

x

4.4.1 Advantages of Proposed Approach .. 90

4.4.2 Limitations of the Proposed Approach ... 92

Chapter 5: Conclusion and Future Work .. 94

5.1 Conclusion ... 94

5.2 Future Work .. 94

References ... 96

Vita Auctoris ... 106

16

densely annotated data of 5000 images is split into separate training, validation, and test

sets.

Figure 9: An example from CityScapes Dataset [23]

• The ImageNet database: ImageNet database is a large visual database designed for use in

visual object recognition software research. It contains more than 14 million images that

have been hand-annotated to indicate what objects are pictured in at least one million

pictures, and bounding boxes are also provided. ImageNet contains more than 20,000

categories with any typical category, such as “balloon” or “strawberry,” consisting of

several hundred pictures. The database of annotations of third party URLs is freely

available directly from ImageNet, though the actual images are not owned by ImageNet.

Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large

17

Scale Visual Recognition Challenge (ILVRC), where software programs compete to

classify and detect objects and scenes. ImageNet crowdsources its annotation process.

Image level annotations indicate the presence or absence of an object class in an image

such as “there are tigers in this image” or “there are no tigers in this image.” Object-level

annotations provide a bounding box around the indicated object.

Figure 10: Examples from ImageNet dataset [24]

18

• Microsoft COCO: MS COCO is another such large-scale dataset with the goal of advancing

state-of-the-art in object recognition by placing the question of object recognition in the

context of the broader question of scene understanding. This dataset contains photos of 91

object types and has a total of 2.5 million labeled instances in 328k images. Such annotation

drew upon extensive crowd worker involvement via novel user interfaces for category

detection, instance spotting, and instance segmentation.

Figure 11: Examples from MS COCO dataset [25]

19

2.2.2 Need for Datasets Improvement

It would be safe to say that we are in the midst of a data revolution. Ubiquitous access to image

datasets has been responsible for much of the recent progress in object recognition after decades

of proverbial wandering in the desert. For instance, it was the availability of face training data,

more than perceived advances in machine learning that produced the first breakthrough in face

detection [26]. And it is the dataset of millions of photographs of consumer products, as much as

clever feature matching that allowed visual search engines like GOOGLE GOOGLES to become

a reality. However, like any proper revolution, this one too has brought with it new problems to

replace the old ones. It appears that this field is now getting too obsessed with evaluation, spending

more time staring at precision-recall curves than at pixels [21]. Some of the evident issues with

current state-of-the-art datasets are as follows:

2.2.2.1 Lack of Diversity

Capturing sufficient diversity in a dataset is a challenge. We can often observe that datasets are

restricted to a selected subset of cases, each dataset tackling one small part of the whole set of

possible environments and conditions: for example, KITTY [22] and CityScapes [23] are collected

only in Germany or even the Oxford [27] dataset is only collected in Oxford, meaning that those

datasets are geographically restricted.

2.2.2.2 Dataset Bias

The visual world is so complex and nuanced that any finite set of samples ends up describing just

some of its aspects. Moreover, in case the samples are collected for a particular task, they will

inevitably cover just some specific visual region. Hence, it is not surprising that pre-defined image

20

collections like existing computer vision datasets, present such specific bias to be easily

recognizable. The main types of bias [21] found in existing computer vision datasets are as follows:

• Selection Bias: It is a known fact that datasets that are gathered automatically fare better

than those collected manually. However, getting images from the internet does not

guarantee a fair sampling, since keyword-based searches will return only particular types

of images. Obtaining data from multiple sources (e.g. multiple search engines from

multiple countries) can somewhat decrease selection bias.

• Negative Bias: Having a rich and unbiased negative set is important to classifier

performance. Therefore, datasets that only collect the things they are interested in might be

a disadvantage, because they are not modeling the rest of the visual world. An effective

remedy would be to add negatives from other datasets.

• Capture Bias: Professional photographs, as well as photos collected using keyword search,

appear to suffer considerably from the capture bias. The most well-known bias is that the

object is almost always in the center of the image. For example, searching for a “mug” on

Google Image search will mostly provide images with mugs situated at the center of the

frame. Also, it will reveal another kind of capture bias: almost all the mugs have a right-

facing handle.

2.2.2.3 Lack of challenging Weather and Lighting conditions

In computer vision tasks for applications like Autonomous Driving, it is very crucial that Computer

vision algorithms are also trained in challenging and variety of weather and lighting conditions.

Apart from a few datasets, all others only have images of driving scenarios in regular weather

conditions. However, the landscape, roads, visibility, wind, etc. will differ for different parts of

21

the world and with varying seasons as well. It is so important that Autonomous Vehicles are

trained for every such scenario before finally deploying them on roads for public usage.

2.2.3 Synthetic Data: An Option

Amidst such complications with using real-world data, researchers have looked for efficient

alternatives and Synthetic data (created using Virtual Reality and/or Augmented reality) has

emerged as a worthy option. A promising approach to generate synthetic data is to use a graphic

simulator to generate automatically annotated data. Several such simulated datasets have been

created in recent years as found in [28], [29], [30], [31], etc.

• SYNTHIA dataset: SYNTHIA stands for the SYNTHetic collection of Imagery and

Annotations. This dataset is one of the best examples of datasets generated using simulated

environments for Autonomous Driving research. SYNTHIA consists of photo-realistic

frames rendered from a virtual city and comes with precise pixel-level semantic

annotations for thirteen classes, i.e., sky, building, road, sidewalk, fence, vegetation, lane-

marking, pole, car, traffic signs, pedestrians, cyclists and miscellaneous.

Figure 12: Examples from SYNTHIA Dataset [31]

22

2.3 Simulation Environment

For dataset generation regarding Autonomous Driving research, there are various dedicated as well

as general-purpose simulators available. Some of the dedicated simulators (Driving Simulator)

even allow training the Autonomous Vehicles in the simulated environment, apart from data

generation. Driving Simulators are usually a collection of high-level extensible modules that allow

the rapid development and testing of vehicle configurations and facilitate the construction of

complex traffic scenarios. They support multiple vehicles with unique steering or acceleration

limits, as well as unique tire parameters and dynamic profiles to name from the vast features they

provide. Engineers can specify the specific vehicle sensor systems and vary the time of day and

weather conditions to generate robust data. Non-vehicle participants such as cyclists and

pedestrians can be assigned specified routes or script scenarios that place the ego vehicle in

dangerous reactive scenarios [12]. Some of the main benefits of using driving scenarios are

discussed as follows:

• Data Generation: Driving simulators can generate virtually unlimited data for research and

testing purposes. Apart from the main scene images, they also allow to export different

vehicle configuration data and the data from virtual sensors attached to the ego vehicle.

Furthermore, the data generated is automatically annotated as programmed, which

eliminates the need for the labor-intensive manual annotating process.

• Varying vehicle, cyclist, pedestrian, and traffic conditions: The driving simulators include

various vehicle and sensor models, pedestrians, and cyclists, as discussed above. The

diversity of these traffic actors allows training for classification on different shapes, sizes,

colors, and behaviors of cyclists, pedestrians, and other drivers.

23

• Dynamic Traffic, Weather, and Lighting Conditions: The driving simulators provide high

fidelity traffic simulation, supporting dynamic changes in traffic density, time of day,

lighting, and weather, including rain and fog.

• Rapid Scenario Construction: Typical road networks can be easily laid out using the in-

built tools and are automatically connected for routing and navigation purposes.

2.3.1 Components of a Driving Simulator

An ideal simulator for autonomous driving research comprises a variety of inter-linked

components covering the navigation, perception, and control modules. They are discussed as

follows:

• Game Engine (Rendering Engine): A game engine is a part of a computer game that

contains a 2D or 3D graphic representations (rendering engine), representations of physical

laws (Physical Engine), or collision detection (and collision response), sound, scripting,

animation, artificial intelligence, networking, streaming, memory management, threading,

localization support, scene graph and may include video support for cinematics. The most

modern game engines also include support for Virtual Reality (VR) simulation. However,

for Driving Simulators, only the Rendering Engine is used among all the above-mentioned

features of a game engine. This is due to the reason that the physics engine or collision

response of a game engine may not be up to the standard required for a high-fidelity

simulator. Some of the most popular game engines used for building driving simulators are

Unreal Engine 4 [32], Unity 3D [33], Blender [34], CryEngine [35], etc.

As of now, Unreal Engine 4, provided by Epic Games, has emerged as a favorite game

engine for our purpose. At the same time, Unity 3D is also improving at an impressive rate.

24

Figure 13: Components of a Driving Simulator [36]

• Physics Engine: As the name suggests, a Physics Engine is a computer software that

provides an approximate simulation of certain physical systems such as rigid body

dynamics (including collision detection and response), soft body dynamics, and fluid

dynamics. A Physics Processing Unit (PPU) is a dedicated microprocessor to host the

physics engine.

25

• Environment Model: This module allows a user to specify a variety of lighting and weather

conditions. The importance of data with varying weather and lighting conditions has

already been discussed earlier.

• Vehicle Model: This module contains a variety of vehicle templates that can be

simultaneously spawned in the simulation environment. Realistic vehicle control and

behavior such as key steering assistance, braking assistance, support of traction control,

flexible tires simulation, tire types, and customization, etc. are encoded in the vehicle

templates.

• Sensor Model: This one of the most important and unique modules of a driving simulator.

The sensor model comprises various virtual sensors that can be simultaneously equipped

on the vehicles in the simulation environment. Though virtual, these sensors must be high

fidelity and also behave like any other realistic sensors in the real world. The sensors are

expected to provide realistic inputs to the ego vehicles, that can be extracted and stored

with automatic annotations for research purposes. Some of the common sensors provided

in driving simulators are as follows:

▪ Camera

▪ Radar

▪ Lidar

▪ GPS

▪ Ultrasonic sensor

• API Layer: An API Layer is the component that makes the driving simulator extensible.

Using simple but powerful scripting languages, a user can control traffic actors, weather

and lighting conditions, change roadmaps, extract and process data, etc. Usually, this is

26

implemented as a client-server architecture where the game engine based simulator acts as

a server, and various python/C++ scripts are on the client-side.

Figure 14: Client-Server architecture in Driving Simulators [37]

2.4 Various Driving Simulators

Some of the lastest and efficient driving simulators and their working is discussed as follows:

2.4.1 CARLA: An Open Urban Driving Simulator

CARLA [37] has been developed from the ground up to support the development, training, and

validation of autonomous driving systems. In addition to open-source code, and protocols, CARLA

provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose,

and can be used freely.

CARLA consists mainly of two modules, the CARLA Simulator and the CARLA Python API

module. The simulator does most of the heavy work, controls the logic, physics, and rendering of

all the actors and sensors in the scene; it requires a machine with a dedicated GPU to run. The

27

Figure 15: A street in Town 2 in four weather conditions. [37]

CARLA Python API is a module that you can import into your python scripts, and it provides an

interface for controlling the simulator and retrieving data. Most aspects of the simulation are

accessible through the Python APIs, and the remaining will be covered in future releases. CARLA

has been built on the Unreal Engine 4 (UE4). Apart from that, CARLA comprises almost all

modern features and functionalities (mentioned in section 2.4.1) like impressive vehicle models,

environmental models, photo-realistic 3D objects (static, variable, and dynamic), virtual sensors,

etc. For implementation purposes, the necessary information and basic steps to get started with

this simulator can be found in [38]. Recently, various works have been implemented using the

CARLA simulator for different purposes like vehicle testing, data generation, sensor validation,

28

object detection, semantic segmentation, etc. and can be found in [39], [40], [41], [42], [43], [44],

etc.

Figure 16: Three of the sensing modalities provided by CARLA. From left to right: normal vision

camera, ground-truth depth, and ground-truth semantic segmentation. [37]

2.4.2 Microsoft AirSim

AirSim [36] is another high-fidelity simulation platform developed with a goal of encouraging AI

research to experiment with deep learning, computer vision, and reinforcement learning algorithms

for autonomous vehicles. It is a simulator for drones, cars, and more built on Unreal Engine and

includes a physics engine that can operate at a high frequency for real-time hardware-in-the-loop

(HITL) simulations with support from popular protocols (e.g., MavLink). This simulator is

designed from the ground up to be extensible to accommodate new types of vehicles, hardware

platforms, and modular protocols. It is developed as an Unreal plugin that can be simply dropped

into any Unreal environment. As a whole, AirSim comprises state-of-the-art modules like the

modern physics engine, environment model, vehicle model, sensor model and rendering engine

(Unreal Engine). For implementation purposes, the necessary information and basic steps to get

started with this simulator can be found in [45].

29

Figure 17: Sample road scene in AirSim [46]

2.4.3 Autono Vi-Sim

Autono Vi-Sim [12] is another such high-fidelity simulation platform for autonomous driving data

generation and driving strategy testing. It is also a modern state-of-the-art driving simulator

designed to allow researchers and engineers to rapidly configure novel road networks, and to test

these in a variety of weather and lighting conditions.

Best et. al in [12], developed Autono Vi-Sim and created various complex testing driving scenarios

as follows:

• Passing a bicycle

30

Figure 18: Autono Vi-Sim Architecture [12]

• Jaywalking pedestrian

• Sudden stop at high speed

• High-density traffic approaching at a turn

• Car suddenly entering Roadway

• S-turns

As shown in the figure below are some sample scenes from Autono Vi-Sim: (A): Heavy fog

obstructs the view of a vehicle. (B): the entire simulated city. (C): Vehicles pass through a slick

intersection in rainy conditions

Figure 19: Samples from Autono Vi-Sim [12]

31

2.4.4 Comparison of existing Driving Simulators

Simulator License Physics

Engine

Graphic

Engine

Scripting

Language

Geograp

hically

Diverse

Curbs

Dataset

Bias

Challenging

Weather

conditions

CARLA [37] GPL/Open

Source

Unreal

Engine

GPU Python No Yes Yes

AirSim [36] GPL/Open

Source

Unreal

Engine

u C++,

Python,

C#, Java

No Yes Yes

DeepDrive

[47]

GPL/Open

Source

Unreal

Engine

u C++,

Python

No No Yes

Udacity [48] GPL/Open

Source

Unity u C++,

Python

No No Yes

NVIDIA

DRIVE

Constellation

[49]

Restricted PhysX/C

UDA

GPU C/C++,

Python

Yes Yes Yes

Carcraft

(Waymo)

[50]

Restricted u u u u u u

SIMLidar

[51]

GPL/Open

Source

u u C++ No No No

Helios [52] GPL/Open

Source

JMonkey

Engine

OpenG

L

Java Yes No Yes

Autono Vi-

SIM [12]

u Unreal

Engine

OpenG

L

C++/Pytho

n

No No Yes

RADSim

[53]

Commercial u u MATLAB No No No

SIMSonic

[54]

GPL/Open

Source

u u R No No No

Table 1: Summary of the features of specific simulators for AVs. [13]

 Table Legend: u-Unknown or could not be determined.

