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ABSTRACT  

 

Pathfinding is an essential part of navigation systems, often used in video games, route planning 

and robotic navigation. A* search has been one of the most well-known and frequently used 

algorithms for pathfinding.  A* uses an 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and a 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 to keep track of all nodes 

generated and expanded. The size and performance of these data structures are major drawbacks 

of A*. Lookahead is used to investigate future outcomes and improve the quality of available 

choices. Lookaheads are done on a DFS manner from the frontier of A* search. This combination 

of A* and DFS lookahead has been shown to save space when working with puzzles. We leverage 

this concept with grid-based pathfinding in video games to save the amount of space consumed. 

However, because grids contain redundant paths, the DFS lookaheads end up being an overhead 

as they do not maintain a list of nodes visited or expanded. By using a domain-specific pruning 

technique, we significantly improve the time taken by the algorithm and further improve upon the 

space consumed. A combination of lookahead and A* search with this pruning technique is, 

therefore, able to achieve improvement in both space-consumed and time-taken over the standard 

A* search algorithm for grid-based pathfinding. 
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CHAPTER 1: 

Introduction 

1.1 Thesis Claim 

A* with lookahead is a variant of A* search that performs limited DFS lookaheads from 

the frontiers of A*. This algorithm saves space by using DFS lookaheads which is linear 

compared to the exponential nature of A*. We claim that this scheme works well in a grid-

based domain for saving space. However, as paths in grids are highly redundant, DFS 

lookaheads tend to expand an exponentially large number of nodes at each iteration slowing 

the speed of the algorithm considerably. 

We then, propose the use of a domain-specific search space reduction technique, which 

prunes the number of children generated at each level based on the direction of the search. 

Using this pruning technique, we achieve speeds comparable to or better than the standard 

A* search. A combination of these two techniques provides improvements in both space-

consumed and time taken over the standard A* algorithm in a grid-based path-planning 

domain. 

1.2 Pathfinding 

Pathfinding plays a significant role in graph search problems wherein a path is found based 

on certain criteria between nodes in the graph. This criterion often corresponds to a positive 

result of some kind (cheapest, fastest, best) in the problem domain from which the graph 

was derived from. The pathfinding/path-planning problem can be used to model problems 

in different domains like solving puzzles, optimizing task scheduling, operations research, 
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and routing in computer networks and computer games. (Norvig, 2010)Therefore, 

pathfinding remains an active area of research in the Artificial Intelligence domain. 

Pathfinding holds a special place in Video game AI. Real-Time Strategy Games (RTS), 

Role Playing Games (RPG) and Multiplayer Online Battle Arena (MOBA) heavily depend 

on pathfinding either as a component of a Non-Player Character (NPC) or as a component 

of the Player. This entity that benefits from the results of pathfinding is known as an Agent. 

Depending on the number of agents, the pathfinding problem can be divided into Single-

Agent Pathfinding or Multi-Agent Pathfinding. 

A generic pathfinding problem formulation for a video game is as follows:  

a. The game environment is the state space, 

b.  The start and goal node are locations in the game environment, 

c.  The unit utilizing the path generated is the Agent  

1.2.1 Graph Representation 

Game environments or maps are represented as a graph in one of three ways: Grids, 

Navigation Meshes or Waypoints. Each of these is a simplified representation of the search 

space.  

1.2.1.1 Grids 

Grids are the most frequently used representation of game environments. Grids are a 

uniform subdivision of the state space into tiles. Each tile in the grid can either be 

traversable or untraversable. Furthermore, traversable grids can have different costs 
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associated with it depending on the type of terrain on the map. Subdivisions for grids are 

divided based on tiles.  

The most common grid types are square, triangle and hexagonal (Patel, 2010). In a grid-

based map representation, each tile represents a node. For each neighbor of a tile, there 

implicitly exists an undirected edge from that tile. The number of outgoing edges a node 

has depends on the number of neighboring tiles it contains, which depends on the 

movement allowed on the grid. For example, for a square grid with 4 adjacent tiles, if only 

straight movements are allowed (NWSE directions) then it has 4 neighbors. If diagonal 

movements are allowed on top of a straight movement, then the tile has 8 neighbors. This 

map representation is used for all experiments done for our thesis. 

 

Figure 1: Grid Representation 

1.2.1.2 Navigation Mesh 

Navigation Mesh or Navmesh, are graphs where the traversable areas are represented as 

interconnected polygons. Obstacles are not part of the state space in a navigation mesh. 

Each polygon in Navigation Mesh can have different weights associated with them. Agents 
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in Navigation Mesh can travel within the polygon without having to worry about obstacles 

usually trivially as a straight line (Patel, 2010) (P.Mehta, 2015). Adjacent polygons of a 

Navigation Mesh are connected to each other as a graph. 

 

Figure 2: Navigation mesh representation 

 

1.2.1.3 Waypoints 

Waypoints are the final method of representation of game maps. They consist of nodes that 

are placed at a location in the graph (P.Mehta, 2015) (Patel, 2010). Waypoints can be set 

by the player or by game designers. Waypoints added by game designers are often seen as 

landmarks on the map (Patel, 2010). Waypoints set by players are more common in RTS 

and MOBA games. Waypoint set by game designers is common in Role Playing Games or 

games that trigger in-game events (Nareyek, 2004).  



 

5 

 

The waypoints generated by the player and the waypoints set by programmers are usually 

not along an optimal path therefore the path generated using waypoints can be sub-optimal 

too. Similarly, the same waypoints cannot be used across different start and goal nodes. 

 

Figure 3: Waypoint Representation 

 

1.2.2 The general graph search structure 

For our thesis, we establish that our state space is represented as a grid map. Each node is 

a tile and each tile has octile movement (Straight + Diagonal). Each node in the grid has 8 

neighbors connected by a bidirectional edge or an undirected edge where movement 

between the edges in either direction is allowed. These edges are the actions in our state 

space. We shall go into this in detail later when we describe optimizations and rules 

applicable to a grid. 

The key infrastructure for all graph-based search algorithms are, 
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1. Nodes: 

Nodes are data structures in search algorithms that hold the state, its parent, and various 

other details pertinent to the search algorithm. 

2. 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡/ frontier/ generated nodes 

The 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 is a list-like data structure that holds multiple nodes. Minimally, this 

data structure allows nodes to be added and removed from it. The nodes held here are 

nodes that have the potential to be in the solution path found by the pathfinding 

algorithm. The implementation of an 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡  differs between the type of search 

algorithm being used. 

3. 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡/ explored set/ expanded nodes. 

The 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡  is a data structure similar to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 . The nodes in the 

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 are nodes that have already been visited by the search algorithm. The nodes 

in the closed list are part of the path found. The 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 needs to be designed so 

that data in a 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 can be read without overhead. The 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 is usually 

implemented using hash tables because its lookup has 𝑂(1) time complexity.  

A general graph-based search algorithm has the following scheme, 
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The general graph-based search algorithm scheme starts with initializing the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 

with start node for pathfinding. The start node consists of the start location as its state. It 

empties the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. It then loops through the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 selecting one node to expand. 

All children of the nodes expanded are then added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. All famous graph-

based search algorithms differ from each other only in its Search Strategy. A search 

strategy is a process selecting a node from the frontier or 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 to expand and then 

moved to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. The data structure used for the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, therefore, depends on 

the algorithm and how it helps optimize the search strategy this algorithm uses. (Norvig, 

2010) 

1.2.3 Search Algorithms 

The solution to a pathfinding problem is usually found using a search algorithm.  A general 

search algorithm consists of the node, its children, a list of children that were previously 

generated/frontier of the search/ 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡  and a list of nodes that were previously 

expanded/visited nodes/𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. (Norvig, 2010) 
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There exist different search algorithms, however, they can be classified into two major 

categories: Informed Search and Uninformed Search. Uninformed search algorithms are 

those that do not integrate domain knowledge into the search strategy. Informed search, on 

the other hand, makes use of domain-specific knowledge, and integrates it into the search 

strategy. (Norvig, 2010) 

Breadth-First Search, Depth First Search, and Uniform Cost Search are well-known Search 

Algorithms. Breadth-First Search uses the shallowest node first search strategy for node 

selection. Depth-First Search uses the deepest node first strategy for node selection. 

Uniform Cost search uses a node with the lowest path cost first 𝑔(𝑛) as its search strategy. 

If the path cost for between each node and its child is constant, then Uniform Cost Search 

is the same as Breadth-First Search. In literature, Uniform Cost Search is also known as 

Dijkstra’s for a single goal node (Holte, 2010). 

Best First Search and A* Search are the most well-known informed search algorithms for 

Pathfinding. Both algorithms make use of a heuristic function ℎ(𝑛), which uses domain-

specific knowledge to drive the search strategy. Best First Search solely relies on the 

heuristic function as its search strategy (Norvig, 2010) whereas, A* search uses a 

combination of path cost and heuristic function as its search strategy (Hart, Nilsson, & 

Raphael, 1968). 

1.2.4 Performance Measures for pathfinding 

Like with problem-solving, there are various measures to evaluate the algorithms in 

pathfinding.  
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• Completeness: Completeness of an algorithm evaluates if the algorithm is 

guaranteed to find a path if there is a path to the goal. 

• Optimality: Optimality checks if the solution found by the algorithm is optimal. 

For pathfinding, it checks if the path generated or found by the algorithm is the 

shortest path. 

• Time Complexity: Like all algorithms in the field of Computer Science, the 

performance of the algorithm is evaluated in terms of its time complexity or time 

taken. As pathfinding exists as a subfield of AI, the time complexity of the 

pathfinding algorithms is measured in terms of the effective branching factor 𝑏𝑒 

and the shallowest depth of the solution, 𝑑. 

• Space Complexity: Essentially means how much space is consumed by the 

algorithm while it finds the solution. Like the time complexity of the algorithms, 

the space complexity is measured in terms of the effective branching factor 𝑏𝑒 and 

the shallowest depth 𝑑 of the solution. It is usually computed as the nodes stored 

in memory i.e. the node generated. Space complexity is also a common measure 

of performance in Computer Science. 

1.3 Thesis Contribution 

The space complexity of A* search is exponential 𝑂(𝑏𝑑) in nature. The Depth-First Search 

algorithm on the other hand, has a linear space complexity of 𝑂(𝑑) for its tree search 

variant. A* search uses a combination of heuristics and the cost of the path to create an 

efficient search strategy. The path found by A* search is optimal whereas, DFS may or 

may not find any path to the goal. Combining the two schemes, we can leverage the space 
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complexity of DFS to improve A* search’s space complexity. On top of this, returning the 

cost of the frontier to A* helps improve the performance of the heuristic search. The 

combination of this scheme called A*L or A* with Lookahead has been shown to be 

efficient in the puzzle domain (Roni Stern, 2010). 

Using a combination of this scheme for grid-based pathfinding is slightly more difficult. 

As grids are notorious for having highly redundant paths (Daniel Damir Harabor, 2011), a 

tree search based DFS lookahead will cause significant overhead. This overhead will 

overshadow any space-based improvements that the A*L can provide. We propose using a 

neighbor pruning algorithm specific to the grid domain. This algorithm reduces redundant 

and cyclic paths when used in DFS and symmetric paths when used in A* search.  Using 

this pruning technique, A*L becomes viable as an option in the grid domain, showing 

improvements in both time and space compared to the standard A* search.  

1.4 Thesis Organization 

This thesis is divided into five major chapters. The first chapter introduces the basic 

concepts that will be used throughout the rest of the chapters. Alongside introductory 

concepts, it also provides key underlying concepts for our work. The second chapter goes 

into detail about the major algorithms and concepts, as well as details into key literature 

that motivated research into this topic. The third chapter covers the proposed methodology 

and algorithm for this thesis. It goes over techniques that lead to an improvement in the 

algorithm. The fourth chapter describes the experimental setup, results of the experiments 

and analysis of the results. The fifth chapter offers a conclusion and key findings alongside 

future research into the topic. Appendices consist of tables with data from our experiments.  
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CHAPTER 2: 

Background and Literature Review 

In this section, we start by introducing the A* search algorithm. We explore the concepts 

that are relevant to the A* search algorithm. Then, we define different types of heuristics 

and how they relate to the grid domain. After that, we look at recent literature relevant A*L 

algorithm. We explain the algorithm and the key concepts behind it. 

2.1 The A* Search 

The A* search algorithm is the most popular algorithm for pathfinding problems. Because 

A* uses heuristics to guide the search, it is an informed search algorithm. For a certain 

Graph G with a Start node and a Goal node, A* search finds an optimal path from the 𝑠𝑡𝑎𝑟𝑡 

node to the 𝑔𝑜𝑎𝑙 node. The problem solved by A* is a minimum cost problem, therefore, 

returning the shortest path from the  𝑠𝑡𝑎𝑟𝑡 node to the 𝑔𝑜𝑎𝑙 node. 

A* builds a search tree from the state space by expanding nodes. A* begins by adding the 

𝑠𝑡𝑎𝑟𝑡 node into the list of frontiers (𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡). The algorithm keeps looping through the 

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, until either the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 is empty or if the node selected for expansion is the 

𝑔𝑜𝑎𝑙 node (Norvig, 2010). 

As mentioned before, the process of selecting a node to expand from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 is 

known as the search strategy. There are three major parts in A* search’s strategy. 

1. 𝑔 − 𝑐𝑜𝑠𝑡 or 𝑔(𝑛) is the actual cost of the path from 𝑠𝑡𝑎𝑟𝑡 node to node 𝑛. The 

𝑔(𝑠𝑡𝑎𝑟𝑡) is equal to 0 and the 𝑔(𝑔𝑜𝑎𝑙) is equal to the length of the path. 



 

12 

 

2. ℎ − 𝑐𝑜𝑠𝑡 or ℎ(𝑛) is the heuristic estimate of cost from node 𝑛 to the 𝑔𝑜𝑎𝑙 node. 

The ℎ(𝑔𝑜𝑎𝑙) is equal to 0. 

3. 𝑓 − 𝑐𝑜𝑠𝑡 or 𝑓(𝑛) is an evaluation function and is the summation of 𝑔 − 𝑐𝑜𝑠𝑡 and 

ℎ − 𝑐𝑜𝑠𝑡 the node. It is represented by the formula,  

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1) 

Equation 1: A* evaluation function f 

𝐴 ∗ selects the node with the lowest 𝑓 − 𝑣𝑎𝑙𝑢𝑒 from among all the nodes in the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 

as the next node to be expanded. Before expansion, A* places the node selected into the 

list of nodes that have already been visited or 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. It proceeds to expand the node 

by generating all the node’s neighbors. All the generated neighbors are then evaluated and 

placed into the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡.  

In the algorithm, 𝐴 ∗ selects nodes from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 to expand. It calls the node that is to 

be expanded as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡. The node 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is placed into the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. If the current 

node is the goal node, 𝐴 ∗  returns the goal node. The optimal path can be built by 

recursively generating the parents, from 𝑔𝑜𝑎𝑙 node to the 𝑠𝑡𝑎𝑟𝑡 node. 

All neighbors from the current node are then expanded in the algorithm. Each neighbor in 

the for loop is then designated as the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node. 𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡 is a temporary 

variable that stores the cost of path taken from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node to the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node. A* 

then checks if the neighbor already exists in the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. If the neighbor already exists 

in the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and the cost of path taken from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node to this 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is less 

than that compared to the path it took when it was visited, it removes 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node from 

the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. If the current path is longer or of same length as the previous path, then it 

ignores the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 node. 



 

13 

 

 

Figure 4: A* Search 

A* search checks if the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  exists in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 . Like with 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 , if the 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 already exists in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, and the cost of path taken from current node to this 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is less than that compared to the path it took when it was generated previously, 

then it removes this node from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. If the current path is longer or of same length 

as the previous path, then it ignores the neighbor node. 

The neighbor is then evaluated, wherein, it’s 𝑔 − 𝑐𝑜𝑠𝑡 , ℎ − 𝑐𝑜𝑠𝑡  and 𝑓 − 𝑐𝑜𝑠𝑡𝑠  are 

computed. The neighbor is then added into the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 as a possible candidate to be 
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expanded next. When a neighbor in A* is removed from 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 , for it to be re-

evaluated and added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 again, the node is said to be re-expanded.  

 

Figure 5: Pathfinding using A* 

 

2.1.1 Constraints on Heuristics 

The A* search as an optimal path algorithm, works, only when certain conditions are met. 

These conditions are constraints on top of heuristics. Admissibility of a heuristic function 

guarantees that the algorithm finds an optimal path if there exists one. A heuristic function 

is called admissible if it never overestimates the cost to reach goal (Hart, Nilsson, & 

Raphael, 1968). In A*, the heuristic ℎ(𝑛) is said to be admissible, if it would never exceed 
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the actual cost to reach the goal node from any node n. If we assume, ℎ(𝑛) ∗ as the actual 

optimal cost to reach the goal from node n,  

ℎ(𝑛) 𝑖𝑠 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑓,  

∀𝑛 ℎ(𝑛) ≤ ℎ∗(𝑛) (2) 

Equation 2: Admissibility of heuristic 

Consistency is the next constraint on the heuristic function. A heuristic function ℎ(𝑛), is 

said to be consistent for node 𝑛 if the estimate for the node is less than or equal to the sum 

of the cost of the path from the node 𝑛 to its children and heuristic estimate of its children. 

This condition is also called monotonicity. Consistency is a stricter condition than 

Admissibility (Norvig, 2010). A consistent heuristic is also admissible, therefore, any 

heuristic that is consistent guarantees that the path found by A* search is optimal.  

Consistency has another consequence in A* search. If we look at the algorithm provided 

in this thesis, there are conditions for when a neighbor needs to be checked if it already 

exists in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 or 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. When the heuristic is consistent, then it guarantees that 

every node chosen for expansion will never be re-expanded or updated in the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. 

Formally, consistency is defined as, 

∀𝑛, 𝑛′ ℎ(𝑛) ≤ 𝑐𝑜𝑠𝑡(𝑛, 𝑛′) + ℎ(𝑛′) (3) 

Equation 3: Consistency of heuristic 

Where, 𝑛′ is a child of 𝑛 and ℎ(𝑔𝑜𝑎𝑙) = 0 . 
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2.2 Heuristics 

A heuristic function is used to incorporate domain knowledge into search algorithms. The 

heuristic function can be either used in conjunction with state-space knowledge or on its 

own to derive a novel search strategy. The use of a heuristic function is what separates 

Informed search algorithms from Un-Informed search algorithms. Usually, a heuristic 

function is denoted as ℎ, and for any node n, the heuristic value is an estimate from the 

node 𝑛 to the goal, denoted as ℎ(𝑛). For A* search, if the heuristic value ℎ(𝑛) is set to 0, 

it turns into Uniform Cost Search, if OPEN does not have any other path that is less than 

the current path cost (Holte, 2010). A good heuristic function usually helps improve search 

by reducing the number of nodes expanded (Norvig, 2010) (Korf, 2000). 

Pathfinding problem in a grid-based environment means finding the shortest path from one 

point in the grid to another. For square grid-based maps, there are two well-known heuristic 

functions, the Manhattan distance and the Euclidean distance. 

2.2.1 Manhattan Distance 

Manhattan Distance, or city block distance is the distance between two points in which the 

movement is only either vertical or horizontal. For a coordinate system (𝑥, 𝑦) , the 

Manhattan distance between two points  𝐴 (𝑥1, 𝑦1) and  𝐵 (𝑥2, 𝑦2) is calculated as sum of 

the absolute differences in the 𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and the 𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒. It is given by the 

formula, 

ℎ(𝐴, 𝐵)𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| (4) 

Equation 4: Manhattan Distance 
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Figure 6: Manhattan Distance 

On grid-based maps, Manhattan distance is often considered a standard heuristic. When 

used in grids where only straight movements are allowed, A* search with Manhattan 

Distance can find the optimal path. However, when used in grid maps where diagonal 

movements are also allowed, the Manhattan Distance can result in sub optimal solutions. 

This is because Manhattan Distance will overestimate the cost of path for diagonal 

movement, making the heuristic inadmissible. 

2.2.2 Euclidean Distance 

Euclidean distance is the straight-line distance or the airline distance between two points. 

For a coordinate system (𝑥, 𝑦), the Manhattan distance between two points  𝐴 (𝑥1, 𝑦1) and 

𝐵 (𝑥2, 𝑦2) is calculated as the root of the squared difference between respective 𝑥 −

 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 and 𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠. It is given by the formula, 

ℎ(𝐴, 𝐵)𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (5) 

Equation 5: Euclidean Distance 
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Figure 7:Euclidean Distance 

Euclidean distance is more expensive to compute than Manhattan distance. However, 

regardless of the movement allowed, i.e. Straight only, straight with diagonal or any 

directional movement, when Euclidean Distance is used as the heuristic function, A* will 

be able to find an optimal path. For diagonals, the Euclidean distance will still 

underestimate or be equal to the cost of path, guaranteeing admissibility. 

2.3 A* with Lookahead (A*L) 

The major issue with A* search is the memory requirements of A*. A* is more likely to 

run out of memory far before the time taken becomes an issue (Norvig, 2010). A* needs to 

store all nodes in an 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. The space complexity of A* is exponential 

in nature. 

𝐷𝑒𝑝𝑡ℎ 𝑓𝑖𝑟𝑠𝑡 𝑆𝑒𝑎𝑟𝑐ℎ, on the other hand, has memory requirements that are mostly linear 

as it needs to store the branch it currently is working with. The version of DFS we are 

talking about here is the Tree-Search version of DFS. The flaw of this version of DFS is 

that it is not complete if redundant paths exist, i.e. DFS fails to find a solution even when 
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there exists a solution. It is very less likely that DFS will ever find an optimal path when 

using the Tree-Search Version of DFS, except in a very rare circumstance (first node to be 

generated is always along the optimal path). 

Combining DFS and A* search would allow both algorithms to benefit. While there exist 

algorithms, IDA*, which combine these two schemes, they often have problems with 

needing to explore the same nodes repeatedly. The memory complexity of IDA* is linear 

similar to DFS. In conjunction with its low memory constraints, the path resulting from 

IDA* is optimal in nature, however, because IDA* expands the nodes at certain depth 

repeatedly, for graphs with multiple redundant paths, IDA*’s time taken to find an optimal 

path is very large. 

Lookaheads with 𝐴 ∗ or 𝐴 ∗ 𝐿 is an algorithm proposed by Stern et al. which combines the 

scheme 𝐴 ∗ search and doing depth first search lookaheads from the nodes being generated. 

The lookaheads are bound either by depth or by cost. For the experiments in the paper, 

either one would work as they work with a puzzle domain where the cost of each action is  

The key variables of the algorithm are, 

𝑈𝐵 – is the upper bound on cost of children to be expanded by 𝐴 ∗ 𝐿. 𝑈𝐵 is equal to the 

cost of the best solution found so far. Unlike BRFSL, 𝐴 ∗ needs to expand all children and 

perform lookahead for all nodes for which f-value is less than the current best solution 

(UB).  Once 𝑈𝐵 is set i.e. it is not infinity, any child with cost greater than or equal to 𝑈𝐵 

can be pruned. The children are goal tested and if the child is a goal node 𝑈𝐵 is updated. 

𝐿𝐻𝐵 – is the lookahead bound which helps set bound on 𝐷𝐹𝑆 lookahead. It is the lowest 

value among the current UB, 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of expanded node  𝑓(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑘.  
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Lookahead cost 𝑘 – is the value which is used to limit the lookahead either through cost or 

through depth 

ℎ𝑢 – is the updated heuristic value after lookahead is done 

𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 – is the updated f value where, 

𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =  ℎ𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) +  𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) 

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ - is the stack that holds the best available path from the frontier node.  

 

Figure 8: 𝐴 ∗ 𝐿 expansion cycle 

The algorithm above is a modification on top of 𝐴 ∗ after a node selected is expanded. The 

Search Strategy for this algorithm is to select the node with lowest 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑  value. 

Therefore, the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡  is sorted using the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑  value. Like with 𝐴 ∗  search, 
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𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡 is a variable that stores the cost taken to reach this node 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

while going through 𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If the neighbor generated is equal to the goal node, Upper 

Bound variable 𝑈𝐵 is set as the lesser of 𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡 and previous 𝑈𝐵. 

The algorithm prunes neighbors whose 𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 exceed that of 𝑈𝐵 or if the cost to the 

neighbor through this path is not the lowest cost to this path. The Lookahead Bound 

variable, 𝐿𝐻𝐵 is then set as the lesser of 𝑈𝐵 or expanded node’s 𝑓 − 𝑠𝑐𝑜𝑟𝑒 + lookahead 

value 𝑘, 𝑓(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑘. 

If the 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of neighbor is less than the Lookahead bound 𝐿𝐻𝐵, then depth-first search 

lookaheads are performed from the neighbor node until the frontier that is exceeds the LHB. 

The 𝑀𝑖𝑛𝐶𝑜𝑠𝑡 variable is first initialized to infinity, then used to store the minimum 𝑓 −

𝑐𝑜𝑠𝑡 from all the frontiers. The updated heuristic ℎ𝑢  is set as either the previous ℎ𝑢  or 

𝑀𝑖𝑛𝐶𝑜𝑠𝑡 − 𝑛𝑒𝑤𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑠𝑡, whichever is lower. After this, the algorithm works like 

A* where it inserts into the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡  or updates the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡  and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡  (re-

expansion). 
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Figure 9: Lookahead portion of 𝐴 ∗ 𝐿 

The lookahead part of the algorithm is a recursive Depth-First Search that is bounded by 

the lookahead value LHB. Current node to be expanded is stored in the stack S and popped 

after all nodes have been generated. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 nodes are generated from the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node 

and evaluated. If a goal is found during the lookahead stage, the 𝑈𝐵 variable is updated 

based on neighbor’s 𝑔 𝑐𝑜𝑠𝑡, 𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟). The stack S is saved as the best cost path to the 

goal if the current path is the best path found to the goal. This is either a min of the previous 

UB or neighbor’s 𝑔 𝑐𝑜𝑠𝑡 to guarantee optimality of the algorithm. 𝑀𝑖𝑛𝑐𝑜𝑠𝑡 is also updated 

based on the neighbor’s 𝑔 𝑐𝑜𝑠𝑡. 

When the neighbor is not the goal, lookaheads are performed recursively until the 𝑓 −

𝑠𝑐𝑜𝑟𝑒 of current neighbor, 𝑓(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) is greater than the 𝐿𝐻𝐵 or 𝑈𝐵. When the 𝑓 −

𝑐𝑜𝑠𝑡 exceeds either the 𝑈𝐵 or the Lookahead bound 𝐿𝐻𝐵, 𝑀𝑖𝑛𝑐𝑜𝑠𝑡 is set as minimum of 

current 𝑀𝑖𝑛𝑐𝑜𝑠𝑡 and 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of the neighbor in the frontier. 
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CHAPTER 3: 

Proposed Methodology 

3.1 Motivation 

The initial motivation for the work was when doing lookaheads from a node 𝑛  and 

returning the minimum cost from frontiers, we might be able to ignore certain branches 

and thus save space by reducing the number of nodes generated and expanded.  

 

Figure 10 : A* Search Tree 

Let us look at a sample search tree for 𝐴 ∗ search as shown above. For the sample, let us 

assume that the start node is 𝐴 and the goal node is 𝐸. 𝐴 ∗ adds 𝐴 to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. It 

selects and expands Node 𝐴  generating 3 children, 𝐵 , 𝐶 , and 𝐷  respectively. The 𝑓 −

𝑠𝑐𝑜𝑟𝑒 for all the children is computed and added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, while node 𝐴 is added 
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to the list of expanded nodes or 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. The node with the lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒, node 𝐶 

is selected for expansion. When node C is expanded, nodes 𝐺 and 𝐻 are generated and 

evaluated as node 𝐶  is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 . Node 𝐷 , with 𝑓 − 𝑠𝑐𝑜𝑟𝑒  11 is then 

selected for expansion from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. Nodes 𝐼 and 𝐽, which are the children of node 

𝐷 are generated and node 𝐷 is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. Node 𝐵 is expanded next with 

children 𝐸 and 𝐹, while B is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. Node 𝐸 is selected for expansion 

next, and since Node 𝐸 is the 𝑔𝑜𝑎𝑙 node, it is added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and the search ends. 

We look at the nodes stored in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 at the end of the program. 

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 = {J, F, I, G, H} 

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 = {A, C, D, B, E} 

The total number of nodes stored in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 are 10. 

We look at how the same search tree is evaluated with lookahead at depth of 1. For every 

node to be generated, a lookahead search is done up to depth 1 i.e. its children. Among the 

frontier of the lookahead nodes, the node with lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒 is returned to 𝐴 ∗ and the 

child from which lookahead was performed, will have its updated 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 set as the value 

returned from lookaheads. The start node 𝐴  and the goal node 𝐸  remain same as the 

previous example.  
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Figure 11 : A* with Lookahead Search Tree 

Node 𝐴 is first added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. A lookahead is done for 𝐴 as all its children 𝐵, 𝐶 

and 𝐷 are generated but not stored anywhere yet. The node with the lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒 

among them is node 𝐶, which has a value of 8. This value is propagated back to 𝐴 with 

cost 8. This step of generating the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 for the root node may be skipped as the root 

node is added to the closed list regardless. And if the root node is the goal node, then the 

search does not need to take place.  

After node 𝐴 is selected for expansion, its children are generated. For each child generated, 

a lookahead search is performed to a depth of 1.  Lookahead from node 𝐵 generates 𝐸 and 

𝐹 , with 𝐸  having the lowest 𝑓 − 𝑠𝑐𝑜𝑟𝑒 . Node 𝐵 ’s 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑  is set to 12. Similarly, 

lookahead from node 𝐶 , results in 𝑓 − 𝑠𝑐𝑜𝑟𝑒  of 46 being propagated back to node 𝐶 . 

Lookahead from node 𝐷 results in 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of 13 being propagated back. The diagram 

above shows the respective 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑   values of the nodes represented by “fu”. Node 𝐵 is 

expanded because it has the lowest 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 and lookahead for its children are performed. 
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Since 𝐸 is the goal node, there is no more lookahead performed for 𝐸. Unless lookahead 

from 𝐹 results in a 𝑓 − 𝑣𝑎𝑙𝑢𝑒 lower than 12, node 𝐸 is set for expansion. Since node E is 

the goal node and there are no nodes that have an 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value less than 𝐸 the search 

concludes. We look at the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 for this search. 

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 = {C, D, F} 

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 = {A, B, E} 

We see that the total number of nodes stored in 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡  and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡  have now 

decreased to 6.  

Improving the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value is not the only place where 𝐴 ∗ 𝐿 can save space. The 𝐴 ∗ 𝐿 

algorithm described in the earlier section re-uses the lookaheads to prune out all nodes that 

have a 𝑓 − 𝑣𝑎𝑙𝑢𝑒  greater than the upper bound variable 𝑈𝐵 . Let us look at the same 

example but using 𝐴 ∗ 𝐿 algorithm. We do a lookahead up until a depth of 1. Our objective 

remains the same, that is to find the path from start node 𝐴 to goal node 𝐸.  

Node 𝐴 is expanded like before and the 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 is set as 8. Its three children are generated 

starting with 𝐵. When a lookahead is done from 𝐵, it finds the goal node 𝐸. The goal node 

𝐸 now sets the upper bound variable 𝑈𝐵 to 12. Since both nodes 𝐶 and 𝐷 have a 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 

greater than the 𝑈𝐵, they are both pruned and never added to the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠t. Therefore, the 

open and closed lists look as follows at end of the program. 

𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 = {B} 

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 = {A} 
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The total number of nodes stored is 2. We should, however, note that the nodes that were 

generated and discarded during the lookahead stage were 9. While these do not affect the 

memory consumed, they do affect the time taken to run the algorithm. 

3.2 The grid domain 

The grid-based map representation is used very often in video games. The grid-based 

representation exists for different types of games, RPGs like Dragon Age and RTS like 

Starcraft. There exists a compilation of standard benchmark maps from these games. These 

benchmarks have the following characteristics. All maps are represented as 2D grids. The 

maps are octile in nature. Therefore, the movements allowed on these maps are straight 

and diagonal. All tiles, therefore, have eight neighbors except the ones on the boundary of 

the map. All trees, walls and unpassable terrain are considered as obstacles and are 

untraversable. Unpassable terrain adds another constraint to these benchmark maps. 

Because units occupy space, it should not be possible for them to move through an obstacle. 

This applies if a diagonal movement is to be made between tiles but there exists an obstacle 

adjacent to the parent tile in one of the straight directions. This is called corner-cutting and 

is disallowed in these benchmark maps (Sturtevant, 2012).  

 

Figure 12 : Example of corner cutting in left and proper path for agent on right 
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Each Straight movement on the map has a cost of 1 and diagonal movement has a cost of 

√2. When grids have cost between neighbor tiles as defined above it is called, a uniform-

cost grid. 

 

Figure 13 : A* Search on a standard map 

3.2.1 Path Symmetry 

Uniform cost grids are special form of graphs because they consist of many redundant 

paths. Along with redundant paths they also contain what is called a symmetric path 

(Daniel Harabor, 2011). While graph search algorithms have option of not exploring 

redundant paths using 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡, tree-search algorithms do not have the 

same option. The DFS lookahead part of the algorithm A*L uses the tree-search version of 

DFS. If we used Graph Search version, we would not be able to save as much memory as 

we need to keep track of visited nodes and generated nodes (Norvig, 2010). Furthermore, 

regardless of the type of algorithm path symmetry cannot be avoided by standard search 

algorithms. 
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Multiple paths can be defined as symmetric, if for a pair of start and end nodes, there exist 

multiple paths with the same path cost (Daniel Damir Harabor, 2011). Path symmetry 

forces search algorithms to evaluate equivalent states (Daniel Damir Harabor, 2011). Paths 

are symmetric if the edges between them or direction of movement between them are a 

permutation of each other (Daniel Harabor, 2011). 

 

Figure 14: Path Symmetry 

Path symmetries are easier to visualize when the movement of the graph is limited to 

straight movement. We can see that all paths are optimal with a cost of 10. Likewise, if 𝐴 ∗ 

search is performed with Manhattan heuristic on the graph all nodes will have a 𝑓 − 𝑠𝑐𝑜𝑟𝑒 

of 10.  
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Figure 15 : The g, h and f costs of a grid with straight movement and Manhattan distance 

The number of nodes expanded until the goal is found will solely depend on the tie-

breaking strategy. In worst case scenario, every node is first expanded before the goal is 

reached. This scenario can be true if ties are broken based on lowest 𝑔 − 𝑐𝑜𝑠𝑡 or FIFO 

queue implementation of 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. 

3.3 Search Space reduction using directional pruning 

The paper (Dainel Harabor, 2012) on the JPS pathfinding system defines the Jump Point 

Search. Jump Point Search works on top of A* search with two sets of rules: Pruning Rules 

and Jumping Rules. For this thesis, we are interested in the pruning rules that drive Jump 

Point Search. The pruning rules on this paper are updated from the pruning rules from 

(Daniel Damir Harabor, 2011) to not allow corner-cutting in grids. These pruning rules are 

online (does not require pre-processing) and optimality preserving (Daniel Damir Harabor, 
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2011). The basis of pruning rule is that when expanding a node, all children which can be 

reached by path shorter than the current path is pruned. 

3.2.2.1 Natural Neighbors 

For any node x, that has its parent p(x) and node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥), let us assume there 

are two paths 𝜋 and 𝜋′, 

𝜋′ = < 𝑝(𝑥), 𝑦, 𝑛 > 𝑤ℎ𝑒𝑟𝑒 𝑦 ≠ 𝑥 (7) 

𝜋 =< 𝑝(𝑥), 𝑥, 𝑛 > (8) 

Then the pruning rules are defined as, 

1. For straight moves prune all neighbor nodes where,  

𝑙𝑒𝑛(𝜋′) ≤ 𝑙𝑒𝑛(𝜋) (9) 

Intuitively, if a node 𝑥 has been chosen for expansion then it is a node along the shortest 

path. Any neighbor of node 𝑥, that has a shorter and can be reached without traversing 

through node 𝑥, can be pruned (node above 𝑥). This is because, if for some reason, the 

shorter path was not expanded or was expanded but is not along the optimal path, it is 

pointless to expand it from 𝑥 as the path to that node from 𝑥 will not be the shortest path 

to that node, i.e. 𝑔(𝑛) from node 𝑥 will not be the smallest 𝑔(𝑛). For equal paths, like the 

one diagonal to node 𝑥 it needs to be pruned to avoid path symmetry. If we remember the 

definition of path symmetry, two paths are symmetric if they have the same cost, and the 

movements are a permutation of one another. This means that the neighbor 𝑛, that is 

diagonal from node 𝑥 can be reached through another path. 
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Figure 16 : Natural Neighbor for a straight move 

The figure above shows node 𝑥  being expanded from parent 𝑝(𝑥) . The direction of 

movement is towards the right from parent 𝑝(𝑥). All nodes in grey are pruned out based 

on equation 9 defined above. The only remaining unpruned neighbor is the neighbor to the 

right of 𝑥. 

2. For diagonal moves, prune all neighbor nodes where, 

𝑙𝑒𝑛(𝜋′) < 𝑙𝑒𝑛(𝜋) (10) 

This follows the same intuition as pruning straight moves. Node 𝑥 has been expanded and 

the children 𝑛 which can have the shortest path without going through 𝑥 can be pruned out 

because going through node 𝑥 would not result in the smallest 𝑔(𝑛) anyway. However, 

because straight movements omitted neighbors that could be reached through paths of 

equal length, we need to include them for diagonal moves. We believe that these length 

based pruning rules can be interchanged between straight move and diagonal moves i.e. 

have straight moves prune 𝑙𝑒𝑛(𝜋′) < 𝑙𝑒𝑛(𝜋)  and diagonal moves prune  𝑙𝑒𝑛(𝜋′) ≤

𝑙𝑒𝑛(𝜋) instead. Either way, only one path to the node is expanded and the symmetric one 

is omitted. 
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Figure 17: Natural Neighbor for a diagonal move 

The figure above shows node 𝑥 being expanded from parent 𝑝(𝑥) when the direction of 

travel is diagonal. There are three remaining unpruned neighbors of 𝑥. If one of the children 

of 𝑥 is expanded next, it will also follow the pruning rules defined above. The children to 

the top and right of 𝑥 will follow the straight pruning rules. The child diagonal to 𝑥 will 

follow the diagonal pruning rule. The unpruned neighbors of 𝑥  are called the 

𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of 𝑥 (Daniel Damir Harabor, 2011). 

3.2.2.2 Forced Neighbors 

There are changes to the pruning rule if a node encounters an obstacle. If there exists an 

obstacle adjacent to the parent node which is orthogonal to the direction of expansion, then 

none of the neighbors in the direction of the obstacle can be pruned. These neighbors 

generated because of the obstacle are called the forced neighbors. 

Forced neighbors adhere to the pruning rules given above as there exists no shorter path to 

those nodes without going through 𝑥. 
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Figure 18: Forced neighbors for a straight move 

The nodes in green are the 𝑓𝑜𝑟𝑐𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of 𝑥 because of obstacle present adjacent 

to 𝑝(𝑥) and orthogonal in direction of movement (Dainel Harabor, 2012). For the green 

nodes shown above, the nodes must go through node 𝑥 to be the shortest path to the node 

because of the obstacle present above 𝑝(𝑥).  

The diagonal movements cannot have forced neighbors because having obstacles to the 

right of or above 𝑝(𝑥) would mean that the expansion of 𝑥 has cut a corner which is an 

illegal move.  

 

Figure 19 : Blocked neighbor in a diagonal move 

We must pay special attention to corner-cutting in grids while applying these pruning rules. 

While expanding the node 𝑥, if there exists an obstacle on one of the straight moves like 

shown above, the diagonal node 𝑧 is now pruned because of corner-cutting and the only 
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remaining natural neighbor is the node to the right of 𝑥. When the node 𝑛 shown above is 

expanded from parent node 𝑥, 𝑧 becomes part of 𝑛’s forced neighbor. 

3.3.1 Effect in Lookaheads 

While this search space reduction technique works for 𝐴 ∗  search, its effect on DFS 

lookaheads is significantly better. Because the DFS search implemented here is of tree-

search nature, lookaheads done from any child node are exponential. Essentially, every 

node from the frontier generates 𝑏𝑚  children. This makes the time complexity 𝑂(𝑏𝑚) 

where 𝑚 is the maximum depth and 𝑏 is the branching factor. This effect is compounded 

in grids if lookahead is performed in cost bounded DFS. The problem with cost bounded 

DFS is that there can be multiple nodes that are a fraction of their 𝑓 − 𝑣𝑎𝑙𝑢𝑒𝑠 away from 

each other. As we saw in the example above for straight movement and Manhattan distance, 

all nodes had the same 𝑓 − 𝑣𝑎𝑙𝑢𝑒. A similar thing is true for when we use octile movement 

with Euclidean distance. While most nodes won’t have the same 𝑓 − 𝑣𝑎𝑙𝑢𝑒, a difference 

of 𝑓 − 𝑐𝑜𝑠𝑡 of 1 may span anywhere from 10 – 100s of nodes. 

The branching factor for DFS lookaheads in 𝑏 = 8. As time complexity of the algorithm 

is 𝑂(𝑏𝑙 × 𝑏𝑒
𝑑−𝑙), where 𝑏𝑒 is the branching factor in the A* portion of the algorithm, 𝑏 is 

the branching factor in DFS lookahead and 𝑙 is the length of the DFS search. A branching 

factor of 𝑏 = 8 would mean there would be a significant overhead for 𝑙. With search space 

reduction, the branching factor is less than 𝑏 =  3 (2 for empty grid). There is a significant 

difference in expanding nodes with branching factor of the exponential of 8 and branching 

factor of the exponential of 2. DFS lookahead also needs to expand these nodes again while 

the A* version of the algorithm only expands nodes along the optimal path.  
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Not keeping track of visited nodes in the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and expanded nodes in the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡, 

the path to the same node along an optimal path 𝑔(𝑛) can be generated with different costs. 

Because all redundant paths and symmetric paths are removed, the DFS lookahead does 

not expand the same node more than once per lookahead because the pruning technique is 

optimality preserving (Daniel Damir Harabor, 2011). 

Similarly, implementing the pruning technique in the 𝐴 ∗ part of the algorithm also reduces 

the number of nodes generated per expansion of the node thereby decreasing the number 

of times we would need to perform lookaheads. The effective branching factor 𝑏𝑒 that is 

used in both space and time complexity is also affected by this pruning technique. Note 

that all nodes that need to be expanded for 𝐴 ∗ will be expanded regardless of if the pruning 

technique is used or not.  

For children with the same 𝑓 − 𝑣𝑎𝑙𝑢𝑒 as its parent, we do not do a lookahead search. 

Instead, we assign the same 𝑓𝑢𝑝𝑑𝑎𝑡𝑒𝑑 value to the child as we did to its parent. This was 

dubbed trivial lookahead by (Roni Stern, 2010), however, we add the node to 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 

instead of moving it directly to 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡.  

Let us assume, there is a node 𝑛, for which the 𝑓 − 𝑣𝑎𝑙𝑢𝑒 is the same as its parent. If the 

lookahead search of 𝑘 = 1, does not find a path to the goal with 𝑓(𝑝𝑎𝑟𝑒𝑛𝑡) +  𝑘 then it is 

very likely that the path in the direction towards child node 𝑛 will result in a dead-end. This 

causes A* to expand nodes that are not along an optimal path. When adding these nodes 

directly to the closed list, (Zhaoxing Bu, 2014) found that using trivial expansion increases 

the number of nodes expanded and generated in maps with unit cost. 
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CHAPTER 4: 

Experimental Setup 

4.1 Implementation Details 

We implement the algorithms using C# as the programming language. All experiments are 

done on a computer with Intel Core i7-7700 CPU and 16 GB RAM. The visualizations are 

built as a bitmap where each tile is a pixel in the bitmap. We use C#’s HashSet for 

implementation of the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡 and Priority Queue for the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡. The experiments 

are Single Agent pathfinding problems in a static map. The maps used are benchmark maps 

from various video games at Moving AI Labs website 

(https://movingai.com/benchmarks/formats.html, n.d.). 

We use two algorithms 𝐴 ∗ search and 𝐴 ∗ with Lookahead. Both algorithms have been 

modified to not allow corner cutting through obstacles. We compare two variants of A* 

with Lookahead search, one with the domain-specific search space reduction 

techniques/pruning technique and the other without it. From the standard benchmark maps, 

we use scenarios that are available to get the start and end points.  

We make different comparisons for A* search versus A* with Lookahead and A* with 

Lookahead versus A* with Lookahead using pruning. The focus of our research is showing 

that the lookahead based search has performance gains on memory consumed and with the 

pruning techniques, we can overcome limitations of the lookahead search and achieve 

execution time better than or similar to A* search. 
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We run experiments on different map sizes with varying obstacle chance for A* vs A*L. 

We vary the size of k in A*L from 0 to 5 and do cost-bounded lookaheads for our 

experiments. For unpruned A*L, we only run the experiments in a small map as the time 

taken would be significantly larger than the pruned version.  

4.2 Experimental Setup 

We’ve discussed grid-based maps before because it is pertinent to our thesis and it ties in 

with the search space reduction. For our experiments, we use movement costs of 1000 for 

straight moves and 1414 for diagonal moves in our grids. The final cost of the path is 

divided by 1000. Obstacles are evaluated at a cost of integer max value which is 

2,147,483,647. They are not evaluated with a cost for 𝐴 ∗ part of the search but return a 

cost of integer max value for the lookahead portion. This value is also used in place of ∞ 

to initialize the minimum cost variable (𝑀𝑖𝑛𝐶𝑜𝑠𝑡) and the Upper Bound variable 𝑈𝐵 too. 

The standard maps are .map files that are readable like text files. The first four lines are 

map descriptions like map name, row and column. Remaining part of the file consists of 

the map details. (https://movingai.com/benchmarks/formats.html, n.d.). Each character in 

the file is a tile in the map environment. A space, ‘.’, ‘G’ and ‘S’ are characters that 

represent traversable terrain. All other characters are considered untraversable. We add 

another specific character ‘Z’ as obstacles that were randomly generated in our experiments. 

The process of generating obstacles are defined in the section below. After our experiments, 

we save a new map with character Z for our randomly generated obstacles as a .map file. 

This way we can reproduce our experiments if needed.  
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For start and end points, we randomly select points from the scenario files among the 1/3𝑟𝑑 

largest scenarios. 

4.2.1 Search Parameters 

We use specific maps of different sizes approximately 128x128, 211x215, 320x320, 

385x385 and 512x512. We use actual video game maps from Baldur’s Gate’s unscaled 

maps, Dragon Age Origins, and Starcraft.  

Most maps already have obstacles present in them. We randomly add extra obstacles 

amongst the available traversable terrain based on the obstacle chance we want. The 

percentages of obstacles we add are 0, 7, 15 and 30. This way we can see the effect of 

obstacles on the algorithms. For every traversable node, we use the random function to 

determine if the node is going to be an obstacle or not. 

 

Figure 20: Map with 0% added obstacles on left, map with 30% obstacles on right 
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The figures are maps with 0% obstacles added and 30% obstacles added. Each pixel in the 

bitmap is a tile. The pixels in white are traversable tiles and the pixels in black are original 

obstacles in the game map. The ones in gray are obstacles that we have randomly added to 

the map. We only vary the obstacles to up to 30% of traversable terrain because increasing 

the obstacle percentage to around 40% generated maps that failed to find a path for majority 

of the 𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑜𝑎𝑙 nodes.   

We vary the lookahead cost 𝑘 between 0 to 5 from the cost of the parent. The number of 

frontiers generated by the lookahead process has significant overhead in terms of the 

algorithm’s runtime. We go all the way up to a k value of 5 to see the tradeoff of memory 

consumed to time taken against standard the 𝐴 ∗  𝑠𝑒𝑎𝑟𝑐ℎ algorithm. 

4.2.2 Performance Evaluation 

We gather results from our experiments at runtime and compare A* with Lookahead for 

different values of k with standard A* search. We take the Time Taken, the number of 

nodes generated, the number of nodes expanded, path length and number of nodes 

expanded during lookahead as performance evaluation metrics. 

4.2.2.1 Time Taken 

For each algorithm, we use a stopwatch to calculate the time taken. We use C#’s stopwatch 

class System.Diagnostics.Stopwatch and measure the time elapsed. We first initialize 

all variables and classes. We call the start method before we start our search and call the 

stop method after the search finishes. The time taken is reported using the 

ElapsedMilliseconds() method. 
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The time taken in milliseconds is not an implementation-independent performance 

evaluation metric. This metric will vary depending on different implementation methods 

and environments. We use this metric to compare the performance of A* with lookahead 

against the standard A* search. So, for this thesis, time taken should be a fair performance 

evaluation metric. 

4.2.2.2 Number of Nodes generated 

The number of nodes generated is an implementation and platform independent 

performance evaluation metric. It corresponds to the space complexity of our algorithms. 

We expect the number of nodes generated to decrease when we use A* with Lookahead. 

Nodes generated are the total number of nodes stored in the memory. We expect the nodes 

generated to decrease when the pruning process is used.  

4.2.2.3 Number of Nodes expanded 

The number of nodes expanded is an implementation and platform independent 

performance evaluation metric. We expect the number of nodes expanded to decrease when 

we use A* with Lookahead. Nodes expanded are nodes removed from the 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡 and 

added to the 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. 

4.2.2.4 Path Length 

The path length is the lowest cost path from start node to the goal node. The final path is 

optimal for A* search and A* with Lookahead Search. Regardless of the algorithm, the 

cost of optimal path should remain same. The path length does vary for the same start and 

goal node with the number of obstacles present in the map. The pathlength has impact on 
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the number of nodes expanded and the time taken. Increase in path length means more 

lookaheads done on the map. The average path length is the average for experiments done 

on a map with certain search parameter. We track the path length across different values of 

k to show that regardless of the value of k our algorithm is optimal. 

4.2.2.5 Average Nodes Expanded during Lookahead 

The average number of nodes expanded during Lookahead is the number of nodes 

expanded during the DFS portion of the algorithm. While lookahead helps save memory, 

they are also redundant in nature. While expansion of a small number of nodes per 

lookahead can lead to benefit in performance, large number of nodes expanded per 

lookahead results in an increase in time taken for the path to be found. Because lookaheads 

are done only from generated nodes, the average node expanded is calculated by, 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 𝑛𝑜𝑑𝑒𝑠 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 =  
𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 𝑛𝑜𝑑𝑒𝑠 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑

𝑁𝑜𝑑𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
 

4.2.3 Results and analysis 

We use our test framework to evaluate performance of A* with Lookahead and compare it 

with standard A* search. As discussed above, we use locations in map from scenarios 

already available. We run 50 experiments with obstacle chance of 30% as finding a path 

for that is the hardest. We generate 50 start and end points for the map that will be used 

with other obstacle chances.  It is better to use start point and end points from a map with 

30% obstacle chance than to generate a map with 30% obstacle chance that must find a 

path for existing start and end points.  
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The maps are selected based on the open space available. The experiments ran fine with 

tight spaces if there weren’t corridors which had a very small width. The start and end 

points remain same for different obstacle chances per map. This gives us an opportunity to 

see the change in performance and path length with relation to the number of obstacles in 

the map. 

 

 

We present our findings based on the size of the map. This lets us correlate performance to 

map size and path length. Separate charts for varying obstacle chance with time taken, 

nodes expanded, nodes generated and average number of nodes expanded during 

lookahead will be shown below. Tables for all charts are available in the indices with 

average path lengths, nodes expanded, nodes generated, and time taken.  

4.2.3.1 Results for Map size 128x128 

We use den900d map from Dragon Age Origins as the benchmark map for this experiment. 

All results are values averaged out across 50 different experiments, 10 random maps with 

5 different start and goal nodes. The start and goal nodes are same across maps with 

different obstacle chances. There is an increase in the path length when the obstacle chance 

Added Obstacle 
chance 

Number of 
Experiments Map Size Algorithms 

0% 
7% 

15% 
30% 

  

50 
 
 
 
 
  

128 x 128 
211 x 251 
320 x 320 
384 x 384 
512 x 512  

A* Search 
A*L with k=0 
A*L with k=1 
A*L with k=2 
A*L with k=3 
A*L with k=4 
A*L with k=5 

    

Table 1: Table of experiments 
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increases. The map has 5,258 traversable states. The cost of optimal path is same across 

A* and A*L with different values of k. 

 

Figure 21: Nodes Expanded 128x128 map 

The number of nodes expanded increases as the percentage of obstacles increase because 

the average path length increases, and the heuristic performs worse when there are more 

obstacles. We see that for all obstacle chances, the number of nodes expanded by A*L 

decreases as the lookahead value k increases. There is an 83% decrease in the number of 

nodes expanded on standard maps when the lookahead value k is equal to 5. There is a 70% 

decrease in the nodes expanded between A* and A*L with k=5. Similarly, 54.4% decrease 

on 15% obstacles and a 45% decrease when the number of obstacles on the map is 30% of 

the traversable terrain.  
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At the value of k = 0, A*L is similar to A* search with pruning technique applied. There 

is some decrease in the percentage of nodes expanded, however that can be attributed to 

the lookahead search as there can be a lot of nodes with f-value 0 along the path to the goal 

node.  

 

Figure 22: Nodes Generated 128x128 map 

Nodes generated are the total number of nodes that are stored in the memory. As the nodes 

generated is directly corelated to the space complexity in A*, it makes sense to see that for 

A* search lesser nodes are generated when obstacles are present. This is because of 

presence of obstacles decreases the branching factor and the number of available 

traversable states.  

As the pruning technique is used, the effective branching factor decreases, and a smaller 

number of nodes are generated as shown in the figure above. The percentage of nodes saved 
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is highest for 0% obstacles added to the map. Because lookaheads are done for nodes 

generated, lower number of nodes generated correspond to lesser lookahead in A*L and 

therefore lesser time consumed. The percentage of nodes saved by A*L decreases when 

the obstacle chance increases. 

 

Figure 23: Time taken for 128 x 128 map 

 

For time taken, A*L performs best when there are no extra obstacles added to the map. The 

version of A*L shown above uses the pruning technique we described earlier. This shows 

that the pruning technique successfully decreases the time taken and the overhead of doing 

DFS lookahead. A*L with pruning technique is comparable to A* search or better for the 

128x128 map.  

We start seeing an exponential increase in the time taken as k increases when we add 

obstacles. In general, as the value of k increases the time taken increases too. However, 
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there is a 2500% increase in time taken when 7 % obstacles are present and 2300% increase 

when there are 15% additional obstacles. The reason for this increase is due to obstacles 

being uniformly and sparsely distributed. This is the worst-case scenario for the pruning 

technique as forced neighbors of the nodes are generated frequently. This causes nodes that 

would normally have a single neighbor to have three neighbors. We also see that when 

increasing the obstacle chance to 30% the time taken at k= 5 drops down to 822%. 

At each obstacle chance there is a trade-off at certain value k where we achieve decrease 

in node generated with an acceptable increase in time taken versus A* search.  

 

Figure 24: Avg. nodes expanded per lookahead 128x128 map 

The average number of nodes expanded per lookahead shows the correlation of time to the 

lookahead step. As we mentioned before, adding obstacles increases the branching factor 

in the DFS lookaheads. Later, we show how having sparsely distributed obstacles also re-
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introduces cycles in the DFS. We also see that as the value of k increases the number of 

lookaheads done increases 𝑂(𝑏𝑙), where 𝑙 is the depth of lookahead with cost k. However, 

for 0% added obstacles, the time taken decreases at k=5, whereas the average number of 

nodes expanded per lookahead increases because there are far fewer nodes generated (the 

nodes generated graph). Therefore, the time taken is dependent of a combination of nodes 

generated and lookahead nodes expanded.  

4.2.3.2 Results for Map size 211x251 

We use den502d map from Dragon Age Origins as the benchmark map for this experiment. 

Like the previous experiment, all values are averaged out across 50 experiments. The 

number of traversable states in the map is 27,235. The cost paths average out the same 

across all versions of A*L and A* search so we can conclude that the paths generated by 

respective algorithms are optimal. The average cost path increases as the percentage of 

obstacles in the map increases from 222 to 272. 
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Figure 25: Nodes Expanded 211x251 map 

For nodes expanded on 0% obstacles, with k=5, 𝐴 ∗ 𝐿(5) has 46% less nodes expanded. 

At 7%, 15% and 30% obstacles, 41%, 37% and 39% less nodes expanded compared to A*. 

Once again as the value of k increases in A*L the number of nodes expanded decreases. 
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Figure 26: Nodes Generated 211x251 map 

There is a similar trend for the nodes generated. Using the pruning technique reduces the 

number of nodes generated. As the lookahead cost k increases, the total number of nodes 

generated decreases. This is true regardless of the percentage of obstacles. However, the 

percentage of space saved decreases as the percentage of obstacles increases. 
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Figure 27: Time taken for 211 x 251 map 

Once again, at 0% obstacle chance, the time taken for all values of k with modified A*L is 

better than A* search. There is an exponential increase in the time taken for 7% chance and 

15% chance and less exponential increase for 30% obstacle chance. 

 

Figure 28:Avg. nodes expanded per lookahead 211x251 map 
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The average number of nodes expanded per lookahead increases as k increases. The 

average number of nodes expanded per lookahead peaks at 7% and at k=5, which would 

explain the increase in time taken when 7% obstacles are randomly added. The average 

nodes expanded per lookahead decreases at 30% obstacles added because the obstacles are 

less sparse and there are lesser states remaining in the map. 

4.2.3.3 Results for map size 320x320  

We use AR0500SR map from Baldur’s Gate as the benchmark map for this experiment. 

Like the previous experiment, all values are averaged out across 50 experiments. There are 

29,160 traversable states for this map. The average path cost increases from 382 to 505 as 

the percentage of obstacles added increases. 

 

Figure 29: Nodes expanded for 320 x 320 map 
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Like previous experiments, the highest decrease in nodes expanded is on 0% obstacles 

added at 57% for k = 5, 39% decrease on 7% additional obstacles, 32% decrease on 15% 

obstacles and 40% decrease when additional 30% obstacles are added.  

 

Figure 30:Nodes generated for 320 x 320 map 

As with previous maps, there is a decrease in the number of nodes generated by A* search 

as the obstacles increase. Meanwhile, for A*L the number decreases as the value of k 

increases. The percentage save in compared to A* search is greatest when k = 5 and when 

there are 0% obstacles present in the map. 
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Figure 31: Time taken on 320 x 320 map 

We see similar trends for time taken as previous experiments here. There is an increase in 

time for all cases of A*L when k increases. The increase in exponential for 7% and 15% 

added obstacles. At 0%, while there is an increase in time taken when 𝑘 increases, it is still 

better than standard A* search. 

 

Figure 32:Avg. nodes expanded per lookahead for 320 x 320 map 
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Similarly, there’s an increase in the average number of nodes expanded per lookahead as 

the value of 𝑘 increases. Like with previous maps, when 7% obstacles are randomly added 

we see the performance of A*L worsens. 

4.2.3.4 Results for map size 384x384 

We use ooth000d map from Dragon Age Origins as the benchmark map for this experiment. 

The map has 17,601 traversable states. The map is different because the whole map has is 

a single gigantic path and has less free space than other maps. There are however lower 

number of natural obstacles along the path. The average cost path increases from 523 to 

664 as the percentage of obstacles added increases. 

 

Figure 33: Nodes expanded for 384 x 384 map 

A similar trend follows for decrease in nodes expanded as value of 𝑘 increases in A*L. For 

0% added obstacles, there is a decrease in the number of nodes expanded with 42% 
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decrease in the number of nodes expanded at 𝑘 = 5. There is clear indication of decrease in 

the percentage of nodes expansions saved as the percentage of obstacles increase   

 

Figure 34:Nodes generated for 384 x 384 map 

Likewise, for nodes generated, A* search generates the least number of nodes with 30% 

added obstacles. Just like previous experiments, for A*L, the most percentage of space 

saved is at 0% obstacles added and the percentage of nodes saved across 𝑘 =  0 𝑡𝑜 5 

decreases as the percentage of obstacles added increases. 
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Figure 35: Time taken on 384 x384 map 

 

 

Figure 36:Avg. nodes expanded per lookahead for 384 x 384 map 
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The time taken by A*L at k=5 is similarly worst at 7% additional obstacles. Which is 

explained by the increase in average number of nodes expanded per lookahead at 7% 

obstacles. For this map, at 0% obstacles the time taken is slightly more for A*L with k = 5 

than A* search. We can explain this by looking at the number of traversable states 

compared to the size of the map. The oth000d only has 17,601 traversable states despite 

being a 384 x 384 map. In comparison, den502d has 27,235 traversable states while being 

a 211x251 size map. This is because oth000d has significantly more obstacles already 

present in the map. 

4.2.3.5 Results for map size 512x512 

We use RedCanyons map from Starcraft as the benchmark map for this experiment. All 

values are averaged out across 50 experiments. The map is the largest we performed 

experiments for and has 174,722 traversable states. The average cost of path increases as 

we increase the percentage of added obstacles from 628 to 793. The map already has some 

number of obstacles present in it; however, the obstacles are a present as cluster.  
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Figure 37: Nodes expanded for 512 x 512 map 

𝐴 ∗ 𝐿(5) decreases the number of nodes expanded at 0% obstacle chance by 36%. The 

largest decrease in the number of nodes expanded when using A*L can be seen at k=5 

when compared to standard A* search. And as expected, the number of nodes expanded 

decreases as the value of k increases.  
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Figure 38:Nodes generated for 512 x 512 map 

For normal A* search, the number of nodes generated decreases as the percentage of added 

obstacles increase. Added obstacles mean that there are less available traversable nodes in 

the map for A* search. As for A*L, as the value of k increases the total number of nodes 

generated decreases. This is true for any percentage of obstacles. And just as previous 

experiments, 0% obstacles have the largest percentage of memory saved for A*L. 
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Figure 39: Time taken on 512 x 512 map 

 

Figure 40:Avg. nodes expanded per lookahead for 512 x 512 map 

The time taken at 0% obstacles is significantly lower even for 𝐴 ∗ 𝐿(5), saving close to 47% 

in time taken. Startcraft maps are large maps with clusters of obstacles present in them. 
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Unlike uniformly and sparsely distributed obstacles, clustered obstacles remain pruned 

because to have a path around it a large detour must be taken, making them unlikely to be 

part of the shortest path. Just like previous maps, the average number of nodes added at the 

lookahead stage is highest when 7% obstacles are present resulting in larger amount of 

time taken. 

4.3 Unpruned vs Pruned A*L (50 x 50 map) 

The directional pruning technique is the method we use to get improvement in time taken 

for A*L. Without the pruning technique in A*L the time taken in significantly larger as the 

branching factor during DFS lookahead is exponential in nature. Because the time taken is 

significantly large, we are only able to perform experiments with a small sized map of size 

50 x 50. We also restrict the number of experiments to 20 and the value of k to 0, 1 and 2. 

The start and end value for 20 experiments come from scenario files.  

The map we used for this experiment is arena from Dragon Age Origins. The map has 

2,054 traversable states. We do not add any extra obstacles to the map. This experiment 

showcases our problem statement of having an unpruned A*L and its comparison with 

pruned A*L. The start and end points for these experiments come from scenario files and 

are already available. Both algorithms have the same start and end nodes. 
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Figure 41:Nodes expanded for pruned vs unpruned A*L 

The number of nodes expanded for A* is same because we don’t use the pruning technique 

for A* search. The pruned version performs better than the unpruned version for the 

number of nodes expanded. 

 

Figure 42:Nodes generated for pruned vs unpruned A*L 
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The pruned version generates lesser nodes than unpruned version at all versions of A*L. 

This is because the effective branching factor is lower for the pruned version. As the value 

of k increases, we save more on the number of nodes generated on both algorithms.   

 

Figure 43: Time taken on pruned vs unpruned A*L 

As the value of k increases for A*L, the time increases exponentially. The unpruned 

version of A*L(1) takes 371.9ms on average compared to 1ms average of pruned version. 

The unpruned version of A*L(2) takes over 148 seconds on average to run the algorithm. 
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Figure 44:Average nodes expanded per lookahead on pruned vs unpruned A*L 

As we can see from the diagram above, the number of nodes expanded at the lookahead 

stage of the unpruned A*L is significantly larger than the number nodes expanded at the 

lookahead stage of the pruned algorithm. 

4.4 Summary 

A*L saves more memory than A* search. As the value of k increases, the number of nodes 

generated decreases. This is the general trend for all experiments. As the cost of path 

increases, the percentage of nodes saved decreases. This is because the value of k relative 

to the cost of the path lowers as the cost of path increases. We see that for smaller maps 

there is a significant decrease in the percentage of nodes generated for A*L(5). Looking at 

the results for 128 x 128 map, as the percentage of obstacles increases, A*L starts to save 

a smaller number of nodes. At 30% obstacles for 128 x 128 map, the average path cost is 
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154 and the percentage saved is 45% whereas for the 211 x 251 map, at 0% the average 

path cost is 222.33 while the percentage saved is 46%.  

The pruning technique also saves memory. If we consider the node generated graphs for 

A*L(0), we see that the number of nodes generated decrease. A*L(0) is similar to A* 

search where the lookaheads are done up to a cost of 𝑓(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 0. This will likely do 

lookaheads for very few nodes to almost no nodes. The pruning technique reduces the 

branching factor 𝑏 of each node expanded from 8 to 2. The number of nodes expanded for 

A*L(0) is similar to that of A* search whereas the number of nodes generated significantly 

decreases.  

Obstacles play a large role in how much memory is saved. When obstacles are clustered at 

certain locations it doesn’t affect the memory saved as much as when the obstacles are 

distributed uniformly. Increase in obstacles uniformly decrease the heuristic performance. 

Decreasing heuristic performance increases the relative error of the heuristic function 

thereby making A* perform worse in terms of nodes expanded (Korf, 2000). For example, 

for completely blank map, if the path is exactly a diagonal the error in heuristic for 

Euclidean distance is 0. This means that when a lookahead search is done from the first 

node, even at k = 1 it will find the goal making the number of nodes expanded as low as 1. 

When obstacles are added along the path, the error in heuristic increases so more nodes 

need to be expanded to reach the goal. Larger number of nodes expanded means a greater 

number of nodes being generated. This is compounded by the increase in map size. When 

a percentage of obstacles are added to a larger map, the heuristic performs worse than when 

obstacles are added to a smaller map. This would explain the decrease in amount saved 

when obstacles are added.  
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A* with lookahead does not help with time taken. In fact, because the lookahead nodes are 

repeated often, they end up as an overhead. The time taken to expand singular node in 

lookahead part of the algorithm is a lot lower as they don’t need to be saved, in fact they 

can be evaluated, expanded and discarded. They don’t have operations on 𝑜𝑝𝑒𝑛 𝑙𝑖𝑠𝑡  and 

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑖𝑠𝑡. Even when a stack is used to store the best path the time taken for each 

operation is 𝑂(1). For A*L(0) on all maps, the time taken is similar to or better than A* 

which has no lookahead nodes expanded. This shows that we can achieve better 

performance with regards to space and time when we use the pruning technique alongside 

A*L. 

The key point is to keep the number of lookahead nodes low as they can grow exponentially. 

The directional pruning technique reduces the lookahead nodes expanded and nodes 

generated significantly. This directional pruning technique reduces the effective branching 

factor 𝑏𝑒 from 8 to 2. This is also the reason at every experiment A*L(0) has better time 

taken than standard A* search. The directional pruning also reduces the branching factor 

for lookahead search, but more importantly it eliminates redundancy and symmetry in DFS 

too. When obstacles are present, forced neighbors are generated increasing the branching 

factor which increases the nodes generated. As more nodes are generated per expansion, 

more lookaheads are performed. And each lookahead has a higher branching factor because 

of obstacles. 
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Figure 45: Generation of cycles in lookahead stage 

Let us assume we want to expand node 7 with parent node 4. Node 8 and 11 are forced 

neighbors generated because of the obstacle whereas, 10 is the natural neighbor. If there 

was no obstacle at node 5, only node 10 would have been expanded. When node 9 needs 

to be expanded, node 6 generated as its forced neighbor. Node 2 is generated as forced 

neighbor of node 3 later and node 4 is generated as forced neighbor of node 1. This cycle 

does not take place with A* part of the algorithm because A* stores the visited and 

expanded nodes. However, even for A* search a greater number of nodes are generated on 

each of these expansions.  

This affects the lookahead part of the algorithm. As the percentage of obstacles in the map 

increase, such singular random obstacles decrease. Large number of obstacles means that 

obstacles tend to cluster together densely, and such cycles don’t happen often. High density 

of obstacles also means lesser number of nodes to be generated in the map.  This is the 

reason why for all cases the time taken at 7% additional obstacle and 15% additional 

obstacle are the highest. This is also the reason why the time taken decreases at 30% 

obstacles chance at A*L(5).  
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We use the average number of nodes expanded per lookahead cycle to verify if this is true. 

For all maps, we see that as value of k increases the average number of DFS lookahead 

nodes expanded increase. We also see the average number of DFS lookaheads done is 

highest at 7% and 15% which proves our previous explanation of the effect of obstacles on 

lookahead. 

 

 

 

 

 

 

 

 

 

 

 



 

70 

 

CHAPTER 5: 

Conclusion and Future Work 

For our thesis, we explored a variant of A* search on the grid-based domain. This variant 

of A* called A* with Lookahead, allows us to save space in A* by doing depth-first 

lookaheads from the frontier of A* and generating new frontiers. The space complexity of 

the algorithm is 𝑂(𝑏𝑑−𝑙) compared to the space complexity of A* search which is 𝑂(𝑏𝑑). 

We proposed the use of this algorithm for grid-based pathfinding domain.  

We found that using A* with lookahead for a grid-based domain increases the time 

complexity of the algorithm significantly. The time complexity of this algorithm is 

𝑂(𝑏𝑙  × 𝑏𝑒
𝑑−𝑙). The branching factor 𝑏 for depth-first lookaheads tends to be larger than 

the effective branching factor 𝑏𝑒 on A* search. We use an optimality preserving pruning 

technique to bring down both the branching factor and the effective branching factor of the 

algorithm. This pruning technique brings down the branching factor 𝑏 from 8 to 2(average). 

In our experiments with different sized maps, varying values of cost k and percentage of 

added obstacles, we found that adding obstacles to the map made A* with Lookaheads 

slightly worse in terms of the percentage of space saved. Furthermore, the presence of 

obstacles increased both branching factors of the algorithm thereby increasing the time 

taken.  

To conclude, our approach of a combination of A* with Lookahead and the grid-based 

pruning scheme performs better than A* for all maps where the obstacles are naturally 

placed (0% added obstacles/ actual game maps). It performs the worst when obstacles are 

uniformly and sparsely placed (randomly placed obstacles with chance 7% and 15%). And 
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even when placed this way, there exists a value of k for which improvement in both time 

and space complexity can be achieved. There is a slight improvement at 𝑘 =  1 and more 

space saved at 𝑘 =  2 with a slightly worse time taken. 

When experimenting with an unpruned version of A* with Lookahead, it wasn’t possible 

to run experiments with higher values of k due to time constraints. We conclude that the 

unpruned version is therefore not a feasible approach even though it also manages to save 

space. 

Future work could be to randomly generate clusters of obstacles with a 7% and 15% chance 

and see its effect on the performance of the algorithm. The pruning technique seems to 

significantly improve the runtime performance and would be promising to apply to other 

variants of A* that use iterative deepening to save space like IDA* and RBFS. 

We store the best path found so far up to the goal nodes. If we store the best path found 

regardless of the node, we might be able to reuse lookaheads from the previous search 

drastically reducing the time taken by the algorithm. This could, however, come at a cost 

of increased memory requirements. 
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APPENDICES 

 

Table 2:Full table of results for 128x128 map 
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Table 3:Full table of results for 211x251 map 
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Table 4:Full table of results for 320x320 map 
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Table 5:Full table of results for 384x384 map 
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Table 6: Full table of results for 512x512 map 

 

 

Table 7: Full table of results for pruned vs unpruned 
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