 
-12.58000004837439498 2.10E-13 
-18.12500005694804600 3.10E-13 
-24.68000006373520308 4.10E-13 
-32.24500006921029243 5.0OE-13 
-40.82000007370662461 5.90E-13 
-50.40500007745851279 6.70E-13 
-61.00000008063323079 7.40E-13 
-72.60500008335250072 8 0OE-13 
-85.22000008570661993 8.60E-13 
-98.84500008776380035 9.20E-13 
-113.48000008957643595 9.60E-13 
-129.12500009118538556 l.OOE-12 
-145.78000009262294977 l.OOE-12 
-163.44500009391498714 1.10E-12 

Variational z 
-2.005000007388370 2 3 
-4.52000002333936743 3 7 
-8.04500003737465520 4 1 
-12.58000004837442925 5 2 
-18.12500005694810280 6 3 
-24.68000006373528346 7 3 
-32.24500006921039599 8 3 
-40.82000007370675022 9 3 
-50.40500007745865904 10 2 
-61.00000008063339616 11 2 
-72.60500008335268374 12 2 
-85.22000008570681922 13 2 
-98.84500008776401463 14 2 
-113.48000008957666406 15 2 
-129.12500009118562576 16 1 
-145.78000009262320208 17 1 
-163.44500009391525034 18 1 

Nonrelativistic Energy (10K) 

Ratio 
23E-17 
57E-16 
.90E-15 
.72E-15 
.13E-15 
.26E-15 
.21E-15 
.08E-15 
.90E-15 
71E-15 
.52E-15 
.34E-15 
.17E-15 
01E-15 
86E-15 
.73E-15 
.61E-15 

Uncer/A 
-9.48E-16 
-7.30E-15 
-1.37E-14 
-1.67E-14 
-1.71E-14 
-1.66E-14 
-1.55E-14 
-1.45E-14 
-1.33E-14 
-1.21E-14 
-1.10E-14 
-1.01E-14 
-9.31 E-15 
-8.46E-15 
-7.74E-15 
-6.86E-15 
-6.73E-15 

Figure 5.2: Comparison between variational and asymptotic calculations for AZ?nr for 

the 10K state for different values of the nuclear charge Z. The Ratio is defined by R= 

(A-V)/A. 
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AsvmDtotic 
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Figure 5.3: Comparison between variational and asymptotic calculations for Ai?nr 

(10K state) without the trivial part (the n dependent term) 
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Asvmototic 
-16.89923924 
-270.79685788 
-1371.58271201 
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-4335.99419919 
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^0677.58780925 
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-169433.71879641 
-248071.45179052 
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Unce Z Ratio 
3.00E-08 2 3.71 E-07 
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4.90E-05 9 -3.71 E-06 
3.50E-05 10 -7.03E-07 
5.80E-05 11 -3.61 E-06 
1.21E-04 12 -3.08E-06 
1.30E-04 14 -2.30E-06 
3.10E-04 15 -2.01 E-06 
4.80E-04 16 -1.77E-06 
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Erel 91 
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Figure 5.4: Comparison between variational and asymptotic calculations for AErei (91 
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state) the Ratio= (A-V)/A for different values of nuclear charge Z 
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AsvmDtotic 
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Figure 5.5: Comparison between variational and asymptotic calculations for AErei 

(9K state) the Ratio= (A-V)/A for different values of nuclear charge Z 
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Asymptotic 
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Figure 5.6: Comparison between variational and asymptotic calculations for AErei 
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Figure 5.7: Comparison between variational and asymptotic calculations for AErei 
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(9K state) the Ratio= (A-V)/A for different values of nuclear charge Z 
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State Energy S-T splitting (X to3) 
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Figure 5.8: Variational energies and singlet-triplet (S-T) splittings for the n = 10 
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states of helium. Units are atomic units. 
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Figure 5.9: nuclear charge Z vs the difference between singlet and triplet energies 
80 (upper), dividing the differences by Z (lower) 



5. RESULTS AND CONCLUSION 

Variational 
4.584763 
48.377698 
202.766372 
574.254742 
1304.458657 
2570.12788 
4583.11764 
7590.42089 
11874.09054 
17751.40906 
25574.62934 
35731.30437 
48643.8891 
64770.21373 
84602.92837 
108670.147990 

500E-05-, 

4 00E-05 

300E-05 

o 200E-O5 

2 100E-0S 

0O0E+O0 
i 

-1 00E-O5 

-2 00E-05 J 

Asymptotic 
4.584728 
48.379558 
202.765997 
574.26009 
1304.473432 
2570.143102 
4583.15578 
7590.434019 
11874.14119 
17751.43078 
25574.65781 
35731.36398 
48643.96412 
64770.25822 
84602.98273 
108670.2065 

z 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

ratio 
-7.68E-06 
3.84E-05 
-1.85E-06 
9.31 E-06 
1.13E-05 
5.92E-06 
8.32E-06 
1.73E-06 
4.27E-06 
1.22E-06 
1.11E-06 
1.67E-06 
1.54E-06 
6.87E-07 
6.43E-07 
5.39E-07 

Est 10K High Z 

••"-• -|4-' 

i_ J 

MM.Mi ...Ml 

?t.j»i>«ljj>li>t..l...,l,.,.».,. 

f§ s 

z 

3 

Figure 5.10: Comparison between variational and asymptotic calculations for AE^ 
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(10K state) the Ratio= (A-V)/A for different values of nuclear charge Z 
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Chapter 6 

Future Work 

The asymptotic methods can be used to calculate the energies of Rydberg states of 

lithium-like ions [34] consisting of a core (a core consisting of a nucleus with two 

electrons in the ground state in spherically symmetric orbits) and Rydberg electron 

(third electron) with high angular momentum. As we did with heliumlike ions, we 

consider the core and Rydberg electron as distinguishable particles. The variational 

calculations give us precise results for the core Li+ . The polarizabihties discussed for 

heliumlike ions can be used for the lithiumlike ions as well. Using the asymptotic tech­

nique to solve a four-body problem is much easier than solving the same system using 

variational calculation. We simplify the four-body problem to a three-body problem 

plus a distinguishable outer electron, thereby making a simple two-body system. The 

three-body problem is already treated by variational calculations with high precision. 

There are no difficulties in solving a two-body problem (hydrogen-like ions). The only 

concern is the polarizabilities of the core due to the Redberg electron. The next step 

would involve increasing the nuclear charge Z from 3 to 18 as we did with heliumlike 

ions and see how the accuracy varies with respect to Z [34]. 
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Chapter 7 

Appendix 

7.1 Appendix I 

There are more than one method for solving the function f(r), where f(r) is a function 

related to V by the implicit definition 

[J,Ho](j>is = V4>is (7.1) 

where 

V = V(r, x) = -J2 (-) Pi(f-x) (7.2) 

(7.3) 

(7.4) 

(7.5) 

it is clear to see that f(r) — g(r)Pi(fx)/x2, otherwise {(f>is | Vf \ (j>is) will vanish 

because of orthogonality, and the commutator equation for f(r) becomes a simple 

differential equation for g(r) 

and 

forZ = : 1 we have 

xtTiKx/ 

2 r 

A 1 - r 

[f,Ho](t>u = I^Pi(r.x)4>i, 
X* 
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7. APPENDIX 

d2g 
dr2 + 2 

\r J dr 
2<7 = 2r 

by using Frobenius method 

r r 
9{T) = ~ZJ~2Z 

Variational method also can be used, starting from the commutator 

[f,Ho](j>is = V4>is 

let the commutator act 

Eof(j>\s - H0f(f>is = V<j>u 

let ipi — f<j>is, then the trial wave function can be defined as 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

substitute equation (7.10) in equation (7.9) and write it in matrix representation 

(Ahi AI,2 ••• Ahj\ 

A2,i A2,2 • • • M,j 

(Ci\ 

c2 

(Bi\ 

B2 

\Ai,i Ai,2 ••• AijJ \CiJ \Bi) 

where Atj = (fc | E0 - H0 | <j>j) , Bi = (fa \ V | <j>is), and fc = ^V^u. For 2 by 2 

matrix and for I — 1 we get 

' 6 - 2 ^ 

and 

which give the following coefficients 

Bi = 

-2 1 

a = 

We can do the same for I = 2,3,... and the general form for fi(r) will be 

Mr) 
ri r /+ i 

zn ~ z(i + i) Pi(f.x)/x 1+1 (7.11) 
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