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Abstract 

This thesis presents a vehicular ad hoc routing protocol that uses link expiration time 

(LET) information in selection of routes. The proposed protocol is named as VARP-LET, 

which uses LET information to increase reliability and stability of the routes. LET 

information is used selectively in the route discovery mechanism to reduce the routing 

control overhead. In addition to LET a Route Break Indicator (RBI) message is 

introduced. RBI is generated when a link breakage is about to occur. A source node on 

receiving the RBI signal preemptively stops sending data packets through a route before 

it breaks. This provision decreases the packet loss. The effectiveness of LET and RBI is 

tested via network simulations with NS-2. These simulations show that VARP-LET 

protocol increases packet delivery ratio by 20.7% in street section mobility model and by 

30% in highway mobility scenario compared to regular AODV protocol. It is also shown 

that the protocol significantly reduces frequent route failure and routing overhead. 
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Chapter 1: Introduction 

Vehicular ad hoc networks (VANETs) is one of the applications of ad hoc networks. 

Modern wireless network technologies integrated with ad hoc networking have made it 

possible to develop a short range communication between vehicle-to-vehicle (V2V) 

communications on the road. Several projects like CAR-2-CAR communication 

consortium [1], CarLink [2] and Fleetnet [3] are aimed at developing an intelligent 

wireless service platform for the vehicle's road safety and for the passenger's comfort 

services. Recently, Dedicated Short Range Communication (DSRC) protocol has been 

proposed for inter-vehicle communication in North America. DSRC is an allocation of 

5.9 GHz licensed band comprising of seven channels for intelligent transportation 

systems (ITS) applications, out of which one is dedicated for the V2V communications. 

Moreover, modern vehicles equipped with navigational devices such as Global 

Positioning System (GPS) which provides the mobility parameters like position, direction 

of motion and speed of the vehicles. The main goal of these projects and standards are to 

develop an ITS for passenger's safety and comfort applications. 

The network architecture [4] proposed for VANETs mainly divided into three categories: 

(1) Fixed cellular gateways or wireless WAN (WWAN) access point where vehicles 

directly communicate with these access points. To install these fixed access points on 

every site of the road is not feasible and are very costly, (2) Hybrid wireless architecture 

uses the WWAN access point only at certain points and in between those access points an 

ad hoc communication is used between vehicles, and (3) The ad hoc V2V 

communications require no fixed access points to communicate. The vehicles equipped 

with wireless network card can spontaneously set up an ad hoc network among the 
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vehicles. In this dissertation we will be focusing on ad hoc V2V communications 

networks also known as VANETs. 

1.1 Motivation 

Ad hoc networks can provide temporary and quick network access economically and 

have applications in military, distributed and collaborative computing, wireless sensor 

networks, and hybrid wireless network architectures [5] and [6]. Recently ad hoc 

networks find its application in vehicular communication system, in which nodes are 

vehicles. In this context, focus of CAR-2-CAR communication consortium [1] is to create 

and develop a European industrial standard for V2V communication system. 

Researchers have categorically defined VANETs as class of mobile ad hoc networks 

(MANETs) [7] and [8]. VANETs, like that of MANETs, have no-centralized mechanism, 

self organized, short radio transmission range and every node acts as a router or relays to 

the next node. Thus, V2V communications or inter-vehicle (IVC) communications is 

possible. Moreover, VANETs has some unique characteristics that distinguish themselves 

from MANETs [4] and [9]: (1) The mobility is highly dynamic, as vehicles move at 

relatively very high speeds, (2) The nodes' mobility is not random where as it is 

predefined and follows a specific path, and (3) The energy constraint is not an issue, 

therefore, an additional hardware such as GPS can be installed in vehicles. GPS can 

provide the mobility parameters like, direction of motion, speed, and location 

information. 

Ad hoc networks still face various challenges [5], such as routing, scalability, multipath, 

multicasting, and energy management. Routing is one of the most challenging tasks in ad 

hoc networks, especially for VANETs, where high relative velocity among vehicles 

changes the network topology frequently. 

There are number of routing protocols proposed for MANETs. These protocols can be 

broadly classified into two groups [5] and [10]: (1) proactive and (2) reactive. Proactive 

routing protocols such as Destination Sequence Distance Vector (DSDV) [11] and 

wireless routing protocol [12], maintain a global view of the network topology by 
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exchanging complete routing tables periodically among the nodes. This periodic updates 

are flooded throughout the network which generates a large number of overhead packets 

in the network and hence consumes a large bandwidth and energy. Therefore, proactive 

routing protocols are unsuitable for MANETs. Reactive routing protocols do not maintain 

a global view of the network topology all the time. These protocols work and obtain a 

path when it is needed. That is why reactive routing protocols are scalable and consume 

less bandwidth than proactive routing protocols. These make reactive routing protocols 

very suitable for MANETs. Two of the popular reactive protocols are Ad hoc On-demand 

Distance Vector (AODV) [13] routing and Dynamic Source Routing (DSR) [14]. 

Routing protocols defined for MANETs cannot be directly applied for VANETs. The 

factors that greatly affect the performance of these protocols are the mobility constraint, 

driver behavior and high mobility in VANETs [9]. And as a result, some of the problems 

associated with the routing that are explained in [9], [15], and [16] are: (1) Link stability 

(link lifetime), (2) Small effective network diameter, i.e., unsuitability of the minimum 

hop metric for route selection, (3) Highly dynamic topology. The link stability or 

reliability greatly depends on how long a route may exist during data transmission time. 

Link lifetime has a great impact on QoS performance of the routing protocol [16], [17], 

and [18]. That is why, routing protocols in VANETs should be capable of selecting routes 

that are long lasting in order to minimize route breakages. Researchers have proposed 

various protocols that select the most stable route under highly dynamic environment. In 

general, some of these protocols are based on flat architecture and some on hierarchical 

architecture. Proactive and reactive protocols are the example of flat routing scheme 

whereas clustering-based routing protocols comes under the category of hierarchical 

routing scheme [19] and [20]. In [20], the authors survey and present a comprehensive 

description and performance evaluation of various clustering based routing protocols. In 

clustering based schemes, a group of adjacent nodes, according to some rules, form a 

cluster and the network is then composed of various clusters. Each cluster is composed of 

one cluster head and a number of ordinary nodes. The cluster head forwards a route 

request (RR) packet on behalf of ordinary nodes from one cluster to another through a 

node called gateway node. The routing protocols proposed in [21] and [22] are based on 
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clustering scheme, these protocols are capable of selecting a stable cluster head and a 

stable gateway node. In some clustering schemes nodes are required to exchange HELLO 

messages in order to get a global view of the network and to determine a stable cluster 

head and a stable gateway node. This periodic exchange of the HELLO messages will 

generate extra overhead in the network. 

In flat network architecture, the routing protocol selects intermediate nodes to form a 

route. Selection of stable routes is important under mobility environment and some of the 

stability based route selection techniques are explained in [17], [23], and [24]. The link 

stability in these protocols relate directly with the link lifetime between the nodes. In 

general, if the path duration is longer the performance of the protocol will be better in 

terms of throughput and overhead. The routing protocols described in [17] and [24] 

predict the link lifetime based on some probabilistic approaches. Probabilistic approaches 

need to estimate the current and future positions of the nodes in order to estimate the link 

lifetime which is computationally complex and require high degree of accuracy. The 

protocols presented in [21] and [23] determine the link lifetime using a navigational 

system, like GPS, while selecting a stable route. 

Using minimum hop metric causes problems in MANETs [15]. Reactive routing 

protocols like AODV and DSR use minimum hop metric for route selection this is why 

they do not perform well in MANETs. A new metric that captures the effect of mobility 

should be used in routing protocols that are used in MANETs and VANETs. 

The links in VANETs experience frequent breakages. These frequent link breakages 

contribute to route failures. Those failures force source node to re-initiate route discovery 

mechanism. That mechanism increases the network overhead and decreases throughput. 

1.2 General problem statement 

Since the topology in VANETs is highly dynamic; therefore, the design of an efficient 

routing protocol has two major challenges: 

First, routing protocol should be capable of selecting stable and reliable routes with 

control overhead during route discovery phase. In the selection of stable route, we can 
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estimate the link expiration time and enhance the routing protocol with this information. 

Second, if the links that are about to break can be detected before it actually breaks, then 

an alternative route can be established before this breakage. A routing protocol that 

monitors link status during the route maintenance phase should be more efficient. Most of 

the reactive protocols like AODV [13] and DSR [14] rely on route error message 

(RERR), which indicates the link breakage, and is generated by a node after the link 

actually breaks. The sudden link breakage during transmission can cause loss of data, 

because the source keeps sending data through the broken link until it receives the 

message. In [23] and [24], proposed protocols that predicts the link lifetime and re

initiate a new route discovery before the predicted life time. These proposals show that 

change in the routing mechanism improves the performance. But this predicted link 

lifetime is estimated during route discovery phase. The dynamic nature of VANETs may 

change the link lifetime during the use of the route and the prediction may fail. Here, we 

propose a protocol that monitors the link status' real-time and incorporates this status in 

its operation. 

1.3 Contribution and applicability 

In the light of the above discussions, this thesis will present an efficient prediction based 

routing protocol that uses the link expiration time (LET) information to select the most 

suitable and reliable route. The proposed routing protocol is called Vehicular Ad Hoc 

Routing Protocol with LET information (VARP-LET). One of the promising ad hoc 

reactive protocols namely, Ad hoc On-demand Distance Vector Routing (AODV) [13] 

has been modified to implement VARP-LET. In the VARP-LET, the LET information is 

used to select the intermediate nodes. The nodes having a larger value of LET will be 

selected; therefore, the selected route is more robust under mobility environment. In 

VARP-LET a reliable coverage area metric (RCA) is introduced, the nodes lying within 

this area are referred to as reliable nodes. On receiving a route request (RREQ) message, 

only those nodes that are considered reliable will take part in route selection. This helps 

to reduce the un-necessary re-broadcast from those nodes that are un-reliable in terms of 
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LET. Further, VARP-LET uses the real-time calculation of link lifetime, before 

forwarding the data packets, and generates route break indicator (RBI) message before 

the link breaks. An RBI message is generated during the route maintenance phase. Hence, 

VARP-LET continuously monitors the link status and predicts links that are near-to-be-

broken. If near-to-be-broken link is detected a precursor node will be informed about the 

possible link breakage. The RBI message is then propagated towards the source node. 

The source node after receiving the RBI message stops sending the data packets via the 

near-to-be-broken link. Therefore, a significant loss of data can be avoided. It is shown in 

this thesis that the introduction of an RBI message with reliable coverage area metric 

further improves the network throughput and control overhead. 

The VARP-LET has the following advantages: 

• VARP-LET limits a re-broadcast area in the network which reduces the broadcast 

overhead. 

• VARP-LET selects a stable route faster as there is a lower number of nodes 

involved in route decision process. 

• VARP-LET does not depend on the global information of the network. That 

means it uses information that is locally available at every node. 

• VARP-LET selects a stable route that last longer with as few hops as possible. 

• VARP-LET detects link breakage ahead of time. 

• VARP-LET shows, through simulation results, that at relatively high speeds of 

nodes, it outperforms AODV protocol, whereas at relatively low speeds, VARP-

LET does not deteriorate any of the basic properties of AODV. 

1.4 Thesis organization 

This thesis consists of 4 Chapters. Motivation, the problem statement and contributions 

were presented in this chapter. Chapter 2 comprises of a background which includes: 

brief overview of the mobility models, challenges in VANETs, Ad hoc On-demand 

Distance Vector (AODV) routing protocol, a review of routing protocols in VANETs, 
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and NS-2 simulation platform. In Chapter 3, a new routing protocol Vehicular Ad Hoc 

Routing Protocol with Link Expiration Time Information (VARP-LET) is introduced. An 

analysis of additional coverage vs. LET is investigated in related work. Then, reliable 

coverage area based LET (RCA-LET) metric for selecting a reliable link is introduced in 

that Chapter. In Chapter 4, the summary of this work and future research is presented. 
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Chapter 2: Background 

2.1 Overview of mobility models 

The mobility adds complexity in routing decision process. In order to understand how a 

routing protocol behaves and performs, mobility models that mimics movement pattern 

of mobile nodes (MNs) must be developed. Broch et al. [25] evaluated the performance 

of reactive and proactive protocols under the random mobility model and showed that 

mobility does impact on routing performance. Recently Gomes et al. [26] evaluated the 

performance of Ad Hoc On Demand Distance Vector (AODV) routing protocol using 

different mobility models. It was shown that the mobility models impose a severe 

restriction on link connectivity. Therefore, in order to design an efficient routing protocol 

in ad hoc networks its performance should be evaluated for a specific mobility model that 

is designed for. In this section a brief overview of different mobility models used for 

MANETs is presented. For a complete reference reader is advised to visit [27] and [28]. 

Mobility models can be viewed based on the movements' pattern of mobile nodes. For 

example, the mobility model that describes the movement of each MN independently is 

termed as entity mobility model. And the mobility model in which MNs move in a group 

is termed as group mobility model. In this section some of the most popular entity 

mobility models (also relevant to this thesis) used in MANETs is presented. 
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2.1.1 Random way point mobility model 

In this mobility model each MN moves from its current location to a new location 

randomly with a speed between a pre-defined minimum and maximum speed values and 

a direction angle between 0 and 2n respectively. Each MN after covering a certain 

distance stays for a certain period of time which is known as pause time. Once this pause 

time elapsed an MN again chooses a new direction and a speed randomly. Figure 2.1 

shows a 300mx600m simulation area where an MN is moving under the random way 

point model (RWP). 

600 

500 

404) 

300 

100 

G 
0 50 100 150 200 250 300 

Figure 2.1: MN's movement pattern using random waypoint mobility model 

RWP mobility model is the most widely used model in MANETs. It is a memoryless 

mobility model, that means, an MN's new direction and speed is independent of the old 

direction and speed. 
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2.1.2 Random walk mobility model 

Random walk mobility model is another widely used memoryless mobility model in ad 

hoc networks. In this mobility model, pause time is set to zero, therefore, an MN after 

covering a certain distance chooses a new direction and speed without staying at that 

point. Thus, this model generates an unrealistic movement of the mobile nodes which 

include sudden stops and sharp turns. Figure 2.2 shows a typical MN's movement under 

this mobility model. 

o i i i i . J . i i 
0 50 100 150 200 250 300 

Figure 2.2: MN's movement pattern using random walk mobility model 

2.1.3 Gauss-Markov mobility model 

In this mobility model, a sudden stop and a sharp turn is eliminated. This model has 

memory, i.e., a new speed and direction of an MN depends on the old speed and 

direction. The new value of speed and direction chosen by an MN is tuned through a 

tuning parameter, which varies the randomness of these values, i.e., a new velocity v„of 

the MN at time n based on [27] is given by 
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vn = avn_i + (1 - a)n + V l - a2 * xn_! , (2.1) 

where 0 < a < 1 is a tuning parameter, jU is a mean value of u„as n -» oo, and xn-iis a 

Gaussian random variable. For a = 0 , total random values are obtained and for a = 1 

linear motion is obtained. 

2.1.4 Manhattan Grid mobility model 

This mobility model represents the street section network where MNs are forced to move 

in a grid. The streets are shown along vertical and horizontal axis. This model can be 

used to emulate the movement pattern of vehicles in an urban area. Figure 2.3 shows the 

movement pattern of seventeen nodes using the Manhattan Grid mobility model. In this 

model MNs, at the intersections, can take turn or go straight with certain defined 

probability. 

0 © 

0 © 

U ) 

© 
0 © 

© G) 

© 0 C 

© © 

© 

D © 

Figure 2.3: MN's movement pattern using Manhattan Grid mobility model 
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2.2 Routing protocols for MANETs 

The complexities and challenges involved in MANETs make the role of a routing 

algorithm crucial [5] and [10]. Therefore, a number of routing protocols are proposed in 

the literature for MANETs and their performances are evaluated by the internet 

Engineering Task Force (IETF)'s MANET working group [29]. Generally, the routing 

protocols proposed for MANETs can be divided into three categories: (1) Proactive, (2) 

Reactive, and (3) Hybrid. Proactive routing protocols maintain the global network 

topology information in each node's routing table. The nodes periodically exchange the 

routing table information and maintain a fresh route among the nodes. Proactive routing 

protocol consumes a lot of bandwidth and energy while exchanging the complete routing 

information among nodes. For that reason, the proactive routing protocols are not 

preferred for MANETs. Reactive routing protocols, on the other hand, do not need to 

maintain the global overview of the networks at all time. They find a route by initiating a 

route discovery phase when it is needed. Even though there is data latency while 

searching a route by a source node to its destination, these protocols are bandwidth and 

energy efficient. Therefore, they are preferred for MANETs. The third category of the 

routing protocols in MANETs is the hybrid protocols which combines the best features of 

both proactive and reactive protocols [30]. 

2.2.1 Proactive routing protocols 

Proactive routing protocols are also known as table driven routing protocols. As these 

protocols maintain a complete route path information in memory, i.e., in the routing table 

of a node, thus, there is a complete and fresh path available at all time. In order to make 

this information update, nodes need to exchange the fresh information at regular intervals 

with each other. This is also necessary to respond to any network topology changes at any 

time. Destination Sequenced Distance vector routing (DSDV) [11] and Clusterhead 

Gateway Switch Routing (CGSR) [31] are the examples of proactive routing protocols. 

The DSDV protocol is based on a well known Bellman-Ford algorithm with some 
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improvements and is one of the first protocols proposed in the literature. The DSDV is 

improved in a way that it needs less convergence time and avoids any routing loops. A 

sequence number is allocated to every entry in the routing table to provide freshness 

information. In order to decide a route, the most recent allocated sequence number is used 

and in case that if two updates have the same sequence number then the route having a 

lower hop count will be selected. And in order to reduce periodic routing update traffic 

in DSDV, two types of update packets are introduced: full dump and incremental. In the 

full dump update packet, complete routing table information is exchanged. This exchange 

may need multiple network protocol data units (NPDUS). The full dump update packet is 

used only in case if there is a significant change in the network topology. An incremental 

update packet contains information about the changes occurred after the last full dump. 

An incremental update packet's information is usually fit in one NDPU. Therefore, 

increasing the time period between the full dump and exchanging incremental packet 

reduces the routing overhead. 

Cluster-Head Gateway Switch Routing (CGSR) [31] is another proactive routing 

protocol. It uses hierarchical network architecture instead of a flat network architecture 

used in DSDV protocol. In the CGSR, a different number of nodes grouped together to 

form a cluster. For each cluster there is a cluster head (CH) which controls all the nodes 

in the cluster. Within a cluster other nodes are defined as cluster members and gateway 

nodes. The cluster members are the members of a cluster and are located at one hop away 

from a cluster head. The gateway nodes act as a communication gateway between two 

clusters and should be in the communication range of each other. Each member node will 

send its data packets to its CH, which route the packet to the next cluster via gateway 

node and so on until the data packet reach to the CH of the destination node. Figure 2.4, 

shows a typical routing scenario under CGSR, where node 1 is source and node 8 is 

destination. 
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Figure 2.4: CGSR: routing from node S to D 

In CGSR protocol each member node employed with DSDV protocol within a cluster. 

Therefore, each node maintains two tables; member table and routing table. Member 

table contains the list of CHs of each cluster in the network; whereas the next hop 

towards the destination is decided by routing table. 

2.2.2 Reactive routing protocols 

Reactive routing protocols are also known as source-initiated on-demand routing 

protocol. The two very promising and popular reactive routing protocols are DSR [14] 

and AODV [13]. DSR is designed to reduce bandwidth taken by control packets in 

MANETs [5]. There are two phases in the operation of DSR: (1) route discovery phase, 

(2) route maintenance phase. In route discovery phase the source node will broadcast a 

route request (RREQ) packet on-demand to find a route towards the destination, only if it 

does not have a route in its cache to the destination. If a source node (or any intermediate 

nodes after receiving an RREQ packet) has a route to the destination, it will use that route 
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to send a packet. Each intermediate node, after receiving the packet, will append its 

address in the packet and then re-broadcast the request. This process will continue until 

the packet is received at the destination. The destination, on receiving the RREQ, will 

generate a route reply (RREP) packet back towards the source node. In DSR, a RREQ 

packet size increases with the increase of the network size so it is not as scalable as that 

of AODV [10]. This is one of the reasons for choosing an AODV algorithm as a base in 

the proposed routing in this thesis. 

Route error (RERR) packet is used for route maintenance. When a link breaks the node 

which detects the link failure will initiate an RERR packet. The RERR packet is 

propagated back towards the source node to inform about the link breakage. DSR also 

keeps a redundant route path to the destination and can use this path if a current route 

fails. As mobility makes the network topology very dynamic; therefore, a redundant route 

can become a stale during the route maintenance phase. 

2.3 Ad Hoc On-Demand Distance Vector (AODV) routing 
protocol 

As the proposed routing protocol in this thesis is based on AODV algorithm, for that 

reason, AODV is described in detail in this section. AODV is based on DSDV algorithm 

but it is improved to minimize the broadcast and transmission latency. The authors 

classified AODV as a pure on-demand route acquisition system [13] because routing 

information is maintained by the nodes that lie on an active path. The following are the 

primary objective of the protocol as stated in [13]. 

• To broadcast the discovery packets only when needed. 

• To distinguish between local connectivity management neighborhood detection 

and general topology maintenance. 

• To disseminate information about changes in local connectivity such as HELLO 

messages, to those neighboring mobile nodes that are likely to need the 

information. 

15 



Like many other reactive routing protocols AODV uses two phases in its operations: 

(1) route discovery phase (2) route maintenance phase. In the first phase, the protocol 

discovers a route to its destination. In the second phase, a broken link is detected and 

informed to the source node. 

2.3.1 Route discovery phase 

In this phase a source node will find a route to the intended destination. If a source node 

has a packet to send to some destination, if it does not have a route to the destination, it 

will broadcast an RREQ packet to its neighbors. The neighbors after receiving the RREQ 

packet will forward it to their own neighbors by increasing the hop count field of the 

packet. The neighboring nodes will re-broadcast RREQ during time slot [Oms, 10ms] 

randomly. This process continues until the RREQ packet reaches the destination node, as 

shown in Figure 2.5 (a). After receiving the RREQ packet by the destination node a 

RREP packet is generated back towards the source node and is shown in Figure 2.5 (b). 
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Figure 2.5: AODV route discovery 

The RREQ packet contains the following fields; source address, source sequence number, 

broadcast ID, destination address, and hop count. The RJREQ packet is uniquely 

identified by the sequence number and the broadcast ID. Each intermediate node 

maintains its own sequence number and broadcast ID. When a node initiates an RREQ 

process again, a broadcast ID is incremented. As the RREQ packet propagates in the 

networks, each intermediate node will record the address of its neighbor through which 

the RREQ is received. It automatically sets up a reverse path as shown in Figure 2.6. The 

intermediate node will discard any redundant RREQ packet after the first one received 

from the same neighboring node for the same destination node. The destination node on 

receiving the RREQ packet or any intermediate node having a fresh route towards the 

destination unicasts a RREP packet back towards the destination node. The freshness of a 
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Reverse pointer 
Towards next neighbor 

Figure 2.6: Reverse path formation. 

route is decided by the value of a source sequence number. The RREP packet propagates 

to the source node by using the reverse path that is already created. And as the RREP 

packet propagates back to the source node a forward pointer is created by the 

intermediate nodes as shown in the Figure 2.7. 

Each intermediate node, after receiving the first RREP packet, forwards the RREP packet 

back towards the source node. If an intermediate node receives more than one RREP 

packet for the same source, it updates its routing table and forwards only if it has a larger 

sequence number. In the event of a same sequence number, a smaller hop count is 

preferred. 
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Figure 2.7: Forward path formation 

2.3.2 Route maintenance phase 

In this phase, a link breakage is detected which mainly occurs due to any change in the 

network topology. In AODV-LL (Logical Link), a link breakage is detected by using an 

acknowledgment packet sent by a MAC layer protocol such as IEEE 802.11 Wireless 

LAN. In AODV-LL version, a HELLO message is not used to find the link status. If a 

link breakage occurs because of a source node's move, it re-initiates a route discovery 

mechanism to find a new path to the destination. If a link breaks due to an intermediate 

node's move, the node that detects the link breakage will inform its precursor node by 

initiating an unsolicited route reply packet with hop count set to infinity. This unsolicited 

route reply packet is also called route error (RERR) packet. The RERR packet is 

subsequently relayed by the nodes towards their own neighbors. This relaying continues 

until all the active nodes are notified. The source node, on receiving the RERR message, 

can then re-initiate a new route discovery if it still needs to send packets to the destination 

node. 

19 



2.4 VANETs' challenges 

The routing protocols in VANETs face unique challenges that distinguish these protocols 

from that of MANETs [9]. The high relative speed of vehicles, driver's behavior, 

constraints on mobility together make the unique characteristics in vehicle-to-vehicle 

(V2V) communications. Blum et al. [9] shows through simulations results that the 

VANETs are fundamentally different from MANETs. The following are the important 

challenges in VANETs, which should be taken into consideration for designing a 

protocol for such networks [4] and [9]: (1) Highly dynamic topology, (2) Frequent 

network fragmentation, (3) Small effective network diameter. As the vehicles move at 

relatively high speeds, the network topology changes very frequently. These topology 

changes lead to frequent link breakages, this leads to routing protocol to find new routes. 

Rediscovering new routes increases the routing overhead. The link lifetime depends on 

the direction of movement of the vehicles. The vehicles moving in the opposite direction 

will remain in contact for a small duration of a time. On the other hand, vehicles moving 

in the same direction may provide a longer link lifetime. It is stated in [9] that in 

VANETs, due to mobility constraint in the network, even the vehicles traveling in the 

same direction provide on average one minute of link life time. And the effects of short 

lived routes become even worse when number of hops between source and destination 

gets larger. That is why an efficient routing protocol design for VANETs should be able 

to address the mobility related challenges. 

Due to high mobility and topology changes, there occurs a fragmentation in the networks. 

During this period a chunk of mobile group may not get access to the desired nodes in the 

nearby region. The impact of network fragmentation is higher if the node density is 

lower. Zong et al. [32] propose a relaying technique for successful delivery of the 

message. The moving node keeps a message temporarily in its cache while waiting for an 

opportunity to forward further. Another solution is to deploy fixed relay nodes (access 

points) at certain points along the road to keep the connectivity [9]. 

In VANETs, there are frequent link breakages that cause many routes disconnected 

before they are actually used; thus, a route may cease to exist just after it was discovered. 
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Reference [9] reported a poor nodal connectivity in VANETs due to highly mobile 

vehicles. Reactive protocols like AODV, and DSR uses a minimum hop metric for route 

selection. It is stated in [15] that minimum hop-count metric is not always a good choice 

for route selection, especially under mobility. 

Because of the limitations mentioned above, VANETs require efficient routing protocols 

with following characteristics: Distributed, stable route, loop-free route discovery, quick 

route maintenance, and minimum control overhead. 

• Distributed: As the network topology is highly dynamic in VANETs; therefore, 

routing protocols in such networks must be distributed because centralized routing 

is susceptible to single point of failure. 

• Stable route: The stable and reliable route is a key to an efficient routing protocol 

in high mobility circumstances. The more stable routes reduce link breakages in 

the network. Therefore, in VANETs, routing protocols must be capable of 

selecting long lasting routes. 

• Loop-free route discovery: For a dynamic network like VANETs, a transient route 

commonly exists. A routing protocol for this kind of network should be capable of 

detecting and eliminating routing loop as soon as possible. 

• Quick route maintenance: Highly mobile nodes can break links frequently. An 

efficient routing protocol should be able to detect link failures as quickly as 

possible. An early detection of link breakage should be an efficient technique in 

highly mobile environment. 

• Minimum control overhead: Frequent link breakages increase routing overhead 

for initiating a route discovery process over and over again. The routing selection 

for a more stable and reliable route can reduce the control overhead in the 

network. 
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2.5 Review of routing protocols in VANETs 

The routing protocol defined for MANETs behave poorly in VANETs. The researchers 

proposed various different routing protocols for VANETs [4] and [8]. These protocols 

can be broadly classified as: (1) Position-based routing, (2) Prediction-based routing, and 

(3) Clustering-based routing. 

2.5.1 Position-based routing 

In position-based routing (also known as geographic routing), the location or position of a 

destination is known to the source. If a source node needs to send a packet toward the 

destination, it will forward the packet towards an intermediate node which is close to the 

destination. Hence, forwarding data packets is based on greedy forwarding routing 

technique. One of the known position-based routing protocols is Greedy Perimeter 

Stateless Routing (GPSR) [33] protocol. In GPSR, each node exchanges its position 

information with its neighboring node through a beacon signal and a source node knows 

the destination position through a location service mechanism. GPSR employs the 

perimeter algorithm to deal with the local minimum, i.e., when there is no node other 

than source node close to a destination point. The local minimum problem mainly occurs 

at the junction point on a road. The intermediate node may forward data packet in the 

wrong direction other than that where destination node is located. The perimeter 

algorithm is employed at the time when local minimum does occur. The packet then 

traversed back and forwarded in the right direction. In GPSR, the local minimum 

problem may occur frequently, so the packet has to travel a longer path which in turn 

adds a delay in the network. In order to avoid the local minimum problem, the authors in 

[34] proposed Geographic Source Routing (GSR). GSR uses a digital street map in the 

city environment to get the global knowledge of the city topology. GSR by using 

Reactive Location Service (RLS) knows the destination position. By combining this 

information, the source node employs the Dijkstra's shortest path algorithm through the 

junctions that the data packets have to be traversed toward the destination. In between 
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junctions, the packet is forwarded in a position-based fashion. Another position-based 

routing protocol named as Multi-Hop Routing Protocol for Urban VANETs (MURU) 

[24] is recently proposed. MURU is based on GPSR. A new metric "expected degree of 

disconnection" (EDD) is introduced in MURU. EDD takes into consideration the quality 

of a route based on factors like vehicle speed, location and trajectory. EDD is based on 

probabilistic scheme used to estimate the link lifetime after which the link might be 

broken. Thus, a route with a low EDD value is chosen. In MURU, an RREQ packet on its 

way towards destination cumulates the EDD value of the path discovered. 

As MURU, like any other position-based routing protocol, forwards the packet towards 

the node close to the destination node. The source node first finds the shortest trajectory 

and then initiates an RREQ packet to be forwarded through this trajectory. The RREQ 

packet is broadcasted to the rectangular broadcast area which encloses the shortest 

trajectory between source and destination. The nodes lying within the broadcast area will 

respond to RREQ only for finding a route to the destination. Nodes outside the broadcast 

area will drop the RREQ. Simulations results show that MURU provides good routes 

with reasonable overhead and delay. The authors in [35] propose GVGrid protocol, which 

employs the divide-and-conquer rule. The GVGrid assumes that the global network 

topology is known by the nodes, which are equipped with GPS system. The protocol uses 

this information, and divides the geographic area into small squares called as grids. The 

GVGrid then creates a request zone, which is a rectangle area comprises of the grids. The 

request zone includes the grids of the source and the destination node. The source node 

initiates a route discovery phase by forwarding an RREQ packet to the selected nodes in 

the neighboring grid close towards the destination grid. The receiving nodes forward the 

RREQ packet to their selected nodes in their neighboring grid. There is representative 

node selected by GVGrid protocol. The representative node is located in the destination 

grid. The RREQ packet contains the sequence of the forwarding nodes and their 

corresponding grids while traveling to the destination grid. The representative node on 

receiving the RREQ sends an RREP through a route that is more stable. The 

representative node estimates the stability of the route by preferring nodes which are 
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moving in the direction from source to destination at the same speed on the same roads. It 

is stated in [8] that the link delay analysis is required in the GVGrid. 

One of the known problems related with the position-based routing protocol is that an 

efficient location service mechanism is required. In GPSR, in order to keep up-to-date the 

destination's location information, the client-server architecture is employed which adds 

an extra cost. In addition, the nodes exchange their position information through beacon 

signals. These beacon signals generate a large amount of protocol overhead. GSR needs 

RLS service mechanism to get the destination location information. In MURU, the 

authors assumed that an efficient location service mechanism is present. MURU's 

performance is highly dependent on the accuracy of the location service mechanism. 

Nevertheless, the location based scheme may increase the system throughput [36]. But 

finding the physical position of nodes, especially when the network is highly dynamic is 

very challenging. 

2.5.2 Prediction-based routing 

Prediction-based routing protocols proposed in the literature mainly based on topology 

based routing protocols. AODV and DSR are the example of topology routing protocols 

and are specifically designed for MANETs. DSR keeps a redundant path in its cache 

which is utilized in case if the active route fails. AODV does not keep any redundant 

route; thus only relies on one discovered route. In the event when the active route fails, 

AODV reinitiate a route discovery process again. In [37] the authors propose an AODV-

BR protocol which keeps back up route in the routing table. The nodes in AODV-BR use 

the RREP packets to create the alternate route. The nodes that are not part of the active 

route promiscuously listen to the RREP packets not directed towards them by their 

neighbors. They record that neighbor towards the intended destination and create the 

alternate path. And in the event of the link failure, the alternate path is utilized by the 

intermediate nodes to forward the data packets to its destination. As said earlier that in 

VANETs the highly dynamic topology may stale the route information. Thus, under high 

mobility environment the alternate route may stale before it is utilized. This is also shown 
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in [37] that there are packet losses in AODV-BR because of mobility. Further, Santos et 

al. [36] show that topology based routing (e.g., AODV and DSR) perform poorly in 

various traffic conditions in VANETs. The route established by an AODV can break very 

frequently when the node mobility is high. Therefore, to reduce the link breakages and to 

improve the network performance, Namboodiri et al. [38] present two prediction-based 

routing protocols PRAODV and PRAODVM. The authors considered routing from 

vehicle to the moving gateway on the road. The proposed protocols use GPS information 

like velocity and position information to predict the link lifetime. PRAODV prefers the 

minimum hop metrics as that of AODV but preemptively construct a new path before the 

expiry of the predictive lifetime of the previous path. PRAODVM selects a route with 

maximum predicted lifetime. Simulation results show a slight improvement in terms of 

packet delivery ratio of these protocols. PRAODV uses the same minimum hop metric as 

that of AODV; hence, the chance of a route breakage is high under mobility. On the other 

hand, PRAODVM prefers a route whose predicted lifetime is the maximum. In 

PRAODVM, the link lifetime is calculated based on the information of a route reply 

(RREP) packet. As the RREP packet is generated by the destination node; therefore, the 

destination node has to generate the RREP packet for every received RREQ packet back 

towards the source node. The source node then chooses the route with a maximum 

calculated link lifetime. The generation of a RREP packet for every received RREQ 

packet increases the routing overhead in the network. 

Namboodiri et al. [23] proposes a Prediction-Based Routing (PBR) protocol which is 

specifically designed for the highway scenario. The PBR uses the best features of both 

PRAODV and PRAODVM. The authors in [23] propose an idea of mobile gateway 

nodes which are equipped with wireless WAN connections that can act as internet 

connections for the vehicles. As installing fixed gateways alongside the roads are costly, 

especially on the highways. PBR uses the mobility parameters like speed, direction of 

motion and position information, which are obtained from GPS, to predict the link 

lifetime of a route. If a source node needs to find a route to a gateway node and if it does 

not have a route to the gateway, it broadcasts an RREQ packet. The intermediate nodes 

will re-broadcast the RREQ after inserting its own parameters to the next node. Each 
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intermediate node will also amend its direction of motion in the RREQ. When the RREQ 

reaches the destination node an RREP packet is generated. The PBR like PRAODVM 

calculates the link lifetime based on the information of the RREP packet and prefers the 

route having a longer link lifetime. The PBR like PRAODV preemptively construct a 

new route before the expiry of the predicted lifetime of the old route. The high topology 

dynamics of the VANETs can break the route sooner or later as compared to the link 

lifetime predicted, initially, during the route discovery phase. For that reason, the real

time calculation of the link lifetime should be more efficient. 

2.5.3 Cluster-based routing 

Cluster-based routing creates a virtual network infrastructure. A group of nearby nodes 

combines to form a cluster. Each cluster selects a cluster head (CH), which is responsible 

for intra- and inter-cluster communication and controls the group of nodes in the cluster 

known as ordinary nodes. The cluster gateway (CG) (if selected) is responsible for inter-

cluster communication. Cluster-based routing protocols are primarily designed to provide 

scalability in the network and efficiency in a dense network. The stability of a CH is very 

important and a key factor in cluster-based routing. One of the earlier cluster-based 

routing protocol proposed in the literature is CGSR [31]. To elect a CH for the cluster, a 

distributed algorithm is used in CGSR. The algorithm selects CH with lower ID (LID). 

The LID node is responsible for broadcasting an ID to the one hop neighbors. As a result 

one hop clusters are formed. In CGSR, there are frequent CH changes occur. The CH 

gives up its position if another LID node joins the cluster. Further, the highly dynamic 

topology in VANETs can cause frequent CH changes in CGSR within a cluster. In order 

to mitigate the frequent CH changes, a least cluster change (LCC) algorithm [39] is 

proposed. In this algorithm, CH does not give up its position unless there is another CH 

move into its range. The authors [22] proposed a cluster-based multi-channel 

communications protocol. The proposed protocol efficiently utilized the DSRC allocated 

channels in vehicular networks. The protocol selects CH during election procedure based 

on some rule. The elected CH is then responsible for allocating the channels for different 
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applications within a cluster. The main goal of the protocol is to ensure the timely 

delivery of the safety messages among the vehicles. Mobility-based clustering (MOBIC) 

is another cluster-based routing protocol which elects CH based on the local mobility 

characteristics [40]. MOBIC selects CH which has lower relative velocity among the 

nodes within a cluster; thus, the protocol is capable of selecting stable CH in terms of 

mobility. MOBIC uses received signal power to indicate the lower relative velocity, (i.e., 

the power difference between two consecutive received messages). Hence, in MOBIC 

there are exchange of messages among the nodes within a cluster for selecting a stable 

CH. It is stated in [21] that MOBIC can provide a more stable CH as compared to LCC at 

the cost of higher controlled messages. The authors [21] proposed two cluster-based 

algorithms for selecting a stable CH and a stable CG: (1) dubbed dynamic Doppler 

velocity clustering (DDVC), and (2) dynamic link duration clustering (DLDC). DDVC 

uses a new metric called Doppler value (DV). DV finds the relative velocities between 

the nodes from Doppler shift, by considering the effects of approaching or receding 

nodes. The authors stated that the approaching nodes can remain in communication range 

for a larger time as compared to that of receding nodes. DDVC uses the ratio of the 

transmitted signal frequency to the received signal frequency. For approaching nodes, the 

ratio is smaller where as the ratio for receding nodes is higher. Based on this information 

the algorithm selects the more stable CH that can stay longer in the cluster. The DLDC 

algorithm uses mobility parameters from GPS devices installed in vehicles. The 

algorithm employs the inverse of the link duration as a cost metric. The CH that has 

lower cost value within the cluster is selected. The lower cost metric value means more 

stable CH. 

In VANETs, the rapid topology changes affect the nodal connectivity. Thus, links break 

very frequently. Consequently, the cluster head and the cluster gateway created by 

cluster-based schemes are short lived to provide a stable communication with low 

overhead. Further, it is stated in [22] that due to the high mobility of the vehicles, the 

clustering-based algorithm cannot provide guarantee for a stable cluster topology. In 

short, cluster-based routing schemes can provide scalability for large and dense networks, 
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but rapid topology changes of VANETs increase the delay and the routing overhead for 

forming and maintaining the clusters by using these techniques. 

2.6 Network Simulator 

The network simulator (NS-2) is a discrete event simulator and is widely used in the 

networking research especially in ad hoc networks. In 1989 Cornell University, Ithica, 

New York [41] started the work on NS-2 as a variant of the REAL network simulator. In 

the following years, the Defence Advance Research Project Agency (DARPA) has 

supported the development of NS-2 through the Virtual Inter-network Testbed (VINT) 

project at Lawrence Berkeley Laboratory (LBL), Xerox Palo Altto Research Center 

(PARC), University of California at Berkeley (UCB), Information Science Institute (ISI) 

of the University of Southern California (USC) and Collaborative Simulation for 

Education and Research (CONSER) by The National Science Foundation (NSF). Many 

researchers contributed to NS-2, especially the wireless code which was contributed by 

researchers working at UCB at Daedelus and Carnegie Mellon University (CMU) with 

Monarch projects and Sun Microsystems. NS-2 can simulate Transport Control Protocol 

(TCP) and User Data Protocol (UDP), traffic source behavior such as File Transfer 

Protocol (FTP), telnet, web, constant bit rate (CBR), router queue management 

mechanisms such as drop tail, routing algorithms such as Dynamic Source Routing 

(DSR), Ad hoc On-demand Distance Vector (AODV), Destination Sequence Distance 

Vector (DSDV) and MAC protocol like IEEE 802.11 [42]. NS-2 is an open source 

simulator and it is evolving continuously through research and development. 
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Figure 2.8: NS-2 model 

There are two programming languages used in NS-2; an object oriented simulator written 

in C++ and Object Tool Command Language (Otcl): Tel script language with Object 

oriented extensions developed at Massachusetts Institute of Technology (MIT). It has a 

rich set of library for network and protocol objects. NS-2 consists of two class 

hierarchies: the compiled hierarchy written in C++ and the interpreted one written in 

Otcl. Figure 2.8 shows a simplified model for NS-2. It has an object oriented Tel (OTcl) 

script which consists of a simulation event scheduler and network component object 

libraries, and network setup libraries. Users of NS-2 program in OTcl script language 

setup and run a simulation network. The trace file is used to record the detail of each 

packet which has a unique identification. Trace file stores all the events related to a 

packet such as when it was generated, its size, what was the source node of that packet 

and when it reached the destination. Network Animator (NAM) can show graphically the 

network activities in terms of packet drop, mobile node movement, and other network 

parameters. 

2.7 Wireless network model 

Monarch project of Carnegie Mellon University, contributed to the implementation of 

wireless network extension of NS-2. New elements were added to NS-2 are the physical, 

MAC and routing layers. These elements make it possible to construct detailed and 
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accurate simulations of wireless subnets, LANs, and multi-hop ad hoc networks [43]. The 

logical view of node connections using the CMU Monarch extensions to NS-2 is shown 

in Figure 2.9. 

Mobile 
Node 

Mobile 
Node 

Mobile 
Node 

Mobile 
Node 

Channel 

Figure 2.9: Logical view of mobile node connection 

Each mobile node acts as an independent entity which might have one or more network 

interfaces attached to a channel. The channel acts as the link that carries packet between 

mobile nodes. Every packet transmitted to the channel has a copy distributed to all the 

network interfaces on the channel. Each interface then uses a radio propagation model to 

determine if it can receive the packet. Mobile nodes are responsible for computing their 

position and velocity as a function of time. 

The mobile node architecture of NS-2 is shown in Figure 2.11. Each arriving packet from 

the channel is stamped by the network interface with the receiving properties and then 

invokes the propagation model. Based on the propagation model and the receiving 

properties the network interface determines if the node can receive the packet or not. If it 

can receive the packet, the packet is handed to the MAC layer where it determines if the 

packet has an error or arrives collision free. If it has no error and arrives collision free, 

the MAC layer hands the packet to the mobile node's entry point. At this point if the node 

is the final destination of the packet, the address demux will hand the packet to the port 

demux, and then to the proper sink agent. If the node is not the packet's final destination, 

it will be handed to the default target of the address demux, and the routing agent will 

assign the packet a next hop address and pass the packet back to the link layer. If the next 
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hop address is an IP address, the Link Layer (LL) object queries the ARP object to 

translate the IP address to a hardware address. On getting the hardware address, the 

packet is inserted into the interface queue (IFq). The MAC layer takes packets from the 

head of the interface queue and sends them to the networking interface (NetIF) at the 

right time. 

Classifier: Forwarding 

Agent: Protocol Entity 

Node Entry 

LL: Link layer object 

IFQ: Interface queue 

MAC: Mac object 

PHY: Net interface 

Radio propagation/ 
antenna models 

Figure 2.10: Portrait of mobile node 

2.8 Summary 

In this chapter, the most widely used mobility models in Ad Hoc Networks were 

highlighted. Proactive and Reactive routings of MANETs were explained. Ad Hoc On-

Demand Distance Vector (AODV) routing described in detail and the mobility effect on 

AODV is described. The challenges and the features of routing protocols in VANETs 

were discussed. A review of routing protocols in VANETs was presented and their 

limitations were highlighted. The above discussions lead to the following: 

31 



1. During route discovery phase, the nodes which are highly mobile and unstable (in 

terms of link lifetime) can be differentiated and restricted for route selection process. 

Therefore, suppression of unnecessary re-broadcast from these nodes reduce the 

routing overhead which in turn also minimize the route acquisition time. 

2. In VANETs, a vehicle's mobility can change the predicted Link Lifetime which was 

calculated during the route discovery phase. Thus, a real-time calculation for link 

lifetime to predict a link breakage should be an efficient choice. 

The next chapter will be focused on the design of a new routing metric and its 

implementation in the proposed routing protocol for VANETs. 
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Chapter 3: Vehicular ad hoc routing protocol 
with link expiration time information (VARP-
LET) 

3.1 Introduction 

Finding a stable and a reliable path in VANETs leads to avoidance of a frequent 

disconnection of the path and increases the system throughput. As vehicles are traveling 

fast which make network highly dynamic, therefore, they need to form and maintain a 

network automatically. Node mobility increases complexities of routing even further due 

to frequent link breakages. These link breakages increase routing control overhead and 

reduce efficiency of the protocol due to increase in frequency of the route discovery 

process. The link expiration time (LET) information can be used to select the route that 

last longer. Thus, it leads to reduce in the amount of controlled packet overhead 

generated in the network and hence improves bandwidth utilization. For that reason, 

treatment of link breakages in VANETs is very important. 

There are a number of proposals in the literature to address this problem. Reference [44] 

proposes Associativity-Based Routing (ABR) in which each node periodically transmits 

beaconing ticks to identify itself. The metric used for route selection is the number of 

ticks received at the receiving node. If a large number of ticks are received, then the route 

is considered stable. However, there is a substantial increase in overhead in ABR due to 

these periodic beaconing signals. Another adaptive protocol is Signal Stability-Based 

Adaptive Routing (SSA) [45] which uses signal strength as a metric to select the most 

reliable route. It selects links with higher signal strength. However, higher signal strength 
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is an indication of shorter distance between two nodes. Therefore, nodes close to each 

other in the route selection process will increase the hop count between the source and 

the destination, which in turn increases end-to-end delay in the network. References [46] 

and [47] present an algorithm that is useful for link stability estimation when the node's 

movements are random. Link properties in this algorithm are based on a random way 

point mobility model. Reference [48] presents an algorithm that analyses the link lifetime 

and expected link change rate by using a distance transition probability matrix. Link 

properties in this algorithm are based on the smooth mobility model. The algorithms, 

mentioned in [46], [47], and [48], are based on probabilistic approaches. 

The reliable distance based routing metric for reliable route selection in the AODV 

protocol is investigated in [15] and an optimized AODV (O-AODV) protocol is 

proposed. In O-AODV, neighboring nodes that lie farther than reliable distance (which is 

less than transmission range) are not considered during route selection by a node. As 

links between the nodes present within a reliable distance are still decided on the basis of 

the minimum hop criteria of AODV, thus this metric tries to select the next hop neighbor 

that lies near the periphery of the reliable distance region of a node. Therefore, the 

chances of early breakage of a route increase greatly even with a small increase in the 

relative speed of the mobile nodes. 

The proposed routing protocol in this thesis is based on link lifetime prediction known as 

link expiration time (LET). It uses LET information to select route that has a higher LET 

value with as few hops as possible. Imposing the few hops condition is needed as it 

controls the end-to-end delay of the transmitting packets (seen later in simulation results). 

One way, for selecting route that has higher LET value, is to let all the nodes in a network 

re-broadcast and then selects a route through the nodes that last longer. This increases the 

system overhead as broadcast consumes more of the bandwidth of the system. The other 

way, is to limit nodes re-broadcast to only those nodes which are reliable in terms of their 

position and relative velocities to that of the transmitting node. That is why the routing 

metric in VANETs' routing protocol needs to co-operate with location as well as 

mobility. In this context, a new reliable coverage area based LET (RCA-LET) routing 

metric is introduced. This metric helps in selecting reliable as well as relatively more 
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stable links. The outer periphery of RCA helps to avoid frequent link breakage by 

avoiding nodes on the edge of transmission range, while the inner periphery of RCA 

helps to minimize end-to-end delay by avoiding closely spaced nodes. This routing 

metric is implemented in the proposed routing protocol and is tested via simulations. 

3.2 VARP-LET protocol overview 

The proposed routing protocol is named as vehicular ad hoc routing protocol with link 

expiration time information (VARP-LET). There are two phases in VARP-LET (like that 

of AODV protocol): (1) route discovery phase, and (2) route maintenance phase. In the 

route discovery phase the protocol uses RCA-LET routing metric that selects a route 

which is more stable and long lasting. In this phase the nodes which are more reliable are 

selected to take part in a route selection process. The reliability of the nodes depends on 

their positions in the transmission range, direction of motion and relative velocities to that 

of the transmitting node. The transmission range occupied by those nodes is defined as a 

reliable coverage area. The nodes lying outside the reliable coverage area are not allowed 

to take part in route selection process and will suppress their re-broadcast in the presence 

of reliable nodes. This suppression for unnecessary re-broadcast helps to reduce the 

overall control overhead in the network and provide a faster route selection process as 

compare to those if all the nodes were allowed to take part in a route discovery phase. In 

the route maintenance phase, after the stable route is selected in phase 1, each active node 

keeps on checking its link status before forwarding the data packets. The process involve 

for checking the link status is based on a real-time calculation of the LET instead of 

relying on the value of the link lifetime initially estimated during the route discovery 

phase. The calculated value of the LET is used by the active node to initiate a unicast 

route break indicator (RBI) message to inform the precursor node about an early 

breakage of the link. The RBI message propagates towards the source node via each 

precursor node of the active path. The source node on receiving the RBI message will 

stop sending the data packets through that path. This process of an early indication of link 

breakage to the source node will help to avoid the data packets loss that would have been 
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lost if the source node is informed after the route breakage. The source node can re

initiate a route discovery phase to find a new path towards the destination. 

3.3 Related work 

Before explaining the RCA-LET routing metric, the following background related work 

need to be discussed. 

3.3.1 Coverage area analysis 

An additional coverage area analysis is comprehensively presented in [49] for a static 

network. In this subsection, we describe some of those results that are pertinent to our 

work. The additional area coverage depends on the distance between two nodes and the 

transmission radius. Figure 3.1 illustrates this dependency between the distance and 

transmission radius. Let us consider two nodes A and B located at a distance of d meters 

(m) apart, and their transmission radii is r (m). 

Figure 3.1: Coverage area analysis for static network 

Here, A is sending a message and B is forwarding this message. Let SA and SB be the area 

covered by the nodes A and B, respectively. The additional area that node B can cover is 

shaded, denoted by SB_A, and given by 
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\SB-A\ = \SB\ ~ \SAnB\ = nr2 - lNTC{d) (3.1) 

Here, INTC(d) is the intersection area of two circles centered at two points located at a 

distance of d apart, and is given by 

INTC(d) = 4 /d
r
/2Vr2 + x2 dx (3.2) 

For d = r, the additional coverage is the largest, and is given by 

nr2- INTCir) = r2 ( f + y ) * 0.6l7rr2 (3.3) 

Equation (3.3) shows that a node lying at the edge of transmission range of the previous 

node can provide an additional 61 percent coverage over what has already been covered 

by the previous node. 

The above discussion is valid for static networks. However, mobile networks offer 

different challenges. Figure 3.2 illustrates the effect of mobility on an additional coverage 

area. Forwarding node (FNC), located inside the transmission radius of mobile node 

(MN), provides the largest additional coverage for MATs messages. However, being a 

border node, it can move out of transmission range of MN any time, and how long it can 

serve for MN depends on its relative speed and direction. 

Figure 3.2: Coverage scenario under mobility 
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In contrast to this, being close to MN, FNa provides less additional coverage area, but it 

can remain in contact with MN for a longer period of time. Similarly, FNb is located in 

the middle of transmission range of MN; thus, it gives a compromise between additional 

coverage area and time to remain in contact with MN. This tradeoff is investigated 

further in selecting the forwarding node in Section 3.4. 

3.3.2 Link expiration time 

The link expiration time (LET) is the time for which two mobile nodes can remain in 

contact with each other. To find the estimated LET in our proposed routing metric, we 

used the following formula as given in Reference [50], 

-. _ -(ab+cd)+V(a2+c2)r2-(qrf-fec)2" , , .. 
a2+c2 ^ ' ' 

Here, a,b,c and d are given as follows:-

a — vicosOi - vjcosGj 
b = xi- xj 
c = visindi - vjsinOj 
d = yi- yj 

Here, i and j are two mobile nodes that have r (m) as their transmission or LOS range, vi 

and vj are their velocities, di and Qj are their direction of motion, and (xi, yi) and 

(xj, yj) are their positions respectively. This information can be obtained if the mobile 

nodes are equiped with a GPS system. 

3.4 Proposed routing metric description 

This section presents a description of the reliable coverage area based link expiration 

time (RCA-LET) routing metric. This metric assumes that all the nodes have the same 

transmission radius and are equipped with GPS systems. 
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The proposed routing metric can be explained with the help of Figure 3.3. In this figure, 

the transmission range of a mobile node (MN),r, is virtually divided into three regions. 

The internal region between Rmin and Rmax is referred to as reliable coverage area. The 

nodes present in this region are considered as reliable and stable nodes in terms of 

additional area coverage and LET. The outer region between Rmax and r is considered as 

unreliable coverage area in terms of LET. The innermost region between Rm[n and the 

position ofMN is considered as an undesirable coverage area, in terms of length of route 

since nodes in this region increase hop count without providing any significant additional 

coverage area, as per the discussion in Section 3.3.1. The value of Rmin depends on the 

compromise between acceptable delay and longevity of a route. However, value of Rmax 

depends upon the wireless medium characteristic and the mobility model. The value of 

these parameters can be tuned to provide desired performance for an application in 

VANETs. 

Figure 3.3: Transmission regions of a mobile node 

The central theme of our routing metric is that the nodes that lie in an RCA are given the 

first priority in route selection. However, nodes in an unreliable coverage area and 

undesirable coverage area are given second and third priority respectively in route 

formation. A priority scheme is implemented using the concept of waiting interval prior 

to re-broadcasting of the RREQ message. For example, from Figure 3.3, if MN sends a 
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route request, then the nodes in its RCA (FNCI FNb, FNe and FNf) respond to that request 

in a randomly allocated time slot of [Oms, 5ms]. Upon hearing a re-broadcast from nodes 

in RCA during [0ms, 5ms], the nodes lying in unreliable and undesirable coverage areas 

(FNd and FNa respectively) do not respond to route request. Thus, they do not take part 

in route selection. This helps to avoid unnecessary re-broadcast of RREQ from an 

unreliable and undesirable coverage area, which in turn significantly reduces routing 

overhead in the network. However, if there is no node in the reliable region, then, nodes 

from the unreliable coverage area respond to route request from MN in the next time slot 

of [5ms, 10ms]. Similarly, if there are no nodes lying in the RCA and unreliable 

coverage area, then nodes from the undesirable coverage area respond to route request in 

the next time slot of [10ms, 15ms]. 

3.5 Route discovery phase in VARP-LET 

The route discovery phase in the VARP-LET is shown in Figure 3.4. 

GKD 

© Source Node © Destination Node 

Figure 3.4: Route discovery phase (VARP-LET) 

A node calculates its LET value on the basis of its link status with its previous hop node, 

as given in equation 3.4. At the beginning, the source does not have a valid LET value as 
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it does not have any previous hop node. Therefore, when the route discovery mechanism 

is initiated by the source node 5, the source node broadcasts an RREQ packet with a 

dummy high value of LET. In general, after receiving an RREQ, an intermediate node 

calculates its distance from the previous hop node as well as the LET value of the link 

between itself and the previous hop node. Thus, the nodes from the RCA of the source 

node calculate their own LET values and compare them with LET value of the just 

received RREQ packet from the source node. They retain the minimum of these two LET 

values. Then, these nodes re-broadcast the RREQ packet within [Oms, 5ms] time slot by 

inserting the minimum LET values in their respective RREQ packet headers. Here, each 

of the nodes from the RCA of the source node, which takes part in a re-broadcast process, 

acts as an S node and the group of nodes from their respective RCAs respond to their 

RREQ packets. This process continues until an RREQ packet reaches its destination. The 

destination node also calculates its own LET value and compares this value with that of 

the just received LET value and retains the minimum of these two LET values. Thus, the 

destination node now has the minimum LET value of the path between itself and the 

source node. The destination node inserts this minimum value of LET for the path in the 

route reply (RREP) packet and sends it back towards the source node. 

This routing metric always gives emphasis to the best LET value path achieved from the 

nodes that are present in the RCA. However, if two or more paths have the same LET 

value, then the path with the lower hop count is chosen. Thus, if the destination node 

receives an RREQ packet from a different path with a better LET value, then it 

regenerates the RREP packet and sends it to the source node. After receiving the RREP, 

the source node updates its routing table and starts sending data packets through the new 

path. 

Figure 3.5 shows a typical route selection scenario. In this figure, node A initiates a route 

discovery mechanism. Node B and C are present in the RCA of node A. Node D is 

present in the RCA of both B and C. After receiving a broadcast request from A, B 

calculates the LET value (minimum) and sends it to D. Then, D compares the just 

received LET value from B with its own calculated LET value. The node keeps the 

minimum of these two LET values and inserts it into the RREQ packet header and holds 
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this packet for its random allocated time slot of duration [Oms, 5ms]. Meanwhile, before 

re-broadcast, if D receives a request packet from C, then it compares the just received 

LET value from C with its own calculated LET value. Thus, if the minimum of the LET 

values with C is higher than the minimum of the LET values with B (as calculated 

previously), then discards the path through node B and adopts a path though node C. In 

this way, the intermediate nodes on the way towards the destination will keep on 

selecting the best possible path in terms of higher LET values. 

Figure 3.5: A typical route selection scenario 

Further, there is a minimum value for LET is set in the route discovery phase, defined as 

LET threshold (LETthr), each intermediate node has to meet this value before re-

broadcasting an RREQ packet. The value is given as below, 

LETthr = ((NODEJRAVERSALJIME X TTLJHRESHHOLD) X 2) + y. (3.5) 

Here the following are the default values used in AODV 

NODEJRAVERSALJIME = 30ms , 

TTLJHRESHHOLD = 7 , 

Whereas 2 is a safety factor and v is a correction factor and its value is set to 0.28. 

Using the above values in equation (3.5), 

LETthr « 0.7sec . (3.6) 

Note that LETthr is an important parameter. Nodes having LET values equal to or less 

than LETthr are not allowed to take part in route selection phase. This will further reduce 

re-broadcast from those nodes which are highly mobile. 
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3.6 Performance analysis of AODV-RCA protocol (RWP 
mobility model) 

In this experiment only RCA-LET routing metric was implemented in AODV by 

replacing with minimum hop count metric for route selection process. The route break 

indicator (RBI) is not implemented yet. Hence, the resulting protocol is named as 

AODV-RCA. Indeed RBI signal is designed specifically for vehicle's network. As 

vehicle's motion on the road is linked to the behavior of each driver individually that 

mostly relate with the traffic density of a road or the road infrastructure. Hence, vehicle's 

mobility is also characterized as micro-mobility models [51]. This model represents the 

effects such as smooth speed variation, cars queues, traffic jams etc. Whereas random 

way point (RWP) mobility model is characterized as macro-mobility models [48] as 

speed's variation is not smooth and there are sharp turns and sudden stops etc., involved. 

The purpose of this experiment is to measure the performance of the RCA-LET routing 

metric by using the most common mobility model RWP in MANETs. The performance 

of AODV-RCA was tested and compared with traditional AODV [13] and with 

optimized AODV (O-AODV) protocol [15]. In this scenario the same network is created 

as that of [15], i.e., The NS-2 simulator is used to create a simulation model. The 

mobility model is RWP (as defined in Chapter 2). The network model consists of 50 

wireless nodes which are randomly distributed over an area of 1200m by 1200m. Thirty 

(30) pairs of connection are set up in the simulation. Their maximum velocity variation is 

chosen as (1, 5, 10, 15, 20, 25, 30) m/s. Traffic sources are constant bit rate (CBR) with 

packet size of 512 bytes and data rate of 1 packet per second. The radio model used is the 

Lucent's WaveLAN radio whose nominal bit rate is 2Mbps and radio range of 250m. The 

simulation time set is 400 sec. Each data point is an average of 20 runs. 

The performance of traditional AODV, O-AODV [15] and AODV-RCA are compared on 

the basis of four performance metrics. These are given as below. 

• Packet delivery ratio: It is the ratio of data packets received by destination to 

those generated by a CBR source. 
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• Number of RERRs: It is the total number of RERR packets during a simulation 

run. It gives information about frequency of route breakage. 

• Normalized routing overhead: It is the number of control packets (RREQ in this 

case) transmitted or forwarded by all nodes per data packet delivered to 

destinations. 

• Average end-to-end delay: It is the average of durations taken by data packets to 

reach from their sources to their destinations. 

As shown in Figure 3.6, the packet delivery ratio is better in ADOD-RCA as compared to 

the traditional AODV and O-AODV protocol, specifically at a higher speed. At relatively 

low speed packet delivery ratio is almost the same in either protocol as there is a less 

frequent route breakage occurs and selected route might be redundant. But as nodes move 

faster the AODV-RCA shows better results as compared to other two. This is due to the 

fact that AODV-RCA considering the LET aspect and selects the route that last longer. 

Thus, there is a less frequent route breakage in AODV-RCA which in turn increases the 

system through put. 
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Figure 3.7: Normalized control overhead (RWP) 

Consequently, as shown in Figure 3.7, the normalized control overhead is smaller in 

AODV-RCA. This is due to the facts that 1) there is a less route broken and 2) the 

unnecessary re-broadcast is suppressed in AODV-RCA. For that reasons there is a 

significant decrease in routing over head. 

Figure 3.8 further affirms the statement that there is a less number of route breakage 

occurs in AODV-RCA at relatively high speed of the nodes. It is seen that there is a less 

number of RERR generated in the AODV-RCA as compared to other two routing 

protocols. 

Average end-to-end delay of packet transmission depends on the number of hops between 

the source and the destination, and the duration elapsed in route formation. Though, the 

number of hops in AODV-RCA may be more between source and destination for 

selecting a reliable route. However, there are less frequent route breakages, lower 

broadcast overhead and faster route selection process due to a smaller number of nodes 

involved in routing. These factors altogether helps to reduce the end-to-end system delay 

as shown in Figure 3.9. 
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3.7 Route maintenance phase in VARP-LET 

During the route maintenance phase each node keeps on checking a link status when it 

receives a data packet from previous forwarding node. The forwarding node, before 

sending a data packet to the next hop node, inserts its mobility parameters in the packet 

header. The next hop node on receiving the data packet, now has all the required mobility 

parameters i.e., its own and the previous node's parameters. Thus, using an Equation 3.4 

the node calculates LET value. The calculated LET value is used by the node to generate 

an RBI message for near-to-be-broken link. The RBI signal propagates back to the source 

node and on receiving the RBI signal the source node stops sending data packets through 

the near-to-be-broken link. And if source node still has data packets for the same 

destination node it can re-initiate a route discovery process again. The route maintenance 

phase can be explained from Figure 3.10. 

RBI 

Figure 3.10: Route maintenance phase under mobility 

Let S and D is a source and a destination node respectively, having a communication path 

already set up through intermediate nodes B, C and E. As explained above that each node 

calculates LET before sending a data packet. Suppose that node E is moving with higher 

speed than that of node C. When the node E is nearly moving out of the transmission 

range of the node C, there is a near-to-be-broken link between them. That means LET 

value between them is small at that instance. And as soon LET value reaches to some 

specific lower value (define later in this section) node E will send an RBI signal (a 
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unicast signal) back towards the precursor node C. Note that an RBI signal is generated 

by the node which is ahead of the link. That node is labeled E in Figure 3.10, whereas if 

the link breaks an RERR is generated by the precursor node which is node C from Figure 

3.10. The RBI signal is given a higher priority once it is generated and propagates 

towards the source node. In the event that if the link between C and E breaks and node C 

still receiving packets from the same source, for the same destination, and from the same 

near-to-be-broken link. It generates an RERR message as traditional AODV does. This is 

also useful in the case if RBI message is lost or not reached to the destination at that 

instance. The RBI message is generated when 

LET <= (NODEJRAVERSALJIME x HOPCOUNT) , (3.7) 

where (HOPCOUNT > 1) 

Thus, this value depends on the distance (hop count) of the node that generates an RBI 

from the source node. For example from Figure 3.10, node E is located at the third hop 

from the source node. Hence in this case node E generates an RBI when it's LET is equal 

to or less than 90ms. 

Also note that HOPCOUNT should be greater than 1 that means, the node that generates 

RBI should be located more than one hop away from the source node. This is due to the 

fact that an AODV-LL uses the link layer feedback for detecting a broken link and if a 

near-to-be-broken link is attached directly with a source node it can detect the broken link 

immediately after it breaks. For that reason, there is no need to generate an RBI signal 

from the node located at one hop distance away from the source node. 

3.8 RCA-LET with quadrant check 

As stated earlier that vehicles move linearly on the road and its mobility is characterized 

as micro-mobility models. By considering this linearity, the RCA-LET routing metric is 

slightly modified while implementing in vehicle networks. In the RCA-LET routing 

metric the preference for route selection is given to nodes which lie in reliable coverage 
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area. In the presence of these nodes the re-broadcasts from the nodes which lie in 

undesirable coverage area are suppressed in order to avoid un-necessary broadcast in the 

networks. Now in the vehicular mobility models, the quadrant check scheme is 

introduced. That checks if nodes are in undesirable coverage area before re-broadcasting. 

The quadrant check scheme can be explained by Figure 3.11. 

B 

Figure 3.11: Quadrant check suppression technique 

Let there are five vehicles moving on a road where S is a source and D is a destination 

vehicle. The source S initiates a route discovery phase by broadcasting an RREQ packet 

for the destination D. The intermediate vehicles B, C and E listen to the RREQ broadcast 

packet from source S. Vehicles C and E being located in the RCA of S will re-broadcast 

an RREQ packet in the first time slot for destination D (for simplicity only one 

transmission circle for both C and E is shown). The vehicle B is located in the inner 

periphery of the transmission range of S still holding the RREQ packet received from S. 
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As B is allocated a third time slot [10ms 15ms] for re-broadcasting an RREQ packet, so it 

holds the packet for at least 10ms. As explained in section 3.4, that each node after 

receiving an RREQ packet calculates its distance from the forwarding node. Hence, B 

knows its position with respect to x-axis of the S which is quadrant I as shown in Figure 

3.11. That means, vehicle B is located ahead of the vehicle S on linear road. For that 

reason, vehicle B after receiving a re-broadcast from C and E will suppress its re-

broadcast only if C or E is present in quadrant I or quadrant IV (ahead of S) as shown. It 

is due to the fact that as C and E both lie in the RCA of vehicle S and provide a better 

coverage area and LET with respect to their position, as per discussion in section 3.3.1. 

However, in case vehicle B is lying in quadrant II or quadrant III i.e., behind vehicle S as 

shown in Figure 3.12. Though both E and C lying in the RCA of S but ahead of S. That 

means, both E and C can provide better coverage area only ahead of S. Moreover, as 

there is no vehicle lying behind S in its RCA that can provide better coverage area in the 

rear area of S .For that reason, B after hearing a re-broadcast from E and C, will not 

suppress its re-broadcast. And B is the only intermediate vehicle lying behind S which 

may provide a route to the destination. This adds robustness in the routing protocol 

during route selection process. The Quadrant check scheme is not mandatory for RWP 

mobility models. In RWP the nodes are uniformly or randomly distributed around the 

simulation area in all direction. 
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< B 

Figure 3.12: Quadrant check non-suppression technique 

3.9 Performance analysis (Manhattan Grid mobility model) 

In the real world, mobile nodes (MNs) such as cars cannot roam freely due to obstacles 

and traffic regulations. Thus, such MNs have more or less similar patterns of travelling in 

any part of a city. To represent such a mobile scenario, we took the Manhattan Grid 

mobility model [26] in the simulation. For creating this mobility model, Bonnmotion 

vl.3a [26] and [27] tool is used. In our simulation scenario, MNs are moving at a mean 

speed (represented as v) of 1 m/s, 10 m/s, 20 m/s, 30 m/s, 40 m/s, and 50 m/s. A grid of 

ten horizontal and two vertical blocks are taken. The movement update distance is taken 

as 20 meters. Both the turn and speed change probabilities are taken as 0.1. The minimum 

and maximum speeds are taken as 0.9v and 1.1 v. 

Constant Bit Rate (CBR) traffic sources are used in the simulation with a packet size of 

512 bytes and data rate of 4 packets per second. The network is composed of 30 nodes 

moving around a flat rectangular area of 1500m x 300m, where 3 nodes are chosen to be 
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UDP sources and another 3 nodes are chosen as destination nodes. The channel 

bandwidth is taken as 2 Mbps. The transmission range of a node is taken as 250 meters. 

IEEE 802.11 wireless network standard with Distributed Coordination Function (DCF) 

mode is used for the MAC layer. Simulation time is taken as 400 seconds. Each data 

point is taken as an average of 15 runs. 

In the following discussion, AODV-RCA represents AODV protocol modified with the 

proposed RCA-LET routing metric in route discovery phase only without implementing 

an RBI in the route maintenance phase. Whereas, VARP-LET represents a complete 

protocol, that means, AODV protocol modified with the proposed routing metric and an 

RBI signal. We compared the performance of traditional AODV, AODV-RCA and 

VARP-LET as below. 

As shown in Figure 3.13, the packet delivery ratio of AODV-RCA and VARP-LET is 

better than traditional AODV, particularly at higher relative speeds of MNs. It is due to 

the fact that the traditional AODV experiences frequent route breakage with increasing 

relative speed of nodes, as the route selection decision in traditional AODV is based on 

minimum hop routing only. It does not consider the link expiration aspect of a route. 

Thus, routes selected by AODV break quite frequently as relative speeds of MNs 

increase. In contrast to this, AODV-RCA and VARP-LET uses link expiration 

information to select a route. Therefore, though the number of hops in a selected route 

may be higher in both AODV-RCA and VARP-LET than that of AODV, but the route in 

this case will last longer which results in a higher packet delivery ratio. VARP-LET gives 

more better performance than that of AODV-RCA, as it uses an RBI signal for the link 

which is near-to-be-broken. This helps to avoid the loss of packet which were lost if the 

link breaks suddenly. Hence, packet delivery ration is improved by 17.22% with AODV-

RCA and 20.7% with VARP-LET at a mean speed of 50 m/s. 

The argument that the link last longer in AODV-RCA and VARP-LET is further 

confirmed by observing the number of RERR packets in the network. Figure 3.14 shows 
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Figure 3.13: Packet delivery ratio vs. mobility (Manhattan Grid) 
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Figure 3.14: Number of RERRs vs. mobility (Manhattan Grid) 

53 



that rate of increase in frequency of route breakage with respect to increasing relative 

speeds of MNs is more in the case of traditional AODV as compared to AODV-RCA and 

VARP-LET. Note that number of RERR1 seems to be more in VARP-LET as compared 

to AODV-RCA. This is due to the fact that the RERR in case of VARP-LET is replaced 

with RBI, and as stated earlier that the RBI is generated before the link actually expires. 

Thus, there is always a possibility of more than one link going to expire soon under 

mobility environment. In that case more than one RBI will be generated to inform the 

pre-cursor node about the near-to-be-broken link. Whereas RERR signal is generated 

only after the link actually expires. Further, RERR in VARP-LET may also be generated 

in case if RBI signal is lost on its way back towards the source node. Therefore, number 

of RERR plus the number of RBI is higher as shown in Figure 3.14. 

As shown in Figure 3.15, rate of increase in normalized routing overhead is less in 

AODV-RCA and VARP-LET because both use the reliable coverage area concept to 

determine which nodes take part in route selection. Thus, the number of nodes that take 

part in route selection is lower in AODV-RCA and VARP-LET as compared to 

traditional AODV which is based on random broadcast for route selection. It reduces 

flooding in the network in AODV-RCA and VARP-LET. 

End-to-end delay of packet transmission depends on the number of hops between the 

source and the destination, and the duration elapsed in route formation. As mentioned 

earlier in this section, the number of hops between the source and the destination are 

more in AODV-RCA and VARP-LET, as both use the same RCA-LET metric in route 

discovery phase. It is therefore expected that end-to-end delay will be more in AODV-

RCA and VARP-LET. However, there are many factors that compensate for this delay in 

both AODV-RCA and VARP-LET. These factors are less frequent route breakage, lower 

broadcast overhead and faster route selection process due to a smaller number of nodes 

involved in routing. Therefore, as shown in Figure 3.16, as the mean speed of the nodes 

becomes high such as 40 or 50 m/s, AODV-RCA and VARP-LET gives more emphasis 

on forming a reliable link that can last longer. For that reason, it starts selecting nodes 

that are closer to Rmin in the reliable coverage area. Therefore, average distance between 

Combination of RRER + RBI is shown 
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nodes in a route decreases. It causes larger number of hops between the source and the 

destination which nullifies any gains made in terms of lower broadcast overhead and a 

smaller number of nodes involved in the route formation. 

3.10 Performance analysis (highway scenario) 

In order to measure that how the proposed routing protocol behaves by varying distances 

between source and destination node. A simulation of 20 kilometer (km) long 

unidirectional highway scenario is created with parameters shown in Table 1. 

Table 1: Unidirectional highway (20Km) 

Cars speed slots 

meter/sec 
Min & Mean 
speed 

Speed update dist. 

Standard deviation 

Speed Change 
Prob. 

Node Density 

Distribution 

Total nodes 

80 - 90 Km/h 

22.22-25.00 

22.22 & 23.61 

90 -100 km/h 

25.00 - 27.77 

25 & 26.38 

100 -110 km/h 

27.77-30.55 

27.77 & 29.16 

110 -120 km/h 

30.55-33.33 

30.55 & 31.94 

500 meter 

1 

0.2 

16 Nodes per km 

Uniformly distributed 

160 

In this simulation, four speed slots of vehicles were chosen. The vehicles move within its 

allocated speed slot on the highway. Each vehicle changes its speed (within its own 

timeslot) with a probability of 20% by covering every 500 meter, defined as speed update 

distance. Vehicles whose speed is minimum increases its speed, vehicles whose speed is 

maximum decreases its speed in the next speed update. The participating nodes (vehicles) 

are uniformly distributed in the simulation distance and node density is set to 16 nodes 

per km. Each reading on the graph is an average of twenty runs. For each run same speed 
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of source and destination is chosen but at different positions for each run. The distance 

between source and destination is taken in hop count; each hop is set to 250 meters. 

The purpose of this simulation is to observe the behavior of the proposed protocol 

regarding a selection of a reliable link under dynamic environment and by varying a 

distance between source and destination nodes. 

Figure 3.17 shows that the packet delivery ratio of AODV-RCA and VARP-LET is better 

than traditional AODV. It is also observed that after approximately nine hops the 

traditional AODV starts showing poor results. This was also highlighted in [9] that after 

approximately nine hop the routing path in the reactive routing protocols may disappear 

before the first packet is acknowledged. It is due to the same fact that as the route 

selection decision in the traditional AODV is based on a minimum hop routing only 

which may break even with a small increase in relative speeds of nodes. Thus, routes 

selected by AODV break quite frequently as relative speed of vehicles increase. In 

contrast to this, AODV-RCA and VARP-LET uses LET to select a route and also avoid 

those nodes that are unstable during route discovery phase. Hence, in this case a selected 

route will last longer which results in a higher packet delivery ratio. As observed earlier, 

VARP-LET gives better performance than that of AODV-RCA, as it uses an RBI signal 

for the link which is near-to-be-broken. This helps to avoid the loss of packet which were 

lost if the link breaks suddenly. Therefore, as shown in Figure 3.17 that at fourteen hops 

(distance between source and destination) the packet delivery ration is improved by 23% 

in AODV-RCA and by 30% in VARP-LET. 

Figure 3.18 shows that the frequency of route breakages is more in traditional AODV due 

to the same effect as explained earlier in the previous section. The important thing here is 

the number of RBI and RERR in VARP-LET. For clarity, they are shown separately here. 

The number of RERR generated in VARP-LET is very small. In fact it is replaced with 

number of RBI in VARP-LET and as explained earlier that the RBI may generated by 

more than one node if there are near-to-be-broken links exist between nodes. Even, 

though small, RERR signals were observed in VARP-LET. And as explained earlier that 

in case RBI signal is lost or missed RERR signal will be generated. 
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Figure 3.19 shows that there is less routing overhead both in AODV-RCA and VARP-

LET as they both restrict the broadcast area for nodes to take part in route selection 

process. Thus, there are fewer number of nodes taking part in route selection process 

which results lower number of broadcast. 

End-to-end delay is better in both AODV-RCA and VARP-LET as compared to the 

traditional AODV protocol. It is due to the fact that route path is more stable and long 

live, in result there are controlled overhead in both AODV-RCA and VARP-LET as 

compared to traditional AODV. 
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Figure 3.19: Normalized control overhead vs. hop count (highway scenario) 
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Figure 3.20: End-to-end delay vs. hop count (highway scenario) 

3.11 Conclusions 

In this chapter two new routing protocols were presented to improve the routing 

efficiency in highly mobile networks like vehicular ad hoc networks (VANETs). The first 

protocol AODV-RCA is based on a new routing metric called RCA-LET. In this metric 

route broadcast area is restricted to only those nodes that are selected as reliable. This 

metric works in route discovery phase and it tries to select long lasting route with as few 

hops as possible. The second protocol VARP-LET uses the same RCA-LET metric in its 

route selection process with the addition of RBI in route discovery. The VARP-LET 

protocol is capable of detecting a near-to-be-broken link and informing the precursor 

node about the link breakage ahead of time. 
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Simulation studies show that VARP-LET and AODV-RCA improves network 

performances by increasing network throughput, reducing routing overhead and the 

frequency of route breakages. VARP-LET and AODV-RCA is not only ensuring long 

lasting routes, but also able to minimize the number of hops between the source and the 

destination as much as possible within a specified reliable coverage area. Thus, though, 

the number of hops in AODV-RCA and VARP-LET is slightly higher than for traditional 

AODV, yet it has a comparable average end-to-end delay performance with respect to 

traditional AODV in city section mobility model and better in highway scenario. It is due 

to the fact that the AODV-RCA and VARP-LET has lower broadcast overhead and lower 

number of route breakages. 
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Chapter 4: Conclusions and Future work 

4.1 Summary of contributions 

The main objective of this thesis is to design a routing protocol that works under highly 

dynamic networks such as vehicular ad hoc networks (VANETs). The proposed protocol 

considers both the reliable coverage area and link expiration time information (RCA-

LET) for a stable and reliable route selection. Hence, the protocol obtains route that last 

longer with as few hops as possible. The protocol is capable of detecting an early route 

breakage by using the mobility parameters to avoid any loss of packets due to link failure. 

In Chapter 2, it has been shown that the generic minimum hop metric used in reactive 

routing protocols like Ad Hoc On-demand Distance Vector (AODV) routing protocol and 

Dynamic Source Routing (DSR) is not a feasible choice under high mobility 

environment. The mobility makes the network highly dynamic which makes routing 

decision very challenging. The mobility has been shown to bring about different 

problems that affect the overall performance of the network. Some of the problems are: 

(1) frequent link breakages, (2) increased network overhead, (3) inefficient use of 

bandwidth. Frequent link breakages lead to packet loss and reduce the system throughput. 

For the same reason, the network overhead is largely increased by frequent link 

breakages, which increase number of broadcast packets for reinitiating a route discovery 

mechanism. Ad hoc networks are bandwidth constrained networks; thus, increasing 

routing overhead leads to inefficient use of system bandwidth. 

In Chapter 3, two new protocols were introduced. One is based on the new proposed 

routing metric RCA-LET during the route discovery phase and is named as AODV-RCA. 

The other is a modified version of the AODV-RCA and uses RBI signal during route 
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maintenance phase to detect near-to-be-broken link. The protocol is named as vehicular 

ad hoc routing protocol with link expiration time information (VARP-LET). VARP-LET 

has two phases, the route discovery phase and the route maintenance phase. VARP-LET 

does not need to maintain the global network topology like that of AODV protocol. It 

uses the locally available information at each node for route selection process. It 

classifies nodes as reliable nodes and unreliable nodes. VARP-LET restricts the broadcast 

area for only those nodes that are considered reliable nodes. Since only reliable nodes are 

allowed to take part in route selection process this increases the chances of selection of a 

reliable and stable routes during route selection process. And as number of participating 

nodes is lower in VARP-LET which helps reducing the network broadcast overhead. In 

addition, VARP-LET uses the real-time value of LET to determine the near-to-be-broken 

link. This detection of an early breakage of a route leads to avoid the loss of packets 

which could result from a sudden link failure. Simulation results showed that there was 

significant performance improvement over AODV when VARP-LET and AODV-RCA 

was used. 

In first experiment, the performance of AODV-RCA was compared with an optimized 

AODV (O-AODV) and traditional AODV protocol by using random way point (RWP) 

mobility model. Simulation results showed that AODV-RCA had better performance than 

O-AODV and AODV protocol, though O-AODV protocol showed performance 

improvement over the AODV. 

Then the performance of both VARP-LET and AODV-RCA was tested and compared 

with traditional AODV protocol by using Manhattan Grid mobility model and high way 

scenario. Simulation results showed that VARP-LET outperforms both AODV-RCA and 

AODV protocol and AODV-RCA showed better performance over AODV protocol. 

The simulation results presented in this thesis have shown that the objective of this thesis, 

which is to design a vehicle protocol that performs better in VANETs and to select routes 

that are more stable and reliable, has been achieved. 
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4.2 Future work 

In this thesis, the proposed protocol has been simulated using NS-2 network simulator. In 

all the simulation carried out, network nodes have the same transmission radius. That 

means, shadowing effects have not been taken into consideration. Hence, the protocol can 

be extended and tested using dynamic node's radius. 

The shadowing effects do add additional complexity, which directly relates with the 

received power signal strength. The propagation loss factor increases because of the 

shadowing effect and the effect of this change in the routing decision needs to be 

investigated and adjustments need to be made to the algorithm. 

The proposed protocol VARP-LET relies on a single path selection like that of AODV 

protocol during route selection phase. After the failure of this route, the VARP-LET 

needs to initiate a route discovery phase again. The multipath scheme keeps the 

redundant route in the route cache that could be utilized on failure of the route can be 

implemented. 

VARP-LET is specifically designed for vehicular networks which is not an energy 

constraints network. Hence, the performance of VARP-LET in terms of energy efficiency 

has not been investigated in this thesis. In order to implement VARP-LET in wireless 

sensor nodes that are highly energy constrained, the treatment of energy efficiency needs 

to be investigated and a modification of the protocol for energy optimization can be done. 

The performance of the protocol has been tested only on simulation environment. 

Implementing VARP-LET in real vehicles on a road will be interesting. This can help to 

compare the results taken by simulated environment with that of real scenarios. 
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