
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-22-2020

Improving Lookahead search for grid-based pathfinding Improving Lookahead search for grid-based pathfinding

Shrijan Karmacharya
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Karmacharya, Shrijan, "Improving Lookahead search for grid-based pathfinding" (2020). Electronic Theses
and Dissertations. 8302.
https://scholar.uwindsor.ca/etd/8302

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8302?utm_source=scholar.uwindsor.ca%2Fetd%2F8302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Improving Lookahead search for grid-based pathfinding

By

Shrijan Karmacharya

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

 at the University of Windsor

Windsor, Ontario, Canada

2020

© 2020 Shrijan Karmacharya

Improving Lookahead search for grid-based pathfinding

by

Shrijan Karmacharya

APPROVED BY:

__

M. Hlynka

Department of Mathematics and Statistics

__

S. Saad Ahmed

School of Computer Science

__

S. Goodwin, Advisor

School of Computer Science

January 22, 2020

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.

iv

ABSTRACT

Pathfinding is an essential part of navigation systems, often used in video games, route planning

and robotic navigation. A* search has been one of the most well-known and frequently used

algorithms for pathfinding. A* uses an 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and a 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 to keep track of all nodes

generated and expanded. The size and performance of these data structures are major drawbacks

of A*. Lookahead is used to investigate future outcomes and improve the quality of available

choices. Lookaheads are done on a DFS manner from the frontier of A* search. This combination

of A* and DFS lookahead has been shown to save space when working with puzzles. We leverage

this concept with grid-based pathfinding in video games to save the amount of space consumed.

However, because grids contain redundant paths, the DFS lookaheads end up being an overhead

as they do not maintain a list of nodes visited or expanded. By using a domain-specific pruning

technique, we significantly improve the time taken by the algorithm and further improve upon the

space consumed. A combination of lookahead and A* search with this pruning technique is,

therefore, able to achieve improvement in both space-consumed and time-taken over the standard

A* search algorithm for grid-based pathfinding.

v

DEDICATION

To my beloved family:

Parents: Sushil Karmacharya & Jasoda Karmacharya

Siblings: Shrijeet Karmacharya

vi

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor Dr. Scott Goodwin for his advice,

support and encouragement throughout my graduate studies. I am grateful for his immense

knowledge of the domain, time and patience, without which my master’s degree would be

incomplete.

I would also like to thank my committee members Dr. Sherif Saad and Dr. Myron Hlynka for their

guidance and support to improve this thesis.

I would like to offer a sincere thanks to all faculties and staff at the School of Computer Science

for their assistance and support.

Finally, I would like to thank my family and friends for supporting me over the course of my

academic career.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. III

ABSTRACT ... IV

DEDICATION .. V

ACKNOWLEDGEMENT ... VI

TABLE OF FIGURES .. IX

LIST OF TABLES .. XII

LIST OF EQUATIONS .. XIII

CHAPTER 1: INTRODUCTION .. 1

1.1 THESIS CLAIM .. 1

1.2 PATHFINDING .. 1

1.2.1 Graph Representation .. 2

1.2.2 The general graph search structure ... 5

1.2.3 Search Algorithms .. 7

1.2.4 Performance Measures for pathfinding ... 8

1.3 THESIS CONTRIBUTION .. 9

1.4 THESIS ORGANIZATION .. 10

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW ... 11

2.1 THE A* SEARCH ... 11

2.1.1 Constraints on Heuristics ... 14

2.2 HEURISTICS ... 16

2.2.1 Manhattan Distance .. 16

2.2.2 Euclidean Distance ... 17

viii

2.3 A* WITH LOOKAHEAD (A*L) .. 18

CHAPTER 3: PROPOSED METHODOLOGY ... 23

3.1 MOTIVATION ... 23

3.2 THE GRID DOMAIN .. 27

3.2.1 Path Symmetry ... 28

3.3 SEARCH SPACE REDUCTION USING DIRECTIONAL PRUNING .. 30

3.3.1 Effect in Lookaheads .. 35

CHAPTER 4: EXPERIMENTAL SETUP .. 37

4.1 IMPLEMENTATION DETAILS... 37

4.2 EXPERIMENTAL SETUP ... 38

4.2.1 Search Parameters ... 39

4.2.2 Performance Evaluation... 40

4.2.3 Results and analysis ... 42

4.3 UNPRUNED VS PRUNED A*L (50 X 50 MAP) ... 62

4.4 SUMMARY .. 65

CHAPTER 5: CONCLUSION AND FUTURE WORK ... 70

APPENDICES... 72

REFERENCES ... 77

VITA AUCTORIS .. 79

ix

TABLE OF FIGURES

Figure 1: Grid Representation ... 3

Figure 2: Navigation mesh representation .. 4

Figure 3: Waypoint Representation .. 5

Figure 4: A* Search .. 13

Figure 5: Pathfinding using A* ... 14

Figure 6: Manhattan Distance ... 17

Figure 7:Euclidean Distance ... 18

Figure 8: 𝐴 ∗ 𝐿 expansion cycle .. 20

Figure 9: Lookahead portion of 𝐴 ∗ 𝐿 ... 22

Figure 10 : A* Search Tree ... 23

Figure 11 : A* with Lookahead Search Tree .. 25

Figure 12 : Example of corner cutting in left and proper path for agent on right 27

Figure 13 : A* Search on a standard map ... 28

Figure 14: Path Symmetry .. 29

Figure 15 : The g, h and f costs of a grid with straight movement and Manhattan distance 30

Figure 16 : Natural Neighbor for a straight move ... 32

Figure 17: Natural Neighbor for a diagonal move .. 33

Figure 18: Forced neighbors for a straight move .. 34

Figure 19 : Blocked neighbor in a diagonal move .. 34

Figure 20: Map with 0% added obstacles on left, map with 30% obstacles on right 39

Figure 21: Nodes Expanded 128x128 map ... 44

x

Figure 22: Nodes Generated 128x128 map .. 45

Figure 23: Time taken for 128 x 128 map .. 46

Figure 24: Avg. nodes expanded per lookahead 128x128 map .. 47

Figure 25: Nodes Expanded 211x251 map ... 49

Figure 26: Nodes Generated 211x251 map .. 50

Figure 27: Time taken for 211 x 251 map .. 51

Figure 28:Avg. nodes expanded per lookahead 211x251 map ... 51

Figure 29: Nodes expanded for 320 x 320 map .. 52

Figure 30:Nodes generated for 320 x 320 map ... 53

Figure 31: Time taken on 320 x 320 map ... 54

Figure 32:Avg. nodes expanded per lookahead for 320 x 320 map ... 54

Figure 33: Nodes expanded for 384 x 384 map .. 55

Figure 34:Nodes generated for 384 x 384 map ... 56

Figure 35: Time taken on 384 x384 map .. 57

Figure 36:Avg. nodes expanded per lookahead for 384 x 384 map ... 57

Figure 37: Nodes expanded for 512 x 512 map .. 59

Figure 38:Nodes generated for 512 x 512 map ... 60

Figure 39: Time taken on 512 x 512 map ... 61

Figure 40:Avg. nodes expanded per lookahead for 512 x 512 map ... 61

Figure 41:Nodes expanded for pruned vs unpruned A*L ... 63

Figure 42:Nodes generated for pruned vs unpruned A*L .. 63

Figure 43: Time taken on pruned vs unpruned A*L ... 64

Figure 44:Average nodes expanded per lookahead on pruned vs unpruned A*L 65

xi

Figure 45: Generation of cycles in lookahead stage ... 68

xii

LIST OF TABLES

Table 1: Table of experiments .. 43

Table 2:Full table of results for 128x128 map .. 72

Table 3:Full table of results for 211x251 map .. 73

Table 4:Full table of results for 320x320 map .. 74

Table 5:Full table of results for 384x384 map .. 75

Table 6: Full table of results for 512x512 map ... 76

Table 7: Full table of results for pruned vs unpruned ... 76

xiii

LIST OF EQUATIONS

Equation 1: A* evaluation function f .. 12

Equation 2: Admissibility of heuristic .. 15

Equation 3: Consistency of heuristic .. 15

Equation 4: Manhattan Distance ... 16

Equation 5: Euclidean Distance .. 17

1

CHAPTER 1:

Introduction

1.1 Thesis Claim

A* with lookahead is a variant of A* search that performs limited DFS lookaheads from

the frontiers of A*. This algorithm saves space by using DFS lookaheads which is linear

compared to the exponential nature of A*. We claim that this scheme works well in a grid-

based domain for saving space. However, as paths in grids are highly redundant, DFS

lookaheads tend to expand an exponentially large number of nodes at each iteration slowing

the speed of the algorithm considerably.

We then, propose the use of a domain-specific search space reduction technique, which

prunes the number of children generated at each level based on the direction of the search.

Using this pruning technique, we achieve speeds comparable to or better than the standard

A* search. A combination of these two techniques provides improvements in both space-

consumed and time taken over the standard A* algorithm in a grid-based path-planning

domain.

1.2 Pathfinding

Pathfinding plays a significant role in graph search problems wherein a path is found based

on certain criteria between nodes in the graph. This criterion often corresponds to a positive

result of some kind (cheapest, fastest, best) in the problem domain from which the graph

was derived from. The pathfinding/path-planning problem can be used to model problems

in different domains like solving puzzles, optimizing task scheduling, operations research,

2

and routing in computer networks and computer games. (Norvig, 2010)Therefore,

pathfinding remains an active area of research in the Artificial Intelligence domain.

Pathfinding holds a special place in Video game AI. Real-Time Strategy Games (RTS),

Role Playing Games (RPG) and Multiplayer Online Battle Arena (MOBA) heavily depend

on pathfinding either as a component of a Non-Player Character (NPC) or as a component

of the Player. This entity that benefits from the results of pathfinding is known as an Agent.

Depending on the number of agents, the pathfinding problem can be divided into Single-

Agent Pathfinding or Multi-Agent Pathfinding.

A generic pathfinding problem formulation for a video game is as follows:

a. The game environment is the state space,

b. The start and goal node are locations in the game environment,

c. The unit utilizing the path generated is the Agent

1.2.1 Graph Representation

Game environments or maps are represented as a graph in one of three ways: Grids,

Navigation Meshes or Waypoints. Each of these is a simplified representation of the search

space.

1.2.1.1 Grids

Grids are the most frequently used representation of game environments. Grids are a

uniform subdivision of the state space into tiles. Each tile in the grid can either be

traversable or untraversable. Furthermore, traversable grids can have different costs

3

associated with it depending on the type of terrain on the map. Subdivisions for grids are

divided based on tiles.

The most common grid types are square, triangle and hexagonal (Patel, 2010). In a grid-

based map representation, each tile represents a node. For each neighbor of a tile, there

implicitly exists an undirected edge from that tile. The number of outgoing edges a node

has depends on the number of neighboring tiles it contains, which depends on the

movement allowed on the grid. For example, for a square grid with 4 adjacent tiles, if only

straight movements are allowed (NWSE directions) then it has 4 neighbors. If diagonal

movements are allowed on top of a straight movement, then the tile has 8 neighbors. This

map representation is used for all experiments done for our thesis.

Figure 1: Grid Representation

1.2.1.2 Navigation Mesh

Navigation Mesh or Navmesh, are graphs where the traversable areas are represented as

interconnected polygons. Obstacles are not part of the state space in a navigation mesh.

Each polygon in Navigation Mesh can have different weights associated with them. Agents

4

in Navigation Mesh can travel within the polygon without having to worry about obstacles

usually trivially as a straight line (Patel, 2010) (P.Mehta, 2015). Adjacent polygons of a

Navigation Mesh are connected to each other as a graph.

Figure 2: Navigation mesh representation

1.2.1.3 Waypoints

Waypoints are the final method of representation of game maps. They consist of nodes that

are placed at a location in the graph (P.Mehta, 2015) (Patel, 2010). Waypoints can be set

by the player or by game designers. Waypoints added by game designers are often seen as

landmarks on the map (Patel, 2010). Waypoints set by players are more common in RTS

and MOBA games. Waypoint set by game designers is common in Role Playing Games or

games that trigger in-game events (Nareyek, 2004).

5

The waypoints generated by the player and the waypoints set by programmers are usually

not along an optimal path therefore the path generated using waypoints can be sub-optimal

too. Similarly, the same waypoints cannot be used across different start and goal nodes.

Figure 3: Waypoint Representation

1.2.2 The general graph search structure

For our thesis, we establish that our state space is represented as a grid map. Each node is

a tile and each tile has octile movement (Straight + Diagonal). Each node in the grid has 8

neighbors connected by a bidirectional edge or an undirected edge where movement

between the edges in either direction is allowed. These edges are the actions in our state

space. We shall go into this in detail later when we describe optimizations and rules

applicable to a grid.

The key infrastructure for all graph-based search algorithms are,

6

1. Nodes:

Nodes are data structures in search algorithms that hold the state, its parent, and various

other details pertinent to the search algorithm.

2. 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡/ frontier/ generated nodes

The 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 is a list-like data structure that holds multiple nodes. Minimally, this

data structure allows nodes to be added and removed from it. The nodes held here are

nodes that have the potential to be in the solution path found by the pathfinding

algorithm. The implementation of an 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 differs between the type of search

algorithm being used.

3. 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡/ explored set/ expanded nodes.

The 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 is a data structure similar to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 . The nodes in the

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 are nodes that have already been visited by the search algorithm. The nodes

in the closed list are part of the path found. The 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 needs to be designed so

that data in a 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 can be read without overhead. The 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 is usually

implemented using hash tables because its lookup has 𝑂(1) time complexity.

A general graph-based search algorithm has the following scheme,

7

The general graph-based search algorithm scheme starts with initializing the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡

with start node for pathfinding. The start node consists of the start location as its state. It

empties the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. It then loops through the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 selecting one node to expand.

All children of the nodes expanded are then added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. All famous graph-

based search algorithms differ from each other only in its Search Strategy. A search

strategy is a process selecting a node from the frontier or 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 to expand and then

moved to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. The data structure used for the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, therefore, depends on

the algorithm and how it helps optimize the search strategy this algorithm uses. (Norvig,

2010)

1.2.3 Search Algorithms

The solution to a pathfinding problem is usually found using a search algorithm. A general

search algorithm consists of the node, its children, a list of children that were previously

generated/frontier of the search/ 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and a list of nodes that were previously

expanded/visited nodes/𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. (Norvig, 2010)

8

There exist different search algorithms, however, they can be classified into two major

categories: Informed Search and Uninformed Search. Uninformed search algorithms are

those that do not integrate domain knowledge into the search strategy. Informed search, on

the other hand, makes use of domain-specific knowledge, and integrates it into the search

strategy. (Norvig, 2010)

Breadth-First Search, Depth First Search, and Uniform Cost Search are well-known Search

Algorithms. Breadth-First Search uses the shallowest node first search strategy for node

selection. Depth-First Search uses the deepest node first strategy for node selection.

Uniform Cost search uses a node with the lowest path cost first 𝑔(𝑛) as its search strategy.

If the path cost for between each node and its child is constant, then Uniform Cost Search

is the same as Breadth-First Search. In literature, Uniform Cost Search is also known as

Dijkstra’s for a single goal node (Holte, 2010).

Best First Search and A* Search are the most well-known informed search algorithms for

Pathfinding. Both algorithms make use of a heuristic function ℎ(𝑛), which uses domain-

specific knowledge to drive the search strategy. Best First Search solely relies on the

heuristic function as its search strategy (Norvig, 2010) whereas, A* search uses a

combination of path cost and heuristic function as its search strategy (Hart, Nilsson, &

Raphael, 1968).

1.2.4 Performance Measures for pathfinding

Like with problem-solving, there are various measures to evaluate the algorithms in

pathfinding.

9

• Completeness: Completeness of an algorithm evaluates if the algorithm is

guaranteed to find a path if there is a path to the goal.

• Optimality: Optimality checks if the solution found by the algorithm is optimal.

For pathfinding, it checks if the path generated or found by the algorithm is the

shortest path.

• Time Complexity: Like all algorithms in the field of Computer Science, the

performance of the algorithm is evaluated in terms of its time complexity or time

taken. As pathfinding exists as a subfield of AI, the time complexity of the

pathfinding algorithms is measured in terms of the effective branching factor 𝑏𝑒

and the shallowest depth of the solution, 𝑑.

• Space Complexity: Essentially means how much space is consumed by the

algorithm while it finds the solution. Like the time complexity of the algorithms,

the space complexity is measured in terms of the effective branching factor 𝑏𝑒 and

the shallowest depth 𝑑 of the solution. It is usually computed as the nodes stored

in memory i.e. the node generated. Space complexity is also a common measure

of performance in Computer Science.

1.3 Thesis Contribution

The space complexity of A* search is exponential 𝑂(𝑏𝑑) in nature. The Depth-First Search

algorithm on the other hand, has a linear space complexity of 𝑂(𝑑) for its tree search

variant. A* search uses a combination of heuristics and the cost of the path to create an

efficient search strategy. The path found by A* search is optimal whereas, DFS may or

may not find any path to the goal. Combining the two schemes, we can leverage the space

10

complexity of DFS to improve A* search’s space complexity. On top of this, returning the

cost of the frontier to A* helps improve the performance of the heuristic search. The

combination of this scheme called A*L or A* with Lookahead has been shown to be

efficient in the puzzle domain (Roni Stern, 2010).

Using a combination of this scheme for grid-based pathfinding is slightly more difficult.

As grids are notorious for having highly redundant paths (Daniel Damir Harabor, 2011), a

tree search based DFS lookahead will cause significant overhead. This overhead will

overshadow any space-based improvements that the A*L can provide. We propose using a

neighbor pruning algorithm specific to the grid domain. This algorithm reduces redundant

and cyclic paths when used in DFS and symmetric paths when used in A* search. Using

this pruning technique, A*L becomes viable as an option in the grid domain, showing

improvements in both time and space compared to the standard A* search.

1.4 Thesis Organization

This thesis is divided into five major chapters. The first chapter introduces the basic

concepts that will be used throughout the rest of the chapters. Alongside introductory

concepts, it also provides key underlying concepts for our work. The second chapter goes

into detail about the major algorithms and concepts, as well as details into key literature

that motivated research into this topic. The third chapter covers the proposed methodology

and algorithm for this thesis. It goes over techniques that lead to an improvement in the

algorithm. The fourth chapter describes the experimental setup, results of the experiments

and analysis of the results. The fifth chapter offers a conclusion and key findings alongside

future research into the topic. Appendices consist of tables with data from our experiments.

11

CHAPTER 2:

Background and Literature Review

In this section, we start by introducing the A* search algorithm. We explore the concepts

that are relevant to the A* search algorithm. Then, we define different types of heuristics

and how they relate to the grid domain. After that, we look at recent literature relevant A*L

algorithm. We explain the algorithm and the key concepts behind it.

2.1 The A* Search

The A* search algorithm is the most popular algorithm for pathfinding problems. Because

A* uses heuristics to guide the search, it is an informed search algorithm. For a certain

Graph G with a Start node and a Goal node, A* search finds an optimal path from the 𝑠𝑡𝑎𝑟𝑡

node to the 𝑔𝑜𝑎𝑙 node. The problem solved by A* is a minimum cost problem, therefore,

returning the shortest path from the 𝑠𝑡𝑎𝑟𝑡 node to the 𝑔𝑜𝑎𝑙 node.

A* builds a search tree from the state space by expanding nodes. A* begins by adding the

𝑠𝑡𝑎𝑟𝑡 node into the list of frontiers (𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡). The algorithm keeps looping through the

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, until either the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 is empty or if the node selected for expansion is the

𝑔𝑜𝑎𝑙 node (Norvig, 2010).

As mentioned before, the process of selecting a node to expand from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 is

known as the search strategy. There are three major parts in A* search’s strategy.

1. 𝑔 − 𝑐𝑜𝑠𝑡 or 𝑔(𝑛) is the actual cost of the path from 𝑠𝑡𝑎𝑟𝑡 node to node 𝑛. The

𝑔(𝑠𝑡𝑎𝑟𝑡) is equal to 0 and the 𝑔(𝑔𝑜𝑎𝑙) is equal to the length of the path.

12

2. ℎ − 𝑐𝑜𝑠𝑡 or ℎ(𝑛) is the heuristic estimate of cost from node 𝑛 to the 𝑔𝑜𝑎𝑙 node.

The ℎ(𝑔𝑜𝑎𝑙) is equal to 0.

3. 𝑓 − 𝑐𝑜𝑠𝑡 or 𝑓(𝑛) is an evaluation function and is the summation of 𝑔 − 𝑐𝑜𝑠𝑡 and

ℎ − 𝑐𝑜𝑠𝑡 the node. It is represented by the formula,

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

Equation 1: A* evaluation function f

𝐴 ∗ selects the node with the lowest 𝑓 − 𝑣𝑎𝑙𝑢𝑒 from among all the nodes in the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡

as the next node to be expanded. Before expansion, A* places the node selected into the

list of nodes that have already been visited or 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. It proceeds to expand the node

by generating all the node’s neighbors. All the generated neighbors are then evaluated and

placed into the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡.

In the algorithm, 𝐴 ∗ selects nodes from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 to expand. It calls the node that is to

be expanded as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡. The node 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is placed into the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. If the current

node is the goal node, 𝐴 ∗ returns the goal node. The optimal path can be built by

recursively generating the parents, from 𝑔𝑜𝑎𝑙 node to the 𝑠𝑡𝑎𝑟𝑡 node.

All neighbors from the current node are then expanded in the algorithm. Each neighbor in

the for loop is then designated as the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node. 𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡 is a temporary

variable that stores the cost of path taken from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node to the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node. A*

then checks if the neighbor already exists in the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. If the neighbor already exists

in the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and the cost of path taken from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node to this 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is less

than that compared to the path it took when it was visited, it removes 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node from

the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. If the current path is longer or of same length as the previous path, then it

ignores the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node.

13

Figure 4: A* Search

A* search checks if the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 exists in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 . Like with 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 , if the

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 already exists in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, and the cost of path taken from current node to this

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is less than that compared to the path it took when it was generated previously,

then it removes this node from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. If the current path is longer or of same length

as the previous path, then it ignores the neighbor node.

The neighbor is then evaluated, wherein, it’s 𝑔 − 𝑐𝑜𝑠𝑡 , ℎ − 𝑐𝑜𝑠𝑡 and 𝑓 − 𝑐𝑜𝑠𝑡𝑠 are

computed. The neighbor is then added into the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 as a possible candidate to be

14

expanded next. When a neighbor in A* is removed from 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 , for it to be re-

evaluated and added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 again, the node is said to be re-expanded.

Figure 5: Pathfinding using A*

2.1.1 Constraints on Heuristics

The A* search as an optimal path algorithm, works, only when certain conditions are met.

These conditions are constraints on top of heuristics. Admissibility of a heuristic function

guarantees that the algorithm finds an optimal path if there exists one. A heuristic function

is called admissible if it never overestimates the cost to reach goal (Hart, Nilsson, &

Raphael, 1968). In A*, the heuristic ℎ(𝑛) is said to be admissible, if it would never exceed

15

the actual cost to reach the goal node from any node n. If we assume, ℎ(𝑛) ∗ as the actual

optimal cost to reach the goal from node n,

ℎ(𝑛) 𝑖𝑠 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑓,

∀𝑛 ℎ(𝑛) ≤ ℎ∗(𝑛) (2)

Equation 2: Admissibility of heuristic

Consistency is the next constraint on the heuristic function. A heuristic function ℎ(𝑛), is

said to be consistent for node 𝑛 if the estimate for the node is less than or equal to the sum

of the cost of the path from the node 𝑛 to its children and heuristic estimate of its children.

This condition is also called monotonicity. Consistency is a stricter condition than

Admissibility (Norvig, 2010). A consistent heuristic is also admissible, therefore, any

heuristic that is consistent guarantees that the path found by A* search is optimal.

Consistency has another consequence in A* search. If we look at the algorithm provided

in this thesis, there are conditions for when a neighbor needs to be checked if it already

exists in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 or 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. When the heuristic is consistent, then it guarantees that

every node chosen for expansion will never be re-expanded or updated in the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡.

Formally, consistency is defined as,

∀𝑛, 𝑛′ ℎ(𝑛) ≤ 𝑐𝑜𝑠𝑡(𝑛, 𝑛′) + ℎ(𝑛′) (3)

Equation 3: Consistency of heuristic

Where, 𝑛′ is a child of 𝑛 and ℎ(𝑔𝑜𝑎𝑙) = 0 .

16

2.2 Heuristics

A heuristic function is used to incorporate domain knowledge into search algorithms. The

heuristic function can be either used in conjunction with state-space knowledge or on its

own to derive a novel search strategy. The use of a heuristic function is what separates

Informed search algorithms from Un-Informed search algorithms. Usually, a heuristic

function is denoted as ℎ, and for any node n, the heuristic value is an estimate from the

node 𝑛 to the goal, denoted as ℎ(𝑛). For A* search, if the heuristic value ℎ(𝑛) is set to 0,

it turns into Uniform Cost Search, if OPEN does not have any other path that is less than

the current path cost (Holte, 2010). A good heuristic function usually helps improve search

by reducing the number of nodes expanded (Norvig, 2010) (Korf, 2000).

Pathfinding problem in a grid-based environment means finding the shortest path from one

point in the grid to another. For square grid-based maps, there are two well-known heuristic

functions, the Manhattan distance and the Euclidean distance.

2.2.1 Manhattan Distance

Manhattan Distance, or city block distance is the distance between two points in which the

movement is only either vertical or horizontal. For a coordinate system (𝑥, 𝑦) , the

Manhattan distance between two points 𝐴 (𝑥1, 𝑦1) and 𝐵 (𝑥2, 𝑦2) is calculated as sum of

the absolute differences in the 𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and the 𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒. It is given by the

formula,

ℎ(𝐴, 𝐵)𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| (4)

Equation 4: Manhattan Distance

17

Figure 6: Manhattan Distance

On grid-based maps, Manhattan distance is often considered a standard heuristic. When

used in grids where only straight movements are allowed, A* search with Manhattan

Distance can find the optimal path. However, when used in grid maps where diagonal

movements are also allowed, the Manhattan Distance can result in sub optimal solutions.

This is because Manhattan Distance will overestimate the cost of path for diagonal

movement, making the heuristic inadmissible.

2.2.2 Euclidean Distance

Euclidean distance is the straight-line distance or the airline distance between two points.

For a coordinate system (𝑥, 𝑦), the Manhattan distance between two points 𝐴 (𝑥1, 𝑦1) and

𝐵 (𝑥2, 𝑦2) is calculated as the root of the squared difference between respective 𝑥 −

 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 and 𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠. It is given by the formula,

ℎ(𝐴, 𝐵)𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (5)

Equation 5: Euclidean Distance

18

Figure 7:Euclidean Distance

Euclidean distance is more expensive to compute than Manhattan distance. However,

regardless of the movement allowed, i.e. Straight only, straight with diagonal or any

directional movement, when Euclidean Distance is used as the heuristic function, A* will

be able to find an optimal path. For diagonals, the Euclidean distance will still

underestimate or be equal to the cost of path, guaranteeing admissibility.

2.3 A* with Lookahead (A*L)

The major issue with A* search is the memory requirements of A*. A* is more likely to

run out of memory far before the time taken becomes an issue (Norvig, 2010). A* needs to

store all nodes in an 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. The space complexity of A* is exponential

in nature.

𝐷𝑒𝑝𝑡ℎ 𝑓𝑖𝑟𝑠𝑡 𝑆𝑒𝑎𝑟𝑐ℎ, on the other hand, has memory requirements that are mostly linear

as it needs to store the branch it currently is working with. The version of DFS we are

talking about here is the Tree-Search version of DFS. The flaw of this version of DFS is

that it is not complete if redundant paths exist, i.e. DFS fails to find a solution even when

19

there exists a solution. It is very less likely that DFS will ever find an optimal path when

using the Tree-Search Version of DFS, except in a very rare circumstance (first node to be

generated is always along the optimal path).

Combining DFS and A* search would allow both algorithms to benefit. While there exist

algorithms, IDA*, which combine these two schemes, they often have problems with

needing to explore the same nodes repeatedly. The memory complexity of IDA* is linear

similar to DFS. In conjunction with its low memory constraints, the path resulting from

IDA* is optimal in nature, however, because IDA* expands the nodes at certain depth

repeatedly, for graphs with multiple redundant paths, IDA*’s time taken to find an optimal

path is very large.

Lookaheads with 𝐴 ∗ or 𝐴 ∗ 𝐿 is an algorithm proposed by Stern et al. which combines the

scheme 𝐴 ∗ search and doing depth first search lookaheads from the nodes being generated.

The lookaheads are bound either by depth or by cost. For the experiments in the paper,

either one would work as they work with a puzzle domain where the cost of each action is

The key variables of the algorithm are,

𝑈𝐵 – is the upper bound on cost of children to be expanded by 𝐴 ∗ 𝐿. 𝑈𝐵 is equal to the

cost of the best solution found so far. Unlike BRFSL, 𝐴 ∗ needs to expand all children and

perform lookahead for all nodes for which f-value is less than the current best solution

(UB). Once 𝑈𝐵 is set i.e. it is not infinity, any child with cost greater than or equal to 𝑈𝐵

can be pruned. The children are goal tested and if the child is a goal node 𝑈𝐵 is updated.

𝐿𝐻𝐵 – is the lookahead bound which helps set bound on 𝐷𝐹𝑆 lookahead. It is the lowest

value among the current UB, 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of expanded node 𝑓(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑘.

20

Lookahead cost 𝑘 – is the value which is used to limit the lookahead either through cost or

through depth

ℎ𝑢 – is the updated heuristic value after lookahead is done

𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 – is the updated f value where,

𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = ℎ𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) + 𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ - is the stack that holds the best available path from the frontier node.

Figure 8: 𝐴 ∗ 𝐿 expansion cycle

The algorithm above is a modification on top of 𝐴 ∗ after a node selected is expanded. The

Search Strategy for this algorithm is to select the node with lowest 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value.

Therefore, the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 is sorted using the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value. Like with 𝐴 ∗ search,

21

𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡 is a variable that stores the cost taken to reach this node 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

while going through 𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If the neighbor generated is equal to the goal node, Upper

Bound variable 𝑈𝐵 is set as the lesser of 𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡 and previous 𝑈𝐵.

The algorithm prunes neighbors whose 𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 exceed that of 𝑈𝐵 or if the cost to the

neighbor through this path is not the lowest cost to this path. The Lookahead Bound

variable, 𝐿𝐻𝐵 is then set as the lesser of 𝑈𝐵 or expanded node’s 𝑓 − 𝑠𝑐𝑜𝑟𝑒 + lookahead

value 𝑘, 𝑓(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑘.

If the 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of neighbor is less than the Lookahead bound 𝐿𝐻𝐵, then depth-first search

lookaheads are performed from the neighbor node until the frontier that is exceeds the LHB.

The 𝑀𝑖𝑛𝐶𝑜𝑠𝑡 variable is first initialized to infinity, then used to store the minimum 𝑓 −

𝑐𝑜𝑠𝑡 from all the frontiers. The updated heuristic ℎ𝑢 is set as either the previous ℎ𝑢 or

𝑀𝑖𝑛𝐶𝑜𝑠𝑡 − 𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡, whichever is lower. After this, the algorithm works like

A* where it inserts into the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 or updates the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 (re-

expansion).

22

Figure 9: Lookahead portion of 𝐴 ∗ 𝐿

The lookahead part of the algorithm is a recursive Depth-First Search that is bounded by

the lookahead value LHB. Current node to be expanded is stored in the stack S and popped

after all nodes have been generated. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 nodes are generated from the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node

and evaluated. If a goal is found during the lookahead stage, the 𝑈𝐵 variable is updated

based on neighbor’s 𝑔 𝑐𝑜𝑠𝑡, 𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟). The stack S is saved as the best cost path to the

goal if the current path is the best path found to the goal. This is either a min of the previous

UB or neighbor’s 𝑔 𝑐𝑜𝑠𝑡 to guarantee optimality of the algorithm. 𝑀𝑖𝑛𝑐𝑜𝑠𝑡 is also updated

based on the neighbor’s 𝑔 𝑐𝑜𝑠𝑡.

When the neighbor is not the goal, lookaheads are performed recursively until the 𝑓 −

𝑠𝑐𝑜𝑟𝑒 of current neighbor, 𝑓(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) is greater than the 𝐿𝐻𝐵 or 𝑈𝐵. When the 𝑓 −

𝑐𝑜𝑠𝑡 exceeds either the 𝑈𝐵 or the Lookahead bound 𝐿𝐻𝐵, 𝑀𝑖𝑛𝑐𝑜𝑠𝑡 is set as minimum of

current 𝑀𝑖𝑛𝑐𝑜𝑠𝑡 and 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of the neighbor in the frontier.

23

CHAPTER 3:

Proposed Methodology

3.1 Motivation

The initial motivation for the work was when doing lookaheads from a node 𝑛 and

returning the minimum cost from frontiers, we might be able to ignore certain branches

and thus save space by reducing the number of nodes generated and expanded.

Figure 10 : A* Search Tree

Let us look at a sample search tree for 𝐴 ∗ search as shown above. For the sample, let us

assume that the start node is 𝐴 and the goal node is 𝐸. 𝐴 ∗ adds 𝐴 to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. It

selects and expands Node 𝐴 generating 3 children, 𝐵 , 𝐶 , and 𝐷 respectively. The 𝑓 −

𝑠𝑐𝑜𝑟𝑒 for all the children is computed and added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, while node 𝐴 is added

24

to the list of expanded nodes or 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. The node with the lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒, node 𝐶

is selected for expansion. When node C is expanded, nodes 𝐺 and 𝐻 are generated and

evaluated as node 𝐶 is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 . Node 𝐷 , with 𝑓 − 𝑠𝑐𝑜𝑟𝑒 11 is then

selected for expansion from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. Nodes 𝐼 and 𝐽, which are the children of node

𝐷 are generated and node 𝐷 is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. Node 𝐵 is expanded next with

children 𝐸 and 𝐹, while B is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. Node 𝐸 is selected for expansion

next, and since Node 𝐸 is the 𝑔𝑜𝑎𝑙 node, it is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and the search ends.

We look at the nodes stored in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 at the end of the program.

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 = {J, F, I, G, H}

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 = {A, C, D, B, E}

The total number of nodes stored in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 are 10.

We look at how the same search tree is evaluated with lookahead at depth of 1. For every

node to be generated, a lookahead search is done up to depth 1 i.e. its children. Among the

frontier of the lookahead nodes, the node with lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒 is returned to 𝐴 ∗ and the

child from which lookahead was performed, will have its updated 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 set as the value

returned from lookaheads. The start node 𝐴 and the goal node 𝐸 remain same as the

previous example.

25

Figure 11 : A* with Lookahead Search Tree

Node 𝐴 is first added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. A lookahead is done for 𝐴 as all its children 𝐵, 𝐶

and 𝐷 are generated but not stored anywhere yet. The node with the lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒

among them is node 𝐶, which has a value of 8. This value is propagated back to 𝐴 with

cost 8. This step of generating the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 for the root node may be skipped as the root

node is added to the closed list regardless. And if the root node is the goal node, then the

search does not need to take place.

After node 𝐴 is selected for expansion, its children are generated. For each child generated,

a lookahead search is performed to a depth of 1. Lookahead from node 𝐵 generates 𝐸 and

𝐹 , with 𝐸 having the lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒 . Node 𝐵 ’s 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 is set to 12. Similarly,

lookahead from node 𝐶 , results in 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of 46 being propagated back to node 𝐶 .

Lookahead from node 𝐷 results in 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of 13 being propagated back. The diagram

above shows the respective 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 values of the nodes represented by “fu”. Node 𝐵 is

expanded because it has the lowest 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 and lookahead for its children are performed.

26

Since 𝐸 is the goal node, there is no more lookahead performed for 𝐸. Unless lookahead

from 𝐹 results in a 𝑓 − 𝑣𝑎𝑙𝑢𝑒 lower than 12, node 𝐸 is set for expansion. Since node E is

the goal node and there are no nodes that have an 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value less than 𝐸 the search

concludes. We look at the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 for this search.

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 = {C, D, F}

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 = {A, B, E}

We see that the total number of nodes stored in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 have now

decreased to 6.

Improving the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value is not the only place where 𝐴 ∗ 𝐿 can save space. The 𝐴 ∗ 𝐿

algorithm described in the earlier section re-uses the lookaheads to prune out all nodes that

have a 𝑓 − 𝑣𝑎𝑙𝑢𝑒 greater than the upper bound variable 𝑈𝐵 . Let us look at the same

example but using 𝐴 ∗ 𝐿 algorithm. We do a lookahead up until a depth of 1. Our objective

remains the same, that is to find the path from start node 𝐴 to goal node 𝐸.

Node 𝐴 is expanded like before and the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 is set as 8. Its three children are generated

starting with 𝐵. When a lookahead is done from 𝐵, it finds the goal node 𝐸. The goal node

𝐸 now sets the upper bound variable 𝑈𝐵 to 12. Since both nodes 𝐶 and 𝐷 have a 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑

greater than the 𝑈𝐵, they are both pruned and never added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠t. Therefore, the

open and closed lists look as follows at end of the program.

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 = {B}

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 = {A}

27

The total number of nodes stored is 2. We should, however, note that the nodes that were

generated and discarded during the lookahead stage were 9. While these do not affect the

memory consumed, they do affect the time taken to run the algorithm.

3.2 The grid domain

The grid-based map representation is used very often in video games. The grid-based

representation exists for different types of games, RPGs like Dragon Age and RTS like

Starcraft. There exists a compilation of standard benchmark maps from these games. These

benchmarks have the following characteristics. All maps are represented as 2D grids. The

maps are octile in nature. Therefore, the movements allowed on these maps are straight

and diagonal. All tiles, therefore, have eight neighbors except the ones on the boundary of

the map. All trees, walls and unpassable terrain are considered as obstacles and are

untraversable. Unpassable terrain adds another constraint to these benchmark maps.

Because units occupy space, it should not be possible for them to move through an obstacle.

This applies if a diagonal movement is to be made between tiles but there exists an obstacle

adjacent to the parent tile in one of the straight directions. This is called corner-cutting and

is disallowed in these benchmark maps (Sturtevant, 2012).

Figure 12 : Example of corner cutting in left and proper path for agent on right

28

Each Straight movement on the map has a cost of 1 and diagonal movement has a cost of

√2. When grids have cost between neighbor tiles as defined above it is called, a uniform-

cost grid.

Figure 13 : A* Search on a standard map

3.2.1 Path Symmetry

Uniform cost grids are special form of graphs because they consist of many redundant

paths. Along with redundant paths they also contain what is called a symmetric path

(Daniel Harabor, 2011). While graph search algorithms have option of not exploring

redundant paths using 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡, tree-search algorithms do not have the

same option. The DFS lookahead part of the algorithm A*L uses the tree-search version of

DFS. If we used Graph Search version, we would not be able to save as much memory as

we need to keep track of visited nodes and generated nodes (Norvig, 2010). Furthermore,

regardless of the type of algorithm path symmetry cannot be avoided by standard search

algorithms.

29

Multiple paths can be defined as symmetric, if for a pair of start and end nodes, there exist

multiple paths with the same path cost (Daniel Damir Harabor, 2011). Path symmetry

forces search algorithms to evaluate equivalent states (Daniel Damir Harabor, 2011). Paths

are symmetric if the edges between them or direction of movement between them are a

permutation of each other (Daniel Harabor, 2011).

Figure 14: Path Symmetry

Path symmetries are easier to visualize when the movement of the graph is limited to

straight movement. We can see that all paths are optimal with a cost of 10. Likewise, if 𝐴 ∗

search is performed with Manhattan heuristic on the graph all nodes will have a 𝑓 − 𝑠𝑐𝑜𝑟𝑒

of 10.

30

Figure 15 : The g, h and f costs of a grid with straight movement and Manhattan distance

The number of nodes expanded until the goal is found will solely depend on the tie-

breaking strategy. In worst case scenario, every node is first expanded before the goal is

reached. This scenario can be true if ties are broken based on lowest 𝑔 − 𝑐𝑜𝑠𝑡 or FIFO

queue implementation of 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡.

3.3 Search Space reduction using directional pruning

The paper (Dainel Harabor, 2012) on the JPS pathfinding system defines the Jump Point

Search. Jump Point Search works on top of A* search with two sets of rules: Pruning Rules

and Jumping Rules. For this thesis, we are interested in the pruning rules that drive Jump

Point Search. The pruning rules on this paper are updated from the pruning rules from

(Daniel Damir Harabor, 2011) to not allow corner-cutting in grids. These pruning rules are

online (does not require pre-processing) and optimality preserving (Daniel Damir Harabor,

31

2011). The basis of pruning rule is that when expanding a node, all children which can be

reached by path shorter than the current path is pruned.

3.2.2.1 Natural Neighbors

For any node x, that has its parent p(x) and node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥), let us assume there

are two paths 𝜋 and 𝜋′,

𝜋′ = < 𝑝(𝑥), 𝑦, 𝑛 > 𝑤ℎ𝑒𝑟𝑒 𝑦 ≠ 𝑥 (7)

𝜋 =< 𝑝(𝑥), 𝑥, 𝑛 > (8)

Then the pruning rules are defined as,

1. For straight moves prune all neighbor nodes where,

𝑙𝑒𝑛(𝜋′) ≤ 𝑙𝑒𝑛(𝜋) (9)

Intuitively, if a node 𝑥 has been chosen for expansion then it is a node along the shortest

path. Any neighbor of node 𝑥, that has a shorter and can be reached without traversing

through node 𝑥, can be pruned (node above 𝑥). This is because, if for some reason, the

shorter path was not expanded or was expanded but is not along the optimal path, it is

pointless to expand it from 𝑥 as the path to that node from 𝑥 will not be the shortest path

to that node, i.e. 𝑔(𝑛) from node 𝑥 will not be the smallest 𝑔(𝑛). For equal paths, like the

one diagonal to node 𝑥 it needs to be pruned to avoid path symmetry. If we remember the

definition of path symmetry, two paths are symmetric if they have the same cost, and the

movements are a permutation of one another. This means that the neighbor 𝑛, that is

diagonal from node 𝑥 can be reached through another path.

32

Figure 16 : Natural Neighbor for a straight move

The figure above shows node 𝑥 being expanded from parent 𝑝(𝑥) . The direction of

movement is towards the right from parent 𝑝(𝑥). All nodes in grey are pruned out based

on equation 9 defined above. The only remaining unpruned neighbor is the neighbor to the

right of 𝑥.

2. For diagonal moves, prune all neighbor nodes where,

𝑙𝑒𝑛(𝜋′) < 𝑙𝑒𝑛(𝜋) (10)

This follows the same intuition as pruning straight moves. Node 𝑥 has been expanded and

the children 𝑛 which can have the shortest path without going through 𝑥 can be pruned out

because going through node 𝑥 would not result in the smallest 𝑔(𝑛) anyway. However,

because straight movements omitted neighbors that could be reached through paths of

equal length, we need to include them for diagonal moves. We believe that these length

based pruning rules can be interchanged between straight move and diagonal moves i.e.

have straight moves prune 𝑙𝑒𝑛(𝜋′) < 𝑙𝑒𝑛(𝜋) and diagonal moves prune 𝑙𝑒𝑛(𝜋′) ≤

𝑙𝑒𝑛(𝜋) instead. Either way, only one path to the node is expanded and the symmetric one

is omitted.

33

Figure 17: Natural Neighbor for a diagonal move

The figure above shows node 𝑥 being expanded from parent 𝑝(𝑥) when the direction of

travel is diagonal. There are three remaining unpruned neighbors of 𝑥. If one of the children

of 𝑥 is expanded next, it will also follow the pruning rules defined above. The children to

the top and right of 𝑥 will follow the straight pruning rules. The child diagonal to 𝑥 will

follow the diagonal pruning rule. The unpruned neighbors of 𝑥 are called the

𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of 𝑥 (Daniel Damir Harabor, 2011).

3.2.2.2 Forced Neighbors

There are changes to the pruning rule if a node encounters an obstacle. If there exists an

obstacle adjacent to the parent node which is orthogonal to the direction of expansion, then

none of the neighbors in the direction of the obstacle can be pruned. These neighbors

generated because of the obstacle are called the forced neighbors.

Forced neighbors adhere to the pruning rules given above as there exists no shorter path to

those nodes without going through 𝑥.

34

Figure 18: Forced neighbors for a straight move

The nodes in green are the 𝑓𝑜𝑟𝑐𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of 𝑥 because of obstacle present adjacent

to 𝑝(𝑥) and orthogonal in direction of movement (Dainel Harabor, 2012). For the green

nodes shown above, the nodes must go through node 𝑥 to be the shortest path to the node

because of the obstacle present above 𝑝(𝑥).

The diagonal movements cannot have forced neighbors because having obstacles to the

right of or above 𝑝(𝑥) would mean that the expansion of 𝑥 has cut a corner which is an

illegal move.

Figure 19 : Blocked neighbor in a diagonal move

We must pay special attention to corner-cutting in grids while applying these pruning rules.

While expanding the node 𝑥, if there exists an obstacle on one of the straight moves like

shown above, the diagonal node 𝑧 is now pruned because of corner-cutting and the only

35

remaining natural neighbor is the node to the right of 𝑥. When the node 𝑛 shown above is

expanded from parent node 𝑥, 𝑧 becomes part of 𝑛’s forced neighbor.

3.3.1 Effect in Lookaheads

While this search space reduction technique works for 𝐴 ∗ search, its effect on DFS

lookaheads is significantly better. Because the DFS search implemented here is of tree-

search nature, lookaheads done from any child node are exponential. Essentially, every

node from the frontier generates 𝑏𝑚 children. This makes the time complexity 𝑂(𝑏𝑚)

where 𝑚 is the maximum depth and 𝑏 is the branching factor. This effect is compounded

in grids if lookahead is performed in cost bounded DFS. The problem with cost bounded

DFS is that there can be multiple nodes that are a fraction of their 𝑓 − 𝑣𝑎𝑙𝑢𝑒𝑠 away from

each other. As we saw in the example above for straight movement and Manhattan distance,

all nodes had the same 𝑓 − 𝑣𝑎𝑙𝑢𝑒. A similar thing is true for when we use octile movement

with Euclidean distance. While most nodes won’t have the same 𝑓 − 𝑣𝑎𝑙𝑢𝑒, a difference

of 𝑓 − 𝑐𝑜𝑠𝑡 of 1 may span anywhere from 10 – 100s of nodes.

The branching factor for DFS lookaheads in 𝑏 = 8. As time complexity of the algorithm

is 𝑂(𝑏𝑙 × 𝑏𝑒
𝑑−𝑙), where 𝑏𝑒 is the branching factor in the A* portion of the algorithm, 𝑏 is

the branching factor in DFS lookahead and 𝑙 is the length of the DFS search. A branching

factor of 𝑏 = 8 would mean there would be a significant overhead for 𝑙. With search space

reduction, the branching factor is less than 𝑏 = 3 (2 for empty grid). There is a significant

difference in expanding nodes with branching factor of the exponential of 8 and branching

factor of the exponential of 2. DFS lookahead also needs to expand these nodes again while

the A* version of the algorithm only expands nodes along the optimal path.

36

Not keeping track of visited nodes in the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and expanded nodes in the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡,

the path to the same node along an optimal path 𝑔(𝑛) can be generated with different costs.

Because all redundant paths and symmetric paths are removed, the DFS lookahead does

not expand the same node more than once per lookahead because the pruning technique is

optimality preserving (Daniel Damir Harabor, 2011).

Similarly, implementing the pruning technique in the 𝐴 ∗ part of the algorithm also reduces

the number of nodes generated per expansion of the node thereby decreasing the number

of times we would need to perform lookaheads. The effective branching factor 𝑏𝑒 that is

used in both space and time complexity is also affected by this pruning technique. Note

that all nodes that need to be expanded for 𝐴 ∗ will be expanded regardless of if the pruning

technique is used or not.

For children with the same 𝑓 − 𝑣𝑎𝑙𝑢𝑒 as its parent, we do not do a lookahead search.

Instead, we assign the same 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value to the child as we did to its parent. This was

dubbed trivial lookahead by (Roni Stern, 2010), however, we add the node to 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡

instead of moving it directly to 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡.

Let us assume, there is a node 𝑛, for which the 𝑓 − 𝑣𝑎𝑙𝑢𝑒 is the same as its parent. If the

lookahead search of 𝑘 = 1, does not find a path to the goal with 𝑓(𝑝𝑎𝑟𝑒𝑛𝑡) + 𝑘 then it is

very likely that the path in the direction towards child node 𝑛 will result in a dead-end. This

causes A* to expand nodes that are not along an optimal path. When adding these nodes

directly to the closed list, (Zhaoxing Bu, 2014) found that using trivial expansion increases

the number of nodes expanded and generated in maps with unit cost.

37

CHAPTER 4:

Experimental Setup

4.1 Implementation Details

We implement the algorithms using C# as the programming language. All experiments are

done on a computer with Intel Core i7-7700 CPU and 16 GB RAM. The visualizations are

built as a bitmap where each tile is a pixel in the bitmap. We use C#’s HashSet for

implementation of the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and Priority Queue for the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. The experiments

are Single Agent pathfinding problems in a static map. The maps used are benchmark maps

from various video games at Moving AI Labs website

(https://movingai.com/benchmarks/formats.html, n.d.).

We use two algorithms 𝐴 ∗ search and 𝐴 ∗ with Lookahead. Both algorithms have been

modified to not allow corner cutting through obstacles. We compare two variants of A*

with Lookahead search, one with the domain-specific search space reduction

techniques/pruning technique and the other without it. From the standard benchmark maps,

we use scenarios that are available to get the start and end points.

We make different comparisons for A* search versus A* with Lookahead and A* with

Lookahead versus A* with Lookahead using pruning. The focus of our research is showing

that the lookahead based search has performance gains on memory consumed and with the

pruning techniques, we can overcome limitations of the lookahead search and achieve

execution time better than or similar to A* search.

38

We run experiments on different map sizes with varying obstacle chance for A* vs A*L.

We vary the size of k in A*L from 0 to 5 and do cost-bounded lookaheads for our

experiments. For unpruned A*L, we only run the experiments in a small map as the time

taken would be significantly larger than the pruned version.

4.2 Experimental Setup

We’ve discussed grid-based maps before because it is pertinent to our thesis and it ties in

with the search space reduction. For our experiments, we use movement costs of 1000 for

straight moves and 1414 for diagonal moves in our grids. The final cost of the path is

divided by 1000. Obstacles are evaluated at a cost of integer max value which is

2,147,483,647. They are not evaluated with a cost for 𝐴 ∗ part of the search but return a

cost of integer max value for the lookahead portion. This value is also used in place of ∞

to initialize the minimum cost variable (𝑀𝑖𝑛𝐶𝑜𝑠𝑡) and the Upper Bound variable 𝑈𝐵 too.

The standard maps are .map files that are readable like text files. The first four lines are

map descriptions like map name, row and column. Remaining part of the file consists of

the map details. (https://movingai.com/benchmarks/formats.html, n.d.). Each character in

the file is a tile in the map environment. A space, ‘.’, ‘G’ and ‘S’ are characters that

represent traversable terrain. All other characters are considered untraversable. We add

another specific character ‘Z’ as obstacles that were randomly generated in our experiments.

The process of generating obstacles are defined in the section below. After our experiments,

we save a new map with character Z for our randomly generated obstacles as a .map file.

This way we can reproduce our experiments if needed.

39

For start and end points, we randomly select points from the scenario files among the 1/3𝑟𝑑

largest scenarios.

4.2.1 Search Parameters

We use specific maps of different sizes approximately 128x128, 211x215, 320x320,

385x385 and 512x512. We use actual video game maps from Baldur’s Gate’s unscaled

maps, Dragon Age Origins, and Starcraft.

Most maps already have obstacles present in them. We randomly add extra obstacles

amongst the available traversable terrain based on the obstacle chance we want. The

percentages of obstacles we add are 0, 7, 15 and 30. This way we can see the effect of

obstacles on the algorithms. For every traversable node, we use the random function to

determine if the node is going to be an obstacle or not.

Figure 20: Map with 0% added obstacles on left, map with 30% obstacles on right

40

The figures are maps with 0% obstacles added and 30% obstacles added. Each pixel in the

bitmap is a tile. The pixels in white are traversable tiles and the pixels in black are original

obstacles in the game map. The ones in gray are obstacles that we have randomly added to

the map. We only vary the obstacles to up to 30% of traversable terrain because increasing

the obstacle percentage to around 40% generated maps that failed to find a path for majority

of the 𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑜𝑎𝑙 nodes.

We vary the lookahead cost 𝑘 between 0 to 5 from the cost of the parent. The number of

frontiers generated by the lookahead process has significant overhead in terms of the

algorithm’s runtime. We go all the way up to a k value of 5 to see the tradeoff of memory

consumed to time taken against standard the 𝐴 ∗ 𝑠𝑒𝑎𝑟𝑐ℎ algorithm.

4.2.2 Performance Evaluation

We gather results from our experiments at runtime and compare A* with Lookahead for

different values of k with standard A* search. We take the Time Taken, the number of

nodes generated, the number of nodes expanded, path length and number of nodes

expanded during lookahead as performance evaluation metrics.

4.2.2.1 Time Taken

For each algorithm, we use a stopwatch to calculate the time taken. We use C#’s stopwatch

class System.Diagnostics.Stopwatch and measure the time elapsed. We first initialize

all variables and classes. We call the start method before we start our search and call the

stop method after the search finishes. The time taken is reported using the

ElapsedMilliseconds() method.

41

The time taken in milliseconds is not an implementation-independent performance

evaluation metric. This metric will vary depending on different implementation methods

and environments. We use this metric to compare the performance of A* with lookahead

against the standard A* search. So, for this thesis, time taken should be a fair performance

evaluation metric.

4.2.2.2 Number of Nodes generated

The number of nodes generated is an implementation and platform independent

performance evaluation metric. It corresponds to the space complexity of our algorithms.

We expect the number of nodes generated to decrease when we use A* with Lookahead.

Nodes generated are the total number of nodes stored in the memory. We expect the nodes

generated to decrease when the pruning process is used.

4.2.2.3 Number of Nodes expanded

The number of nodes expanded is an implementation and platform independent

performance evaluation metric. We expect the number of nodes expanded to decrease when

we use A* with Lookahead. Nodes expanded are nodes removed from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and

added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡.

4.2.2.4 Path Length

The path length is the lowest cost path from start node to the goal node. The final path is

optimal for A* search and A* with Lookahead Search. Regardless of the algorithm, the

cost of optimal path should remain same. The path length does vary for the same start and

goal node with the number of obstacles present in the map. The pathlength has impact on

42

the number of nodes expanded and the time taken. Increase in path length means more

lookaheads done on the map. The average path length is the average for experiments done

on a map with certain search parameter. We track the path length across different values of

k to show that regardless of the value of k our algorithm is optimal.

4.2.2.5 Average Nodes Expanded during Lookahead

The average number of nodes expanded during Lookahead is the number of nodes

expanded during the DFS portion of the algorithm. While lookahead helps save memory,

they are also redundant in nature. While expansion of a small number of nodes per

lookahead can lead to benefit in performance, large number of nodes expanded per

lookahead results in an increase in time taken for the path to be found. Because lookaheads

are done only from generated nodes, the average node expanded is calculated by,

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 𝑛𝑜𝑑𝑒𝑠 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 𝑛𝑜𝑑𝑒𝑠 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑

𝑁𝑜𝑑𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

4.2.3 Results and analysis

We use our test framework to evaluate performance of A* with Lookahead and compare it

with standard A* search. As discussed above, we use locations in map from scenarios

already available. We run 50 experiments with obstacle chance of 30% as finding a path

for that is the hardest. We generate 50 start and end points for the map that will be used

with other obstacle chances. It is better to use start point and end points from a map with

30% obstacle chance than to generate a map with 30% obstacle chance that must find a

path for existing start and end points.

43

The maps are selected based on the open space available. The experiments ran fine with

tight spaces if there weren’t corridors which had a very small width. The start and end

points remain same for different obstacle chances per map. This gives us an opportunity to

see the change in performance and path length with relation to the number of obstacles in

the map.

We present our findings based on the size of the map. This lets us correlate performance to

map size and path length. Separate charts for varying obstacle chance with time taken,

nodes expanded, nodes generated and average number of nodes expanded during

lookahead will be shown below. Tables for all charts are available in the indices with

average path lengths, nodes expanded, nodes generated, and time taken.

4.2.3.1 Results for Map size 128x128

We use den900d map from Dragon Age Origins as the benchmark map for this experiment.

All results are values averaged out across 50 different experiments, 10 random maps with

5 different start and goal nodes. The start and goal nodes are same across maps with

different obstacle chances. There is an increase in the path length when the obstacle chance

Added Obstacle
chance

Number of
Experiments Map Size Algorithms

0%
7%

15%
30%

50

128 x 128
211 x 251
320 x 320
384 x 384
512 x 512

A* Search
A*L with k=0
A*L with k=1
A*L with k=2
A*L with k=3
A*L with k=4
A*L with k=5

Table 1: Table of experiments

44

increases. The map has 5,258 traversable states. The cost of optimal path is same across

A* and A*L with different values of k.

Figure 21: Nodes Expanded 128x128 map

The number of nodes expanded increases as the percentage of obstacles increase because

the average path length increases, and the heuristic performs worse when there are more

obstacles. We see that for all obstacle chances, the number of nodes expanded by A*L

decreases as the lookahead value k increases. There is an 83% decrease in the number of

nodes expanded on standard maps when the lookahead value k is equal to 5. There is a 70%

decrease in the nodes expanded between A* and A*L with k=5. Similarly, 54.4% decrease

on 15% obstacles and a 45% decrease when the number of obstacles on the map is 30% of

the traversable terrain.

45

At the value of k = 0, A*L is similar to A* search with pruning technique applied. There

is some decrease in the percentage of nodes expanded, however that can be attributed to

the lookahead search as there can be a lot of nodes with f-value 0 along the path to the goal

node.

Figure 22: Nodes Generated 128x128 map

Nodes generated are the total number of nodes that are stored in the memory. As the nodes

generated is directly corelated to the space complexity in A*, it makes sense to see that for

A* search lesser nodes are generated when obstacles are present. This is because of

presence of obstacles decreases the branching factor and the number of available

traversable states.

As the pruning technique is used, the effective branching factor decreases, and a smaller

number of nodes are generated as shown in the figure above. The percentage of nodes saved

46

is highest for 0% obstacles added to the map. Because lookaheads are done for nodes

generated, lower number of nodes generated correspond to lesser lookahead in A*L and

therefore lesser time consumed. The percentage of nodes saved by A*L decreases when

the obstacle chance increases.

Figure 23: Time taken for 128 x 128 map

For time taken, A*L performs best when there are no extra obstacles added to the map. The

version of A*L shown above uses the pruning technique we described earlier. This shows

that the pruning technique successfully decreases the time taken and the overhead of doing

DFS lookahead. A*L with pruning technique is comparable to A* search or better for the

128x128 map.

We start seeing an exponential increase in the time taken as k increases when we add

obstacles. In general, as the value of k increases the time taken increases too. However,

47

there is a 2500% increase in time taken when 7 % obstacles are present and 2300% increase

when there are 15% additional obstacles. The reason for this increase is due to obstacles

being uniformly and sparsely distributed. This is the worst-case scenario for the pruning

technique as forced neighbors of the nodes are generated frequently. This causes nodes that

would normally have a single neighbor to have three neighbors. We also see that when

increasing the obstacle chance to 30% the time taken at k= 5 drops down to 822%.

At each obstacle chance there is a trade-off at certain value k where we achieve decrease

in node generated with an acceptable increase in time taken versus A* search.

Figure 24: Avg. nodes expanded per lookahead 128x128 map

The average number of nodes expanded per lookahead shows the correlation of time to the

lookahead step. As we mentioned before, adding obstacles increases the branching factor

in the DFS lookaheads. Later, we show how having sparsely distributed obstacles also re-

48

introduces cycles in the DFS. We also see that as the value of k increases the number of

lookaheads done increases 𝑂(𝑏𝑙), where 𝑙 is the depth of lookahead with cost k. However,

for 0% added obstacles, the time taken decreases at k=5, whereas the average number of

nodes expanded per lookahead increases because there are far fewer nodes generated (the

nodes generated graph). Therefore, the time taken is dependent of a combination of nodes

generated and lookahead nodes expanded.

4.2.3.2 Results for Map size 211x251

We use den502d map from Dragon Age Origins as the benchmark map for this experiment.

Like the previous experiment, all values are averaged out across 50 experiments. The

number of traversable states in the map is 27,235. The cost paths average out the same

across all versions of A*L and A* search so we can conclude that the paths generated by

respective algorithms are optimal. The average cost path increases as the percentage of

obstacles in the map increases from 222 to 272.

49

Figure 25: Nodes Expanded 211x251 map

For nodes expanded on 0% obstacles, with k=5, 𝐴 ∗ 𝐿(5) has 46% less nodes expanded.

At 7%, 15% and 30% obstacles, 41%, 37% and 39% less nodes expanded compared to A*.

Once again as the value of k increases in A*L the number of nodes expanded decreases.

50

Figure 26: Nodes Generated 211x251 map

There is a similar trend for the nodes generated. Using the pruning technique reduces the

number of nodes generated. As the lookahead cost k increases, the total number of nodes

generated decreases. This is true regardless of the percentage of obstacles. However, the

percentage of space saved decreases as the percentage of obstacles increases.

51

Figure 27: Time taken for 211 x 251 map

Once again, at 0% obstacle chance, the time taken for all values of k with modified A*L is

better than A* search. There is an exponential increase in the time taken for 7% chance and

15% chance and less exponential increase for 30% obstacle chance.

Figure 28:Avg. nodes expanded per lookahead 211x251 map

52

The average number of nodes expanded per lookahead increases as k increases. The

average number of nodes expanded per lookahead peaks at 7% and at k=5, which would

explain the increase in time taken when 7% obstacles are randomly added. The average

nodes expanded per lookahead decreases at 30% obstacles added because the obstacles are

less sparse and there are lesser states remaining in the map.

4.2.3.3 Results for map size 320x320

We use AR0500SR map from Baldur’s Gate as the benchmark map for this experiment.

Like the previous experiment, all values are averaged out across 50 experiments. There are

29,160 traversable states for this map. The average path cost increases from 382 to 505 as

the percentage of obstacles added increases.

Figure 29: Nodes expanded for 320 x 320 map

53

Like previous experiments, the highest decrease in nodes expanded is on 0% obstacles

added at 57% for k = 5, 39% decrease on 7% additional obstacles, 32% decrease on 15%

obstacles and 40% decrease when additional 30% obstacles are added.

Figure 30:Nodes generated for 320 x 320 map

As with previous maps, there is a decrease in the number of nodes generated by A* search

as the obstacles increase. Meanwhile, for A*L the number decreases as the value of k

increases. The percentage save in compared to A* search is greatest when k = 5 and when

there are 0% obstacles present in the map.

54

Figure 31: Time taken on 320 x 320 map

We see similar trends for time taken as previous experiments here. There is an increase in

time for all cases of A*L when k increases. The increase in exponential for 7% and 15%

added obstacles. At 0%, while there is an increase in time taken when 𝑘 increases, it is still

better than standard A* search.

Figure 32:Avg. nodes expanded per lookahead for 320 x 320 map

55

Similarly, there’s an increase in the average number of nodes expanded per lookahead as

the value of 𝑘 increases. Like with previous maps, when 7% obstacles are randomly added

we see the performance of A*L worsens.

4.2.3.4 Results for map size 384x384

We use ooth000d map from Dragon Age Origins as the benchmark map for this experiment.

The map has 17,601 traversable states. The map is different because the whole map has is

a single gigantic path and has less free space than other maps. There are however lower

number of natural obstacles along the path. The average cost path increases from 523 to

664 as the percentage of obstacles added increases.

Figure 33: Nodes expanded for 384 x 384 map

A similar trend follows for decrease in nodes expanded as value of 𝑘 increases in A*L. For

0% added obstacles, there is a decrease in the number of nodes expanded with 42%

56

decrease in the number of nodes expanded at 𝑘 = 5. There is clear indication of decrease in

the percentage of nodes expansions saved as the percentage of obstacles increase

Figure 34:Nodes generated for 384 x 384 map

Likewise, for nodes generated, A* search generates the least number of nodes with 30%

added obstacles. Just like previous experiments, for A*L, the most percentage of space

saved is at 0% obstacles added and the percentage of nodes saved across 𝑘 = 0 𝑡𝑜 5

decreases as the percentage of obstacles added increases.

57

Figure 35: Time taken on 384 x384 map

Figure 36:Avg. nodes expanded per lookahead for 384 x 384 map

58

The time taken by A*L at k=5 is similarly worst at 7% additional obstacles. Which is

explained by the increase in average number of nodes expanded per lookahead at 7%

obstacles. For this map, at 0% obstacles the time taken is slightly more for A*L with k = 5

than A* search. We can explain this by looking at the number of traversable states

compared to the size of the map. The oth000d only has 17,601 traversable states despite

being a 384 x 384 map. In comparison, den502d has 27,235 traversable states while being

a 211x251 size map. This is because oth000d has significantly more obstacles already

present in the map.

4.2.3.5 Results for map size 512x512

We use RedCanyons map from Starcraft as the benchmark map for this experiment. All

values are averaged out across 50 experiments. The map is the largest we performed

experiments for and has 174,722 traversable states. The average cost of path increases as

we increase the percentage of added obstacles from 628 to 793. The map already has some

number of obstacles present in it; however, the obstacles are a present as cluster.

59

Figure 37: Nodes expanded for 512 x 512 map

𝐴 ∗ 𝐿(5) decreases the number of nodes expanded at 0% obstacle chance by 36%. The

largest decrease in the number of nodes expanded when using A*L can be seen at k=5

when compared to standard A* search. And as expected, the number of nodes expanded

decreases as the value of k increases.

60

Figure 38:Nodes generated for 512 x 512 map

For normal A* search, the number of nodes generated decreases as the percentage of added

obstacles increase. Added obstacles mean that there are less available traversable nodes in

the map for A* search. As for A*L, as the value of k increases the total number of nodes

generated decreases. This is true for any percentage of obstacles. And just as previous

experiments, 0% obstacles have the largest percentage of memory saved for A*L.

61

Figure 39: Time taken on 512 x 512 map

Figure 40:Avg. nodes expanded per lookahead for 512 x 512 map

The time taken at 0% obstacles is significantly lower even for 𝐴 ∗ 𝐿(5), saving close to 47%

in time taken. Startcraft maps are large maps with clusters of obstacles present in them.

62

Unlike uniformly and sparsely distributed obstacles, clustered obstacles remain pruned

because to have a path around it a large detour must be taken, making them unlikely to be

part of the shortest path. Just like previous maps, the average number of nodes added at the

lookahead stage is highest when 7% obstacles are present resulting in larger amount of

time taken.

4.3 Unpruned vs Pruned A*L (50 x 50 map)

The directional pruning technique is the method we use to get improvement in time taken

for A*L. Without the pruning technique in A*L the time taken in significantly larger as the

branching factor during DFS lookahead is exponential in nature. Because the time taken is

significantly large, we are only able to perform experiments with a small sized map of size

50 x 50. We also restrict the number of experiments to 20 and the value of k to 0, 1 and 2.

The start and end value for 20 experiments come from scenario files.

The map we used for this experiment is arena from Dragon Age Origins. The map has

2,054 traversable states. We do not add any extra obstacles to the map. This experiment

showcases our problem statement of having an unpruned A*L and its comparison with

pruned A*L. The start and end points for these experiments come from scenario files and

are already available. Both algorithms have the same start and end nodes.

63

Figure 41:Nodes expanded for pruned vs unpruned A*L

The number of nodes expanded for A* is same because we don’t use the pruning technique

for A* search. The pruned version performs better than the unpruned version for the

number of nodes expanded.

Figure 42:Nodes generated for pruned vs unpruned A*L

64

The pruned version generates lesser nodes than unpruned version at all versions of A*L.

This is because the effective branching factor is lower for the pruned version. As the value

of k increases, we save more on the number of nodes generated on both algorithms.

Figure 43: Time taken on pruned vs unpruned A*L

As the value of k increases for A*L, the time increases exponentially. The unpruned

version of A*L(1) takes 371.9ms on average compared to 1ms average of pruned version.

The unpruned version of A*L(2) takes over 148 seconds on average to run the algorithm.

65

Figure 44:Average nodes expanded per lookahead on pruned vs unpruned A*L

As we can see from the diagram above, the number of nodes expanded at the lookahead

stage of the unpruned A*L is significantly larger than the number nodes expanded at the

lookahead stage of the pruned algorithm.

4.4 Summary

A*L saves more memory than A* search. As the value of k increases, the number of nodes

generated decreases. This is the general trend for all experiments. As the cost of path

increases, the percentage of nodes saved decreases. This is because the value of k relative

to the cost of the path lowers as the cost of path increases. We see that for smaller maps

there is a significant decrease in the percentage of nodes generated for A*L(5). Looking at

the results for 128 x 128 map, as the percentage of obstacles increases, A*L starts to save

a smaller number of nodes. At 30% obstacles for 128 x 128 map, the average path cost is

66

154 and the percentage saved is 45% whereas for the 211 x 251 map, at 0% the average

path cost is 222.33 while the percentage saved is 46%.

The pruning technique also saves memory. If we consider the node generated graphs for

A*L(0), we see that the number of nodes generated decrease. A*L(0) is similar to A*

search where the lookaheads are done up to a cost of 𝑓(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 0. This will likely do

lookaheads for very few nodes to almost no nodes. The pruning technique reduces the

branching factor 𝑏 of each node expanded from 8 to 2. The number of nodes expanded for

A*L(0) is similar to that of A* search whereas the number of nodes generated significantly

decreases.

Obstacles play a large role in how much memory is saved. When obstacles are clustered at

certain locations it doesn’t affect the memory saved as much as when the obstacles are

distributed uniformly. Increase in obstacles uniformly decrease the heuristic performance.

Decreasing heuristic performance increases the relative error of the heuristic function

thereby making A* perform worse in terms of nodes expanded (Korf, 2000). For example,

for completely blank map, if the path is exactly a diagonal the error in heuristic for

Euclidean distance is 0. This means that when a lookahead search is done from the first

node, even at k = 1 it will find the goal making the number of nodes expanded as low as 1.

When obstacles are added along the path, the error in heuristic increases so more nodes

need to be expanded to reach the goal. Larger number of nodes expanded means a greater

number of nodes being generated. This is compounded by the increase in map size. When

a percentage of obstacles are added to a larger map, the heuristic performs worse than when

obstacles are added to a smaller map. This would explain the decrease in amount saved

when obstacles are added.

67

A* with lookahead does not help with time taken. In fact, because the lookahead nodes are

repeated often, they end up as an overhead. The time taken to expand singular node in

lookahead part of the algorithm is a lot lower as they don’t need to be saved, in fact they

can be evaluated, expanded and discarded. They don’t have operations on 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. Even when a stack is used to store the best path the time taken for each

operation is 𝑂(1). For A*L(0) on all maps, the time taken is similar to or better than A*

which has no lookahead nodes expanded. This shows that we can achieve better

performance with regards to space and time when we use the pruning technique alongside

A*L.

The key point is to keep the number of lookahead nodes low as they can grow exponentially.

The directional pruning technique reduces the lookahead nodes expanded and nodes

generated significantly. This directional pruning technique reduces the effective branching

factor 𝑏𝑒 from 8 to 2. This is also the reason at every experiment A*L(0) has better time

taken than standard A* search. The directional pruning also reduces the branching factor

for lookahead search, but more importantly it eliminates redundancy and symmetry in DFS

too. When obstacles are present, forced neighbors are generated increasing the branching

factor which increases the nodes generated. As more nodes are generated per expansion,

more lookaheads are performed. And each lookahead has a higher branching factor because

of obstacles.

68

Figure 45: Generation of cycles in lookahead stage

Let us assume we want to expand node 7 with parent node 4. Node 8 and 11 are forced

neighbors generated because of the obstacle whereas, 10 is the natural neighbor. If there

was no obstacle at node 5, only node 10 would have been expanded. When node 9 needs

to be expanded, node 6 generated as its forced neighbor. Node 2 is generated as forced

neighbor of node 3 later and node 4 is generated as forced neighbor of node 1. This cycle

does not take place with A* part of the algorithm because A* stores the visited and

expanded nodes. However, even for A* search a greater number of nodes are generated on

each of these expansions.

This affects the lookahead part of the algorithm. As the percentage of obstacles in the map

increase, such singular random obstacles decrease. Large number of obstacles means that

obstacles tend to cluster together densely, and such cycles don’t happen often. High density

of obstacles also means lesser number of nodes to be generated in the map. This is the

reason why for all cases the time taken at 7% additional obstacle and 15% additional

obstacle are the highest. This is also the reason why the time taken decreases at 30%

obstacles chance at A*L(5).

69

We use the average number of nodes expanded per lookahead cycle to verify if this is true.

For all maps, we see that as value of k increases the average number of DFS lookahead

nodes expanded increase. We also see the average number of DFS lookaheads done is

highest at 7% and 15% which proves our previous explanation of the effect of obstacles on

lookahead.

70

CHAPTER 5:

Conclusion and Future Work

For our thesis, we explored a variant of A* search on the grid-based domain. This variant

of A* called A* with Lookahead, allows us to save space in A* by doing depth-first

lookaheads from the frontier of A* and generating new frontiers. The space complexity of

the algorithm is 𝑂(𝑏𝑑−𝑙) compared to the space complexity of A* search which is 𝑂(𝑏𝑑).

We proposed the use of this algorithm for grid-based pathfinding domain.

We found that using A* with lookahead for a grid-based domain increases the time

complexity of the algorithm significantly. The time complexity of this algorithm is

𝑂(𝑏𝑙 × 𝑏𝑒
𝑑−𝑙). The branching factor 𝑏 for depth-first lookaheads tends to be larger than

the effective branching factor 𝑏𝑒 on A* search. We use an optimality preserving pruning

technique to bring down both the branching factor and the effective branching factor of the

algorithm. This pruning technique brings down the branching factor 𝑏 from 8 to 2(average).

In our experiments with different sized maps, varying values of cost k and percentage of

added obstacles, we found that adding obstacles to the map made A* with Lookaheads

slightly worse in terms of the percentage of space saved. Furthermore, the presence of

obstacles increased both branching factors of the algorithm thereby increasing the time

taken.

To conclude, our approach of a combination of A* with Lookahead and the grid-based

pruning scheme performs better than A* for all maps where the obstacles are naturally

placed (0% added obstacles/ actual game maps). It performs the worst when obstacles are

uniformly and sparsely placed (randomly placed obstacles with chance 7% and 15%). And

71

even when placed this way, there exists a value of k for which improvement in both time

and space complexity can be achieved. There is a slight improvement at 𝑘 = 1 and more

space saved at 𝑘 = 2 with a slightly worse time taken.

When experimenting with an unpruned version of A* with Lookahead, it wasn’t possible

to run experiments with higher values of k due to time constraints. We conclude that the

unpruned version is therefore not a feasible approach even though it also manages to save

space.

Future work could be to randomly generate clusters of obstacles with a 7% and 15% chance

and see its effect on the performance of the algorithm. The pruning technique seems to

significantly improve the runtime performance and would be promising to apply to other

variants of A* that use iterative deepening to save space like IDA* and RBFS.

We store the best path found so far up to the goal nodes. If we store the best path found

regardless of the node, we might be able to reuse lookaheads from the previous search

drastically reducing the time taken by the algorithm. This could, however, come at a cost

of increased memory requirements.

72

APPENDICES

Table 2:Full table of results for 128x128 map

73

Table 3:Full table of results for 211x251 map

74

Table 4:Full table of results for 320x320 map

75

Table 5:Full table of results for 384x384 map

76

Table 6: Full table of results for 512x512 map

Table 7: Full table of results for pruned vs unpruned

77

REFERENCES

Adi Boeta, B. B. (1998). Pathfinding in Games. Artificial and Computational Intelligence

in Games.

Dainel Harabor, A. G. (2012). The JPS Pathfinding System. Proceedings of the Fifth

Annual Symposium on Combinatorial Search (pp. 207-208). AAAI.

Daniel Damir Harabor, A. G. (2011). Online Graph Pruning for Pathfinding on Grid Maps.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (pp.

1114-1119). Association for the Advancement of ArtificialIntelligence.

Daniel Harabor, A. B. (2011). Grids, Path Symmetries in Undirected Uniform-Cost.

Proceedings of the Ninth Symposium on Abstraction, Reformulation and

Approximation (p. Daniel HaraborandAdi BoteaandPhilip Kilby). Association for

the Advancement of ArtificialIntelligence.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics SSC4.

Holte, R. C. (2010). Common Misconceptions Concerning Heuristic Search. Association

for the Advancement of Artificial Intelligence.

https://movingai.com/benchmarks/formats.html. (n.d.). Retrieved from

https://movingai.com/benchmarks/formats.html.

https://qiao.github.io/. (n.d.). Retrieved from https://qiao.github.io/PathFinding.js/visual/.

78

Korf, R. E. (2000). Recent Progress in the Design and Analysisof Admissible Heuristic

Functions. Abstraction, Reformulation, and Approximation: 4th International

Symposium (pp. 45–55). Horseshoe Bay, USA: AAAI.

Nareyek, A. (2004). AI in Computer Games. Queue, ACM.

Norvig, S. J. (2010). Artificial Intelligence: A Modern Approach. Pearson Education

Limited 2016.

P.Mehta, S. V. (2015). A Review on Algorithms for Pathfinding in Computer Games.

International Conference on Innovations in Information Embedded and

Communication Systems ICIIECS’15. IEEE.

Patel, A. (2010). Retrieved from http://theory.stanford.edu/~amitp/GameProgramming/.

Roni Stern, T. K. (2010). Using Lookaheads with Optimal Best-First Search. Proceedings

of the Twenty-Fourth AAAI Conference on Artificial Intelligence (pp. 185-190).

Association for the Advancement of Artificial.

Sturtevant, N. R. (2012). Benchmarks for Grid-Based Pathfinding. Transactions on

Computational Intelligence and AI in Games, 144-148.

Zhaoxing Bu, R. S. (2014). A* with Lookahead Re-Evaluated. Proceedings of the Seventh

Annual Symposium on Combinatorial Search (pp. 44-52). Association for the

Advancement of Artificial.

79

VITA AUCTORIS

NAME: Shrijan Karmacharya

PLACE OF BIRTH: Kathmandu, Nepal

YEAR OF BIRTH: 1991

EDUCATION: Bachelor of Engineering - Information Science and

Engineering, Visveshvaraya Technological University,

Bangalore, Karnataka, India, 2014

 University of Windsor, M. Sc C.S, Windsor, Ontario,

Canada, 2020

	Improving Lookahead search for grid-based pathfinding
	Recommended Citation

	tmp.1582666207.pdf.tTvMC

