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ABSTRACT

Pathfinding is an essential part of navigation systems, often used in video games, route planning
and robotic navigation. A* search has been one of the most well-known and frequently used
algorithms for pathfinding. A* uses an open list and a closed list to keep track of all nodes
generated and expanded. The size and performance of these data structures are major drawbacks
of A*. Lookahead is used to investigate future outcomes and improve the quality of available
choices. Lookaheads are done on a DFS manner from the frontier of A* search. This combination
of A* and DFS lookahead has been shown to save space when working with puzzles. We leverage
this concept with grid-based pathfinding in video games to save the amount of space consumed.
However, because grids contain redundant paths, the DFS lookaheads end up being an overhead
as they do not maintain a list of nodes visited or expanded. By using a domain-specific pruning
technique, we significantly improve the time taken by the algorithm and further improve upon the
space consumed. A combination of lookahead and A* search with this pruning technique is,
therefore, able to achieve improvement in both space-consumed and time-taken over the standard

A* search algorithm for grid-based pathfinding.
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CHAPTER 1:

Introduction

1.1 Thesis Claim

A* with lookahead is a variant of A* search that performs limited DFS lookaheads from
the frontiers of A*. This algorithm saves space by using DFS lookaheads which is linear
compared to the exponential nature of A*. We claim that this scheme works well in a grid-
based domain for saving space. However, as paths in grids are highly redundant, DFS
lookaheads tend to expand an exponentially large number of nodes at each iteration slowing

the speed of the algorithm considerably.

We then, propose the use of a domain-specific search space reduction technique, which
prunes the number of children generated at each level based on the direction of the search.
Using this pruning technique, we achieve speeds comparable to or better than the standard
A* search. A combination of these two techniques provides improvements in both space-
consumed and time taken over the standard A* algorithm in a grid-based path-planning

domain.

1.2 Pathfinding

Pathfinding plays a significant role in graph search problems wherein a path is found based
on certain criteria between nodes in the graph. This criterion often corresponds to a positive
result of some kind (cheapest, fastest, best) in the problem domain from which the graph
was derived from. The pathfinding/path-planning problem can be used to model problems

in different domains like solving puzzles, optimizing task scheduling, operations research,

1



and routing in computer networks and computer games. (Norvig, 2010)Therefore,

pathfinding remains an active area of research in the Artificial Intelligence domain.

Pathfinding holds a special place in Video game Al. Real-Time Strategy Games (RTS),
Role Playing Games (RPG) and Multiplayer Online Battle Arena (MOBA) heavily depend
on pathfinding either as a component of a Non-Player Character (NPC) or as a component
of the Player. This entity that benefits from the results of pathfinding is known as an Agent.
Depending on the number of agents, the pathfinding problem can be divided into Single-

Agent Pathfinding or Multi-Agent Pathfinding.

A generic pathfinding problem formulation for a video game is as follows:

a. The game environment is the state space,
b. The start and goal node are locations in the game environment,

c. The unit utilizing the path generated is the Agent

1.2.1 Graph Representation

Game environments or maps are represented as a graph in one of three ways: Grids,
Navigation Meshes or Waypoints. Each of these is a simplified representation of the search

space.

1.2.1.1 Grids

Grids are the most frequently used representation of game environments. Grids are a
uniform subdivision of the state space into tiles. Each tile in the grid can either be

traversable or untraversable. Furthermore, traversable grids can have different costs



associated with it depending on the type of terrain on the map. Subdivisions for grids are

divided based on tiles.

The most common grid types are square, triangle and hexagonal (Patel, 2010). In a grid-
based map representation, each tile represents a node. For each neighbor of a tile, there
implicitly exists an undirected edge from that tile. The number of outgoing edges a node
has depends on the number of neighboring tiles it contains, which depends on the
movement allowed on the grid. For example, for a square grid with 4 adjacent tiles, if only
straight movements are allowed (NWSE directions) then it has 4 neighbors. If diagonal
movements are allowed on top of a straight movement, then the tile has 8 neighbors. This

map representation is used for all experiments done for our thesis.

Figure 1: Grid Representation

1.2.1.2 Navigation Mesh

Navigation Mesh or Navmesh, are graphs where the traversable areas are represented as
interconnected polygons. Obstacles are not part of the state space in a navigation mesh.

Each polygon in Navigation Mesh can have different weights associated with them. Agents



in Navigation Mesh can travel within the polygon without having to worry about obstacles
usually trivially as a straight line (Patel, 2010) (P.Mehta, 2015). Adjacent polygons of a

Navigation Mesh are connected to each other as a graph.

Figure 2: Navigation mesh representation

1.2.1.3 Waypoints

Waypoints are the final method of representation of game maps. They consist of nodes that
are placed at a location in the graph (P.Mehta, 2015) (Patel, 2010). Waypoints can be set
by the player or by game designers. Waypoints added by game designers are often seen as
landmarks on the map (Patel, 2010). Waypoints set by players are more common in RTS
and MOBA games. Waypoint set by game designers is common in Role Playing Games or

games that trigger in-game events (Nareyek, 2004).



The waypoints generated by the player and the waypoints set by programmers are usually
not along an optimal path therefore the path generated using waypoints can be sub-optimal

too. Similarly, the same waypoints cannot be used across different start and goal nodes.

Figure 3: Waypoint Representation

1.2.2 The general graph search structure

For our thesis, we establish that our state space is represented as a grid map. Each node is
a tile and each tile has octile movement (Straight + Diagonal). Each node in the grid has 8
neighbors connected by a bidirectional edge or an undirected edge where movement
between the edges in either direction is allowed. These edges are the actions in our state
space. We shall go into this in detail later when we describe optimizations and rules

applicable to a grid.

The key infrastructure for all graph-based search algorithms are,



1. Nodes:

Nodes are data structures in search algorithms that hold the state, its parent, and various

other details pertinent to the search algorithm.

2. open list/ frontier/ generated nodes

The open list is a list-like data structure that holds multiple nodes. Minimally, this
data structure allows nodes to be added and removed from it. The nodes held here are
nodes that have the potential to be in the solution path found by the pathfinding
algorithm. The implementation of an open list differs between the type of search

algorithm being used.

3. closed list/ explored set/ expanded nodes.

The closed list is a data structure similar to the open list. The nodes in the
closed list are nodes that have already been visited by the search algorithm. The nodes
in the closed list are part of the path found. The closed list needs to be designed so
that data in a closed list can be read without overhead. The closed list is usually

implemented using hash tables because its lookup has 0(1) time complexity.

A general graph-based search algorithm has the following scheme,



Input: Graph(V, E) with start node start and goal node goal
Output: path from start to goal
function graph — search:
Initialize open with start
Initialize closed with empty
while (open is not empty)
use a search strategy to select node from open
add node to closed
expand chosen node, adding its children to open, if not
in open or closed

The general graph-based search algorithm scheme starts with initializing the open list
with start node for pathfinding. The start node consists of the start location as its state. It
empties the closed list. It then loops through the open list selecting one node to expand.
All children of the nodes expanded are then added to the open list. All famous graph-
based search algorithms differ from each other only in its Search Strategy. A search
strategy is a process selecting a node from the frontier or open list to expand and then
moved to the closed list. The data structure used for the open list, therefore, depends on
the algorithm and how it helps optimize the search strategy this algorithm uses. (Norvig,

2010)

1.2.3 Search Algorithms

The solution to a pathfinding problem is usually found using a search algorithm. A general
search algorithm consists of the node, its children, a list of children that were previously
generated/frontier of the search/ open list and a list of nodes that were previously

expanded/visited nodes/closed list. (Norvig, 2010)



There exist different search algorithms, however, they can be classified into two major
categories: Informed Search and Uninformed Search. Uninformed search algorithms are
those that do not integrate domain knowledge into the search strategy. Informed search, on
the other hand, makes use of domain-specific knowledge, and integrates it into the search

strategy. (Norvig, 2010)

Breadth-First Search, Depth First Search, and Uniform Cost Search are well-known Search
Algorithms. Breadth-First Search uses the shallowest node first search strategy for node
selection. Depth-First Search uses the deepest node first strategy for node selection.
Uniform Cost search uses a node with the lowest path cost first g(n) as its search strategy.
If the path cost for between each node and its child is constant, then Uniform Cost Search
is the same as Breadth-First Search. In literature, Uniform Cost Search is also known as

Dijkstra’s for a single goal node (Holte, 2010).

Best First Search and A* Search are the most well-known informed search algorithms for
Pathfinding. Both algorithms make use of a heuristic function h(n), which uses domain-
specific knowledge to drive the search strategy. Best First Search solely relies on the
heuristic function as its search strategy (Norvig, 2010) whereas, A* search uses a
combination of path cost and heuristic function as its search strategy (Hart, Nilsson, &

Raphael, 1968).

1.2.4 Performance Measures for pathfinding

Like with problem-solving, there are various measures to evaluate the algorithms in

pathfinding.



e Completeness: Completeness of an algorithm evaluates if the algorithm is
guaranteed to find a path if there is a path to the goal.

e Optimality: Optimality checks if the solution found by the algorithm is optimal.
For pathfinding, it checks if the path generated or found by the algorithm is the
shortest path.

e Time Complexity: Like all algorithms in the field of Computer Science, the
performance of the algorithm is evaluated in terms of its time complexity or time
taken. As pathfinding exists as a subfield of Al, the time complexity of the
pathfinding algorithms is measured in terms of the effective branching factor b,
and the shallowest depth of the solution, d.

e Space Complexity: Essentially means how much space is consumed by the
algorithm while it finds the solution. Like the time complexity of the algorithms,
the space complexity is measured in terms of the effective branching factor b, and
the shallowest depth d of the solution. It is usually computed as the nodes stored
in memory i.e. the node generated. Space complexity is also a common measure

of performance in Computer Science.

1.3 Thesis Contribution

The space complexity of A* search is exponential 0(b%) in nature. The Depth-First Search
algorithm on the other hand, has a linear space complexity of 0(d) for its tree search
variant. A* search uses a combination of heuristics and the cost of the path to create an
efficient search strategy. The path found by A* search is optimal whereas, DFS may or

may not find any path to the goal. Combining the two schemes, we can leverage the space



complexity of DFS to improve A* search’s space complexity. On top of this, returning the
cost of the frontier to A* helps improve the performance of the heuristic search. The
combination of this scheme called A*L or A* with Lookahead has been shown to be

efficient in the puzzle domain (Roni Stern, 2010).

Using a combination of this scheme for grid-based pathfinding is slightly more difficult.
As grids are notorious for having highly redundant paths (Daniel Damir Harabor, 2011), a
tree search based DFS lookahead will cause significant overhead. This overhead will
overshadow any space-based improvements that the A*L can provide. We propose using a
neighbor pruning algorithm specific to the grid domain. This algorithm reduces redundant
and cyclic paths when used in DFS and symmetric paths when used in A* search. Using
this pruning technique, A*L becomes viable as an option in the grid domain, showing

improvements in both time and space compared to the standard A* search.

1.4 Thesis Organization

This thesis is divided into five major chapters. The first chapter introduces the basic
concepts that will be used throughout the rest of the chapters. Alongside introductory
concepts, it also provides key underlying concepts for our work. The second chapter goes
into detail about the major algorithms and concepts, as well as details into key literature
that motivated research into this topic. The third chapter covers the proposed methodology
and algorithm for this thesis. It goes over techniques that lead to an improvement in the
algorithm. The fourth chapter describes the experimental setup, results of the experiments
and analysis of the results. The fifth chapter offers a conclusion and key findings alongside

future research into the topic. Appendices consist of tables with data from our experiments.
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CHAPTER 2:

Background and Literature Review

In this section, we start by introducing the A* search algorithm. We explore the concepts
that are relevant to the A* search algorithm. Then, we define different types of heuristics
and how they relate to the grid domain. After that, we look at recent literature relevant A*L

algorithm. We explain the algorithm and the key concepts behind it.

2.1 The A* Search

The A* search algorithm is the most popular algorithm for pathfinding problems. Because
A* uses heuristics to guide the search, it is an informed search algorithm. For a certain
Graph G with a Start node and a Goal node, A* search finds an optimal path from the start
node to the goal node. The problem solved by A* is a minimum cost problem, therefore,

returning the shortest path from the start node to the goal node.

A* builds a search tree from the state space by expanding nodes. A* begins by adding the
start node into the list of frontiers (open list). The algorithm keeps looping through the
open list, until either the open list is empty or if the node selected for expansion is the

goal node (Norvig, 2010).

As mentioned before, the process of selecting a node to expand from the open list is

known as the search strategy. There are three major parts in A* search’s strategy.

1. g — cost or g(n) is the actual cost of the path from start node to node n. The

g(start) is equal to 0 and the g(goal) is equal to the length of the path.
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2. h — costor h(n) is the heuristic estimate of cost from node n to the goal node.
The h(goal) is equal to 0.

3. f —costor f(n) is an evaluation function and is the summation of g — cost and
h — cost the node. It is represented by the formula,

f@) =g®) + h(n) €y

Equation 1: A* evaluation function f

A = selects the node with the lowest f — value from among all the nodes in the open list
as the next node to be expanded. Before expansion, A* places the node selected into the
list of nodes that have already been visited or closed list. It proceeds to expand the node
by generating all the node’s neighbors. All the generated neighbors are then evaluated and

placed into the open list.

In the algorithm, A * selects nodes from the open list to expand. It calls the node that is to
be expanded as current. The node current is placed into the closed list. If the current
node is the goal node, A = returns the goal node. The optimal path can be built by

recursively generating the parents, from goal node to the start node.

All neighbors from the current node are then expanded in the algorithm. Each neighbor in
the for loop is then designated as the neighbor node. newNeighborCost is a temporary
variable that stores the cost of path taken from current node to the neighbor node. A*
then checks if the neighbor already exists in the closed list. If the neighbor already exists
in the closed list and the cost of path taken from current node to this neighbor is less
than that compared to the path it took when it was visited, it removes neighbor node from
the closed list. If the current path is longer or of same length as the previous path, then it
ignores the neighbor node.

12



Input: Graph G, start node start and end node goal
Output: Least Cost Path from start to goal
function Astar()
open.add(start))
closed.clear()
g(start) =0
h(start) = heuristic_function(start, goal)
f(start) = g(start) + h(start)
while open is not empty:
current = open.pop() //Node at top of OPEN with lowest F value
if current = goal:
return goal
open.remove(current)
closed.add(current)
for each neighbor of current:
newNeighborCost = g(current) + distance(current, neighbor)
if neighbor in closed:
if g(neighbor) = newNeighborCost:
continue
else:
closed.remove(neighbor)
if neighbor in open:
if g(neighbor) < newNeighborCost:
continue
open.add(neighbor)
g(neighbor) = newNeighborCost
h(neighbor) = heuristic_function(neighbor, goal)
f(neighbor) = g(neighbor) + h(neighbor)
neighbor.parent = current
return null

end

Figure 4: A* Search

A* search checks if the neighbor exists in open list. Like with closed list, if the
neighbor already exists in open list, and the cost of path taken from current node to this
neighbor is less than that compared to the path it took when it was generated previously,
then it removes this node from the open list. If the current path is longer or of same length

as the previous path, then it ignores the neighbor node.

The neighbor is then evaluated, wherein, it’s g — cost, h — cost and f — costs are

computed. The neighbor is then added into the open list as a possible candidate to be
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expanded next. When a neighbor in A* is removed from closed list, for it to be re-

evaluated and added to the open list again, the node is said to be re-expanded.

NN

Figure 5: Pathfinding using A*

2.1.1 Constraints on Heuristics

The A* search as an optimal path algorithm, works, only when certain conditions are met.
These conditions are constraints on top of heuristics. Admissibility of a heuristic function
guarantees that the algorithm finds an optimal path if there exists one. A heuristic function
is called admissible if it never overestimates the cost to reach goal (Hart, Nilsson, &

Raphael, 1968). In A*, the heuristic h(n) is said to be admissible, if it would never exceed
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the actual cost to reach the goal node from any node n. If we assume, h(n) * as the actual

optimal cost to reach the goal from node n,
h(n) is admissible if,
vn h(n) < h*(n) (2)
Equation 2: Admissibility of heuristic

Consistency is the next constraint on the heuristic function. A heuristic function h(n), is
said to be consistent for node n if the estimate for the node is less than or equal to the sum
of the cost of the path from the node n to its children and heuristic estimate of its children.
This condition is also called monotonicity. Consistency is a stricter condition than

Admissibility (Norvig, 2010). A consistent heuristic is also admissible, therefore, any

heuristic that is consistent guarantees that the path found by A* search is optimal.

Consistency has another consequence in A* search. If we look at the algorithm provided
in this thesis, there are conditions for when a neighbor needs to be checked if it already
exists in open list or closed list. When the heuristic is consistent, then it guarantees that
every node chosen for expansion will never be re-expanded or updated in the open list.

Formally, consistency is defined as,

vn,n' h(n) < cost(n,n’) + h(n') (3)

Equation 3: Consistency of heuristic

Where, n' is a child of n and h(goal) =0 .
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2.2 Heuristics

A heuristic function is used to incorporate domain knowledge into search algorithms. The
heuristic function can be either used in conjunction with state-space knowledge or on its
own to derive a novel search strategy. The use of a heuristic function is what separates
Informed search algorithms from Un-Informed search algorithms. Usually, a heuristic
function is denoted as h, and for any node n, the heuristic value is an estimate from the
node n to the goal, denoted as h(n). For A* search, if the heuristic value h(n) is set to 0,
it turns into Uniform Cost Search, if OPEN does not have any other path that is less than
the current path cost (Holte, 2010). A good heuristic function usually helps improve search

by reducing the number of nodes expanded (Norvig, 2010) (Korf, 2000).

Pathfinding problem in a grid-based environment means finding the shortest path from one
point in the grid to another. For square grid-based maps, there are two well-known heuristic

functions, the Manhattan distance and the Euclidean distance.

2.2.1 Manhattan Distance

Manhattan Distance, or city block distance is the distance between two points in which the
movement is only either vertical or horizontal. For a coordinate system (x,y), the
Manhattan distance between two points A (x;,y;) and B (x,,y,) is calculated as sum of
the absolute differences in the x — coordinate and the y — coordinate. It is given by the

formula,

h(AfB)Manhattan = |x1 - x2| + |Y1 - y2| (4)

Equation 4: Manhattan Distance
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Figure 6: Manhattan Distance

On grid-based maps, Manhattan distance is often considered a standard heuristic. When
used in grids where only straight movements are allowed, A* search with Manhattan
Distance can find the optimal path. However, when used in grid maps where diagonal
movements are also allowed, the Manhattan Distance can result in sub optimal solutions.
This is because Manhattan Distance will overestimate the cost of path for diagonal

movement, making the heuristic inadmissible.

2.2.2 Euclidean Distance

Euclidean distance is the straight-line distance or the airline distance between two points.
For a coordinate system (x, y), the Manhattan distance between two points A (x;,y;) and
B (x,,y,)is calculated as the root of the squared difference between respective x —

coordinates and y — coordinates. It is given by the formula,

h(A, B) puciizgean = \/(xl —x2)%+ (1 — ¥2)? (5)

Equation 5: Euclidean Distance
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Figure 7:Euclidean Distance

Euclidean distance is more expensive to compute than Manhattan distance. However,
regardless of the movement allowed, i.e. Straight only, straight with diagonal or any
directional movement, when Euclidean Distance is used as the heuristic function, A* will
be able to find an optimal path. For diagonals, the Euclidean distance will still

underestimate or be equal to the cost of path, guaranteeing admissibility.

2.3 A* with Lookahead (A*L)

The major issue with A* search is the memory requirements of A*. A* is more likely to
run out of memory far before the time taken becomes an issue (Norvig, 2010). A* needs to
store all nodes in an open list and closed list. The space complexity of A* is exponential

in nature.

Depth first Search, on the other hand, has memory requirements that are mostly linear
as it needs to store the branch it currently is working with. The version of DFS we are
talking about here is the Tree-Search version of DFS. The flaw of this version of DFS is

that it is not complete if redundant paths exist, i.e. DFS fails to find a solution even when
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there exists a solution. It is very less likely that DFS will ever find an optimal path when
using the Tree-Search Version of DFS, except in a very rare circumstance (first node to be

generated is always along the optimal path).

Combining DFS and A* search would allow both algorithms to benefit. While there exist
algorithms, IDA*, which combine these two schemes, they often have problems with
needing to explore the same nodes repeatedly. The memory complexity of IDA* is linear
similar to DFS. In conjunction with its low memory constraints, the path resulting from
IDA* is optimal in nature, however, because IDA* expands the nodes at certain depth
repeatedly, for graphs with multiple redundant paths, IDA*’s time taken to find an optimal

path is very large.

Lookaheads with A = or A * L is an algorithm proposed by Stern et al. which combines the
scheme A = search and doing depth first search lookaheads from the nodes being generated.
The lookaheads are bound either by depth or by cost. For the experiments in the paper,

either one would work as they work with a puzzle domain where the cost of each action is

The key variables of the algorithm are,

UB — is the upper bound on cost of children to be expanded by A * L. UB is equal to the
cost of the best solution found so far. Unlike BRFSL, A * needs to expand all children and
perform lookahead for all nodes for which f-value is less than the current best solution
(UB). Once UB is seti.e. it is not infinity, any child with cost greater than or equal to UB

can be pruned. The children are goal tested and if the child is a goal node UB is updated.

LHB — is the lookahead bound which helps set bound on DFS lookahead. It is the lowest

value among the current UB, f — score of expanded node f(current) + k.
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Lookahead cost k — is the value which is used to limit the lookahead either through cost or

through depth
h,, —is the updated heuristic value after lookahead is done
fupaatea — 1S the updated f value where,
fupdatea = Mupdaatea(neighbor) + g(neighbor)

bestpath - is the stack that holds the best available path from the frontier node.

Input: node current to be expanded, UB upper bound variable
if f(current) = UB:
break;
for each neighbor of current:
newNeighborCost = g(current) + distance(current,neighbor)
if neighbor == goal:
UB = Min(UB,newNeighborCost)
if newNeighborCost > g(neighbor) or f(neighbor) = UB:
continue
if flcurrent) == f(neighbor):
fupdated (HEJ:gthT) = fupdated (CHTTBTH)
continue
LHB = Min(UB, f(current) + k)
if f(neighbor) < LHB:
Mincost = oo
Lookahead(neighbor, LHB,UB, Mincost)
ht{(ner’ghbor} = Min (ht{(nefghbor']JMinCOSt - g{:?’lﬁ’lghb(??))
else:
ht((ner’ghbor] = h(neighbor)
fupdatea(neighbor) = h,(neighbor) + newNeighborCost
if fupdatea (Neighbor) = UB
continue
Add,update open as needed

Figure 8: A = L expansion cycle

The algorithm above is a modification on top of A * after a node selected is expanded. The
Search Strategy for this algorithm is to select the node with lowest f,,4qteq Value.

Therefore, the open list is sorted using the f,paqceq Value. Like with A = search,
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newNeighborCost is a variable that stores the cost taken to reach this node neighbor
while going through current. If the neighbor generated is equal to the goal node, Upper

Bound variable UB is set as the lesser of newNeighborCost and previous UB.

The algorithm prunes neighbors whose f values exceed that of UB or if the cost to the
neighbor through this path is not the lowest cost to this path. The Lookahead Bound
variable, LHB is then set as the lesser of UB or expanded node’s f — score + lookahead

value k, f(current) + k.

If the f — score of neighbor is less than the Lookahead bound LHB, then depth-first search
lookaheads are performed from the neighbor node until the frontier that is exceeds the LHB.
The MinCost variable is first initialized to infinity, then used to store the minimum f —
cost from all the frontiers. The updated heuristic h,, is set as either the previous h, or
MinCost — newNeighborCost, whichever is lower. After this, the algorithm works like
A* where it inserts into the open list or updates the open list and closed list (re-

expansion).
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Input: node current for lookahead, LHB lockahead bound variable, B upper bound
variable, Mincost minimum cost of lookahead to be returned
function lookahead(current, LHB,UB, Mincost):
S.push(current)
for each neighbor of current:
if neighbor == goal:
if g(neighbor) < UB :
bestpath = §
UB = Min(UB, g(neighbor))
Mincost = Min(Mincost, g(neighbor))

else:
if f(neighbor) = LHB and f(neighbor) < UB:
Lookahead(neighbor, LHB, UB, Mincost)
else:
Mincost = Min(Mincost, f(neighbor))
S.pop()

Figure 9: Lookahead portion of A * L

The lookahead part of the algorithm is a recursive Depth-First Search that is bounded by
the lookahead value LHB. Current node to be expanded is stored in the stack S and popped
after all nodes have been generated. neighbor nodes are generated from the current node
and evaluated. If a goal is found during the lookahead stage, the UB variable is updated
based on neighbor’s g cost, g(neighbor). The stack S is saved as the best cost path to the
goal if the current path is the best path found to the goal. This is either a min of the previous
UB or neighbor’s g cost to guarantee optimality of the algorithm. Mincost is also updated

based on the neighbor’s g cost.

When the neighbor is not the goal, lookaheads are performed recursively until the f —
score of current neighbor, f(neighbor) is greater than the LHB or UB. When the f —
cost exceeds either the UB or the Lookahead bound LHB, Mincost is set as minimum of

current Mincost and f — score of the neighbor in the frontier.
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CHAPTER 3:

Proposed Methodology

3.1 Motivation

The initial motivation for the work was when doing lookaheads from a node n and
returning the minimum cost from frontiers, we might be able to ignore certain branches

and thus save space by reducing the number of nodes generated and expanded.

Figure 10 : A* Search Tree

Let us look at a sample search tree for A = search as shown above. For the sample, let us
assume that the start node is A and the goal node is E. A * adds A to the open list. It
selects and expands Node A generating 3 children, B, C, and D respectively. The f —

score for all the children is computed and added to the open list, while node A is added
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to the list of expanded nodes or closed list. The node with the lowest f — score, node C
is selected for expansion. When node C is expanded, nodes G and H are generated and
evaluated as node C is added to the closed list. Node D, with f — score 11 is then
selected for expansion from the open list. Nodes I and J, which are the children of node
D are generated and node D is added to the closed list. Node B is expanded next with
children E and F, while B is added to the closed list. Node E is selected for expansion
next, and since Node E is the goal node, it is added to the closed list and the search ends.

We look at the nodes stored in open list and closed list at the end of the program.
openlist ={J, F, |, G, H}

closed list = {A, C, D, B, E}

The total number of nodes stored in open list and closed list are 10.

We look at how the same search tree is evaluated with lookahead at depth of 1. For every
node to be generated, a lookahead search is done up to depth 1 i.e. its children. Among the
frontier of the lookahead nodes, the node with lowest f — score is returned to A * and the
child from which lookahead was performed, will have its updated f,,qq¢eq Set as the value
returned from lookaheads. The start node A and the goal node E remain same as the

previous example.
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g 7 9
Figure 11 : A* with Lookahead Search Tree

Node A is first added to the open list. A lookahead is done for A as all its children B, C
and D are generated but not stored anywhere yet. The node with the lowest f — score
among them is node C, which has a value of 8. This value is propagated back to A with
cost 8. This step of generating the f,,,q4¢eq for the root node may be skipped as the root
node is added to the closed list regardless. And if the root node is the goal node, then the

search does not need to take place.

After node A is selected for expansion, its children are generated. For each child generated,
a lookahead search is performed to a depth of 1. Lookahead from node B generates E and
F, with E having the lowest f —score. Node B’s fypgateq IS S€t to 12. Similarly,
lookahead from node C, results in f — score of 46 being propagated back to node C.
Lookahead from node D results in f — score of 13 being propagated back. The diagram
above shows the respective f,,qqateq Values of the nodes represented by “fu”. Node B is

expanded because it has the lowest f,,,,44:eq and lookahead for its children are performed.
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Since E is the goal node, there is no more lookahead performed for E. Unless lookahead
from F results in a f — value lower than 12, node E is set for expansion. Since node E is
the goal node and there are no nodes that have an f,,qateq Value less than E the search

concludes. We look at the open list and the closed list for this search.
open list ={C, D, F}
closed list = {A, B, E}

We see that the total number of nodes stored in open list and closed list have now

decreased to 6.

Improving the f,,,aaceq Value is not the only place where A = L can save space. The A L
algorithm described in the earlier section re-uses the lookaheads to prune out all nodes that
have a f — value greater than the upper bound variable UB. Let us look at the same
example but using A * L algorithm. We do a lookahead up until a depth of 1. Our objective

remains the same, that is to find the path from start node A to goal node E.

Node A is expanded like before and the f,,,4a¢eq 1S Set as 8. Its three children are generated

starting with B. When a lookahead is done from B, it finds the goal node E. The goal node

E now sets the upper bound variable UB to 12. Since both nodes C and D have a f,p4atea

greater than the UB, they are both pruned and never added to the open list. Therefore, the

open and closed lists look as follows at end of the program.
open list = {B}

closed list = {A}
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The total number of nodes stored is 2. We should, however, note that the nodes that were
generated and discarded during the lookahead stage were 9. While these do not affect the

memory consumed, they do affect the time taken to run the algorithm.

3.2The grid domain

The grid-based map representation is used very often in video games. The grid-based
representation exists for different types of games, RPGs like Dragon Age and RTS like
Starcraft. There exists a compilation of standard benchmark maps from these games. These
benchmarks have the following characteristics. All maps are represented as 2D grids. The
maps are octile in nature. Therefore, the movements allowed on these maps are straight
and diagonal. All tiles, therefore, have eight neighbors except the ones on the boundary of
the map. All trees, walls and unpassable terrain are considered as obstacles and are
untraversable. Unpassable terrain adds another constraint to these benchmark maps.
Because units occupy space, it should not be possible for them to move through an obstacle.
This applies if a diagonal movement is to be made between tiles but there exists an obstacle
adjacent to the parent tile in one of the straight directions. This is called corner-cutting and

is disallowed in these benchmark maps (Sturtevant, 2012).

-
mm

Figure 12 : Example of corner cutting in left and proper path for agent on right
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Each Straight movement on the map has a cost of 1 and diagonal movement has a cost of

v/2. When grids have cost between neighbor tiles as defined above it is called, a uniform-

cost grid.

Figure 13 : A* Search on a standard map

3.2.1 Path Symmetry

Uniform cost grids are special form of graphs because they consist of many redundant
paths. Along with redundant paths they also contain what is called a symmetric path
(Daniel Harabor, 2011). While graph search algorithms have option of not exploring
redundant paths using open list and closed list, tree-search algorithms do not have the
same option. The DFS lookahead part of the algorithm A*L uses the tree-search version of
DFS. If we used Graph Search version, we would not be able to save as much memory as
we need to keep track of visited nodes and generated nodes (Norvig, 2010). Furthermore,
regardless of the type of algorithm path symmetry cannot be avoided by standard search
algorithms.
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Multiple paths can be defined as symmetric, if for a pair of start and end nodes, there exist
multiple paths with the same path cost (Daniel Damir Harabor, 2011). Path symmetry
forces search algorithms to evaluate equivalent states (Daniel Damir Harabor, 2011). Paths
are symmetric if the edges between them or direction of movement between them are a

permutation of each other (Daniel Harabor, 2011).

Figure 14: Path Symmetry

Path symmetries are easier to visualize when the movement of the graph is limited to
straight movement. We can see that all paths are optimal with a cost of 10. Likewise, if A *
search is performed with Manhattan heuristic on the graph all nodes will have a f — score

of 10.
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Figure 15 : The g, h and f costs of a grid with straight movement and Manhattan distance

The number of nodes expanded until the goal is found will solely depend on the tie-
breaking strategy. In worst case scenario, every node is first expanded before the goal is
reached. This scenario can be true if ties are broken based on lowest g — cost or FIFO

queue implementation of open list.

3.3 Search Space reduction using directional pruning

The paper (Dainel Harabor, 2012) on the JPS pathfinding system defines the Jump Point
Search. Jump Point Search works on top of A* search with two sets of rules: Pruning Rules
and Jumping Rules. For this thesis, we are interested in the pruning rules that drive Jump
Point Search. The pruning rules on this paper are updated from the pruning rules from
(Daniel Damir Harabor, 2011) to not allow corner-cutting in grids. These pruning rules are

online (does not require pre-processing) and optimality preserving (Daniel Damir Harabor,
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2011). The basis of pruning rule is that when expanding a node, all children which can be

reached by path shorter than the current path is pruned.

3.2.2.1 Natural Neighbors

For any node x, that has its parent p(x) and node n € neighbors(x), let us assume there

are two paths 7 and 7,

' =<p(x),y,n>wherey #x (7)

T =<p(x),x,n> (8)

Then the pruning rules are defined as,

1. For straight moves prune all neighbor nodes where,

len(n') < len(m) 9)

Intuitively, if a node x has been chosen for expansion then it is a node along the shortest
path. Any neighbor of node x, that has a shorter and can be reached without traversing
through node x, can be pruned (node above x). This is because, if for some reason, the
shorter path was not expanded or was expanded but is not along the optimal path, it is
pointless to expand it from x as the path to that node from x will not be the shortest path
to that node, i.e. g(n) from node x will not be the smallest g(n). For equal paths, like the
one diagonal to node x it needs to be pruned to avoid path symmetry. If we remember the
definition of path symmetry, two paths are symmetric if they have the same cost, and the
movements are a permutation of one another. This means that the neighbor n, that is

diagonal from node x can be reached through another path.

31



POG— x

Figure 16 : Natural Neighbor for a straight move

The figure above shows node x being expanded from parent p(x). The direction of
movement is towards the right from parent p(x). All nodes in grey are pruned out based
on equation 9 defined above. The only remaining unpruned neighbor is the neighbor to the

right of x.

2. For diagonal moves, prune all neighbor nodes where,

len(n") < len(m) (10)

This follows the same intuition as pruning straight moves. Node x has been expanded and
the children n which can have the shortest path without going through x can be pruned out
because going through node x would not result in the smallest g(n) anyway. However,
because straight movements omitted neighbors that could be reached through paths of
equal length, we need to include them for diagonal moves. We believe that these length
based pruning rules can be interchanged between straight move and diagonal moves i.e.
have straight moves prune len(m') < len(m) and diagonal moves prune len(m') <
len(r) instead. Either way, only one path to the node is expanded and the symmetric one

is omitted.
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Figure 17: Natural Neighbor for a diagonal move

The figure above shows node x being expanded from parent p(x) when the direction of
travel is diagonal. There are three remaining unpruned neighbors of x. If one of the children
of x is expanded next, it will also follow the pruning rules defined above. The children to
the top and right of x will follow the straight pruning rules. The child diagonal to x will
follow the diagonal pruning rule. The unpruned neighbors of x are called the

natural neighbors of x (Daniel Damir Harabor, 2011).

3.2.2.2 Forced Neighbors

There are changes to the pruning rule if a node encounters an obstacle. If there exists an
obstacle adjacent to the parent node which is orthogonal to the direction of expansion, then
none of the neighbors in the direction of the obstacle can be pruned. These neighbors

generated because of the obstacle are called the forced neighbors.

Forced neighbors adhere to the pruning rules given above as there exists no shorter path to

those nodes without going through x.
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Figure 18: Forced neighbors for a straight move

The nodes in green are the forced neighbors of x because of obstacle present adjacent
to p(x) and orthogonal in direction of movement (Dainel Harabor, 2012). For the green
nodes shown above, the nodes must go through node x to be the shortest path to the node

because of the obstacle present above p(x).

The diagonal movements cannot have forced neighbors because having obstacles to the
right of or above p(x) would mean that the expansion of x has cut a corner which is an

illegal move.

N B

/|
p(x)

Figure 19 : Blocked neighbor in a diagonal move

We must pay special attention to corner-cutting in grids while applying these pruning rules.
While expanding the node x, if there exists an obstacle on one of the straight moves like
shown above, the diagonal node z is now pruned because of corner-cutting and the only
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remaining natural neighbor is the node to the right of x. When the node n shown above is

expanded from parent node x, z becomes part of n’s forced neighbor.

3.3.1 Effect in Lookaheads

While this search space reduction technique works for A = search, its effect on DFS
lookaheads is significantly better. Because the DFS search implemented here is of tree-
search nature, lookaheads done from any child node are exponential. Essentially, every
node from the frontier generates b™ children. This makes the time complexity 0(b™)
where m is the maximum depth and b is the branching factor. This effect is compounded
in grids if lookahead is performed in cost bounded DFS. The problem with cost bounded
DFS is that there can be multiple nodes that are a fraction of their f — values away from
each other. As we saw in the example above for straight movement and Manhattan distance,
all nodes had the same f — value. A similar thing is true for when we use octile movement
with Euclidean distance. While most nodes won’t have the same f — value, a difference

of f — cost of 1 may span anywhere from 10 — 100s of nodes.

The branching factor for DFS lookaheads in b = 8. As time complexity of the algorithm
is 0(b* x b4™Y), where b, is the branching factor in the A* portion of the algorithm, b is
the branching factor in DFS lookahead and [ is the length of the DFS search. A branching
factor of b = 8 would mean there would be a significant overhead for . With search space
reduction, the branching factor is less than b = 3 (2 for empty grid). There is a significant
difference in expanding nodes with branching factor of the exponential of 8 and branching
factor of the exponential of 2. DFS lookahead also needs to expand these nodes again while

the A* version of the algorithm only expands nodes along the optimal path.
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Not keeping track of visited nodes in the closed list and expanded nodes in the open list,
the path to the same node along an optimal path g(n) can be generated with different costs.
Because all redundant paths and symmetric paths are removed, the DFS lookahead does
not expand the same node more than once per lookahead because the pruning technique is

optimality preserving (Daniel Damir Harabor, 2011).

Similarly, implementing the pruning technique in the A  part of the algorithm also reduces
the number of nodes generated per expansion of the node thereby decreasing the number
of times we would need to perform lookaheads. The effective branching factor b, that is
used in both space and time complexity is also affected by this pruning technique. Note
that all nodes that need to be expanded for A = will be expanded regardless of if the pruning

technique is used or not.

For children with the same f — value as its parent, we do not do a lookahead search.
Instead, we assign the same fy,,q4:eq Value to the child as we did to its parent. This was
dubbed trivial lookahead by (Roni Stern, 2010), however, we add the node to open list

instead of moving it directly to closed list.

Let us assume, there is a node n, for which the f — value is the same as its parent. If the
lookahead search of k = 1, does not find a path to the goal with f(parent) + k thenitis
very likely that the path in the direction towards child node n will result in a dead-end. This
causes A* to expand nodes that are not along an optimal path. When adding these nodes
directly to the closed list, (Zhaoxing Bu, 2014) found that using trivial expansion increases

the number of nodes expanded and generated in maps with unit cost.
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CHAPTER 4:

Experimental Setup

4.1 Implementation Details

We implement the algorithms using C# as the programming language. All experiments are
done on a computer with Intel Core i7-7700 CPU and 16 GB RAM. The visualizations are
built as a bitmap where each tile is a pixel in the bitmap. We use C#’s HashSet for
implementation of the closed list and Priority Queue for the open list. The experiments
are Single Agent pathfinding problems in a static map. The maps used are benchmark maps
from various video games at Moving Al Labs website

(https://movingai.com/benchmarks/formats.html, n.d.).

We use two algorithms A = search and A * with Lookahead. Both algorithms have been
modified to not allow corner cutting through obstacles. We compare two variants of A*
with Lookahead search, one with the domain-specific search space reduction
techniques/pruning technique and the other without it. From the standard benchmark maps,

we use scenarios that are available to get the start and end points.

We make different comparisons for A* search versus A* with Lookahead and A* with
Lookahead versus A* with Lookahead using pruning. The focus of our research is showing
that the lookahead based search has performance gains on memory consumed and with the
pruning techniques, we can overcome limitations of the lookahead search and achieve

execution time better than or similar to A* search.
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We run experiments on different map sizes with varying obstacle chance for A* vs A*L.
We vary the size of k in A*L from 0 to 5 and do cost-bounded lookaheads for our
experiments. For unpruned A*L, we only run the experiments in a small map as the time

taken would be significantly larger than the pruned version.

4.2 Experimental Setup

We’ve discussed grid-based maps before because it is pertinent to our thesis and it ties in
with the search space reduction. For our experiments, we use movement costs of 1000 for
straight moves and 1414 for diagonal moves in our grids. The final cost of the path is
divided by 1000. Obstacles are evaluated at a cost of integer max value which is
2,147,483,647. They are not evaluated with a cost for A * part of the search but return a
cost of integer max value for the lookahead portion. This value is also used in place of «

to initialize the minimum cost variable (MinCost) and the Upper Bound variable UB too.

The standard maps are .map files that are readable like text files. The first four lines are
map descriptions like map name, row and column. Remaining part of the file consists of
the map details. (https://movingai.com/benchmarks/formats.html, n.d.). Each character in
the file is a tile in the map environment. A space, *.’, ‘G’ and ‘S’ are characters that
represent traversable terrain. All other characters are considered untraversable. We add
another specific character ‘Z’ as obstacles that were randomly generated in our experiments.
The process of generating obstacles are defined in the section below. After our experiments,
we save a new map with character Z for our randomly generated obstacles as a .map file.

This way we can reproduce our experiments if needed.

38



For start and end points, we randomly select points from the scenario filesamong the 1/37¢

largest scenarios.

4.2.1 Search Parameters

We use specific maps of different sizes approximately 128x128, 211x215, 320x320,
385x385 and 512x512. We use actual video game maps from Baldur’s Gate’s unscaled

maps, Dragon Age Origins, and Starcraft.

Most maps already have obstacles present in them. We randomly add extra obstacles
amongst the available traversable terrain based on the obstacle chance we want. The
percentages of obstacles we add are 0, 7, 15 and 30. This way we can see the effect of
obstacles on the algorithms. For every traversable node, we use the random function to

determine if the node is going to be an obstacle or not.

Figure 20: Map with 0% added obstacles on left, map with 30% obstacles on right
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The figures are maps with 0% obstacles added and 30% obstacles added. Each pixel in the
bitmap is a tile. The pixels in white are traversable tiles and the pixels in black are original
obstacles in the game map. The ones in gray are obstacles that we have randomly added to
the map. We only vary the obstacles to up to 30% of traversable terrain because increasing
the obstacle percentage to around 40% generated maps that failed to find a path for majority

of the start and goal nodes.

We vary the lookahead cost k between 0 to 5 from the cost of the parent. The number of
frontiers generated by the lookahead process has significant overhead in terms of the
algorithm’s runtime. We go all the way up to a k value of 5 to see the tradeoff of memory

consumed to time taken against standard the A * search algorithm.

4.2.2 Performance Evaluation

We gather results from our experiments at runtime and compare A* with Lookahead for
different values of k with standard A* search. We take the Time Taken, the number of
nodes generated, the number of nodes expanded, path length and number of nodes

expanded during lookahead as performance evaluation metrics.

4.2.2.1 Time Taken

For each algorithm, we use a stopwatch to calculate the time taken. We use C#’s stopwatch
class System. Diagnostics. Stopwatch and measure the time elapsed. We first initialize
all variables and classes. We call the start method before we start our search and call the
stop method after the search finishes. The time taken is reported using the

ElapsedMilliseconds () method.
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The time taken in milliseconds is not an implementation-independent performance
evaluation metric. This metric will vary depending on different implementation methods
and environments. We use this metric to compare the performance of A* with lookahead
against the standard A* search. So, for this thesis, time taken should be a fair performance

evaluation metric.

4.2.2.2 Number of Nodes generated

The number of nodes generated is an implementation and platform independent
performance evaluation metric. It corresponds to the space complexity of our algorithms.
We expect the number of nodes generated to decrease when we use A* with Lookahead.
Nodes generated are the total number of nodes stored in the memory. We expect the nodes

generated to decrease when the pruning process is used.

4.2.2.3 Number of Nodes expanded

The number of nodes expanded is an implementation and platform independent
performance evaluation metric. We expect the number of nodes expanded to decrease when
we use A* with Lookahead. Nodes expanded are nodes removed from the open list and

added to the closed list.

4.2.2.4 Path Length

The path length is the lowest cost path from start node to the goal node. The final path is
optimal for A* search and A* with Lookahead Search. Regardless of the algorithm, the
cost of optimal path should remain same. The path length does vary for the same start and

goal node with the number of obstacles present in the map. The pathlength has impact on
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the number of nodes expanded and the time taken. Increase in path length means more
lookaheads done on the map. The average path length is the average for experiments done
on a map with certain search parameter. We track the path length across different values of

k to show that regardless of the value of k our algorithm is optimal.

4.2.2.5 Average Nodes Expanded during Lookahead

The average number of nodes expanded during Lookahead is the number of nodes
expanded during the DFS portion of the algorithm. While lookahead helps save memory,
they are also redundant in nature. While expansion of a small number of nodes per
lookahead can lead to benefit in performance, large number of nodes expanded per
lookahead results in an increase in time taken for the path to be found. Because lookaheads

are done only from generated nodes, the average node expanded is calculated by,

Total lookahead nodes expanded

A Lookahead nod ded =
verage Lookahead noaes expande Nodes generated

4.2.3 Results and analysis

We use our test framework to evaluate performance of A* with Lookahead and compare it
with standard A* search. As discussed above, we use locations in map from scenarios
already available. We run 50 experiments with obstacle chance of 30% as finding a path
for that is the hardest. We generate 50 start and end points for the map that will be used
with other obstacle chances. It is better to use start point and end points from a map with
30% obstacle chance than to generate a map with 30% obstacle chance that must find a

path for existing start and end points.
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The maps are selected based on the open space available. The experiments ran fine with
tight spaces if there weren’t corridors which had a very small width. The start and end
points remain same for different obstacle chances per map. This gives us an opportunity to

see the change in performance and path length with relation to the number of obstacles in

the map.
Added Obstacle Number of

chance Experiments Map Size Algorithms

0% 50 128 x 128 A/:: \f/?tirizo

7% 211x 251 A*L with kel

15% 320x 320 A% with ke2

30% 384 x 384 A% with ke3

512 x 512
A*L with k=4
A*L with k=5

Table 1: Table of experiments

We present our findings based on the size of the map. This lets us correlate performance to
map size and path length. Separate charts for varying obstacle chance with time taken,
nodes expanded, nodes generated and average number of nodes expanded during
lookahead will be shown below. Tables for all charts are available in the indices with

average path lengths, nodes expanded, nodes generated, and time taken.

4.2.3.1 Results for Map size 128x128

We use den900d map from Dragon Age Origins as the benchmark map for this experiment.
All results are values averaged out across 50 different experiments, 10 random maps with
5 different start and goal nodes. The start and goal nodes are same across maps with

different obstacle chances. There is an increase in the path length when the obstacle chance
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increases. The map has 5,258 traversable states. The cost of optimal path is same across

A* and A*L with different values of k.

A*

Nodes expanded for map den900d
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-
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(=]

Nodes Expanded

500

=}

00

A*L(0) A*L(1) A*L(2) A*L(3) A=L(4) A*=L(5)

W 0% obs 1348.3 1247.5 8743 609.5 4323 309.9 229.9
7% obs 1540.5 1441.0 1082.0 8535 699.2 557.2 4485
m15% obs 1774.7 1686.9 1362.5 1125.2 1034.2 890.4 809.9
30% obs 1921.2 1893.1 1554.0 1267.7 1203.9 1097.5 1049.3

Figure 21: Nodes Expanded 128x128 map

The number of nodes expanded increases as the percentage of obstacles increase because
the average path length increases, and the heuristic performs worse when there are more
obstacles. We see that for all obstacle chances, the number of nodes expanded by A*L
decreases as the lookahead value k increases. There is an 83% decrease in the number of
nodes expanded on standard maps when the lookahead value k is equal to 5. There is a 70%
decrease in the nodes expanded between A* and A*L with k=5. Similarly, 54.4% decrease
on 15% obstacles and a 45% decrease when the number of obstacles on the map is 30% of

the traversable terrain.
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At the value of k = 0, A*L is similar to A* search with pruning technique applied. There
is some decrease in the percentage of nodes expanded, however that can be attributed to
the lookahead search as there can be a lot of nodes with f-value 0 along the path to the goal

node.

Nodes generated for map den900d

3000.0

2500.0 %ié?é
222&

2000.0

1500.0

Nodes Generated

1000.0

5000

00

A* A*L(0) A*L(1) A*L(2) A*L(3) A*L(4) A*L(5)

(0% 0bS 2409.4 1350.9 1000.7 7197 5209 3796 2855
7% obs 2497.5 1643.6 1391.1 1159.3 963.7 784.0 6313

15% obs 25413 1920.2 1804.3 16125 14912 1299.8 11725

30% obs 22619 20276 1970.7 1861.6 1799.1 1663.1 1592.7

Figure 22: Nodes Generated 128x128 map

Nodes generated are the total number of nodes that are stored in the memory. As the nodes
generated is directly corelated to the space complexity in A*, it makes sense to see that for
A* search lesser nodes are generated when obstacles are present. This is because of
presence of obstacles decreases the branching factor and the number of available

traversable states.

As the pruning technique is used, the effective branching factor decreases, and a smaller

number of nodes are generated as shown in the figure above. The percentage of nodes saved
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is highest for 0% obstacles added to the map. Because lookaheads are done for nodes
generated, lower number of nodes generated correspond to lesser lookahead in A*L and
therefore lesser time consumed. The percentage of nodes saved by A*L decreases when

the obstacle chance increases.

Time Taken with 0% Obstacles Time Taken with 7% Obstacles
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Figure 23: Time taken for 128 x 128 map

For time taken, A*L performs best when there are no extra obstacles added to the map. The
version of A*L shown above uses the pruning technique we described earlier. This shows
that the pruning technique successfully decreases the time taken and the overhead of doing
DFS lookahead. A*L with pruning technique is comparable to A* search or better for the

128x128 map.

We start seeing an exponential increase in the time taken as k increases when we add

obstacles. In general, as the value of k increases the time taken increases too. However,
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there is a 2500% increase in time taken when 7 % obstacles are present and 2300% increase
when there are 15% additional obstacles. The reason for this increase is due to obstacles
being uniformly and sparsely distributed. This is the worst-case scenario for the pruning
technique as forced neighbors of the nodes are generated frequently. This causes nodes that
would normally have a single neighbor to have three neighbors. We also see that when

increasing the obstacle chance to 30% the time taken at k= 5 drops down to 822%.

At each obstacle chance there is a trade-off at certain value k where we achieve decrease

in node generated with an acceptable increase in time taken versus A* search.

Average number of nodes expanded per lookahead

800.0
700.0
600.0
500.0
400.0
300.0

200.0

Number of nodes expanded during lookahead

100.0

0.0

0% obs 7% obs 15% obs 30% obs
— (1) 7.8 8.1 53 24
A*L(2) 17.7 317 19.0 6.6
A*L(3) 28.7 92.3 50.5 13.1
A*L(4) 39.4 250.3 129.7 247
A*L(5) 48.6 669.4 3141 427

Figure 24: Avg. nodes expanded per lookahead 128x128 map

The average number of nodes expanded per lookahead shows the correlation of time to the
lookahead step. As we mentioned before, adding obstacles increases the branching factor

in the DFS lookaheads. Later, we show how having sparsely distributed obstacles also re-
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introduces cycles in the DFS. We also see that as the value of k increases the number of
lookaheads done increases O (b"), where [ is the depth of lookahead with cost k. However,
for 0% added obstacles, the time taken decreases at k=5, whereas the average number of
nodes expanded per lookahead increases because there are far fewer nodes generated (the
nodes generated graph). Therefore, the time taken is dependent of a combination of nodes

generated and lookahead nodes expanded.
4.2.3.2 Results for Map size 211x251

We use den502d map from Dragon Age Origins as the benchmark map for this experiment.
Like the previous experiment, all values are averaged out across 50 experiments. The
number of traversable states in the map is 27,235. The cost paths average out the same
across all versions of A*L and A* search so we can conclude that the paths generated by
respective algorithms are optimal. The average cost path increases as the percentage of

obstacles in the map increases from 222 to 272.
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Nodes expanded for map den502d
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A*L(0) A*L(1) A*L(2) A*L(3) A*L(4) A*L(5)
W 0% obs 7316.3 7130.3 6233.0 5513.5 4902.2 4344.5 3907.2
W 7% obs 7116.5 6786.1 5891.8 5243.5 4934.9 4464.7 4189.0
m 15% obs 7115.6 6815.0 5949.2 5254.7 50717 4668.4 4425.8
m 30% obs 7593.8 7487.4 6303.7 5236.9 5053.0 47110 4580.3

Figure 25: Nodes Expanded 211x251 map

For nodes expanded on 0% obstacles, with k=5, A = L(5) has 46% less nodes expanded.
At 7%, 15% and 30% obstacles, 41%, 37% and 39% less nodes expanded compared to A*.

Once again as the value of k increases in A*L the number of nodes expanded decreases.
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Nodes generated for map den502d
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Figure 26: Nodes Generated 211x251 map

There is a similar trend for the nodes generated. Using the pruning technique reduces the
number of nodes generated. As the lookahead cost k increases, the total number of nodes
generated decreases. This is true regardless of the percentage of obstacles. However, the

percentage of space saved decreases as the percentage of obstacles increases.
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Figure 27: Time taken for 211 x 251 map

Once again, at 0% obstacle chance, the time taken for all values of k with modified A*L is
better than A* search. There is an exponential increase in the time taken for 7% chance and

15% chance and less exponential increase for 30% obstacle chance.
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Figure 28:Avg. nodes expanded per lookahead 211x251 map
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The average number of nodes expanded per lookahead increases as k increases. The
average number of nodes expanded per lookahead peaks at 7% and at k=5, which would
explain the increase in time taken when 7% obstacles are randomly added. The average
nodes expanded per lookahead decreases at 30% obstacles added because the obstacles are

less sparse and there are lesser states remaining in the map.

4.2.3.3 Results for map size 320x320

We use AR0500SR map from Baldur’s Gate as the benchmark map for this experiment.
Like the previous experiment, all values are averaged out across 50 experiments. There are
29,160 traversable states for this map. The average path cost increases from 382 to 505 as

the percentage of obstacles added increases.
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Figure 29: Nodes expanded for 320 x 320 map
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Like previous experiments, the highest decrease in nodes expanded is on 0% obstacles
added at 57% for k = 5, 39% decrease on 7% additional obstacles, 32% decrease on 15%

obstacles and 40% decrease when additional 30% obstacles are added.
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Figure 30:Nodes generated for 320 x 320 map

As with previous maps, there is a decrease in the number of nodes generated by A* search
as the obstacles increase. Meanwhile, for A*L the number decreases as the value of k
increases. The percentage save in compared to A* search is greatest when k = 5 and when

there are 0% obstacles present in the map.

53



Time Taken with 0% Obstacles Time Taken with 7% Obstacles

1400 5000.0
1200 4500.0
4000.0
= 1000 T 35000
E £
g 80.0 5 3000.0
x £ 25000
ke a
2 600 E 20000 -9
[ 400 = 15000
1000.0
200 500.0
00 00 9 : -
A* A*L{0) A1) A*L(2) A*L(3) A*L(4) A*L(5) A* A*L{0) A*L(1) A*L(2) A*L(3) A*L(4)  A*L(S)
W Time Taken| 1155 347 55.1 728 86.5 1002 | 1116 mTime Taken| 904 384 765 1857 | 5015 | 14663 44149
Time Taken with 15% obstacles Time Taken with 30% Obstacles
2500.0 2500
2000.0 2000
7 7
£ E
£ 15000 = 1500
g 5
= ]
= =
10000 v 1000 !
£ £
= = 138.3
5000 50,0 204
318 35, 386 93
00 68 ), : 00
A* ARLO) | A*L(Y) | AfL(2) | AfLZ) | A*L4) A*L(S) At A*L{0} AL(1) | A*L(2) | A®L(3) | A*L4) | A*L(S)
mTime Taken|  68.3 36.6 680 1401 | 3215 | 7767 | 19396 Time Taken|  34.8 251 386 56.3 90.4 1383 | 2151

Figure 31: Time taken on 320 x 320 map

We see similar trends for time taken as previous experiments here. There is an increase in
time for all cases of A*L when k increases. The increase in exponential for 7% and 15%
added obstacles. At 0%, while there is an increase in time taken when k increases, it is still

better than standard A* search.

Average number of nodes expanded per lookahead

1200.0
1000.0

800.0

200.0

Number of nodes expanded during lookahead
@
8
=)

00 0% obs 7% obs 15% obs 30% obs
— A1) 52 65 45 22
e N ¥ (2) 13.0 292 17.3 6.1
e A ¥ (3) 216 100.3 49.9 12.1
A*L(4) 332 336.7 139.8 2238
e AFL(5) 45.1 1073.1 3689 39.2

Figure 32:Avg. nodes expanded per lookahead for 320 x 320 map
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Similarly, there’s an increase in the average number of nodes expanded per lookahead as
the value of k increases. Like with previous maps, when 7% obstacles are randomly added

we see the performance of A*L worsens.
4.2.3.4 Results for map size 384x384

We use 00th000d map from Dragon Age Origins as the benchmark map for this experiment.
The map has 17,601 traversable states. The map is different because the whole map has is
a single gigantic path and has less free space than other maps. There are however lower
number of natural obstacles along the path. The average cost path increases from 523 to

664 as the percentage of obstacles added increases.
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Figure 33: Nodes expanded for 384 x 384 map

A similar trend follows for decrease in nodes expanded as value of k increases in A*L. For

0% added obstacles, there is a decrease in the number of nodes expanded with 42%
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decrease in the number of nodes expanded at k = 5. There is clear indication of decrease in

the percentage of nodes expansions saved as the percentage of obstacles increase

Nodes generated for map oth000d

25000.0

20000.0
19180.

17289.6

E 15000.0 15174.8
o
-4
g o 120254
1) B =
b e 23059 126893 +1888.8
=
2 10000.0 99042
9043.0
5000.0
00
A* A*L(0) A*L(1) A*L(2) A*L(3) A*L(4) A*L(5)
= 0%obs 191505 13008.8 11022.4 10123.7 94145 8713.1 8243.7
7%obs 172396 132419 13025.1 12674.8 12505.9 12057.5 11834.8
15% obs 15174.8 12560.7 12663.4 12388.7 12309.0 11889.1 117483
30% obs 9901.2 9043.0 8937.6 8574.0 8338.1 7894.3 7703.6

Figure 34:Nodes generated for 384 x 384 map

Likewise, for nodes generated, A* search generates the least number of nodes with 30%
added obstacles. Just like previous experiments, for A*L, the most percentage of space
saved is at 0% obstacles added and the percentage of nodes saved acrossk = 0to 5

decreases as the percentage of obstacles added increases.
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Figure 35: Time taken on 384 x384 map
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Figure 36:Avg. nodes expanded per lookahead for 384 x 384 map
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The time taken by A*L at k=5 is similarly worst at 7% additional obstacles. Which is
explained by the increase in average number of nodes expanded per lookahead at 7%
obstacles. For this map, at 0% obstacles the time taken is slightly more for A*L with k =5
than A* search. We can explain this by looking at the number of traversable states
compared to the size of the map. The 0th000d only has 17,601 traversable states despite
being a 384 x 384 map. In comparison, den502d has 27,235 traversable states while being
a 211x251 size map. This is because oth000d has significantly more obstacles already

present in the map.

4.2.3.5 Results for map size 512x512

We use RedCanyons map from Starcraft as the benchmark map for this experiment. All
values are averaged out across 50 experiments. The map is the largest we performed
experiments for and has 174,722 traversable states. The average cost of path increases as
we increase the percentage of added obstacles from 628 to 793. The map already has some

number of obstacles present in it; however, the obstacles are a present as cluster.
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A = L(5) decreases the number of nodes expanded at 0% obstacle chance by 36%. The
largest decrease in the number of nodes expanded when using A*L can be seen at k=5

when compared to standard A* search. And as expected, the number of nodes expanded
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Figure 37: Nodes expanded for 512 x 512 map
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decreases as the value of k increases.
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Nodes generated for map RedCanyons
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Figure 38:Nodes generated for 512 x 512 map

For normal A* search, the number of nodes generated decreases as the percentage of added
obstacles increase. Added obstacles mean that there are less available traversable nodes in
the map for A* search. As for A*L, as the value of k increases the total number of nodes
generated decreases. This is true for any percentage of obstacles. And just as previous

experiments, 0% obstacles have the largest percentage of memory saved for A*L.
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Figure 39: Time taken on 512 x 512 map
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Figure 40:Avg. nodes expanded per lookahead for 512 x 512 map

The time taken at 0% obstacles is significantly lower even for A = L(5), saving close to 47%

in time taken. Startcraft maps are large maps with clusters of obstacles present in them.
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Unlike uniformly and sparsely distributed obstacles, clustered obstacles remain pruned
because to have a path around it a large detour must be taken, making them unlikely to be
part of the shortest path. Just like previous maps, the average number of nodes added at the
lookahead stage is highest when 7% obstacles are present resulting in larger amount of

time taken.

4.3Unpruned vs Pruned A*L (50 x 50 map)

The directional pruning technique is the method we use to get improvement in time taken
for A*L. Without the pruning technique in A*L the time taken in significantly larger as the
branching factor during DFS lookahead is exponential in nature. Because the time taken is
significantly large, we are only able to perform experiments with a small sized map of size
50 x 50. We also restrict the number of experiments to 20 and the value of k to 0, 1 and 2.

The start and end value for 20 experiments come from scenario files.

The map we used for this experiment is arena from Dragon Age Origins. The map has
2,054 traversable states. We do not add any extra obstacles to the map. This experiment
showcases our problem statement of having an unpruned A*L and its comparison with
pruned A*L. The start and end points for these experiments come from scenario files and

are already available. Both algorithms have the same start and end nodes.
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Number of nodes expanded unpruned vs pruned version of A*L
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Figure 41:Nodes expanded for pruned vs unpruned A*L

The number of nodes expanded for A* is same because we don’t use the pruning technique

for A* search. The pruned version performs better than the unpruned version for the

number of nodes expanded.

Nodes generated for map arena unpruned vs unpruned A*L
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Figure 42:Nodes generated for pruned vs unpruned A*L
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The pruned version generates lesser nodes than unpruned version at all versions of A*L.

This is because the effective branching factor is lower for the pruned version. As the value

of k increases, we save more on the number of nodes generated on both algorithms.
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Figure 43: Time taken on pruned vs unpruned A*L

As the value of k increases for A*L, the time increases exponentially. The unpruned

version of A*L(1) takes 371.9ms on average compared to 1ms average of pruned version.

The unpruned version of A*L(2) takes over 148 seconds on average to run the algorithm.
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Average number of nodes expanded per lookahead
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Figure 44:Average nodes expanded per lookahead on pruned vs unpruned A*L

As we can see from the diagram above, the number of nodes expanded at the lookahead
stage of the unpruned A*L is significantly larger than the number nodes expanded at the

lookahead stage of the pruned algorithm.

4.4 Summary

A*L saves more memory than A* search. As the value of k increases, the number of nodes
generated decreases. This is the general trend for all experiments. As the cost of path
increases, the percentage of nodes saved decreases. This is because the value of k relative
to the cost of the path lowers as the cost of path increases. We see that for smaller maps
there is a significant decrease in the percentage of nodes generated for A*L(5). Looking at
the results for 128 x 128 map, as the percentage of obstacles increases, A*L starts to save

a smaller number of nodes. At 30% obstacles for 128 x 128 map, the average path cost is
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154 and the percentage saved is 45% whereas for the 211 x 251 map, at 0% the average

path cost is 222.33 while the percentage saved is 46%.

The pruning technique also saves memory. If we consider the node generated graphs for
A*L(0), we see that the number of nodes generated decrease. A*L(0) is similar to A*
search where the lookaheads are done up to a cost of f (current) + 0. This will likely do
lookaheads for very few nodes to almost no nodes. The pruning technique reduces the
branching factor b of each node expanded from 8 to 2. The number of nodes expanded for
A*L(0) is similar to that of A* search whereas the number of nodes generated significantly

decreases.

Obstacles play a large role in how much memory is saved. When obstacles are clustered at
certain locations it doesn’t affect the memory saved as much as when the obstacles are
distributed uniformly. Increase in obstacles uniformly decrease the heuristic performance.
Decreasing heuristic performance increases the relative error of the heuristic function
thereby making A* perform worse in terms of nodes expanded (Korf, 2000). For example,
for completely blank map, if the path is exactly a diagonal the error in heuristic for
Euclidean distance is 0. This means that when a lookahead search is done from the first
node, even at k = 1 it will find the goal making the number of nodes expanded as low as 1.
When obstacles are added along the path, the error in heuristic increases so more nodes
need to be expanded to reach the goal. Larger number of nodes expanded means a greater
number of nodes being generated. This is compounded by the increase in map size. When
a percentage of obstacles are added to a larger map, the heuristic performs worse than when
obstacles are added to a smaller map. This would explain the decrease in amount saved

when obstacles are added.
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A* with lookahead does not help with time taken. In fact, because the lookahead nodes are
repeated often, they end up as an overhead. The time taken to expand singular node in
lookahead part of the algorithm is a lot lower as they don’t need to be saved, in fact they
can be evaluated, expanded and discarded. They don’t have operations on open list and
closed list. Even when a stack is used to store the best path the time taken for each
operation is O(1). For A*L(0) on all maps, the time taken is similar to or better than A*
which has no lookahead nodes expanded. This shows that we can achieve better
performance with regards to space and time when we use the pruning technique alongside

A*L.

The key point is to keep the number of lookahead nodes low as they can grow exponentially.
The directional pruning technique reduces the lookahead nodes expanded and nodes
generated significantly. This directional pruning technique reduces the effective branching
factor b, from 8 to 2. This is also the reason at every experiment A*L(0) has better time
taken than standard A* search. The directional pruning also reduces the branching factor
for lookahead search, but more importantly it eliminates redundancy and symmetry in DFS
too. When obstacles are present, forced neighbors are generated increasing the branching
factor which increases the nodes generated. As more nodes are generated per expansion,
more lookaheads are performed. And each lookahead has a higher branching factor because

of obstacles.

67



10 11 12

Figure 45: Generation of cycles in lookahead stage

Let us assume we want to expand node 7 with parent node 4. Node 8 and 11 are forced
neighbors generated because of the obstacle whereas, 10 is the natural neighbor. If there
was no obstacle at node 5, only node 10 would have been expanded. When node 9 needs
to be expanded, node 6 generated as its forced neighbor. Node 2 is generated as forced
neighbor of node 3 later and node 4 is generated as forced neighbor of node 1. This cycle
does not take place with A* part of the algorithm because A* stores the visited and
expanded nodes. However, even for A* search a greater number of nodes are generated on

each of these expansions.

This affects the lookahead part of the algorithm. As the percentage of obstacles in the map
increase, such singular random obstacles decrease. Large number of obstacles means that
obstacles tend to cluster together densely, and such cycles don’t happen often. High density
of obstacles also means lesser number of nodes to be generated in the map. This is the
reason why for all cases the time taken at 7% additional obstacle and 15% additional
obstacle are the highest. This is also the reason why the time taken decreases at 30%

obstacles chance at A*L(5).
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We use the average number of nodes expanded per lookahead cycle to verify if this is true.
For all maps, we see that as value of k increases the average number of DFS lookahead
nodes expanded increase. We also see the average number of DFS lookaheads done is

highest at 7% and 15% which proves our previous explanation of the effect of obstacles on

lookahead.
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CHAPTER 5:

Conclusion and Future Work

For our thesis, we explored a variant of A* search on the grid-based domain. This variant
of A* called A* with Lookahead, allows us to save space in A* by doing depth-first
lookaheads from the frontier of A* and generating new frontiers. The space complexity of
the algorithm is 0 (b%~%) compared to the space complexity of A* search which is 0(b?%).

We proposed the use of this algorithm for grid-based pathfinding domain.

We found that using A* with lookahead for a grid-based domain increases the time
complexity of the algorithm significantly. The time complexity of this algorithm is
0(b' x b¢™Y). The branching factor b for depth-first lookaheads tends to be larger than
the effective branching factor b, on A* search. We use an optimality preserving pruning
technique to bring down both the branching factor and the effective branching factor of the

algorithm. This pruning technique brings down the branching factor b from 8 to 2(average).

In our experiments with different sized maps, varying values of cost k and percentage of
added obstacles, we found that adding obstacles to the map made A* with Lookaheads
slightly worse in terms of the percentage of space saved. Furthermore, the presence of
obstacles increased both branching factors of the algorithm thereby increasing the time

taken.

To conclude, our approach of a combination of A* with Lookahead and the grid-based
pruning scheme performs better than A* for all maps where the obstacles are naturally
placed (0% added obstacles/ actual game maps). It performs the worst when obstacles are

uniformly and sparsely placed (randomly placed obstacles with chance 7% and 15%). And
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even when placed this way, there exists a value of k for which improvement in both time
and space complexity can be achieved. There is a slight improvement at k = 1 and more

space saved at k = 2 with a slightly worse time taken.

When experimenting with an unpruned version of A* with Lookahead, it wasn’t possible
to run experiments with higher values of k due to time constraints. We conclude that the
unpruned version is therefore not a feasible approach even though it also manages to save

space.

Future work could be to randomly generate clusters of obstacles with a 7% and 15% chance
and see its effect on the performance of the algorithm. The pruning technique seems to
significantly improve the runtime performance and would be promising to apply to other

variants of A* that use iterative deepening to save space like IDA* and RBFS.

We store the best path found so far up to the goal nodes. If we store the best path found
regardless of the node, we might be able to reuse lookaheads from the previous search
drastically reducing the time taken by the algorithm. This could, however, come at a cost

of increased memory requirements.
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APPENDICES

Obstacle Chance %

A* average path

Modes Expanded

Modes Generated

Lookahead Nodes expanded

Time Taken{ms)

0.0 523.4 13015.3 19150.5 0.0 59.1)
- 7.0 330.9 12333.4 17239.6 0.0 47.8]

A* Search
15.0 554.7 11641.7 15174.8 0.0 38.2]
30.0 664.4 8676.2 9901.2 0.0 20.8]
A= with 0.0 523.4 12917.5 13008.8 9.0 25.8]
7.0 530.9 12160.3 13241.9 3.5 28.1

Lookahead
k=0 15.0 354.7 11430.1 12560.7 3.3 25.9
30.0 664.4 8641.7 9043.0 2.0 15.4
A* with 0.0 5234 10534.5 11022.4 32079.5 31.8]
7.0 530.9 11055.7 13025.1 60476.1 51.7)

Lookahead
k=1 15.0 554.7 10409.5 12663.4 43431.6 a4.9
30.0 664.4 72814 8937.6 17952.1 25.6
A= with 0.0 523.4 9308.2 10123.7 57992.6 43.1]
7.0 330.9 10044.2 12674.8 234679.6 126.0|

Lookahead
k=2 15.0 554.7 9243.2 12388.7 154597.2 95.5
- 30.0 664.4 5940.9 8574.0 46711.9 39.5
A= with 0.0 523.4 8619.1 9414.5 76922.7 49.2]
7.0 530.9 9756.1 12505.9 688008.8 301.6

Lookahead
k=3 15.0 354.7 8997.2 12309.0 413320.9 210.7|
30.0 664.4 5636.6 8338.1 87345.7 57.7)
A with 0.0 5234 7942.6 8713.1 95536.4 52.2]
7.0 530.9 9241.9 12057.5 1851251.0 748.2

Lookahead
k=1 15.0 554.7 8547.9 11889.1 1023738.6 457.1
30.0 664.4 5262.8 7894.3 149684.1 90.4]
A= with 115.7 229.9 285.5 13886.2 5.3 58.1)
118.1 448.5 631.3 422605.1 179.8 1856.3

Lookahead
k=5 124.1 809.9 1172.5 368324.9 168.0 1064.7|
154.2 1049.3 1592.7 67952.7 39.5 137.2

Table 2:Full table of results for 128x128 map
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Obstacle Chance % | A* average path | Nodes Expanded | Nodes Generated |Lookahead Nodes expanded | Time Taken{ms)
0.0 222.3 7316.3 11934.0 0.0 54.9
A* Search 7.0 224.4 7116.5 10840.1 0.0 446
15.0 230.6 7115.6 9540.4 0.0 37.5
30.0 272.4 7593.8 8965.2 0.0 27.8
i 0.0 222.3 7130.3 7297.6 0.6 16.2

A* with
Lookahead 7.0 224.4 6786.1 7600.4 7.2 17.7]
k=0 15.0 230.6 6815.0 7669.2 4.7 18.0]
30.0 272.4 7487.4 8018.3 2.6 18.7]
A* with 0.0 222.3 6233.0 6489.8 52099.1 35.3
kahead 7.0 224.4 5891.8 7222.4 64556.5 46.2
Look&’_i 150 230.6 5949.2 7590.9 426478 377
) 30.0 272.4 6303.7 7926.5 19146.5 27.6
A with 0.0 222.3 5513.5 5797.0 79915.1 42.7]
Lookahead 7.0 224.4 5243.5 6726.2 298542.7 141.2
k=2 15.0 230.6 5254.7 7181.8 163940.3 95.7|
30.0 272.4 5236.9 7566.5 52226.7 42.8
A with 0.0 222.3 4902.2 5169.3 96531.9 46.2
Lookahead 7.0 224.4 4934.9 6400.2 1126917.4 A447.3
k=3 15.0 230.6 5071.7 7013.6 497063.7 233.3
30.0 272.4 5053.0 7427.7 105090.1 70.0]
A* with 0.0 222.3 4344.5 4593.7 108072.2 47.0]
kahead 7.0 224.4 A4464.7 5870.4 4033662.2 1541.0]
Looke’_ 150 230.6 4668.4 6536.3 1409902.0 6122
=4 30.0 272.4 4711.0 7011.7 192655.8 113.3
A with 0.0 222.3 3907.2 4139.3 119132.4 50.1
Lookahead 7.0 224.4 4189.0 5498.5 14272515.9 5387.3
k=5 15.0 230.6 4425.8 6195.9 3876279.0 1644.6
30.0 272.4 4580.3 6824.6 338879.8 183.4

Table 3:Full table of results for 211x251 map
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Obstacle Chance % | A* average path | Nodes Expanded | Nodes Generated |Lookahead Nodes expanded | Time Taken{ms)

0.0 382.2 124955 20226.7 0.0 1155

A Search 7.0 390.0 12587.1 18823.2 0.0 90.4
15.0 409.6 12693.8 17248.0 0.0 68.3

30.0 505.2 11145.7 12828.3 0.0 34.8

o with 0.0 382.2 12035.6 122734 235 34.7
e ohond 7.0 390.0 11976.3 131147 416 384
‘o 15.0 409.6 12283.8 13502.8 21.8 36.6
30.0 505.2 11057.4 11620.6 7.7 25.1

o with 0.0 382.2 10097.5 10863.1 56362.3 55.1
cohend 7.0 390.0 102105 126114 82122.3 76.5
Lookil 15.0 409.6 10553.1 134195 60087.5 68.0
30.0 505.2 9143.4 113585 24579.4 38.6

o with 0.0 382.2 8453.9 9336.1 121130.2 72.8
e ahond 7.0 390.0 8984.8 11930.0 348532.3 185.7
) 15.0 409.6 9300.8 12962.4 223672.3 140.1
30.0 505.2 7497.0 10941.8 66753.4 56.3

o with 0.0 382.2 7277.7 8107.7 1754945 86.5
e ohond 7.0 390.0 8626.6 11628.3 1166550.8 5015
o 15.0 409.6 9217.1 12947.9 646106.2 3215
300 505.2 7275.3 10759.7 129865.6 90.4

o with 0.0 382.2 6197.4 6982.0 231862.7 100.2
e ohond 7.0 390.0 7887.1 10828.9 3645561.4 1466.3
Con 15.0 409.6 8627.0 12292.8 1719055.4 776.7
30.0 505.2 6708.4 10078.0 229650.3 138.3

o with 0.0 382.2 5357.8 6094.5 274692.4 1116
cohend 7.0 390.0 7656.0 104414 112048013 4414.9
Lookis 15.0 409.6 8547.1 121214 4471608.5 1939.6
30.0 505.2 6592.6 9901.2 387755.4 215.1

Table 4:Full table of results for 320x320 map
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Obstacle Chance % | A® average path | Nodes Expanded | Nodes Generated |Lookahead Nodes expanded | Time Taken[ms)

0.0 523.4 13015.3 19150.5 0.0 59.1

A* Search 7.0 530.9 12333.4 17239.6 0.0 47.8
15.0 554.7 11641.7 15174.8 0.0 38.2

30.0 664.4 8676.2 9901.2 0.0 20.8

A% with 0.0 523.4 12917.5 13008.8 9.0 25.8
Lookahead 7.0 530.9 12160.3 13241.9 3.5 28.1
k=0 15.0 554.7 11490.1 12560.7 3.3 25.9
30.0 664.4 8641.7 9043.0 2.0 15.4

A% with 0.0 523.4 10534.5 11022.4 32079.5 31.8
Lookahead 7.0 530.9 11055.7 13025.1 60476.1 51.7
k=1 15.0 554.7 10409.5 12663.4 43431.6 44.9
30.0 664.4 7281.4 8937.6 17952.1 25.6

A% with 0.0 523.4 9308.2 10123.7 57992.6 43.1
Lookahead 7.0 530.9 10044.2 12674.8 234679.6 126.0
k=2 15.0 554.7 9243.2 12388.7 154597.2 95.5
30.0 664.4 5940.9 8574.0 46711.9 39.5

A% with 0.0 523.4 8619.1 9414.5 76922.7 49.2
Lookahead 7.0 530.9 9756.1 12505.9 688008.8 301.6
k=3 15.0 554.7 8997.2 12309.0 413320.9 210.7
30.0 664.4 5636.6 8338.1 87345.7 57.7]

A% with 0.0 523.4 7942.6 8713.1 95536.4 52.2
Lookahead 7.0 530.9 9241.9 12057.5 1851251.0 748.2
k=4 15.0 554.7 8547.9 11889.1 1023738.6 467.1
30.0 664.4 5262.8 7894.3 149684.1 90.4]

A% with 0.0 523.4 7493.5 8243.7 112280.6 58.1
Lookahead 7.0 530.9 9022.7 11834.8 A4725537.7 1856.3
k=5 15.0 554.7 8415.0 11748.3 2447115.5 1064.7|
30.0 664.4 5120.3 7703.6 244573.0 137.2

Table 5:Full table of results for 384x384 map
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Obstacle Chance % | A* average path | Nodes Expanded | Nodes Generated |Lookahead Nodes expanded | Time Taken{ms)
0.0 628.4 57202.3 92823.8 0.0 1020.6
7.0 636.7 56734.5 85729.0 0.0 796.9
A* Search
15.0 655.9 55879.4 77275.7 0.0 602.7|
30.0 793.9 58635.2 68159.3 0.0 348.7|
A* with 0.0 628.4 55684.7 56243.4 154.4 246.1
Lookahead 7.0 636.7 54070.8 59882.6 102.0 292.1
k=0 15.0 655.9 53628.5 59737.9 69.3 282.4]
30.0 793.9 58028.7 61436.3 25.8 232.3
A* with 0.0 628.4 49537.4 51172.2 257862.1 318.3
kahead 7.0 636.7 48840.2 59403.2 449161.4 476.6
Lookil 15.0 655.9 48046.2 608814 317762.3 432.9
30.0 793.9 49100.2 61071.2 140279.7 290.4]
A* with 0.0 628.4 45274.5 47210.5 A88980.3 374.8
Lookahead 7.0 636.7 A44975.3 57571.0 2171024.6 1138.2
k=2 15.0 655.9 43699.4 59511.2 1289564.0 834.2
30.0 793.9 41085.5 59027.5 389189.2 382.2
A* with 0.0 628.4 42123.4 43997.6 712610.8 428.8
Lookahead 7.0 636.7 44089.8 57173.8 8365801.8 3498.1
k=3 15.0 655.9 43467.9 59827.8 4116165.9 2023.4
30.0 793.9 39880.5 58257.2 788246.5 565.9
A* with 0.0 628.4 39065.7 40881.9 935621.1 486.3
kahead 7.0 636.7 41857.5 55108.4 30292340.5 11872.8
LOOkL 15.0 655.9 416613 58078.0 12199405.1 5446.0
30.0 793.9 37489.0 55477.1 1457087.6 879.1
A* with 0.0 628.4 36505.0 38268.6 1151016.8 541.4
Lookahead 7.0 636.7 41563.3 54464.8 108711056.4 41749.8
k=5 15.0 655.9 41685.3 57918.2 35457524.8 15259.3
30.0 793.9 36943.0 54680.8 2579114.2 1419.6
Table 6: Full table of results for 512x512 map

Type A* average path | Nodes Expanded | Nodes Generated |Lookahead Nodes expanded | Time Taken(ms)
Unpruned 47.7 308.5 615.5 1.0 1.0

A* Search
Pruned 47.7 308.5 615.5 1.3 1.3
A* with Unpruned 47.7 287.4 569.8 4.4 0.7
Lookahead k =0|Pruned 47.7 300.3 362.6 3.4 0.3
A* with Unpruned 47.7 203.0 391.9 199271.7 371.9
Lookahead k =1|Pruned 47.7 157.5 198.1 1844.9 1.0
A* with Unpruned 47.7 103.6 218.0 70788507.9 148558.3
Lookahead k =2 |Pruned 47.7 68.2 94.4 2167.6 1.3

Table 7: Full table of results for pruned vs unpruned
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