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densely annotated data of 5000 images is split into separate training, validation, and test 

sets. 

 

Figure 9: An example from CityScapes Dataset [23] 

• The ImageNet database: ImageNet database is a large visual database designed for use in 

visual object recognition software research. It contains more than 14 million images that 

have been hand-annotated to indicate what objects are pictured in at least one million 

pictures, and bounding boxes are also provided. ImageNet contains more than 20,000 

categories with any typical category, such as “balloon” or “strawberry,” consisting of 

several hundred pictures. The database of annotations of third party URLs is freely 

available directly from ImageNet, though the actual images are not owned by ImageNet. 

Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large 
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Scale Visual Recognition Challenge (ILVRC), where software programs compete to 

classify and detect objects and scenes. ImageNet crowdsources its annotation process. 

Image level annotations indicate the presence or absence of an object class in an image 

such as “there are tigers in this image” or “there are no tigers in this image.” Object-level 

annotations provide a bounding box around the indicated object. 

 

Figure 10: Examples from ImageNet dataset [24] 
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• Microsoft COCO: MS COCO is another such large-scale dataset with the goal of advancing  

state-of-the-art in object recognition by placing the question of object recognition in the 

context of the broader question of scene understanding. This dataset contains photos of 91 

object types and has a total of 2.5 million labeled instances in 328k images. Such annotation 

drew upon extensive crowd worker involvement via novel user interfaces for category 

detection, instance spotting, and instance segmentation.  

 

Figure 11: Examples from MS COCO dataset [25] 



 

19 

 

 

2.2.2 Need for Datasets Improvement 

It would be safe to say that we are in the midst of a data revolution. Ubiquitous access to image 

datasets has been responsible for much of the recent progress in object recognition after decades 

of proverbial wandering in the desert. For instance, it was the availability of face training data, 

more than perceived advances in machine learning that produced the first breakthrough in face 

detection [26].  And it is the dataset of millions of photographs of consumer products, as much as 

clever feature matching that allowed visual search engines like GOOGLE GOOGLES to become 

a reality.  However, like any proper revolution, this one too has brought with it new problems to 

replace the old ones. It appears that this field is now getting too obsessed with evaluation, spending 

more time staring at precision-recall curves than at pixels [21]. Some of the evident issues with 

current state-of-the-art datasets are as follows: 

2.2.2.1 Lack of Diversity 

Capturing sufficient diversity in a dataset is a challenge. We can often observe that datasets are 

restricted to a selected subset of cases, each dataset tackling one small part of the whole set of 

possible environments and conditions: for example, KITTY [22] and CityScapes [23] are collected 

only in Germany or even the Oxford [27] dataset is only collected in Oxford, meaning that those 

datasets are geographically restricted.  

2.2.2.2 Dataset Bias 

The visual world is so complex and nuanced that any finite set of samples ends up describing just 

some of its aspects. Moreover, in case the samples are collected for a particular task, they will 

inevitably cover just some specific visual region. Hence, it is not surprising that pre-defined image 
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collections like existing computer vision datasets, present such specific bias to be easily 

recognizable. The main types of bias [21] found in existing computer vision datasets are as follows: 

• Selection Bias: It is a known fact that datasets that are gathered automatically fare better 

than those collected manually. However, getting images from the internet does not 

guarantee a fair sampling, since keyword-based searches will return only particular types 

of images. Obtaining data from multiple sources (e.g. multiple search engines from 

multiple countries) can somewhat decrease selection bias.  

• Negative Bias: Having a rich and unbiased negative set is important to classifier 

performance. Therefore, datasets that only collect the things they are interested in might be 

a disadvantage, because they are not modeling the rest of the visual world. An effective 

remedy would be to add negatives from other datasets. 

• Capture Bias: Professional photographs, as well as photos collected using keyword search, 

appear to suffer considerably from the capture bias. The most well-known bias is that the 

object is almost always in the center of the image. For example, searching for a “mug” on 

Google Image search will mostly provide images with mugs situated at the center of the 

frame. Also, it will reveal another kind of capture bias: almost all the mugs have a right-

facing handle.  

2.2.2.3 Lack of challenging Weather and Lighting conditions 

In computer vision tasks for applications like Autonomous Driving, it is very crucial that Computer 

vision algorithms are also trained in challenging and variety of weather and lighting conditions. 

Apart from a few datasets, all others only have images of driving scenarios in regular weather 

conditions. However, the landscape,  roads, visibility, wind, etc. will differ for different parts of 
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the world and with varying seasons as well. It is so important that  Autonomous Vehicles are 

trained for every such scenario before finally deploying them on roads for public usage. 

2.2.3 Synthetic Data: An Option 

Amidst such complications with using real-world data, researchers have looked for efficient 

alternatives and Synthetic data (created using Virtual Reality and/or Augmented reality) has 

emerged as a worthy option. A promising approach to generate synthetic data is to use a graphic 

simulator to generate automatically annotated data. Several such simulated datasets have been 

created in recent years as found in [28], [29], [30], [31], etc.  

• SYNTHIA dataset: SYNTHIA stands for the SYNTHetic collection of Imagery and 

Annotations. This dataset is one of the best examples of datasets generated using simulated 

environments for Autonomous Driving research. SYNTHIA consists of photo-realistic 

frames rendered from a virtual city and comes with precise pixel-level semantic 

annotations for thirteen classes, i.e., sky, building, road, sidewalk, fence, vegetation,  lane-

marking, pole, car, traffic signs, pedestrians, cyclists and miscellaneous. 

 

Figure 12: Examples from SYNTHIA Dataset [31] 
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2.3 Simulation Environment 

For dataset generation regarding Autonomous Driving research, there are various dedicated as well 

as general-purpose simulators available. Some of the dedicated simulators (Driving Simulator) 

even allow training the Autonomous Vehicles in the simulated environment, apart from data 

generation. Driving Simulators are usually a collection of high-level extensible modules that allow 

the rapid development and testing of vehicle configurations and facilitate the construction of 

complex traffic scenarios. They support multiple vehicles with unique steering or acceleration 

limits, as well as unique tire parameters and dynamic profiles to name from the vast features they 

provide. Engineers can specify the specific vehicle sensor systems and vary the time of day and 

weather conditions to generate robust data. Non-vehicle participants such as cyclists and 

pedestrians can be assigned specified routes or script scenarios that place the ego vehicle in 

dangerous reactive scenarios [12]. Some of the main benefits of using driving scenarios are 

discussed as follows: 

• Data Generation: Driving simulators can generate virtually unlimited data for research and 

testing purposes. Apart from the main scene images, they also allow to export different 

vehicle configuration data and the data from virtual sensors attached to the ego vehicle. 

Furthermore, the data generated is automatically annotated as programmed, which 

eliminates the need for the labor-intensive manual annotating process.  

• Varying vehicle, cyclist, pedestrian, and traffic conditions: The driving simulators include 

various vehicle and sensor models, pedestrians, and cyclists, as discussed above. The 

diversity of these traffic actors allows training for classification on different shapes, sizes, 

colors, and behaviors of cyclists, pedestrians, and other drivers. 
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• Dynamic Traffic, Weather, and Lighting Conditions: The driving simulators provide high 

fidelity traffic simulation, supporting dynamic changes in traffic density, time of day, 

lighting, and weather, including rain and fog. 

• Rapid Scenario Construction: Typical road networks can be easily laid out using the in-

built tools and are automatically connected for routing and navigation purposes.  

2.3.1 Components of a Driving Simulator 

An ideal simulator for autonomous driving research comprises a variety of inter-linked 

components covering the navigation, perception, and control modules. They are discussed as 

follows: 

• Game Engine (Rendering Engine): A game engine is a part of a computer game that 

contains a 2D or 3D graphic representations (rendering engine), representations of physical 

laws (Physical Engine), or collision detection (and collision response), sound, scripting, 

animation, artificial intelligence, networking, streaming, memory management, threading, 

localization support, scene graph and may include video support for cinematics. The most 

modern game engines also include support for Virtual Reality (VR) simulation. However, 

for Driving Simulators, only the Rendering Engine is used among all the above-mentioned 

features of a game engine. This is due to the reason that the physics engine or collision 

response of a game engine may not be up to the standard required for a high-fidelity 

simulator. Some of the most popular game engines used for building driving simulators are 

Unreal Engine 4 [32], Unity 3D [33], Blender [34], CryEngine [35], etc. 

As of now, Unreal Engine 4, provided by Epic Games, has emerged as a favorite game 

engine for our purpose. At the same time, Unity 3D is also improving at an impressive rate.  
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Figure 13: Components of a Driving Simulator [36] 

• Physics Engine: As the name suggests, a Physics Engine is a computer software that 

provides an approximate simulation of certain physical systems such as rigid body 

dynamics (including collision detection and response), soft body dynamics, and fluid 

dynamics. A Physics Processing Unit (PPU) is a dedicated microprocessor to host the 

physics engine.  
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• Environment Model: This module allows a user to specify a variety of lighting and weather 

conditions. The importance of data with varying weather and lighting conditions has 

already been discussed earlier. 

• Vehicle Model: This module contains a variety of vehicle templates that can be 

simultaneously spawned in the simulation environment. Realistic vehicle control and 

behavior such as key steering assistance, braking assistance, support of traction control, 

flexible tires simulation, tire types, and customization, etc. are encoded in the vehicle 

templates.  

• Sensor Model: This one of the most important and unique modules of a driving simulator. 

The sensor model comprises various virtual sensors that can be simultaneously equipped 

on the vehicles in the simulation environment. Though virtual, these sensors must be high 

fidelity and also behave like any other realistic sensors in the real world. The sensors are 

expected to provide realistic inputs to the ego vehicles, that can be extracted and stored 

with automatic annotations for research purposes. Some of the common sensors provided 

in driving simulators are as follows: 

▪ Camera 

▪ Radar 

▪ Lidar 

▪ GPS 

▪ Ultrasonic sensor 

• API Layer: An API Layer is the component that makes the driving simulator extensible. 

Using simple but powerful scripting languages, a user can control traffic actors, weather 

and lighting conditions, change roadmaps, extract and process data, etc. Usually, this is 
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implemented as a client-server architecture where the game engine based simulator acts as 

a server, and various python/C++ scripts are on the client-side.  

 

Figure 14: Client-Server architecture in Driving Simulators [37] 

2.4 Various Driving Simulators 

Some of the lastest and efficient driving simulators and their working is discussed as follows: 

2.4.1 CARLA: An Open Urban Driving Simulator 

CARLA [37] has been developed from the ground up to support the development, training, and 

validation of autonomous driving systems. In addition to open-source code, and protocols, CARLA 

provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose, 

and can be used freely. 

CARLA consists mainly of two modules, the CARLA Simulator and the CARLA Python API 

module. The simulator does most of the heavy work, controls the logic, physics, and rendering of 

all the actors and sensors in the scene; it requires a machine with a dedicated GPU to run. The  
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Figure 15: A street in Town 2 in four weather conditions. [37] 

CARLA Python API is a module that you can import into your python scripts, and it provides an 

interface for controlling the simulator and retrieving data. Most aspects of the simulation are 

accessible through the Python APIs, and the remaining will be covered in future releases. CARLA 

has been built on the Unreal Engine 4 (UE4). Apart from that, CARLA comprises almost all 

modern features and functionalities (mentioned in section 2.4.1) like impressive vehicle models, 

environmental models, photo-realistic 3D objects (static, variable, and dynamic), virtual sensors, 

etc. For implementation purposes, the necessary information and basic steps to get started with 

this simulator can be found in [38]. Recently, various works have been implemented using the 

CARLA simulator for different purposes like vehicle testing, data generation, sensor validation, 
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object detection, semantic segmentation, etc. and can be found in [39],  [40], [41], [42], [43], [44], 

etc.  

 

Figure 16: Three of the sensing modalities provided by CARLA. From left to right: normal vision 

camera, ground-truth depth, and ground-truth semantic segmentation. [37] 

2.4.2 Microsoft AirSim 

AirSim [36] is another high-fidelity simulation platform developed with a goal of encouraging AI 

research to experiment with deep learning, computer vision, and reinforcement learning algorithms 

for autonomous vehicles. It is a simulator for drones, cars, and more built on Unreal Engine and 

includes a physics engine that can operate at a high frequency for real-time hardware-in-the-loop 

(HITL) simulations with support from popular protocols (e.g., MavLink). This simulator is 

designed from the ground up to be extensible to accommodate new types of vehicles, hardware 

platforms, and modular protocols. It is developed as an Unreal plugin that can be simply dropped 

into any Unreal environment. As a whole, AirSim comprises state-of-the-art modules like the 

modern physics engine, environment model, vehicle model, sensor model and rendering engine 

(Unreal Engine). For implementation purposes, the necessary information and basic steps to get 

started with this simulator can be found in [45].  
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Figure 17: Sample road scene in AirSim [46] 

2.4.3 Autono Vi-Sim  

Autono Vi-Sim [12] is another such high-fidelity simulation platform for autonomous driving data 

generation and driving strategy testing. It is also a modern state-of-the-art driving simulator 

designed to allow researchers and engineers to rapidly configure novel road networks, and to test 

these in a variety of weather and lighting conditions.  

Best et. al in [12], developed Autono Vi-Sim and created various complex testing driving scenarios 

as follows: 

• Passing a bicycle 
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Figure 18: Autono Vi-Sim Architecture [12] 

• Jaywalking pedestrian 

• Sudden stop at high speed 

• High-density traffic approaching at a turn 

• Car suddenly entering Roadway 

• S-turns 

As shown in the figure below are some sample scenes from Autono Vi-Sim: (A): Heavy fog 

obstructs the view of a vehicle. (B): the entire simulated city. (C): Vehicles pass through a slick 

intersection in rainy conditions 

 

Figure 19: Samples from Autono Vi-Sim [12] 
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2.4.4 Comparison of existing Driving Simulators  

 

Simulator License Physics 

Engine 

Graphic 

Engine 

Scripting 

Language 

Geograp

hically 

Diverse 

Curbs 

Dataset 

Bias 

Challenging 

Weather 

conditions 

CARLA [37] GPL/Open 

Source 

Unreal 

Engine 

GPU Python No Yes Yes 

AirSim [36] GPL/Open 

Source 

Unreal 

Engine 

u C++, 

Python, 

C#, Java 

No Yes Yes 

DeepDrive 

[47] 

GPL/Open 

Source 

Unreal 

Engine 

u C++, 

Python 

No No Yes 

Udacity [48] GPL/Open 

Source 

Unity u C++, 

Python 

No No Yes 

NVIDIA 

DRIVE 

Constellation 

[49] 

Restricted PhysX/C

UDA 

GPU C/C++, 

Python 

Yes Yes Yes 

Carcraft 

(Waymo) 

[50] 

Restricted u u u u u u 

SIMLidar 

[51] 

GPL/Open 

Source 

u u C++ No No No 

Helios [52] GPL/Open 

Source 

JMonkey 

Engine 

OpenG

L 

Java Yes No Yes 

Autono Vi-

SIM [12] 

u Unreal 

Engine 

OpenG

L 

C++/Pytho

n 

No No Yes 

RADSim 

[53] 

Commercial u u MATLAB No No No 

SIMSonic 

[54] 

GPL/Open 

Source 

u u R No No No 

 

Table 1: Summary of the features of specific simulators for AVs. [13] 

  Table Legend: u-Unknown or could not be determined.  


