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ABSTRACT 

Biocomposites have become widely used materials these days. Due to their light weight 

and ability to be tailored for specific end uses they have gained a considerable ground in the high 

performance applications, such as aerospace and automobile industry. However, the use of 

polymers that can be recycled with carbon and other niche fibers renders the composite non-

recyclable. 

The objective of this present research work was to study the resistance of the 

Biocomposite and Wood Plastic Composite materials to water. A Biocomposite made up of 

biopolymer reinforced with switchgrass fibers and a WPC prepared from High density 

polyethylene reinforced with wood flour fillers were studied for the water absorption behaviour 

at three different temperatures were evaluated. In addition, density changes, dimensional stability 

and acoustic properties of the WPC and switchgrss/biopolymer composite were evaluated. 
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Chapter I 

Introduction 

1.1 Background 

Traditional composite materials are made up of aramid, glass or carbon fibers reinforced 

with phenolics, epoxy, polyurethanes or unsaturated polyester resins. Their removal, use and 

manufacturing was scrutinized from a legislative and an environmental perspective1. The 

traditional composites are made from two dissimilar materials. Recycling and waste disposal of 

these materials after their life span has become a problem because they are stable1. Landfills of 

traditional composites cannot be reused or recycled; hence environmentally compatible 

alternative materials such as biocomposites will need to be used. 

Researchers have shown interest in biocomposites due to their low density, low cost and 

very good mechanical properties, as well as adequate supply of these natural fibers from 

renewable resources2. There are 3 different types of biocomposites: (1) Partially biodegradable, 

(2) Completely biodegradable, (3) Hybrid biodegradable. Biocomposites made up of natural 

fibers are biodegradable whereas traditional thermosets (unsaturated polyesters) and 

thermoplastics (like polyethylene and polypropylene) are non-biodegradable. These can be 

referred to as "partially biodegradable" biocomposite. In case the polymer matrix is 

biodegradable, a natural fiber-reinforced biopolymer composite is referred to as a "completely 

biodegradable" biocomposite. If two or more natural fibers are combined with a polymer matrix 

it is referred to as "Hybrid" biocomposite. 

The preparation of natural fiber-reinforced composites attracted many scientists because 

these biocomposites are substitutes to the ever diminishing petroleum resources. Biocomposites' 
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main advantages are: environmentally friendly, fully sustainable and biodegradable. They can be 

easily disposed of at the end of life their span without harming the environment. 

1.2 Problem statement/objectives 

There have been a lot of investigations in new composites development during the last 

decades. However, the biocomposites are not as widely accepted in industry as they deserve. 

One of the limiting factors is low water resistance of the materials. Biocomposites may 

suffer from water attacks when exposed to service conditions. 

It is important to understand the dynamics of water absorption by biocomposites. The 

work in this Thesis is planned to study water sorption of the natural fibre based composites. By 

characterizing changes in density, dimensional stability as well as acoustic properties of two 

types of biocomposites and to establish the correlation between acoustic and other parameters. 

This correlation could help in developing fast and nondestructive techniques for identification of 

water content in composites. 

The objectives of this study are: 

• To characterize water absorption by two types of biocomposites at various 

temperatures; 

• To establish a correlation between acoustic parameters of composites and water 

absorbance; 

• To visualize the changes in microstructure of composites during the water 

absorption process. 
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1.3. Thesis outline 

This thesis starts with a literature review on biocomposites (chapter II). The instruments, 

materials and methods used in this research are described in chapter III. In chapter IV the results 

and discussion are presented and focus on water absorption by WPC and switchgrss/biopolymer 

composite at different temperature and diffusion coefficient values. Chapter V discusses acoustic 

measurements (velocity, attenuation), acoustic images and Histograms of the samples. Chapter 

VI presents the conclusions and recommendations of this work. 
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Chapter II 

Literature Review 

2.1 Definition 

Biocomposites are composite materials made from bio/natural fiber and a biodegradable 

polymer (Polylactic Acid (PLA), Polyhydroxy Alkonates (PHA)) or petroleum derived 

nonbiodegradable polymers (Polypropylene (PP), Polyethylene (PE)). Biocomposites derived 

from bio/crop-derived plastic (bioplastic/biopolymer) and plant-derived fiber (bio/natural 

fiber) are found to be more eco-friendly and such composites are called green composites. 

Using excess petroleum products has become a big problem (i.e. diminishing petroleum 

resources and entrapment of plastics in the environment and food chain). Excessive use of 

plastics results in increased pollution and emissions during degradation which is affecting the 

water we drink, the air we breathe and the food we eat. It is threatening our very ability to 

survive. The effort to develop biodegradable plastics was initiated because of the limited supply 

of petroleum-based resources. Bioplastics are based on renewable agricultural products and 

plants but can compete with petroleum-derived products which currently dominate the market. 

100% biobased material production is not presently an economical solution for replacement of 

petroleum based products. Combining petroleum and biobased resources would be a more viable 

solution to develop a cost-effective product that can have broad applications. Synthetic polymers 

or biopolymers reinforced with bio or natural fibers are a viable alternative to glass fiber 

composites. 

2.2 Natural fibers as fillers 

Generally natural fibers can be classified based on their origin. Natural fibers can be 

extracted from animals, plants or minerals. Plant fibers are the most popular choice in material 
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science because of their physical properties, sustainability and recyclabihty. Based on the part of 

the plant they originate from, plant fibers are further categorized. Figure 2.1 provides 

classification of natural fibers. 

Natural Fibers 

Seed 
fiber 

Cotton 
Akon 

Fibers from 
dicotyledons 

Fiber of 
stem 

Flax 
Hemp 

Kenaf 

Ramie, 

Nettle 

Organic 

Plant 
fiber 

Animal 
fiber 

Inorganic 

Mineral 
fiber 

Fibers from 
monocotyledons 

Hair and 
thread 

Asbestos 
fibers 

Fruit 
hair 

Kapok 
Paina 

7iber of 
leaf 

Fruit fiber 

Basic 
lamina 

Abaca 

Lamina 
fiber 

Sisal 
Yucca 

Petiolus 
fiber 

Para 

Figure 2.1. Classification of Natural Fibers. 

5 



2.3 Different matrices 

2.3.1 Thermoplastic matrices 

Thermoplastic polymers soften or melt upon heating. These polymers consist of branched 

or linear chain molecules having strong intramolecular bonds but weak intermolecular bonds. 

Solidification and melting of these polymers are reversible and they can be reshaped by applying 

pressure and heat. The structure of these polymers is either amorphous or semicrystalline. The 

following are examples of thermoplastics: Polystyrene (PS), polyethylene (PE), polycarbonate 

(PC), nylons, polyamide-imide, polyacetals, polysulphone polyphenylene suphide, polyether-

ether ketone (PEEK) and polyether imide. 

2.3.2 Thermosetting matrices 

A thermosetting plastic has a network or crosslinked structures, and consists of covalent 

bonds between all molecules. Upon heating, thermosetting plastics decompose. They cannot be 

reshaped once they have been solidified by crosslinking. Epoxides, polyesters and phenol 

formaldehydes are a few common examples of thermosetting polymers. 

2.3.3 Rubber matrices 

Styrene butadiene rubber (SBR), natural rubber (NR), butadiene rubber (BR), butyl 

rubber (IIR), nitrile rubber (NBR), ethylene propylene diene rubber (EPDM), chloroprene rubber 

(CR), silicon rubber and polyurethane rubbers are used for the preparation of composites. 

Natural rubber is most widely used as a rubber matrix. 
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2.3.4 Biodegradable matrices 

Researchers are developing a new class of biodegradable green composites by combining 

bio/natural fibers with biodegradable matrices. The main advantages of green composites are that 

they are eco-friendly, sustainable and fully degradable. They can easily be disposed of at the end 

of their life without harming the environment. A number of biodegradable and natural matrices, 

which can be used in the preparation of green composites, are listed in the table 1. 

Table 1 Natural and biodegradable matrices4 

Natural Synthetic 

Polysaccharides 

Starch 

Cellulose 

Chitin 

Proteins 

Collagen/gelatin 

Casein, albumin, fibrogen, silks 

Polyhydroxyalkanoates 

Lignin 

Lipids 

Shellac 

Natural rubber 

Poly(amides) 

Poly(anhydrides) 

Poly(amide-enamines) 

Poly(vinyl alcohol) 

Poly(vinyl acetate) 

Polyesters 

Poly(glycolic acid) 

Poly(lactic acid) 

Poly(caprolactone) 

Poly(orthoesters) 

Poly(ethylene oxides) 

Poly(phosphazines) 

2.4 Additives 

Various additives are used in biocomposites to improve the preparation during their life 

time or to achieve specific needs during the manufacturing process. Commonly used additives 
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are antioxidants, coupling agents, pigments, stabilizers, biocides or lubricants. Biocides in 

biocomposites and bioplastics may be more significant compared to the other composite 

materials because of their ability to suppress the growth of microorganisms (fungi, bacteria) 

which are responsible for biological degradation of the materials. 

2.4.1 Coupling agent (CA) 

A coupling agent (CA) is a chemical substance, added to a biocomposite material to improve the 

fiber matrix interface. Interfacial adhesion between natural fibers and the polymer matrix 

determines the biocomposite's final properties, hence it is very important to use a CA. Maier et 

al5 reported that CAs are bifunctional molecules. One end of the CA reacts with organic, 

nonpolar substrates while the other end reacts with polar, inorganic materials. Commonly used 

coupling agents are titanate, silane and maleic anhydride grafted to the polymers like 

polyethylene grafted maleic anhydride (PE-MA); and polypropylene grafted maleic anhydride 

(PP-MA). As well, aluminates and zicronate are used in polymer industries. PE-MA and PP-MA 

coupling agents are used with thermoplastics. These coupling agents are characterized by the 

percentage of the maleic anhydride grafted to the polymer and their molecular weight. Natural 

fibers based on cellulose are hydrophilic in nature, and hence show inherent incompatibilities 

with a hydrophobic polymer (polyolefins) matrix. This leads to poor interfacial adhesion 

between cellulose-based fibers and a polypropylene or ethylene matrix. Maleic anhydride grafted 

polyolefin is one of the most efficient CA used for composites composed of polyolefin matrixes 

and cellulose-based materials (fillers or fibers). The composite materials prepared by the melting 

mixing technique with MA-PP as a coupling agent showed drastically improved mechanical 

properties improved drastically. The strong interfacial adhesion was caused by esterification 

between hydroxyl groups of cellulose and anhydride groups (Figure 2.2) of MA-PP6. 
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Pathapulakkal et al7 used CAs such as ethylene-(acrylic ester)-glycidylmethacrylate and 

ethylene-(acrylic ester)- maleic anhydride with high density polyethylene (HDPE) which gave 

significant strength and rigidity to the composite materials. 
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Figure 2.2. Mechanism of PP-MA reacting with Lignocellulosic hydroxyl group. 

2.5 Biocomposites and their interactions with the environment 

Every manufacturer has to make sure when they are preparing biocomposites that they 

pose no danger to the environment or to human health throughout their service life. Regarding 

the design of biocomposites the following important issues need to be discussed: (i) the possible 

emission of odours, (ii) the release of nanosized fillers and low molecular weight compounds, 

(iii) high moisture absorption, and (iv) chemical modifications. 
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2.5.1 Emission of volatiles and low molecular weight compounds from 

biocomposites 

Generally reinforced biocomposites possess limited thermal stability during thermo-

mechanical processing at the required temperatures, which may contribute to the formation of 

low molecular weight compounds as a result of the degradation of either the lignocellulosic 

fibers or the polymeric matrix used as reinforcement. This causes the release of unwanted odours 

during service life and processing, which limits the applicability of biocomposites in automotive 

components and indoor construction applications. Extrusion (including foaming, reactive 

extrusion, film and sheet forming), injection moulding and compression moulding are the most 

common procedures for the thermo-mechanical processing of biocomposites9. The pyrolysis of 

(bio)polymers and natural fibers as well as thermal degradation have been widely reported in the 

literature, mostly from the perspective of biomass pyrolysis and residue incineration10'11. 

Thermogravimetric analysis (TGA) is a common technique used for the investigation of 

decomposition kinetics and to assess the thermal stability of the (bio)polymeric matrix, natural 

fibers and their composites. Mass spectrometry (MS) or TGA combined with FTIR provides the 

information about volatiles released during the process. Thermal stability of biocomposites is 

enhanced by the presence of natural fibers, due to the strong interactions between the 

components; hence degradation of the products is prevented1 ' . The reverse phenomena is 

observed in other cases, where any constituent of the biocomposite which is thermally 

susceptible may promote earlier degradation of the overall material12,1314. To decrease the 

formation of degradation products that could be released as odorous and volatile compounds 

during the service life of the products, contributing to poor indoor air quality, it is very important 

to assess the thermal stability of biocomposites 
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2.5.2 Degradation of Biocomposites 

Studies of the degradation process must be performed to assure that materials are 

structurally stable during their use as well as to confirm that they are biodegradable and 

bioassimilable without ecotoxicological properties when being disposed of. The degradation 

process in polymer can be classified as (i) chemical degradation (caused by chemical agents such 

as water (hydrolysis), oxygen (oxidation), bases or acids), (ii) mechanical degradation (by 

external stress), (iii) degradation by radiation (including electromagnetic and UV light exposure), 

(iv) thermal degradation (by temperature), or (v) biological degradation (by biological entities). 

Degradation studies of composite materials must be carried out in controlled environmental 

chambers, where the external factors can be adjusted and recorded while observing the 

degradation process and their effects. 

2.5.2.1 Abiotic degradation by water absorption 

A biocomposite material's performance is reduced by water absorption and hydrothermal 

degradation due to the hydrophilic nature of the polymeric matrix (bio)polymer and/or the 

natural reinforcement. In the preparation of biocomposite materials it is important to analyse the 

moisture absorption phenomenon, its degradative effects, and the ways to reduce them during 

service life. Composites prepared from a material which was exposed to high humidity were 

found to suffer more damage to the interfacial strength of the final composite than those 

experiencing post-fabrication water exposure . Moisture absorption depends on the hygroscopic 

constituents present in the biocomposite material. There are three different mechanisms through 

which water penetrates the composite material: (1) water molecules diffuse inside the microgaps 

between the polymer chains; (2) due to incomplete wettability and impregnation, capillary 

transport of water molecules into the gaps and flaws at the interface between polymer and fibers; 
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and (3) during the compounding process micro cracks are formed in matrix, and water molecules 

transported in to these microcracks16. There are several factors affecting the moisture absorption 

in biocomposite materials: fiber loading (increase in fiber content shows a rise in water 

absorption), the chemical nature of lignocellulosic fibers (lignin is hydrophobic and hence 

permits lower water absorption), fiber geometry and compatibilization between fiber and matrix 

(improved adhesion between fiber and matrix results in smaller and fewer microgaps where 

water uptake may occur)17' . In biocomposites with a hydrophobic polymer matrix reinforced 

with lignocellulosic fibers, increased water absorption is expected. However, in biocomposites 

with a hydrophobic biopolymer as a matrix and natural fibers showed greater water resistance, 

due to fiber-matrix interactions that are absent in the former matrix. This was observed in starch-

based composites reinforced with sisal fillers19'20. 

2.5.2.2 Hydrothermal degradation 

Moisture absorption and its resulting hydrothermal degradation irreversibly affects the 

morphology and properties of lignocellulosic fibers and the polymer matrix, and severely 

damages the matrix-fiber interface. This leads to poor stress transfer from matrix to 

reinforcement21. For hydrothermal degradation, the proposed mechanism begins with water 

absorption by the hydrophilic constituents of the composite (matrix and/or fibers). The presence 

of moisture causes swelling of the reinforcement. As a result of this, stress may develop at the 

interface and around the swollen fibers causing matrix micro-cracks to develop. Chain 

reorientation and shrinkage effects also occur in the matrix structure. Moisture absorption and its 

resulting effects contribute to the loss of compatibility between matrix and fiber. Hydrogen 

bonds between the hydrophilic constituents of the biocomposite fibers and water molecules are 

formed, resulting in weakening and debonding of the interface adhesion18'22. Natural fiber 
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degradation occurs by hydrolytic mechanisms due to hydrothermal ageing. The main damage 

induced by water absorption is weakening of the fiber/matrix interface23. 

2.5.2.3 Thermo- and Photo-Oxidation 

The effect of thermo- and photo-oxidation on the properties of biocomposite materials are 

not widely studied compared with other traditional degradative processes. This may be due to the 

fact that other degradative mechanisms damage the biocomposites in a more selective manner 

than long term oxidative exposure in a dry environment. Thomas et al.24 studied prolonged 

exposure to elevated temperature (100°C) resulting in decrease in fiber strength. This is due to 

the decomposition of volatile extractables present on the surface of the fiber. Even though 

cellulose constituents are stable up to 160°C, thermo-oxidative reactions might occur during 

prolonged exposure, which leads to fiber degradation. Voids then develop in the interface and 

result in loss of interfacial adhesion between fiber matrix. Chemical modifications of the fiber or 

incorporation of bonding agents is used to increase the compatibility between fiber and matrix. 

This retains the mechanical properties during thermo-oxidation . Synthetic thermoplastic 

reinforced with natural fibers may offer a protective effect against photo-oxidation and similarly 

for thermo-oxidation. Ultraviolet radiation stimulates photo-oxidation in materials and is 

responsible for chain breaking in the thermoplastic matrix and the surface cracks which appear in 

the composites26' 27. The generation of such defects and cracks can be minimized by increasing 

fiber load26 and by increasing adhesion between the matrix and fiber28 (either by the addition of 

compatibilizers or by fiber treatment). 
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2.6 Water absorption 

The hydrophilic nature of the natural fibers plays a vital role in the ageing of biocomposites by 

immersion in water or in a wet atmosphere. Moisture absorption has become a big hurdle in the 

development of the use of the natural fibers in composite materials due to degradation and 

decrease in the properties of composites in wet conditions. Biocomposites used for outdoor 

applications need to be investigated for mechanical properties in a moist environment. 

H.S. Yang et al.29 proved that the PP-RHF 30wt.%-MAPP 3 wt.% biocompsite exhibited 

significantly less thickness swelling than the other PP-RHF bio-composites, because the MAPP 

chemically bonded with the -OH groups in the lignocellulosic filler and this limits the water 

absorption ( shown in Figure 2.3) 
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Figure 2.3. The function of the compatibilizing agent in a lignocellulosic filler-polyolefin 

29 
composite system . 

The experiments carried out by Yang et al. showed that biocompsite samples containing 

MAPP and MAPE showed lower thickness swelling and water absorption, that the thickness 

swelling and water absorption of the composites are directly proportional to the filler loadings 

and that the compatibilizing agents have a positive effect on the thickness swelling and water 

absorption. The strong interfacial bonding between the filler and matrix polymer caused by the 

compatibilizing agents limits the thickness swelling and water absorption of the composites. 
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Bis-(2,6-diisopropylphenyl) Carbodiimide trimethylolpropane triacrylate 

Figure 2.4. Chemical structures of anti-hydrolysis agent and trimethylolpropane trifunctional 

monomer.31 

J.S.Kim et al.30 used an anti-hydrolysis agent and a trifunctional monomer (Figure 2.4) to 

conduct a thermal analysis of degradation and hydrolysis of biocomposites and biodegradable 

polymers such as Polybutylene Succinate (PBS) at 50°C and 90% relative humidity (RH). They 

proved that addition of trimethylolpropane triacrylate and an anti-hydrolysis agent is an effective 

method of reducing the degradation and hydrolysis of biocomposites and biodegradable 

polymers under high humidity conditions. 

Tajvidi et al.31 prepared composites of polypropylene by using kenaf fibers, newsprint 

fibers, wood flour and rice hulls (25 and 50% by weight content) including 1 and 2% 

compatibilizers. Long-term water absorption tests were performed on these samples at room 

temperature for 5 weeks. From their experimental results they found that, RH/PP (rice hull / 

polypropylene), WF/PP (wood flour / polypropylene) exhibits minimum water absorption 

compared to KF/PP (kenaf / polypropylene) and NP/PP (Newsprint) composites. The composites 
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with higher fiber content resulted in higher water absorption, this is because of "the hydrophilic 

lignocellulosic fraction in a composite increases by increasing fiber content". At longer 

immersion times the effect of fiber content on water absorption is more pronounced. The water 

diffusion coefficient of these composites found to be 3 times higher than that of pure 

polypropylene. 

Rouison et al conducted water absorption tests on hemp fiber/unsaturated polyester 

composites by exposing them to air with a relative humidity of 94% or by immersing them in 

water. The moisture absorption process follows a diffusion mechanism, confirmed/proved by 

using images obtained with a magnetic resonance imaging (MRI) system. Here the longitudinal 

direction diffusion method is more improtant than transverse direction. The longitudinal 

diffusion coefficient was found to be 3x10" m Is. As the fiber content increases, the diffusion 

coefficient of the water in the samples increases and water absorption also increases. They 

conclude: the best way to lower "the rate of water absorption was to keep the fibers properly 

sealed within the matrix". 

Karlsson et al18 have taken fibers from pine or eucalyptus wood and also one-year crops 

such as sisal, coir, etc. to be used in polypropylene composites preparation. Water absorption 

tests were studied by immersion of these composites in water at three different temperatures 

70°C, 50°C and 25°C. The process of water absorption of natural fiber/PP composites was found 

to follow the kinetics and mechanisms discribed by Fick's theory. Mechanical properties of these 

composites were found to decreased by water absorption. Water-saturated composites present 

poor mechanical properties such as stress at maximum load and Young's modulus values are 

low. Use of 3 wt% of ethylene vinyl acetate copolymer (EVA) in a PP composition shows 

improved resistance to water absorption. EVA is a copolymer of ethylene, which helps in 

17 



adhesion to PP matrix, the acetate groups in EVA bond to hydroxyl groups on fibers and by this, 

compatibility between fibers and matrix is improved. 

2.7 Chemical Effect on Biocomposites 

2.7.1 Natural fibers 

Natural fibers are hydrophilic in nature. These fibers are obtained from lignocellulose and 

contain polar hydroxyl groups. These fibers are incompatible with hydrophobic polymers, such 

as polyolefins (PP, PE). There are several limitations for natural fibers as reinforcements with 

polymer matrix, such as (1) poor interfacial adhesion between the nonpolar hydrophobic polymer 

matrix and polar hydrophilic fiber, (2) orientation of the fibers (during the composite preparation 

fibers orient along the flow direction of the matrix, and hence vary in mechanical properties in 

different directions), and (3) Fiber dispersion (poor dispersion of fibers results in a loose bundle, 

which will show less reinforcing potential than a single fiber). In order to develop strength in a 

composite material, there should be a strong interface between the fiber and matrix. When a load 

is applied externally on the surface of the matrix, this load will be transferred to the fibers on the 

surface and continue from fiber to fiber through the matrix. If the fiber-matrix interface is poor 

then the load distribution is not effectively achieved, and thus the composite material 

demonstrates poor mechanical properties. However, a strong interface between fiber and matrix 

can assure that the composite is able to bear the load and, even if several fibers are broken, the 

load applied on the interface of a composite can be transferred to the intact portions of unbroken, 

as well as broken fibers. For any composite material a poor interface is always a drawback, e.g. 

when the composite is subjected thermal stress, premature failure can occur at a weak interface 

because of differential thermal expansion of the fibers and matrix. Hence, adhesion between 
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matrix and fibers is an important factor in determining the response of the interface and its 

integrity under stress. 

A lignin and hemicellulose matrix helps hold hollow cellulose fibrils together, hence 

natural fibers can be considered as composites.33 Figure 2.5 shows that the fiber cell wall is not a 

homogenous membrane34. Each fiber consists of primary and secondary walls. The primary wall 

is thin and it is the first layer formed during cell growth. The fiber's secondary wall made up of 

three layers. The mechanical properties of the fibers can be determined by the thick middle layer 

of secondary wall. The middle layer of the secondary wall consists of a series of cellular 

microfibrils (helical in nature). These cellular microfibrils are formed from long chain cellulose 

molecules. Each microfibril has a diameter in the range of 10-30nm and they are made up of 30-

100 cellulose molecules and give mechanical strength to the fibers. The amorphous matrix phase 

in a cell wall consists of lignin, hemicellulose and in some cases (pectin). 
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Figure 2.5. Structure of Biofiber.35 

The cellulose molecules are hydrogen bonded with hemicellulose. This acts as cement matrix 

between the cellulose microfibrils and forms the hemicellulose-cellulose network. Lignin is 
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hydrophobic in nature, its network acts as a coupling agent causing the cellulose/hemicellulose 

composite stiffness to increases. 

2.7.2 Mechanism of Chemical modifications 

Surface modification of composite materials includes: (1) physical treatment (such as 

extraction of solvent), (2) physical-chemical treatment (such as the use of plasma and corona 

discharges36, (3) and chemical modifications (direct condensation of the cellulose surface with 

coupling agents or by its grafting by ionic or free-radical polymerization. 

A few common chemical treatments adopted for natural fibers explained below. 

2.7.2.1 Alkali treatment 

There is an increase in the amount of amorphous cellulose at the expense of crystalline 

cellulose in alkali treatment. Removal of hydrogen bonds in the network structure is the 

important modification in alkali treatment. 

Alkali treatment reaction: 

Fiber -OH + NaOH > Fiber - 0"Na+ + H20 

Cellulose fibers undergo a swelling reaction as a result of alkali treatment. The natural 

crystalline structure of the cellulose relaxes during this time. Figure 2.6 shows alkali-cellulose 

and cellulose-II forms. KOH, LiOH and NaOH are different types of alkali chemical used for 

alkali treatment. Na+ are able to widen the smallest pores in between the lattice planes and enter 

into them. Therefore when treated with NaOH a higher amount of swelling was observed. This 

leads to the formation of a lattice (Na-Cellulose-I) with relatively large distances between the 

cellulose molecules and water molecules. There is an increase in the dimension of the molecules 
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in this structure due to -OH groups of the cellulose being converted to -ONa groups. The linked 

Na-ions were removed by rinsing with water which converted the cellulose to cellulose-II (is a 

new crystalline structure). Thermodynamically cellulose II is more stable than cellulose I. From 

cellulose I to cellulose II a complete lattice transformation can occur using NaOH. Figure 2.6 

shows that other alkalis produced only partial lattice transformation. The alkali solutions also 

influence the noncellulosic components such as hemicellulose, lignin and pectin37. 

Water molecules Direction <* * * » will 
, cellulose molecular 

Cellulose-! Na~Cellu!ose I CeJuIot #4! 

Figure 2.6. Lattice structure of Cellulose I and Cellulose II.37 

2.7.2.2 Acetylation 

One of the important methods used to modify the surface of natural fibers is acetylation. 

The main principle of the method is that acetyl groups (CH3CO) reacts with the hydroxyl groups 

(OH) of the fibers and make the fiber surface more hydrophobic. The hydroxyl groups of natural 

fibers in the crystalline regions are closely packed with strong interchain bonding and are 

inaccessible for chemical reagents. The following reaction represents the acetylation of the -OH 

group in cellulose. 

CH3COOH 
Fiber -OH + CH3CO-O-OC-CH3 >Fiber-0-OC-CH3 + CH3COOH 

Conc.H2S04 
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Acetylation proved to be beneficial in reducing water absorption of fibers. The acetylated 

jute fibers and pine fibers have shown reduction in moisture absorption by 50% and 65%, 

respectively38. The interface between flax fiber and PP composites was found to be increased by 

Acetylation39 

2.7.2.3 Silane Treatment 

With silane chemicals, different groups attached to one end of the silicon react with the 

hydrophilic fiber and the other end reacts with matrix silicone. This acts as a bridge between 

them. There are a number of factors depends on uptake of silane such as temperature, pH, 

hydrolysis time and organofunctionality of silane. Silanols reacts with hydroxyl groups of the 

fibers and form poly-siloxane structures . Figure 2.7 shows the chemical reaction of silane 

treatment. 
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Figure 2.7. Scheme of interaction of silanes with cellulosic fibers.41 

Amino silane molecules react with the hydroxyl groups of cellulose through the Bronsted 

basic amino groups. Herrera-Franco et al. ' ' investigated the properties of henequen fiber-

reinforced polymer composites by using different silane coupling agents. These authors proved 

that the reaction between silanes and cellulose takes place only at temperatures above 70°C by 

using FTIR and XPS spectroscopy. 
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2.7.3 Chemical Modification Characterization of Natural fibers 

Chemical modifications of natural fibers are amenable due to the presence of -OH 

groups. These -OH groups within the cellulose molecule may form hydrogen bonds. New 

moieties can be introduced by activating these groups that form an effective interlocking system. 

Chemical modifications of fibers can improve surface characteristics such as adhesion, wetting, 

surface tension and porosity. Some of the work on fiber modifications are cited below. 

2.7.3.1 Aspen Fiber composites 

Xue et al.45 studied the effect of maleic anhydride-grafted polypropylene (MAPP) as a 

coupling agent on the mechanical properties of aspen fiber/PP composites. Adhesion between the 

matrix and fibers improved with the coupling agent, further more tensile properties of these 

composites increased. By using a compatibilizer, the flexural and tensile strength increase by 

15% and 40%, respectively. Colom et al.46 investigated the interfacial characteristics of aspen-

HDPE composites by using different chemical modification methods. The addition of two 

coupling agents such as y-methacryloxyl-propyl trimethoxy silane (Silane A-174) and meleated 

polyethylene (epolene C-18) improved interaction between aspen fibers and HDPE. The authors 

proved that silane A-174 was a better compatibilizer than epolene. This indicates that when these 

composites are modified with epolene coupling agent, adhesion occurs due to multiple 

mechanisms of interdiffusion and adsorption, while the silane-treated composites showed a 

chemical mechanism of adhesion with the formation of hydrogen bridges and also covalent 

bonds. This increases the adhesion between the matrix and fiber. 

2.7.3.2 Bagasse fiber Composites 

Zheng et al.47 investigated the effect of benzoic acid chemical modifications on bagasse 

fibers in polyvinyl chloride composites. The tensile strength increased by 35% in modified 
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composites, which indicates better reinforcement. The tensile strength was found to be 38 MPa 

for untreated fibers containing composites, whereas for modified fibers containing composites, it 

was found to be 52 MPa. Cao et al.48 investigated the effect of alkali treatment on the mechanical 

properties of bagasse fiber-reinforced polyester composites. 1, 3 and 5% concentrations of NaOH 

were used for chemical modification. Composites made from 1 % NaOH-treated bagasse fibers 

were found to have superior properties. Due to the chemical modifications, these composites 

showed 14% improvement in flexural strength, 13% in tensile strength and 30% in impact 

resistance. 

2.7.3.3 Coir fiber composites 

Brahamakumar et al.49 investigated the influence of the natural waxy surface layer of coir 

fiber-reinforced PE composites. To determine the effect of the waxy layer on interfacial bonding 

between the fiber and matrix, surface-modified coconut fibers were obtained by grafting an 

isocyanate derivative of cardanol (CIDIC). Coconut fibers with wax-free surface were also used. 

The coconut fiber's natural waxy surface layer provides a strong interfacial bonding between the 

fiber and polymer matrix. Removal of the natural waxy layer of the coir fiber resulted in a poor 

interfacial bonding and decreased the composite modulus and tensile strength by 60% and 40% 

respectively. Due to the polymeric nature of the wax layer, there was a large difference in 

matrix/fiber bonding as compared to that of a grafted layer of a C15 long alkyl chain molecule 

onto the wax-free fiber. 

Nam et al.50 developed poly(butylene succinate) (PBS) biodegradable composites 

reinforced with coir fibers. The authors investigated the effect of alkali treatment on the 

mechanical properties and surface morphology of coir fibers, as well as the mechanical 

properties and interfacial shear strength (IFSS) of coir fiber/PBS composites. The coir fibers 
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treated with 5% NaOH solution for 72 hrs at room temperature showed a IFSS increase of 

55.6%. Alkali-treated coir fibers increased the wettability and the interfacial bonding strength of 

the fibers with PBS resin which lead to an improvement in the mechanical properties of the 

composites. Increasing fiber content up to 25% increases the mechanical strength and modulus of 

the composites. Increases above 25% fiber content in composites showed decrease in modulus 

and tensile strength. 

2.7.3.4 Flax fiber composites 

Weyenberg et al.37 studied the effect of alkali treatment on flax fibers. The authors 

mainly concentrated on optimizing parameters such as concentration of NaOH and time, in order 

to develop a continuous process for the fabrication and the treatment of unidirectional flax fiber-

epoxy composites. The transverse strength of the composites increased by 30% when the 

material was treated with 4% NaOH solution for 45s. 

Elsabbagh et al.51 investigated the effect of NaOH solution on the properties of flax fibers 

and the matrix. Trimethoxyvinyl silane (TMVS) and acrylic acid (AA) were used to treat a 

selected groups of fibers. The PP matrix is functionalized with liquid TMVS, AA and maleic 

anhydride (MA). As a result, the coupling agents of TMVS, AAPP and MAPP are formed. The 

stiffness of modified AAPP matrix increased fourfold compared to that of untreated flax/PP 

composites. Lower water absorption values and improved mechanical properties were observed 

for a MAPP-modified matrix. NaOH-TMVS/TMVS-MAPP and NaOH/MAPP show 300% and 

285% increase in stiffness at 40 %wt, respectively. Modification by MAPP is considered 

superior in impact resistance and water absorption. A significant difference between matrix 

treatments on the tensile strength is difficult to detect. Considering the surface modification of 

the fiber, TMVS was well known for strength and stiffness, while NaOH washing was enough 
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considering water absorption and impact. NaOH-TMVS/AAPP and NaOH-TMVS/MAPP 

systems proved their applicability as compared to the classical NaOH/MAPP system. 

2.7.3.5 Ramie fiber composites 

Chem et al.'2 showed the effect of surface treatment of biocomposites based on Poly(L-

Lactic Acid) (PLLA) and ramie fiber. Ramie fiber absorbs less water compared to jute, kenaf, 

sisal, hence it was a preferable reinforcing material. Dynamic mechanical analyzer (DMA) 

results showed an increase in storage modulus of treated PLLA (Figure 2.8) Ramie fiber treated 

with permanganate acetone solution (KFAB) and ramie fiber treated with permanganate acetone 

solution and silane solution (KsFAB)) compared to untreated PLLA. After UV irradiation, a 

hydrothermal aging test on treated PLLA (KFAB and KsFAB) showed at good mechanical 

properties were not maintained. The reason for this is that the high water absorption of KFAB 

and KsFAB can accelerate the water permeation rate in PLLA biocomposites. This plays a key 

role in the decline of interfacial adhesion strength of KsFAB/PLLA. 
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Figure 2.8. Hypothetical reaction of Silane with KFAB 52 
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2.8 Fourier transform infrared spectroscopy 

The Fourier transform infrared spectroscopy (FTIR) technique is used to characterize the 

surface of a fiber. From this, interfacial adhesion information can be obtained53. George et al.54 

used an IR (infrared) technique to characterize the interface and modified fiber surface of the 

pineapple leaf fiber PE (poly ethylene) composites. Colom et al.46 conducted different chemical 

modifications on aspen fibers to study the interfacial characteristics of aspen fiber reinforced 

with HDPE composites. With the addition of two coupling agents, y-methacryloxy-propyl 

trimethoxy silane (silane A-174) and maleated PE (epolene C-18) to the above composites, the 

interaction between aspen fibers and HDPE was found to be improved. The lowest absorbance 

value corresponds to the composites modified with maleated polypropylene (PPMA) and the 

highest value to that of untreated composites. FTIR was used to examine the interface of wood 

fibers reinforced with PP composites by Hristov and vasileva55. The authors modified poly 

propylene matrix with poly (butadiene styrene) rubber and PPMA. From the FTIR spectra of the 

treated composites they confirmed that the coupling agent was attached to the wood fibers either 

by hydrogen or ester bonds. 

Mwaikambo and Ansell5 studied chemical modifications of different fibers using 

different microscopic and spectroscopic methods. One of the techniques was FTIR: this was used 

to analyse sisal, jute, kapok and hemp fibers after treatment with NaOH. Kapok fiber was found 

to be the most reactive among the fibers, followed by jute, sisal and hemp. Adhesion between 

fiber and resin was improved by alkalisation, thereby increasing the thermal and mechanical 

stability of the composites. Wong et al.57 studied the influence of 4,4' -thiodiphenol (TDP) on 

the interfacial properties of flax fiber reinforced with poly(3-hydroxybutyrate). The added TDP 
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forms hydrogen bonds with various functional groups. Hydrogen bonding in the composite, as 

revealed by FTIR, brought beneficial changes in the mechanical properties of the composite. 

Kim et al.58 analysed chemically treated natural wood fiber (lignocel CI20) by FTIR 

spectroscopy. This gave clear evidence of crystalline structure transformation in observing a 

wave number shift from Cell-I to Cell -II. Using NaOH treatment and attachment of benzoyl or 

silane coupling agents, they confirmed the transformation of crystalline cellulose structure in 

wood fiber with FTIR spectra. 

The FTIR technique advantage is less experimental complexity, further more 

interpretation of the spectrum is simplified. FTIR is more precise than the infrared technique. 

The disadvantages of the FTIR technique are lower sensitivity than infrared and need to use 

compact samples. 

2.9 Mechanical Properties 

Bledzki et al.59 studied the effect of reinforcing poly(3-hydroxy butyrate-co-3-hydroxy 

valerate) (PHBV) and Polylactic acid biopolymers on the mechanical properties. PLA and PHBV 

both are reinforced with jute, abaca and man-made cellulose fibers. The results of these 

biopolymer composites were compared with the polypropylene(PP) composites which have the 

same reinforcing fibers. The biopolymer composites showed an increase in strength (>50%), 

stiffness and notch impact strength (>250%) compared to common natural fiber reinforced 

polypropylene. Due to the advantageous geometry and good mechanical performance, man-made 

cellulose proved to be a favorable reinforcing fiber. Sawpan et al.60 studied mechanical 

properties of PLA composites reinforced with chemically treated aligned long fiber and random 

short hemp fiber were investigated over 0-40 wt% range of fiber content. Short hemp fiber 
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reinforced PLA composites showed an increase in impact strength, Young's modulus and tensile 

strength with increased in fiber content (10-30%) 

2.9.1 Effect of Water Absorpion on Mechanical Properties of Biocomposites 

Tajvidi et al.6 studied the mechanical properties and water absorption behavior of 

polypropylene composites containing three different types of natural fillers such as wood flour, 

waste paper fibers and purified a-cellulose. The samples were prepared with fiber contents 15, 

25 and 35% by weight and 2% maleic anhydride polypropylene (MAPP) is added to these 

samples as a compatibilizer agent. Water absorption by cellulose fibers/PP composites is found 

to be lower than the paper fibers and wood flour composites. The reason for lower water 

absorption is the better interaction of fibers with the polymer matrix which leads to better 

coverage of the fibers by the polymer. This result disagrees with the literature.62 Composites with 

15% filler of any type show sharp reduction in the values of elongation at break and there is no 

significant change in the values between 25 and 35% filler contents. Tensile strength for 15% 

fiber content of any type decreased slightly but generally increased by addition of more fibers. 

As the fiber content increased in the composites, the modulus of elasticity also increased. There 

is no significant difference in the values of modulus at 35% fiber content of any type. Energy at 

the proportional limit is reduced as the fiber content increased in the samples. 

Bledzki et al.63 studied the potential of grain by-products such as rye husk or wheat husk 

as reinforcement for composite materials and as an alternative to softwood fibers. Rye husk and 

wheat husk are thermally stable as low as 210°C and 235°C, respectively. Wheat husk and rye 

husk contains 45% and 43% proportions structural polymers (cellulose and starch), respectively, 

whereas softwood contains 42%. Wheat husk and rye husk were found to have a carbon-rich 

surface compared to softwood fibers. More surface silicon was found in wheat husk than 

30 



softwood fiber. A 15% better charpy impact strength was shown by wheat husk composites than 

sfotwood composites. 110% better elongation was shown by rye husk at break as compared to 

soft wood composites. 

2.10 Thermal properties 

When a composite is manufactured, the behavior of the natural fiber as well as the 

physical properties of the natural fiber contained in a composite can be affected by temperature. 

The main obstacle in the preparation of biocomposites is the low thermal stability of natural 

fibers. To avoid the degradation of natural fibers, the temperature for processing was kept below 

the natural fibers' degradation temperature. The degradation of natural fibers leads to poor 

mechanical integrity and brittleness of the thermoplastic composites. Ng64 reported that natural 

fiber degradation is undesirable and the results include decrease in mechanical strength, rise in 

brittleness and the biocomposites darken. 

Thermogravimetric analysis (TGA) is the most commonly used technique to investigate 

the thermal stability of natural fibers. In this method, a specimen is heated up in a helium or 

nitrogen environment and is thermally oxidized or decomposed. The degree of decomposition 

can be calculated from the sample weight loss compared to the reference, corresponding to the 

temperature. Lee et al. used red algae {Gelidium Elegance) fibers as a reinforcing material in 

poly(butylene succinate) to fabricate biocomposites and also studied the effect of reinforcement 

content on the thermal properties in terms of thermal expansion and thermal stability. Fibers 

from red algae were generated effectively by extracting and bleaching processes. The bleached 

red algae fiber (BRAF) showed thermal and crystalline properties similar to crystalline cellulose. 
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Higher thermal stability, with the maximum thermal decomposition temperature 356.6°C, was 

shown by bleached red fiber compared to that of crystalline cellulose. 

Kim et al.66 studied the interfacial adhesion mechanical and thermal properties of 

biocomposites treated with CAs. The dynamic storage modulus (El), values of maleic anhydride-

grafted poly(lactic acid) (PLA-MA) and maleic anhydride-grafted poly(butylene succinate) 

(PBS-MA) treated biocomposites slightly increased as well as the Tg (glass transition 

temperature) values of PLA-MA and PBS-MA treated biocomposites as compared to untreated 

composites. The heat deflection temperatures (HDT) of PLA-MA- and PBS-MA-treated 

biocomposites were found to be greater than the maleic anhydride-grafted polypropylene 

(MAPP) and untreated maleic anhydride-grafted poly(styrene-b-ethylene-co-butylene-b-styrene) 

triblock copolymer (SEBS-MA) treated biocomposites. The use of MA-grafted polymer matrix 

as a CA in biocomposites improves the mechanical and thermal properties as well as increases 

the interfacial adhesion of fiber/matrix. 

Rosa et al.67 studied the thermal and mechanical properties of starch/EVOH/coir 

biocomposites. Coir fibers are treated by three different methods: alkali treatment 

(mercerization), washing with water, and bleaching. These chemically modified fibers are 

incorporated into starch/ethylene vinyl alcohol copolymer (EVOH) blends. Washing, 

mercerization and bleaching treatments removed impurities on the surface of the fibers, produced 

modifications on the fiber surface and improved thermal stability of both fiber-reinforced 

biocomposites and fibers. Treated fibers showed moisture release at higher temperatures because 

of the improved wetting of the finely separated coir fibers by polymer matrix. 
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Bhat et al. studied mechanical, physical and thermal properties of hybrid biocomposites 

prepared from oil palm trunk (OPT) and oil palm empty fruit bunch (EFB). 450 and 250 g/m2 of 

urea formaldehyde (UF) were used as gluing agent in the preparation of the above hybrid 

composite. The hybrid biocomposites with a glue spread level of 450 g/m2, showed better 

thermal stability than plywood with a glue spread level of 250 g/m2. Moriana et al.69 studied the 

improved thermal stability of starch-based thermoplastic biocomposites (Mater-Bi KE 03B1) by 

the addition of three different natural fibers, hemp, kenaf and cotton and the compatibilization 

between matrix and natural fibers through morphological and viscoelastic properties. Pure 

Mater-Bi KE natural fibers act as thermal stabilizer, by increasing the activation energy and the 

thermal stability associated to the thermal decomposition process. Kenaf and hemp fibers 

showed better interfacial adhesion with pure Mater-Bi KE, due to the compatibilizer effect of 

partly lignin and hemicellulose with both the synthetic polyester and thermoplastic starch 

contained in the polymeric matrix. Therefore, kenaf and hemp fibers act as better thermal 

stabilizers than cotton fibers for pure Mater-Bi KE. Cotton fibers provided the lowest decrease in 

the thermal expansion coefficient associated with the glass transition and the highest increase in 

the modulus. 
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Chapter III 

3 . Materials and Methods 

3.1 Materials 

WPC is a commercial composite that consist of HDPE and wood flour. Biocompsite 

material provided by University of Guelph is a true Biocompsite consisting of biopolymer and 

30% switchgrass fibers. The composition of switchgrass is 37% cellulose, 29% hemicellulose, 

19%lignin. 

3.2 Water absorption 

WPC and switchgrss/biopolymer composite were used to observe the water absorption at 

different temperatures (20°C, 30°C and 70°C). Samples were dried prior to the test in a 

desiccator for 24hr. These samples were first weighed (W0), then immersed in distilled water at 

different temperature in water bath. At certain time intervals these samples were removed from 

the water and dried with filter paper to remove the water on surface of composites and weighed 

(Wt). The amount of water absorbed by the composite and WPC was calculated by the weight 

difference between the samples immersed in water to the dry samples. The total water absorption 

was calculated by using following equation. 

Wt-Wo 
WA (%) = —r— x 100% (1) 

Wo 

3.3 Diffusion coefficient (D) 

Diffusion coefficient (£>) was calculated using the following equation from the initial 

slope of the plot of M/Mm against -Jt (time). 18,32 
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M 4 (D^05 

Mm h l n 
t05 (2) 

where 

Mt = moisture content at time, 

Mm = moisture content at equilibrium, 

h = thickness of the sample, 

t = soaking time. 

The Mm values were taken from the water absorption vs. time graphs for certain material and 

temperature. Mm (maximum water absorption) was calculated as the average value from a series 

of measurements that showed no additional moisture absorption. The importance of measuring 

the diffusion coefficient is that it gives a measure of the rate of water absorption 

3.4 Density Determination 

A Sartorius analytical tool was used to determine the density of WPC and 

switchgrss/biopolymer composite samples. The Archimedean principle was applied to determine 

the density of these composite materials. Density (p) was calculated using the following 

equation. 

W(a).p(fl) 
y W(a)-W{fl) ( 3 ) 

where 

W(a) = weight of the solid in air, 

W(fl) = weight of the solid in liquid, 
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p (fl) = density of the liquid, 

p = specific gravity of the liquid. 

In this method the mass of the sample measured in air and then immersed in distilled 

water. When a sample is immersed in water, water is subjected to the force of buoyancy. The 

value of this force is equal to the weight of the water displaced by the volume of the sample. 

When a composite material is submerged in water air bubbles may appear on the surface of the 

specimen. These air bubbles acts as a part of the sample and displaces additional water. This will 

increases the volume of the material. All air bubbles should be removed thoroughly from the 

surface of the sample for proper measurement. If not, there will be an error in measured mass of 

the sample and the calculated density. 

3.5 Thickness Swelling Determination 

Dimensional stability was determined by measuring the thickness of the samples as a 

function of their exposure to water. The samples were soaked in water at different temperatures 

until they reach equilibrium. The thickness swelling of the WPC and switchgrss/biopolymer 

composite material was calculated using the following equation. 

G% 

where 

[hi J 
xlOO 

(4) 

G% = thickness swelling of the sample, 

h2 (mm) = thickness swelling of the sample at time, 
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hi (mm) = thickness of the dry sample. 

3.6 Dehydration 

WPC and switchgrss/biopolymer composite material were stored in distilled water at 

room temperature for 360hrs (reaches equilibrium) and then dehydrated for 1152hrs (room 

temperature). Weight of these samples periodically measured. The moisture content in WPC and 

switchgrss/biopolymer composite materials at specified time intervals were plotted versus 

dehydration time to observe the trend of moisture removal. Equation no. 1 was used to calculated 

moisture content in the samples. 

3.7 Scanning Acoustic Microscopy 

Scanning acoustic microscopy (SAM) is helpful in material characterization. The 

ultrasonic testing method is based on transmission of high-frequency elastic sound waves 

through the sample. There are several configurations of the acoustic microscope based on shape 

of the ultrasonic signal and the type and relative position of the transducers,. Ultrasonic testing 

primarily consists of two methods: (1) the pulse-echo method, (2) the through-transmission 

method. In the pulse-echo test method, a transducer emits a pulse of ultrasonic signal and detects 

the echo reflections. This method is especially useful for imaging the internal structure of a 

material. The transducers used in this method stimulates the "spike" of a high-voltage pulse for a 

period of 5-20ns and produce one or two periods of the acoustic wave. The ultrasonic sound 

waves penetrate through the coupling liquid into the material and reflect back from the voids and 

boundaries. The reflected sound wave is received by the transducer which converts it into an 

electrical signal with the voltage corresponding to the amplitude. After amplification, the 
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acoustic signal received by the transducer is digitized and stored in the computer memory for 

further analysis (Figure 3.1). 

Figure 3.1. Schematic representation of (a) the principle of acoustic scanning (b) scanning 

acoustic microscope 

Acoustic B-scan (Figure 3.2) is a 2-dimensional image, which is obtained by assembling 

several oscillograms. These oscillograms are collected in equidistant positions of the transducer 

along a straight line. Both the position of transducer (along one axis) and the time delay from the 

initial pulse (second direction) are related to each pixel position. Amplitude of the received 

signal is proportional to the brightness of the pixel. B-scans represent a vertical cross section of 

the sample, which can be obtained when transducer moves in one-dimension. 

Figure 3.2. Schematic representation of the acoustic image formation (a) B-scan 

38 



B-scans are specifically useful to evaluate the depth-dependent material structure. 

Acoustic data from the sample volume can be collected when the transducer moves in two-

dimensions parallel to the sample surface. A set of B-scans combined into three-dimensional 

cube of data is formed by multiple lines of mechanical raster scanning. C-scans (horizontal-cross 

section) represent the distribution of reflective properties of the materials at given depth. As a 

two-dimensional function of the transducer position, the C-scan is formed by the plotting of 

signal maximum inside the user-defined time window. 

A focused transducer (acoustic lens) is the main part of acoustic microscope. Figure 3.3 

shows an acoustic lens consisting of a buffer cylinder. The buffer cylinder is made from fused 

quartz with an attached piezoelement. The buffer has a spherical concave surface on the outer 

side. Which provides focusing of the acoustic beam. Plane acoustic waves generated by the 

transducer travel through the buffer and refract towards the focus when they cross the spherical 

surface. 

Pulse-receiver 

O O Q 

Coupling 
liquid (water) 

Sample 

Stainless case 

Piezoelement 

Figure 3.3. Schematic image of the acoustic lens. 
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The acoustic lens and the surface of the sample are coupled through an immersion 

medium. High impedance mismatch between the material and air can be reduced by using a 

coupling material. There are few cases where the use of immersion medium (couplant) can 

damage the sample (e.g. textiles, fiber webs or water sensitive samples). In scanning acoustic 

microscopy resolution depends on both the acoustic hardware and the material properties. The 

resolution of the ultrasonic microscopy method is capable of distinguishing two close reflectors 

on the C-scan (later resolution) and on the A-scan (axial resolution). These two values are 

proportional to the central frequency of the wave for the short pulse signal. 

The Rayleigh criteria states that "the images of two points may be considered resolved if 

the principle diffraction maximum of one falls exactly on the first diffraction minimum of the 

other". According to the above statement and Kino notes70, by using a focal spot size and Airy 

radius lateral resolution can be determined. 

0 . 5 U _ 0.51c F 

sintf ~ f N.A 
rA,ry = — ^ = ' , . Ar , (5) 

The ideal numerical aperture has never been realized in practice. For focused acoustic 

waves, SAM uses a frequency range of 3MHz-2GHz, in this spatial resolution is limited to a few 

microns. By increasing the frequency an increase in acoustic image resolution cannot always be 

achieved, because the square of this frequency is proportional to the attenuation of the ultrasonic 

wave. Thus, when a sufficiently high frequency wave is used as a probe, it may not be possible 

to obtain information from the interior part of the sample as the wave may not penetrate far 

enough inside the specimen. Using attenuation in the coupling fluid the highest frequency level/ 

is determined. 
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where 

dace= acceptable attenuation in the coupling media, 

ao = specific attenuation in liquid per Hz of acoustic frequency, 

q = focal length (proportional to velocity). 

The resolution coefficient Re is equal to 

*t=V(Co«o) (7) 

The smaller Rc, the better resolution can be achieved at shorter wavelength. 

3.8 Pulse-echo Technique 

From the transducer (Figure 3.4) a pulse is sent into the material. This pulse is reflected 

by the front and back surfaces of the specimen. The transducer receives the returned pulse at 

reduced amplitude. A recording oscilloscope is used to monitor the waveforms. From the 

amplitude and timing of the reflected waves, the attenuation (equation 9) and sound speed 

(equation 8) of the material can be determined. 
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transducer 

amplitude 

Figure 3.4. Schematic representation of the principle of pulse-echo method. 

C = 
2/2 

where 

h = thickness of the sample, 

At = Time of flight. 

a =—In 
2h 

(8) 

(9) 

where 

h = thickness of the sample, 

Al and A2 = Amplitude of the signal, 

A = Attenuation. 

3.9 Scanning Electron Microscope: 

Scanning electron microscopy (SEM) experiments were performed in order to study the 

effect of water on the WPC and switchgrss/biopolymer composite structures. Fractured 

specimens were imaged in an FEI Quanta 200 FEG Environmental SEM. FEG means Field 

emission gun (it is one type of filament). This is an Environmental (TM) SEM, which means it 

can operate under High vacuum, Low vacuum and Environmental mode. The samples were 
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imaged under low vacuum (70pa) and at a pressure of 15kV (this is the operating pressure of the 

sample chamber). A scanning electron microscope (SEM) uses a beam of electrons to investigate 

the morphological characteristics of the material. The Large Field Secondary Electron Detector 

and a solid-state backscatter detector were used to detect the electrons. An SEM uses electrons 

from a heated tungsten wire filament accelerated down the column through a voltage potential. 

The electron beam penetrates into the sample in 3-dimensions. There are some important 

interactions that occur such as secondary electrons (SE), Backscatter Electrons (BSE). Secondary 

electrons (Figure 3.5) are lower in energy (<50 eV) and originate from the atoms in the sample 

itself. These SE originated from the top 100 Angstroms of the sample surface. Backscatter 

Electrons (Figure 3.6) are high energy electrons. These electrons leave from approximately a 3rd 

of the total penetration volume of the beam. BSE production is dependent on a material's atomic 

number. Therefore backscatter images reveal composition information. BSEs are higher in 

energy compared to than SEs. Since these electrons scattered back from the sample they are 

called Backscatter Electrons. 

The SEM working principle under a low vacuum condition is: when the primary beam 

interacts with the gas molecules in the sample chamber some portion of gas molecules get 

ionized. Due to ionization, the molecules split into an environmental secondary electron and a 

positively charged ion. The positive ions will recombine with the electrons initially charging the 

specimen to form gas molecules again. Gas has only one function under low vacuum conditions: 

charge neutralization. 
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Electron from Beam is deflected 
Figure 3.5. Schematic representation of principle of BSE71. 

Bottom of SEM Column 

Electron in Specimen 

Figure 3.6. Schematic representation of principle of SE 71 
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3.10 STATISTICS 

The water absorption experiments and acoustic data mentioned in the chapters IV and V 

at 20°C performed three times. At 40°C the experiment performed two times and at 70°C the 

experiment performed two times. The percentage was calculated by the average value of the last 

two points and the values of the initial point. 
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CHAPTER - I V 

4. Results and Discussion 

4.1 Water absorption 

Moisture absorption is one of the main parameters to assess the quality of the 

biocompsite materials. Water absorption is considered a disadvantage due to its migration into 

the material, this can lead to disturbance of the matrix-fiber interface7 . Natural fibers can also 

absorb moisture which initiates cracks or disturbances in the fiber-matrix interface interactions75. 

Water absorption affects the stability and reduces the overall strength of biocomposites72 

There are three major mechanisms considered for moisture absorption into biocompsite 

materials. They are: (1) water molecules diffuse inside the microgaps between the polymer 

chains; (2) due to incomplete wettability and impregnation, capillary transport of water 

molecules into the gaps and flaws at the interface between polymer and fibers; (3) during the 

compounding process micro-cracks are formed in the matrix, water molecules are transported 

~lf\ 77 78 

into these micro-cracks. ' ' 

One of the greatest problems in environmental durability of biofiber reinforced 

*7G Rfl ft1 

composites is their exposure to water in liquid or vapour form ' ' . High sensitivity of natural 

composites to water is due to the hydrophilic nature of natural fibers. Biofibers are rich in polar 

hydroxyl groups, which make them hydrophilic and sensitive to water exposure. There are 

several factors affecting the water absorption in biocomposite materials (1) loading of fibers 

(increase in % of fiber content shows increase in moisture absorption) ' ' , (2) chemical nature 

of lingocellulosic fibers (lignin is hydrophobic in nature, hence lower values of water 
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absorption) , (3) fiber geometry, (4) matrix-fiber interface (improved adhesion between matrix 

and fibers would result in fewer and smaller microgaps where the water absorption occurs)17, l8. 

Exposure to the above conditions causes changes in mechanical properties and loss in composite 

strength18. 

To study the water absorption of switchgrss/biopolymer composites, various approaches 

are used: total immersion in water at room or elevated temperatures, exposure to high humidity 

conditions at elevated temperatures, cyclic exposure to elevated temperatures, humidity and 

drying74. The first approach was used in this study as showing the most considerable effect on 

the composite properties. 

WPC and switchgrss/biopolymer composite were used to evaluate water absorption. A 

WPC material is a commercial product which is designed to be used outdoors and we expect it to 

show good water resistance. The switchgrss/biopolymer composite is designed at the University 

of Guelph and is intended to use in car interior. 

4.1.1. Wood Plastic Composite (WPC) 

Figure 4.1 shows the weight change (in %) for WPC during its exposure to water at 

various temperatures. During water exposure, the weight of the composite sample increases due 

to water penetration in the material. Water absorbance increases as the temperature rises. For 

WPC at 20°C the maximum water absorbance (wt. %) is 8.37%, at 40°C it is 10.16% and at 70°C 

it is 10.6%. Water absorption in WPC reached its saturation level (where there is no further water 

absorption observed) at 312hrs at 20°C, at 216hrs for 40°C and at 72hrs for 70°C. This indicates 

that as the temperature increases the rate of water absorption increases as well, resulting in 

reduced time to saturation level. 
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Time (hours) 

Figure 4.1. Water absorption of WPC at different temperatures. 

Water absorption in sythetic polymers such as polypropylene and polyethylene is low due 

to their hydrophobic nature. ' ' • The slight water absorption in synthetic polymers is because 

of microgaps, which are formed during the composite preparation. Thus water absorption is 

mostly due to fibers. 

4.1.2. switchgrss/biopolymer composite 

Figure 4.2 shows the values of the water absorption of switchgrss/biopolymer composite. 

The amount of water absorbed by the composite varies depending upon the water temperature. 

The switchgrss/biopolymer composite material shows the following maximum values of the 

weight increase:- 3.86% at 20°C, 3.91% at 40 °C and 6.63% at 70 °C. The switchgrss/biopolymer 

composite at 20°C reached the saturation level at 360hrs, for 40 °C the switchgrss/biopolymer 

composite reached the saturation level at 96hrs and for 70 °C it reaches saturation at 72hrs. This 

indicates that as the temperature of water increased, the rate of water absorption also increases. 
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The biopolymers such as poly(caprolacton) (PCL), poly(butylene succinate) (PBS), 

poly(lactic acid) (PLA) and poly(hydroxyalkanoates) (PHA) are widely used as matrices in 

biocomposites73. Poly(lactic acid) (PLA) is a biodegradable polymer with excellent thermal and 

mechanical properties. PLA contains aliphatic polyester groups, which are hydrophilic in nature. 

PLA can easily undergo hydrolysis when exposed to moisture. The products formed by 

hydrolysis are non-toxic to human beings88. Starch-filled PLA composites show an increase in 

water absorption compared to pure PLA . Wang et al. prepared PLA-starch blended with 

methylenediphenyl diisocyanate composites. They have demonstrated correlation of the 

increased water absorption with higher biodegradability for both composite and PLA 

polymer' 84,87 

100 200 300 400 

Time (hours) 
500 600 

Figure 4.2. Water absorption of switchgrss/biopolymer composite at different temperatures. 
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4.1.3. WPC vs. switchgrss/biopolymer composite Discussion 

Table 2 shows values of saturation levels in water absorption, when the process reaches 

the equilibrium and times to reach the equilibrium for both materials at various temperatures. 

The data are obtained from the Figures 4.1 and 4.2. Water absorption in WPC is higher 

compared to that of switchgrss/biopolymer composite for same time period immersed in water at 

different temperatures. The difference is greater for lower temperatures (more than twice) and 

decreases at 70°C (1.6 time). Time to reach equilibrium is almost the same for both composites at 

20°C,70°C 

Table2: Water absorption values at equilibrium (wt. %) and time to reach equilibrium (hours) 

Temperature, °C Water absorption% at equilibrium Time to reach an equilibrium (hours) 

WPC switchgrss/biopolymer WPC switchgrss/biopolymer 

composite composite 

20°C 8.37 3.86 312 360 

40°C 10.16 3.91 216 96 

70°C 10.6 6.63 72 72 

Thus, in spite of better water resistance of synthetic polymer matrix in WPC, the 

composite shows greater susceptibility to water. This may be explained by increased surface of 

fiber-matrix interface or wood flour used in WPC contains high percentage of cellulose, which 

shows high water absorption due to their inherent hydroxyl groups. These hydroxyl groups of 

cellulose form hydrogen bonds with water molecules. 
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4.2 Diffusion Coefficient (D) 

The ability of the water molecules to penetrate inside switchgrss/biopolymer composite 

material can be described by the diffusion coefficient. Diffusion coefficient (D) was calculated 

using the following equation from the initial slope of the plot of M/Mm against -Jt (time) 16>85:-

Mm h \n) 
t05 (2) 

where 

Mt = moisture content at time, 

Mm = moisture content at equilibrium, 

h = thickness of the sample, 

t = soaking time. 

Diffusion coefficient gives a measure of the rate of water absorption. The diffusion 

coefficient value allow us quantitatively describe the water absorption process 

Data from the Table 2 were used for calculations. Figures 4.3 and 4.4 show the M/Mm 

values versus the square root of time (in seconds) for both materials at all measured 

temperatures. From these graphs, the slopes of the approximately linear portion of the curves 

were obtained. Diffusion coefficients were calculated from these slope values. For diffusion 

coefficient calculation, the sum of all three mechanisms assumed to take place simultaneously. 
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Figure 4.3. Initial part of the water absorption slopes for WPC at 20°C, 40°C & 70°C. 
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gure 4.4. Initial part of the water absorption slopes for switchgrss/biopolymer composite at 

20°C, 40°C & 70°C. 



Figure 4.5 and 4.6 shows the mean of the diffusion coefficient results for each 

temperature. The calculated diffusion coefficient values are also listed in Table 3. From the 

Figures 4.5 and 4.6, it can be concluded that increase in immersion temperature increases the 

diffusion coefficient values for both WPC and switchgrss/biopolymer composite. 

1.50E-07 

20 C 40 C 70 C 

Figure 4.5. Diffusion Coefficient of WPC at three different temperatures. 
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20 C 40 C 70 C 

Figure 4.6. Diffusion Coefficient of switchgrss/biopolymer composite at three different 

temperatures. 

Table 3: Diffusion Coefficient of WPC and switchgrss/biopolymer composite at different 
temperatures 

Material 

WPC 

Switchgrss/biopolymer composite 

Diffusion Coefficient 

20°C 

1.40xl0'8 

9.06x10'9 

40°C 

3.86xl0"8 

3.49x10'8 

cm /s 

70°C 

1.30xl0"7 

7.83xl0"8 

According to the above results, the values of diffusion coefficient for natural fiber 

7 0 9 

reinforced composites fall in the order of 10" to 10" cm Is, these values are in agreement with 

the range of values reported for other natural fiber reinforced composites: short hemp-glass fiber 
Q-\ t Q£ 

hybrid polypropylene composite , unsaturated polyester-woodflour composites , polypropylene 
• IS 

with natural cellulosic fibers from wood and sisal, coir, luffa composites , hemp fiber-
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unsaturated polyester composites32. The diffusion coefficient for switchgrss/biopolymer 

composite is two-fold lower than WPC at 20°C and 70°C. Lower diffusion coefficient values for 

switchgrss/biopolymer composites indicates that, it showed better water resistant even at higher 

temperatures compared to WPC. For 40°C the diffusion coefficient values are almost same for 

both materials, reason could be no. of microcracks are more in switchgrass/biopolymer 

composite material. 

4.3 Density of W P C and switchgrss/biopolymer composite 

Moisture content in composite material depends on density of that particular composite 

material. The lower the density, the higher the moisture absorbance in composite material.74 

Figure 4.7 shows the density pattern of WPC at different temperatures. At 20°C the 

decrease in density for WPC is very low (0.14%). At 40°C the decrease in density for WPC was 

0.2% and at 70°C the decrease in density for WPC was 1.2%. 
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Figure 4.7. Change in density of WPC at three different temperatures. 
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Figure 4.8 shows the decrease in density of the switchgrss/biopolymer composite during 

water exposure at different temperatures. At 20°C and 40°C the decrease in density for 

switchgrss/biopolymer composite was 0.5% and 0.6% respectively. At 70°C the density 

resduces by 1.5%. As the temperature increases density decreases in both WPC and 

switchgrss/biopolymer composite materails. The decrease percentage for 70°C is almost same in 

both materials. 
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Figure 4.8. Change in density of switchgrss/biopolymer composite at three different 

temperatures. 

4.4 Dimensional stability of W P C and switchgrss/biopolymer composite 

To test thickness swelling, samples were soaked in water at different temperatures until 

they reach equilibrium. The thickness swelling of the WPC and switchgrss/biopolymer 

composite material were calculated using the following equation. 
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G% = 
'h^ 

\h\ j 
xlOO 

(4) 

where 

G% = thickness swelling of the sample, 

h2 (mm) = thickness swelling of the sample at time, 

hi (mm) = thickness of the dry sample. 

Thickness swelling of the composite material depends on both the matrix and the fibers 

used in it. Figure 4.9 and 4.10 show G% (thickness swelling of samples) values versus time (in 

hours) for both WPC and switchgrss/biopolymer composite material at different temperatures. 

For WPC at 20°C the increase in thickness is 6.14%, at 40°C it is 8.16% and at 70°C the 

thickness swelling is 10%. The increased thickness swelling for switchgrss/biopolymer 

composite at 20°C is 3.38%, at 40°C it is 3.68% and at 70°C it is 5.88%. 

200 300 400 
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600 

Figure 4.9. Thickness swelling of WPC at three different immersion temperatures. 
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Figure 4.10. Thickness swelling of switchgrss/biopolymer composite at three different 
immersion temperatures. 

This clearly indicates the thickness swelling of the WPC and switchgrss/biopolymer 

composite increases with an increase in the period of water exposure as well as rise in 

temperature. The thickness change for WPC was 1.81, 2.21 times more than 

switchgrss/biopolymer composite at 20°C and 40°C respectively. At 70°C WPC thickness 

swelling is 1.7 times higher than switchgrss/biopolymer composite. From the above results it can 

be concluded that WPC shows poor dimensional stability compared to that of 

switchgrss/biopolymer composite material. 

4.5 Dehydration 

A dehydration experiment was carried out in order to explain whether these composite 

materials wi 11 follow reversible process after removal of water. Graph 4.11 shows the progress 
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of dehydration process for WPC and switchgrss/biopolymer composite samples. The changes in 

moisture content of the material were plotted versus dehydration time. 
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Figure 4.11. Dehydration of WPC and switchgrss/biopolymer composite at room temperature. 

The dehydrated switchgrss/biopolymer composite and WPC material show the following 

moisture content values 38.8% and 28.6% respectively. There is no complete weight recovery 

observed in these samples even after exposing 1152hrs at room temperature. WPC shows high 

water absorption as well as high dehydration switchgrss/biopolymer composite exhibits lower 

water absorption and also lower dehydration. There was no discoloration of either material 

observed during the dehydration process. 

4.6 Morphology 

Morphology (fracture surface analysis) of the WPC and switchgrss/biopolymer 

composite materials was studied by scanning electron microscopy (SEM) analysis. Figure 4.12 

(a)-(f) and Figure 4.13 (a)-(f) presents SEM micrographs of WPC and switchgrss/biopolymer 
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composite samples before and after water absorption, respectively, under similar conditions. 

SEM micrographs of WPC show high percentage of wood flour filler in the material. Due to high 

percentage presence of fillers the water absorption is high in the WPC samples. Because of 

higher amount of water absorption SEM images show poor interfacial bonding at many places 

and the number of fiber pullouts was also more. All samples of WPC (Figure 4.12a-f) 

micrographs at three different temperatures showed poor interfacial bonding between polymer 

matrix and fibers (as implied by circles and arrows). Whereas in Figures 4.13a-f (except 'd') of 

switchgrss/biopolymer composite material, it can be observed that there is a good adhesion 

between the switch grass fibers and the biopolymer matrix seen on the fracture surfaces (as 

indicated by arrows). These micrographs have shown a minimum number of fiber pullouts 

indicating their good interfacial interaction. Water absorption by switchgrss/biopolymer 

composite material at 20°C and 40°C is much less due to strong interfacial bonding between the 

fiber and matrix. A chemical linkage between hydroxyl groups of natural fibers with biopolymer 

is the main reason for better interfacial adhesion. Whereas for switchgrss/biopolymer composite 

material at 70°C, the micrograph Figure 4.13d show poor interfacial bonding between polymer 

matrix and fiber (because it has shown high amount of water absorption which leads to the poor 

interfacial bonding). SEM micrograph Figure 4.13a shows damaged fiber this was due to, when 

sample was fractured because of strong interfacial bonding fiber get damaged. As the water 

absorption increases instead of fiber damage, as fiber pullouts can be observed. 
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Figure 4 12 SEM micrographs of the fractured surface of WPC, (a) completely dry sample, (b) 
Drying after 20°C water immersion, 
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Figure 4.12. SEM micrographs of the fractured surface of WPC, (c) Drying after 40°C water 
immersion, (d) Drying after 70°C water immersion, 
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Figure 4.12. SEM micrographs of the fractured surface of WPC, (e) 20°C water immersion, (f) 
40°C water immersion. 
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Figure 4.13. SEM micrographs of the fractured surface of switchgrss/biopolymer composite (a) 
completely dry sample, (b) Drying after 20°C water immersion, 
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Figure 4.13 SEM micrographs of the fractured surface of switchgrss/biopolymer composite, (c) 
Drying after 40°C water immersion, (d) Drying after 70°C water immersion, 
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Figure 4.13. SEM micrographs of the fractured surface of switchgrss/biopolymer composite (e) 
20°C water immersion, (f) 40°C water immersion. 
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Chapter V 

5. Acoustic measurements 

The ultrasonic non-destructive method is the most widely studied among all non

destructive techniques. This method helps determine sound speed, damping, attenuation 

characteristics and elastic constants, presence of flaws, fatigue behaviour and other defects in 

wood-based materials.89"92 

In the ultrasonic investigation method, energy is coupled directly to the sample; in that a 

pulse propagates through a thin layer of coupling medium (glycerine water base gel is used to 

wet the composite surface) from the transducer into the composite sample. WPC and 

switchgrss/biopolymer composite samples with different moisture content were taken for 

acoustic measurements. High precision measurement methods are required as these samples 

absorb a low amount of water. The acoustic data was collected using 2.25MHz, 3.5MHz and 

10MHz transducers. 
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5.1 Ultrasonic wave speed Measurements in WPC 

5.1.1 Ultrasonic wave speed Measurements in WPC at 2.25MHz 

Soaking Time (hours) 

Figure 5.1. Ultrasonic wave speed of WPC for 2.25MHz at three different temperatures. 

Figure 5.1 shows the velocity (ultrasonic wave speed) vs. soaking time of the WPC for 

2.25MHz frequency to observe the sound speed change at different times as well as at various 

temperatures. As the soaking time increased, the ultrasonic wave speed of the WPC was also 

increased. For 20°C the increase in ultrasonic wave speed was 7%, at 40°C it was 7.5% and at 

70°Citwasl.5%. 

68 



5.1.2 Ultrasonic wave speed Measurements in WPC at 3.5MHz 

2200 

200 300 
Time (hours) 
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Figure 5.2. Ultrasonic wave speed of WPC for 3.5MHz at three different temperatures. 

Figure 5.2 shows ultrasonic wave speed of WPC at 3.5MHz for each temperature. The 

increase in ultrasonic wave speed for WPC at 20°C was 5%, 6% was 40°C and 1.5% decrease in 

ultrasonic wave speed at 70°C. As the frequency increased from 2.25MHz to 3.5MHz, there was 

an increase in ultrasonic wave speed percentage for both 20°C and 40°C temperatures. 
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5.1.3 Ultrasonic wave speed in WPC vs. Weight change% at 2.25MHz 
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Figure 5.3. Ultrasonic wave speed of WPC vs. Weight% for 2.25MHz at three different 
temperatures. 

Figure 5.3 presents the ultrasonic wave speed in WPC versus moisture content measured at 

2.25MHz for three different temperatures. As the moisture content increased the ultrasonic wave 

speed in WPC also increased at all three temperatures. There was a slight increase in ultrasonic 

wave speed of WPC even after reaching the saturation level. This may be due to material 

properties which continue to change. At 20°C the increase in ultrasonic wave speed was found to 

be 7% for an increase in weight by 8.37% compared to initial material. For 40°C the increase in 

ultrasonic wave speed was 7.5% with an increase in mass by 10.16% compared to starting sample. 

For 70°C ultrasonic wave speed was increased by 1.5% with an increase in weight by 10.6% 

compared to dry sample. 
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5.1.4 Ultrasonic wave speed in WPC vs. Weight change% at 3.5MHz 

1850 
4 6 8 
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Figure 5.4. Ultrasonic wave speed of WPC vs. Weight% for 3.5MHz at three different 
temperatures. 

Figure 5.4 presents the ultrasonic wave speed in WPC versus moisture content in the 

material measured at 3.5MHz for each temperature. There was an increase in ultrasonic wave 

speed by 5% in the final material and an increase in mass by 8.37% for dry samples at 20°C. For 

40°C it was 6% increase in ultrasonic wave speed and an increase in mass by 10.16% for starting 

sample. At 70°C it was 1.5% decrease in ultrasonic wave speed and an increase in mass by 10.6% 

compared to dry material. 

Polymer in WPC becoming much thicker as water is absorbed by filler swells the 

composite material; hence the velocity for the ultrasonic sound wave increases. 
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5.2. Attenuation measurements in WPC 

5.2.1 Attenuation Measurements in WPC at 2.25MHz 

200 300 
Soaking Time (hours) 

Figure 5.5. Attenuation of WPC for 2.25MHz at three different temperatures. 

Figure 5.5 shows the attenuation values for WPC materials at 2.25MHz frequency. The 

attenuation values for WPC increase at different temperatures. Increase in attenuation percentage 

value at 20°C was 24%, at 40°C 5% and 70°C it was 16%. 
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5.2.2 Attenuation Measurements in W P C at 3.5MHz 

0 100 200 300 400 500 
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Figure 5.6. Attenuation of WPC for 3.5MHz at three different temperatures. 

Figure 5.6 shows the increase in attenuation of the WPC sample for 3.5MHz frequency at 

various temperatures. At 20°C and 40°C the increase in attenuation was 3% and 6% respectively. 

As the temperature increased from 20°C to 40°C the attenuation percentage values also increased 

for 3.5MHz frequency. At 70°C it was 3% increase in attenuation. 
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5.2.3 Attenuation in W P C vs. Weight change% at 2.25MHz 
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Figure 5.7. Attenuation of WPC vs. Weight% for 2.25MHz at three different temperatures. 

Figure 5.7 presents the attenuation measured at 2.25MHz for WPC at various 

temperatures. The attenuation increased for WPC at different temperatures. Increase in 

attenuation value was 24% at 20°C with an increase in mass of 8.37% compared to dry sample. 

At 40°C attenuation was 5% higher in samples having an increase of 10.16% in mass than in the 

starting material. At 70°C, 16% higher attenuation was found in samples having a weight 

increase of 10.6% than the initial material 
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5.2.4 Attenuation in W P C vs. Weight change% at 3.5MHz 
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Figure 5.8. Attenuation of WPC vs. Weight% for 3.5MHz at three different temperatures. 

Figure 5.8 presents the attenuation in WPC versus moisture content measured at 3.5MHz 

for three different temperatures. The attenuation increased by 3% at 20°C with an increase in 

weight of 8.37% compared to dry sample. For 40°C increase in attenuation is found to be 6% 

with an increase in weight of 10.16% compared to dry sample. At 70°C the increase in 

attenuation was 3% with an increase in mass of 10.6% compared to that of starting material. 
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5.3 Ultrasonic wave speed Measurements in switchgrss/biopolymer composite 

5.3.1 Ultrasonic wave speed measurements in switchgrss/biopolymer 
composite at 2.25MHz 
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Figure 5.9. Sound speed of switchgrss/biopolymer composite for 2.25MHz at three different 
temperatures. 

Figure 5.9 shows the values for the ultrasonic wave speed (2.25MHz) of the 

switchgrss/biopolymer composite at different temperatures. There was a decrease in ultrasonic 

wave speed values of the switchgrss/biopolymer composite material at three different 

temperatures. The decrease in ultrasonic wave speed was 2% at 20°C, 3.5% at 40°C and 10% at 

70°C. This indicated that as temperature of water increased the ultrasonic wave speed decreased. 

There is a decrease in ultrasonic wave speed as water content increases in the 

switchgrss/biopolymer composite material. This was not observed in WPC material. The 

decrease in ultrasonic wave speed measured at 2.25MHz for switchgrss/biopolymer composite 
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sample at 40°C was 2 times lower and at 70°C it was 6 times lower compared to ultrasonic wave 

speed decrease at 20°C. 

5.3.2 Ultrasonic wave speed measurements in switchgrss/biopolymer 
composite at 3.5MHz 
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Figure 5.10. Sound speed of switchgrss/biopolymer composite for 3.5MHz at three different 
temperatures. 

Figure 5.10 shows change in ultrasonic wave speed pattern at 3.5MHz in 

switchgrss/biopolymer composite material at different temperatures. At 20°C the decrease in 

ultrasonic wave speed for switchgrss/biopolymer composite was 1%, at 40°C it was 3 % and at 

70°C it was 8%. As the temperature increased ultrasonic wave speed percentage also increased for 

switchgrss/biopolymer composite at 3.5MHz frequency. The decrease in ultrasonic wave speed at 

40°C was 3 times lower and at 70°C it was 7 times lower than the decrease in ultrasonic wave 

speed at 20°C. 
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5.3.3 Ultrasonic wave speed measurements in switchgrss/biopolymer 

composite at 10MHz 
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Figure 5.11. Sound speed of switchgrss/biopolymer composite for 10MHz at three different 
temperatures. 

Figure 5.11 shows ultrasonic wave speed values of switchgrss/biopolymer composite 

versus the soaking time (in hours) for various temperatures at 10MHz frequency. From this 

Figure at 20°C the decrease in ultrasonic wave speed was 1%, at 40°C it was 2% and at 70°C it was 

7%. As the temperature increased the sound speed percentage values was also increased for 

switchgrss/biopolymer composite material. For WPC material 10MHz data was not collected as 

WPC material is not sensitive at higher frequencies. The decrease in ultrasonic wave speed at 

10MHz frequency for switchgrss/biopolymer composite at 40°C and 70°C was two, seven times 

lower than the decrease in ultrasonic wave speed at 20°C respectively. 
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5.3.4 Ultrasonic wave speed in switchgrss/biopolymer composite vs. Weight 
Change% at 2.25MHz 
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Figure 5.12. Sound speed of switchgrss/biopolymer composite vs. Weight% for 2.25MHz at 
three different temperatures. 

Figure 5.12 shows the ultrasonic wave speed in switchgrss/biopolymer composite versus 

weight change at 2.25MHz for various temperatures. The ultrasonic wave speed was found to be 

2% lower in samples having an increase in 3.86% in mass than in the dry switchgrss/biopolymer 

composite at 20°C temperature. For 40°C it was 3.5% lower in ultrasonic wave speed and had an 

increase of 3.91% in weight than in the dry material. For 70°C it was 10% decrease in ultrasonic 

wave speed for increase in 6.63% in weight than the starting material. 
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5.3.5 Ultrasonic wave speed in switchgrss/biopolymer composite vs. Weight 
Change% at 3.5MHz 
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Figure 5.13. Sound speed of switchgrss/biopolymer composite vs. Weight% for 3.5MHz at three 
different temperatures. 

Figure 5.13 shows ultrasonic wave speed in switchgrss/biopolymer composite versus 

weight change in the sample measured at 3.5MHz for three different temperatures, ultrasonic 

wave speed decreased by 1% at 20°C with an increase in mass by 3.86% in comparison with dry 

sample. At 40°C decrease in ultrasonic wave speed was 3% with an increase in weight by 3.91% 

compared to starting material. At 70°C ultrasonic wave speed decreased by 8% and an increase in 

mass 6.63%o compared with dry material. 
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5.3.6 Ultrasonic wave speed in switchgrss/biopolymer composite vs. Weight 
Change% at 10MHz 

70°C 

Weight Change% 

Figure 5.14. Sound speed of switchgrss/biopolymer composite vs. Weight% for 10MHz at three 
different temperatures. 

Figure 5.14 presents the ultrasonic wave speed in switchgrss/biopolymer composite versus 

moisture content in the material measured at 10MHz for each temperature. At 20°C the decrease 

in ultrasonic wave speed was 1% with an increase in weight of 3.86% in comparison with starting 

material. For 40°C there was 2% decrease in ultrasonic wave speed with an increase in mass of 

3.91% compared to initial sample. At 70°C there was a 7% decrease in sound speed with an 

increase in mass of 6.63% compared to dry sample. 

Ultrasonic wave speed change observed in the switchgrss/biopolymer composite sample is 

related to water absorption. A decrease in ultrasonic wave speed was observed in 

switchgrss/biopolymer composite samples at high temperature. At high temperature (70°C) water 

absorption percentage increased. This is due to water molecules' penetrating quickly into the 

microcracks of the polymer matrix. The water absorption percentage at 40°C was slightly higher 
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than water absorption at 20°C. This is due to water molecules diffusing inside the microgaps 

between the polymer chains. At this temperature polymer molecules can move and because of 

this water molecules can enter and come outside the material. Water absorption of 

switchgrss/biopolymer composite samples at 20°C is because of capillary transport of water 

molecules into the gaps and flaws at the interface between polymer and fibers. 

For switchgrss/biopolymer composites the fiber length is long, hence there were 

variations in ultrasonic wave speed. This could contribute to less sensitivity of the acoustics. 

5.4 Attenuation measurements in switchgrss/biopolymer composite 

5.4.1 Attenuation in switchgrss/biopolymer composite at 2.25MHz 
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Figure 5.15. Attenuation of switchgrss/biopolymer composite for 2.25MHz at three different 
temperatures. 

Figure 5.15 shows the attenuation values for switchgrss/biopolymer composite material at 

2.25MHz frequency. For the switchgrss/biopolymer composite sample, attenuation values did 

not follow any pattern. At 20°C the decrease in attenuation percentage value was 15%, for 40°C 
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the 2.25MHz frequency was not sensitive (there was no overall change in attenuation values). At 

70°C the increase in attenuation value was 16%. 

5.4.2 Attenuation in switchgrss/biopolymer composite at 3.5MHz 
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Figure 5.16. Attenuation of switchgrss/biopolymer composite for 3.5MHz at three different 
temperatures. 

Figure 5.16 shows decrease in attenuation values observed for switchgrss/biopolymer 

composite material at 3.5MHz for three different temperatures. At 20°C and 40°C the decrease in 

attenuation was 13% and 7% respectively. At 70°C the attenuation reduced by 2.5%. Attenuation 

values decreased as the temperature increased. 
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5.4.3 Attenuation in switchgrss/biopolymer composite at 10MHz 
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Figure 5.17. Attenuation of switchgrss/biopolymer composite for 10MHz at three different 
temperatures. 

Figure 5.17 shows at 10MHz frequency values of attenuation collected at each 

temperature. At 40°C the 10MHz frequency is not sensitive as there was no change in the 

attenuation values. At 20°C and 70°C the decrease in attenuation was 7% and 3% respectively. 
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5.4.4 Attenuation in switchgrss/biopolymer composite vs. Weight change% at 
2.25MHz 
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Figure 5.18. Attenuation of switchgrss/biopolymer composite vs. Weight% for 2.25MHz at three 
different temperatures. 

Figure 5.18 presents the attenuation measured at 2.25MHz for switchgrss/biopolymer 

composite at various temperatures. For switchgrss/biopolymer composite material at 20°C the 

decrease in attenuation value was 15% with an increase in weight by 3.86% compared to starting 

material. For 40°C there was no significant change in the attenuation values. For 70°C 

attenuation values lowered by 16% with an increase in mass of the sample by 6.63% compared 

to dry sample. 
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5.4.5 Attenuation in switchgrss/biopolymer composite vs. Weight change% at 

3.5MHz 

Figure 5.19. Attenuation of switchgrss/biopolymer composite vs. Weight% for 3.5MHz at three 
different temperatures. 

Figure 5.19 present the attenuation values of the switchgrss/biopolymer composite 

sample versus weight change measured at 3.35MHz for different temperatures. At 20°C the 

attenuation values was found to be 13% lower with an increase in mass of 3.86% compared to 

the initial material. For 40°C 7% decrease in attenuation with an increase in weight of 3.91% 

compared to that of dry sample. At 70°C decrease in attenuation value was 2.5% with an increase 

in mass of 6.63% compared to starting material. 
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5.4.6 Attenuation in switchgrss/biopolymer composite vs. Weight change% at 

10MHz 
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Figure 5.20. Attenuation of switchgrss/biopolymer composite vs. Weight% for 10MHz at three 
different temperatures. 

Figure 14.20 presents attenuation values measured at 10MHz frequency for 

switchgrss/biopolymer composite samples at each temperature. At 40°C there was no significant 

change in the attenuation values. At 20°C decrease in attenuation was found to be 7% with an 

increase in weight of 3.86% compared to dry sample. For 70°C 3% lower attenuation values with 

an increase in mass by 6.63% compared to initial material. 

In the attenuation process ultrasonic sound wave penetrates (scattered) into the material 

through the transducer and gets reflected back from the bottom of the sample. Attenuation was 

found to be decreased for the switchgrss/biopolymer composite sample at three different 

temperatures. As the water content increased in the sample, the ultrasound reflection from 

bottom of the sample would not reach back to the transducer. As a result the pulse receiver 

shows decrease in attenuation values. 
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5.5 Acoustic Images 

A Scanning Acoustic Microscopy Sonix HS-1000 was used to get the acoustic images. 

From the images it was observed that as the immersion time increases for samples the water 

absorption by fibers also increases. The fibers gradually become exposed from the surface of the 

sample and increase as the time progresses. Acoustic scans were performed to examine the 

nature of the biopolymer/switchgrass fiber interface and any modifications that appears during 

immersion of the samples in water. A fifty Mega Hertz (50MHz) transducer was used to get the 

acoustic images. Figure 5.21 shows the typical modifications that appear at the interface of 

biopolymer/switchgrass fiber under the influence of water at 20°C. Acoustic images clearly show 

the presence of fibers throughout the interface. 

Figure 5.21a the acoustic image at Ohrs (dry sample, not immersed in water) shows the 

plain surface (fibers were not visible). Fibers began to appear as they absorbed water when the 

switchgrss/biopolymer composite samples were immersed in water. This can observe in figures 

5.21b,c a& d. The circles were drawn on the image show some of the fibers expand out from the 

matrix. These images were taken at different time intervals. 
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5.21. Acoustic images of the switchgrss/biopolymer composite samples exposed to water at 
different time intervals, a) Ohrs b) 24hrs c) 120hrs d) 360hrs. 
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5.6 Histograms 

Analysis of the acoustic image histograms gives contrast ratio. Actually the acoustic 

images represent a stochastic spatial arrangement of the elastic moduli in the 

switchgrss/biopolymer composite material. A number of pixels of certain brightness in the image 

histograms are represented as a function of pixel brightness, which gives us elastic moduli 

distribution statistically in the material as this parameter is primarily related to amplitude of the 

reflected signal. Histogram width represent the contrast ratio of the images. X-axis of the 

histograms represents the pixel brightness (scale is 0-256) and Y-axis represents the number of 

pixels with certain brightness. All the histogram images (Figure 5.22a,b,c & d) show the same 

peak maximum position (biopolymer matrix). Maximum peak is same for all images which 

means the reflection coefficient is same for the matrix. The reason for this may be that the matrix 

did not absorb water. Darker area corresponds to fibers appearance at the surface and water 

absorption by them. The brightness of the images started decreasing as the immersion time 

increased for the samples. A decrease in the reflection coefficient means the properties of 

material becomes closer to water. The higher the water content in the material, the less bright the 

image will be. Figures 5.22b, 5.22c and 5.22d on the X-axis observed that widening of the 

histogram indicates the decrease in surface uniformity. Brightness of the image pixel depends on 

how the properties of material (elastic modulus and density) differ from water properties. 
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5.22 Histograms of the switchgrss/biopolymer composite samples exposed to water at different 
time intervals. A) Ohrs B) 24hrs C) 120hrs D) 360hrs. 
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CONCLUSIONS 

As the temperature increased water absorption of WPC and switchgrss/biopolymer 

composite also increased. The higher temperature 70°C causes water absorption of 

switchgrss/biopolymer composite to become 1.7 times higher than the switchgrss/biopolymer 

composite samples absorption of the water at 20°C and 40°C. Water absorption of WPC samples 

at 70°C causes water absorption to become higher and 1.3 times higher than the WPC sample 

absorbs the water at 20°C. The percentage of water absorbed by WPC compared to the 

switchgrss/biopolymer composite sample at three different temperatures was found to be two 

times higher. The reason could be the amount of water absorption in WPC is due to delignifying 

ligno-cellulosic material. In WPC lignin found to be the main cause for contributing fading. 

Therefore removal of the lignin from fillers has become important. 

It was proven that the higher temperature (70°C) can accelerate the water absorption rate 

for both WPC and switchgrss/biopolymer composite materials. 

The water diffusion coefficient of the WPC sample at 70°C was about 3 times higher than 

the WPC sample at 40°C and 8 times higher than WPC sample at 20°C. The 

switchgrss/biopolymer composite water diffusion coefficient value at 70°C was about 2 times 

higher than the switchgrss/biopolymer composite sample at 40°C and 8 times higher than 

switchgrss/biopolymer composite sample at 20°C. Hydrogen bonds are formed between cellulose 

and water molecules during water absorption. Therefore there is no chemical reaction between 

hydroxyl group of cellulose and water molecules. Yang et al proved this condition . 

SEM micrographs of WPC samples shows poor interfacial bonding due to water 

absorption. SEM micrographs of water-saturated switchgrss/biopolymer composite sample at 
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70°C shows poor interfacial adhesion. This will lead to poor mechanical performance of these 

materials. Acoustic images clearly show fibers are absorbing water and exposing out from the 

surface. WPC and switchgrss/biopolymer composites are less sensitive to the acoustic 

techniques. 
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