
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-8-2020

A Simulation Environment with Reduced Reality Gap for Testing A Simulation Environment with Reduced Reality Gap for Testing

Autonomous Vehicles Autonomous Vehicles

Kaival Kamleshkumar Patel
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Patel, Kaival Kamleshkumar, "A Simulation Environment with Reduced Reality Gap for Testing
Autonomous Vehicles" (2020). Electronic Theses and Dissertations. 8305.
https://scholar.uwindsor.ca/etd/8305

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8305?utm_source=scholar.uwindsor.ca%2Fetd%2F8305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Simulation Environment with Reduced Reality Gap for Testing

Autonomous Vehicles

By

Kaival Kamleshkumar Patel

A THESIS

Submitted to the Faculty of Graduate Studies

Through Computer Science

In Partial Fulfilment of the Requirements for

The Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2020

© 2020 KAIVAL KAMLESHKUMAR PATEL

A Simulation Environment with Reduced Reality Gap for Testing

Autonomous Vehicles

By

Kaival Kamleshkumar Patel

Approved by:

M. Monfared

Department of Mathematics and Statistics

D. Wu

School of Computer Science

X. Yuan, Advisor

School of Computer Science

17th January, 2020

iii

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office and that this thesis has not been submitted for a

higher degree to any other University or Institution.

iv

Abstract

In order to facilitate acceptance and ensure safety, autonomous vehicles must be tested not only in

typical and relatively safe scenarios but also in dangerous and less frequent scenarios. Recent

pedestrian fatalities caused by test vehicles of the front-running giants like Google and Tesla

suffice the fact that Autonomous Vehicle technology is not yet mature enough and still needs

rigorous exposure to a wide range of traffic, landscape, and natural conditions on which the

Autonomous Vehicles can be trained on to perform as expected in real traffic conditions.

Simulation Environments have been considered as an efficient, safe, flexible and cost-effective

option for the training, testing, and validation of Autonomous Vehicle technology. While ad-hoc

task-specific use of simulation in Autonomous Driving research is widespread, simulation

platforms that bridge the gap between simulation and reality are limited. This research proposes to

set up a highly realistic simulation environment (using CARLA driving simulator) to generate

realistic data to be used for Autonomous Driving research. Our system is able to recreate the

original traffic scenarios based on prior information about the traffic scene. Furthermore, the

system will allow to make changes to the original scenarios and create various desired testing

scenarios by varying the parameters of traffic actors, such as location, trajectory, speed, motion

states, etc. and hence collect more data with ease.

v

Dedication

I would like to dedicate this work to the God Almighty and my entire family, including my parents,

Mrs. Dipikaben and Mr. Kamleshkumar, my grandparents, Mrs. Vidyaben, and, Mr. Shantilal,

aunt-uncle Mrs. Smitaben and Mr. Dipteshkumar, and my cousin Mr. Achal Patel. I am grateful

for their unconditional love and continuous support in every aspect of my life. Also, I want to use

this opportunity to express gratitude to my maternal uncle, Late Mr. Sharadkumar Patel, for his

encouragement and support for my Master's venture.

vi

Acknowledgment

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Xiaobu Yuan, who has

supported and encouraged me throughout my Master's program with his awareness, knowledge,

and expertise in this field of research. I feel privileged to have him as my supervisor, as he actively

guided me through every aspect of my research work.

I would also like to acknowledge the constructive feedback from Dr. Dan Wu and Dr. Mehdi

Monfared, that helped me to improve my research work.

I want to thank my family, true friends and all other well-wishers for their immense love, support,

and motivation.

vii

Table of Contents

Declaration of Originality .. iii

Abstract .. iv

Dedication ... v

Acknowledgment ... vi

Table of Tables .. xi

Table of Figures .. xii

Abbreviations .. xv

Chapter 1: Introduction ... 1

1.1 Overview ... 1

1.2 Need for self-driving cars .. 1

1.3 Architecture of Self-Driving Cars ... 2

1.3.1 Sensors .. 3

1.3.2 Perception .. 5

1.3.3 Path Planning .. 5

1.3.4 Control .. 6

1.4 Testing and Validation of Autonomous Vehicles: A Challenge ... 6

1.5 Simulation: An Effective Solution .. 7

1.6 Reality Gap and Domain Randomization.. 9

Chapter 2: A Literature Review .. 11

viii

2.1 Computer Vision in Autonomous Vehicles .. 11

2.1.1 Faster R-CNN ... 11

2.1.2 You Only Look Once (YOLO) ... 13

2.2 Data Limitations for ComputerVision .. 14

2.2.1 Traditional Datasets Used in Computer Vision .. 14

2.2.2 Need for Datasets Improvement ... 19

2.2.3 Synthetic Data: An Option ... 21

2.3 Simulation Environment ... 22

2.3.1 Components of a Driving Simulator ... 23

2.4 Various Driving Simulators .. 26

2.4.1 CARLA: An Open Urban Driving Simulator ... 26

2.4.2 Microsoft AirSim .. 28

2.4.3 Autono Vi-Sim ... 29

2.4.4 Comparison of existing Driving Simulators ... 31

2.5 Reality Gap and Domain Randomization.. 32

2.5.1 Domain Randomization .. 33

2.6 Related Works ... 37

2.7 Thesis Statements .. 41

2.7.1 Problem Statement .. 41

2.7.2 Thesis Contribution .. 41

ix

Chapter 3: Proposed System ... 43

3.1 Motivation ... 43

3.2 Working of the overall system (developed by a group of six students) 43

3.3 Proposed System Architecture .. 47

3.3.1 Main System Architecture .. 47

3.3.2 Visualization Module ... 49

3.3.3 Motion Prediction and Risk Assessment Module... 52

3.3.4 Motion Generation (Test Scenario Generation) Module .. 55

Chapter 4: Results and Experimentation ... 59

4.1 Simulation Environment and User Interface ... 59

4.1.1 User Interface ... 61

4.2 Driving Scenario Results and Specifics .. 64

4.2.1 Original Scenario .. 66

4.3 Test Scenario Generation along with Motion Prediction and Risk Assessment 72

4.3.1 Test Scenario 1: Blue Car taking a dangerous turn and colliding into the ego vehicle 72

4.3.2 Test Scenario 2: Jaywalking Pedestrian ... 76

4.3.3 Test Scenario 3: Bike running into the ego vehicle .. 79

4.3.4 Test Scenario 4: Car running into the ego vehicle from across 82

4.3.5 Test Scenario 5: A car taking unethical turn and colliding into the ego vehicle 86

4.4 Results Comparison and Discussion ... 90

x

4.4.1 Advantages of Proposed Approach .. 90

4.4.2 Limitations of the Proposed Approach ... 92

Chapter 5: Conclusion and Future Work .. 94

5.1 Conclusion ... 94

5.2 Future Work .. 94

References ... 96

Vita Auctoris ... 106

xi

Table of Tables

Table 1: Summary of the features of specific simulators for AVs. [13] 31

Table 2: Related works ... 40

Table 3: Software, Tools and Libraries ... 59

Table 4: Raw Data - test scenario 1, image 2 ... 74

Table 5: Raw Data - test scenario 1, image 3 ... 75

Table 6: Raw Data - test scenario 1, image 4 ... 76

Table 7: Raw Data - test scenario 2, image 2 ... 78

Table 8: Raw Data - test scenario 2, image 3 .. 79

Table 9: Raw Data - test scenario 3, image 2 ... 80

Table 10: Raw Data - test scenario 3, image 3 ... 81

Table 11: Raw Data - test scenario 3, image 4 ... 82

Table 12: Raw Data - test scenario 4, image 2 ... 84

Table 13: Raw Data - test scenario 4, image 3 ... 85

Table 14: Raw Data - test scenario 4, image 4 ... 86

Table 15: Raw Data - test scenario 5, image 2 ... 88

Table 16: Raw Data - test scenario 5, image 3 ... 89

Table 17: Drawbacks covered by our data. ... 92

xii

Table of Figures

Figure 1: Benefits of self-driving vehicles [3] .. 2

Figure 2: Self-Driving car Architecture [5] .. 3

Figure 3: Object Detection using Lidar point clouds [6] .. 4

Figure 4: Path Planning in AVs [8]... 6

Figure 5: Waymo's simulation platform ... 8

Figure 6: Faster R-CNN [15] .. 12

Figure 7: YOLO: Object Detection with YOLO [20] ... 13

Figure 8: Examples from KITTI dataset [22] ... 15

Figure 9: An example from CityScapes Dataset [23] ... 16

Figure 10: Examples from ImageNet dataset [24] .. 17

Figure 11: Examples from MS COCO dataset [25] .. 18

Figure 12: Examples from SYNTHIA Dataset [31] ... 21

Figure 13: Components of a Driving Simulator [36] .. 24

Figure 14: Client-Server architecture in Driving Simulators [37] .. 26

Figure 15: A street in Town 2 in four weather conditions. [37] ... 27

Figure 16: Three of the sensing modalities provided by CARLA. From left to right: normal vision

camera, ground-truth depth, and ground-truth semantic segmentation. [37] 28

Figure 17: Sample road scene in AirSim [46] .. 29

Figure 18: Autono Vi-Sim Architecture [12].. 30

Figure 19: Samples from Autono Vi-Sim [12] ... 30

Figure 20: Training data generated using Domain Randomization [56] 34

Figure 21: Images from Virtual KITTI (first row) and DR approach (second row) [58] 35

xiii

Figure 22: The overall System architecture .. 44

Figure 23: Proposed System Architecture .. 47

Figure 24: Visualization Module Architecture ... 50

Figure 25: Motion Prediction and Risk Assessment Architecture .. 53

Figure 26: Motion Generation Module ... 56

Figure 27: CARLA logo ... 60

Figure 28: Sample scene from CARLA simulator .. 60

Figure 29: User Interface: Base Scenario Creation ... 61

Figure 30: User Interface: Test Scenario creation .. 62

Figure 31: User Interface screenshots (a) ... 63

Figure 32: User Interface screenshots (b) ... 64

Figure 33: Selected Intersection for Experimentation .. 67

Figure 34: Initial Positions of Dynamic Actors .. 68

Figure 35: Base Scenario, Image 1 ... 70

Figure 36: Base Scenario, Image 2 ... 71

Figure 37: Base Scenario, Image 3 ... 71

Figure 38: Base Scenario, Image 4 ... 72

Figure 39: Test Scenario 1, Image 1 ... 73

Figure 40: Test Scenario 1, Image 2 ... 74

Figure 41: Test Scenario 1, Image 3 ... 75

Figure 42: Test Scenario 1, Image 4 ... 76

Figure 43: Test Scenario 2, Image 1 ... 77

Figure 44: Test Scenario 2, Image 2 ... 77

xiv

Figure 45: Test Scenario2, Image 3 .. 78

Figure 46: Test Scenario 3, Image 1 ... 79

Figure 47: Test Scenario 3, Image 2 ... 80

Figure 48: Test Scenario 3, Image 3 ... 81

Figure 49: Test Scenario 3, Image 4 ... 82

Figure 50: Test Scenario 4, Image 1 ... 83

Figure 51: Test Scenario 4, Image 2 ... 84

Figure 52: Test Scenario 4, Image 3 ... 85

Figure 53: Test Scenario 4, Image 4 ... 86

Figure 54: Test Scenario 5, Image 1 ... 87

Figure 55: Test Scenario 5, Image 2 ... 88

Figure 56: Test Scenario 5, Image 3 ... 89

Figure 57: Data generated in [12] ... 91

Figure 58: Data generated in this thesis .. 91

xv

Abbreviations

AI: Artificial Intelligence

GM: General Motors

Lidar: Light Detection and Ranging

AV: Autonomous Vehicle

GPS: Global Positioning System

IMU: Inertial Measurement Unit

PID: Proportional Integral Derivative

MPC: Model Predictive Control

AVS: Autonomous Visualization System

R-CNN: Region-based Convolutional Neural Network

RPN: Region Proposal Network

VGG: Visual Geometry Group

ROI: Region of Interest

YOLO: You Look Only Once

MS COCO: Microsoft Common Objects in Context

SYNTHIA: Synthetic collection of Imagery and Annotations

xvi

VR: Virtual Reality

PPU: Physics Processing Unit

API: Application Program Interface

GPU: Graphics Processing Unit

UE4: Unreal Engine 4

HITL: Hardware in the loop

GPL: General Public License

GAN: Generative Adversarial Network

DR: Domain Randomization

VGI: Volunteered Geographic Information

IoT: Internet of Things

DSA: Dynamic Spatial Attention

RNN: Recurrent Neural Network

TTC: Time to Collision

1

Chapter 1: Introduction

1.1 Overview

A self-driving car, also known as an autonomous car or driverless car, is a vehicle that uses a

combination of sensors, cameras, radars, and artificial intelligence (AI), to travel between

destinations without the need of any human effort. In the past five years, autonomous driving has

gone from “maybe possible” to “now commercially available” and hence become a concrete

reality. Autonomous driving may pave the way for future systems where computers take over the

art of driving. The global self-driving car market is segmented based on the type of vehicle, product

type, application of the car, technology components(hardware and software), and geography [1].

Automotive Innovators like Waymo and Tesla have been leading the self-driving car industry for

long. On the other hand, legacy companies like GM, Ford, Toyota, Nissan, etc. have more recently

joined the chase pumping billions of dollars into the research and development of autonomous

vehicles.

1.2 Need for self-driving cars

Traffic fatalities claim more than a million lives a year around the world. This public safety crisis

that is mainly caused by driver error has largely been overlooked and considered a necessary trade-

off in our commuting economy. But with the development of advanced sensor technologies (e.g.

cameras, radars, Lidars, etc.), and perception systems guided by big data, artificial intelligence,

and increasing processing power, we are fast approaching the day when self-driving vehicles can

do a better job than human drivers [2]. Having self-driving cars could also give people a lot more

free time. Commutes might be spent working on projects, talking to other passengers and doing

many other productive tasks. Fully autonomous cars will be able to drive together in perfect

2

Figure 1: Benefits of self-driving vehicles [3]

harmony like a swarm of bees, radically reducing the traffic jams and increasing the traffic flow.

It is also projected that the advent of autonomous vehicles will cut down the insurance premiums,

accident-related costs, driving-related fines and, increase fuel efficiency.

1.3 Architecture of Self-Driving Cars

The architecture of self-driving vehicles comprises of four main subsystems: Sensors, Perception,

Planning and Control. These subsystems act together to perceive the environment around the

autonomous vehicle, detect the paths, plan a route to the destination, predict the behavior of other

traffic actors surrounding it, plan trajectories and finally execute the motion [4].

3

Figure 2: Self-Driving car Architecture [5]

1.3.1 Sensors

The sensor subsystem consists of several sensors that gather data about the surroundings of an

autonomous vehicle. Some of the most common sensors employed for this purpose are as follows:

• Camera: Camera(image sensor) is certainly the most important sensor in an AV. Typically

AVs have multiple cameras involved to provide a 360-degree view of the surrounding

environment. Cameras have high resolution, are cheap, can collect a lot of data, therefore

are useful for Deep Learning.

4

• Radar: Radars are again very common automotive sensors for object tracking and

detection. Radars are cheap, do well in poor weather as well, but have low resolution.

• Lidar: Lidars are a bit expensive, but one of the most efficient sensors of an AV.

Continuously rotating Lidar system sends thousands of laser pulses every second. These

pulses collide with the surrounding objects and reflect, creating a 3D point cloud formation.

Figure 3: Object Detection using Lidar point clouds [6]

• GPS: GPS sensors are the common positioning sensors that give latitude and longitude

information.

• Others: Apart from these, there are several other sensors like ultrasonic Sonars, IMUs,

gyroscopes, etc. used in AVs [4].

5

1.3.2 Perception

Perception in AVs is responsible for estimating the state of the car and for creating an internal

representation of the environment, using data captured by on-board sensors as well as the prior

information about the sensors’ models, road networks, traffic rules, car dynamics, etc. [5]. As

described in [4], perception can be categorized into two components, as follows:

• Localization: As the name suggests, it involves localizing an AV within the driving

scenario. This system uses the data from GPS and other sensors to estimate the AV’s pose

relative to the driving scenario. Usually, this is one of the initial steps of the autonomous

driving process.

• Detection: This system gathers and processes the data from on-board sensors like camera,

Lidar, radar, etc. to detect the static, variable, and dynamic objects in the driving scenario.

However, the data from different on-board sensors need to be synchronized and processed

accordingly to extract necessary information regarding the driving scenario. Sensor fusion

is an approach for combining data delivered from disparate sources such that the coherent

information is created. The resulting information is more certain than it would be possible

when these sources were used individually. For example, on the AV, it is important to have

a camera in order to clone a human vision, but the information about obstacle distance will

be best gained through the sensors like radar or Lidar. For that reason, sensor fusion of

camera with Lidar or radar data is very important since they are complementary [7].

1.3.3 Path Planning

The Path Planning functionality takes information from the perception system and uses it for long

and short-range planning. There are several components of the Path Planning functionality such as

the Route planner that plans the path that a vehicle should take between the given two points on a

6

map, the Prediction component that predicts behavior of other traffic actors, the Behavior planner

that plans the behavior of the AV itself such as keeping the existing lane, change lanes, apply

brakes or accelerate as needed, and finally the Trajectory planner that decides the ultimate

trajectory that the AV must follow.

Figure 4: Path Planning in AVs [8]

1.3.4 Control

The Controller module receives the trajectory generated by the Path Planner and sends effort

commands to the actuators of the steering wheel, throttle, and brakes of the AV to make the car

execute the trajectory as best as the physical world allows [5]. Several controllers are used in AVs,

depending on the problem to be solved. The PID (Proportional Integral Derivative) and MPC

(Model Predictive Control) are two of the most commonly used controllers.

1.4 Testing and Validation of Autonomous Vehicles: A Challenge

As described in [9], recent breakthroughs in deep learning have accelerated the development of

autonomous vehicles: many research prototypes now operate on real roads alongside human

drivers. While advances in computer vision techniques have made human-level performance

7

possible on narrow perception tasks such as object recognition, several fatal accidents involving

AVs underscore the importance of testing whether the perception and control pipeline – when

considered a whole system, can safely interact with humans. Unfortunately, testing the AVs in real

environments, the most straight forward validation framework for system-level input-output

behavior requires prohibitive amounts of time due to the rare nature of serious accidents.

Concretely, a recent study [10] argues that AVs need to drive “hundreds of millions of miles and,

under some scenarios, hundreds of billions of miles to create enough data to clearly demonstrate

their safety”. As a result, AV developers test extensively on public roads, potentially putting other

road users at risk. In one such unfortunate event, Elaine Herzberg, 49, was killed by an Uber test

vehicle on 18th March 2018 in Tempe, Arizona [11]. Such incidents can infuse a sense of insecurity

in the minds of common road users making the social acceptance of AVs a complex process. Aside

from safety concerns, costs pose an additional challenge to the testing and validation of AVs. Each

new configuration of the AV requires re-calibration of a physical vehicle, which is labor-intensive.

Furthermore, the vehicle can only be tested under conditions limited by either a testing track or

current traffic conditions if a public road test is being performed. Apart from that, the Machine

Learning techniques used for Autonomous Vehicle algorithms rely on substantial amounts of

annotated data in regular, as well as dangerous scenarios. The dataset must encompass varied

weather and lighting conditions. Gathering such data by physical tests can be expensive, difficult,

and even dangerous, as discussed above [12].

1.5 Simulation: An Effective Solution

The testing problem of the AVs can be transferred over to the virtual world, i.e., Simulation

Environments. Realistic simulation environments comprising of high level-extensible modules

like Environment module, Vehicle module, Physics engine, Sensor module, etc. provide an

8

efficient solution for testing and validation of Autonomous Vehicles. Modeling and simulation are

well-established tools for analysis, design, acquisition, and training in the automotive domain.

Despite the heterogeneity of subsystems and disciplines involved in the development of an

Autonomous Vehicle, there are many simulation models that allow coverage of the entire

development process [13]. Modern and dedicated simulators cover many aspects of the

Autonomous Vehicle development process such as scenario generation, data gathering, realistic

physics laws, realistic traffic flow, and photo-realistic graphics.

Figure 5: Waymo's simulation platform

The Automotive and tech giants in the self-driving industry have widely adapted simulation

environments for testing and validation of the AVs. However, this doesn’t completely eradicate

9

the need for on-road testing. Alphabet subsidiary Waymo has accumulated the most virtual

mileage of all self-driving companies, with a February 2018 total of nine years and five million

miles. Waymo simulations created over 2.5 billion self-driving miles in 2016 alone. The Waymo

simulator (Carcraft) transforms real-world scenarios into virtual formats and runs 25,000 virtual

cars simultaneously. The massive data flow from this process assists engineers in locating bugs

and adjusting models efficiently [14]. Apart from that, Apollo (Baidu), XVIZ (Uber), AVS (GM

Cruise), VIRTTEX (Ford), Nvidia Driveworks, etc. are some of the premium driving simulators

used in the self-driving industry. Self-driving simulators can boost the speed of data collection to

reach mileage accumulation targets while reducing fleet operating costs. Among all the rivals in

the self-driving car industry, Waymo clearly appears to be leading the race. For this, a fair amount

of credit goes Waymo’s simulation platform as it has driven more virtual miles than any other

competitor. Apart from that, CARLA, Microsoft AirSim, VisSim, CarSim, Gazebo, TORCS,

Udacity simulator, Autono Vi-sim, etc. are some of the most widely used open-source simulators

for Autonomous Driving research.

1.6 Reality Gap and Domain Randomization

However, the usage of simulation environments in Autonomous Vehicle research comes with its

own complications. Models trained purely on synthetic data will fail to generalize to the real world,

as there is a difference between simulated and real environments, in terms of both visual and

physical properties. This difficulty of transferring simulated experience into the real-world is

called the “Reality Gap”. In order to efficiently use simulation environments for Autonomous

Vehicle research, it is very important that this reality gap is bridged. Improving the photo-realism

of simulation environments has been state-of-the-art when it comes to reducing the reality gap.

However, for simulators with low-quality renderings, the object classes, their poses, number of

10

objects and other features are randomized while generating data. While training on such data, this

randomness forces the neural network to go through a lot of relevant and irrelevant variety within

the data. Hence, such a neural network model learns to identify relevant information in the frame

at the same time, knowing what to ignore. When such a model is tested on real-world data, the real

world may appear as just another variation. This technique is called Domain Randomization, which

has emerged as a worthy option to bridge this reality gap and until now, has been mostly applied

to basic Object Recognition tasks. The details of Domain Randomization are further discussed in

section 2.5.1.

11

Chapter 2: A Literature Review

This chapter starts with a brief discussion about the Computer Vision techniques used for

Autonomous Vehicle research, and the traditional datasets used to facilitate it. After that, we

discuss the drawbacks and flaws associated with those traditional datasets. Then, we discuss how

synthetic data has emerged as an option to fill this data void and the simulation environments used

for that purpose in detail. Furthermore, we discuss how the synthetic data generated from basic

simulators face the problem of the Reality gap and the ways to reduce this Reality gap.

2.1 Computer Vision in Autonomous Vehicles

Various Machine Learning and Deep Learning based techniques are used for several tasks like

Object Detection, Object Recognition, Motion prediction, and Risk Assessment. Some of the most

efficient techniques used for Autonomous Driving are briefly described as follows:

2.1.1 Faster R-CNN

Faster R-CNN [15] is one of the most widely used techniques for Object Detection in Autonomous

Driving research. Faster R-CNN has displayed a superior performance over its predecessors, R-

CNN [16] and Fast R-CNN [17]. At the conceptual level, Faster R-CNN is composed of 3 neural

networks – Feature Network, Region Proposal Network (RPN), and Detection Network [18].

• The Feature Network is usually a well known pre-trained image classification network such

as VGG [19] minus a few top/last layers. The function of this network is to generate good

features from images. The output of this network maintains the shape and structure of the

original image (i.e., still rectangular, pixel size, etc.).

• The Region Proposal Network (RPN), is usually a simple network with three convolutional

layers. There is one common layer that feeds into two layers – one for classification and

12

the other for bounding box regression. The purpose of RPN is to generate a number of

bounding boxes called Region of Interests (ROI) that have a high probability of containing

any object. The output from this network is a number of bounding boxes identified by the

pixel co-ordinates of two digital corners, and a value (1, 0 or -1) indicating whether an

object is in the bounding box, or not in the bounding box or the box can be ignored

respectively.

Figure 6: Faster R-CNN [15]

• The Detection Network (sometimes also called the RCNN network) takes input from both

of the above-discussed networks and generates the final class and bounding box. It is

normally composed of 4 Fully Connected or Dense layers. There are two stacked common

layers shared by a classification layer and a bounding box regression layer. To help it

13

classify only the inside of bounding boxes, the features are cropped according to the

bounding boxes.

2.1.2 You Only Look Once (YOLO)

YOLO [20] is an algorithm that utilizes a single convolutional network for object detection. Unlike

other object detection algorithms that sweep the image bit by bit, the algorithm takes the whole

image and reframes the object detection as a single regression problem, straight from pixels to

bounding box co-ordinates and class probabilities. YOLO trains on full images and directly

Figure 7: YOLO: Object Detection with YOLO [20]

optimizes detection performance. YOLO divides up the image into a grid of 13 by 13 cells. Each

of these cells is responsible for predicting five bounding boxes. YOLO outputs the confidence

14

score that tells us how certain it is that the predicted bounding box actually encloses some object.

After that, for each bounding box, the cell also predicts an object class.

2.2 Data Limitations for ComputerVision

Datasets are an integral part of contemporary object recognition research. They have been the chief

reason for the considerable progress in this field, not just as the source of large amounts of training

data, but also as a means of measuring and comparing the performance of competing algorithms

[21]. However, training deep neural networks for computer vision tasks typically require large

amounts of labeled training data. A variety of approaches have been proposed to efficiently label

large amounts of training data, including crowdsourcing, gamification, semi-supervised labeling,

and Mechanical Turk. These approaches remain fundamentally bounded by the amount of human

effort required for labeling or supervision.

2.2.1 Traditional Datasets Used in Computer Vision

Traditionally, datasets like KITTI [22], CityScapes [23], Imagenet [24], MS COCO [25], CIFAR-

10, Open Images, etc. have been the most popular open-source datasets used in the computer vision

field.

• The KITTI dataset: The KITTI dataset has been recorded from a moving platform while

driving around Karlsruhe, Germany. It includes camera images, laser scans, high-precision

GPS measurements, and IMU accelerations from a combined GPS/IMU system. The data

in this dataset is calibrated, synchronized, and timestamped, along with rectified and raw

image sequences. The dataset also contains object labels along with online benchmarks for

stereo, optical flow, object detection, and other tasks. For each dynamic object within the

reference camera’s field of view, the annotations are provided annotations in the form of

15

3D bounding boxes, represented in Velodyne coordinates. The object classes covered are

‘car,’ ‘van,’ ‘Truck,’ ‘Pedestrian,’ ‘Person(sitting),’ Cyclist,’ Tram’ and ‘Misc’(e.g.,

Trailers, Segways, etc.).

Figure 8: Examples from KITTI dataset [22]

• The CityScapes dataset: CityScapes is comprised of a large, diverse set of stereo video

sequences recorded in streets from 50 different cities. 5000 of these images have high-

quality pixel-level annotations; 20,000 additional images have coarse annotations to enable

methods that leverage large volumes of weakly labeled data. However, recording in

adverse weather conditions such as heavy rain or snow was avoided deliberately. The

16

densely annotated data of 5000 images is split into separate training, validation, and test

sets.

Figure 9: An example from CityScapes Dataset [23]

• The ImageNet database: ImageNet database is a large visual database designed for use in

visual object recognition software research. It contains more than 14 million images that

have been hand-annotated to indicate what objects are pictured in at least one million

pictures, and bounding boxes are also provided. ImageNet contains more than 20,000

categories with any typical category, such as “balloon” or “strawberry,” consisting of

several hundred pictures. The database of annotations of third party URLs is freely

available directly from ImageNet, though the actual images are not owned by ImageNet.

Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large

17

Scale Visual Recognition Challenge (ILVRC), where software programs compete to

classify and detect objects and scenes. ImageNet crowdsources its annotation process.

Image level annotations indicate the presence or absence of an object class in an image

such as “there are tigers in this image” or “there are no tigers in this image.” Object-level

annotations provide a bounding box around the indicated object.

Figure 10: Examples from ImageNet dataset [24]

18

• Microsoft COCO: MS COCO is another such large-scale dataset with the goal of advancing

state-of-the-art in object recognition by placing the question of object recognition in the

context of the broader question of scene understanding. This dataset contains photos of 91

object types and has a total of 2.5 million labeled instances in 328k images. Such annotation

drew upon extensive crowd worker involvement via novel user interfaces for category

detection, instance spotting, and instance segmentation.

Figure 11: Examples from MS COCO dataset [25]

19

2.2.2 Need for Datasets Improvement

It would be safe to say that we are in the midst of a data revolution. Ubiquitous access to image

datasets has been responsible for much of the recent progress in object recognition after decades

of proverbial wandering in the desert. For instance, it was the availability of face training data,

more than perceived advances in machine learning that produced the first breakthrough in face

detection [26]. And it is the dataset of millions of photographs of consumer products, as much as

clever feature matching that allowed visual search engines like GOOGLE GOOGLES to become

a reality. However, like any proper revolution, this one too has brought with it new problems to

replace the old ones. It appears that this field is now getting too obsessed with evaluation, spending

more time staring at precision-recall curves than at pixels [21]. Some of the evident issues with

current state-of-the-art datasets are as follows:

2.2.2.1 Lack of Diversity

Capturing sufficient diversity in a dataset is a challenge. We can often observe that datasets are

restricted to a selected subset of cases, each dataset tackling one small part of the whole set of

possible environments and conditions: for example, KITTY [22] and CityScapes [23] are collected

only in Germany or even the Oxford [27] dataset is only collected in Oxford, meaning that those

datasets are geographically restricted.

2.2.2.2 Dataset Bias

The visual world is so complex and nuanced that any finite set of samples ends up describing just

some of its aspects. Moreover, in case the samples are collected for a particular task, they will

inevitably cover just some specific visual region. Hence, it is not surprising that pre-defined image

20

collections like existing computer vision datasets, present such specific bias to be easily

recognizable. The main types of bias [21] found in existing computer vision datasets are as follows:

• Selection Bias: It is a known fact that datasets that are gathered automatically fare better

than those collected manually. However, getting images from the internet does not

guarantee a fair sampling, since keyword-based searches will return only particular types

of images. Obtaining data from multiple sources (e.g. multiple search engines from

multiple countries) can somewhat decrease selection bias.

• Negative Bias: Having a rich and unbiased negative set is important to classifier

performance. Therefore, datasets that only collect the things they are interested in might be

a disadvantage, because they are not modeling the rest of the visual world. An effective

remedy would be to add negatives from other datasets.

• Capture Bias: Professional photographs, as well as photos collected using keyword search,

appear to suffer considerably from the capture bias. The most well-known bias is that the

object is almost always in the center of the image. For example, searching for a “mug” on

Google Image search will mostly provide images with mugs situated at the center of the

frame. Also, it will reveal another kind of capture bias: almost all the mugs have a right-

facing handle.

2.2.2.3 Lack of challenging Weather and Lighting conditions

In computer vision tasks for applications like Autonomous Driving, it is very crucial that Computer

vision algorithms are also trained in challenging and variety of weather and lighting conditions.

Apart from a few datasets, all others only have images of driving scenarios in regular weather

conditions. However, the landscape, roads, visibility, wind, etc. will differ for different parts of

21

the world and with varying seasons as well. It is so important that Autonomous Vehicles are

trained for every such scenario before finally deploying them on roads for public usage.

2.2.3 Synthetic Data: An Option

Amidst such complications with using real-world data, researchers have looked for efficient

alternatives and Synthetic data (created using Virtual Reality and/or Augmented reality) has

emerged as a worthy option. A promising approach to generate synthetic data is to use a graphic

simulator to generate automatically annotated data. Several such simulated datasets have been

created in recent years as found in [28], [29], [30], [31], etc.

• SYNTHIA dataset: SYNTHIA stands for the SYNTHetic collection of Imagery and

Annotations. This dataset is one of the best examples of datasets generated using simulated

environments for Autonomous Driving research. SYNTHIA consists of photo-realistic

frames rendered from a virtual city and comes with precise pixel-level semantic

annotations for thirteen classes, i.e., sky, building, road, sidewalk, fence, vegetation, lane-

marking, pole, car, traffic signs, pedestrians, cyclists and miscellaneous.

Figure 12: Examples from SYNTHIA Dataset [31]

22

2.3 Simulation Environment

For dataset generation regarding Autonomous Driving research, there are various dedicated as well

as general-purpose simulators available. Some of the dedicated simulators (Driving Simulator)

even allow training the Autonomous Vehicles in the simulated environment, apart from data

generation. Driving Simulators are usually a collection of high-level extensible modules that allow

the rapid development and testing of vehicle configurations and facilitate the construction of

complex traffic scenarios. They support multiple vehicles with unique steering or acceleration

limits, as well as unique tire parameters and dynamic profiles to name from the vast features they

provide. Engineers can specify the specific vehicle sensor systems and vary the time of day and

weather conditions to generate robust data. Non-vehicle participants such as cyclists and

pedestrians can be assigned specified routes or script scenarios that place the ego vehicle in

dangerous reactive scenarios [12]. Some of the main benefits of using driving scenarios are

discussed as follows:

• Data Generation: Driving simulators can generate virtually unlimited data for research and

testing purposes. Apart from the main scene images, they also allow to export different

vehicle configuration data and the data from virtual sensors attached to the ego vehicle.

Furthermore, the data generated is automatically annotated as programmed, which

eliminates the need for the labor-intensive manual annotating process.

• Varying vehicle, cyclist, pedestrian, and traffic conditions: The driving simulators include

various vehicle and sensor models, pedestrians, and cyclists, as discussed above. The

diversity of these traffic actors allows training for classification on different shapes, sizes,

colors, and behaviors of cyclists, pedestrians, and other drivers.

23

• Dynamic Traffic, Weather, and Lighting Conditions: The driving simulators provide high

fidelity traffic simulation, supporting dynamic changes in traffic density, time of day,

lighting, and weather, including rain and fog.

• Rapid Scenario Construction: Typical road networks can be easily laid out using the in-

built tools and are automatically connected for routing and navigation purposes.

2.3.1 Components of a Driving Simulator

An ideal simulator for autonomous driving research comprises a variety of inter-linked

components covering the navigation, perception, and control modules. They are discussed as

follows:

• Game Engine (Rendering Engine): A game engine is a part of a computer game that

contains a 2D or 3D graphic representations (rendering engine), representations of physical

laws (Physical Engine), or collision detection (and collision response), sound, scripting,

animation, artificial intelligence, networking, streaming, memory management, threading,

localization support, scene graph and may include video support for cinematics. The most

modern game engines also include support for Virtual Reality (VR) simulation. However,

for Driving Simulators, only the Rendering Engine is used among all the above-mentioned

features of a game engine. This is due to the reason that the physics engine or collision

response of a game engine may not be up to the standard required for a high-fidelity

simulator. Some of the most popular game engines used for building driving simulators are

Unreal Engine 4 [32], Unity 3D [33], Blender [34], CryEngine [35], etc.

As of now, Unreal Engine 4, provided by Epic Games, has emerged as a favorite game

engine for our purpose. At the same time, Unity 3D is also improving at an impressive rate.

24

Figure 13: Components of a Driving Simulator [36]

• Physics Engine: As the name suggests, a Physics Engine is a computer software that

provides an approximate simulation of certain physical systems such as rigid body

dynamics (including collision detection and response), soft body dynamics, and fluid

dynamics. A Physics Processing Unit (PPU) is a dedicated microprocessor to host the

physics engine.

25

• Environment Model: This module allows a user to specify a variety of lighting and weather

conditions. The importance of data with varying weather and lighting conditions has

already been discussed earlier.

• Vehicle Model: This module contains a variety of vehicle templates that can be

simultaneously spawned in the simulation environment. Realistic vehicle control and

behavior such as key steering assistance, braking assistance, support of traction control,

flexible tires simulation, tire types, and customization, etc. are encoded in the vehicle

templates.

• Sensor Model: This one of the most important and unique modules of a driving simulator.

The sensor model comprises various virtual sensors that can be simultaneously equipped

on the vehicles in the simulation environment. Though virtual, these sensors must be high

fidelity and also behave like any other realistic sensors in the real world. The sensors are

expected to provide realistic inputs to the ego vehicles, that can be extracted and stored

with automatic annotations for research purposes. Some of the common sensors provided

in driving simulators are as follows:

▪ Camera

▪ Radar

▪ Lidar

▪ GPS

▪ Ultrasonic sensor

• API Layer: An API Layer is the component that makes the driving simulator extensible.

Using simple but powerful scripting languages, a user can control traffic actors, weather

and lighting conditions, change roadmaps, extract and process data, etc. Usually, this is

26

implemented as a client-server architecture where the game engine based simulator acts as

a server, and various python/C++ scripts are on the client-side.

Figure 14: Client-Server architecture in Driving Simulators [37]

2.4 Various Driving Simulators

Some of the lastest and efficient driving simulators and their working is discussed as follows:

2.4.1 CARLA: An Open Urban Driving Simulator

CARLA [37] has been developed from the ground up to support the development, training, and

validation of autonomous driving systems. In addition to open-source code, and protocols, CARLA

provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose,

and can be used freely.

CARLA consists mainly of two modules, the CARLA Simulator and the CARLA Python API

module. The simulator does most of the heavy work, controls the logic, physics, and rendering of

all the actors and sensors in the scene; it requires a machine with a dedicated GPU to run. The

27

Figure 15: A street in Town 2 in four weather conditions. [37]

CARLA Python API is a module that you can import into your python scripts, and it provides an

interface for controlling the simulator and retrieving data. Most aspects of the simulation are

accessible through the Python APIs, and the remaining will be covered in future releases. CARLA

has been built on the Unreal Engine 4 (UE4). Apart from that, CARLA comprises almost all

modern features and functionalities (mentioned in section 2.4.1) like impressive vehicle models,

environmental models, photo-realistic 3D objects (static, variable, and dynamic), virtual sensors,

etc. For implementation purposes, the necessary information and basic steps to get started with

this simulator can be found in [38]. Recently, various works have been implemented using the

CARLA simulator for different purposes like vehicle testing, data generation, sensor validation,

28

object detection, semantic segmentation, etc. and can be found in [39], [40], [41], [42], [43], [44],

etc.

Figure 16: Three of the sensing modalities provided by CARLA. From left to right: normal vision

camera, ground-truth depth, and ground-truth semantic segmentation. [37]

2.4.2 Microsoft AirSim

AirSim [36] is another high-fidelity simulation platform developed with a goal of encouraging AI

research to experiment with deep learning, computer vision, and reinforcement learning algorithms

for autonomous vehicles. It is a simulator for drones, cars, and more built on Unreal Engine and

includes a physics engine that can operate at a high frequency for real-time hardware-in-the-loop

(HITL) simulations with support from popular protocols (e.g., MavLink). This simulator is

designed from the ground up to be extensible to accommodate new types of vehicles, hardware

platforms, and modular protocols. It is developed as an Unreal plugin that can be simply dropped

into any Unreal environment. As a whole, AirSim comprises state-of-the-art modules like the

modern physics engine, environment model, vehicle model, sensor model and rendering engine

(Unreal Engine). For implementation purposes, the necessary information and basic steps to get

started with this simulator can be found in [45].

29

Figure 17: Sample road scene in AirSim [46]

2.4.3 Autono Vi-Sim

Autono Vi-Sim [12] is another such high-fidelity simulation platform for autonomous driving data

generation and driving strategy testing. It is also a modern state-of-the-art driving simulator

designed to allow researchers and engineers to rapidly configure novel road networks, and to test

these in a variety of weather and lighting conditions.

Best et. al in [12], developed Autono Vi-Sim and created various complex testing driving scenarios

as follows:

• Passing a bicycle

30

Figure 18: Autono Vi-Sim Architecture [12]

• Jaywalking pedestrian

• Sudden stop at high speed

• High-density traffic approaching at a turn

• Car suddenly entering Roadway

• S-turns

As shown in the figure below are some sample scenes from Autono Vi-Sim: (A): Heavy fog

obstructs the view of a vehicle. (B): the entire simulated city. (C): Vehicles pass through a slick

intersection in rainy conditions

Figure 19: Samples from Autono Vi-Sim [12]

31

2.4.4 Comparison of existing Driving Simulators

Simulator License Physics

Engine

Graphic

Engine

Scripting

Language

Geograp

hically

Diverse

Curbs

Dataset

Bias

Challenging

Weather

conditions

CARLA [37] GPL/Open

Source

Unreal

Engine

GPU Python No Yes Yes

AirSim [36] GPL/Open

Source

Unreal

Engine

u C++,

Python,

C#, Java

No Yes Yes

DeepDrive

[47]

GPL/Open

Source

Unreal

Engine

u C++,

Python

No No Yes

Udacity [48] GPL/Open

Source

Unity u C++,

Python

No No Yes

NVIDIA

DRIVE

Constellation

[49]

Restricted PhysX/C

UDA

GPU C/C++,

Python

Yes Yes Yes

Carcraft

(Waymo)

[50]

Restricted u u u u u u

SIMLidar

[51]

GPL/Open

Source

u u C++ No No No

Helios [52] GPL/Open

Source

JMonkey

Engine

OpenG

L

Java Yes No Yes

Autono Vi-

SIM [12]

u Unreal

Engine

OpenG

L

C++/Pytho

n

No No Yes

RADSim

[53]

Commercial u u MATLAB No No No

SIMSonic

[54]

GPL/Open

Source

u u R No No No

Table 1: Summary of the features of specific simulators for AVs. [13]

 Table Legend: u-Unknown or could not be determined.

32

2.5 Reality Gap and Domain Randomization

So far, we have discussed how synthetic data generated from driving simulators can be a safe,

inexpensive, and efficient alternative to real-world data collection. However, the challenge with

simulated training is that even the best available simulators do not perfectly capture the reality.

Models trained purely on synthetic data fail to generalize to the real world, as there is a discrepancy

between simulated and real environments, in terms of both visual and physical properties [55].

This difficulty of transferring simulated experience into the real-world is called the “Reality Gap”.

The reality gap is a subtle but important inconsistency between reality and simulation that prevents

simulated robotic experience from directly enabling effective real-world performance.

Bousmalis et. al. [55] clearly specify that visual perception often constitutes the widest part of the

reality gap: while simulated images continue to improve in terms of fidelity, the peculiar and

pathological regularities of synthetic pictures, and the wide, unpredictable diversity of real-world

images, makes bridging the reality gap particularly difficult when the robot must use vision to

perceive the world for most of the tasks.

In fact, the more we increase the fidelity of our simulations, the more effort we have to expend in

order to build them, both in terms of implementing complex physical phenomena and in terms of

creating other content (e.g., objects, backgrounds) to populate these simulations. This difficulty is

constituted by the fact that powerful optimization methods based on deep learning are

exceptionally proficient at exploiting simulator flaws: the more powerful the machine learning

algorithm, the more likely is to discover how to “cheat” the simulator to succeed in ways that are

infeasible in the real world.

33

Various works like [55], [56], [57], [58], [59], [60] and [61] have discussed the problem of Reality

Gap in brief and provided solutions to bridge the Reality Gap. Almost all these approaches

suggested the following ways to reduce the Reality Gap:

• Increase the resemblance between real and simulated domains by using high fidelity

simulators to generate data (which we did in this work).

• Customize the generated simulated data to make them look real using GANs.

• For low-quality synthetic images, use domain randomization to create enough variety in

the data and then train the Neural Network.

Traditionally, increasing the fidelity of simulators and generating realistic data has always been

state-of-the-art in the Computer Vision field. On the other hand, there has been a rise in the

approaches where colossal variety is randomly infused into photographically low-quality data,

such as Domain Randomization, Domain Adaptation, Structured Domain Randomization, etc.

Such approaches are discussed in the following sub-section.

2.5.1 Domain Randomization

Bridging the “Reality Gap” that separates the simulated world from the real-world could accelerate

robotics (including autonomous driving) research through improved data availability. Tobin et al.

[56], introduced the concept of Domain Randomization, a simple technique for training models on

simulated images that transfer to real images by randomizing rendering in the simulator. The key

concept behind this is generating a vast amount of training data by randomizing the object classes,

their poses, the number of objects in a frame, colors, textures, lighting conditions, etc. In this

manner, the model trained on such data will be exposed to a wide range of environments and

34

scenarios. When such a model is tested on a real-world scenario, it will generalize to the real-world

with no additional training, i.e. the real-world may appear to the model as just another variation.

Figure 20: Training data generated using Domain Randomization [56]

In their approach, Tobin et al. [56], randomized the following aspects of each domain for each

sample used during training (the models used to validate this approach were Object Detection

models).

• Number and shape of distractor objects

• Position and texture of all objects

• Position, orientation, and field of view of camera

• Number of lights in the scene

• Type and amount of random noise in the images

35

Domain Randomization for Computer Vision tasks is still in its infancy and has been mostly used

for basic shapes and objects like cubes, cylinders, pyramids, etc. as observed in [56] and [57].

However, Tremblay et al. [58] demonstrated that Domain Randomization is an effective technique

to bridge the reality gap in the Autonomous Driving domain as well. Using synthetic DR data

alone, they trained a neural network to accomplish tasks like object detection with performance

comparable to more labor-intensive datasets. Their work proves that using DR to generate datasets

for training deep neural networks is a promising approach to leverage the power of synthetic data.

Figure 21: Images from Virtual KITTI (first row) and DR approach (second row) [58]

Prior to Domain Randomization, researchers had resorted to Domain Adaptation, which aims to

tailor the model for a particular target domain by jointly learning from the source synthetic data

and the data of the target real domain. This would not particularly work for Autonomous Vehicles

36

as it is almost impossible for a car manufacturer to know in advance under what domain (which

city, what weather, day or night) the vehicle will be used. Due to such reasons, Domain

randomization seems to be an ideal option to bridge the reality gap in Autonomous Vehicle

research [59].

37

2.6 Related Works

The table below is a compilation of the research works most relevant to the domains covered in

this thesis.

Title Accomplishments Limitations

Unbiased Look at

Dataset Bias, by A.

Torralba, A. Efros,

2011

--This paper conducts a survey of

the current state of object

recognition datasets.

--They present a comparison study

of relative data bias, cross dataset

generalization, etc. and other faults

with existing datasets.

--This paper points out the

shortcomings in current datasets

used for Computer Vision but

doesn’t provide any effective

solutions to improve them.

--Apart from that, this is a fairly

old survey and hence doesn’t

reflect the recent changes that

have occurred in those datasets.

The SYNTHIA

Dataset: A Large

Collection of

Synthetic Images for

Semantic

Segmentation of

Urban Scenes, by G.

Ros, L. Sellart, J.

Materzynska, D.

--Presents SYNTHIA, a synthetic

dataset of urban scenes, consisting

of photo-realistic frames rendered

from a virtual city with precise

pixel-level annotations for popular

classes like sky, building, road,

sidewalk, pedestrians, vehicles, etc.

--They have portrayed and

evaluated the SYNTHIA dataset

specifically for Semantic

Segmentation.

--However, a dataset for

Computer Vision needs to be

general-purpose and mature

enough for various tasks like

38

Vazquez, A. Lopez,

2016

object detection, object

recognition, etc.

A Systematic Review

of Perception System

and Simulators for

Autonomous

Vehicles Research,

by F. Rosique, P.

Navarro, C.

Fernández, A.

Padilla, 2019

--This paper presents a systematic

review of the perception systems

and simulators for Autonomous

Vehicles (AVs).

--Conducts a survey comparing

various open and non-open source

driving simulators available for AV

research.

--It doesn’t cover the suitability of

the surveyed simulators for

specific tasks related to

Autonomous Driving.

CARLA: An Open

Urban Driving

Simulator, by A.

Dosovitskiy, G. Ros,

F. Codevilla, A.

Lopez, V. Koltun,

2017

--Introduces CARLA, an open-

source simulator for autonomous

driving research.

--It further explains the components

of the simulator as well as the

modern features that can be used to

develop and train Autonomous

Vehicle systems and then evaluate

them in controlled scenarios.

--The initial stable versions of the

simulator provided in this paper

doesn’t allow the usage of

custom-built environments.

AutonoVi-Sim:

Autonomous Vehicle

--Presents Autono Vi-Sim, a high-

fidelity simulation platform for

--The simulator provided in this

work is still in active

39

Simulation Platform

with Weather,

Sensing, and Traffic

control, A. Best, S.

Narang, L. Pasqualin,

D. Barber, D.

Manocha, 2017

autonomous driving data

generation and driving strategy

testing.

--Furthermore, they use the

simulator to generate various

complex driving scenarios.

development and needs

improvement to its physics

engine as well as sensor models.

Training Deep

Networks with

Synthetic Data:

Bridging the Reality

Gap by Domain

Randomization, by J.

Tremblay, A.

Prakash, D. Acuna,

M. Brophy, V.

Jampani, C. Anil, T.

To, E. Cameracci, S.

Boochoon, S.

Birchfield, 2018

--This paper aims at bridging the

reality gap in Computer Vision

through the Domain

Randomization technique.

--First of all, they generate

synthetic data applying Domain

Randomization and use this data to

train Object Detection models.

--They further demonstrate that

such a model works efficiently

when tested on real-world data.

--This approach is applied only on

very basic object forms like

cubes, spheres, and pyramids.

--This work lacks in maturity

required for Autonomous

Research.

Domain

Randomization and

Pyramid

--This paper proposes to harness the

potential of simulation for the

semantic segmentation of real-

--The generated dataset is

evaluated only for semantic

segmentation.

40

Consistency:

Simulation-to-Real

Generalization

without Accessing

Target Domain Data,

by X. Yue, Y. Zhang,

S. Zhao, A.

Sangiovanni-

Vincentelli, K.

Keutzer, B. Gong,

2019

world driving scenes in a Domain

Randomization fashion.

--They randomize the synthetic

images with auxiliary datasets and

enforce pyramid consistency across

domains within an image.

--It would be important to

establish how this dataset

performs for other general-

purpose Computer Vision tasks as

well.

Table 2: Related works

41

2.7 Thesis Statements

2.7.1 Problem Statement

Machine learning based Autonomous Vehicle technology requires a colossal volume of data,

encompassing a variety of driving scenarios and conditions, to be trained upon. Simulation

environments have emerged as an efficient, safe and cost-effective solution for the training, testing,

and validation of Autonomous Vehicle technology. However, for the effective usage of simulation

environments, the complication of Reality Gap (difficulty of transferring simulated experience

into real-world) must be addressed. In this work, the usage of highly realistic 3D models of

dynamic objects (traffic actors) in pre-built city models enables the simulation environment to look

highly photo-realistic. In this manner, the data generated will be quite realistic in terms of photo-

realism enhancing the training efficiency of Deep Learning based Computer Vision techniques.

Also, the flexibility and ease at which scenarios can be tailored using our data generation tool will

enable efficient, safe, fast and cost-effective data collection for Autonomous Vehicle research.

2.7.2 Thesis Contribution

The work of this thesis can be divided into two parts:

A) The work implemented as a part of the overall system:

• Set up a realistic simulation environment with pre-built 3D city models and 3D

models of dynamic objects (provided within the simulator being used).

• Using prior knowledge about the driving scenario (traffic actor classes, their pose,

location, speed, etc.), the scene is recreated in the simulation environment.

• Based on that data, perform Motion Prediction and Risk Assessment and determine

the traffic actors that pose a threat to the ego vehicle.

B) Main contribution of this thesis:

42

• The original scene is then altered (by changing various parameters like the number

of traffic actors, their original positions, trajectories, pose, etc.), and various test

scenarios are generated.

• In this manner, the main contribution of this thesis would be a test scenario

generation environment (tool) that allows a user to define desirable driving

scenarios for data collection for training and testing Autonomous Vehicle

algorithms.

• This environment (tool) was set up using CARLA, an open-source simulator, and

various Python scripts were written to control the simulation environment (some

scenarios were explicitly defined while some were created in a random fashion).

• The other main contribution will be an annotated dataset (framewise collection of

the generated test scenarios) that was created as a result of the implementation part

of this thesis.

• This dataset can be readily used for Autonomous Vehicle research. Also, new data

can be easily collected using the above-mentioned test scenario generation

environment.

43

Chapter 3: Proposed System

This chapter first discusses how this work is related to the overall system developed by a group of

six students under supervisor Dr. Xiaobu Yuan, University of Windsor. Secondly, this chapter

discusses the proposed system developed for “test scenario generation” for testing and validation

of Autonomous Vehicle algorithms.

3.1 Motivation

Recently, test Autonomous Vehicles of top companies like Uber and Tesla caused pedestrian

fatalities [62], raising safety concerns. Such incidents point to the fact that Autonomous Vehicle

algorithms still need to be trained on vast amounts of data before being deployed on roads for

consumer use. The proposed system is developed with an aim to generate huge amounts of realistic

data for Autonomous Driving research in a safe, time-saving and cost-effective manner.

3.2 Working of the overall system (developed by a group of six students)

The overall system is composed of six components as follows:

• Construction of a virtual 3D environment

• Rendered images of real-time video

• 3D feature and keypoint extraction

• Removal of static and variable objects

• Dynamic object recognition

• Simulation Environment

44

Figure 22: The overall System architecture

The above figure describes the architecture of the overall system (developed by six students) and

how different modules are connected to each other. The first part (red) deals with the construction

45

of a virtual 3D environment using OpenStreetMap data (VGI/crowdsourced) and façade texture

from Google street view images. The virtual 3D city model contains stationary objects such as

buildings and variable objects like trees. After that, several features are extracted (yellow) from

the 3D object models and stored in a repository. This repository is then further used in the Dynamic

object recognition task. The module marked in green deals with stationary and variable object

elimination, where the key points are first detected in the input image to verify the existence of

that object in the real-world by matching the extracted keypoints of the input image. Matching the

features of the virtual environment and real-time image confirms the location of the car in the real-

world that solves the problem of geo-localization of a self-driving car. After that, dynamic object

recognition and pose estimation (blue) are carried out identifying the object class, its location, pose

and speed.

This information is then passed over to my part (Simulation Environment - violet). I have to

localize the dynamic objects and recreate the scenario in the simulation environment. Furthermore,

I perform motion estimation and risk assessment and determine which objects can be a threat to

the ego vehicle.

This concludes my role in the overall system. Apart from that, the main focus of this thesis is test

scenario generation which will be discussed in detail later on.

From the above-mentioned six modules, the ones from which I receive my inputs are discussed in

brief as follows:

• Construction of 3D Virtual World: Firstly, a virtual city is constructed using open source

VGI data such as 2D street views and satellite images. 3D structural files are extracted with

3D structures of the buildings that are rendered, and the final 3D structure is obtained with

46

the geolocation information that is externally mapped on to the model. Textures are

mapped onto buildings in the 3D model by extracting real-world images and

georeferencing them. In this way, a virtual city with stationary (e.g. buildings) and variable

objects (e.g. trees) is formed. Later this virtual city is updated with dynamic objects using

real-time recognized dynamic object details. The virtual city with 3D static, variable, and

dynamic object model information present in real-time road scenes is used by the self-

driving car to navigate safely by knowing the surroundings. This module is marked red in

figure 22.

• Dynamic Object Recognition: This module matches features of the dynamic objects in the

input image with the feature information of 3D object models stored in the repository to

find a suitable match of 3D model for each of the dynamic objects present in the input

image. After finding the corresponding 3D model from the repository, a voting algorithm

is used for the matching purpose, and to estimate the confidence score that signifies the

assurance of object identification. This process improves the confidence of recognition and

pose estimation of dynamic objects in the input image. This module is marked in blue in

figure 22.

47

3.3 Proposed System Architecture

This section discusses the architecture of the system that comprises of all the work done in this

thesis.

3.3.1 Main System Architecture

Figure 23: Proposed System Architecture

48

As shown in the above figure, my system consists of three main modules: The Visualization

module, Motion Prediction and Risk Assessment module, and the Motion generation (test scenario

generation) module.

• Visualization Module: As the name suggests, this module hosts the simulation side of the

system. Based on the prior information (object class, its pose, location and speed), objects

are localized accordingly in the simulation environment, and a driving scene is initiated.

• Motion Prediction and Risk Assessment module: This module takes in the necessary

information (current location, object class and speed) and predicts the future trajectory of

the object. Then risk assessment is performed and determined whether an object will be a

threat to the ego vehicle or not.

• Motion generation module: Once the original scenario is executed, various parameters like

the number of objects, their speeds, orientation, weather and lighting conditions, etc. are

altered, and new test scenarios are generated. Such test scenarios are stored in the form of

an annotated dataset that can be used for computer vision research. Such test scenarios are

generated by explicitly defining the parameters as well as in random fashion.

3.3.1.1 Proposed System Algorithm

Algorithm: Coordinated working of the three modules

Input: Prior scene information, simulator

Output: Reconstructed original scene and its variations with Motion Prediction and Risk

Assessment applied

Step 1: Receive prior information about the driving scenario (number and type of actors, their pose,

 speed, etc.) from other processes.

49

Step 2: Based on this information, the original scenario is recreated in the Visualization Module.

Step 3: Optional: Apply Motion prediction and Risk Assessment module to this scene.

Step 4: Feed this scene to the Motion Generation module and construct many test variants of the

 original scene by changing relevant configurations and store them in the desired data

 format.

Step 5: Apply the Motion Prediction and Risk Assessment module to each of these test scenarios

 to validate them.

Step 6: Reflect the Motion prediction and Risk Assessment results visually by highlighting the

 actors by color code (Red for high risk and Yellow for mild risk).

Step 7: Repeat steps 1-3 for a new original scenario.

Step 8: Repeat steps 4-6 to generate test scenarios again out of this original scenario.

Step 9: Exit.

3.3.2 Visualization Module

The simulation environment is hosted on the CARLA 0.9.5 simulator. The simulator is discussed

in detail in section 2.4.1. In the main system, real-time dynamic information will be provided as

prior information to our Visualization Module through the IoT architecture. The prior information

contains all the scene information like the landscape, number of objects, object classes, orientation,

static and variable object information, weather information, etc. For our experimentation, we

assume the prior information to initiate the scene. The visualization module architecture is as

shown in the figure below.

50

Figure 24: Visualization Module Architecture

The step-by-step explanation of the process of generating a scene in the simulation environment

is as follows:

• Loading Virtual city: For this experimentation, the virtual city used is Town03, provided

in the simulation environment itself. This is because the spawn points and other parameters

are hard-coded in the provided environments. We can expect that the driving simulator

conveniently allows using the custom environment in its further stable releases.

51

• Spawn and Activate actors: Once the landscape is loaded, the actors, (vehicles, humans,

and other static/variable objects) need to be spawned into the simulation environment at

prior known locations and orientations.

• Define and assign controllers for actors: Once the actors are spawned in the environment,

the next step is to define and assign controllers to them to make them move in a desired

manner. In this step, we can define various controller parameters depending on the actor

type. For vehicles, the parameters that can be defined are throttle, steer, brake, hand_brake,

reverse, etc. The parameters for pedestrian type actors are speed, rotation, heading,

direction, etc. Apart from custom-defined controllers, we can also assign AutoPilot modes

to dynamic actors. However, there are no such controller options for static objects in the

scene.

• Define Weather conditions: Finally, the weather conditions such as cloudiness,

precipitation, sun_altitude_angle, sun_azimuth, etc. are defined as per the prior

information.

• Finally, depending on the Motion Prediction and Risk Assessment results, the respective

objects are highlighted with specific color codes.

3.3.2.1 Visualization Module Algorithm

Algorithm: Recreation of an original scene in the Visualization module based on prior information

Input: Prior information and simulator

Output: Recreated scenario in the simulation environment

Step 1: Based on the prior information, activate the correct number and type of actors.

Step 2: Spawn the actors (vehicles, pedestrians and static) at designated locations.

52

Step 3: Configure the vehicle controllers and walker controllers by mainly setting the designated

 velocity and orientation, among other parameters.

Step 4: Define the required weather parameters such as cloudiness, precipitation, and

 sun_altitude_angle.

Step 5: Spawn and configure the required photographic, Lidar, or radar sensors.

Step 6: Attach the sensors to required actors to capture data from different points of view.

Step 7: Set a timeout after which all the actors in the simulation should get destroyed.

Step 8: Exit.

3.3.3 Motion Prediction and Risk Assessment Module

Once, the original scene has been initiated, Motion Prediction and Risk Assessment are performed

on the nearby dynamic actors, w.r.t the ego vehicle. The dynamic objects that can be a threat to

the ego vehicle are identified and are highlighted with color codes.

It is important to note that we have used the work of F. Chan et. al [63] in this module. This work

was used as it is for our data validation and no contributions were made to it. F. Chan et al.

contributed a Dynamic-Spatial-Attention (DSA) Recurrent Neural Network (RNN) for

anticipating accidents in dashcam videos. Their method anticipates collisions about 2 seconds

before they occur with 80% recall and 56.14% precision.

While extensive discussion about their approach is out of the scope of this thesis, the risk metric

used in their work is Time to Accident. We will call this risk metric as Time to Collision in this

thesis. The pre-trained collision anticipation model implemented by F. Chan et al. can be found at

[64]. While this model is a demo model, we trained our model on the licensed dataset provided by

53

the authors upon requesting it. This dataset consists of 678 dashcam videos on the web. The dataset

is unique since various accidents (e.g. Motorbike hits a car, a car hits another car, etc.) occur in

all videos. This dataset is quite similar to the simulated data we generated in terms of collisions.

Hence, we could easily apply their model on our test data to extract just the Time to Collision for

colliding objects.

Figure 25: Motion Prediction and Risk Assessment Architecture

As shown in the above figure is the Motion Prediction and Risk Assessment architecture used in

this work. The DSA RNN model by F.Chan et. al. forms the core of this module and calculates the

Time to Collision (TTC) for colliding objects only. We further categorize objects as per their TTC.

54

For pedestrians the state changes to “Danger” when the TTC is less than or equal to 1 second. For

vehicles, the state changes to “Danger” when the TTC is less than or equal to 0.5 seconds. For

objects who do not collide into the ego vehicle at all, this model doesn’t calculate TTC. So we

have manually categorized them as in “Caution” state once they enter the intersection area used in

this experimentation as described in section 4.2. While the objects who are not detected at all by

the object detector (and hence far enough) are not assigned any state and can be considered “safe”.

It is important here to note that the thresholds of different actors (TTC<=1s for pedestrians and

TTC<=0.5s for vehicles) has been manually fixed to indicate when they should be considered a

danger to the ego vehicle. The Time to Collision itself is calculated considering parameters like

the actor type, current location, orientation and velocities of those actors w.r.t the ego

vehicle.These parameters do not affect the threshold values for categorizing the dynamic actors

into threat states as the TTC is calculated first based on these parameters and the threshold is just

used here to divide the TTC range.

3.3.3.1 Motion Prediction and Risk Assessment Algorithm

Algorithm: Time to Collision Estimation and assigning Threat state

Input: Image frames

Output: Threat state of colliding object w.r.t ego vehicle

Step 1: Apply the collision estimation model by F. Chan et. al (2016) on the required image frames.

Step 2: This model will provide the Time to Collision of any objects that collide into the ego

 vehicle.

Step 3: For pedestrians, assign the “Danger” state when TTC<=1s.

55

Step 4: For vehicles, assign the “Danger” state when TTC<=0.5s.

Step 5: For other objects within a pre-defined distance (within the intersection for this

 experimentation), assign threat state “Caution” manually.

Step 6: For objects not detected by the object detector (and hence far enough), they can be

 considered “safe”.

Step 7: Forward the object threat state information to the Visualization module.

Step 8: Exit

Apart from [63], there are other recent works such as [65], [66], [67], [68], and [69] that can be

referred for Dynamic Risk Assessment in traffic scenes. In fact, [65] and [69] categorize the objects

elaborately into categories like low risk, mild risk and high risk, which is exactly what we wanted

to do on our test scenarios. However, we could not procure their code and datasets for our usage.

As a result, the model from [63] was used finally.

3.3.4 Motion Generation (Test Scenario Generation) Module

Once the original scene has been executed successfully, the Motion Generation module can be

employed to alter the scene and generate various challenging situations out of the original scene.

The Motion Generation module architecture is shown in the below figure.

56

Figure 26: Motion Generation Module

As shown in the above figure, first of all, the original scene is loaded in the simulation

environment. After that, the tester has the choice to select the desired number/models of vehicles,

pedestrians, static objects, etc. and spawn them into the scene at desired locations. The tester can

also change some generic features like vehicle colors and types and the weather type. Finally, the

tester can define the motion (speed, orientation, direction) that a particular actor will follow. In

this manner, simply by adjusting certain configurations in the original scene, a new test scene can

be generated. Furthermore, motion prediction and Risk assessment algorithms can be applied to

this newly constructed scene and the results can be observed.

57

In this work, various behavior-based movement patterns have been defined and stored as various

python scripts. The movement patterns implemented in this work are,

• a pedestrian moving on a sidewalk at less velocity

• a pedestrian moving across the intersection in a dangerous manner,

• a pedestrian running into the ego vehicle,

• a car running into the ego vehicle from across,

• a car running into the ego vehicle from left,

• a car taking a dangerous turn near the ego vehicle

• two cars colliding in front of the ego vehicle

• a bike running into the ego vehicle from right, etc.

Further on, the above-discussed behaviors can be mixed and matched along with the number of

actors, types, weather conditions, etc. and various other scenarios can be constructed at ease. The

parameters and attributes responsible for generating various movement patterns have already been

discussed in section 3.3.2. These parameters need to be adjusted relative to the current motion state

of the ego vehicle to make it move relative to the ego vehicle.

3.3.4.1 Test Scenario Generation Algorithm

Algorithm: Generating test scenarios by altering the original scenario

Input: The original scenario generated in section 3.3.2

Output: Multiple test scenarios

Step 1: Select and adjust the number and type of actors from the original scenario.

58

Step 2: Spawn the actors (vehicles, pedestrian and static) with color variations at desired locations.

Step 3: Change the vehicle controller and walker controller configurations to create desired

 movements relative to the ego vehicle.

Step 4: Change the weather parameters to achieve the required variations in weather conditions.

Step 5: Set the location at which the recorded data will be stored.

Step 6: Set a timeout after which all the actors in the scene will be destroyed.

Step 7: Run the scenario. New test scenario executed and recorded.

Step 8: Repeat steps 1-7 as many times with relevant variations to generate as many test scenarios.

Step 9: Exit.

59

Chapter 4: Results and Experimentation

The proposed system was built on a PC running Windows 10, with Intel(R) Core(TM) i7-5820

processor, NVIDIA GeForce GTX 960 GPU, and 32 GB of RAM. The list of software, libraries

and tools used during this implementation is provided in the table below.

CATEGORY NAME

Operating System Windows 10

Programming Language Python 3.7.x, Python 3.5.x

Rendering Software Unreal Engine 4.18

Driving Simulator CARLA 0.9.5

IDE Jupyter Notebook, Anaconda, Sublime Text

Libraries OpenCV, NumPy, CUDA toolkit,

Tensorflow, random, time, etc.

Table 3: Software, Tools and Libraries

4.1 Simulation Environment and User Interface

As discussed earlier, the driving simulator used for this experimentation is the CARLA 0.9.5

(Windows version). The python client scripts to control the simulation environment were written

in Python 3.7. Some screenshots demonstrating the simulation environment are as follows:

60

Figure 27: CARLA logo

Figure 28: Sample scene from CARLA simulator

61

4.1.1 User Interface

In order to make our simulation environment user-friendly, we built a basic interface using which

a user can run scenarios or edit them without actually having to deal with the complicated python

scripts. The interface consists only of those functionalities that were actually built and tested in

this work and does not have control over the rest of the functionalities of the simulator. The

flowcharts describing the flow, navigation and tasks are as follows.

Figure 29: User Interface: Base Scenario Creation

62

Figure 30: User Interface: Test Scenario creation

The above-displayed flowcharts are quite similar to the flowcharts described in sections 3.3.2 and

3.3.4 as they represent the same processes (base scenario generation and test scenario generation).

The screenshots describing the actual interface are as follows:

63

Figure 31: User Interface screenshots (a)

64

Figure 32: User Interface screenshots (b)

4.2 Driving Scenario Results and Specifics

This section discusses the driving scenarios implemented using the scenario generation tool

developed in this work.

It is important to note that the simulator used currently doesn’t allow us to import and use custom-

built 3D object/landscape models, and hence, we had to use the objects/landscapes provided within

the simulator. This is because the locations, objects, waypoints for their relative movements, etc.

65

are hardcoded within the simulator and the best results can be gained only by using the way they

are supposed to be used. If we import custom-built 3D object/landscape models, the driving

functionality (the soul of Autonomous Driving research) of the simulator would not work

efficiently.

In this manner, the base scenario created in this experimentation is as realistic as possible in terms

of relative positions of actors, their relative movements, placement of static props, right time,

season and weather of the day, and the photorealism of data captured by the sensors.

In this experimentation, we have provided a proof of concept showing how we can use the prior

information (including the right number of static, stationary, and dynamic objects in the right time,

season, and weather of the day) and recreate a scene with the best resources available currently.

Further releases of Driving Simulators will get mature and allow us to use custom 3D objects, but

as of now, we have exploited the thorough potential of the best open-source Driving Simulator

(CARLA) in terms of scenario generation.

Furthermore, the functional simulation environment and the scenarios generated are the main

results of this work. Apart from that, the objects in the frames are highlighted by color codes Red

(Danger) and Yellow (Caution) as per their threat levels w.r.t the ego vehicle. The risk assessment

model used in this work is from [63]. This model was just applied to our scenarios without making

any changes and we are not claiming any contribution to the Motion Prediction and Risk

Assessment done in our work.

We can say that we have validated our generated data using Motion Prediction and Risk

Assessment techniques. In similar works like [56], [57], [58], [59], etc. where synthetic data is

generated it is validated by applying various Computer Vision techniques like Object Recognition

66

and Object Detection. Here validation of the data simply means that Computer Vision techniques

were applied on the generated data as well as other standard datasets and then the results are

compared, which indicates the quality of data. However, such tasks are usually carried out by big

teams as it is time consuming as well as labor-intensive to manually label the huge amount of

generated data, preprocess it and then apply Computer Vision models on it to get the results. So,

in our work we simply applied the DSA RNN model for anticipating collisions provided by F.

Chan et. al. [63] on our test data and were able to obtain genuine results in the form of TTC which

proves that our data can be readily used. This DSA RNN model includes Object Recognition as

one of its intermediate steps as well.

In section 4.3, for each image, we have provided a table detailing the raw data (objects, their

positions, directions, Time to Collision and threat state w.r.t the ego vehicle). The Motion

Prediction and Risk Assessment model used is an end-to-end model (doesn’t involve any

significant intermediate steps) and detects collisions only (either an object can be safe or dangerous

enough to collide into the ego vehicle). The dangerous objects in our scenarios are highlighted Red

along as per their Time to Accident (Time to Collision - <=0.5s for vehicles and <=1s for

pedestrians) computed using [63]. However, in this work, we also have manually categorized the

objects within the intersection into “Yellow(Caution)” for demonstration purposes. While the

objects which were not detected by the Object Detector (far enough and hence safe from the ego

vehicle) are not highlighted at all.

4.2.1 Original Scenario

As discussed in section 3.3.2, the original scene is initiated based on the prior information received

from other modules through the IoT. For our experimentation, we assume this prior information

about the number of objects, type of objects, location, velocity, orientation, etc. such that it can

67

resemble the properties of a real traffic scene. The original scene is based at a clear intersection in

Town 3 (shown in the figure below) provided by the Carla simulator.

Figure 33: Selected Intersection for Experimentation

The set of actors used in this implementation is as follows:

• Vehicles: A Tesla Model 3, a Ford Mustang, Lincoln mkz 2017 and, a Kawasaki Ninja

were the vehicles used in the original scene.

• Pedestrians: The two pedestrian types used were “0001” and “0002” provided withing the

simulator. It is expected that CARLA will provide a diverse variety of pedestrians in their

upcoming stable releases.

• Static Props: Various static objects like shop, bus stop, atm, mailbox, etc are placed in the

scene in order to resemble a realistic environment.

68

4.2.1.1 Initial positions of dynamic objects

The below figure shows the initial positioning of dynamic objects around the intersection.

Figure 34: Initial Positions of Dynamic Actors

The actors corresponding to each number are as follows:

• 1: Tesla Model 3 (Red) (Ego Vehicle)

• 2: Ford Mustang (Green)

• 3: Lincoln mkz 2017 (Blue)

• 4: Kawasaki Ninja (Blue)

69

• 5: Pedestrian type 0001

• 6: Pedestrian type 0002

• 7: Pedestrian type 0001

70

4.2.1.2 Original Scenario execution

In the original scenario, each actor is allowed to execute its natural movement pattern. There is no

collision or dangerous maneuvers in the original scenario. In this scene, the Red car is our ego

vehicle. The scene from the ego car’s point of view is shown in the below image sequences.

Figure 35: Base Scenario, Image 1

71

Figure 36: Base Scenario, Image 2

Figure 37: Base Scenario, Image 3

72

Figure 38: Base Scenario, Image 4

4.3 Test Scenario Generation along with Motion Prediction and Risk Assessment

This section includes the results demonstrating how the original scenario was altered by adjusting

various configurations and dangerous scenarios were built w.r.t the ego vehicle. Moreover, at a

certain point in every test scene, Motion Prediction and Risk Assessment are performed over

nearby actors and the potential threats are identified and highlighted using color codes as discussed

in section 3.3.4. Keeping the original scene as reference, the different test scenarios generated and

validated in this work as discussed as follows.

4.3.1 Test Scenario 1: Blue Car taking a dangerous turn and colliding into the ego vehicle

In this scenario, the Blue car’s motion is manipulated and is made to take a turn and run into the

ego vehicle. It can be noticed how the Blue car is in the yellow highlight when it is within the

73

intersection and as it comes dangerously close, it is highlighted in red. This scenario is briefly

demonstrated in the image sequence below.

Figure 39: Test Scenario 1, Image 1

74

Figure 40: Test Scenario 1, Image 2

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-54.9, 129.0) -178 SW NA NA

Blue car (-78.5, 142.0) -53 NW Caution 0.8s

Ninja bike (-74.4, 117.6) 88 NE Caution NA

Table 4: Raw Data - test scenario 1, image 2

75

Figure 41: Test Scenario 1, Image 3

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-58.9, 128.9) -178 SW NA NA

Blue car (-70.4, 135.5) -36 NW Danger 0.3s

Ninja bike (-74.4, 121.7) 88 NE Caution NA

Table 5: Raw Data - test scenario 1, image 3

76

Figure 42: Test Scenario 1, Image 4

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-55.9, 128.9) -178 SW NA NA

Blue car (-67.8, 133.7) -34 NW Danger 0.1s

Ninja bike (-74.4,123.5) 88 NE Caution NA

Table 6: Raw Data - test scenario 1, image 4

4.3.2 Test Scenario 2: Jaywalking Pedestrian

In this scenario, a pedestrian’s (actor number 6 in figure 34) trajectory is set such that it walks

towards the ego vehicle. This scenario is briefly demonstrated in the image sequence below.

77

Figure 43: Test Scenario 2, Image 1

Figure 44: Test Scenario 2, Image 2

78

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-60.6, 129.3) 173 SE NA NA

P1 (leftmost) (-87.8, 139.9) -24 NW Caution 1.1s

P2 (rightmost) (-89.5, 122.9) -1 NW Caution NA

P3 (center) (-92.3,128.1) 69 NE Caution NA

Table 7: Raw Data - test scenario 2, image 2

Figure 45: Test Scenario2, Image 3

79

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-60.6, 129.3) 173 SE NA NA

P1 (leftmost) (-72.8, 133.4) -24 NW Danger 0.4s

P2 (rightmost) (-72.2, 122.7) -1 NW Caution NA

P3 (center) (-90.5, 132.9) 69 NE Caution NA

Table 8: Raw Data - test scenario 2, image 3

4.3.3 Test Scenario 3: Bike running into the ego vehicle

In this scenario, the Kawasaki Ninja bike is made to take an unethical sharp left turn such that it

collides into the ego vehicle. This scenario is briefly demonstrated in the image sequence below.

Figure 46: Test Scenario 3, Image 1

80

Figure 47: Test Scenario 3, Image 2

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-35.4, 128.4) 179 SE NA NA

Blue car (-85.4, 156.5) -90 W Caution NA

Ninja bike (-73.7, 120.8) 78 NE Caution 1s

Table 9: Raw Data - test scenario 3, image 2

81

Figure 48: Test Scenario 3, Image 3

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-46.8, 128.7) 179 SE NA NA

Blue car (-85.4, 143.7) -90 W Caution NA

Ninja bike (-69.0, 126.0) 39 NE Danger 0.4s

Table 10: Raw Data - test scenario 3, image 3

82

Figure 49: Test Scenario 3, Image 4

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-57.3, 128.9) 179 SE NA NA

Blue car (-85.3, 128.8) -90 W Caution NA

Ninja bike (-62.3, 126.9) 8 NE Danger 0s

Table 11: Raw Data - test scenario 3, image 4

4.3.4 Test Scenario 4: Car running into the ego vehicle from across

In this scene, a green Ford Mustang is made to run into the ego vehicle from across the intersection.

This scenario is briefly demonstrated in the image sequence below.

83

Figure 50: Test Scenario 4, Image 1

84

Figure 51: Test Scenario 4, Image 2

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-41.2, 128.7) 178 SE NA NA

Ninja bike (-73.7, 128.7) 88 NE Caution NA

Green car (-87.6, 136.2) 10 NW Caution 1.3s

Table 12: Raw Data - test scenario 4, image 2

85

Figure 52: Test Scenario 4, Image 3

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-49.8, 128.7) 178 SE NA NA

Ninja bike (-73.9, 140.4) 88 NE Caution NA

Green car (-81.2, 135.4) -13 NW Danger 0.7s

Table 13: Raw Data - test scenario 4, image 3

86

Figure 53: Test Scenario 4, Image 4

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-60.9, 128.7) 178 SE NA NA

Ninja bike NA NA NA NA

Green car (-70.1, 132.1) -16 NW Danger 0.1s

Table 14: Raw Data - test scenario 4, image 4

4.3.5 Test Scenario 5: A car taking unethical turn and colliding into the ego vehicle

This test case has been implemented from the green car’s point of view. This is just to demonstrate

the flexibility of the proposed scenario generation tool such that the same scenario can be run and

87

observed from so many different points of view. This means more data collection and more

scenarios to test on. This scenario is briefly demonstrated in the image sequence below.

Figure 54: Test Scenario 5, Image 1

88

Figure 55: Test Scenario 5, Image 2

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-98.5, 139.3) -3 NW NA NA

Light Blue car (-88.5, 145.3) -115 SW Danger 0.3s

Ninja bike (-73.9, 124.3) 88 NE Caution NA

Table 15: Raw Data - test scenario 5, image 2

89

Figure 56: Test Scenario 5, Image 3

Object Location Direction State w.r.t ego

vehicle

Time to

Collision

Ego Vehicle (-98.5, 139.3) -3 NW NA NA

Light Blue car (-91.4, 141.9) -135 SW Danger 0.1s

Ninja bike (-73.9, 127.3) 88 NE Caution NA

Table 16: Raw Data - test scenario 5, image 3

90

4.4 Results Comparison and Discussion

4.4.1 Advantages of Proposed Approach

The main advantage of the proposed approach is the ease and flexibility at which regular and test

driving scenarios can be generated. Moreover, the use of highly photo-realistic and high fidelity

physics modules helps in closing the reality gap that has always been a concern while using

simulation environments. In the past, open-source simulation environments have been widely used

for task-specific causes, such as lane detection, testing braking system, etc. The simulation

environments used for such causes are usually primitive and treat the traffic objects as mere point

masses or 3D boxes at best. On the other hand, our test scenario generation tool is built upon a

high fidelity driving simulator, CARLA. This enables the collection of highly realistic data that

can be further used for training and testing Autonomous Vehicle algorithms.

We can directly compare our work with a similar data collection tool given in [70]. They have

used the same simulator as us, i.e. CARLA, but the scene generation approach is quite different.

In their approach, they spawn a lot of actors at designated spawn points and those actors follow

their natural movement patterns on an Autopilot mode. Due to this reason, the scenes and data

generated is generic and hardly involve any complicated test scenarios that we are looking for. On

the other hand, the tool built in the work allows the tester to customize all the details for the scene

built up and hence allows to explicitly define the scenario in a flexible manner.

There is another similar scenario and data generation approach implemented using the Autono Vi-

Sim simulator by Best et. al in [12]. While the scenarios and data generated by them are similar in

nature to our work, the simulator used by them is not highly photo-realistic and also lacks high-

fidelity sensors. This makes the data generated by them less close to reality as compared to our

91

data. In this manner, the algorithms can be more efficiently trained and tested on our data as

compared to that in [12]. Here, we haven’t conducted any experiments on the data generated in

[12] to obtain any statistics as it was out of the scope of our work. However, in their work they

have themselves claimed that the tool they used in still in active development and needs

improvement to its physics engine as well as sensor modules (lack of photorealism of the camera

sensors is clearly evident in their data).The below image sequence demonstrates the difference

between the two works in terms of photo-realism and traffic scene features.

Figure 57: Data generated in [12]

Figure 58: Data generated in this thesis

92

We have already discussed the drawbacks of existing traditional datasets in section 2.2.2. The

information about how the data generated by our scenario generation tool covers those drawbacks

is shown in Table 17 below. Also, Table 1 in section 2.4.4 can be referred to observe how other

simulation environments cover those drawbacks.

Geographical

Diversity

Selection

Bias

Negative Bias Capture Bias Challenging

weather and

lighting

conditions

No Not

Applicable

Yes

Yes Yes

This can be

fulfilled once

custom 3D

landscape

models can be

imported and

used.

 Negative data

samples can be

collected by

arranging the desired

objects in desired

positions and making

them move in a

desired manner.

(Here Negative

means safe and

ordinary scenarios

where the Neural

Network model

doesn’t have much to

learn).

Data can be

captured from

multiple points of

view by attaching

sensors to as

many objects as

required,

depending on the

processing power

of the computer

(GPU only) used.

A variety of

weather and

lighting

conditions can be

defined and used

as appropriate.

Table 17: Drawbacks covered by our data.

4.4.2 Limitations of the Proposed Approach

The main limitation of this test scenario generation tool is that we have to manage with the

landscapes provided by the simulator used. We can be hopeful that CARLA, in its further stable

releases, allows usage of custom-built .fbx or .obj 3D environments and at the same time, retaining

all the functionalities provided by the simulator. Another driving simulator, Microsoft AirSim

offers the option of using custom-built environments, but it lacks in terms of user-friendliness, and

93

also as is not as mature as CARLA. In general, it is a fact that open-source driving simulators are

still in their infancy, and their effective usage for Autonomous Vehicles research is gaining

momentum at a slow pace.

94

Chapter 5: Conclusion and Future Work

5.1 Conclusion

Based on the work done in this thesis, we conclude that we have presented a Simulation

Environment with Reduced Reality Gap for data generation and testing Autonomous vehicle

algorithms in a safe, fast, and cost-effective manner. We have provided a proof of concept of how

real traffic scenarios can be replicated quickly in the simulation environment. We further

demonstrated how those base scenarios can be edited and various complex test scenarios can be

generated using the simulation environment set up in this work. It is safe to say that such

developments in Computer Vision would be crucial steps towards fulfilling the qualitative and

quantitive data requirements faced by Machine Learning algorithms. This would, in turn, solidify

the Testing and Validation of Autonomous Vehicles in myriad scenarios, enabling the

Autonomous Vehicles to learn more and get mature enough to replace human drivers and hence,

change transportation forever.

5.2 Future Work

This section discusses the future work that can be carried out in this direction.

• As soon as the driving simulators get mature enough to allow the importing and usage of

custom-built 3D object models while retaining all the functionalities, the landscapes, and

other object models, the models used in this simulation environment can be replaced with

actual custom ones, which would be a huge leap towards reducing the Reality gap.

• This simulation environment can be further used for Reinforcement Learning, which is

usually the main purpose of driving simulators.

95

• This simulation environment can be customized further to facilitate more impressive Data

Visualization.

• Higher levels of Domain Randomization can be practiced by including non-relevant object

models in the traffic scenes.

• This simulation environment can be used to validate other Autonomous Vehicle algorithms

like Object Recognition, Object Tracking, Semantic Segmentation, Scene Understanding,

etc.

• Apart from the data generated in this work, this simulation environment can be used to

implement a huge number of different test scenarios and generate large volumes of

complex and realistic data (photographic).

• In this work, we have generated and analyzed just the photographic data. However, while

implementing further test scenarios, sensors like radar and Lidar can be easily activated

and 3D point cloud data can be generated.

96

References

[1] "Self-driving Car Market Global Industry Trends, Share, Size and Forecast Report By

2023|With CAGR of 36.2%," Market Watch, 3 September 2019. [Online]. Available:

https://www.marketwatch.com/press-release/self-driving-car-market-global-industry-

trends-share-size-and-forecast-report-by-2023with-cagr-of-362-2019-09-03. [Accessed 16

November 2019].

[2] R. Spence, "Everything you need to know about the future of self-driving cars," Maclean's,

11 July 2019. [Online]. Available: https://www.macleans.ca/society/technology/the-future-

of-self-driving-cars/. [Accessed 16 November 2019].

[3] Daya Driving School, [Online]. Available:

pinterest.ca/pin/716564990684968118/?autologin=true. [Accessed 17 November 2019].

[4] A. Acharya, 3 January 2017. [Online]. Available: https://atul.fyi/post/2017/01/03/how-self-

driving-cars-work/. [Accessed 16 November 2019].

[5] C. Badue, . R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus,

R. Berriel, T. Paixao and F. Mutz, "Self-Driving Cars: A Survey," in arXiv:1901.04407v2,

2019.

97

[6] J. Koh, "Object detection with LiDAR Point cloud Algorithm," Meduim, 1 November 2018.

[Online]. Available: https://medium.com/@jhkoh/object-detection-with-lidar-point-cloud-

algorithm-94a241fd3f49. [Accessed 17 November 2019].

[7] J. Kocić, N. Jovičić and V. Drndarević, "Sensors and Sensor Fusion in Autonomous," in

2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November

2018; pp. 420–425, Belgrade, 2018.

[8] D. Silver, "Self-Driving Path Planning, Brought to You by Udacity Students," Udacity, 25

August 2017. [Online]. Available: https://medium.com/udacity/self-driving-path-planning-

brought-to-you-by-udacity-students-13c07bcd4f32. [Accessed 17 November 2019].

[9] M. O’Kelly, A. Sinha and H. Namkoong, "Scalable End-to-End Autonomous Vehicle," in

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal,

2018.

[10] N. Kalra and S. Paddock, "Driving to Safety: How Many Miles of Driving Would It Take to

Demonstrate Autonomous Vehicle Reliability?," in

https://www.rand.org/pubs/research_reports/RR1478.html, Santa Monica, 2016.

[11] "Fatal Uber crash shows risks of testing on public roads," IIHS, 7 August 2018. [Online].

Available: https://www.iihs.org/news/detail/fatal-uber-crash-shows-risks-of-testing-on-

public-roads. [Accessed 17 November 2019].

98

[12] A. Best, S. Narang, L. Pasqualin, D. Barber and D. Manocha, "AutonoVi-Sim: Autonomous

Vehicle Simulation Platform with Weather, Sensing,," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops. 2018., 2018.

[13] F. Rosique, P. Navarro, C. Fernández and A. Padilla, "A Systematic Review of Perception

System and," in mdpi, 2019.

[14] "Simulations Pave the Road for Self-Driving Technologies," Synced, 8 April 2018. [Online].

Available: https://medium.com/syncedreview/simulations-pave-the-road-for-self-driving-

technologies-78b696227383. [Accessed 17 November 2019].

[15] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object

Detection," in arXiv:1506.01497v3, 2015.

[16] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies for accurate object

detection and semantic segmentation," in arXiv:1311.2524v5, 2014.

[17] R. Girshick, "Fast R-CNN," in arXiv:1504.08083, 2015.

[18] S. Goswami, "A deeper look at how Faster-RCNN works," Medium, 11 July 2018. [Online].

Available: https://medium.com/@whatdhack/a-deeper-look-at-how-faster-rcnn-works-

84081284e1cd. [Accessed 18 November 2019].

[19] K. Simonyan and A. Zisserman, "VERY DEEP CONVOLUTIONAL," in

arXiv:1409.1556v6, 2015.

99

[20] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once:," in

arXiv:1506.02640v5 [cs.CV], 2015.

[21] A. Torralba and A. Efros, "Unbiased Look at Dataset Bias," in CVPR 2011, Providence,

2011.

[22] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, "Vision meets Robotics: The KITTI Dataset,"

2013.

[23] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth

and B. Schiele, "The Cityscapes Dataset for Semantic Urban Scene Understanding," in

arXiv:1604.01685v2 [cs.CV], 2016.

[24] "ImageNet," ImageNet Project, [Online]. Available: http://www.image-net.org/. [Accessed

19 November 2019].

[25] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, . D. Ramanan,

C. L. Zitnick and P. Dollar, "Microsoft COCO: Common Objects in Context," in

arXiv:1405.0312v3 [cs.CV], 2015.

[26] H. Rowley, S. Baluja and t. Kanade, "Neural Network-Based Face Detection," in IEEE,

1998.

[27] W. Maddern, G. Pascoe, C. Linegar and P. Newman, "1 Year, 1000km: The Oxford

RobotCar Dataset," in Data Papers, 2016.

100

[28] D. J. Butler, J. Wulff, G. B. Stanley and M. J. Black, "A Naturalistic Open Source Movie,"

in Springer-Verlag Berlin Heidelberg, 2015.

[29] A. Dosovitski, P. Fischer, E. Ilg, . P. Hausser, C. Hazırbas, V. Golkov, P. van der Smagt, D.

Cremers and T. Brox, "FlowNet: Learning Optical Flow with Convolutional Networks," in

arXiv:1504.06852v2 [cs.CV] , 2015.

[30] A. Handa, V. Patr ˘ aucean, V. Badrinarayanan, S. Stent and R. Cipolla, "SceneNet:

Understanding Real World Indoor Scenes With Synthetic Data," in arXiv:1511.07041v2

[cs.CV] , 2015.

[31] G. Ros, L. Sellart, J. Materzynska, D. Vazquez and A. M. Lopez, "The SYNTHIA Dataset:

A Large Collection of Synthetic Images for Semantic," in IEEE, Las Vegas, 2016.

[32] "Make Something Unreal with the most powerful creation engine," [Online]. Available:

https://www.unrealengine.com/en-US/what-is-unreal-engine-4. [Accessed 20 November

2019].

[33] "Unity for all," [Online]. Available: https://unity.com/. [Accessed 20 November 2019].

[34] "Blender," [Online]. Available: https://www.blender.org/. [Accessed 20 November 2019].

[35] "CRYENGINE," [Online]. Available: https://www.cryengine.com/. [Accessed 20

November 2019].

[36] S. Shah, D. Dey, C. Lovett and A. Kapoor, "AirSim: High-Fidelity Visual and Physical," in

Springer International Publishing, 2018.

101

[37] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V. Koltun, "CARLA: An Open Urban

Driving Simulator," in arXiv:1711.03938v1 [cs.LG], 2017.

[38] "Getting started with CARLA," CARLA , [Online]. Available:

https://carla.readthedocs.io/en/latest/getting_started/. [Accessed 2019 November 21].

[39] D. Dworak, F. Ciepiela, J. Derbisz, I. Izzat, M. Komorkiewicz and M. Wojcik, "Performance

of LiDAR object detection deep learning architectures based on artificially generated point

cloud data from CARLA simulator," in 2019 24th International Conference on Methods and

Models in Automation and Robotics (MMAR), Międzyzdroje, 2019.

[40] Y. Jaafra, J. L. Laurent, A. Deruyver and M. S. Naceur, "Seeking for Robustness in

Reinforcement Learning: Application on Carla," in International Conference on Machine

Learning (ICML), 2019.

[41] F. Yang, P. Wang and X. Wang, "Continuous Control in Car Simulator with Deep

Reinforcement Learning," in CSAI '18 Proceedings of the 2018 2nd International

Conference on Computer Science and Artificial Intelligence Pages 566-570, Shenzen, 2018.

[42] M. Jasinski, "A Generic Validation Scheme for real-time capable Automotive Radar Sensor

Models integrated into an Autonomous Driving Simulator," in 2019 24th International

Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje,

2019.

102

[43] Q. Chao, X. Jin, H.-W. Huang, S. Foong, L.-F. Yu and S.-K. Yeung, "Force-based

Heterogeneous Traffic Simulation for Autonomous Vehicle Testing," in 2019 International

Conference on Robotics and Automation (ICRA), Montreal, 2019.

[44] K. Srivastava, A. K. Singh and G. M. Hegde, "Multi Modal Semantic Segmentation using

Synthetic Data," in Deep Learning for Automated Driving (DLAD) workshop, IEEE

International Conference on Intelligent Transportation Systems (ITSC'19), 2019.

[45] "AirSim Home," Microsoft, [Online]. Available: https://microsoft.github.io/AirSim/.

[Accessed 21 November 2019].

[46] A. Kapoor and S. Shah, "Microsoft AirSim now available on Unity," Microsoft, 14

November 2018. [Online]. Available: https://www.microsoft.com/en-

us/research/blog/microsoft-airsim-now-available-on-unity/. [Accessed 21 November 2019].

[47] "DeepDrive SImulator," DeepDrive, [Online]. Available: https://deepdrive.io/index.html.

[Accessed 22 November 2019].

[48] "udacity/self-driving-car-sim," Udacity, [Online]. Available:

https://github.com/udacity/self-driving-car-sim. [Accessed 22 November 2019].

[49] "NVIDIA DRIVE CONSTELLATION Virtual Reality Autonomous Vehicle Simulator,"

[Online]. Available: https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/.

[Accessed 22 November 2019].

103

[50] "Waymo details ‘Carcraft’ simulation software, ‘Castle’ testing site for self-driving car

training," 9to5google, [Online]. Available: https://ww.9to5google.com/2017/08/23/waymo-

self-driving-carcraft-software-castle-testing/. [Accessed 22 November 2019].

[51] V. Me ́ndez, H. Catala ́n, J. R. Rosell, J. Arno ́, R. Sanz and A. Tarquis,

"SIMLIDAReSimulation of LIDAR performance in artificiallysimulated orchards," 2011.

[52] "GIScience/helios," [Online]. Available: https://github.com/GIScience/helios. [Accessed 22

November 2019].

[53] "RasSimCT," [Online]. Available: https://radsimct.se/. [Accessed 22 November 2019].

[54] "SimSonic," SimSonic Development, [Online]. Available: http://www.simsonic.fr/.

[55] K. Bousmalis and S. Levine, "Closing the Simulation-to-Reality Gap for Deep Robotic

Learning," googleai, 30 October 2017. [Online]. Available:

https://ai.googleblog.com/2017/10/closing-simulation-to-reality-gap-for.html. [Accessed 22

November 2019].

[56] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba and P. Abbeel, "Domain

Randomization for Transferring Deep Neural Networks from Simulation to the Real World,"

in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017), 2017.

[57] J. Borrego, A. Dehban, R. Figueiredo, P. Moreno, A. Bernardino and . J. Santos-Victor,

"Applying Domain Randomization to Synthetic Data for Object Category Detection," in

arXiv:1807.09834v1 [cs.CV], 2018.

104

[58] T. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, A. Cem, T. To, E. Cameracci,

S. Cameracci and S. Birchfield, "Training Deep Networks with Synthetic Data: Bridging the

Reality Gap by Domain Randomization," in CVPR 2018 Workshop on Autonomous Driving,

2018.

[59] X. Yue, Y. Zhang, S. Zhao, A. Sangiovanni-Vincentelli, K. Keutzer and B. Gong, "Domain

Randomization and Pyramid Consistency: Simulation-to-Real Generalization without

Accessing Target Domain Data," in arXiv:1909.00889v1 [cs.CV], 2019.

[60] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira and S.

Birchfield, "Structured Domain Randomization: Bridging the Reality Gap by Context-Aware

Synthetic Data," in arXiv:1810.10093v1 [cs.CV], 2018.

[61] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen and R. Vasudevan,

"Driving in the Matrix: Can Virtual Worlds Replace Human-Generated Annotations for Real

World Tasks?," in arXiv:1610.01983v2 [cs.CV], 2017.

[62] "List of self-driving car fatalities," Wikipedia, 15 October 2019. [Online]. Available:

https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities. [Accessed 26 November

2019].

[63] F.-H. Chan, Y.-T. Chen, Y. Xiang and M. Sun, "Anticipating Accidents in Dashcam Videos,"

in ACCV: Asian Conference on Computer Vision, Taipei, 2016.

[64] "smallcorgi/Anticipating-Accidents," 2016. [Online]. Available:

https://github.com/smallcorgi/Anticipating-Accidents. [Accessed 22 October 2019].

105

[65] Y. Wang and J. Kato, "Collision Risk Rating of Traffic Scene from," in International

Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney,

2017.

[66] H. Kim, K. Lee, G. Hwang and C. Suh, "Crash to Not Crash: Learn to Identify Dangerous

Vehicles using a Simulator," in AAAI Conference on Artificial Intelligence, 2019.

[67] P. Feth, M. N. Akran, R. Schuster and O. Wasenm¨uller, "Dynamic Risk Assessment for

Vehicles," in International Workshop on Artificial Intelligence Safety Engineering (WAISE),

2018.

[68] D. Phillips, J. C. Aragon, A. Roychowdhury, R. Madigan, S. Chintakindi and M.

Kochenderfer, "Real-time Prediction of Automotive Collision Risk," in arXiv:1902.01293v1

[cs.CV], 2019.

[69] G. Corcoran and J. Clark, "Traffic Risk Assessment: A Two-Stream Approach Using

Dynamic-Attention," in 16th Conference on Computer and Robot Vision (CRV), 2019.

[70] "Github," [Online]. Available: https://github.com/carla-simulator/data-collector. [Accessed

06 12 2019].

106

Vita Auctoris

Name: Kaival Kamleshkumar Patel

Birth Place: Ahmedabad, Gujarat, India

Birth Year: 1995

Education: Bachelor of Engineering (B.E.), 2012-2016

 Information Technology (IT)

 L. D. College of Engineering, Ahmedabad, Gujarat, India

(affiliated under Gujarat Technological University, Gujarat, India (GTU))

 Master of Science (MSc.) with Co-op, Fall 2017-Fall 2019

 Computer Science (CS)

 School of Computer Science

 University of Windsor, Windsor, Ontario, Canada (UoW)

	A Simulation Environment with Reduced Reality Gap for Testing Autonomous Vehicles
	Recommended Citation

	tmp.1584549526.pdf.QlswO

