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Abstract

Link Prediction (LP) in social networks (SN) is referred to as predicting the like-

lihood of a link formation in SNs in the near future. There are several types of SNs

that are available such as human interaction network, biological network, protein-to-

protein interaction network, and so on. Earlier LP researches used heuristics methods,

including Common Neighbors, Resource Allocation, and many other similarity score

methods. Even though heuristics methods perform better in some types of SNs, their

performance is limited in other types of SNs. Finding the best heuristics for a given

type of SN is a trial and error process. Recent state-of-the-art research, WLNM and

SEAL showed that with deep learning techniques and subgraphing, the heuristics

selection could be automated and increase the accuracy of LP. However, WLNM and

SEAL have some limitations and still having performance lack in some types of SNs.

The objective of this paper is to introduce a novel framework that overcomes the

limitations of state-of-the-art methods and improves the accuracy of LP over various

types of social networks. We propose a Link Prediction framework called PLACN

that analyzes common neighbors based subgraphs using deep learning technique to

predict links. PLACN is equipped with two new algorithms that are a subgraph ex-

traction algorithm that efficiently extracts common neighbors of targeted nodes and a

proposed new node labeling algorithm based on hop number and average path weight

that creates consistent node orders over subgraphs. In addition to the algorithms,

we derived a formula based on network properties to find an optimal number node

for a given SN. PLACN converts the LP problem into an Image Classification prob-

lem and utilizes a Convolutional Neural Network to classify the links. We tested the

proposed PLACN on seven different types of real-work networks and compared the

performance against heuristics, latent methods, and state-of-the-art methods. Our

results show that PLACN outperformed the compared Link Prediction methods while

reaching above 96% AUC in tested benchmark social networks.
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Chapter 1

Introduction

Link Prediction (LP) is a problem in Social Network Analysis that focuses on predict-

ing links that are going to appear in the near future [25]. Many heuristics methods

have been proposed in early research that finds similarity between targeted nodes

and predicts link existence based on the score[28, 25, 2]. However, heuristics methods

performed well in some specific social networks, not others. In later researches, latent

methods are proposed to improve the accuracy of link prediction [3, 13, 36, 19, 33].

However, those methods could be able to improve on specific types of social net-

works. The new state-of-the-art method [43] showed that subgraphing improves link

prediction significantly.

1.1 Background

1.1.1 Social Network Analysis

Social Network Analysis is the study of social relations (e.g., friendship, co-workers)

among a set of actors (e.g., students, patients, workers ) [34]. Therefore, the in-

formation on a social network is usually presented as a network graph. The social

networks can be converted into graphs where actors such as a person, organization
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Friend Friends with

John Peter, Lucy

Peter John, David, Lucy

Lucy John, Osman, Peter

Osman Lucy

David Peter

Table 1.1: Example friendship network.

are represented as nodes, and their relationship represented as edges. For example,

consider a friendship network as given below in Example 1.1.The example shows how

the network is converted into a graph.

Example 1.1: To illustrate the social network analysis, consider a friendship

network with five people John, Peter, Lucy, Osman, and David, where people are

connected through friendship. Table 1.1 shows people and the friendship between

them. Here, we consider five people and show who are connected.Now the relation-

ship shown in Table 1.1 is converted into a graph where people are nodes and their

relationships are edges. The graph is shown in Figure 1.1 where nodes are people and

edges are their friendships.

Figure 1.1: Friendship network graph representation

Once the social network converted into graph as shown in Figure 1.1, the graph can

be further converted as adjacency matrix. In which, row and columns of the matrix
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John Peter Lucy Osman David

John 0 1 1 0 0

Peter 1 0 1 0 1

Lucy 1 1 0 1 0

Osman 0 0 1 0 0

David 0 1 0 0 0

Table 1.2: Adjacency matrix of the example friendship network.

indicates all nodes of the graph. If they have connected, then the corresponding cell

value will be 1 and if the nodes don’t have connection, it will be 0. The table 1.2 is

an illustration for the adjacency matrix for the Example 1.1.

In the process of working in this field, network have categorized and investigated

as a set of distinctive problems in social networks

• Link Prediction - Link prediction is to predict whether there will be links

between two nodes based on the attribute information and the observed existing

link information [25]. Link prediction not only can be used in the field of

social network but can also be applied in other fields including bioinformatics,

electronic commerce, recommendation system, the security field and hidden

terrorist criminal gangs.

• Community Detection - The problem that community detection attempts

to solve the identification of groups of nodes that are more densely connected

to each other than to the rest of the network [31]. Detecting and analyzing the

community structure of networks has led to important findings in a wide range

of domains his problem refers finding similar group of nodes within the network

graph.

• Network Diffusion - The study of network diffusion tries to capture the un-

derlining mechanism of how events have propagated through complex networks



4

[20] whether the subject of interest is a virus spreading through some population

or the spreading of some social movement some new fashion or innovation or it

may be a marketing message it’s spreading through an online social network.

• Network Influence - Network Influence is for analyzing the influencing manner

among users and the spreading manner of influence based on social networking

structure [11]. Network influence can be used in various disciplines including

sociology to understand people’s social behaviors, public services to provide a

theoretical basis for public decision making and public opinion guidance and

in terms of country, helpful to promote national security, economic stability,

economic progress.

1.1.2 Link Prediction

Link Prediction (LP) is for a given snapshot of the network at a time, predicting

the links that are most likely to form in the near future [25]. LP has many applica-

tions such as movie recommendation [12], friend recommendation [7, 41], metabolic

network reconstruction [24], knowledge graph completion [17], and predicting protein-

to-protein interactions [5]. The classic approach for link prediction is the heuristics

method. Heuristic methods calculate similarity scores between nodes in a given net-

work that yields the likelihood of link formation. The similarity scores are calculated

based on attributes of the targeted nodes. These similarity scores can be categorized

based on the degree of hop count needed for calculating the score. For example,

Common Neighbors (CN)[28] and Preferential Attachment (PA)[8] are categorized as

the first-order heuristic as they require first-hop information.
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Figure 1.2: Network G for Link Prediction

Figure 1.2 illustrates a social network G with eight nodes and ten edges at time

t. Link Prediction is aimed to predict potential links that are about to form at time

t′. Possible links that can be formed in the future are denoted with a red dashed line

in Figure 1.2.

1.1.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of Neural Network that is frequently

used for Image Classification [18, 22, 30], Image Recognition [21, 14, 23], and Object

Detection [32]. CNN consists of different layers to perform classification. The first

layer is the input layer; after that, one or more convolutional layers and pooling layers

can be present; finally, it consists of one or more dense layers and has an output layer.

An example CNN is illustrated with its different layers in Figure 1.3.

Figure 1.3: Convolutional Neural Network
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The convolutional layer is special as it used to extract features from input matrices.

Neurons in this layer are positioned as two-dimensional arrays and referred to as the

activation map. Weights are arranged in a three-dimensional array known as the

kernel. Height, width, and depth might be changed for different input sizes. There

can be multiple kernels with different sizes, even for the same input matrix. Kernal

slides through the input matrix and creates a set of activation maps. Figure 1.4

illustrates convolution operation on a input matrix.

Figure 1.4: Convolutional layer

Convolutional layers reduce the weight optimization problem as they extract spa-

tial features and feed them to neurons rather than connecting one neuron to each cell

for the input matrix. In addition to the weights in kernels, a bias value is also added

while creating an activation map. The activation value calculation by convolution

layer can be expressed as follow in the equation 1.1

alj,k = σ

(
bl−1 +

p∑
m=0

q∑
n=0

wl−1
m,na

l−1
j+m,k+n

)
(1.1)

where alj,k is the result activation value of the kth neuron in the jth row of the lth

layer, b is the bias shared among the layer, w is the weight parameter of the p × q
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size kernel, and σ(z) is the activation function.

The pooling layer is usually added just after a convolutional layer. Pooling later

reduces dimensionality but not reduces depths or channels. Convolutional layer out-

puts feature maps as patches. Pooling layer kernels slides through these patches and

creates reduced and summarized feature maps. There are three types of kernels used

in CNN, which are Max Pooling, Min pooling, and Average pooling. Max pooling

takes maximum values of the window while filter slides; Min pooling takes minimum

value of the window while filter slides, and Average pooling takes an average of all

value in the window while filter slides through. The most common type of pooling

used in CNN is Max pooling. A simple example of Max pooling is illustrated in

Figure 1.5.

Figure 1.5: Max Pooling layer

Figure 1.5 represents how the dimensions are reduced, and the highlighted feature

is preserved. There can be multiple sets of convolutional layers and pooling layers.

After the convolutional layer and pooling layer, the result matrix is flattened and

feed into a dense layer, which is usually a multi-layer perceptron network. Finally,

the output layer will make the classification.
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1.2 Problem Definition

We define a static Social Network as G(V,E), a network snapshot at time t. We

assume that the network snapshots in G share the same vertex set.

Given graph G = (V,E) at time t represents a network snapshot, which contains

a set of vertices V indicating nodes, a set of edges E, indicating the relationships

between two vertices or nodes. We consider an adjacency matrix At with size of

(N × N) to describe its static topological structure at time t, where N = |V | is

the number of unique vertices in the social networks. Since we consider weighted

networks, the matrix A has arbitrary edge weights that may change over time. Let

assume an edge between nodes i and j,that is, (i, j) ∈ Et, with edge weight (Wt)ij,

we have (At)ij = (Wt)ij ; otherwise (At)ij = 0. Link Prediction focus at predicting

the network snapshot At′ at timestamp t′ by observing the series of At, At′ .

The problem is to predict the new edges (E ′t′ ∩ Et) which are likely to appear in

time t’

1.3 Thesis Motivation

People are connected in real life through friendship or other relationships. People’s

network tends to grow as they introduce to each other. Social networks not only lim-

ited to people but also includes organizations, publications, biological network, traffic

networks, and even protein-to-protein interaction network. Predicting the connections

that are about to form in the future helps a lot to make life easier. Link Prediction in

the biological network helps researchers to predict the behavior of species and reduces

their research time.

Link Prediction is used in many applications such as Recommender Systems,

Knowledge Graph Completion, Biological Web Completion, Terrorist Cell Identifi-
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cation. Nowadays, the availability of data and increased computation power derived

Artificial Intelligence and Deep Learning research to peek. Early researches in Link

Prediction only utilizes heuristics methods, which used similarity scores to predict

links. Even though heuristic methods show better results in particular types of social

networks, they did not perform well in all types of social networks. This performance

inconsistency leads to create new similarity scores and combine various similarity

scores to create new link prediction methods to gain better results in Link Prediction.

Latent methods are created in order to improve accuracy in some types of social

networks, but these methods showed lower accuracy in other types of social networks

than basic heuristics methods. Finding the best Link Prediction method for a partic-

ular type of social network is often a trial and error process. State-of-the-art methods

WLNM[42] and SEAL[43] proposed novel approached with a subgraphing method to

solve performance inconsistency problems in various types of social networks. They

improved the accuracy of Link Prediction in most types of social networks than heuris-

tics and latent methods. However, they had some limitations in the algorithms such

as inconsistency in node labeling and manual process to find the optimum size of the

subgraph hop number.

The limitations of state-of-the-art methods and manual process motivated this

research to solve and proposed a new methodology to overcome the limitations they

had. This research aims to propose a novel framework that automates the selection

of the best combination of heuristics for a given social network and improves the

accuracy of Link Prediction by analyzing common neighbors. This framework solves

the problem of manually finding the best method to get better accuracy of a given

social network.
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1.4 Thesis Statement

The objective of this research is to create a novel method of Link Prediction that

can automatically learn the best combination of heuristics methods to improve the

accuracy of social networks and not limited to certain types of social networks. Our

aim solves the problem of the trial and error process of selecting the best method for

a given type of social network.

Our proposed approach is to analyze not only targeted nodes of the link but also

common neighbors of the targeted nodes. Common neighbors are highly influencing

the formation of links. We design our framework to extract a subgraph that con-

tains targeted nodes and common neighbors of links and then analyze the extracted

subgraph to get information on link existence. We have proposed new algorithms

to extract subgraphs and labeling the nodes. Our framework creates feature maps

of extracted subgraphs to get information about the link presence. Convolutional

Neural Network is known for image classification. We utilize this characteristic of

CNN to solve the Link Prediction problem. Features map are the best candidates for

CNN training. We convert the Link Prediction problem into the Image Classification

problem and classify them with CNN.

We solve the problem of the trial and error process of finding the best method to

solve link prediction on a given type of social network by proposing a novel framework

that automatically adapts to a given social network and learns patterns to predict

links.
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1.5 Thesis Contribution

This thesis addresses the Link Prediction problem and proposes a novel framework

named ”Predicting Link by Analysing Common Neighbors”(PLACN) that improves

the accuracy of Link prediction and adapts to various types of social networks. The

proposed framework predicts the link by learning the enclosed subgraph of targeted

nodes and their common neighbors.

PLACN framework consists of various steps to solve the Link Prediction problem.

Social Network is given as input for the framework and framework processes the data

and makes predictions. Each step is designed in a way that it solves limitations that

state-of-the-art methods had and approached in a novel way. Five significant contri-

butions made this proposed framework novel. The steps and contributions are listed

below.

• Subgraph Extraction: New algorithm is proposed to extract subgraph that only

focuses on common neighbors and targeted nodes of the link.

• Node labeling: New hop-number and weight hybrid based node labeling algo-

rithm is proposed to label and order nodes in the subgraph to keep consistency

among all subgraphs.

• Subgraphing factor K: New formula is derived and proposed to automatically

calculate the optimum number of nodes in the subgraph for a given social net-

work based on network properties.

• Feature matrices construction: Construct feature matrices as layers for a given

subgraph to get information about targeted nodes and common neighbors.

• CNN: Constructs Convolutional Neural Network and train the CNN to classify

positive links and negative links
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1.6 Thesis Organization

The rest of the thesis/research work is organized in the following manner.

In chapter II, we discuss related work/literature review in the field of Link Pre-

diction (LP) in a social network such as latent methods, state-of-the-art subgraph

methods WLNM and SEAL.

In chapter III, We introduce our proposed Link Prediction framework PLACN

which is a novel framework that adapts to various social network types. It not only

analyses target nodes but also common neighbors of targeted nodes to select the best

combination of heuristics for the given network. In the chapter, we give detailed

description steps of PLACN framework and how it predicts the future links.

Chapter IV, We explain our experimental setup. This chapter presents the details

of tested environmental setups, details of tested datasets, the configuration of the

CNN used in PLACN, evaluation methods, and train test setups..

In Chapter V, In this chapter, we presented the test results of hueristics,latent,

state-of-the-art methods, and compared with PLACN’s performance on seven differ-

ent types of social network datasets. It also presented the result and discussion on

empirical verification of the proposed subgraphing factor K. This chapter consists of

statistical significance test results to test PLACN’s performance against state-of-the-

art method SEAL’s performance..
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Chapter VI, this chapter concludes the research, explains insights received during

the work and sets up the field of opportunities for the future work.
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Chapter 2

Related Work and Literature

Review

This chapter focuses on related works and researches used for background study,

concept-building, and theoretical background of our thesis. We discuss and analyze

works of literature that are relevant to Link Prediction(LP) problem, heuristics meth-

ods to solve LP, latent methods to solve LP, and state-of-the-art methods WLNM

and SEAL.

Link Prediction is an active research field that contributes to many real-world

applications such as Recommendation systems in social network applications [7, 41],

website links[16, 26, 27], Co-author recommendations[6, 10, 15]. LibenNowell and

Kleinberg (2007) drew a significant attention to Link Prediction in Social networks.

Earlier researches focused on using topological features to calculate similarity scores

and used them to predict links. The most commonly used similarity scores were Com-

mon Neighbors[28],Adamic Adar, Jaccard Coefficient [25], Katz index[2] , Resource

Allocation and Pagerank[25]. These similarity scores were calculated for the targeted

nodes, and a certain threshold is defined for a given social network. Then based on
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the score and threshold, links were predicted. Later machine learning algorithms were

used to predict links by classifying the links as links that will form in the near future

and links that are not. The important researches in Link Prediction using machine

learning methods are SVM [4], Decision Tree [38], and Random Walk [7]. The ma-

chine learning methods more focused on specific nodes than network topologies.

Latent methods are proposed to improve link prediction accuracy. The Stochastic

Block Model (SBM)[3] creates blocks and assign nodes to the blocks. The link is

predicted based on the relationship between blocks they assigned. However, SBM

is computationally expensive and only performs well on certain types of social net-

works. Node-to-vector[13] is another approach in link prediction, which uses the

word-to-vector technique and random walk to predict links. Large-scale Informa-

tion Network Embedding (LINE)[36] is an embedding approach that combines first-

order and second-order proximities to predict links. Variational graph auto-encoder

(VGAE)[19] is a framework that uses unsupervised learning techniques to learn the

pattern of graph structures data based on the variational auto-encoder.

Recently, a new subgraphing method WLNM [42], was proposed. The WLNM is

a novel approach that extracts subgraph around both targeted nodes. The number of

nodes for subgraph extraction is set manually, and similarity scores were calculated

between targeted nodes. Nodes are labeled using the Palette-WL algorithm, which

is a variant of WL to preserve the order. Adjacency matrix and similarity score vec-

tor are given to fully connected neural networks to predict links. WLNM had many

drawbacks and limitations. SEAL [43] was proposed by Zhang et al. in 2018, which

is also a subgraphing method. SEAL extracted subgraph based on the hop number

given by the user. The subgraphs consist of all neighbors of targeted nodes at a

given hop number and less. They calculated first-order, second-order, and high-order
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heuristic scores to create a vector. The authors used their proposed Double Radius

algorithm to order nodes. Finally, they feed the adjacency matrix and vector to graph

neural networks to classify links. However, finding a suitable hop number for a given

network is a trial and error process, and including all neighbor nodes n the subgraph

creates a problem that hub nodes have a massive number of neighbor nodes even in

low hop number. Another drawback is that their proposed node labeling algorithm

gives the same labels to the common nodes which are in the same order. This effect

creates an inconsistency in node order over subgraphs.

Based on the background study, related works, and limitations of the previous

works, we proposed a novel framework to solve the link prediction problem. We

described our proposed model in detail in Chapter 3.
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Chapter 3

Proposed Approach

3.1 Introduction

Predicting Link by Analyzing Common Neighbors (PLACN) is the proposed novel

framework that aims to increase accuracy of link prediction in social networks by

analyzing common neighbors of targeted nodes. Another objective of this framework

is to create a framework that can adapt to any type of social network and automate

learning best combination of heuristics for given social network. We are introducing

a new algorithm to extract subgraph and labeling the nodes in subgraph and using a

CNN to classify positive and negative links. PLACN converts link prediction problem

into an Image Classification problem with the new algorithms. PLACN utilizes the

characteristic of CNN, which is best known for image classification. Another novelty

is that past researches are focus on only the targeted nodes for link prediction, but

PLACN is not only focusing on targeted nodes but also analyzing common neighbors

between targeted nodes. As part of the framework we propose a new factor for

subgraph size. We derived a formula to calculate subgraph size based on network

properties. This process automates the optimization of subgraph calculation which

reduces computational complexity. The architecture of PLACN is given in Figure:
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3.1, which illustrates the process steps of link prediction.

Figure 3.1: PLACN architecture

PLACN takes a social network as input and automatically creates a dataset for

positive link class, positive link is a link that will present in the near future and

negative link class, negative link is a link that will not present in the near future.

Then we trains a CNN using data set to classify links. The PLACN frameworks

consist of four main steps. The steps are listed below.

• Subgraph extraction

• Subgraph Node labeling

• Construction of feature matrices

• Convolutional Neural Network train and Classification

In addition to the steps, PLACN calculates subgraphing factor K with the pro-

posed formula. All four steps and sub graphing factor calculations are explained in

detail in the following subsections.

3.2 Subgraph Extraction

PLACN aims to extract information not only from source and target nodes but also

from neighbors of them. Usually, number of common neighbors is used as a metric
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to predict the link. It illustrates the importance and influence of neighbors for an

existence of a link. Studying the nodes around source and target will give more in-

formation of a link existence. WLNM first proposed the subgraph extraction method

for link prediction[42]. WLNM extracts all neighbors at first hop of source and target

nodes and selected first K nodes from them. Then to achieve more accuracy, they

have increased hop numbers and increase the K. The process is a trial and error

process for different social networks. Authors have tried different hop numbers and

different K to achieve an optimal number of hops and Ks. In 2018, SEAL[43] was

proposed, and authors extracted all neighbors’ nodes for a given hop number and

analyzed them to predict link.

Both WLNM and SEAL extracted all neighbor nodes of source and target nodes

to create a subgraph. Hop number was a hyperparameter, and finding the optimal

hop number is a manual process. Another limitation is that when the hop number

is increased, the size of the subgraph grew exponentially and increases processing

complexity. SEAL considers all neighbors and not limiting the number of nodes in

the subgraph. This extraction method creates a drawback when subgraph extraction

is applied to hub nodes or more influential nodes, hub nodes have a high number of

neighbors, and even with hop count one, they tend to have a very high number of

nodes in the subgraph. Authors of SEAL have stated this as a drawback in [43], and

it limits the ability to test the SEAL framework with a high number of hops. SEAL

tried only up to 3 hops to extract subgraphs.
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Figure 3.2: Subgraph extraction SEAL and WLNM method

Figure 3.2 illustrates the subgraph extraction of SEAL and WLNM frameworks.

The nodes, which are extracted around the source and target node are indicated with

a yellow circle. Out of 16 nodes included in the subgraph, only 9 of them are linked

with both source and target nodes. Nodes 17, 18, 19, 20 are connected with target

nodes but not included, so it leads to information loss.

PLACN proposes a new methodology to extract subgraph for a targeted link.

Nodes that are common for both source and target node will impact both nodes for

link existence. PLACN introduces a new number, sub graphing factor K. K is the

number of nodes in the subgraph. Subgraphing factor will vary for each social net-

work, and it relies on the given graph properties. PLACN proposes a new algorithm

for subgraph extraction based on common neighbors. The algorithm extracts com-

mon neighbors between source and target nodes in first-order neighbors and increases

order until the number of nodes equal to or greater than the sub graphing factor.
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Figure 3.3: Subgraph extraction with proposed algorithm in PLACN

Figure 3.3 illustrates the extracted subgraph using the proposed algorithm 1 to

the same graph as Figure 3.2. Sub graphing factor K is considered as 13 in the given

scenario. The resulting subgraph will have 13 nodes, and all of them are connected

with both source node “A” and target node “B.”

The proposed subgraph extraction algorithm only adds common nodes in each

hop. The algorithm takes Target link Eij, Graph G(E, V ), and Expected number of

nodes in subgraph K as inputs, and returns Subgraph 〈S〉 for the link Eij. Γh(i) rep-

resents set of neighbors from node i at distance of h hops. The subgraph extraction

algorithm is given in Algorithm 1.

The resulting subgraph may contain more nodes than the given sub-graphing
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Algorithm 1 Subgraph Extraction

Input: Target link Eij, Graph G(E, V ), and Expected number of nodes in subgraph
K.
Output: Subgraph 〈S〉 for the link Eij.

1: NK = {i, j}
2: Ntemp = {}
3: h = 1← number of order
4: while |NK | < K do
5: Ntemp = Γh(i) ∩ Γh(j)
6: NK = NK ∪Ntemp

7: h← h+ 1
8: end while
9: 〈S〉 = subgraphG(NK)
10: return 〈S〉

factor K. The nodes will be ranked and labeled in the subgraph labeling algorithm.

After that, if the number of nodes is greater than K, then excess nodes will be

eliminated from the bottom rank. In case, a number of nodes are less than K, no

new node will be added, and the resulting adjacency matrix will have 0 values for

remaining nodes.

3.3 Subgraphing Factor K

Selecting an optimal number of nodes for a subgraph is a trivial task. A small

number of nodes may not give enough information about link existence, and large

subgraph size may lead to higher computational cost. The optimal number should

able to provide enough information to predict links as well as reduce computation. In

previous researches, this task is handled manually and was a trial and error process.

PLACN framework is automating this process by calculating the sub graphing factor

K based on the given social network’s properties.

For a given graph with V vertices and E number of edges, Average node degree
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can be given by the following equation.

Avg.NodeDegree =
2|E|
|V |

(3.1)

Network Density can be given as

NetworkDensity =
2|E|

|V |(|V | − 1)
(3.2)

The given properties are highly proportional to neighbors for a random node in a given

social network. Since PLACN focuses on common neighbors, it takes the average node

degree and considers high order neighbors. So the average node degree and its fraction

of it will give an optimum number to get information to predict link. We formulate

the equation based on the network properties and calculate the K as follows.

K ≈ AvgNodeDegree + AvgNodeDegree× NetworkDensity

≈ AvgNodeDegree (1 + NetworkDensity)

K ≈
⌈

2|E|
|V |

(
1 +

2|E|
|V |(|V | − 1)

)⌉
(3.3)

Since the resulting number might be a fraction, we take the ceiling of it. We have

empirically verified that K is an optimum number for subgraph with various social

networks by changing K and calculating the accuracy of it. The results and analysis

of it discussed in the results and discussion section.

3.4 Subgraph Node Labeling

In this section, the importance of subgraph node labeling and the proposed node

labeling algorithm will be analyzed. Extracted subgraphs will be considered as data

to train the CNN in PLACN model. Machine learning models are always trained in
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sequential order. Features of data should be in the same order for all data points.

Neural networks are trained in order to optimize their weights. Inconsistent order of

features will not help converge weights minimization of loss value during the training

process. Subgraphs are converted into adjacency matrices and feed to CNN

Figure 3.4: Simple Network with 6 nodes and positive links that are extracted are
highlighted in red

An example can explain the importance of node labeling. Figure 3.4 shows a

simple social network with six nodes A, B, C, D, E, F. Subgraph factor is taken as

3. Data for classes positive link and negative link will be generated by subgraph

extraction using the proposed subgraph extraction algorithm 1. Positive links AB,

BF, and AE are highlighted in red. Each positive link is a data record in a class. For

links AB, BF, AE the extracted subgraphs will contain nodes {A, B, F}, {A, B, F},

{A, C, E} respectively.

Figure 3.5: Adjacency matrices of extracted subgraphs for links AB, BF and AE
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Figure 3.5 represents the adjacency matrix for each subgraph. The targeted links

are given below for each matrix. The first matrix represents subgraph for target link

AB and having a common neighbor F . The second matrix represents a subgraph

for target link BF and having a common neighbor A. The third matrix represents

subgraph for target link AE and having a common neighbor C. AB, BF adjacency

matrices are having same nodes in subgraph. Targeted links are denoted with “*”

symbol in the matrices. CNN will be feed by these adjacency matrices sequentially

to train “Positive class”. There is a big drawback when CNN is feed without node

labeling. Target links are in different places in all three matrices, and the position

of common neighbors are not consistent. Machine learning models cannot be trained

if the order of features is inconsistent. This problem has high impact when the sub-

graph size is bigger. PLACN proposed a new algorithm for node labeling in order to

solve the inconsistency problem in adjacency matrices over data points.

PLACN proposes an algorithm which keeps target link in the same position in

all adjacency matrices and orders common neighbors based on average distance from

target link and average weight from source and target nodes. The proposed algorithm

keeps the source and target nodes in the first and second positions in the adjacency

matrix so that the target link will always in the position [0,1] and [1,0]. Common

neighbors are prioritized first by their average hop from the target link. Common

neighbors which have the same average hops will be sorted by their average weights

divided by average hop. The average distance is calculated by the equation below.

hvavg =
1

2
(hi + hj) (3.4)

Where hi is the shortest distance from node i to common neighbor node v and hj is

shorted distance from node j to common neighbor node v. Then distances are calcu-

lated in hops and averaged to get distance from link ij. Another score is calculated
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for nodes in the subgraph to sort them when the same average distance common

neighbors are existing. The average weight can be calculated by the equation below.

wv
avg =

1

2

 1

hi

hi∑
p=0

wi
p +

1

hj

hj∑
p=0

wj
p

 (3.5)

Where
∑hi

p=0w
i
p is the total weight in the path from common node v to node i.∑hj

p=0w
j
p is the total weight in the path from common node v to node j. Each path

weights are divided by their corresponding hops to get average path weight. Finally,

the average of both path weight is calculated and assigned to the node to sort among

nodes that are having the same average hop from the link.

Algorithm 2 Subgraph Labeling

Input: Nodes List NK , Target link Eij, Subgraph 〈S〉
Output: Ordered nodes list OK

1: OK = {i, j}
2: RK = NK − {i, j}
3: M〈k : 〈wavg, havg〉〉 ← Map for node information
4: for all v ∈ RK do
5: hi = min(dist(v, i))
6: hj = min(dist(v, j))

7: wv
avg = 1

2

(
1
hi

∑hi

p=0w
i
p + 1

hj

∑hj

p=0w
j
p

)
8: hvavg = 1

2
(hi + hj)

9: M ← (v : (1/wv
avg, h

v
avg))

10: end for
11: sort the map based on havg
12: sort the map based on wavg for same havg
13: for v in M do
14: OK ← OK ∪ v
15: end for
16: if |OK | > K then
17: while |OK | = K do
18: remove nodes from bottom
19: end while
20: end if
21: return 〈OK〉
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The proposed node labeling algorithm is given in algorithm 2. The algorithm

takes Nodes List NK , Target link Eij, Subgraph 〈S〉 as input and returns Ordered

nodes list OK . The algorithm is not only orders the nodes to keep consistency but

also if the given node list has nodes more than subgraph factor K, it removes the

node from the bottom so that least prioritized nodes will be removed. Result OK will

have exact number node as subgraph factor K.

Network given in Figure 3.4 used to illustrate a simple network with positive

links and their corresponding subgraph represented as adjacency matrix in Figure

3.5. It shows how inconsistency emerged when node ordering is not considered. The

proposed node labeling algorithm solves this problem and after applied the algorithm

2 to the same subgraphs presented in Figure 3.5 is showed in Figure 3.6

Figure 3.6: Adjacency matrices after applied proposed Node Labeling Algorithm

In these matrices, source and target nodes are getting labels 1 and 2 so that A,B

in the first matrix, B,F in the second matrix, A,E in the third matrix will get first

and the second position in matrices. Common neighbors F,A,C received label 3, 3,

3 in the adjacency matrix respectively. The targeted link is denoted with a symbol

”*” in each matrix. After ordering nodes, the target link is in positions [0,1] and [1,0]

in all matrices. Common neighbors are also in the same order in overall matrices.
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Order of features are consistent in overall data points after node labeling algorithm

has been applied.

3.5 Constructing Adjacency Matrices

PLACN tends to improve the accuracy of link prediction by analyzing common neigh-

bors between targeted nodes. In order to analyze nodes and their relationship with

target link, we need to calculate the features of common nodes. Heuristics scores

are similarity score which represents a similarity value between two given nodes.

Extracted subgraph will contain information on how they interconnected with each

other, and similarity scores will give information on how strong they relate to each

other. Past researches calculated different heuristic scores between only targeted

nodes and try to predict links based on the score. Even though some heuristic score

performs well in certain types of social networks not performed well in other types.

A combination of scores performed better than a single heuristic score. No past re-

search analyzed common neighbors and how they influence the targeted node for the

formation of links. PLACN considers five different heuristics, and they are given

below.

• Common Neighbors |Γ(i) ∩ Γ(j)|

• Jaccard Coefficient |Γ(i)∩Γ(j)|
|Γ(i)∪Γ(j)|

• Adamic-Adar
∑

k∈|Γ(i)∪Γ(j)|
1

log|Γ(k)|

• Preferential Attachment |Γ(i).Γ(j)|

• Resource Allocation
∑

k∈|Γ(i)∪Γ(j)|
1

|Γ(k)|

Common Neighbors and Preferential Attachment are first order heuristics func-

tions and others are second order heuristics functions.
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3.5.1 Common Neighbors

Common neighbors score is a similarity score based on a number of common neighbors

between targeted nodes [28]. The formula for finding common neighbors is given

below.

|Γ(i) ∩ Γ(j)| (3.6)

Where Γ(i) is the set of nodes adjacent to node i, and Γ(j) is the set of nodes

adjacent to node j. A value of 0 indicates that two nodes are not sharing any common

nodes, while higher values indicate nodes are closer.

3.5.2 Adamic Adar Index

The Adamic Adar algorithm was introduced in 2003 by Lada Adamic and Eytan Adar

to predict links in a social network[2]. It is computed using the following formula:

∑
k∈|Γ(i)∪Γ(j)|

1

log|Γ(k)|
(3.7)

Where Γ(i) is the set of nodes adjacent to node i, Γ(j) is the set of nodes adjacent

to node j, and Γ(k) is the set of nodes adjacent to node k. The score is calculated

based on the node degree of common neighbors between targeted nodes.

3.5.3 Jaccard Coefficient

A similarity metric that is commonly used in information retrieval[2]. This score

measures the probability that both x and y have a feature f, for a randomly selected

feature f that either x or y has. Features are neighbors here in networks. It is

calculated by dividing the number of common neighbors by total neighbors shared.It

is computed using the following formula:

|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

(3.8)
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Where Γ(i) is the set of nodes adjacent to node i, and Γ(j) is the set of nodes

adjacent to node j. A value of 0 indicates that two nodes are not sharing any common

nodes, while higher values indicate nodes are closer.

3.5.4 Preferential Attachment

Preferential attachment means that the more connected a node is, the more likely

it is to receive new links. Albert-László Barabási and Réka Albert popularised this

algorithm through their work on scale-free networks[8]. It is computed using the

following formula:

|Γ(i).Γ(j)| (3.9)

Where Γ(i) is the set of nodes adjacent to node i, Γ(j) is the set of nodes adjacent

to node j.A value of 0 indicates that two nodes are not close, while higher values

indicate that nodes are closer.

3.5.5 Resource Allocation

The Resource Allocation algorithm was introduced in 2009 by Tao Zhou, Linyuan

Lü, and Yi-Cheng Zhang as part of a study to predict links in various networks[44].

It is computed using the following formula:

∑
k∈|Γ(i)∪Γ(j)|

1

|Γ(k)|
(3.10)

Where Γ(i) is the set of nodes adjacent to node i, Γ(j) is the set of nodes adjacent

to node j, and Γ(k) is the set of nodes adjacent to node k.A value of 0 indicates that

two nodes are not close, while higher values indicate nodes are closer.

The heuristics features that are mentioned above are calculated for all nodes in the
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subgraph. In addition to that, weights are considered another feature in PLACN to

get link information among nodes in the extracted subgraph. Each heuristic feature

is constructed in an adjacency matrix, and six adjacency matrices will be stacked for

a single link. The result feature matrix will have a size of K ×K × 6 for each link.

Feature matrix with weights will have information about link exitance between

targeted nodes. This will lead to creating a bias in CNN training. CNN will learn

a pattern that if there are any non zero values in weight adjacency matrix at po-

sition [0,1] and [1,0], then it will be positive and if the values are zero in weight

adjacency matrix at position [0,1] and [1,0], then it will be negative. Since testing

links always have zero values at the given position above, CNN will always classify

them as negative class. To overcome this problem, we put value 0 at location [0,1]

and [1,0] in the weight feature matrix. Figure 3.7 illustrates that a positive link with

feature matrix and in weight matrix position [0,1] and [1,0] are containing the value 0.

Figure 3.7: Adjacency matrices of a subgraph and enlarged weight matrix

Feature matrices are symmetric, and diagonal values are 0 since they represent

nodes with a connection themselves. CNN is used as a classifier in PLACN to learn

a pattern. Neural Networks have many parameters, and they are optimized during
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the training phase. Neural Networks take numeric values as input and try to adjust

weights with class. If input values are in a vast range, then optimizing weight becomes

hard and will not get a global minimum. Feature matrices with different similarity

scores will have different ranges. This creates optimizing hard for Neural Network.

We used normalization to keep all values between rage 0 and 1. Normalization can

be achieved using the following equation.

x =
xi − xmin

xmax − xmin

(3.11)

Firstly, all feature matrices are stored as a dataset with real values. Then normal-

ization is performed for each layer /feature matrix. For example, only the Adamic

Adar feature matrix will be extracted for all data points, and normalization is per-

formed so that only Adamic Adar minimum and maximum will affect during normal-

ization. Like the example, normalization will be performed for all layers individually.

Finally, all normalized data points will be used to train CNN.

3.6 Convolutional Neural Network

PLACN uses a CNN to classify the links as positive and negative. A positive link

represents that link will occur in the near future, and a negative link represents it

will not. PLACN converts the link prediction problem into an image classification

problem by creating a feature matrix with six different heuristics. Feature matrix can

be compared with images color images usually have three channels, which are RGB

(RED, GREEN, BLUE), so images are treated as a three-dimensional matrix. In

PLACN, subgraphs are converted into six adjacency matrix with six heuristics. These

adjacency matrices can be considered as K ×K image with 6 channels. A randomly

picked data point from 2 different normalized datasets are plotted in Figure 3.8
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Figure 3.8: Randomly selected data points of two different datasets .Adjacency ma-
trices are plotted

We train CNN to classify two classes, such as positive link and negative link.

When training a Neural Network, the optimization is achieved by backpropagation

with calculating the loss function. The loss function varies with the problem. Since

this is a binary classification problem, we select Binary Cross-Entropy as the loss

function for PLACN’s CNN. Binary Cross Entropy is calculated by the equation as

follows

BCE = −
c′=2∑
i=1

tilog(f(si))

= −tilog(f(s1))− (1− ti)log(f(s1))

where c′ is the class, t is the predicted label and f(s) is the predicted probability.
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Chapter 4

Experimental Setup

In this chapter, we explain the details of the experimental setup and environments

such as tools and libraries used to implement PLACN framework, systems configura-

tions of data pre-processing step and CNN training and testing, dataset details, the

detailed configuration of CNN and layer details, train and test details and evaluation

method to test the results.

4.1 Tools and libraries

We implemented PLACN framework using Python 3.6 programming language. The

libraries and their versions that are used to implement PLACN are listed below

• NetworkX 2.3

• NumPy 1.17.1

• SciPy 1.3.1

• Pandas 0.25.1

• Tensorflow GPU 1.14.0
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We used PyCharm IDE, Jupyter Notebook to implement and test PLACN frame-

work. We used two different systems to pre-process datasets and train/test CNN for

PLACN.

4.2 System Configurations

Data pre-processing and construction of trainable dataset was created using a DELL

cluster with the specification of POWER8 52 processor, 256 GB of RAM. We trained

and tested PLACN’s CNN in an Nvidia GTX 1050Ti, 4 GB GPU with 768 CUDA

cores.

4.3 Datasets

The proposed PLACN framework aims to adapt to various types of social networks

and improves the accuracy of link prediction. We selected seven different types of real-

world social network datasets and tested them with other state-of-the-art methods.

Tested datasets, and their details are given in table 4.1.

• USAir is an airline traffic network data. In this dataset, nodes represent the

airports, and edges represent the air route that exists [9].

• NS is a co-authorship network dataset that has information regarding network

science researchers and their collaboration[29].

• PB is a US political web-blogger relation dataset that has data about USA

political web bloggers and their interaction among them [1].

• Yeast is a protein to protein interaction network which have information about

the interaction between proteins of yeast[37].
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Dataset |V | |E|
Ave node

Degree

USAir 332 2126 12.81

NS 1589 2742 3.45

PB 1222 16714 27.36

Yeast 2375 11693 9.85

C.ele 297 2148 14.46

Power 4941 6594 2.67

Router 5022 6258 2.49

Table 4.1: The statistical information of each real-world networks.

• C.elegans is a neural network dataset that has information regarding connec-

tivity between neurons in a C.elegans worm[39].

• Power is a power grid dataset which contains information of the western US

electric grids and their connectivity[39]

• Router is an internet routing dataset which has information about in which

route data transfer among servers and their connections [35]

4.4 CNN configurations

PLACN has a CNN as a classifier to predict positive links and negative links. CNN is

configured with different layers and activation functions. Details of CNN layers and

tunable parameters are given in the table 4.2.

We used 80% data to train, 10% data to validate, and 10% test the model. We

used the same train test split ratio for other state-of-the-art methods. We trained our

model for 50 epochs. We used 10% validation data to test during training and saved

the best model with the lowerest validation loss score. After training, we loaded the
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Layers Specification Activation func No. parameters

Convolutional 32 filters with 4× 4 size relu 3104

Average Pooling 5× 5 kernal size N/A N/A

Flatten Flattens pooled matrix N/A N/A

Dense layer 300 neurons relu 240300

Dense layer 128 neurons relu 38528

Output 1 neuron sigmoid 129

Table 4.2: PLACN’s Convolution Neural Network configurations .

best-saved model tested the data.

4.5 Training and Testing

PLACN takes network data and subgraph factor K as input. Subgraph factor K

is calculated for all datasets then datasets, and their corresponding K is given to

PLACN’s preprocessing component in the IBM cluster. Social network datasets are

not having the same amount of positive links and negative links. Usually, links that

are not present always very higher than the links exist. Machine learning models

are trained with an equal number of data points in each class to learn a generalized

model. If a class has a higher number of data points than others, then the model will

be biased to the class with higher data points.

We overcome the class imbalance problem with undersampling technique. We

extracted subgraphs for all links that are present in the given dataset and stored it as

positive class data. We randomly picked the same number of links that are not present

in the given network dataset and stored it as negative class data. Now positive and
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negative class have the same number of data points, that leads to unbiased training.

4.6 Evaluation metric

In machine learning, the evaluation of a model is an essential task in order to measure

its performance. Usually, accuracy is taken place as a performance metric. However,

accuracy is not good enough to measure the performance of a model if it is a binary

classification problem. In a two-class problem, a model can make predictions ran-

domly and still have a chance that its predictions may be correct. In such a case, we

need another metric that can evaluate the model, whether it is predicting randomly

or learned to separate classes. We select Area Under a Curve - Receiver Operating

Characteristics (AUC -ROC) as the evaluation metric. Details of AUC-ROC and its

calculation methodology are given in subsection.

4.6.1 AUC -ROC

AUC - ROC is an evaluation metric that widely used in binary classification prob-

lems. AUC-ROC measures the prediction model in different threshold settings. ROC

is a curve that plots probabilities between True Positive Rate and False Positive Rate

in different threshold values. AUC tells the degree of the separability of the given

model. AUC value is in the range from 0 to 1. AUC reaches one, represents that

the given model can predict positive class as a positive class and negative class as a

negative class. Higher AUC presents that the given model is not making predictions

randomly, and trained in a way that learned a pattern to separate classes. Calculation

of AUC-ROC and explanation of steps are given in the following.

PLACN treats link prediction as a binary classification problem by categorizing

links in two classes, which are the positive link class and negative link class. Positive
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class depicts that the given link will exist in the near future, and the negative class

depicts that the given link will not exist in the near future. PLACN model is trained

to make a prediction that positive class as a positive and negative class as a negative.

Based on predicted labels and actual class, we can construct a confusion matrix.

Figure 4.1: Confusion Matrix

Where True Positive (TP) is given as the number of data points that model pre-

dicted as a ”positive” class, which are having an actual label ”positive.” True Negative

(TN) is given as the number of data points that the model predicted as a ”negative”

class, which are having an actual label ”negative.” False Positive (FP) is given as the

number of data points that the model predicted wrongly as a ”positive” class, which

are having an actual label ”negative.” False Negative (FN) is given as the number of

data points that the model predicted wrongly as a ”negative” class, which are having

an actual label ”positive.”

Our model will predict probabilities for each data point. Defining a threshold for

the predicted probabilities will classify data points. Different thresholds will make

the prediction fall into a certain class. At different thresholds, we can calculate TP,

TN, TN, FN, and make confusion matrices. We need to calculate the ratio of correct

classification and false classification.
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True Postive Ratio (TPR) is a ratio that represents the proposed model’s ability

to capture correct classification. TPR is also referred with the terms ”Specificity”

and ”Recall”. TPR can be calculated from a given confusion matrix by the following

equation.

TPR(TruePositiveRate) =
TruePositive

TruePositive+ FalseNegative
(4.1)

False Postive Ratio (FPR) is a ratio that represents the proposed model’s incorrect

classification rate. FPR can be calculated from a given confusion matrix by the

following equation.

FPR(FalsePositiveRate) =
FalsePositive

TrueNagative+ FalsePositive
(4.2)

ROC curve is used to plot the ratio between TPR and FPR in different thresholds.

The curve is plotted with TPR is on the y-axis, and FPR is on the x-axis. The linear

line of the ROC curve represents that the classifier is making random predictions and

curve approaching the highest TPR rate, and the lower FPR rate is a better classifier.

An example ROC curve is illustrated in Figure 4.2.
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Figure 4.2: ROC curve

In the illustrated graph, the purple line indicates a perfect classifier behavior, and

the dashed red line shows the behavior of a random predictor. Area Under Curve

(AUC) is a perfect way to measure of a classifier, whether it is a random predictor or

have the ability to classify data. A higher AUC score represents the tested model is

a better classifier.

We compared the performance of PLACN in seven datasets with heuristics scores

given in section 3.1, SEAL, WLNM methods, and four state-of-the-art latent feature

methods. Experimental settings for methods that we compared are listed below.

• WLNM: we used the implemented model available at

https://github.com/muhanzhang/LinkPrediction and set hop count as 3 (same

setting as in their paper) to test all seven datasets.
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• SEAL: we used the implemented model available at

https://github.com/muhanzhang/SEAL and set hop count as 3 (same setting

as in their paper) to test all seven datasets.

• SBM: we used the implementation available at

http://tuvalu.santafe.edu/ aaronc/wsbm/ with a setting of a latent group num-

ber 12

• Node2Vec: we used the implementation available at

https://github.com/eliorc/node2vec and used the default settings that come

with the software.

• LINE: we used the implementation available at

https://github.com/tangjianpku/LINE and used the default settings that come

with the software.

• VGAE: we used the implementation available at

https://github.com/tkipf/gae and used the default settings that come with the

software.

We ran the test in each method ten times and calculated mean AUC score and

standard deviation of AUC scores and compared them with the proposed PLACN.

Results and comparisons of them are presented, discussed, and analyzed in the next

section.



43

Chapter 5

Discussions, Comparisons and

Analysis

In this chapter, we present the results of the conducted various tests. We recorded

PLACN’s performance against first-order heuristics methods Common Neighbors,

Jaccard Coefficient and Preferential Attachment, second-order heuristics Adamic-

Adar and Resource Allocation, high-order heuristics Katz and Page Rank, latent

methods LINE, SBM, Node2Vec and VGAE, and lastly we compare with state-of-

the-art methods WLNM and SEAL. We conducted our experiments on seven different

types of social network datasets with the experimental setup explained in Chapter 4.

We illustrate the performance of all compared methods on each dataset as bar

charts. Charts plots average AUC score of all methods on 10 test runs on each dataset.

We further discussed the performance of the PLACN’s with proposed subgraph factor

K and varying subgraph size. Finally, analyze the computational complexity of the

proposed PLACN framework against the state-of-the-art method.



44

5.1 Comparison and Analysis

5.1.1 Performance comparison on Network Scientists dataset

Figure 5.1: AUC scores of other methods that are tested on NS dataset compared
with PLACN’s AUC score

NS is a co-authorship dataset with 1589 nodes and 2742 edges. Heuristic scores such

as Common Neighbors (CN), Jaccard Coefficient (JC), Preferential Attachment (PA),

Resource Allocation (RA), Katz, Page Rank (PR) are compared with PLACN. Even

though PA not performing well, other heuristics are showing similar results. Latent

method Large-scale Information Network Embedding (LINE) is showing that the

method is not suitable for co-authorship type social networks. Other latent methods

are showing lower performance than most of the heuristic methods. State-of-the-art

subgraphing methods WLNM and SEAL are showing similar results as most heuris-

tics. PLACN outperforms all methods compared and showing significant increment
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than latent and heuristics methods.

5.1.2 Performance comparison on USAir dataset

Figure 5.2: AUC scores of other methods that are tested on USAir dataset compared
with PLACN’s AUC score

USAir is an air traffic dataset with 332 nodes and 2126 edges. Heuristic scores

such as Common Neighbors (CN), Jaccard Coefficient (JC), Preferential Attachment

(PA), Resource Allocation (RA), Katz, Page Rank (PR) are compared with PLACN.

Even though PA and JC not performing well, other heuristics are showing similar

results. While SBM is showing similar results as best heuristic AA, Latent method

Large-scale Information Network Embedding (LINE) is showing that the method is

not suitable for air traffic type social networks. Other latent methods are showing

lower performance than most of the heuristic methods.state-of-the-art subgraphing
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methods WLNM and SEAL are showing similar results as most heuristics. PLACN

outperforms all methods compared and showing significant increment than latent,

heuristics, and subgraphing methods.

5.1.3 Performance comparison on Political Bloggers dataset

Figure 5.3: AUC scores of other methods that are tested on PB dataset compared
with PLACN’s AUC score

PB is a USA political blogger’s connectivity dataset with 1222 nodes and 16714

edges. Heuristic scores such as Common Neighbors (CN), Jaccard Coefficient (JC),

Preferential Attachment (PA), Resource Allocation (RA), Katz, Page Rank (PR) are

compared with PLACN. Even though PA and JC not performing well, other heuristics

are showing similar results. While SBM is showing similar results as best heuristic

PR, Latent method Large-scale Information Network Embedding (LINE) is showing
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that the method is not suitable for bloggers connectivity type social networks. Other

latent methods are showing lower performance than most of the heuristic methods.

State-of-the-art subgraphing methods WLNM and SEAL are showing similar results

as most best heuristics. PLACN outperforms all methods compared and showing

significant increment than latent, heuristics, and subgraphing methods.

5.1.4 Performance comparison on Yeast dataset

Figure 5.4: AUC scores of other methods that are tested on Yeast dataset compared
with PLACN’s AUC score

Yeast is a particular type of yeast’s protein-to-protein interaction network dataset

with 2375 nodes and 11693 edges. Heuristic scores such as Common Neighbors (CN),

Jaccard Coefficient (JC), Preferential Attachment (PA), Resource Allocation (RA),

Katz, Page Rank (PR) are compared with PLACN. Even though PA is not perform-
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ing well, other low order heuristics are showing similar results. While high order

heuristics Katz and PR are showing best heuristic results, Latent method Large-scale

Information Network Embedding (LINE) is showing that the method is not suit-

able for protein-to-protein interaction type social networks. N2V and VGAE latent

methods are showing higher performance than all heuristic methods. State-of-the-

art subgraphing methods WLNM and SEAL are showing better results than latent

and heuristics methods. PLACN outperforms all methods compared and showing

significant increment than latent, heuristics, and subgraphing methods.

5.1.5 Performance comparison on C.elegans dataset

Figure 5.5: AUC scores of other methods that are tested on C.elegans dataset com-
pared with PLACN’s AUC score
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C.elegans is a particular type worm and the dataset is based on its neuron interaction

with 297 nodes and 2148 edges. Heuristic scores such as Common Neighbors (CN),

Jaccard Coefficient (JC), Preferential Attachment (PA), Resource Allocation (RA),

Katz, Page Rank (PR) are compared with PLACN. Even though PA is not perform-

ing well, AA, RA, Katz are showing similar results. While high order heuristic PR

is showing best heuristic results, Latent method Large-scale Information Network

Embedding (LINE) is showing that the method is not suitable for neurons interac-

tion type social networks. All other latent methods are showing lower performance

than most heuristics methods. State-of-the-art subgraphing methods WLNM and

SEAL are showing similar results as best heuristics methods. PLACN outperforms

all methods compared and showing significant increment than latent, heuristics, and

subgraphing methods.



50

5.1.6 Performance comparison on Power Grids dataset

Figure 5.6: AUC scores of other methods that are tested on Power dataset compared
with PLACN’s AUC score

Power is USA power grid connectivity dataset with 4941 nodes and 6594 edges.

Heuristic scores such as Common Neighbors (CN), Jaccard Coefficient (JC), Pref-

erential Attachment (PA), Resource Allocation (RA), Katz, Page Rank (PR) are

compared with PLACN. Even though PA is showing performing below 50% AUC,

PR and Katz are showing similar results. While high order heuristic PR is showing

better heuristic results, Latent method Large-scale Information Network Embedding

(LINE) is showing that the method is not suitable for power grid line type social net-

works. All other latent methods are showing higher performance than most heuristics

methods . State-of-the-art subgraphing methods WLNM and SEAL are showing sim-

ilar results as best heuristics methods. PLACN outperforms all methods compared
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and showing significant increment than latent, heuristics, and subgraphing methods.

5.1.7 Performance comparison on Network Router dataset

Figure 5.7: AUC scores of other methods that are tested on Router dataset compared
with PLACN’s AUC score

Router is data traffic dataset with 5022 nodes and 6258 edges. Heuristic scores such

as Common Neighbors (CN), Jaccard Coefficient (JC), Preferential Attachment (PA),

Resource Allocation (RA), Katz, Page Rank (PR) are compared with PLACN. Higher

order heuristics PR, Katz are showing performing below 40% AUC, all heuristics are

showing lower than 60% AUC results. Latent method SBM is showing best results

among latent methods. All other latent methods are showing higher performance

than most heuristics methods. State-of-the-art subgraphing methods WLNM and

SEAL are showing better results than SBM.
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PLACN outperforms all methods compared and showing significant increment

than latent, heuristics, and subgraphing methods.

The average AUC scores of all compared methods on seven datasets and their

standard deviations are presented in Tables 5.1, 5.2.

5.1.8 Subgraphing Factor K empirical test results

We proposed a new formula to calculate the subgraphing factor K. The proposed

formula is relying on network properties such as Node Degree and Network Density.

We claimed that the calculated subgraphing factor is an optimal value for the number

of nodes in subgraphs to extract link information and reduces computational com-

plexity. We tested our claim by varying the number of nodes in the subgraph and

calculated AUC for all seven datasets. Increasing the number of common nodes in

subgraph will increase computation cost. We expect that the performance of the

proposed PLACN will converge in terms of AUC score after calculated K. The test

was conducted up to 7K . Results of average AUC in each tested K value is plotted

in Figure 5.8 for seven datasets.

Figure 5.8: Average AUC with different subgraph sizes
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Results show that after we calculated AUC at K, there are no significant changes

in AUC. Hence the results from Graph 5.8 verifies that the proposed formula does

give an optimal number for maximizing information and reducing the computational

cost. We observed that after 5K number of nodes in the subgraph, the adjacent

matrix is getting sparse on average since nodes of subgraph are tend to have lesser

connections. The sparse matrix introduces a new problem that extracting features

becomes harder as the adjacency matrix will contain the most values as 0. Thus,

the proposed formula for calculating the subgraphing factor gives an optimal number

of nodes to give information and overcomes information dilution and computational

complexity problems.

5.1.9 Statistical significance test results

We ran our test for ten times and recorded the AUC score of the SEAL and proposed

PLACN on all seven datasets. We plotted both frameworks AUC score histograms

and performed a Wilcoxon test [40] to test statistical significance for the performance

of PLACN. We define our hypothesis as follows.

H0 : No significant performance difference between the SEAL and PLACN models

H1 : There is statistical significant that PLACN performs better than SEAL

we defined α = 0.05 and performed Wilcoxon test. We reject the Null hypothesis

H0 in case of p-value ¡ α, which leads to accepting our alternative hypothesis H1 that

there is a statistical significant that PLACN performs better than the SEAL on the

given dataset.
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5.1.10 Statistical significance test results on USAir dataset

Figure 5.9: AUC distribution of SEAL and PLACN on USAir dataset

SEAL has 96.327 mean AUC and 0.82 std. PLACN has 98.356 mean AUC and 0.24

standard deviation. The Wilcoxon test was performed to test the hypothesis, which

results in P -value = 0.00506203, and we reject H0 in favour of H1.

5.1.11 Statistical significance test results on NS dataset

Figure 5.10: AUC distribution of SEAL and PLACN on NS dataset

SEAL has 98.909 mean AUC and 0.32 std. PLACN has 99.531 mean AUC and 0.13

standard deviation. The Wilcoxon test was performed to test the hypothesis, which

results in P -value = 0.00506203, and we reject H0 in favour of H1.



56

5.1.12 Statistical significance test results on PB dataset

Figure 5.11: AUC distribution of SEAL and PLACN on PB dataset

SEAL has 94.696 mean AUC and 0.34 std. PLACN has 96.671 mean AUC and 0.44

standard deviation. The Wilcoxon test was performed to test the hypothesis, which

results in P -value = 0.00506203, and we reject H0 in favour of H1.

5.1.13 Statistical significance test results on Yeast dataset

Figure 5.12: AUC distribution of SEAL and PLACN on Yeast dataset

SEAL has 97.961 mean AUC and 0.47 std. PLACN has 98.868 mean AUC and 0.30

standard deviation. The Wilcoxon test was performed to test the hypothesis, which

results in P -value = 0.00506203, and we reject H0 in favour of H1.
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5.1.14 Statistical significance test results on C.ele dataset

Figure 5.13: AUC distribution of SEAL and PLACN on C.elegans dataset

SEAL has 90.152 mean AUC and 0.86 std. PLACN has 96.079 mean AUC and 0.26

standard deviation. The Wilcoxon test was performed to test the hypothesis, which

results in P -value = 0.00506203, and we reject H0 in favour of H1.

5.1.15 Statistical significance test results on Power dataset

Figure 5.14: AUC distribution of SEAL and PLACN on Power dataset

SEAL has 88.499 mean AUC and 1.17 std. PLACN has 98.783 mean AUC and 0.38

standard deviation. The Wilcoxon test was performed to test the hypothesis, which

results in P -value = 0.00506203, and we reject H0 in favour of H1.
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5.1.16 Statistical significance test results on Router dataset

Figure 5.15: AUC distribution of SEAL and PLACN on Router dataset

SEAL has 96.451 mean AUC and 0.96 std. PLACN has 98.395 mean AUC and 0.38

standard deviation. The Wilcoxon test was performed to test the hypothesis, which

results in P -value = 0.00691043, and we reject H0 in favour of H1.

5.1.17 Computational Complexity Analysis

PLACN includes two proposed algorithms; five heuristics score calculations and a

CNN as a classifier. The first proposed algorithm for subgraph extraction. PLACN

outperforms state-of-the-art method SEAL in all tested datasets. We compare our

computational cost with SEAL. PLACN’s proposed Subgraph extraction algorithm is

having the computational cost O(n), where n is the number of hops, which is the same

as the SEAL’s subgraph extraction algorithm. Let us consider K number of nodes

are present in a subgraph. SEAL has the Double Radius Node Labeling algorithm

for subgraph node labeling with the computational complexity of O(K), which intro-

duced inconsistency among the same order nodes. PLACN proposes a new labeling

algorithm that incorporates average hop weights to label the nodes in the same order.

PLACN first sort based on hop, and then sorts the nodes which are in the same order

based on average hop weight from target link. The sorting introduces an additional
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computational cost. In the worst case, PLACN’s node labeling algorithm takes the

computational complexity O(K2log(K)). SEAL calculates high order heuristic scores

such as Page Rank and Katz. High order heuristics have a high computational cost,

which is O(n3). PLACN does not calculate high order heuristics in subgraphs. SEAL

uses a Graph Neural Network, and PLACN uses a Convolutional Neural Network.

PLACN and SEAL have the same computational complexity in the subgraph ex-

traction method. Even though PLACN has higher computational complexity in the

node labeling algorithm, it does not calculates high order heuristic scores, which re-

duce the computational complexity in the feature matrix construction process. Train-

ing Convolutional Neural Network does take a similar computational cost in the clas-

sification step as the SEAL. Hence, SEAL and PLACN have similar computational

costs, but PLACN outperforms SEAL is all tested datasets. Test and analysis indi-

cates that the proposed PLACN framework is the best framework for link prediction

in most type of social networks
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Chapter 6

Conclusion and Future Work

We proposed a novel framework, namely PLACN, to solve the Link Prediction prob-

lem over various types of social networks. Various heuristics methods have been

proposed since specific heuristics work better on certain types of a social network but

not others. Latent methods are proposed to improve the accuracy of the Link Pre-

diction problem and work better over various types of social networks. Even though

the latent method improved the accuracy of Link Prediction in some types of social

networks, heuristics outperformed latent methods in other types of social networks.

New state-of-the-art methods WLNM and SEAL proposed a new approach for Link

Prediction problem by extracting subgraph around the target link to automate the

selection of heuristic method for given social networks. Subgraphing methods show

significant improvement in Link Prediction but have some limitations and do not per-

form well in some types of social networks. Therefore, there is a need for modeling a

new framework to solve the limitations in the state-of-the-art method and improves

the accuracy. This thesis work focuses the new framework, PLACN for the link pre-

diction problem.

PLACN implemented over the assumptions that the given input graphs are uni-
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directional weighted graphs and not having parallel edges to improve the Link Pre-

diction problem and adapts to various types of Social Networks. The framework

improves accuracy by analyzing common neighbors of each target link and learns

the best combination of heuristics for the given social network. PLACN consists

of two new algorithms for subgraph extraction and subgraph node labeling, respec-

tively. The proposed node labeling algorithm solves the inconsistency of node over

subgraphs. However, resolving node order inconsistency adds additional computa-

tional cost to the framework. The proposed node labeling algorithm takes hop count

as well as average path weight into account to order nodes in the subgraph. This cal-

culation increases the computational complexity of this framework. This additional

complexity is a limitation of this framework, and we research further to reduce the

time complexity.

The framework introduces subgraph factor K, and the proposed formula to calcu-

late K is derived from network properties. Empirical tests show that the calculated

K, in fact, an optimal number for subgraph size. In some networks, the average node

degree and the network density are very low that yields the subgraphing factor less

than five. In such cases, we consider five as the subgraph factor. PLACN converts

the Link Prediction problem into Image Classification Problem and classifies them

with CNN. Experiment results represent that PLACN outperforms state-of-the-art

methods in all tested datasets. We evaluated the statistical significance of PLACN’s

performance by conducting Wilcoxon test on the AUC score of both the state-of-the-

art SEAL and PLACN in all seven datasets. The statistical test showed that there is

statistical significant that PLACN performs better than SEAL.
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6.1 Future Work

We tested our framework and various types of Social Networks. However, we would

like to test our framework on large social networks and extend our work on dynamic

social networks. The proposed method can be extended to solve the Temporal Link

Prediction in the future. PLACN has the scope that it can be further researched to

apply to improve recommender systems and knowledge graph completion.
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