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Abstract 

 

In order to facilitate acceptance and ensure safety, autonomous vehicles must be tested not only in 

typical and relatively safe scenarios but also in dangerous and less frequent scenarios. Recent 

pedestrian fatalities caused by test vehicles of the front-running giants like Google and Tesla 

suffice the fact that Autonomous Vehicle technology is not yet mature enough and still needs 

rigorous exposure to a wide range of traffic, landscape, and natural conditions on which the 

Autonomous Vehicles can be trained on to perform as expected in real traffic conditions. 

Simulation Environments have been considered as an efficient, safe, flexible and cost-effective 

option for the training, testing, and validation of Autonomous Vehicle technology. While ad-hoc 

task-specific use of simulation in Autonomous Driving research is widespread, simulation 

platforms that bridge the gap between simulation and reality are limited. This research proposes to 

set up a highly realistic simulation environment (using CARLA driving simulator) to generate 

realistic data to be used for Autonomous Driving research. Our system is able to recreate the 

original traffic scenarios based on prior information about the traffic scene. Furthermore, the 

system will allow to make changes to the original scenarios and create various desired testing 

scenarios by varying the parameters of traffic actors, such as location, trajectory, speed, motion 

states, etc. and hence collect more data with ease. 
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Chapter 1: Introduction 

1.1 Overview 

A self-driving car, also known as an autonomous car or driverless car, is a vehicle that uses a 

combination of sensors, cameras, radars, and artificial intelligence (AI), to travel between 

destinations without the need of any human effort. In the past five years, autonomous driving has 

gone from “maybe possible” to “now commercially available” and hence become a concrete 

reality. Autonomous driving may pave the way for future systems where computers take over the 

art of driving. The global self-driving car market is segmented based on the type of vehicle, product 

type, application of the car, technology components(hardware and software), and geography [1]. 

Automotive Innovators like Waymo and Tesla have been leading the self-driving car industry for 

long. On the other hand, legacy companies like GM, Ford, Toyota, Nissan, etc. have more recently 

joined the chase pumping billions of dollars into the research and development of autonomous 

vehicles.  

1.2 Need for self-driving cars 

Traffic fatalities claim more than a million lives a year around the world. This public safety crisis 

that is mainly caused by driver error has largely been overlooked and considered a necessary trade-

off in our commuting economy. But with the development of advanced sensor technologies (e.g. 

cameras, radars, Lidars, etc.), and perception systems guided by big data, artificial intelligence, 

and increasing processing power, we are fast approaching the day when self-driving vehicles can 

do a better job than human drivers [2]. Having self-driving cars could also give people a lot more 

free time. Commutes might be spent working on projects, talking to other passengers and doing 

many other productive tasks. Fully autonomous cars will be able to drive together in perfect  
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Figure 1: Benefits of self-driving vehicles [3] 

harmony like a swarm of bees, radically reducing the traffic jams and increasing the traffic flow. 

It is also projected that the advent of autonomous vehicles will cut down the insurance premiums, 

accident-related costs,  driving-related fines and, increase fuel efficiency. 

1.3 Architecture of Self-Driving Cars 

The architecture of self-driving vehicles comprises of four main subsystems: Sensors, Perception, 

Planning and Control. These subsystems act together to perceive the environment around the 

autonomous vehicle, detect the paths, plan a route to the destination, predict the behavior of other 

traffic actors surrounding it,  plan trajectories and finally execute the motion [4].  
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Figure 2: Self-Driving car Architecture [5] 

1.3.1 Sensors 

The sensor subsystem consists of several sensors that gather data about the surroundings of an 

autonomous vehicle. Some of the most common sensors employed for this purpose are as follows: 

• Camera: Camera(image sensor) is certainly the most important sensor in an AV. Typically 

AVs have multiple cameras involved to provide a 360-degree view of the surrounding 

environment. Cameras have high resolution, are cheap, can collect a lot of data, therefore 

are useful for Deep Learning.  
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• Radar: Radars are again very common automotive sensors for object tracking and 

detection. Radars are cheap, do well in poor weather as well, but have low resolution. 

• Lidar:  Lidars are a bit expensive, but one of the most efficient sensors of an AV. 

Continuously rotating Lidar system sends thousands of laser pulses every second. These 

pulses collide with the surrounding objects and reflect, creating a 3D point cloud formation.  

 

Figure 3: Object Detection using Lidar point clouds [6] 

• GPS: GPS sensors are the common positioning sensors that give latitude and longitude 

information. 

• Others: Apart from these, there are several other sensors like ultrasonic Sonars, IMUs, 

gyroscopes, etc. used in AVs [4]. 
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1.3.2  Perception 

Perception in AVs is responsible for estimating the state of the car and for creating an internal 

representation of the environment, using data captured by on-board sensors as well as the prior 

information about the sensors’ models, road networks, traffic rules, car dynamics, etc. [5]. As 

described in [4], perception can be categorized into two components, as follows: 

• Localization: As the name suggests, it involves localizing an AV within the driving 

scenario. This system uses the data from GPS and other sensors to estimate the AV’s pose 

relative to the driving scenario. Usually, this is one of the initial steps of the autonomous 

driving process. 

• Detection: This system gathers and processes the data from on-board sensors like camera, 

Lidar, radar, etc. to detect the static, variable, and dynamic objects in the driving scenario. 

However, the data from different on-board sensors need to be synchronized and processed 

accordingly to extract necessary information regarding the driving scenario. Sensor fusion 

is an approach for combining data delivered from disparate sources such that the coherent 

information is created. The resulting information is more certain than it would be possible 

when these sources were used individually. For example, on the AV, it is important to have 

a camera in order to clone a human vision, but the information about obstacle distance will 

be best gained through the sensors like radar or Lidar. For that reason, sensor fusion of 

camera with Lidar or radar data is very important since they are complementary [7]. 

1.3.3 Path Planning 

The Path Planning functionality takes information from the perception system and uses it for long 

and short-range planning. There are several components of the Path Planning functionality such as 

the Route planner that plans the path that a vehicle should take between the given two points on a 
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map, the Prediction component that predicts behavior of other traffic actors, the Behavior planner 

that plans the behavior of the AV itself such as keeping the existing lane, change lanes, apply 

brakes or accelerate as needed, and finally the Trajectory planner that decides the ultimate 

trajectory that the AV must follow. 

 

Figure 4: Path Planning in AVs [8] 

1.3.4 Control 

The Controller module receives the trajectory generated by the Path Planner and sends effort 

commands to the actuators of the steering wheel, throttle, and brakes of the AV to make the car 

execute the trajectory as best as the physical world allows [5]. Several controllers are used in AVs, 

depending on the problem to be solved. The PID (Proportional Integral Derivative) and MPC 

(Model Predictive Control) are two of the most commonly used controllers.  

1.4 Testing and Validation of Autonomous Vehicles: A Challenge 

As described in [9], recent breakthroughs in deep learning have accelerated the development of 

autonomous vehicles: many research prototypes now operate on real roads alongside human 

drivers. While advances in computer vision techniques have made human-level performance 
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possible on narrow perception tasks such as object recognition, several fatal accidents involving 

AVs underscore the importance of testing whether the perception and control pipeline – when 

considered a whole system, can safely interact with humans. Unfortunately, testing the AVs in real 

environments, the most straight forward validation framework for system-level input-output 

behavior requires prohibitive amounts of time due to the rare nature of serious accidents. 

Concretely, a recent study [10] argues that AVs need to drive “hundreds of millions of miles and, 

under some scenarios, hundreds of billions of miles to create enough data to clearly demonstrate 

their safety”. As a result, AV developers test extensively on public roads, potentially putting other 

road users at risk. In one such unfortunate event, Elaine Herzberg, 49, was killed by an Uber test 

vehicle on 18th March 2018 in Tempe, Arizona [11]. Such incidents can infuse a sense of insecurity 

in the minds of common road users making the social acceptance of AVs a complex process. Aside 

from safety concerns, costs pose an additional challenge to the testing and validation of AVs. Each 

new configuration of the AV requires re-calibration of a physical vehicle, which is labor-intensive. 

Furthermore, the vehicle can only be tested under conditions limited by either a testing track or 

current traffic conditions if a public road test is being performed. Apart from that, the Machine 

Learning techniques used for Autonomous Vehicle algorithms rely on substantial amounts of 

annotated data in regular, as well as dangerous scenarios. The dataset must encompass varied 

weather and lighting conditions. Gathering such data by physical tests can be expensive, difficult, 

and even dangerous, as discussed above [12].  

1.5 Simulation: An Effective Solution 

The testing problem of the AVs can be transferred over to the virtual world, i.e., Simulation 

Environments. Realistic simulation environments comprising of high level-extensible modules 

like Environment module, Vehicle module, Physics engine, Sensor module, etc. provide an 
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efficient solution for testing and validation of Autonomous Vehicles. Modeling and simulation are 

well-established tools for analysis, design, acquisition, and training in the automotive domain. 

Despite the heterogeneity of subsystems and disciplines involved in the development of an 

Autonomous Vehicle, there are many simulation models that allow coverage of the entire 

development process [13]. Modern and dedicated simulators cover many aspects of the 

Autonomous Vehicle development process such as scenario generation, data gathering, realistic 

physics laws, realistic traffic flow, and photo-realistic graphics.  

 

Figure 5: Waymo's simulation platform 

The Automotive and tech giants in the self-driving industry have widely adapted simulation 

environments for testing and validation of the AVs. However, this doesn’t completely eradicate 
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the need for on-road testing. Alphabet subsidiary Waymo has accumulated the most virtual 

mileage of all self-driving companies, with a February 2018 total of nine years and five million 

miles. Waymo simulations created over 2.5 billion self-driving miles in 2016 alone. The Waymo 

simulator (Carcraft) transforms real-world scenarios into virtual formats and runs 25,000 virtual 

cars simultaneously. The massive data flow from this process assists engineers in locating bugs 

and adjusting models efficiently [14]. Apart from that, Apollo (Baidu), XVIZ (Uber), AVS (GM 

Cruise), VIRTTEX (Ford), Nvidia Driveworks, etc. are some of the premium driving simulators 

used in the self-driving industry. Self-driving simulators can boost the speed of data collection to 

reach mileage accumulation targets while reducing fleet operating costs. Among all the rivals in 

the self-driving car industry, Waymo clearly appears to be leading the race. For this,  a fair amount 

of credit goes Waymo’s simulation platform as it has driven more virtual miles than any other 

competitor. Apart from that, CARLA, Microsoft AirSim, VisSim, CarSim, Gazebo, TORCS, 

Udacity simulator, Autono Vi-sim, etc. are some of the most widely used open-source simulators 

for Autonomous Driving research. 

1.6 Reality Gap and Domain Randomization  

However, the usage of simulation environments in Autonomous Vehicle research comes with its 

own complications. Models trained purely on synthetic data will fail to generalize to the real world, 

as there is a difference between simulated and real environments, in terms of both visual and 

physical properties. This difficulty of transferring simulated experience into the real-world is 

called the “Reality Gap”. In order to efficiently use simulation environments for Autonomous 

Vehicle research, it is very important that this reality gap is bridged. Improving the photo-realism 

of simulation environments has been state-of-the-art when it comes to reducing the reality gap. 

However, for simulators with low-quality renderings, the object classes, their poses, number of 
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objects and other features are randomized while generating data. While training on such data, this 

randomness forces the neural network to go through a lot of relevant and irrelevant variety within 

the data. Hence, such a neural network model learns to identify relevant information in the frame 

at the same time, knowing what to ignore. When such a model is tested on real-world data, the real 

world may appear as just another variation. This technique is called Domain Randomization, which 

has emerged as a worthy option to bridge this reality gap and until now, has been mostly applied 

to basic Object Recognition tasks. The details of  Domain Randomization are further discussed in 

section 2.5.1.  
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Chapter 2: A Literature Review 

This chapter starts with a brief discussion about the Computer Vision techniques used for 

Autonomous Vehicle research, and the traditional datasets used to facilitate it. After that, we 

discuss the drawbacks and flaws associated with those traditional datasets. Then, we discuss how 

synthetic data has emerged as an option to fill this data void and the simulation environments used 

for that purpose in detail. Furthermore, we discuss how the synthetic data generated from basic 

simulators face the problem of the Reality gap and the ways to reduce this Reality gap. 

2.1 Computer Vision in Autonomous Vehicles 

Various Machine Learning and Deep Learning based techniques are used for several tasks like 

Object Detection, Object Recognition, Motion prediction, and Risk Assessment. Some of the most 

efficient techniques used for Autonomous Driving are briefly described as follows: 

2.1.1 Faster R-CNN 

Faster R-CNN [15] is one of the most widely used techniques for Object Detection in Autonomous 

Driving research. Faster R-CNN has displayed a superior performance over its predecessors, R-

CNN [16] and Fast R-CNN [17]. At the conceptual level, Faster R-CNN is composed of  3 neural 

networks – Feature Network, Region Proposal Network (RPN), and Detection Network [18]. 

• The Feature Network is usually a well known pre-trained image classification network such 

as VGG [19] minus a few top/last layers. The function of this network is to generate good 

features from images. The output of this network maintains the shape and structure of the 

original image (i.e., still rectangular, pixel size, etc.). 

• The Region Proposal Network (RPN), is usually a simple network with three convolutional 

layers. There is one common layer that feeds into two layers – one for classification and 



 

12 

 

the other for bounding box regression. The purpose of RPN is to generate a number of 

bounding boxes called Region of Interests (ROI) that have a high probability of containing 

any object. The output from this network is a number of bounding boxes identified by the 

pixel co-ordinates of two digital corners, and a value (1, 0 or -1) indicating whether an 

object is in the bounding box, or not in the bounding box or the box can be ignored 

respectively. 

 

Figure 6: Faster R-CNN [15] 

• The Detection Network (sometimes also called the RCNN network) takes input from both 

of the above-discussed networks and generates the final class and bounding box. It is 

normally composed of 4 Fully Connected or Dense layers. There are two stacked common 

layers shared by a classification layer and a bounding box regression layer. To help it 
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classify only the inside of bounding boxes, the features are cropped according to the 

bounding boxes. 

2.1.2 You Only Look Once (YOLO) 

YOLO [20] is an algorithm that utilizes a single convolutional network for object detection. Unlike 

other object detection algorithms that sweep the image bit by bit, the algorithm takes the whole 

image and reframes the object detection as a single regression problem, straight from pixels to 

bounding box co-ordinates and class probabilities. YOLO trains on full images and directly  

 

Figure 7: YOLO: Object Detection with YOLO [20] 

optimizes detection performance. YOLO divides up the image into a grid of 13 by 13 cells. Each 

of these cells is responsible for predicting five bounding boxes. YOLO outputs the confidence 
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score that tells us how certain it is that the predicted bounding box actually encloses some object. 

After that, for each bounding box, the cell also predicts an object class.  

2.2 Data Limitations for ComputerVision  

Datasets are an integral part of contemporary object recognition research. They have been the chief 

reason for the considerable progress in this field, not just as the source of large amounts of training 

data, but also as a means of measuring and comparing the performance of competing algorithms 

[21]. However, training deep neural networks for computer vision tasks typically require large 

amounts of labeled training data. A variety of approaches have been proposed to efficiently label 

large amounts of training data, including crowdsourcing, gamification, semi-supervised labeling, 

and Mechanical Turk. These approaches remain fundamentally bounded by the amount of human 

effort required for labeling or supervision. 

2.2.1 Traditional Datasets Used in Computer Vision 

Traditionally, datasets like KITTI [22], CityScapes [23], Imagenet [24], MS COCO [25], CIFAR-

10, Open Images, etc. have been the most popular open-source datasets used in the computer vision 

field.  

• The KITTI dataset: The KITTI dataset has been recorded from a moving platform while 

driving around Karlsruhe, Germany. It includes camera images, laser scans, high-precision 

GPS measurements, and IMU accelerations from a combined GPS/IMU system. The data 

in this dataset is calibrated, synchronized, and timestamped, along with rectified and raw 

image sequences. The dataset also contains object labels along with online benchmarks for 

stereo, optical flow, object detection, and other tasks. For each dynamic object within the 

reference camera’s field of view, the annotations are provided annotations in the form of 
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3D bounding boxes, represented in Velodyne coordinates. The object classes covered are 

‘car,’ ‘van,’ ‘Truck,’ ‘Pedestrian,’ ‘Person(sitting),’ Cyclist,’ Tram’ and ‘Misc’(e.g., 

Trailers, Segways, etc.).  

 

Figure 8: Examples from KITTI dataset [22] 

• The CityScapes dataset: CityScapes is comprised of a large, diverse set of stereo video 

sequences recorded in streets from 50 different cities. 5000 of these images have high-

quality pixel-level annotations; 20,000 additional images have coarse annotations to enable 

methods that leverage large volumes of weakly labeled data. However, recording in 

adverse weather conditions such as heavy rain or snow was avoided deliberately. The 



 

16 

 

densely annotated data of 5000 images is split into separate training, validation, and test 

sets. 

 

Figure 9: An example from CityScapes Dataset [23] 

• The ImageNet database: ImageNet database is a large visual database designed for use in 

visual object recognition software research. It contains more than 14 million images that 

have been hand-annotated to indicate what objects are pictured in at least one million 

pictures, and bounding boxes are also provided. ImageNet contains more than 20,000 

categories with any typical category, such as “balloon” or “strawberry,” consisting of 

several hundred pictures. The database of annotations of third party URLs is freely 

available directly from ImageNet, though the actual images are not owned by ImageNet. 

Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large 
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Scale Visual Recognition Challenge (ILVRC), where software programs compete to 

classify and detect objects and scenes. ImageNet crowdsources its annotation process. 

Image level annotations indicate the presence or absence of an object class in an image 

such as “there are tigers in this image” or “there are no tigers in this image.” Object-level 

annotations provide a bounding box around the indicated object. 

 

Figure 10: Examples from ImageNet dataset [24] 
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• Microsoft COCO: MS COCO is another such large-scale dataset with the goal of advancing  

state-of-the-art in object recognition by placing the question of object recognition in the 

context of the broader question of scene understanding. This dataset contains photos of 91 

object types and has a total of 2.5 million labeled instances in 328k images. Such annotation 

drew upon extensive crowd worker involvement via novel user interfaces for category 

detection, instance spotting, and instance segmentation.  

 

Figure 11: Examples from MS COCO dataset [25] 
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2.2.2 Need for Datasets Improvement 

It would be safe to say that we are in the midst of a data revolution. Ubiquitous access to image 

datasets has been responsible for much of the recent progress in object recognition after decades 

of proverbial wandering in the desert. For instance, it was the availability of face training data, 

more than perceived advances in machine learning that produced the first breakthrough in face 

detection [26].  And it is the dataset of millions of photographs of consumer products, as much as 

clever feature matching that allowed visual search engines like GOOGLE GOOGLES to become 

a reality.  However, like any proper revolution, this one too has brought with it new problems to 

replace the old ones. It appears that this field is now getting too obsessed with evaluation, spending 

more time staring at precision-recall curves than at pixels [21]. Some of the evident issues with 

current state-of-the-art datasets are as follows: 

2.2.2.1 Lack of Diversity 

Capturing sufficient diversity in a dataset is a challenge. We can often observe that datasets are 

restricted to a selected subset of cases, each dataset tackling one small part of the whole set of 

possible environments and conditions: for example, KITTY [22] and CityScapes [23] are collected 

only in Germany or even the Oxford [27] dataset is only collected in Oxford, meaning that those 

datasets are geographically restricted.  

2.2.2.2 Dataset Bias 

The visual world is so complex and nuanced that any finite set of samples ends up describing just 

some of its aspects. Moreover, in case the samples are collected for a particular task, they will 

inevitably cover just some specific visual region. Hence, it is not surprising that pre-defined image 
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collections like existing computer vision datasets, present such specific bias to be easily 

recognizable. The main types of bias [21] found in existing computer vision datasets are as follows: 

• Selection Bias: It is a known fact that datasets that are gathered automatically fare better 

than those collected manually. However, getting images from the internet does not 

guarantee a fair sampling, since keyword-based searches will return only particular types 

of images. Obtaining data from multiple sources (e.g. multiple search engines from 

multiple countries) can somewhat decrease selection bias.  

• Negative Bias: Having a rich and unbiased negative set is important to classifier 

performance. Therefore, datasets that only collect the things they are interested in might be 

a disadvantage, because they are not modeling the rest of the visual world. An effective 

remedy would be to add negatives from other datasets. 

• Capture Bias: Professional photographs, as well as photos collected using keyword search, 

appear to suffer considerably from the capture bias. The most well-known bias is that the 

object is almost always in the center of the image. For example, searching for a “mug” on 

Google Image search will mostly provide images with mugs situated at the center of the 

frame. Also, it will reveal another kind of capture bias: almost all the mugs have a right-

facing handle.  

2.2.2.3 Lack of challenging Weather and Lighting conditions 

In computer vision tasks for applications like Autonomous Driving, it is very crucial that Computer 

vision algorithms are also trained in challenging and variety of weather and lighting conditions. 

Apart from a few datasets, all others only have images of driving scenarios in regular weather 

conditions. However, the landscape,  roads, visibility, wind, etc. will differ for different parts of 
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the world and with varying seasons as well. It is so important that  Autonomous Vehicles are 

trained for every such scenario before finally deploying them on roads for public usage. 

2.2.3 Synthetic Data: An Option 

Amidst such complications with using real-world data, researchers have looked for efficient 

alternatives and Synthetic data (created using Virtual Reality and/or Augmented reality) has 

emerged as a worthy option. A promising approach to generate synthetic data is to use a graphic 

simulator to generate automatically annotated data. Several such simulated datasets have been 

created in recent years as found in [28], [29], [30], [31], etc.  

• SYNTHIA dataset: SYNTHIA stands for the SYNTHetic collection of Imagery and 

Annotations. This dataset is one of the best examples of datasets generated using simulated 

environments for Autonomous Driving research. SYNTHIA consists of photo-realistic 

frames rendered from a virtual city and comes with precise pixel-level semantic 

annotations for thirteen classes, i.e., sky, building, road, sidewalk, fence, vegetation,  lane-

marking, pole, car, traffic signs, pedestrians, cyclists and miscellaneous. 

 

Figure 12: Examples from SYNTHIA Dataset [31] 
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2.3 Simulation Environment 

For dataset generation regarding Autonomous Driving research, there are various dedicated as well 

as general-purpose simulators available. Some of the dedicated simulators (Driving Simulator) 

even allow training the Autonomous Vehicles in the simulated environment, apart from data 

generation. Driving Simulators are usually a collection of high-level extensible modules that allow 

the rapid development and testing of vehicle configurations and facilitate the construction of 

complex traffic scenarios. They support multiple vehicles with unique steering or acceleration 

limits, as well as unique tire parameters and dynamic profiles to name from the vast features they 

provide. Engineers can specify the specific vehicle sensor systems and vary the time of day and 

weather conditions to generate robust data. Non-vehicle participants such as cyclists and 

pedestrians can be assigned specified routes or script scenarios that place the ego vehicle in 

dangerous reactive scenarios [12]. Some of the main benefits of using driving scenarios are 

discussed as follows: 

• Data Generation: Driving simulators can generate virtually unlimited data for research and 

testing purposes. Apart from the main scene images, they also allow to export different 

vehicle configuration data and the data from virtual sensors attached to the ego vehicle. 

Furthermore, the data generated is automatically annotated as programmed, which 

eliminates the need for the labor-intensive manual annotating process.  

• Varying vehicle, cyclist, pedestrian, and traffic conditions: The driving simulators include 

various vehicle and sensor models, pedestrians, and cyclists, as discussed above. The 

diversity of these traffic actors allows training for classification on different shapes, sizes, 

colors, and behaviors of cyclists, pedestrians, and other drivers. 
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• Dynamic Traffic, Weather, and Lighting Conditions: The driving simulators provide high 

fidelity traffic simulation, supporting dynamic changes in traffic density, time of day, 

lighting, and weather, including rain and fog. 

• Rapid Scenario Construction: Typical road networks can be easily laid out using the in-

built tools and are automatically connected for routing and navigation purposes.  

2.3.1 Components of a Driving Simulator 

An ideal simulator for autonomous driving research comprises a variety of inter-linked 

components covering the navigation, perception, and control modules. They are discussed as 

follows: 

• Game Engine (Rendering Engine): A game engine is a part of a computer game that 

contains a 2D or 3D graphic representations (rendering engine), representations of physical 

laws (Physical Engine), or collision detection (and collision response), sound, scripting, 

animation, artificial intelligence, networking, streaming, memory management, threading, 

localization support, scene graph and may include video support for cinematics. The most 

modern game engines also include support for Virtual Reality (VR) simulation. However, 

for Driving Simulators, only the Rendering Engine is used among all the above-mentioned 

features of a game engine. This is due to the reason that the physics engine or collision 

response of a game engine may not be up to the standard required for a high-fidelity 

simulator. Some of the most popular game engines used for building driving simulators are 

Unreal Engine 4 [32], Unity 3D [33], Blender [34], CryEngine [35], etc. 

As of now, Unreal Engine 4, provided by Epic Games, has emerged as a favorite game 

engine for our purpose. At the same time, Unity 3D is also improving at an impressive rate.  
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Figure 13: Components of a Driving Simulator [36] 

• Physics Engine: As the name suggests, a Physics Engine is a computer software that 

provides an approximate simulation of certain physical systems such as rigid body 

dynamics (including collision detection and response), soft body dynamics, and fluid 

dynamics. A Physics Processing Unit (PPU) is a dedicated microprocessor to host the 

physics engine.  
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• Environment Model: This module allows a user to specify a variety of lighting and weather 

conditions. The importance of data with varying weather and lighting conditions has 

already been discussed earlier. 

• Vehicle Model: This module contains a variety of vehicle templates that can be 

simultaneously spawned in the simulation environment. Realistic vehicle control and 

behavior such as key steering assistance, braking assistance, support of traction control, 

flexible tires simulation, tire types, and customization, etc. are encoded in the vehicle 

templates.  

• Sensor Model: This one of the most important and unique modules of a driving simulator. 

The sensor model comprises various virtual sensors that can be simultaneously equipped 

on the vehicles in the simulation environment. Though virtual, these sensors must be high 

fidelity and also behave like any other realistic sensors in the real world. The sensors are 

expected to provide realistic inputs to the ego vehicles, that can be extracted and stored 

with automatic annotations for research purposes. Some of the common sensors provided 

in driving simulators are as follows: 

▪ Camera 

▪ Radar 

▪ Lidar 

▪ GPS 

▪ Ultrasonic sensor 

• API Layer: An API Layer is the component that makes the driving simulator extensible. 

Using simple but powerful scripting languages, a user can control traffic actors, weather 

and lighting conditions, change roadmaps, extract and process data, etc. Usually, this is 
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implemented as a client-server architecture where the game engine based simulator acts as 

a server, and various python/C++ scripts are on the client-side.  

 

Figure 14: Client-Server architecture in Driving Simulators [37] 

2.4 Various Driving Simulators 

Some of the lastest and efficient driving simulators and their working is discussed as follows: 

2.4.1 CARLA: An Open Urban Driving Simulator 

CARLA [37] has been developed from the ground up to support the development, training, and 

validation of autonomous driving systems. In addition to open-source code, and protocols, CARLA 

provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose, 

and can be used freely. 

CARLA consists mainly of two modules, the CARLA Simulator and the CARLA Python API 

module. The simulator does most of the heavy work, controls the logic, physics, and rendering of 

all the actors and sensors in the scene; it requires a machine with a dedicated GPU to run. The  
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Figure 15: A street in Town 2 in four weather conditions. [37] 

CARLA Python API is a module that you can import into your python scripts, and it provides an 

interface for controlling the simulator and retrieving data. Most aspects of the simulation are 

accessible through the Python APIs, and the remaining will be covered in future releases. CARLA 

has been built on the Unreal Engine 4 (UE4). Apart from that, CARLA comprises almost all 

modern features and functionalities (mentioned in section 2.4.1) like impressive vehicle models, 

environmental models, photo-realistic 3D objects (static, variable, and dynamic), virtual sensors, 

etc. For implementation purposes, the necessary information and basic steps to get started with 

this simulator can be found in [38]. Recently, various works have been implemented using the 

CARLA simulator for different purposes like vehicle testing, data generation, sensor validation, 
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object detection, semantic segmentation, etc. and can be found in [39],  [40], [41], [42], [43], [44], 

etc.  

 

Figure 16: Three of the sensing modalities provided by CARLA. From left to right: normal vision 

camera, ground-truth depth, and ground-truth semantic segmentation. [37] 

2.4.2 Microsoft AirSim 

AirSim [36] is another high-fidelity simulation platform developed with a goal of encouraging AI 

research to experiment with deep learning, computer vision, and reinforcement learning algorithms 

for autonomous vehicles. It is a simulator for drones, cars, and more built on Unreal Engine and 

includes a physics engine that can operate at a high frequency for real-time hardware-in-the-loop 

(HITL) simulations with support from popular protocols (e.g., MavLink). This simulator is 

designed from the ground up to be extensible to accommodate new types of vehicles, hardware 

platforms, and modular protocols. It is developed as an Unreal plugin that can be simply dropped 

into any Unreal environment. As a whole, AirSim comprises state-of-the-art modules like the 

modern physics engine, environment model, vehicle model, sensor model and rendering engine 

(Unreal Engine). For implementation purposes, the necessary information and basic steps to get 

started with this simulator can be found in [45].  
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Figure 17: Sample road scene in AirSim [46] 

2.4.3 Autono Vi-Sim  

Autono Vi-Sim [12] is another such high-fidelity simulation platform for autonomous driving data 

generation and driving strategy testing. It is also a modern state-of-the-art driving simulator 

designed to allow researchers and engineers to rapidly configure novel road networks, and to test 

these in a variety of weather and lighting conditions.  

Best et. al in [12], developed Autono Vi-Sim and created various complex testing driving scenarios 

as follows: 

• Passing a bicycle 
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Figure 18: Autono Vi-Sim Architecture [12] 

• Jaywalking pedestrian 

• Sudden stop at high speed 

• High-density traffic approaching at a turn 

• Car suddenly entering Roadway 

• S-turns 

As shown in the figure below are some sample scenes from Autono Vi-Sim: (A): Heavy fog 

obstructs the view of a vehicle. (B): the entire simulated city. (C): Vehicles pass through a slick 

intersection in rainy conditions 

 

Figure 19: Samples from Autono Vi-Sim [12] 
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2.4.4 Comparison of existing Driving Simulators  

 

Simulator License Physics 

Engine 

Graphic 

Engine 

Scripting 

Language 

Geograp

hically 

Diverse 

Curbs 

Dataset 

Bias 

Challenging 

Weather 

conditions 

CARLA [37] GPL/Open 

Source 

Unreal 

Engine 

GPU Python No Yes Yes 

AirSim [36] GPL/Open 

Source 

Unreal 

Engine 

u C++, 

Python, 

C#, Java 

No Yes Yes 

DeepDrive 

[47] 

GPL/Open 

Source 

Unreal 

Engine 

u C++, 

Python 

No No Yes 

Udacity [48] GPL/Open 

Source 

Unity u C++, 

Python 

No No Yes 

NVIDIA 

DRIVE 

Constellation 

[49] 

Restricted PhysX/C

UDA 

GPU C/C++, 

Python 

Yes Yes Yes 

Carcraft 

(Waymo) 

[50] 

Restricted u u u u u u 

SIMLidar 

[51] 

GPL/Open 

Source 

u u C++ No No No 

Helios [52] GPL/Open 

Source 

JMonkey 

Engine 

OpenG

L 

Java Yes No Yes 

Autono Vi-

SIM [12] 

u Unreal 

Engine 

OpenG

L 

C++/Pytho

n 

No No Yes 

RADSim 

[53] 

Commercial u u MATLAB No No No 

SIMSonic 

[54] 

GPL/Open 

Source 

u u R No No No 

 

Table 1: Summary of the features of specific simulators for AVs. [13] 

  Table Legend: u-Unknown or could not be determined.  
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2.5 Reality Gap and Domain Randomization 

So far, we have discussed how synthetic data generated from driving simulators can be a safe, 

inexpensive, and efficient alternative to real-world data collection. However, the challenge with 

simulated training is that even the best available simulators do not perfectly capture the reality. 

Models trained purely on synthetic data fail to generalize to the real world, as there is a discrepancy 

between simulated and real environments, in terms of both visual and physical properties [55]. 

This difficulty of transferring simulated experience into the real-world is called the “Reality Gap”. 

The reality gap is a subtle but important inconsistency between reality and simulation that prevents 

simulated robotic experience from directly enabling effective real-world performance.        

Bousmalis et. al. [55] clearly specify that visual perception often constitutes the widest part of the 

reality gap: while simulated images continue to improve in terms of fidelity, the peculiar and 

pathological regularities of synthetic pictures, and the wide, unpredictable diversity of real-world 

images, makes bridging the reality gap particularly difficult when the robot must use vision to 

perceive the world for most of the tasks.  

In fact, the more we increase the fidelity of our simulations, the more effort we have to expend in 

order to build them, both in terms of implementing complex physical phenomena and in terms of 

creating other content (e.g., objects, backgrounds) to populate these simulations. This difficulty is 

constituted by the fact that powerful optimization methods based on deep learning are 

exceptionally proficient at exploiting simulator flaws: the more powerful the machine learning 

algorithm, the more likely is to discover how to “cheat” the simulator to succeed in ways that are 

infeasible in the real world. 



 

33 

 

Various works like [55], [56], [57], [58], [59], [60] and [61] have discussed the problem of Reality 

Gap in brief and provided solutions to bridge the Reality Gap. Almost all these approaches 

suggested the following ways to reduce the Reality Gap: 

• Increase the resemblance between real and simulated domains by using high fidelity 

simulators to generate data (which we did in this work). 

• Customize the generated simulated data to make them look real using GANs. 

• For low-quality synthetic images, use domain randomization to create enough variety in 

the data and then train the Neural Network. 

Traditionally, increasing the fidelity of simulators and generating realistic data has always been 

state-of-the-art in the Computer Vision field. On the other hand, there has been a rise in the 

approaches where colossal variety is randomly infused into photographically low-quality data, 

such as Domain Randomization, Domain Adaptation, Structured Domain Randomization, etc. 

Such approaches are discussed in the following sub-section. 

2.5.1 Domain Randomization 

Bridging the “Reality Gap” that separates the simulated world from the real-world could accelerate 

robotics (including autonomous driving) research through improved data availability. Tobin et al. 

[56], introduced the concept of Domain Randomization, a simple technique for training models on 

simulated images that transfer to real images by randomizing rendering in the simulator. The key 

concept behind this is generating a vast amount of training data by randomizing the object classes, 

their poses, the number of objects in a frame, colors, textures, lighting conditions, etc. In this 

manner, the model trained on such data will be exposed to a wide range of environments and 
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scenarios. When such a model is tested on a real-world scenario, it will generalize to the real-world 

with no additional training, i.e. the real-world may appear to the model as just another variation. 

 

Figure 20: Training data generated using Domain Randomization [56] 

In their approach, Tobin et al. [56], randomized the following aspects of each domain for each 

sample used during training (the models used to validate this approach were Object Detection 

models). 

• Number and shape of distractor objects 

• Position and texture of all objects 

• Position, orientation, and field of view of camera 

• Number of lights in the scene 

• Type and amount of random noise in the images 
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Domain Randomization for Computer Vision tasks is still in its infancy and has been mostly used 

for basic shapes and objects like cubes, cylinders, pyramids, etc. as observed in [56] and [57]. 

However, Tremblay et al. [58] demonstrated that Domain Randomization is an effective technique 

to bridge the reality gap in the Autonomous Driving domain as well. Using synthetic DR data 

alone, they trained a neural network to accomplish tasks like object detection with performance 

comparable to more labor-intensive datasets. Their work proves that using DR to generate datasets 

for training deep neural networks is a promising approach to leverage the power of synthetic data. 

 

 

Figure 21: Images from Virtual KITTI (first row) and  DR approach (second row) [58] 

Prior to Domain Randomization, researchers had resorted to Domain Adaptation, which aims to 

tailor the model for a particular target domain by jointly learning from the source synthetic data 

and the data of the target real domain. This would not particularly work for Autonomous Vehicles 
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as it is almost impossible for a car manufacturer to know in advance under what domain (which 

city, what weather, day or night) the vehicle will be used. Due to such reasons, Domain 

randomization seems to be an ideal option to bridge the reality gap in Autonomous Vehicle 

research [59]. 
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2.6 Related Works 

The table below is a compilation of the research works most relevant to the domains covered in 

this thesis. 

Title Accomplishments Limitations 

Unbiased Look at 

Dataset Bias, by A. 

Torralba, A. Efros, 

2011 

--This paper conducts a survey of 

the current state of object 

recognition datasets.  

--They present a comparison study 

of relative data bias, cross dataset 

generalization, etc. and other faults 

with existing datasets. 

--This paper points out the 

shortcomings in current datasets 

used for Computer Vision but 

doesn’t provide any effective 

solutions to improve them. 

--Apart from that, this is a fairly 

old survey and hence doesn’t 

reflect the recent changes that 

have occurred in those datasets. 

The SYNTHIA 

Dataset: A Large 

Collection of 

Synthetic Images for 

Semantic 

Segmentation of 

Urban Scenes, by G. 

Ros, L. Sellart, J. 

Materzynska, D. 

--Presents SYNTHIA, a synthetic 

dataset of urban scenes, consisting 

of photo-realistic frames rendered 

from a virtual city with precise 

pixel-level annotations for popular 

classes like sky, building, road, 

sidewalk, pedestrians, vehicles, etc. 

--They have portrayed and 

evaluated the SYNTHIA dataset 

specifically for Semantic 

Segmentation. 

--However, a dataset for 

Computer Vision needs to be 

general-purpose and mature 

enough for various tasks like 
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Vazquez, A. Lopez, 

2016 

object detection, object 

recognition, etc.  

A Systematic Review 

of Perception System 

and Simulators for 

Autonomous 

Vehicles Research, 

by F. Rosique, P. 

Navarro, C. 

Fernández, A. 

Padilla, 2019 

--This paper presents a systematic 

review of the perception systems 

and simulators for Autonomous 

Vehicles (AVs).  

--Conducts a survey comparing 

various open and non-open source 

driving simulators available for AV 

research. 

--It doesn’t cover the suitability of 

the surveyed simulators for 

specific tasks related to 

Autonomous Driving. 

CARLA: An Open 

Urban Driving 

Simulator, by A. 

Dosovitskiy, G. Ros, 

F. Codevilla, A. 

Lopez, V. Koltun, 

2017 

--Introduces CARLA, an open-

source simulator for autonomous 

driving research.  

--It further explains the components 

of the simulator as well as the 

modern features that can be used to 

develop and train Autonomous 

Vehicle systems and then evaluate 

them in controlled scenarios.  

--The initial stable versions of the 

simulator provided in this paper 

doesn’t allow the usage of 

custom-built environments. 

AutonoVi-Sim: 

Autonomous Vehicle 

--Presents Autono Vi-Sim, a high-

fidelity simulation platform for 

--The simulator provided in this 

work is still in active 
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Simulation Platform 

with Weather, 

Sensing, and Traffic 

control, A. Best, S. 

Narang, L. Pasqualin, 

D. Barber, D. 

Manocha, 2017 

autonomous driving data 

generation and driving strategy 

testing.  

--Furthermore, they use the 

simulator to generate various 

complex driving scenarios.  

development and needs 

improvement to its physics 

engine as well as sensor models. 

 

Training Deep 

Networks with 

Synthetic Data: 

Bridging the Reality 

Gap by Domain 

Randomization, by  J. 

Tremblay, A. 

Prakash, D. Acuna, 

M. Brophy, V. 

Jampani, C. Anil, T. 

To, E. Cameracci, S. 

Boochoon, S. 

Birchfield, 2018 

--This paper aims at bridging the 

reality gap in Computer Vision 

through the Domain 

Randomization technique.  

--First of all, they generate 

synthetic data applying Domain 

Randomization and use this data to 

train Object Detection models.  

--They further demonstrate that 

such a model works efficiently 

when tested on real-world data. 

--This approach is applied only on 

very basic object forms like 

cubes, spheres, and pyramids.  

--This work lacks in maturity 

required for Autonomous 

Research. 

Domain 

Randomization and 

Pyramid 

--This paper proposes to harness the 

potential of simulation for the 

semantic segmentation of real-

--The generated dataset is 

evaluated only for semantic 

segmentation. 
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Consistency: 

Simulation-to-Real 

Generalization 

without Accessing 

Target Domain Data, 

by X. Yue, Y. Zhang, 

S. Zhao, A. 

Sangiovanni-

Vincentelli, K. 

Keutzer, B. Gong, 

2019 

world driving scenes in a Domain 

Randomization fashion.  

--They randomize the synthetic 

images with auxiliary datasets and 

enforce pyramid consistency across 

domains within an image.  

--It would be important to 

establish how this dataset 

performs for other general-

purpose Computer Vision tasks as 

well. 

 

Table 2: Related works 
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2.7 Thesis Statements  

2.7.1 Problem Statement 

Machine learning based Autonomous Vehicle technology requires a colossal volume of data, 

encompassing a variety of driving scenarios and conditions, to be trained upon. Simulation 

environments have emerged as an efficient, safe and cost-effective solution for the training, testing, 

and validation of Autonomous Vehicle technology. However, for the effective usage of simulation 

environments, the complication of  Reality Gap (difficulty of transferring simulated experience 

into real-world) must be addressed. In this work, the usage of highly realistic 3D models of 

dynamic objects (traffic actors) in pre-built city models enables the simulation environment to look 

highly photo-realistic. In this manner, the data generated will be quite realistic in terms of photo-

realism enhancing the training efficiency of Deep Learning based Computer Vision techniques. 

Also, the flexibility and ease at which scenarios can be tailored using our data generation tool will 

enable efficient, safe, fast and cost-effective data collection for Autonomous Vehicle research. 

2.7.2 Thesis Contribution 

The work of this thesis can be divided into two parts:  

A) The work implemented as a part of the overall system:  

• Set up a realistic simulation environment with pre-built 3D city models and 3D 

models of dynamic objects (provided within the simulator being used). 

• Using prior knowledge about the driving scenario (traffic actor classes, their pose, 

location, speed, etc.), the scene is recreated in the simulation environment. 

• Based on that data, perform Motion Prediction and Risk Assessment and determine 

the traffic actors that pose a threat to the ego vehicle. 

B) Main contribution of this thesis: 
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• The original scene is then altered (by changing various parameters like the number 

of traffic actors, their original positions, trajectories, pose, etc.), and various test 

scenarios are generated. 

• In this manner, the main contribution of this thesis would be a test scenario 

generation environment (tool) that allows a user to define desirable driving 

scenarios for data collection for training and testing Autonomous Vehicle 

algorithms. 

• This environment (tool) was set up using CARLA, an open-source simulator, and 

various Python scripts were written to control the simulation environment (some 

scenarios were explicitly defined while some were created in a random fashion).  

• The other main contribution will be an annotated dataset (framewise collection of 

the generated test scenarios) that was created as a result of the implementation part 

of this thesis.  

• This dataset can be readily used for Autonomous Vehicle research. Also, new data 

can be easily collected using the above-mentioned test scenario generation 

environment. 
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Chapter 3: Proposed System 

This chapter first discusses how this work is related to the overall system developed by a group of 

six students under supervisor Dr. Xiaobu Yuan, University of Windsor. Secondly, this chapter 

discusses the proposed system developed for “test scenario generation” for testing and validation 

of Autonomous Vehicle algorithms. 

3.1 Motivation 

Recently, test Autonomous Vehicles of top companies like Uber and Tesla caused pedestrian 

fatalities [62], raising safety concerns. Such incidents point to the fact that Autonomous Vehicle 

algorithms still need to be trained on vast amounts of data before being deployed on roads for 

consumer use. The proposed system is developed with an aim to generate huge amounts of realistic 

data for Autonomous Driving research in a safe, time-saving and cost-effective manner. 

3.2 Working of the overall system (developed by a group of six students) 

The overall system is composed of six components as follows: 

• Construction of a virtual 3D environment 

• Rendered images of real-time video 

• 3D feature and keypoint extraction 

• Removal of static and variable objects 

• Dynamic object recognition 

• Simulation Environment  
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Figure 22: The overall System architecture 

The above figure describes the architecture of the overall system (developed by six students) and 

how different modules are connected to each other. The first part (red) deals with the construction 
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of a virtual 3D environment using OpenStreetMap data (VGI/crowdsourced) and façade texture 

from Google street view images. The virtual 3D city model contains stationary objects such as 

buildings and variable objects like trees. After that, several features are extracted (yellow) from 

the 3D object models and stored in a repository. This repository is then further used in the Dynamic 

object recognition task. The module marked in green deals with stationary and variable object 

elimination, where the key points are first detected in the input image to verify the existence of 

that object in the real-world by matching the extracted keypoints of the input image. Matching the 

features of the virtual environment and real-time image confirms the location of the car in the real-

world that solves the problem of geo-localization of a self-driving car. After that, dynamic object 

recognition and pose estimation (blue) are carried out identifying the object class, its location, pose 

and speed.   

This information is then passed over to my part (Simulation Environment - violet). I have to 

localize the dynamic objects and recreate the scenario in the simulation environment. Furthermore, 

I perform motion estimation and risk assessment and determine which objects can be a threat to 

the ego vehicle. 

This concludes my role in the overall system. Apart from that, the main focus of this thesis is test 

scenario generation which will be discussed in detail later on. 

From the above-mentioned six modules, the ones from which I receive my inputs are discussed in 

brief as follows: 

• Construction of 3D Virtual World: Firstly, a virtual city is constructed using open source 

VGI data such as 2D street views and satellite images. 3D structural files are extracted with 

3D structures of the buildings that are rendered, and the final 3D structure is obtained with 
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the geolocation information that is externally mapped on to the model. Textures are 

mapped onto buildings in the 3D model by extracting real-world images and 

georeferencing them. In this way, a virtual city with stationary (e.g. buildings) and variable 

objects (e.g. trees) is formed. Later this virtual city is updated with dynamic objects using 

real-time recognized dynamic object details. The virtual city with 3D static, variable, and 

dynamic object model information present in real-time road scenes is used by the self-

driving car to navigate safely by knowing the surroundings. This module is marked red in 

figure 22. 

• Dynamic Object Recognition: This module matches features of the dynamic objects in the 

input image with the feature information of 3D object models stored in the repository to 

find a suitable match of 3D model for each of the dynamic objects present in the input 

image. After finding the corresponding 3D model from the repository, a voting algorithm 

is used for the matching purpose, and to estimate the confidence score that signifies the 

assurance of object identification. This process improves the confidence of recognition and 

pose estimation of dynamic objects in the input image. This module is marked in blue in 

figure 22. 
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3.3 Proposed System Architecture 

This section discusses the architecture of the system that comprises of all the work done in this 

thesis. 

3.3.1 Main System Architecture 

 

 

Figure 23: Proposed System Architecture 
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As shown in the above figure, my system consists of three main modules: The Visualization 

module, Motion Prediction and Risk Assessment module, and the Motion generation (test scenario 

generation) module. 

• Visualization Module: As the name suggests, this module hosts the simulation side of the 

system. Based on the prior information (object class, its pose, location and speed), objects 

are localized accordingly in the simulation environment, and a driving scene is initiated.  

• Motion Prediction and Risk Assessment module: This module takes in the necessary 

information (current location, object class and speed) and predicts the future trajectory of 

the object. Then risk assessment is performed and determined whether an object will be a 

threat to the ego vehicle or not. 

• Motion generation module: Once the original scenario is executed, various parameters like 

the number of objects, their speeds, orientation, weather and lighting conditions, etc. are 

altered, and new test scenarios are generated. Such test scenarios are stored in the form of 

an annotated dataset that can be used for computer vision research. Such test scenarios are 

generated by explicitly defining the parameters as well as in random fashion.  

3.3.1.1 Proposed System Algorithm 

Algorithm: Coordinated working of the three modules 

Input: Prior scene information, simulator 

Output: Reconstructed original scene and its variations with Motion Prediction and Risk 

Assessment  applied 

Step 1: Receive prior information about the driving scenario (number and type of actors, their pose, 

 speed, etc.) from other processes. 
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Step 2: Based on this information, the original scenario is recreated in the Visualization Module. 

Step 3: Optional: Apply Motion prediction and Risk Assessment module to this scene. 

Step 4: Feed this scene to the Motion Generation module and construct many test variants of the 

 original scene by changing relevant configurations and store them in the desired data

 format. 

Step 5: Apply the Motion Prediction and Risk Assessment module to each of these test scenarios    

  to validate them. 

Step 6: Reflect the Motion prediction and Risk Assessment results visually by highlighting the  

 actors by color code (Red for high risk and Yellow for mild risk). 

Step 7: Repeat steps 1-3 for a new original scenario. 

Step 8: Repeat steps 4-6 to generate test scenarios again out of this original scenario. 

Step 9: Exit. 

 

3.3.2 Visualization Module 

The simulation environment is hosted on the CARLA 0.9.5 simulator. The simulator is discussed 

in detail in section 2.4.1. In the main system, real-time dynamic information will be provided as 

prior information to our Visualization Module through the IoT architecture. The prior information 

contains all the scene information like the landscape, number of objects, object classes, orientation, 

static and variable object information, weather information, etc. For our experimentation, we 

assume the prior information to initiate the scene. The visualization module architecture is as 

shown in the figure below. 
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Figure 24: Visualization Module Architecture 

The step-by-step explanation of the process of generating a scene in the simulation environment 

is as follows: 

• Loading Virtual city: For this experimentation, the virtual city used is Town03, provided 

in the simulation environment itself. This is because the spawn points and other parameters 

are hard-coded in the provided environments. We can expect that the driving simulator 

conveniently allows using the custom environment in its further stable releases. 
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• Spawn and Activate actors: Once the landscape is loaded, the actors, (vehicles, humans, 

and other static/variable objects) need to be spawned into the simulation environment at 

prior known locations and orientations. 

• Define and assign controllers for actors: Once the actors are spawned in the environment, 

the next step is to define and assign controllers to them to make them move in a desired 

manner. In this step, we can define various controller parameters depending on the actor 

type. For vehicles, the parameters that can be defined are throttle, steer, brake, hand_brake, 

reverse, etc. The parameters for pedestrian type actors are speed, rotation, heading, 

direction, etc. Apart from custom-defined controllers, we can also assign AutoPilot modes 

to dynamic actors. However, there are no such controller options for static objects in the 

scene.   

• Define Weather conditions: Finally, the weather conditions such as cloudiness, 

precipitation, sun_altitude_angle, sun_azimuth, etc. are defined as per the prior 

information. 

• Finally, depending on the Motion Prediction and Risk Assessment results, the respective 

objects are highlighted with specific color codes. 

3.3.2.1 Visualization Module Algorithm 

Algorithm: Recreation of an original scene in the Visualization module based on prior information 

Input: Prior information and simulator 

Output: Recreated scenario in the simulation environment 

Step 1: Based on the prior information, activate the correct number and type of actors. 

Step 2: Spawn the actors (vehicles, pedestrians and static) at designated locations. 
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Step 3: Configure the vehicle controllers and walker controllers by mainly setting the designated 

 velocity and orientation, among other parameters. 

Step 4: Define the required weather parameters such as cloudiness, precipitation, and 

 sun_altitude_angle. 

Step 5: Spawn and configure the required photographic, Lidar, or radar sensors. 

Step 6: Attach the sensors to required actors to capture data from different points of view. 

Step 7: Set a timeout after which all the actors in the simulation should get destroyed. 

Step 8: Exit. 

 

3.3.3 Motion Prediction and Risk Assessment Module 

Once, the original scene has been initiated, Motion Prediction and Risk Assessment are performed 

on the nearby dynamic actors, w.r.t the ego vehicle. The dynamic objects that can be a threat to 

the ego vehicle are identified and are highlighted with color codes.  

It is important to note that we have used the work of  F. Chan et. al [63] in this module. This work 

was used as it is for our data validation and no contributions were made to it. F. Chan et al. 

contributed a Dynamic-Spatial-Attention (DSA) Recurrent Neural Network (RNN) for 

anticipating accidents in dashcam videos. Their method anticipates collisions about 2 seconds 

before they occur with 80% recall and 56.14% precision.  

While extensive discussion about their approach is out of the scope of this thesis, the risk metric 

used in their work is Time to Accident. We will call this risk metric as Time to Collision in this 

thesis. The pre-trained collision anticipation model implemented by F. Chan et al. can be found at 

[64]. While this model is a demo model, we trained our model on the licensed dataset provided by 
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the authors upon requesting it. This dataset consists of 678 dashcam videos on the web. The dataset 

is unique since various accidents (e.g. Motorbike hits a car, a car hits another car, etc. ) occur in 

all videos. This dataset is quite similar to the simulated data we generated in terms of collisions. 

Hence, we could easily apply their model on our test data to extract just the Time to Collision for 

colliding objects.   

 

Figure 25: Motion Prediction and Risk Assessment Architecture 

As shown in the above figure is the Motion Prediction and Risk Assessment architecture used in 

this work. The DSA RNN model by F.Chan et. al. forms the core of this module and calculates the 

Time to Collision (TTC) for colliding objects only. We further categorize objects as per their TTC. 
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For pedestrians the state changes to “Danger” when the TTC is less than or equal to 1 second. For 

vehicles, the state changes to “Danger” when the TTC is less than or equal to 0.5 seconds. For 

objects who do not collide into the ego vehicle at all, this model doesn’t calculate TTC. So we 

have manually categorized them as in “Caution” state once they enter the intersection area used in 

this experimentation as described in section 4.2. While the objects who are not detected at all by 

the object detector (and hence far enough) are not assigned any state and can be considered “safe”. 

It is important here to note that the thresholds of different actors (TTC<=1s for pedestrians and 

TTC<=0.5s for vehicles) has been manually fixed to indicate when they should be considered a 

danger to the ego vehicle. The Time to Collision itself is calculated considering parameters like 

the actor type, current location, orientation and velocities of those actors w.r.t the ego 

vehicle.These parameters do not affect the threshold values for categorizing the dynamic actors 

into threat states as the TTC is calculated first based on these parameters and the threshold is just 

used here to divide the TTC range. 

3.3.3.1 Motion Prediction and Risk Assessment Algorithm 

Algorithm: Time to Collision Estimation and assigning Threat state 

Input: Image frames 

Output: Threat state of colliding object w.r.t ego vehicle 

Step 1: Apply the collision estimation model by F. Chan et. al (2016) on the required image frames. 

Step 2: This model will provide the Time to Collision of any objects that collide into the ego 

 vehicle. 

Step 3: For pedestrians, assign the “Danger” state when TTC<=1s. 
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Step 4: For vehicles, assign the “Danger” state when TTC<=0.5s. 

Step 5: For other objects within a pre-defined distance (within the intersection for this 

 experimentation), assign threat state “Caution” manually. 

Step 6: For objects not detected by the object detector (and hence far enough), they can be 

 considered “safe”. 

Step 7: Forward the object threat state information to the Visualization module. 

Step 8: Exit 

Apart from [63], there are other recent works such as [65], [66], [67], [68], and [69] that can be 

referred for Dynamic Risk Assessment in traffic scenes. In fact, [65] and [69] categorize the objects 

elaborately into categories like low risk, mild risk and high risk, which is exactly what we wanted 

to do on our test scenarios. However, we could not procure their code and datasets for our usage. 

As a result, the model from [63] was used finally. 

3.3.4 Motion Generation (Test Scenario Generation) Module 

Once the original scene has been executed successfully, the Motion Generation module can be 

employed to alter the scene and generate various challenging situations out of the original scene. 

The Motion Generation module architecture is shown in the below figure. 
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Figure 26: Motion Generation Module 

 

As shown in the above figure, first of all, the original scene is loaded in the simulation 

environment. After that, the tester has the choice to select the desired number/models of vehicles, 

pedestrians, static objects, etc. and spawn them into the scene at desired locations. The tester can 

also change some generic features like vehicle colors and types and the weather type. Finally, the 

tester can define the motion (speed, orientation, direction) that a particular actor will follow. In 

this manner, simply by adjusting certain configurations in the original scene, a new test scene can 

be generated. Furthermore, motion prediction and Risk assessment algorithms can be applied to 

this newly constructed scene and the results can be observed.  
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In this work, various behavior-based movement patterns have been defined and stored as various 

python scripts. The movement patterns implemented in this work are,  

• a pedestrian moving on a sidewalk at less velocity  

• a pedestrian moving across the intersection in a dangerous manner,  

• a pedestrian running into the ego vehicle,  

• a car running into the ego vehicle from across,  

• a car running into the ego vehicle from left,  

• a car taking a dangerous turn near the ego vehicle 

• two cars colliding in front of the ego vehicle 

• a bike running into the ego vehicle from right, etc.  

Further on, the above-discussed behaviors can be mixed and matched along with the number of 

actors, types, weather conditions, etc. and various other scenarios can be constructed at ease. The 

parameters and attributes responsible for generating various movement patterns have already been 

discussed in section 3.3.2. These parameters need to be adjusted relative to the current motion state 

of the ego vehicle to make it move relative to the ego vehicle. 

3.3.4.1 Test Scenario Generation Algorithm 

Algorithm: Generating test scenarios by altering the original scenario 

Input: The original scenario generated in section 3.3.2 

Output: Multiple test scenarios 

Step 1: Select and adjust the number and type of actors from the original scenario. 
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Step 2: Spawn the actors (vehicles, pedestrian and static) with color variations at desired locations. 

Step 3: Change the vehicle controller and walker controller configurations to create desired       

 movements relative to the ego vehicle. 

Step 4: Change the weather parameters to achieve the required variations in weather conditions. 

Step 5: Set the location at which the recorded data will be stored. 

Step 6: Set a timeout after which all the actors in the scene will be destroyed. 

Step 7: Run the scenario. New test scenario executed and recorded. 

Step 8: Repeat steps 1-7 as many times with relevant variations to generate as many test scenarios. 

Step 9: Exit. 
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Chapter 4: Results and Experimentation 

The proposed system was built on a PC running Windows 10, with  Intel(R) Core(TM) i7-5820 

processor, NVIDIA GeForce GTX 960 GPU, and 32 GB of RAM. The list of software, libraries 

and tools used during this implementation is provided in the table below. 

CATEGORY NAME 

Operating System Windows 10 

Programming Language Python 3.7.x, Python 3.5.x 

Rendering Software Unreal Engine 4.18 

Driving Simulator CARLA 0.9.5 

IDE Jupyter Notebook, Anaconda, Sublime Text 

Libraries OpenCV, NumPy, CUDA toolkit, 

Tensorflow, random, time, etc. 

 

Table 3: Software, Tools and Libraries 

4.1 Simulation Environment and User Interface 

As discussed earlier, the driving simulator used for this experimentation is the CARLA 0.9.5 

(Windows version). The python client scripts to control the simulation environment were written 

in Python 3.7. Some screenshots demonstrating the simulation environment are as follows: 
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Figure 27: CARLA logo 

 

Figure 28: Sample scene from CARLA simulator 
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4.1.1 User Interface  

In order to make our simulation environment user-friendly, we built a basic interface using which 

a user can run scenarios or edit them without actually having to deal with the complicated python 

scripts. The interface consists only of those functionalities that were actually built and tested in 

this work and does not have control over the rest of the functionalities of the simulator. The 

flowcharts describing the flow, navigation and tasks are as follows. 

 

Figure 29: User Interface: Base Scenario Creation 
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Figure 30: User Interface: Test Scenario creation 

The above-displayed flowcharts are quite similar to the flowcharts described in sections 3.3.2 and 

3.3.4 as they represent the same processes (base scenario generation and test scenario generation). 

The screenshots describing the actual interface are as follows: 
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Figure 31: User Interface screenshots (a) 
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Figure 32: User Interface screenshots (b) 

 

4.2 Driving Scenario Results and Specifics 

This section discusses the driving scenarios implemented using the scenario generation tool 

developed in this work.  

It is important to note that the simulator used currently doesn’t allow us to import and use custom-

built 3D object/landscape models, and hence, we had to use the objects/landscapes provided within 

the simulator. This is because the locations, objects, waypoints for their relative movements, etc. 



 

65 

 

are hardcoded within the simulator and the best results can be gained only by using the way they 

are supposed to be used. If we import custom-built 3D object/landscape models, the driving 

functionality (the soul of Autonomous Driving research) of the simulator would not work 

efficiently. 

In this manner, the base scenario created in this experimentation is as realistic as possible in terms 

of relative positions of actors, their relative movements, placement of static props, right time, 

season and weather of the day, and the photorealism of data captured by the sensors.  

In this experimentation, we have provided a proof of concept showing how we can use the prior 

information (including the right number of static, stationary, and dynamic objects in the right time, 

season, and weather of the day) and recreate a scene with the best resources available currently. 

Further releases of Driving Simulators will get mature and allow us to use custom 3D objects, but 

as of now, we have exploited the thorough potential of the best open-source Driving Simulator 

(CARLA) in terms of scenario generation. 

Furthermore, the functional simulation environment and the scenarios generated are the main 

results of this work. Apart from that, the objects in the frames are highlighted by color codes Red 

(Danger) and Yellow (Caution) as per their threat levels w.r.t the ego vehicle. The risk assessment 

model used in this work is from [63]. This model was just applied to our scenarios without making 

any changes and we are not claiming any contribution to the Motion Prediction and Risk 

Assessment done in our work.  

We can say that we have validated our generated data using Motion Prediction and Risk 

Assessment techniques. In similar works like [56], [57], [58], [59], etc. where synthetic data is 

generated it is validated by applying various Computer Vision techniques like Object Recognition 
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and Object Detection. Here validation of the data simply means that Computer Vision techniques 

were applied on the generated data as well as other standard datasets and then the results are 

compared, which indicates the quality of data. However, such tasks are usually carried out by big 

teams as it is time consuming as well as labor-intensive to manually label the huge amount of 

generated data, preprocess it and then apply Computer Vision models on it to get the results. So, 

in our work we simply applied the DSA RNN model for anticipating collisions provided by F. 

Chan et. al. [63] on our test data and were able to obtain genuine results in the form of TTC which 

proves that our data can be readily used. This DSA RNN model includes Object Recognition as 

one of its intermediate steps as well.  

In section 4.3, for each image, we have provided a table detailing the raw data (objects, their 

positions, directions, Time to Collision and threat state w.r.t the ego vehicle). The Motion 

Prediction and Risk Assessment model used is an end-to-end model (doesn’t involve any 

significant intermediate steps) and detects collisions only (either an object can be safe or dangerous 

enough to collide into the ego vehicle). The dangerous objects in our scenarios are highlighted Red 

along as per their Time to Accident (Time to Collision - <=0.5s for vehicles and <=1s for 

pedestrians) computed using [63]. However, in this work, we also have manually categorized the 

objects within the intersection into “Yellow(Caution)” for demonstration purposes. While the 

objects which were not detected by the Object Detector (far enough and hence safe from the ego 

vehicle) are not highlighted at all. 

4.2.1 Original Scenario 

As discussed in section 3.3.2, the original scene is initiated based on the prior information received 

from other modules through the IoT. For our experimentation, we assume this prior information 

about the number of objects, type of objects, location, velocity, orientation, etc. such that it can 



 

67 

 

resemble the properties of a real traffic scene. The original scene is based at a clear intersection in 

Town 3 (shown in the figure below) provided by the Carla simulator.  

 

Figure 33: Selected Intersection for Experimentation 

The set of actors used in this implementation is as follows: 

• Vehicles: A Tesla Model 3, a Ford Mustang, Lincoln mkz 2017 and, a Kawasaki Ninja 

were the vehicles used in the original scene.  

• Pedestrians: The two pedestrian types used were “0001” and “0002” provided withing the 

simulator. It is expected that CARLA will provide a diverse variety of pedestrians in their 

upcoming stable releases. 

• Static Props: Various static objects like shop, bus stop, atm, mailbox, etc are placed in the 

scene in order to resemble a realistic environment. 
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4.2.1.1 Initial positions of dynamic objects 

The below figure shows the initial positioning of dynamic objects around the intersection. 

 

Figure 34: Initial Positions of Dynamic Actors 

The actors corresponding to each number are as follows: 

• 1: Tesla Model 3 (Red) (Ego Vehicle) 

• 2: Ford Mustang (Green) 

• 3: Lincoln mkz 2017 (Blue) 

• 4: Kawasaki Ninja (Blue) 
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• 5: Pedestrian type 0001 

• 6: Pedestrian type 0002 

• 7: Pedestrian type 0001    
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4.2.1.2 Original Scenario execution 

In the original scenario, each actor is allowed to execute its natural movement pattern. There is no 

collision or dangerous maneuvers in the original scenario. In this scene, the Red car is our ego 

vehicle. The scene from the ego car’s point of view is shown in the below image sequences. 

 

Figure 35: Base Scenario, Image 1 
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Figure 36: Base Scenario, Image 2 

 

 

Figure 37: Base Scenario, Image 3 
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Figure 38: Base Scenario, Image 4 

4.3 Test Scenario Generation along with Motion Prediction and Risk Assessment 

This section includes the results demonstrating how the original scenario was altered by adjusting 

various configurations and dangerous scenarios were built w.r.t the ego vehicle. Moreover, at a 

certain point in every test scene, Motion Prediction and Risk Assessment are performed over 

nearby actors and the potential threats are identified and highlighted using color codes as discussed 

in section 3.3.4. Keeping the original scene as reference, the different test scenarios generated and 

validated in this work as discussed as follows. 

4.3.1 Test Scenario 1: Blue Car taking a dangerous turn and colliding into the ego vehicle 

In this scenario, the Blue car’s motion is manipulated and is made to take a turn and run into the 

ego vehicle. It can be noticed how the Blue car is in the yellow highlight when it is within the 
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intersection and as it comes dangerously close, it is highlighted in red. This scenario is briefly 

demonstrated in the image sequence below. 

 

Figure 39: Test Scenario 1, Image 1 
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Figure 40: Test Scenario 1, Image 2 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-54.9, 129.0) -178 SW NA NA 

Blue car (-78.5, 142.0) -53 NW Caution 0.8s 

Ninja bike (-74.4, 117.6) 88 NE Caution NA 

 

Table 4: Raw Data - test scenario 1, image 2 
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Figure 41: Test Scenario 1, Image 3 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-58.9, 128.9) -178 SW NA NA 

Blue car (-70.4, 135.5) -36 NW Danger 0.3s 

Ninja bike (-74.4, 121.7) 88 NE Caution NA 

 

Table 5: Raw Data - test scenario 1, image 3 
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Figure 42: Test Scenario 1, Image 4 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-55.9, 128.9) -178 SW NA NA 

Blue car (-67.8, 133.7) -34 NW Danger 0.1s 

Ninja bike (-74.4,123.5) 88 NE Caution NA 

 

Table 6: Raw Data - test scenario 1, image 4 

4.3.2 Test Scenario 2: Jaywalking Pedestrian 

In this scenario, a pedestrian’s (actor number 6 in figure 34) trajectory is set such that it walks 

towards the ego vehicle. This scenario is briefly demonstrated in the image sequence below. 
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Figure 43: Test Scenario 2, Image 1 

 

Figure 44: Test Scenario 2, Image 2 
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Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-60.6, 129.3) 173 SE NA NA 

P1 (leftmost) (-87.8, 139.9) -24 NW Caution 1.1s 

P2 (rightmost) (-89.5, 122.9) -1 NW Caution NA 

P3 (center) (-92.3,128.1) 69 NE Caution NA 

 

Table 7: Raw Data - test scenario 2, image 2 

 

 

 

Figure 45: Test Scenario2, Image 3 
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Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-60.6, 129.3) 173 SE NA NA 

P1 (leftmost) (-72.8, 133.4) -24 NW Danger 0.4s 

P2 (rightmost) (-72.2, 122.7) -1 NW Caution NA 

P3 (center) (-90.5, 132.9) 69 NE Caution NA 

 

Table 8: Raw Data - test scenario 2,  image 3 

 

4.3.3 Test Scenario 3: Bike running into the ego vehicle 

In this scenario, the Kawasaki Ninja bike is made to take an unethical sharp left turn such that it 

collides into the ego vehicle. This scenario is briefly demonstrated in the image sequence below. 

 

Figure 46: Test Scenario 3, Image 1 
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Figure 47: Test Scenario 3, Image 2 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-35.4, 128.4) 179 SE NA NA 

Blue car (-85.4, 156.5) -90 W Caution NA 

Ninja bike (-73.7, 120.8) 78 NE Caution 1s 

 

Table 9: Raw Data - test scenario 3, image 2 
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Figure 48: Test Scenario 3, Image 3 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-46.8, 128.7) 179 SE NA NA 

Blue car (-85.4, 143.7) -90 W Caution NA 

Ninja bike (-69.0, 126.0) 39 NE Danger 0.4s 

 

Table 10: Raw Data - test scenario 3, image 3 
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Figure 49: Test Scenario 3, Image 4 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-57.3, 128.9) 179 SE NA NA 

Blue car (-85.3, 128.8) -90 W Caution NA 

Ninja bike (-62.3, 126.9) 8 NE Danger 0s 

 

Table 11: Raw Data - test scenario 3, image 4 

 

4.3.4 Test Scenario 4: Car running into the ego vehicle from across 

In this scene, a green Ford Mustang is made to run into the ego vehicle from across the intersection. 

This scenario is briefly demonstrated in the image sequence below. 
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Figure 50: Test Scenario 4, Image 1 
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Figure 51: Test Scenario 4, Image 2 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-41.2, 128.7) 178 SE NA NA 

Ninja bike (-73.7, 128.7) 88 NE Caution NA 

Green car (-87.6, 136.2) 10 NW Caution 1.3s 

 

Table 12: Raw Data - test scenario 4, image 2 
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Figure 52: Test Scenario 4, Image 3 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-49.8, 128.7) 178 SE NA NA 

Ninja bike (-73.9, 140.4) 88 NE Caution NA 

Green car (-81.2, 135.4) -13 NW Danger 0.7s 

 

Table 13: Raw Data - test scenario 4, image 3 
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Figure 53: Test Scenario 4, Image 4 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-60.9, 128.7) 178 SE NA NA 

Ninja bike NA NA NA NA 

Green car (-70.1, 132.1) -16 NW Danger 0.1s 

 

Table 14: Raw Data - test scenario 4, image 4 

 

4.3.5 Test Scenario 5: A car taking unethical turn and colliding into the ego vehicle 

This test case has been implemented from the green car’s point of view. This is just to demonstrate 

the flexibility of the proposed scenario generation tool such that the same scenario can be run and 
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observed from so many different points of view. This means more data collection and more 

scenarios to test on. This scenario is briefly demonstrated in the image sequence below. 

 

Figure 54: Test Scenario 5, Image 1 
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Figure 55: Test Scenario 5, Image 2 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-98.5, 139.3) -3 NW NA NA 

Light Blue car (-88.5, 145.3) -115 SW Danger 0.3s 

Ninja bike (-73.9, 124.3) 88 NE Caution NA 

 

Table 15: Raw Data - test scenario 5, image 2 
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Figure 56: Test Scenario 5, Image 3 

 

Object Location Direction  State w.r.t ego 

vehicle 

Time to 

Collision 

Ego Vehicle (-98.5, 139.3) -3 NW NA NA 

Light Blue car (-91.4, 141.9) -135 SW Danger 0.1s 

Ninja bike (-73.9, 127.3) 88 NE Caution NA 

 

Table 16: Raw Data - test scenario 5, image 3 
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4.4 Results Comparison and Discussion 

4.4.1 Advantages of Proposed Approach 

The main advantage of the proposed approach is the ease and flexibility at which regular and test 

driving scenarios can be generated. Moreover, the use of highly photo-realistic and high fidelity 

physics modules helps in closing the reality gap that has always been a concern while using 

simulation environments. In the past, open-source simulation environments have been widely used 

for task-specific causes, such as lane detection, testing braking system, etc. The simulation 

environments used for such causes are usually primitive and treat the traffic objects as mere point 

masses or 3D boxes at best. On the other hand, our test scenario generation tool is built upon a 

high fidelity driving simulator, CARLA. This enables the collection of highly realistic data that 

can be further used for training and testing Autonomous Vehicle algorithms.  

We can directly compare our work with a similar data collection tool given in [70]. They have 

used the same simulator as us, i.e. CARLA, but the scene generation approach is quite different. 

In their approach, they spawn a lot of actors at designated spawn points and those actors follow 

their natural movement patterns on an Autopilot mode. Due to this reason, the scenes and data 

generated is generic and hardly involve any complicated test scenarios that we are looking for. On 

the other hand, the tool built in the work allows the tester to customize all the details for the scene 

built up and hence allows to explicitly define the scenario in a flexible manner. 

There is another similar scenario and data generation approach implemented using the Autono Vi-

Sim simulator by Best et. al in [12]. While the scenarios and data generated by them are similar in 

nature to our work, the simulator used by them is not highly photo-realistic and also lacks high-

fidelity sensors. This makes the data generated by them less close to reality as compared to our 
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data. In this manner, the algorithms can be more efficiently trained and tested on our data as 

compared to that in [12]. Here, we haven’t conducted any experiments on the data generated in 

[12] to obtain any statistics as it was out of the scope of our work. However, in their work they 

have themselves claimed that the tool they used in still in active development and needs 

improvement to its physics engine as well as sensor modules (lack of photorealism of the camera 

sensors is clearly evident in their data).The below image sequence demonstrates the difference 

between the two works in terms of photo-realism and traffic scene features. 

 

Figure 57: Data generated in [12] 

 

Figure 58: Data generated in this thesis 
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We have already discussed the drawbacks of existing traditional datasets in section 2.2.2. The 

information about how the data generated by our scenario generation tool covers those drawbacks 

is shown in Table 17 below. Also, Table 1 in section 2.4.4 can be referred to observe how other 

simulation environments cover those drawbacks. 

Geographical 

Diversity 

Selection 

Bias 

Negative Bias Capture Bias Challenging 

weather and 

lighting 

conditions 

No Not 

Applicable 

Yes 

 

Yes Yes 

This can be 

fulfilled once 

custom 3D 

landscape 

models can be 

imported and 

used. 

 Negative data 

samples can be 

collected by 

arranging the desired 

objects in desired 

positions and making 

them move in a 

desired manner. 

(Here Negative 

means safe and 

ordinary scenarios 

where the Neural 

Network model 

doesn’t have much to 

learn). 

Data can be 

captured from 

multiple points of 

view by attaching 

sensors to as 

many objects as 

required, 

depending on the 

processing power 

of the computer 

(GPU only) used. 

A variety of 

weather and 

lighting 

conditions can be 

defined and used 

as appropriate. 

 

Table 17: Drawbacks covered by our data. 

4.4.2 Limitations of the Proposed Approach 

The main limitation of this test scenario generation tool is that we have to manage with the 

landscapes provided by the simulator used. We can be hopeful that CARLA, in its further stable 

releases, allows usage of custom-built .fbx or .obj 3D environments and at the same time, retaining 

all the functionalities provided by the simulator. Another driving simulator, Microsoft AirSim 

offers the option of using custom-built environments, but it lacks in terms of user-friendliness, and 
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also as is not as mature as CARLA. In general, it is a fact that open-source driving simulators are 

still in their infancy, and their effective usage for Autonomous Vehicles research is gaining 

momentum at a slow pace.  
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

Based on the work done in this thesis, we conclude that we have presented a Simulation 

Environment with Reduced Reality Gap for data generation and testing Autonomous vehicle 

algorithms in a safe, fast, and cost-effective manner. We have provided a proof of concept of how 

real traffic scenarios can be replicated quickly in the simulation environment. We further 

demonstrated how those base scenarios can be edited and various complex test scenarios can be 

generated using the simulation environment set up in this work. It is safe to say that such 

developments in Computer Vision would be crucial steps towards fulfilling the qualitative and 

quantitive data requirements faced by Machine Learning algorithms. This would, in turn, solidify 

the Testing and Validation of Autonomous Vehicles in myriad scenarios, enabling the 

Autonomous Vehicles to learn more and get mature enough to replace human drivers and hence, 

change transportation forever. 

5.2 Future Work 

This section discusses the future work that can be carried out in this direction. 

• As soon as the driving simulators get mature enough to allow the importing and usage of 

custom-built 3D object models while retaining all the functionalities, the landscapes, and 

other object models, the models used in this simulation environment can be replaced with 

actual custom ones, which would be a huge leap towards reducing the Reality gap. 

• This simulation environment can be further used for Reinforcement Learning, which is 

usually the main purpose of driving simulators. 
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• This simulation environment can be customized further to facilitate more impressive Data 

Visualization.  

• Higher levels of Domain Randomization can be practiced by including non-relevant object 

models in the traffic scenes. 

• This simulation environment can be used to validate other Autonomous Vehicle algorithms 

like Object Recognition, Object Tracking, Semantic Segmentation, Scene Understanding, 

etc. 

• Apart from the data generated in this work, this simulation environment can be used to 

implement a huge number of different test scenarios and generate large volumes of 

complex and realistic data (photographic).   

• In this work, we have generated and analyzed just the photographic data. However, while 

implementing further test scenarios, sensors like radar and Lidar can be easily activated 

and 3D point cloud data can be generated. 
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