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Abstract 

Pharmaceutical drug development is a complex, time-consuming and expensive 

process which is also limited to a relatively small number of targets. Drug 

repositioning is a vital function which involves finding new uses and indications 

for already approved and existing drugs. It is a cost-effective process in contrast 

to experimental drug discovery. Previous studies have shown that the network-

based method is a versatile platform for drug repositioning as there exists more 

biological networks which can be used to model interaction between the 

biological concepts. In this thesis, we are interested in finding the best drugs for 

one of the most prevailing disease, the Breast Cancer using the existing Protein-

protein interaction (PPI) networks. The proposed method is based on the idea 

that if a perturbation gene expression profile inversely corelates with the disease 

gene expression profile, the drug may have a curing effect on the disease. Six 

samples of stroma surrounding invasive breast primary tumours and six matched 

samples of normal stroma are extracted from the public functional genomics data 

repository, Gene Expression Omnibus. The perturbation gene expression data 

corresponding to MCF7 cell line was extracted from the National Institute of 

Health’s (NIH) Library of Integrated Network-Based Cellular Signatures 

(LINCS) dataset. Machine Learning techniques are used to select the best suited 

drug for the breast cancer disease. We have used a ranking algorithm to obtain a 

ranked list of suitable drug repurposing and repositioning candidates. 
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 Chapter 1 

   Introduction 

 

    1.1 Drug Discovery 

 

     1.1.1 What is a Drug? 

In pharmacology, a drug is a chemical substance, typically of known structure, 

which, when administered to a living organism, produces a biological effect [1]. 

A pharmaceutical drug, also called as medication or medicine, is a chemical 

substance used to treat, cure, prevent, or diagnose a disease or to promote well-

being [2]. 

 

Figure 1.1: 3D molecular structure of Ibuprofen 

 

Figure 1.1 shows the 3D molecular structure of a drug known and sold as 

Ibuprofen [3], the most common drug in the world. There are some drugs which 

are not used to specifically treat disease but act as a psychoactive chemical 

substance influencing a better mood by impacting the central nervous system. 

 

https://en.wikipedia.org/wiki/Pharmacology
https://en.wikipedia.org/wiki/Drug#cite_note-5
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1.1.2 Traditional drug discovery pipeline 

Traditional drug discovery and development procedures is highly time 

consuming and comes at a high development cost. Developing a new drug takes 

about 10 to 17 years and it costs between $500 billion to $2 million dollar [4]. 

Approximately 90% of the newly discovered drugs fail in the clinical trials due to 

their side - effects or adverse effects [5] and only one in 10,000 compounds can 

make it to market, and less than 20% of drugs entering Phase II clinical trials 

succeed [6]. 

 

Figure 1.2: Drug Development Cycle 

 

Figure 1.2 shows the steps involved in traditional drug discovery. Step 1 involves 

basic research and target identification. Target can be defined as the pathogen in 

which the drug is meant to create an effect on.  

 

Step 2 is the Lead discovery and optimization, which is an initial stage of drug 

discovery process where the small molecules (drugs) are carefully vetted to 

observe traces of lead compound, a pharmacological chemical. Step 3 is the 

Examining the dosage level of drugs and ensuring the safety of the drug. This 

phase is essential before proceeding to clinical trials. Since a drug cannot be used 

on humans without having the knowledge of whether it is safe to consume or not, 

these trials are conducted on other species that have genetics resembling human 

genetics. Step 4, Clinical trials are where drugs are tested on humans to study 
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their effect before marketing. The final step involves getting the drug FDA 

approved, where the FDA review teams thoroughly examine all the submitted 

data related to the drug or device and decide to approve or not to approve it. To 

minimize the time and costs associated with traditional drug discovery process 

computational drug discovery is a preferred alternative. 

 

1.1.3 Computational Drug Discovery 

Computational drug discovery is an effective strategy for accelerating and 

economizing drug discovery and development process [22]. It covers many 

aspects of drug discovery, including computer programs for designing 

compounds, tools for systematically assessing potential lead candidates and the 

development of digital repositories for studying chemical interactions [23]. 

Because of the availability of biological macromolecule and small molecule 

information, the applicability of computational drug discovery has  been 

extended to most aspects of the drug discovery and development process [24], 

from target identification and validation to lead discovery and optimization; the 

tools can even be applied to preclinical trials, which greatly alters the pipeline for 

drug discovery and development [25]. Figure 1.3 shows a flowchart for the tasks 

that computational approaches have been applied to and the computational 

methods used at each stage. 

 

   

 

 

 

 

 

 

 

Figure 1.3: Computational Drug Discovery approaches  
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The use of computational tools could reduce the cost of drug development by up 

to 50% [26]. Drug Repurposing and Drug Repositioning is one of the remarkable 

computational drug discovery methodology that is being used to overcome the 

issues in the traditional drug discovery process. 

 

1.1.4 Drug Repurposing and Drug Repositioning? 

Drug Repurposing aims at finding new indications for already existing FDA 

approved drugs for a disease and therefore increases the available therapeutic 

choices at a fraction of cost of new drug development [7], whereas Drug 

Repositioning involves finding indications for drugs that have been developed but 

failed in the clinical trials or drugs that have not been approved by the FDA.  

The drugs used in our research fall under one of the three categories listed below. 

• Approved 

• Experimental 

• Investigational 

 

Approved drugs are those that have passed clinical trials. Experimental drugs are 

those that have shown to bind proteins in mammals or bacteria. Investigational 

drugs are at one of the phases of drug design process in one jurisdiction or more.  

 

Drug Repurposing/Repositioning involves the same procedure but differs on the 

type of drug recommended. The unapproved drugs which closely resemble the 

properties of approved drugs intended to treat other disease of interest shall be 

selected as suitable candidates for drug repositioning, while the approved drugs 

intended to treat other disease of interest shall be selected as suitable candidates 

for drug repurposing. 
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1.1.5 Drug Repurposing and Drug Repositioning Methods 

Figure 1.4 illustrates the different methods of Drug Repurposing. There are 

different classifications for Drug Repurposing methods, each of which seeks to 

categorize the existing methods depending on some important metrics.  

 

Figure 1.4: Drug Repurposing Methods 

 

Two major Drug Repurposing approaches are docking simulation and machine 

learning. Molecular docking method try to simulate and model the physical 

interactions between the drugs and targets and are used in structural molecular 

biology and computer-assisted drug design [8]. Successful docking methods can 

efficiently search high-dimensional conformation spaces and accurately rank the 

candidate dockings using a scoring function [9]. However, there are some 

limitations in the use of molecular docking in Drug Repurposing. The 

requirement of known three-dimensional (3D) structure of chemical ligands and 

protein targets severely limits the application of docking because the structures 

of many physiologically important proteins are not fully resolved [10]. Moreover, 

molecular docking methods demand significant computational resources 

resulting in extended runtimes [11].  
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Additionally, because of errors in the determined protein structure, and the 

incomplete modeling of atomic and molecular interactions, the results of 

molecular docking have high false-positive rates [10]. 

 

Machine Learning method treats Drug Repurposing as a supervised learning 

problem where machine learning algorithms are applied to biological data related 

to drugs and then link them to treat specific diseases. Machine learning methods 

appear more favorable than docking simulation, as they can examine a larger 

number of promising candidates for further experimental screening [11]. 

Machine learning methods can be further classified as drug-based, disease-based 

or Data driven methods [10]. Drug based methods try to discover repositioning 

opportunities by chemical or pharmaceutical perspective investigation, while 

disease-based methods focus on disease management, symptomatology or 

pathology.  

 

If more accurate detection of pharmacological properties is needed, drug-based 

methods which involve pharmacological or chemical information on drugs may 

be preferred. By contrast, disease-based approaches may be preferred when there 

is insufficient knowledge of drug pharmacology. Disease-based can be preferred 

when the focus is on disease or therapeutic category. Each approach presents 

unique informatics challenges, often requiring elements from both drug- and 

disease-based methods to be incorporated for a successful process [8]. Data-

driven approaches analyze large-scale ‘-omics’ data sets using statistical modeling 

techniques [12]. 

 

The advances in biological sciences, have led the access to a lot of ‘-omics’ 

molecular data in different levels such as the genome, transcriptome, proteome 

and metabolome; therefore, using data-driven approaches is an increasingly 

viable option. Network modelling is one of the most used data-driven approaches. 
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Networks are simple and versatile data structures on which associations can be 

inferred through many statistical and computational approaches [13].  

A wide variety of concepts in biology are represented in the form of Networks. 

Figure 1.5 illustrates different types of biological interactions that can be 

represented by networks.  

 

 

Figure 1.5: Types of Biological Networks 

 

In biological networks, nodes represent various components like genes or 

proteins and edges represent the relationship between genes, proteins or the 

functional similarity between genes. To identify a drug target, a network-based 

strategy first reconstructs a biological network and then simulates its 

interactions. The resulting interaction relationships between drug targets reveal 

the potential drug targets [14]. Some of the advantages of the Network-based 

method is that molecular networks can provide insights into the context in which 

the drug target works and can, therefore, help understand the drug mechanisms 

of action [15]. 
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Network algorithms can readily accomplish tasks such as visualizing various 

existing interactions, adding newly discovered relationships, and superimposing 

additional properties over primary components and their known interactions 

[16]. Various kinds of data from different data sets could be represented in one 

network. Therefore, the topological properties of the network can be used to make 

predictions when biological data is missing and thus reduces the false-positive 

rates [17]. 

 

1.2 Problem Statement 

Given drug perturbation data and gene expression data for breast cancer, we aim 

to obtain a ranked list of drugs which would make suitable candidates for drug 

repurposing and drug repositioning for the breast cancer dataset. For this, six 

samples of stroma surrounding invasive breast primary tumours and six matched 

samples of normal stroma are extracted from the public functional genomics data 

repository, Gene Expression Omnibus. The perturbation gene expression data 

corresponding to MCF7 cell line was extracted from the National Institute of 

Health’s (NIH) Library of Integrated Network-Based Cellular Signatures (LINCS) 

dataset.  

 

We integrate information from different sources such as molecular interaction 

networks like Protein-Protein interaction networks (PPI) with the gene 

expression profiles for a strong Drug Repurposing/Repositioning. We then make 

use of machine learning method, the Louvain algorithm on the disease network 

dataset and finally the combinatorial optimization algorithm, the Hungarian 

Method is used to provide a ranked list of good drug repurposing and 

repositioning candidates. 
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1.3 Thesis Motivation 

Researching the repurposing of unapproved drugs sharing similarities with 

approved drugs for the treatment of breast cancer would help speed up the drug 

design process involving phase of drug discovery and development. As a result, 

years of time and billions of dollars will have been conserved to help cure breast 

cancer disease. Most importantly, this thesis does its part in helping us move one 

step closer to acquiring suitable drugs to tackle breast cancer. 

 

1.4 Thesis Contribution 

In this thesis, we have proposed application of existing pre-processing and 

network clustering methods on the breast cancer dataset to obtain a ranked list 

of suitable drug repurposing and repositioning candidates. Our novel 

contribution in this thesis includes the integration of the external biological data 

with the primary gene expression data in order to increase the quality of drug 

repurposing or repositioning.  

 

1.5 Thesis Organization 

The rest of the thesis/ research work is organized in the following manner. 

• In Chapter 2, we discuss literature review in the area of drug repurposing 

using computational approaches. 

• In Chapter 3, we introduce our proposed approach and explain all the 

techniques used to obtain suitable drug repurposing candidates for the 

breast cancer dataset. 

• In Chapter 4, we present the experimental results and perform an analysis 

of those results. 

• Chapter 5 concludes the research by explaining insights received during 

the work and setting up the field of opportunities for possible future work. 
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Chapter 2 

 

Literature Review 

 
This chapter consists of some literature review regarding computational drug 

repurposing using various disease data. Several computational approaches for 

drug repurposing have been developed that is worth noting and we discuss some 

of those works below. 

 

2.1 A Network Approach for Computational Drug 

Repositioning. 

This paper is based on the hypothesis that a drug can be repositioned to another 

drug’s curing area if two drugs share similar molecular and/or chemical 

properties. The authors of this paper, Jiao Li and Zhiyong Lu [27] constructed a 

disease-drug-target network based on prior knowledge (i.e., known therapeutic 

uses of drugs and known drug targets). Different from the other similarity-based 

methods, in drug pairwise similarity calculation, the authors have adapted a 

novel bipartite-graph based method to represent the relationships between drugs 

and their target proteins as a bipartite graph. Furthermore, they added the drug 

structure information into the drug pairwise similarity calculation and in this way 

their method boost the target similarity by making use of their corresponding 

interaction information. Then, the drug pair with higher similarity score is 

predicted to be repurposed to each other therapeutic area. 

 

Limitation of this method is that the state of many structures and chemical 

properties of known drug compounds are untrustworthy and many physiological 

effects cannot be predicted by considering only structural features. 



 

11 | P a g e  
 

2.2 A new computational drug repurposing method using established 

disease-drug pair knowledge. 

The paper is based on the method that if a drug-exposure gene expression profile 

inversely correlates with a disease gene expression profile, the drug may have a 

therapeutic effect on the disease. The authors of this paper, Draghici et al. [28] at 

first formed an input matrix by combining the reversed measurements of the 

genes in the disease profile and the measurements of the same genes in each of 

the drug profiles. Their workflow consists of transforming the input matrix into 

a lower dimensionality matrix by incorporating dimensionality reduction 

technique such as principal component analysis (PCA) or Locally Linear 

Embedding (LLE). Then the authors have used the known relationship between 

disease and its FDA approved drugs into a transformed space using distance 

metric learning algorithm. In this process, the clinically relevant drugs get close 

to the disease and the Euclidean distance between disease gene expression profile 

and each of the drug-exposure expression profiles is calculated. Then the drugs 

are ranked based on the closest to the farthest distance from the disease.  

 

The authors of this paper have worked towards obtaining drug repurposing 

candidates for three diseases: breast cancer, rheumatoid arthritis and idiopathic 

pulmonary fibrosis. They have used GEO disease data for breast cancer, CMAP 

data for rheumatoid arthritis, and LINCS for idiopathic pulmonary fibrosis.  

 

The authors of this paper have made use of only the transcriptional data, so the 

results are not much reliable. Incorporating transcriptional data with available 

clinical knowledge such as drug, chemical and disease biomarkers could yield 

better results. 
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2.3 A novel computational approach for drug repurposing using systems 

biology 

The authors of this paper, Draghici et al. [29] built a global network (GN) which 

is the union of all KEGG human signalling pathways. Then a subgraph was 

extracted from the global network comprising of the shortest paths between the 

disease related genes and drug targets and termed it drug-disease network 

(DDN). Then a system level analysis was applied on the gene expression 

signatures of drug-disease pairs to generate gene perturbation signatures in the 

drug-disease network. Further, the authors have assigned a repurposing score on 

the drug disease pair and obtained a ranked drug list with potential therapeutic 

effects for the given disease based on the repurposing scores. Limitation of this 

paper is that the gene regulatory network constructed in the proposed method is 

biased due to the existence of noise in the gene expression data. 

 

2.4 Drug repositioning for cancer therapy based on large-scale drug-

induced transcriptional signatures 

The authors of this paper, Lee et al. [30] have developed a series of seven 

classifiers using logistic regression to predict drug repurposing candidates for the 

treating of glioblastoma, lung cancer, and breast cancer.  

They make use of signatures obtained from the chemical structure (S), drug-

target relation (T), and gene expression data (E). Suitable drug repurposing 

candidates were predicted based on similarity of the signatures between the 

compounds and disease or known its drugs.  

Limitation of this method is that the method considers only Differentially 

Expressed genes (DEG) in the drug dataset. DEG’s in the disease dataset are not 

taken for consideration and structures for most of the drugs are not available. 
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2.5 Breaking the paradigm: Dr Insight empowers signature free, 

enhanced drug repurposing 

The authors of this paper, Gu et al. [31] have developed a signature free, optimal 

drug repurposing based on gene expression data, namely Dr. Insight which 

overcomes the limitations of the existing computational frameworks. The method 

considers the dysregulation of gene expression from both disease and drug-

perturbed data simultaneously, which renders the CEG’s as optimal features to 

investigate the connections among diseases, drugs and genes. The authors have 

done an extensive comparison on simulated and real cancer datasets and 

validated the superior performance of Dr Insight over several popular drug-

repurposing methods to detect known cancer drugs and drug–target interactions. 
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Chapter 3 

 

Proposed Methods 
 

In this chapter, we discuss the datasets, pre-processing steps taken, and machine 

learning techniques used in this thesis. 

3.1 Breast Cancer 

3.1.1 What is a gene? 

A gene is the basic physical and functional unit of heredity. Genes are made up of 

DNA and every data point generated by a DNA microarray experiment denotes 

the ratio of expression levels [18]. The results from one experiment with n 

number of genes on one test subject denotes a series of expression levels. In each 

of these ratios, the numerator represents expression level of the gene in a varying 

condition and the denominator denotes the expression level of the gene in a 

reference condition. Data compiled together to form m such experiments 

presents a gene expression matrix. The gene expression value will be positive if 

the production of that gene is increased in that particular test case and will be 

negative if the generation of that gene is decreased instead [19]. Figure 3.1 shows 

a sample gene. 

 

Figure 3.1: Gene 
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     3.1.2 What is Breast Cancer? 

Cancer occurs as a result of mutations, or abnormal changes, in the genes 

responsible for regulating the growth of cells and keeping them healthy. A 

tumour can be benign - not dangerous to health or malignant - has the potential 

to be dangerous. Breast cancer is a disease in which cells in the breast grow out 

of control [20]. Usually breast cancer either begins in the cells of the lobules, 

which are the milk-producing glands, or the ducts.  

 

3.1.3 Why Breast Cancer? 

Breast Cancer makes up 25% of all new cancer diagnoses in women across the 

globe according to the American Cancer Society (ACS) [21]. 

 

It is estimated that in Canada in 2019: 

• 26,900 women will be diagnosed with breast cancer. This represents 25% 

of all new cancer cases in women in 2019. 

• 5,000 women will die from breast cancer. This represents 13% of all 

cancer deaths in women in 2019. 

• On average, 74 Canadian women will be diagnosed with breast cancer 

every day and on average, 14 Canadian women will die from breast 

cancer every day. 
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3.2 Datasets 

3.2.1 Reactive Stroma of Breast and Prostate Cancer 

The disease data titled “Reactive Stroma of Breast and Prostate Cancer” was 

obtained from the National Center for Biotechnology Information’s (NCBI), Gene 

Expression Omnibus (GEO) portal.  

 

GEO is a public repository that archives and freely distributes comprehensive 

sets of microarray, next-generation sequencing, and other forms of high-

throughput functional genomic data submitted by the scientific community. This 

dataset consists of gene expression data for a large pool of breast cancer genes. 

The dataset consists of stroma associated with prostate and breast invasive 

tumors. It consists of 24 samples which includes, six samples of stroma 

surrounding invasive breast primary tumours, six samples of stroma 

surrounding invasive prostate primary tumours and six matched samples of 

normal stroma for each type of tumour. Out of this we extracted the 6 samples of 

breast cancer stroma and six matched samples of normal stroma related to the 

breast cancer. The dataset consisted of 12 columns and 20,322 genes. 

 

3.2.2 LINCS 

The drug data was extracted from the pharmacogenomics perturbation data 

which is the National Institute of Health’s (NIH) Library of Integrated Network-

Based Cellular Signatures (LINCS) dataset. This dataset consists of 21,567 drugs 

in the columns and 12,328 genes in the rows. This dataset is a level 5 LINCS 

dataset and consists of normalized z-score values. Level 4 LINCS data consists of 

two sets of data, before administration of drugs and after administration of drugs 

onto the genes in the dataset. These expression values from both the level 4 

datasets are normalized to form the level 5 LINCS dataset. Figure 3.2 shows the 

LINCS L1000 data processing pipeline. 
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Figure 3.2: LINCS L1000 data processing 

 

L1000 data is provided at five levels of the data processing pipeline [32]: 

• Level 1: Raw unprocessed flow cytometry data from Luminex (LXB). 

• Level 2: Gene expression values per 1000 genes after deconvolution 

(GEX). 

• Level 3: Quantile-normalized gene expression profiles of landmark genes 

and imputed transcripts (Q2NORM or INF). 

• Level 4: Gene signatures computed using z-scores relative to the plate 

population as control (ZSPCINF) or relative to the plate vehicle control 

(ZSVCINF). 

• Level 5: Differential gene expression signatures. 

 

3.2.3 Protein-Protein Interaction Networks 

Proteins are large biomolecules, or macromolecules, consisting of one or more 

long chains of amino acid residues. The roles of proteins are many and varied. 

Protein, DNA, RNA and other biological molecules do not work in isolation; they 

cooperate with other proteins to perform a biological activity. Two molecules that 

cooperate to perform a function are said to be interacting. It is the combination 

of these molecules and their interactions, and not the molecules alone, that 

characterize the mechanisms of a biological process. Protein–protein 
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interactions (PPIs) are the physical contacts of high specificity established 

between two or more protein molecules as a result of biochemical events steered 

by electrostatic forces including the hydrophobic effect. Protein-protein 

Interactions (PPI) can be modelled as networks. Each protein is represented as a 

node, and an edge between any two nodes indicates that these two proteins 

interact. Figure 3.3 [37] shows an example of Protein-Protein interaction 

networks, where the proteins are represented by nodes. 

 

Figure 3.3: Protein-Protein Interaction Network 

 

Pathway Commons is a database of biological pathways and biomolecular 

interactions aggregated from many source databases. Pathway Commons has 

biomolecular interaction data from Reactome, NCI Pathways, PhosphoSite, 

HumanCyc, Transfac, MiRTarBase, Drugbank, Recon X, Comparative 

Toxicogenomics Database, and KEGG [38]. 

 

In molecular biology, STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) is a biological database and web resource of known and 

predicted protein–protein interactions [39]. The STRING database contains 

information from numerous sources, including experimental data, 

computational prediction methods and public text collections. The resource also 

serves to highlight functional enrichments in user-provided lists of proteins, 

using a number of functional classification systems such as GO, Pfam and KEGG 

https://en.wikipedia.org/wiki/Gene_Ontology
https://en.wikipedia.org/wiki/Pfam
https://en.wikipedia.org/wiki/KEGG
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[40]. The STRING database contains information on about 9.6 million proteins 

from more than 2000 organisms. 

 

3.3 Pre-processing of Datasets 

The pre-processing pipeline used on the datasets to be used in the Machine 

Learning methods in this thesis is explained in the following subsections. 

 

3.3.1 Reactive Stroma of Breast Cancer Dataset 

The statistical scores such as p-value, FDR-corrected p-value (or q-value) and Z-

scores was calculated using the sick and the healthy samples of the breast cancer 

disease dataset. Having the possibility of there being a large number of false 

positives is not statistically good and so we calculate the q-values using the false 

discovery rate (FDR) approach.  

 

The false discovery rate (FDR) is a method of conceptualizing the rate of type I 

errors (rejection of a true null hypothesis) in null hypothesis testing when 

conducting multiple comparisons. The older approaches reduced the number of 

false positives while also reducing the number of true positives which is not 

optimal. This newer FDR approach gives us adjusted p-values in every test case.  

In simpler terms, p-value predicts that there could be 5% false positives in the 

entire list of DE genes whereas q-value (FDR-adjusted p-value) predicts that 

there could be 5% false positives in the significant tests. 

The false discovery rate formula is [34]: 

FDR = E (V/R | R > 0) P(R > 0) 

Where, 

• V = Number of Type I errors (i.e. false positives) 

• R = Number of rejected hypotheses 
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Q-values are the name given to the adjusted p-values found using an optimised 

FDR approach. The FDR approach is optimised by using characteristics of the p-

value distribution to produce a list of q-values.  

For the breast cancer dataset, the genes having FDR-corrected p-value(q-values) 

< 0.05 was the Differentially Expressed genes. Out of 20,322 genes in the breast 

cancer dataset, 138 genes were identified to be Differentially Expressed. 

 

3.3.2 LINCS Drug Perturbation Data  

The LINCS drug dataset consists of drugs related to 7 cell lines. Out of 7 cell lines, 

we have extracted drugs belonging to the cell line “MCF7”. This way we have 

multiple entries of most drugs, so we have filtered them based on the dosage and 

time under administration. Within this cell line, we have filtered drugs whose 

dosage was 1.11 um and whose time under administration was 24 hours.  

 

Out of 21,567 drugs, 1844 drugs passed our criteria. Then we computed p-values 

based on the z-score by using the normal distribution and FDR corrected p-

value(q-value) for each gene per drug profile to select the statistically significant 

values [35].  

Figure 3.4 [5] explains the LINCS pre-processing pipeline. Like the disease 

dataset, the genes having FDR corrected p-value < 0.05 was considered to be 

differentially expressed.  

 

We calculated the percentage of differentially expressed genes in each drug 

profile and eliminated drugs that had fewer than 1% differentially expressed 

genes. So, in our dataset, out of 12,328 genes, we checked if there are more than 

123 DE genes in a drug profile or not and selected only drugs that had more than 

123 differentially expressed genes. This step has enabled us to select unique 

instances of all drugs fitting our criteria. We have extracted a total of 110 drugs 

based on these filters. 
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Figure 3.4: LINCS pre-processing pipeline 
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3.3.3 Protein-Protein Interaction Network Dataset 

We obtained the directed protein-protein interaction network by combining 

protein interactions from the “Pathway Commons Protein-Protein Interactions 

database” and the “STRING” database. The PPI’s in Pathway Commons database 

are classified as one of the following types in Table 3.1. We extracted the 

interaction from the Pathway Commons Protein-Protein Interactions database 

with the interaction types in “controls-expression-of, controls-state-change-of, 

controls-phosphorylation-of and catalyses-precedes”.  

 

 
Interaction Types 

 
Description 

controls-state-change-of 
First protein controls a reaction that 
changes the state of the second protein. 

controls-transport-of 
First protein controls a reaction that 
changes the cellular location of the second 
protein. 

controls-phosphorylation-of 
First protein controls a reaction that 
changes the phosphorylation status of the 
second protein. 

controls-expression-of 
First protein controls a conversion or a 
template reaction that changes expression 
of the second protein. 

catalysis-precedes 
First protein controls a reaction whose 
output molecule is input to another 
reaction controled by the second protein. 

 
in-complex-with 

 

Proteins are members of the same 
complex. 

interacts-with 
Proteins are participants of the same 
Molecular Interaction. 

neighbor-of 
Proteins are participants or controlers of 
the same interaction. 

consumption-controled-by 
The small molecule is consumed by a 
reaction that is controled by a protein 

controls-production-of 
The protein controls a reaction of which 
the small molecule is an output. 

controls-transport-of-
chemical 

The protein controls a reaction that 
changes cellular location of the small 
molecule. 

 

Table 3.1: Types of Protein-Protein Interaction 
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Then, we extracted the directed interactions from the STRING database. The 

confidence score of an interaction in STRING database is defined as the 

approximate probability that a predicted link exists between two enzymes in the 

same metabolic map in the KEGG database. Confidence limits are as follows 

• low confidence - 0.25 (or better), 

• medium confidence - 0.4, 

• high confidence - 0.7, 

• highest confidence - 0.9 

 

We removed all the interaction with weak confidence, with score < 250 (i.e., 

0.25). The duplicate interactions were removed, and PPI network was formed by 

combining interactions from the “Pathway Commons Protein-Protein 

Interactions database” and “STRING” database. PPI network comprises of 

904284 unique interactions. 

 

3.4 Methodology 

In this thesis, we have proposed two methodologies to find the ranked list of 

drugs which would make suitable candidates for Drug 

Repositioning/Repurposing for the disease Breast Cancer. We formed the breast 

network data from the PPI network by considering only the genes present in the 

breast disease data and the disease network data consist of 716,426 unique 

interactions. Then, we constructed the drug network data from the PPI network, 

for each drug profile by considering only the differentially expressed genes 

present in each drug profile of the drug data and obtained 110 drug networks. 

Figure 3.5 represents the pipeline of our overall thesis. 
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Figure 3.5: Thesis pipeline 
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In the first method, we aim to find a Differentially Expressed Subnetwork from 

the disease network data. A gene is declared differentially expressed if an 

observed difference or change in read counts or expression levels between two 

experimental conditions is statistically significant [52]. A Differentially 

Expressed subnetwork is a disease-related subnetwork of differentially expressed 

interacting genes identified by an appropriate integration of a secondary network 

data with the primary gene expression data. In our second method, we use 

community detection algorithms to find the communities, or clusters in the 

disease and the drug network data. Community detection in networks is one of 

the most popular topics of modern network science. Communities or clusters are 

usually groups of vertices having higher probability of being connected to each 

other than to members of other groups, though other patterns are possible [44]. 

We will see more about these two methodologies used in this thesis later in this 

chapter. 

 

3.4.1 Hungarian Algorithm 

The standard assignment problem is referred to as the problem to find a one-to-

one matching between tasks and agents, in order to optimize the total cost of the 

assignments. The objective is either to maximize or minimize the total cost. In 

this thesis we wish to find the optimal assignment of rank of drugs, by maximising 

the total cost. The classical example of assignment problems is assigning jobs to 

workers. Hungarian method is the most popular method which solves the 

assignment problem in polynomial time. It was developed and published by 

Harold Kuhn in 1955.  
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The Hungarian Method is based on the principle that if a constant is added to 

every element of a row and/or a column of cost matrix, the optimum solution of 

the resulting assignment problem is the same as the original problem and vice 

versa. The original cost matrix can be reduced to another cost matrix by adding 

constants to the elements of rows and columns where the total cost or the total 

completion time of an assignment is zero. Since the optimum solution remains 

unchanged after this reduction, this assignment is also the optimum solution of 

the original problem [48]. 

 

The Hungarian algorithm consists of the four steps: 

Step 1 (Subtract row minima): In the cost-matrix, for each row, the lowest 

element is subtracted from each element in that row. 

Step 2 (Subtract column minima): Similarly, for each column, the lowest 

element is subtracted from each element in that column. 

Step 3 (Cover all zeros with a minimum number of lines): Then all the 

zeros in the resulting matrix is covered using a minimum number of horizontal 

and vertical lines. If n lines are required, an optimal assignment exists among the 

zeros. The algorithm stops. If less than n lines are required, Step 4 is continued.  

Step 4 (Create additional zeros): The smallest element (call it k) that is not     

covered by a line in Step 3 is subtracted from all uncovered elements and k is 

added to all elements that are covered twice. 

 

A Walk-Through Algorithm: 

We consider an example where five salesmen (1, 2, 3, 4,5) need to be assigned to 

five districts (A, B, C, D, E), one salesman per district. The matrix below shows 

the cost of assigning a certain worker to a certain district. The objective is to 

maximize the total cost of the assignment. 

 

 

Cost Matrix: 
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Conversion to Minimization Problem: 

The given maximization problem is converted into minimization problem by 

subtracting from the highest sales value (i.e., 41) with all elements of the given 

table. 

 

Matrix Reduced Row-wise 

Reduce the matrix row-wise 

 

Step 2: Matrix Reduced Column-wise and Zeros Covered 

Reduce the matrix column-wise and draw minimum number of lines to cover all 

the zeros in the matrix, as shown below. 
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Step 3: Add & Subtract the least Uncovered Element: 

Number of lines drawn ≠ Order of matrix. Hence not optimal. Select the least 

uncovered element, i.e., 4 and subtract it from other uncovered elements, add it 

to the elements at intersection of line and leave the elements that are covered 

with single line unchanged. 

 

Step 4: Final Assignments 

Now, number of lines drawn = Order of matrix, hence optimality is reached. 

 

Thereby, the salesman 1 is assigned to district B, salesman 2 is assigned A, 

salesman 3 is assigned to E, salesman 4 is assigned to C and salesman 5 is 

assigned to district D.  
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3.4.2 Differentially Expressed Subnetwork Method 

 

Figure 3.6: Proposed Framework – DES method 

 

In biology, a biomarker is a measurable indicator of the severity or presence of 

some disease state. More generally a biomarker is anything that can be used as 

an indicator of a particular disease state or some other physiological state of an 

organism [41]. In the literature survey, we found that all the papers were using a 

bioinformatic methods that focuses on identifying biomarkers as small subsets of 

differentially expressed genes. Differentially expressed genes (DEG’s) have 

limited predictive performance due to the heterogeneity within tumour samples 

and across patients, moreover insufficient patient sample size and the inherent 

measurement noise in microarray experiments makes the biomarkers with DEG’s 

unstable [42].  

Also, computational methods detecting DEG’s do not consider the dependencies 

or relationships between genes in order to accurately classify the sample data, 

thus identified biomarker set may contain many DEG’s with redundant 

information yielding decreased prediction performance.  
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So, to accurately identify effective biomarkers, new bioinformatic methods 

integrating additional biological information with gene expression data have 

become necessary [31].  

 

In this thesis, we aim to identify a Differentially Expressed Subnetwork (DES) as 

an effective biomarker that could help us to find the best candidate drugs for 

repurposing. Figure 3.5 represents the proposed framework, which involves 

finding the Differentially Expressed Subnetwork. We have obtained the 

Differentially Expressed Subnetwork with the help of the Breast Network Data 

and the differentially expressed genes of the disease data. The Differentially 

Expressed subnetwork is obtained for each of the DEG’s in the disease data, so 

138 Differentially Expressed Subnetwork is obtained. Figure 3.6 explains the 

process of finding the Differentially Expressed Subnetwork. 

 

Starting from a DEG V, the search for the Differentially Expressed Subnetwork 

proceeds as follows: 

• The current aggregate N, initially contains only the differentially 

Expressed gene V. 

• We iteratively aggregate its neighbour nodes U in a greedy manner using 

Breadth First Search Algorithm. 

• A neighbour u is inserted into the current aggregate N if and only if its 

inclusion increases the correlation between the expression of the genes in 

the aggregate. 

• |"correlation (N + u) − correlation (N)" | > ∆, where ∆ is 0.001. 

• Then, the same process is repeated on the new aggregate N + u and the 

process continue till the level 2 neighbours are evaluated. 
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    Figure 3.7: Framework for finding Differentially Expressed 

Subnetwork 

 

After obtaining the Differentially Expressed Subnetwork, the next step was to 

check for the correlation of genes, between each of the Differentially Expressed 

Subnetwork and the drug data. For this we have used the ABC model of Network-

based method for Drug Repositioning/Repurposing. The ABC model is based on 

the idea that if a drug perturbed gene expression profile inversely correlates with 

the disease gene expression profile, the drug may have a curing effect on the 

disease. 

 

Generally, suppose we know through a data source that a disease C has a certain 

characteristic B i.e., disease C is caused by a downregulation of gene B and that a 

compound A has some effect on B i.e., drug A restores the expression of B. Then, 

we can infer that A will influence C i.e., drug A is a repositioning candidate for 

disease C [43].  
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Table 3.2 shows the anti-correlation labels and the correlation which makes the 

drug, a suitable candidate for repurposing. Down-regulation indicates a decrease 

in the production of that gene as an effect of the disease. Up-regulation indicates 

an increase in the production of that particular gene as an effect of the disease. 

 

Table 3.2: Correlation Table 

 

For each Differentially Expressed Subnetwork(DES), a percentage score is given 

based on the total number of genes that are inversely correlated between the DES 

and the drug data i.e. if no genes are inversely correlated between a DES and the 

drug data, then it is scored 0 and if all the genes are inversely correlated then it 

is scored 100. Then finally Hungarian Algorithm is applied on the obtained score 

matrix to get the ranked list of drugs which act as the potential candidate for drug 

repurposing/repositioning. 

 

3.4.3 Louvain Community Detection Method 

In this thesis, in our second method we have used the community detection 

algorithm on the disease network data followed by correlation analysis to find the 

repurposing score and the combinatorial optimization algorithm to rank the 

drugs, based on the repurposing score. We finally have a list of drugs ranked from 

potentially best suited drug repurposing candidates for the disease breast cancer 

to potentially less effective drug repurposing candidates. 

 

 



 

33 | P a g e  
 

There are several types of algorithms used for community detection. In this thesis 

we have used the Louvain community Detection Method (LDM) for detecting 

communities in networks. Figure 3.7 represents the proposed framework of the 

second method. 

 

Figure 3.8: Proposed Framework – LCD Method 

 

The Louvain method for community detection is an algorithm for detecting where 

the modularity quantifies the quality of an assignment of nodes to 

communities. Modularity is defined as a measure of the structure of networks or 

graphs. It was designed to measure the strength of division of a network into 

modules (also called groups, clusters or communities) [45]. The Louvain 

clustering algorithm is illustrated in figure 3.8 [46]. 
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Figure 3.9:Louvain Clustering Algorithm 

 

The algorithm is: 

• The Louvain algorithm starts from a singleton partition in which each node is 

in its own community. The algorithm moves individual nodes from one 

community to another to find a partition. 

• Based on the obtained partition, an aggregate network is created. 

• The algorithm then moves individual nodes in the aggregate network. 

• These steps are repeated until the quality cannot be increased further. 
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The algorithm optimizes a quality function such as modularity in two elementary 

phases. The first phase involves local moving of nodes and the second phase 

involves the aggregation of the network. In the local moving phase, individual 

nodes are moved to the community that yields the largest increase in the quality 

function. In the aggregation phase, an aggregate network is created based on the 

partition obtained in the local moving phase. Each community in this partition 

becomes a node in the aggregate network. The two phases are repeated until the 

quality function cannot be increased further [47]. 

 

We applied the Louvain community detection algorithm on the Breast Network 

data and obtained 14 communities. Then the correlation analysis was performed 

on each of the drug network data and the corresponding disease network 

communities. In this method, we have computed two repurposing scores based 

on the correlation.  

 

Case 1: 

In the first case, the score is computed based on the total number of genes that 

are inversely correlated between each of Breast network communities and the 

drug networks. Figure 3.9 explains the computation of the inversely corelated 

gene score. In fig 3.9, Circle A consist of the disease genes and circle B consist of 

the drug genes. Genes A, B, D and G are in common between the disease and the 

drug genes. Among the common genes, the genes which are inversely correlated 

are highlighted in red colour. These inversely correlated common genes are used 

to calculate the first score. 
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Figure 3.10: Gene Score calculation  

 

Equation 3.1 shows the formula used to calculate the inversely corelated gene 

score. 

𝒔𝒄𝒐𝒓𝒆𝟏 =  
#𝑰𝑪𝒈𝒆𝒏𝒆𝒔

|𝑵|
 

Where, 

N – Total number of genes in common between the disease and the drug data. 

𝑰𝑪𝒈𝒆𝒏𝒆𝒔 – Total number of inversely correlated genes among the common genes 

between the disease and the drug data. 

 

Case 2: 

 In the second case, the score is computed based on the total number of 

interactions that are inversely correlated between each of Breast network 

communities and the drug networks. Figure 3.10 explains the computation of the 

inversely corelated edge score. In fig 3.10, Circle A consist of the interactions in 

the disease network and circle B consist of the interactions in the drug network. 

Interactions A       B, C        D, X          Z are in common between the disease and 

the drug network.  
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Initially, each interaction is scored based on the number of genes that are 

inversely correlated in an interaction. Genes which are inversely correlated 

among the common interactions are highlighted in red colour. If both the genes 

in an interaction are inversely correlated, then the interaction is scored 2. If any 

one of the genes in an interaction is inversely correlated then the interaction is 

scored 1 and if no genes in an interaction is inversely correlated, then it is scored 

0. 

 

 

Figure 3.11: Edge Score Calculation 

 

Equation 3.2 shows the formula used to calculate the inversely corelated edge 

score. 

𝒔𝒄𝒐𝒓𝒆𝟐 =  
𝟏

#𝑬
∑

𝒔𝒆

𝟐

#𝑬

𝟏
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Where, 

𝑬 = Total number of common interactions between the disease network and the 

drug network. 

𝒔𝒆 = The score of each common interaction. 

𝒔𝒆 = 0 if both the genes are not inversely correlated. 

𝒔𝒆 = 1 if one of the genes are inversely correlated. 

𝒔𝒆 = 2 if both the genes are inversely correlated. 

 

Then the final repurposing score between each drug and disease data is computed 

by taking average of the Gene score and edge score. Finally, we applied the 

Hungarian algorithm to the obtained score matrix and found the list of ranked 

drugs from potentially best suited drug repurposing candidates for the disease 

breast cancer to potentially less effective drug repurposing candidates. 
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Chapter 4 

 

Results and Discussion 

 
In this chapter, we shall go through the results of both the proposed methods for 

the disease Breast Cancer and compare the results obtained. The results 

showcase several unapproved drugs alongside approved drugs closest to the 

disease indicating that the unapproved drugs share similarities with the approved 

drugs which means that they are worth pursuing for repurposing. 

 

4.1 Results 

The following tables shows the ranked top 10 drugs for the disease breast cancer 

obtained using our proposed methods. We selected the top 10% drugs from the 

drugs lists obtained by applying the proposed methods on the breast cancer 

datasets. These drugs are ranked according to the repurposing scores computed 

by the systematic method from the highest to the lowest. We have used online 

drug databases such as Drug Bank [49] to obtain each drugs’ FDA status. Table 

4.1 shows the list of ranked drugs obtained by the DES method. The ranked list 

of drugs obtained from the DES method for the disease breast cancer, comprises 

of 4 approved drugs and 6 unapproved drugs. Table 4.2 shows the list of top 10 

drugs obtained from our LCD method . The ranked list of drugs obtained from 

our LCD method for the disease breast cancer, comprises of 8 approved drugs 

and 2 unapproved drugs. 
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Rank Drugs FDA Status 

1 Pralatrexate Approved 

2 BIIB 021 Investigational 

3 Idasanutlin Investigational 

4 Genz-644282 Approved 

5 Inositol Approved 

6 Bardoxolone methyl Investigational 

7 sitagliptin Approved 

8 combretastatin A4 Investigational 

9 AS703026 Investigational 

10 CYT997 Investigational 

 

Table 4.1: Ranked list of Drugs – DES Method 

 

Rank Drugs FDA Status 

1 Daunorubicin Approved 

2 Mepivacaine Approved 

3 Mitoxantrone Approved 

4 Ixazomib citrate Approved 

5 AT-7519 Investigational 

6 IKK2-inhibitor-V Approved 

7 R-547 Investigational 

8 Genz-644282 Approved 

9 Sorafenib Approved 

10 L-ergothioneine Approved 

 

Table 4.2: Ranked list of Drugs – LCD Method 
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4.2 Discussion 

Tamoxifen, Gemcitabine, Epirubicin, Exemestane, Capecitabine, Paclitaxel, 

Doxorubicin, gemcitabine, Fulvestrant, Exemestane, Neratinib, Docetaxel are 

some of the FDA approved drugs for the disease breast cancer. These drugs were 

included in our list of input drugs from the LINCS drug dataset to validate our 

proposed methods. Table 4.3 shows the validation results for both the proposed 

methods. FDA approved drugs for the disease breast cancer are highlighted in 

green colour. Both our proposed methods were able to find 8 out of the 10 FDA 

approved drugs for the disease breast cancer.  

 

Rank Method 1 Method 2 

1 Gemcitabine Capecitabine 

2 Exemestane Paclitaxel 

3 Paclitaxel Mepivacaine 

4 Triptolide Doxorubicin 

5 Tamoxifen Tofacitinib 

6 Capecitabine Fulvestrant 

7 Doxorubicin Gemcitabine 

8 Neratinib Exemestane 

9 Fulvestrant Neratinib 

10 Lacidipine Docetaxel 

 

Table 4.3: Validation Results 
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Some of our proposed drugs are already in the clinical study for the treatment of 

breast cancer. For example, one of our proposed drugs by method 2, Sorafenib, 

marketed as Nexavar by Bayer, is a drug approved for the treatment of advanced 

renal cell carcinoma (primary kidney cancer). A recent phase II study in 229 

human epidermal growth factor receptor 2 (HER2)-negative metastatic breast 

cancer patients investigated with the combination of sorafenib and capecitabine 

inhibited the proliferation of breast cancer [50]. 

 

Daunorubicin, one of the proposed drugs by method 2 is an anthracycline used 

in treatment of leukemia. Clinical studies proved that Human DNA TOP2A is a 

marker of cell proliferation in breast cancer. Based on this evidence, 

Daunorubicin which inhibits Human DNA TOP2A may have a potential 

therapeutic effect on breast cancer. This hypothesis is under phase I clinical study 

evaluating the effectiveness of Daunorubicin in treating breast cancer patients 

(ClinicalTrials.gov identifier: NCT00004207). Mepivacaine, a local anaesthetic 

that is chemically related to bupivacaine but pharmacologically related to 

lidocaine. It is indicated for infiltration, nerve block, and epidural anaesthesia. In 

a recent study, human breast cancer cell lines, MDA-MB-231 and MCF7, were 

incubated with mepivacaine and found that the high concentration of 

mepivacaine, significantly inhibited the breast cancer cell survival [51]. 
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Chapter 5 

 

Conclusion and Future Work 

 
In this thesis, we aimed to find suitable drug repurposing candidates for the 

disease breast cancer using the Network-based method. We used Reactive 

Stroma of Breast and Prostate cancer disease datasets, LINCS drug datasets and 

the Protein-Protein interaction (PPI) networks from the “Pathway Commons 

Protein-Protein Interactions database” and the “STRING” database. We 

performed a series of pre-processing steps on these datasets and proposed two 

different methods for achieving the drug repurposing/repositioning for the 

disease breast cancer. In our first method, we have discussed methods to identify 

a Differentially Expressed Subnetwork as an effective biomarker that helped us 

to find the best candidate drugs for repurposing. We also discussed the ABC 

model of Network based drug repurposing/repositioning.  

 

In our second method, our proposed frameworks constructs the drug network 

data and we have used the community detection algorithm on the disease 

network data followed by correlation analysis on the disease communities and 

the drug network data to find the repurposing score followed by the usage of  

combinatorial optimization algorithm to rank the drugs, based on the 

repurposing score.  
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5.1 Possible Future Work 

This thesis is just a small step towards Drug repurposing and Drug repositioning. 

There are many directions for future research. Future work that can be conducted 

includes the following: - 

• Our pre-processing steps and methods can be applied on a different cancer 

dataset such as prostate cancer. 

• Using side-effect similarity of unapproved drugs with that of approved 

drugs, drug repurposing candidates can be obtained. 

 

These ideas can be an open problem that can be explored in the future 
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