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Abstract

Team Formation Problem (TFP) in Social Networks (SN) is to collect the group

of individuals who match the requirements of given tasks under some constraints. It

has several applications, including academic collaborations, healthcare, and human

resource management. These types of problems are highly challenging because each

individual has his or her own demands and objectives that might conflict with team

objectives. The major contribution of this dissertation is to model a computational

framework to discover teams of experts in various applications and predict the po-

tential for collaboration in the future from a given SN. Inspired by an evolutionary

search technique using a higher-order cultural evolution, a framework is proposed us-

ing Knowledge-Based Cultural Algorithms to identify teams from co-authorship and

industrial settings. This model reduces the search domain while guiding the search

direction by extracting situational knowledge and updating it in each evolution.

Motivated from the above results, this research examines the palliative care multi-

disciplinary networks to identify and measure the performance of the optimal team of

care providers in a highly dynamic and unbalanced SN of volunteer, community, and

professional caregivers. Thereafter, a visualization framework is designed to explore

and monitor the evolution in the structure of the care networks. It helps to iden-

tify isolated patients, imbalanced resource allocation, and uneven service distribution

in the network. This contribution is recognized by Hospice and the Windsor Essex

Compassion Care Community in partnership with the Faculty of Nursing.

In each setting, several cost functions are attempted to measure the performance

of the teams. To support this study, the temporal nature of two important evalua-

tion metrics is analyzed in Dynamic Social Networks (DSN): dynamic communication

cost and dynamic expertise level. Afterward, a novel generic framework for TFP is

designed by incorporating essential cost functions, including the above dynamic cost

functions. The Multi-Objective Cultural Algorithms (MOCA) is used for this pur-
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pose. In each generation, it keeps track of the best solutions and enhances exploration

by driving mutation direction towards unexplored areas. The experimental results

reach closest to the exact algorithm and outperform well-known searching methods.

Subsequently, this research focuses on predicting suitable members for the teams

in the future, which is typically a real-time application of Link Prediction. Learning

temporal behavior of each vertex in a given DSN can be used to decide the future

connections of the individual with the teams. A probability function is introduced

based on the activeness of the individual. To quantify the activeness score, this study

examines each vertex as to how actively it interacts with new and existing vertices

in DSN. It incorporates two more objective functions: the weighted shortest distance

and the weighted common neighbor index. Because it is technically a classification

problem, deep learning methods have been observed as the most effective solution.

The model is trained and tested with Multilayer Perceptron. The AUC achieves

above 93%. Besides this, analyzing common neighbors with any two vertices, which

are expected to connect, have a high impact on predicting the links. A new method

is introduced that extracts subgraph of common neighbors and examines features of

each vertex in the subgraph to predict the future links. The sequence of subgraphs’

adjacency matrices of DSN can be ordered temporally and treated as a video. It is

tested with Convolutional Neural Networks and Long Short Term Memory Networks

for the prediction. The obtained results are compared against heuristic and state-of-

the-art methods, where the results reach above 96% of AUC.

In conclusion, the knowledge-based evolutionary approach performs well in search-

ing through SN and recommending effective teams of experts to complete given tasks

successfully in terms of time and accuracy. However, it does not support the predic-

tion problem. Deep learning methods, however, perform well in predicting the future

collaboration of the teams.
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Chapter 1

Introduction

1.1 Social Network Analysis

Social networks are not only modern online varieties such as Facebook1, Twitter2,

Instagram3. These can also be the kind of social structure that human beings have

been assembling for a variety of reasons or the way how the proteins link to each other.

Because the pattern of social structure is treated as a network, it grabbed the name

Social Networks. It has so many hidden and powerful information which makes us

see the world in an entirely new way. Social networks are intricate things of beauty

and do not follow either a random or regular pattern. Social Networks Analysis

(SNA) can be simply defined as an in-depth analysis of social network structure,

dynamic nature, multi-relational aspects, the pattern of a relationship with social

actors, and the available data along with them [1]. Since social networks use to

represent the large-scale social structures and the underlying network structure in

the real world is dynamic and large in size, called as complex system [2]. Moreover,

these are ubiquitous and can be created from various fields such as co-author network,

1https://www.facebook.com/
2https://twitter.com/
3https://www.instagram.com/
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Twitter friendship, LinkedIn profile4, and protein to protein network. Therefore, the

demand for contribution to the fundamental research of complex SNA has become

high. Investigating complex social networks is extremely challenging. The study of

complex social networks is limited in the literature because of unexpected challenges

owing to the real-data. For example, the healthcare network analysis requires patient

information. But for the privacy purpose, no one release real data for public research.

In the last decades, SNA has been used in various disciplines such as business [3],

academics [4], politics [5], economics [6], law enforcement [7], sports [8], health care

[9], and daily life activities that are highly related to real-world problems. SNA is

most commonly applied to help to improve the effectiveness and efficiency of decision-

making processes and deals with different issues. Few of them are very popular in

SNA research: Team formation, Link prediction, Leadership detection, Community

detection, Migration Between Communities, Sentimental Analysis, Collaborative Rec-

ommendation, Influence Analysis, and Fraud Detection.

This dissertation focuses on the formation of teams and the prediction of future

interactions in social networks.

1.1.1 Forming Successful Teams

Today, it is essential to have some collective thoughts and creative ideas for produc-

tive results in various fields such as academic collaborations, educational, healthcare,

industrial organizations, human resource management settings. As specialization in

every field increases, there is a need for an expert in specific skill. Therefore, bringing

these experts together as a team for a collaborative working environment would be

an excellent idea for the effective result. The combined expertise of a group can usu-

ally produce results considerably surpassing the sum of the individual capabilities.

However, what guaranty do we have that the combination of these individuals who

4https://www.linkedin.com/
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may or may not know each other would actually succeed? The links connecting these

individuals are very critical. Are these connections between the individuals that we

connected as a team with the right people? Will they make a huge difference in the

outcomes of the result? Each individual has his or her demands and objectives that

might conflict with team objectives. Creating and organizing such teams is highly

challenging and not a straightforward task.

Team Formation Problem (TFP) has been tried to tackle by the researchers from

various disciplines for a long time. Earlier, research from psychology and sociology

tried to understand what control the individual and social behaviors of members of a

team have. Then, because human natures are unpredictable, the mathematicians and

statisticians tried to approach this problem in the dynamic environment. Zkarian et

al. [10] designed a conceptual framework for the selection of multi-functional teams.

Although the general idea of TFP is highly connected with social sciences, social

scientists have not designed any effective model to solve TFP. Therefore, Lappas et

al. [11] incorporated social networks with TFP to discover the team of experts for

the first time in SNA. Inspired by his work, TFP has taken a great deal of attention

from various researchers [12, 13, 14, 15].

1.1.2 Predicting Future Collaboration

The individual of a social network often has insufficient information about the exist-

ing other individuals with which future interaction might prove fruitful. Moreover,

even with the presence of such information, predicting in advance which potential col-

laboration should pursue is a highly challenging task [16]. The process of detecting

suitable members for teams in a social network is typically a real-time application of

link prediction.

Although the link prediction problem has been discussed over the last two decades,

the work of Jon Kleinberg and David Liben-Nowell [17] has drawn a great deal of at-
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tention in recent years. Later, numerous methods have been proposed to solve the

link prediction problem because it has several applications including friend recom-

mendation [18], classify the behavior and motion of people [19], and disease gene

prediction [20]. It has been solved in two different settings: static and dynamic net-

work settings. The link prediction in static network considers a single snapshot, Gt

of a network at time t and is used to determine new links in time t′(> t), while the

dynamic networks considers sequence of snapshots, {G1, G2, . . . , Gt−1} of an evolving

network in {1, 2, . . . , t− 1} and are used to determine new links in time t. The tra-

ditional approaches consider the topological structures of the network and measure

the similarity metrics using various methods including Common neighbors (CN) [21],

Adamic Adar (AA) [18], and Resource Allocation (RA) [22]. Later, many machine

learning methods have been proposed to improve the accuracy and to handle the

complexity such as DeepWalk [23], LINE [24] and Node2Vec [25] and deep learning

techniques [26, 27, 28].

1.2 Motivations and Objectives

Team formation is not a straightforward process because each individual has his or her

own demands and objectives that might conflict with team objectives. Defining TFP

in different domains is challenging and not the same procedure. Another critical

problem in TFP is formulating the cost functions to measure the performance of

teams. The TFP has been proven to be an NP-Hard problem [11]. Many existing

methods considered the entire social networks for the TFP to recommend effective

teams of experts to complete given tasks under some constraints. They used several

cost functions such as communication cost, expertise level, and workload level as

a static score. On the other hand, considering the whole network together is not as

effective as considering the evolving nature of networks. In real world, social networks
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are changing over time; people join the networks and interact with existing other

people to build strong relationships. Many existing models failed to bring dynamic

nature with cost functions.

Problem 1.1. (Team Discovery) Given a set of projects P, a set of experts V,

and a social network that is modeled as graph G(V , E), the problem of team discovery

in social networks is to find a teams of experts T for P from G so that the evaluation

costs of T is minimized or maximized.

Predicting future interaction is another significant problem in TFP. Existing teams

can collaborate or interact with new individuals for various purposes, such as to fulfill

the required skill for the given tasks and new faculty contributing his skills with

existing academic teams. It is an application of link prediction problem in social

networks. The existing methods suffer from the accuracy of various network types

and struggle with the size of the networks.

Problem 1.2. (Predicting link for Future Collaboration) Given a sequence

of snapshots {Gt−k,Gt−k+1, . . . ,Gt} of an evolving graph G, with length k have the

corresponding adjacency matrices {At−k, At−k+1, . . . , At}, the primary objective of link

prediction in dynamic networks is to model a framework to learn the following function

to predict the topological changes, mainly in links at time t+ 1.

A(t+1) = f(At−k, At−k+1, , . . . , At) (1.1)

where f(At−k, At−k+1, , . . . , At) represents the model required to predict the adjacency

matrix A(t+1) at time t+ 1.

Motivated by the observations that sections 1.1.1 and 1.1.2 elaborate, this disserta-

tion addresses the above research problems in social networks. The primary objective

of this dissertation is to model a computational framework to discover teams of ex-

perts in various applications and predict the potential for collaboration in the future

from a given dynamic social network.
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1.3 Research Contributions

This research examines the team formation problem in three different applications:

academic collaborations, health care settings, and industrial-organizational settings,

and proposes new computational frameworks by using a knowledge-based cultural

algorithm, which was introduced by Reynolds [29]. TFP can be formulated as an

optimization problem where our goal is to maximize or minimize the cost functions

in order to discover the teams of experts to complete given tasks under certain con-

straints. The significant difference that this research work has from other existing

works is utilizing different sources of knowledge from the network and handling the

searching process smoothly. It helps to address the computational challenges in TFP.

Another major contribution for the first time in healthcare is to model a framework for

palliative care multidisciplinary networks to identify and measure the performance of

the optimal team of care providers in highly dynamic and unbalanced social networks

of volunteer, community, and professional caregivers. This study also designs a visu-

alization framework to explore and monitor the evolution in the structure of the care

networks. It helps to identify the isolated patients, imbalanced resource allocation,

and uneven service distribution in the network. This contribution is acknowledged

by Hospice and the Windsor Essex Compassion Care Community in partnership with

the Faculty of Nursing.

Another contribution of this research is to model a unified framework for TFP

by involving essential cost functions. For that purpose, the temporal nature of both

communication cost and expertise level is examined to introduce new score functions.

To optimize the objective functions, the model uses the multi-objective cultural algo-

rithms, which extract various sources of knowledge and update each generation. In

each case of TFP, the experimental results reach closest to the exact algorithm and

outperform well-known searching methods.



7

In order to predict future collaboration, this research focuses on the evolving

pattern of vertices of a given network G over time. As another contribution, a time-

varying score function is introduced to evaluate the activeness of nodes that uses the

number of new interactions and the number of frequent interactions with existing

connections. To consider the impact of timestamps of the interactions, the score

function engages a time difference of the current time and the time of the interaction

occurred. Thereafter, a probability function is introduced based on the activeness of

the individual. This study includes two additional objective functions in our model: a

weighted shortest distance between any two nodes and a weighted common neighbor

index. The Multi-Layer Perceptron (MLP) is a deep learning architecture, used as a

classifier to predict the link formation in the future and define our model as a binary

classification problem. Experimental evaluation against network embedding and basic

heuristic methods shows significant improvement and reaches up to 93%.

This dissertation attempts another contribution to predicting the links for future

collaborations. The proposed model aims to improve the accuracy of the prediction

as well as reduce the complexity. These are two major issues in the link prediction

problem. This research uses common neighbors based subgraph of a target link and

learns the transitional pattern of it for a given dynamic network. A set of heuristic

features of the evolving subgraph is extracted to gather additional information about

the target link. In this way, this research avoids examining the entire network. Ad-

ditionally, this model uses some new mechanisms to reduce computational costs. It

generates a lookup table to keep the required information of links of the network and

uses a hashing method to store and fetch link information. An algorithm is intro-

duced to construct feature matrices of the evolving subgraph to learn transitional link

patterns. This model transforms the dynamic link prediction to a video classification

problem and uses Convolutional Neural Networks with Long Short-Term Memory

neural networks. To verify the effectiveness of our studies, extensive experiments are
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carried out on five real-world dynamic networks. Those results are compared against

four network embedding methods and basic heuristic methods and show significant

improvement than other approaches.

1.4 The structure of the dissertation

The rest of this dissertation is organized as follows.

Chapter 2 elaborates on how to tackle the problem of finding a team that covers

a set of required skills in academic collaborations networks. It uses two well-known

functions to evaluate the communication cost of a team: the diameter and the sum

of distances. It explains the benefits of utilizing a knowledge-based evolutionary

optimization algorithm to solve this problem. This research creates a key path for

the rest of the works in this dissertation.

Chapter 3 examines the high-level benefits of social network analysis in healthcare

settings. It describes the palliative care multidisciplinary networks and how to solve

the problem from the unbalanced social networks of volunteer, community, and pro-

fessional caregivers by assigning optimal teams to serve patients. Chapter 4 illustrates

the necessity of visualizing healthcare networks and their advantages.

Chapter 5 presents the framework for industrial organization settings. It explains

how this model varies from other cases in the previous chapters. Industries focus on

profits from a set of projects. This chapter elaborates on how to maximize profits by

hiring efficient teams of experts under a given budget.

Chapter 6 provides complete descriptions of a unified framework for the team

formation problem. It summarizes the existing team formation approaches, and in-

vestigates various cost functions to handle the dynamic social networks.

In chapters 7 and 8, the problem of predicting links for future collaboration in

social networks is reviewed. Chapter 7 describes the impact of analyzing the active-
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ness of vertices for link prediction in dynamic networks, while chapter 8 examines the

method to handle the complexity of dynamic networks by using efficient subgraph

extraction.

Finally, the conclusions of the dissertation along with our future directions is

presented in Chapter 9.
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Chapter 2

A Knowledge-based Computational

Algorithm for Discovering a Team

of Experts in Social Networks

In this study, we examine the problem of finding a team that covers a set of required

skills of a task in a given social network. The proposed model is suitable for solving

team formation problems in various types of applications, including academic collab-

orations and educational settings. Because this problem has been proven to be an

NP-hard problem [1], we attempt it using the knowledge-based cultural algorithms

as a significant contribution. This research opens a path for the rest of the works in

this dissertation.

2.1 Introduction

An expert network is a social network that contains professionals who have skills and

expertise in particular areas. With the growth of the Internet, online social networks

of experts have become popular and more enterprises seek to find talent and expertise

from such networks to complete a project or task. Some examples of these expert
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Figure 2.1: A social network and two teams to perform a project that requires arti-
ficial intelligence (AI), databases (DB), and graphics (GR). Edge weights show the
communication cost between the experts. Smaller values indicate two experts com-
municate more efficiently and have more past experience.

networks are the employment-based service LinkedIn, the code repository hosting

service GitHub, and the research-based author websites such as Google Scholar and

DBLP. In such networks, a node is an expert that is associated with a person. Each

expert possesses a set of skills that determine his/her expertise based on his/her ed-

ucation, past experience, or training. If two experts have past collaboration, they

will be connected to each other in the social network. This includes writing a paper

together, being a member of the same GitHub repository, or being a member of the

same project in the same company. In some situations, there might be a different

degree of collaboration among the experts. For example, two developers might par-

ticipate in more than one GitHub repository. In this case, the weight of the edges

determine the strength of the relationship between the two experts [2, 3, 4].

We focus our study on the problem of forming a team of experts from a given

social network to complete a certain project. In this context, a project is composed
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of a set of skills, where each skill should be covered by one expert in a team in order

to complete the project. Traditionally, team formation has been studied in operation

research and most of the classic approaches do not evaluate the underlying social

network of experts. However, this is an important aspect of a successful team. The

success of a project depends on how well the experts on the team communicate and

collaborate with each other. If they have past experience, it is more likely that they

finish the project in a timely manner. Thus, in addition to finding a set of experts

that posses the required skills, we are interested in minimizing the communication

cost between them as well.

To motivate the problem and illustrate the benefit of evaluating the communica-

tion cost, consider the social network presented in Figure 2.1. We have six experts in

total. The expertise of each expert is also shown in the graph. The edge weight shows

the communication cost between experts. Smaller values determine the experts have

more past experience and therefore, will form a more collaborative team in the future.

For example, the communication cost between Sarah and David is the smallest (i.e.,

it is one). Thus, we can conclude that Sarah and David will collaborate efficiently in

the future. On the other hand, the communication cost between Mathew and David

is 12. Hence, it is unlikely that they will form a strong team together.

Assume we need to perform a project that needs expertise in three areas: artificial

intelligence (AI), databases (DB), and graphics (GR). Two teams to perform this

project are shown in Figure 2.1. Each of these teams has three experts who together

cover the three required skills. However, the overall communication cost among the

experts in the team (a) is lower than the one in team (b). The edge weights in the

team (a) are 1, 2, and 3; while they are 5, 6, and 7 in team (b). Therefore, team (a)

would form a more successful team in terms of the communication cost. In the next

section, we formally define two functions to calculate the communication cost among

the experts for any given team.
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This problem has been introduced for the first time by Lappas et al., [1]. They

propose two functions for estimating the communication cost of a team and prove

that minimizing each function is an NP-hard problem. Therefore, they propose greedy

algorithms to find the best approximate team. Kargar and An propose a new function

(i.e., Sum of distances between each pair of experts), to measure the communication

cost between experts of a team [5]. They suggest that the sum of distances is not only

biased towards some of the experts but guarantees that all of the experts are equally

involved in the calculation of the communication cost. They prove that minimizing

this distance function is also NP-hard and they propose greedy algorithms to find

approximate answers.

One limitation of these greedy algorithms is that they may not scale well when

the size of the network expands. It makes selections based on what looks best at the

moment and does not refine the solutions based on new information. In other terms,

choices are locally optimum but not necessarily globally optimum. For finding the

best team, they build a team around each skill holder. By increasing the number of

skill holders, for each required skill, their run time increases. Another limitation is

that they may not optimize the communication cost properly. The communication

cost of the team returned by the greedy algorithms might be far from the best team

obtained by the exhaustive search. To address these issues we propose the use of

knowledge-driven population based evolutionary algorithms that have been proven to

successfully solve complex optimization problems. We propose the use of a Cultural

Algorithm (CA) as the evolutionary framework to search for the optimum team of

experts in a social network.

We make the following contributions in this paper:

1. We propose a knowledge-based evolutionary optimization model to find a team

of experts from a social network while minimizing the communication cost. To

the best of our knowledge, there is no prior work to propose such knowledge-
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based algorithm to solve this problem.

2. We compare our proposed algorithm with greedy, genetic, random, and exact

algorithms. The random algorithm is designed to be used as the baseline. As

the gold standard, and since the problem is NP-hard, we develop an exhaustive

search algorithm to find the exact answers.

3. We analyze and compare different algorithms in terms of the communication

cost, the run time, the number of iterations and the size of the population.

4. In our experiments, we use real world networks with 50K, 100K and 200K nodes

derived from the DBLP dataset. DBLP is a network among authors of scientific

papers in computer science.

The rest of the paper is organized as follows. In the next section, related work

is discussed. We present problem statement in Section 2.3. In Section 3.3.1, we

propose our knowledge-based framework to find the best team of experts. In Section

2.5, a comprehensive set of experiments over a real dataset is presented. Finally, we

conclude in Section 2.6.

2.2 Related Work

There are two main related approaches to deal with the problem of finding teams

of experts: Greedy algorithms and evolutionary-based methods. In the following

paragraphs, we briefly review them.

Discovering a team of experts from a social network was first introduced by Lappas

et al., [1]. The authors proposed two communication cost functions. Li and Shan

generalized this problem by associating each required skill with a specific number of

experts [6]. Kargar and An proposed the sum of distance function to find the best

team and argued that the new function is fairer to all team members for calculating the
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communication cost [5]. Another communication cost function based on the density of

the induced team subgraph was proposed in [7]. When dealing with multiple projects,

authors of [8] minimized the maximum load of the experts. However, they ignored

the communication cost among experts. Minimizing both communication cost and

load balance was studied in [9] and [10].

Kargar et al., proposed to find a team of experts to minimize the communication

cost and the personnel cost of a team [11]. They assumed every expert is associated

with a cost in order to perform a task in a given project. They merged the two

objective functions into one using a tradeoff parameter. Authors of [12] solved this

problem by finding the set of Pareto teams. They also found the best team minimizing

the communication cost under the given personnel cost budget. Recently, Li et al.,

proposed to find a replacement when a team member becomes unavailable [2].

The team formation problem is well explored by the operation research community.

Different works use the genetic algorithms, simulated annealing and branch-bound,

with the goal to find a team for performing the given task [13, 14, 15, 16]. All of

these works ignore the social network and graph structure behind the experts and do

not minimize the communication cost among team members.

Recently, Awal et al., proposed to find a team of experts in social networks using

a collective intelligence index [17]. They use the summation of the trust score and the

expertise score of experts as the fitness function. To optimize it, they apply general

genetic algorithm (GA), and use two random points for the crossover operation and

mutate a random expert. The experiment of this work is however limited since it

performs with synthetic dataset composed of only 30 experts. Furthermore, the results

are not compared to any other non-evolutionary-based algorithms.

Wi et al., studied the team formation problem in a research organization [18]. In

their work, they evaluate two different selection methods to choose team members

and project managers. The team members are selected using GA and the knowledge
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competence score of the candidates for a certain project. Then, among selected team

members, the project manager is chosen based on the knowledge competence score

and social network measures. A fuzzy inference system is used to calculate knowledge

competence. The proposed algorithm is evaluated in a research organization with only

45 researchers.

Blas et al., studied team formation based on group technology and propose a hy-

brid grouping genetic algorithm to find the best team [19]. The number of groups vary

from one to several groups. The population is selected by rank-based wheel-selection

mechanism. Furthermore, the fitness function is defined based on the position of

the individual in the ranking mechanism. In this algorithm, two-crossover points are

used to produce a new offspring. The mutation is designed by reordering groups with

random selection. The algorithm is evaluated with 61 lecturers and 65 courses at a

Spanish university.

Ani et al., proposed a method for group formation using a genetic algorithm [20].

Their proposed fitness function estimates the minimum number of good, moderate,

and poor students in a group. One-point crossover is used to implement a new

offspring. Mutation is done by exchanging an arbitrary bit in the genetic sequence

with its original state by generating a random variable for each bit. The authors use

35 students in their experiments.

Authors of [21] presented a social matching model to bring the skill holders to-

gether in which the skill holders support the composition of the teamwork. The

proposed fitness function calculates an individual’s aptitude and profiles, and socio-

metric team cohesion. Both roulette-wheel selection and elitism methods are applied

to select the best individuals. Their approach use one cut-off point to generate chil-

dren using crossover operator of 60 to 65 percent of the population. For the mutation,

a rate of 0.5% to 5.0% is used where two genes are randomly selected. Then, all other

genes are shifted from the first location to the second location and then the second
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location is filled by the first gene.

In this paper, we propose a custom CA which is a knowledge-driven population-

based evolutionary algorithm to minimize the communication cost. We compare the

results to a state of the art greedy algorithm and a genetic algorithm over a real world

DBLP dataset with 200K experts. We show the advantage of using CA to optimize

the fitness function and scalability of the framework. The main difference between

our approach and the reviewed approaches is using the extracted knowledge from

the social network in the optimization process. We also use two well-known fitness

functions to evaluate the communication cost of the teams.

2.3 Problem Statement

Let A = {a1, a2, . . . , an} be a set of n experts, and K = {k1, k2, . . . , km} be a set of

m skills. Each expert ai has a set of skills, specified as S(ai), and S(ai) ⊆ K. If

kj ∈ S(ai), expert ai posses skill kj. A subset of experts A′ ⊆ A have skill kj if at

least one of them posses kj. For each skill kj, the set of all experts that posses skill

kj is specified as A(kj) = {ai|kj ∈ S(ai)}. A project P = {k1, k2, . . . , ks} is composed

of a set of s skills that are required to be completed by some experts. A subset of

experts A′′ ⊆ A is able to complete a project P if ∀kj ∈ P ∃ ai ∈ A′′, kj ∈ S(ai).

An underlying social network connects the experts in A. This social network is

modeled as an undirected graph G. Each expert in A is represented as a node in

graph G. Terms node and expert might be used interchangeably in this work. If the

experts have past collaboration, their associated nodes in G are connected together

by an edge. If different levels of past collaboration between two experts are taken

into account, then the input graph G is weighted. In this case, the smaller the edge

weight between two experts, the two experts had more collaboration in the past and

will collaborate more efficiently in the future. The distance between two experts ai
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and aj, specified as dist(ai, aj), is equal to the sum of the weights on the shortest

path between them in the input graph G. If ai and aj are not connected in graph G

(i.e., there is no path between ai and aj in G), the distance between them is set to

∞. Next, we define a team of experts and the problem we tackle in this work.

Definition 2.1. (Team of Experts) Given a set of experts A and a project P that

needs a set of skills {k1, k2, . . . , ks}, a team of experts for P is a set of s skill-expert

pairs:

{〈k1, ak1〉, 〈k2, ak2〉, . . . , 〈ks, aks〉},

where akj is an expert that posses skill kj for j = 1, . . . , s. This means expert akj is

responsible for skill kj.

Based on this definition, one expert is assigned to each skill kj. In other words,

each skill is covered by one expert, but one expert may be assigned to more than one

skill. For each project P , there might be many teams that are able to complete the

required skills. However, we are interested in teams that are able to communicate with

each other effectively. Therefore, we use two functions to evaluate the communication

cost among experts of a team.

Definition 2.2. (Diameter) Given a graph G and a team of experts {〈k1, ak1〉, 〈k2, ak2〉,

. . . , 〈ks, aks〉}, the diameter of this team is the largest shortest distance between any

two experts aki and akj for 1 ≤ i < j ≤ s.

For example, the diameter of teams (a) and (b) in Figure 1 is 3 and 7 respectively.

Therefore, team (a) has lower communication cost in terms of the diameter function.

The diameter function is first proposed in [1].

Definition 2.3. (Sum of Distances) Given a graph G and a team of experts

{〈k1, ak1〉, 〈k2, ak2〉, . . . , 〈ks, aks〉}, the sum of distances of the team is defined as

sumDistance =
s∑

i=1

s∑
j=i+1

dist(aki , akj)
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where dist(aki , akj) is the distance between aki and akj in G (i.e., the sum of weights

on the shortest path between aki and akj).

For example, the sum of distances of teams (a) and (b) in Figure 1 is 6 and 18

respectively. Clearly, team (a) is more collaborative than team (b) and its sum of

distances is much smaller than the one for team (b). The sum of distances function is

first proposed in [5]. Both of the diameter and the sum of distance functions measure

the communication cost of the team.

Problem 2.1. (Team Discovery) Given a project P , a set of experts A, and a

social network that is modeled as graph G, the problem of team discovery in social

networks is to find a team of experts T for P from G so that the communication cost

of T , defined as the diameter of T or the sum of distances of T , is minimized.

Finding teams of experts minimizing the diameter or the sum of distances of team

T is proved to be NP-hard in [1] and [5] respectively. Therefore, authors of [1] and

[5] propose greedy algorithms to find the best approximate teams minimizing these

functions. The idea of these algorithms is as follows.

For finding the best approximate team, the algorithms build a tree around one

of the skill holders. Each skill holder ar (ar is an expert that posses at least one of

the required skills) in the graph is considered as a potential root for an answer tree.

To build a tree around ar, for each given skill ki, the closest node aki is assigned

to a tree rooted at ar. For finding the team with the smallest diameter, the tree in

which its maximum edge has the lowest value among all other trees is chosen as the

best approximate team. The tree with the lowest sum of the edge weights is the best

approximate team regarding the sum of distances function. However, and as we show

in the experiments, these algorithms do not scale well when the size of the graph

or the frequency of skill holders increase. Also, our proposed algorithm outperforms

both of these greedy algorithms (and also the genetic algorithm) in terms of the

communication cost.
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Figure 2.2: The knowledge-based framework for finding best answer

2.4 Algorithm

In this section, we propose a knowledge-based evolutionary method based on the

cultural algorithm (CA) to find the best team of experts. As shown in Figure 2.2,

our framework is a dual inheritance system consists of population and belief spaces

which continually co-evolve each other during the optimization process [22, 23].

In this framework, the best of team of experts is found by executing a series of

iterations. The population space is used to maintain the current list of generated

teams in each iteration. We start by producing a predefined number of random

teams to make the initial population (team representation is discussed in Section

2.4.1). The belief space (to be discussed in Section 2.4.2) is an extension unit which

captures the extracted knowledge from the population. The quality of each team is

evaluated by its communication cost (i.e., diameter or sum of distances). The new

population is generated from a combination of top-teams in current iteration, teams

that are produced from belief space, and teams that are generated from standard

genetic algorithm operations (i.e., crossover and mutation). The main idea is that

the obtained knowledge guides the search direction and evolves the teams faster than

basic genetic evolution. Note that unlike genetic evolution, in our implementation,

the duplicated individuals are removed from the search space. Although this strategy
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increases the run time of the algorithm, it produces teams with smaller communication

cost.

Algorithm 2 is our solution to Problem 2.1 to find the best team of experts using

the above framework. In lines 1 to 4, initial parameters are set. In line 5, the initial

population which is composed of a list of randomly generated sp teams are created (sp

is the size of population in each iteration). Note that this list is duplication free. The

for loop of line 6 is executed ni times (ni is number of iterations). The for loop of line

8 calculates the communication cost of each team. In line 9, the current population

is sorted based on their communication cost. We initialize the new population in line

10. The first el teams of the current population is moved to the new population in

line 11 (el is a parameter that determines how many elite teams should be moved to

the next generation). In lines 12 and 13, we create the belief space (Section 2.4.2).

The while loop of line 15 generates the remaining of teams (other than the one from

elite group) for next generation. We start by generating teams from belief space with

80% probability. We tested other values but 80% produced the best result, hence

we use this value. We also use standard genetic algorithm operations (crossover and

mutation) to generate teams with 20% probability. Note that we do not add duplicate

teams to the new population (line 24). The best team is the first team of the last

generation and is returned in line 28. Next, we describe three main components of

the algorithm: individual representation, the belief space structure, and calculating

communication cost function.

2.4.1 Team Representation

A team (individual) in this work represents a candidate solution to the problem. It

consists of an array structure with s cells, which is the number of the required skills

to complete a project. For example, as shown in Figure 2.3, if a project needs three

skills, the size of the array, s, is equal to three. The value of each cell is selected from
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Algorithm 1 Knowledge-based Team Discovery Algorithm

Input: graph G; input project as list of s required skills, {k1, k2, . . . , ks}; set of skills of
each expert ai, S(ai)
Output: best team

1: ni← number of iterations
2: sp← size of population (number of teams in each iteration)
3: kb← number of teams to build knowledge-based belief space
4: el← number of elite teams for next generation
5: T [1 . . . sp]← initialize and generate first duplication free population
6: for i← 1 ni do
7: for j ← 1 sp do
8: calculate communication cost of T [j]
9: end for

10: sort T [1 . . . sp] based on communication cost
11: TN [1 . . . sp]← initialize new population
12: TN [1 . . . el]← T [1 . . . el]
13: SP ← T [1 . . . kb]
14: BS ← SP T

15: size← el + 1
16: while size ≤ sp do
17: team← initialize new team
18: if rand1() ≤ 80% then
19: team← generate new team from belief space BS
20: else
21: if rand2() ≤ 80% then
22: team← generate new team using crossover strategy
23: else
24: team← generate new team using mutation strategy
25: end if
26: end if
27: if team /∈ TN then
28: TN [size]← team
29: size← size + 1
30: end if
31: end while
32: T ← TN
33: end for
34: return T [1]
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the set of experts which possesses that skill. Therefore, for each cell representing a

required skill kj, a value is filled by an expert, ai, where kj ∈ S(ai).
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Figure 2.3: Individual representation

2.4.2 Belief Space

The belief space is defined as the transpose matrix of the selected population com-

posed by the selected teams. Let a selected team (a team which is selected to change

the belief space) be defined as SIj = [ajk1 , a
j
k2
, . . . , ajks ], where ki ∈ P and ajki ∈ A(ki),

and 1 ≤ i ≤ s. Now, let the selected population in each iteration with the size of t

be defined as follows:

SP =



SI1

SI2

...

SIt


=



a1
k1
, a1

k2
, . . . , a1

ks

a2
k1
, a2

k2
, . . . , a2

ks

...

atk1 , a
t
k2
, . . . , atks
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Thus, the belief space is defined as BS = SP T :

BS =



a1
k1
, a2

k1
, . . . , atk1

a1
k2
, a2

k2
, . . . , atk2
...

a1
ks
, a2

ks
, . . . , atks


In other words, for each skill (a row of the BS matrix), the BS matrix shows

the list of experts who have been appeared in the best teams. Assuming the optimal

solution can be generated by combining the elements of the best teams, in the next

iteration, the algorithm makes the new teams based on this belief space and not the

actual set of experts for each skill, S(kj). This approach produces teams with lower

communication costs and reduces the size of the search space.

2.4.3 Calculating Communication Cost

For calculating each of the communication cost functions (also called fitness func-

tions), we frequently need to find the value of the shortest path between many pairs

of nodes. However, computing the shortest path on-the-fly is very slow, while pre-

computing the shortest path values between all pairs of nodes takes too much space.

Indeed, it takes O(N2) for a graph with N nodes. This quickly runs out of memory

for big graphs. Therefore, we use an efficient indexing method called 2-hop cover

[24, 25], which is a middle ground between the two extreme solutions that are dis-

cussed above. This efficient indexing technique returns the value of the shortest path

between any pair of nodes in graphs with hundreds and thousands of nodes almost

instantly (i.e., less than 10 µ seconds for the DBLP graph with 200K nodes).
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Figure 2.4: Comparison of the algorithms using the sum of distances for various
networks and skills.

2.5 Experiments

In this section, we evaluate the performance of our proposed cultural algorithm (CA)

over the various networks based on DBLP graph. For the fitness function, we use

two communication cost functions: diameter and sum of distances. Since the sum of

distances function is fairer towards all of the skill holders than the diameter function

[5], and due to the space limit, most of our experiments are performed over the sum of

distances. In addition, we compare our algorithm with the greedy algorithm proposed

in [1] and [5]. We also develop a genetic algorithm (GA) and compare the results of our

CA with it. The genetic algorithm is the modified version of the algorithm presented

in [17]. In fact, the authors of [17] used a different fitness function to find the best

team. Moreover, as a baseline for the comparisons, we compare the results with the

random method, which simply select the team with the lowest communication cost
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Figure 2.5: Comparison of the algorithms on a 50K nodes network with logarithmic
edge weight.

Figure 2.6: Comparison of the algorithms on a 50K nodes network with semantic
edge weight.

among 10,000 random teams. We also compare the proposed algorithm with the exact

algorithm in which the results are obtained using exhaustive search.

We create the input graph from the DBLP1 dataset in the same way as [1] and

[11]. The graph contains 200K nodes and 1.16M edges. In this case, the experts are

authors of the papers. If two authors publish papers together, there will be an edge

between them in the graph. The expertise of an expert (i.e., author), is extracted

from the titles of his/her papers. For this study, we also use two sub-graphs of the

1http://dblp.uni-trier.de/xml/
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Figure 2.7: Comparison of the algorithms using the diameter for various networks
and skills.

main graph with 100K and 50K nodes.

By changing the edge weighting mechanism as follows, we generate 3 various

networks with 50K nodes.

• Equal weights, in which all edges have the weight of 1.0.

• Logarithmic weights, in which the weight of an edge between two experts ai

and aj is (log2(1 + deg(ai) + log2(1 + deg(aj))/2, where deg(ai) is the degree of

node ai.

• Semantic weights, in which the weight of an edge is defined based on the

number of co-authored publications.

Since we are interested in minimizing the communication cost, the semantic weights

are reverted. In other words, the more publications two authors have with each other,

the smaller the semantic edge weight between them.
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As mentioned in the previous sections, each project is composed of a set of skills

that need to be covered by experts. In our experiments, these skills are varying from

4 to 10 and for each one, 100 projects are randomly generated. Hence, a team with

the lowest communication cost in each project is selected by the algorithms. The

average value of the cost of the selected teams in these projects then is considered as

the average fitness value of the algorithms. Therefore, the algorithm with the lowest

average fitness value is considered as the best algorithm among the others. Note that

exhaustive search takes very long time as the problem is NP-hard and the search

space is exponential. Indeed, we could only run the exhaustive search for 4 required

skills due to time and memory constraints.

Moreover, the skill frequency is the number of experts who posses that skill. For

example, if the required skill is “databases” and its frequency is 150, it means there

exist 150 experts in the network with expertise in “databases”. Of course different

skills have different frequencies. We study the effect of different skill frequency on the

performance of algorithms. In this paper, when not stated, the skill frequency varies

from 25 to 200.

For the CA and GA, the number of iterations and the size of the population is

set to 100 and 300 respectively. All of the algorithms are implemented in Java and

executed on an Intel Core i7 3.4 GHz computer with 16 GB of RAM.

2.5.1 Evaluation of Communication Cost Function

The experiments start by comparing the values of the communication cost functions

(i.e. fitness function) obtained by the algorithms. Figure. 2.4, shows the values when

the fitness function is the sum of distances for 50K, 100K and 200K equal weighted

graphs based on the number of required skills. Note that the results of the exact

algorithm are only available when the number of the required skills is 4 as we run out

of memory for more than 4 number of required skills. The obtained results from the



33

Figure 2.8: Run times of the algorithms with different numbers of required skills when
the frequency of skills varies. The input graph contains 200K nodes.

same fitness function on 50K graphs with logarithmic and semantic weights also are

shown in Figure. 2.5 and Figure. 2.6 respectively.

The results suggest that in almost all the cases, our proposed CA outperforms

the greedy, genetic and random algorithms. When the number of required skills is

4, the results of the CA are the closest to the exact algorithm. Figure. 2.7 shows

the same trend using the diameter as the fitness function. Due to the space limit,

we only demonstrate the results on the 50K, 100K and 200K equal weight graphs.

Similar to the sum of distances, our proposed CA outperforms greedy, genetic, and

random algorithms. Meanwhile, the obtained results by CA is relatively very close to

the available exact values which shows the high accuracy of our proposed algorithm.



34

Figure 2.9: Run times of the algorithms with different numbers of required skills for
the various size of the graphs. The frequency of skills is between 100 to 200.

2.5.2 Run Time

In this section, the run time of the algorithms is evaluated based on multiple param-

eters. Due to the space limit, only the obtained results for equal edge weights graphs

are presented here. However, our experiments show that, the trend is the same for

the graphs with semantic and logarithmic weights.

Figure. 2.8 shows the run time when the frequency of skills change. As mentioned

before, the frequency of skills is the number of experts that hold a particular skill. For

each range of required skills (e.g., 50-100), we create a bucket. This bucket contains

all the skills in which each of them is possessed by the number of experts in the

given range (e.g., 50 to 100 experts). Then, from this bucket, we choose the required

number of skills (e.g., 6 skills), randomly.
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Figure 2.10: Obtained sum of distances (communication costs) with different numbers
of iterations and population sizes on the 200K nodes network.

According to the results, the run times of GA and CA do not increase significantly

when the frequency of required skills increases which is in contrast to the greedy

algorithm. By increasing the frequency of skills, the run time of the greedy algorithm

increases dramatically. This is expected because for each required skill, the algorithm

checks all skill holders to find the one that is the closest to the current root. The GA

runs a bit faster than the CA due to the process of removing duplicate genes in each

iteration. However, the overall time is almost the same for the GA and CA.

Figure. 2.9 shows the obtained run times when the size of the graph changes.

Similar to the previous experiments, no significant change is observed in the CA and

GA, by increasing the size of the input graph. On the other hand, this is not the case

for the greedy algorithm. Overall, the results suggest that both the CA and GA, scale

well with different frequency of skills, different graph sizes and the different number

of required skills.
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2.5.3 Tuning the Evolutionary Optimization Algorithms

In this section, we examine the impact of the size of population and the number of

iterations on the convergence of the CA. Figure. 2.10 illustrates the obtained fitness

values by our proposed algorithm for 4 and 8 required skills when the iteration number

varies from 0 to 100 and the fitness function is the sum of distances. According to

the result, the fitness value does not significantly change after the 30th iteration. In

addition, as shown in the figure the population of 300 produces near optimal results.

However, increasing the size of the population might lead to slightly better results

with the cost of increasing the run time.

2.6 Conclusion

In this paper we examined the problem of finding a team of experts in a social network

that covers the set of required skills with the minimum communication cost among

team members. To estimate the cost, two well-known functions have been employed

based on the diameter and the distance between the edges. Since the twofold mini-

mization problem is proven to be NP-hard, we proposed a knowledge based Cultural

Algorithm to find the best collaborative team with least communication cost. We

compared the results of our algorithm with state of the art greedy and genetic algo-

rithms. The results suggest that the proposed CA can identify teams with smaller

communication cost than greedy and the GA.

Furthermore, the communication cost of teams that are identified by our algorithm

is the closest to the exact results obtained by the exhaustive search. Our results also

suggest that in contrast to the greedy algorithm, CA and GA scale well with respect to

the different frequency of skills. In the future, we plan to explore how to incorporate

more constraints, such as the personnel cost and expertise level of experts, in our

knowledge-based team formation computational model.
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Chapter 3

Team Formation in Community

Based Palliative Care

Motivated by our first work in chapter 2, we examine the problem of imbalanced

resource allocation and uneven service distribution in palliative care with the support

of Hospice and the Windsor Essex Compassion Care Community in partnership with

the Faculty of Nursing. This research proposes a model to address the above issues

and provide an efficient computational solution.

3.1 Introduction

In recent years, it has been observed that geriatric populations are growing rapidly

around the world. According to the UN [1], the number of individuals aged 60 years

and over is projected to grow from 901 million in 2015 to 1.4 billion in 2030, which is

a drastic 56 percent increase. In addition, it is projected that the global population of

elderly people will reach 2.1 billion by 2050, accounting for approximately 20 percent

of the world population.

Due to aging, the risk of chronic diseases, social isolation, depression, and frag-

mented care increases, along with other health related problems. This results in a
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poorer self-perceived quality of life and an increased dependence on health care ser-

vices for these individuals and their families. Consequently, the need of developing

innovative solutions to support triple value healthcare (Personal, Technical and Al-

locative) must be considered as a critical issue for improving the quality and delivery

of healthcare services [2, 3, 4]. The Personal value refers to the fact that, the decision

making process is carried out based on the individual patient’s values. Meanwhile,

according to the Technical and Allocative values, the resources must be allocated and

utilized optimally and equitably. It has been shown that improving health and overall

well-being among elderly people can be achieved through: (1) enhancing their social

support networks and (2) giving them a voice, and choices to make key decisions and

direct their own care.

In recent years, person-centric and community-oriented palliative care systems are

in the center of attention, to provide support for aging and other related challenges.

Palliative care is a type of health care which focuses on improving the quality of

life of individuals who are living with life-threatening illnesses, specially with chronic

diseases such as cancer, cardiac disease, kidney failure, Alzheimer, ALS, and MS. The

primary goal here is to provide various support services to help patients maintain an

active life and dignity, while in some cases it may also positively influence the patients’

prognosis and the course of illness. It also provides the patients’ families with support,

to help them better cope with the situation.

This care system uses a team approach to address the needs of patients and their

families. In fact, a multidisciplinary team of healthcare professionals, volunteers,

family members and friends work together to achieve a common goal of providing

the optimal care services for a patient. This team forms a social circle of care for

the patient. This paper propose a novel computational evolutionary model to form a

team using members among a given palliative care network.

Generally, palliative care network include two groups of individuals; patients who
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generally are not able to do some of their ordinary routine tasks, and care providers

who are ready to offer a wide range of services to the patients, to cover their disabilities

and support them with leading a normal life. However, each care provider has limited

capabilities and can provide special type of services, while only having the capacity to

support a limited number of patients. On the other hand, there are several barriers

such as geographical distance, communication costs, time availability, etc., which

make this process more complex.

In this study, approaching palliative care networks from a social point of view is

suitable since it has a social structure. Consequently, this network will have a network

of care providers and patients. Assuming that care providers are experts in providing

a limited number of services and the patients need those services, making the social

circle of care for each patient in an optimum manner can be seen as a team formation

problem in social networks. In fact, based on the structure of the network, and

relationship among the social actors in the network, the best team of support/care

can be identified. Forming high-performance teams is very important, because the

success of the care system is depend on their performance specially on how well the

team members communicate and collaborate with each other and how quickly they

can be available for offering the required services. Additionally, other factors such as

their availability, geographical proximity and contact costs must also be considered

for team formation. In real scenarios, taking these factors into account will lead to

recommendation of a high performance team of care who can help a patient get back

to leading a normal life.

In this research work, researchers assume that each patient has a profile which

shows his/her capabilities. Capability here means the ability to do a task. The

profile also determines the number and the type of the capabilities that a patient

does not have, but is still required for a particular task. On the other hand, care

providers also have a profile which represents the type and the number of services
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that they can provide. Considering the distance, communication, and contact costs,

the whole care network can be mapped to a weighted graph. Hence, the problem

can be defined as identifying the best team of care (among all the care providers)

who can support a patient by offering his/her required capabilities in the most cost

effective manner. Moreover, at a system level, the challenge is to identify the optimal

configuration of teams that will support as many patients as possible.

As the problem is an NP-hard problem, authors are proposing an evolutionary

model based on the Cultural Algorithm (CA) to tackle it. CA is a knowledge-based

evolutionary model which extracts different sources of knowledge from the best pop-

ulations in each iteration, and uses them to guide the search direction to reach the

near-optimal solution. In this research work, the primary steps are; keeping track of

the best solution of each generation and extracting knowledge from them to form the

situational knowledge. Then, this knowledge source are used to identify the suitable

team of care. For the fitness function authors use a method proposed in [5, 6] to

calculate the shortest path between the nodes.

The rest of the paper is organized as follows: In the next section, authors briefly

review the related works. After that, in Section 3, our proposed model has been

discussed and presented in detail. Evaluation and analysis of our model’s performance

is discussed and reviewed in Section 4, and finally it will conclude the whole idea of

this paper.

3.2 Literature Review

Due to the increased importance of teamwork in the management and health care

settings, researchers have started to examine the value of team formation [7]. How-

ever, only a small number of literature have focused on computational models for

palliative health care systems. In this section, we briefly review some of the recent
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research works categorized into three main related approaches: palliative care, team

formation and evolutionary algorithms in health systems.

3.2.1 Palliative Care

As a novel approach in palliative care, an agent based model to improve the quality of

service was proposed by the authors in [8]. They examined the method of assigning

care providers in order to achieve the patient’s goal. Based on contact costs and

resource limitations, they worked on developing a framework for finding a group of

suitable care providers to satisfy the requirements from patients. Their proposed

model exhibited a reduction in operational costs and improvements in the quality of

service [8].

The authors in [9] explored the challenge of balancing the physicians estimated

prognoses with the actual care received versus the patients personal wishes. They

addressed this using Deep Learning and Electronic Health Record (EHR) data to

predict the all-cause mortality of a patient within the next 12 months, enabling the

care team to take proactive measures towards reaching out to provide palliative care

to such patients. The authors in [10] proposed an agent-based architecture to facil-

itate the communication and collaboration among the patients and care providers.

Moreover, the authors of [11, 12] used both Multi-Agent Systems, and Information

and Communication Technologies to improve the management of the clinical data

of palliative care patients. In addition, authors of [13, 14, 15, 16] used multi-agent

system to handle patient care system.

3.2.2 Team Formation

Social Network Team formation in health care networks is quite complex. The bulk

of the literature on health care teams have focused on team functioning and perfor-

mance. The authors in [17] proposed a method of forming a team of palliative care
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network members, and emphasized the importance of collaboration among the mem-

bers of the team. In addition, the authors in [18] explored the issues arising from

challenges in communication among interdisciplinary palliative care team members.

The authors in [19] analyzed how conflict develops among team members and ex-

plored several approaches to conflict resolution that might have been better used for

caring or for comforting and loving the sick child. None of the models proposed were

computational models. Therefore, various applications have been examined within

research works which proposed a team formation problem using different approaches

in social networks. As described in the previous section, palliative care networks can

be considered as social networks. In the area of social networks of experts, much

research has been conducted to date. The authors in [20, 21, 22] explored the team

formation problem in the operational research community using branch-and-cut, ge-

netic algorithms, and the Fuzzy inference approach respectively. However, the social

structured graph among team members was not taken into consideration. Therefore,

there was no survey or analysis of the effectiveness of collaboration among them. The

authors in [23] explored the team formation problem by analyzing the connectivity

between individuals in a social structured graph, and used the communication cost

function to evaluate the effectiveness of the collaboration among them using enhanced

Steiner algorithms. The authors in [24] generalized the team formation problem of

[23, 24] and [25], and used a Density-based measure to find teams. The authors in

[26] improved the cost function in [23] and introduced the concept of a leader in team

formation and explored its significance. The authors in [27] explored this problem

by only using work load balances between team members using an approximation

algorithm. Then in [28] they examined the same problem with the addition of the

communication cost factor. In reality, when individuals are employed on projects,

a compensation is generally expected, with the exception of volunteering roles. The

authors in [6] used personal cost combined with communication cost to form a team
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of experts using an approximation algorithm. Later in [29], the team formation prob-

lem was examined with consideration for the expertise level of each member and their

personnel cost. Furthermore, the authors in [30] introduced the concept of project

profitability. Using a cluster hiring approach, they modeled the formation of the team

of experts, hired to maximize profitability within a given budget. The authors in [31]

examined a method to calculate the communication cost among the team, by using

parameterized complexity analysis. The authors in [32] modeled teams as hierarchi-

cal structures to explore the ubiquitous nature of teams in real commercial and open

source projects.

3.2.3 Evolutionary Algorithms in Health Systems

There is limited literature on the use of evolutionary algorithms on the team formation

problem. The authors in [21] applied a genetic algorithm to choose team members and

project managers, using a fuzzy inference system to calculate knowledge competence

for the selection of the project manager. Additionally, the authors in [33, 34] also

explored forming a team of experts using a genetic algorithm. In [35], the authors

used a collective intelligent index to evaluate the expertness of each team member,

and applied a genetic algorithm to find an optimal solution. The authors of [36] took

a novel approach by considering the geographical location of each member of the

team using a genetic algorithm. Furthermore, the authors in [5] applied a cultural

algorithm to produce team of experts for various projects.

There is limited literature exploring the team formation problem in a health care

setting. However, there is literature exploring the use of evolutionary algorithms

to target various challenges in health care. In [37], the authors applied a genetic

algorithms to handle the constraints related to workload balancing and multi-period

planning. They also applied the principles of the robust optimization approach in a

health care setting. The authors in [38] used genetic algorithms for health planning.
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Based on the emergency cases and age related demographic factors, they found the

optimal method of allocating ambulance services within a geographical locale.

In this paper, we use CA which is a knowledge-driven population-based evolu-

tionary algorithms to optimize an efficient teams for patients in the palliative care

networks. We optimize the communication cost, the distance cost and the contact

cost of each team while we allocate certain number of tasks for each care providers.

To the best of our knowledge, no prior work has been conducted to explore this prob-

lem using knowledge-based algorithm called CA as well as GA too. In this paper,

we generated synthetic network using LHR benchmark with various number of nodes

and allocate the nodes with higher number of degree as care providers and rest of

them as patients. We compare the results from CA and GA with random method

as a base algorithm. Although, there are limited works has been conducted in team

formation in palliative care network, those are not computational models. The ex-

isting computational models which we discussed in above paragraphs used different

strategy in their model.

3.3 Proposed Model

This section discuss our knowledge-based evolutionary model which is based on a

cultural algorithm (CA), to find the best team of care providers for a patient.

3.3.1 Cultural Algorithm (CA)

CA is a dual inheritance evolutionary system consisting of population and belief

spaces. During the optimization process, different sources of knowledge can be ex-

tracted from the best selected individuals of each iteration, which are then used to

reduce the search domain and guide the search direction [39, 40].

Similar to other evolutionary algorithms such as genetic algorithms (GA), an
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individual here means a possible solution for a given problem. Therefore, a population

is a group of generated individuals in each iteration. First, the initial population is

generated randomly. Then the performance of each individual is measured using

a fitness function. Consequently, a group of individuals that have better relative

fitness values are selected. In CA, different sources of knowledge (e.g., Normative,

Situational, Historic, etc) will be extracted from this selected group. The assumption

is that, understanding the knowledge behind their good performance can help us to

generate a better population in subsequent iterations. Hence, a belief space is designed

to store the extracted knowledge. In the next iteration, in addition to performing a

crossover or a mutation, the CA uses the knowledge to guide the direction of the search

and accelerate the evolution. The search process continues until the termination

criteria is met. At the end of the process, the individual with the best fitness value

is selected as the final solution for a given problem.

Algorithm 2 shows our proposed method for finding the best set of care provider

teams for the patients in palliative care. The main components of our model are:

representations, the fitness function, and the belief space structure, which will be

reviewed in the next sections.

3.3.2 Representation

This research paper considers three main entities (patient, care provider, and indi-

vidual) which must be defined formally in advance. Similar to the model proposed in

[8], each patient is represented by a binary array with a fixed size of m, where m is

the number of capabilities. Each cell of the array indicates a predefined capability c,

where the value is 1 if the patient has that capability, and 0 otherwise. For example,

P1 = [0, 1, 1, 1, 1, 0] represents a patient with the index id of 1, who requires the two

capabilities c0 and c5, where c0 may represent the ability to drive, and c5 can represent

the ability to walk.
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Algorithm 2 Team formation in Palliative Care

Input: graph G as a network of patient and care providers; RC as a set of required
capabilities of patients; list of available capabilities provided by care providers (CP)
Output: teams of care providers for all patientssolution

1: n← |population|
2: gs← number of iterations
3: t← |selected population|
4: elite← number of elite individuals
5: Pop(1...n) ← generate random individuals
6: for i← 1 gs do
7: FitPop ← Fitness(Pop)
8: (Pop)← Sort(Fit)Pop
9: SP ← Pop(1...t)

10: BS ← SP T

11: for j ← elite n do
12: if random() ≤ 80% then
13: Popj ← generateIndividual(BS)
14: else
15: if random() ≤ 80% then
16: Popj ← Crossover
17: else
18: Popj ←Mutation
19: end if
20: end if
21: end for
22: end for
23: solution← Pop1

A care provider also is represented by a fixed-size binary array similar to the

patient. The only difference is that, if a value in a cell is 1, it means that the care

provider can provide that capability. In addition, each care provider has a maximum

capacity for providing services, which has to be set in advance. For example, each

care provider can provide a service to a maximum of 5 patients.

Finally, to represent an individual (a candidate solution), we use an array structure

with n cells, where s is the length of the array is equal to the total number of

required capabilities. Let RC = {RCP1 , RCP2 , ..., RCPn} represent a set of required

capabilities for all patients (P), where n is the total number of patients in the network.

Then, RCPi = {(rcj, ..., rcm)|rcj ∈ {CPi 6= 1}}. For example, as shown in Figure. 3.1,
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Figure 3.1: Sample random individuals: the representation of teams for the whole
patients of a palliative care networks which have 3 care providers and 3 patients.

if there are three patients in the network and the total number of required capabilities

is five, the size of the individual array, s, is equal to five. The first two values are the

required capabilities of patient 1 (c0&c5), the next two are the needed capabilities of

patient 2 (c4&c5) and the last cell is the required capability of patient 3 (c1). The

value of each cell is the index of a care provider selected from the set of available

care providers who possess those capabilities. In fact, these sets are generated in

the initialization phase, hence for each capability, a pool of care providers that can

provide that capabilities are created. In Figure. 3.1, we have three care providers,

CP1, CP2, and CP3. Care providers 2 and 3 can offer the capability of c0, while care

provider 3, is the only provider who offers capabilities of c1, c2 and c3. In addition,

capabilities of c4 and c5 are also provided by care providers 1 and 3. According to the

previous example shown in Figure. 3.1, the first patient needs the two capabilities

of c0 and c5, the next patient requires the two capabilities of c4 and c5 and the

last patient needs just the capability of c1. Consequently, three random individuals
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or potential solutions for this problem are illustrated in Figure. 3.1. According to

Individuali which is generated randomly, CP2 and CP1 form the care team for patient

1. CP1 is also responsible for supporting patient 2, and care provider 3 is assigned to

assist patient 3. As shown in this example, various types of teams can be generated

using this individual representation method. However, not all of the teams generated

represent the optimal solution. Consequently, we have to evaluate the performance

of the solutions using the fitness function.

3.3.3 Fitness Function

As mentioned previously, our model uses a weighted graph to show the relationship

among the social entities. The weight here is calculated based on the three groups of

costs. The first is the communication cost, denoted by Ccost, which represents how

easily each pair of people can interact with each other. The value is between 0 and 1,

with a lower value indicating a better level of communication between a pair of people.

Another group is the distance cost, denoted by Dcost, which refers to the geographical

distance between the social actors. Similar to the previous cost, the value is between

0 and 1 and a lower value indicates an increased chance of cooperation. The last one

is contact cost, denoted by Tcost which shows the level of productivity of a social

entity. The value is again between 0 and 1 but our goal is to maximize this value.

To measure the performance of our algorithm, authors are using the following

fitness function which is based on the formula proposed in [6]:

F (I) =
n∑

i=1

F1(TPi) (3.1)

where TPi is a generated team for the patient i.

F1(TP ) = λ CommunCost+ β DistCost+ γ (1− ContactCost). (3.2)
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where λ, β, and γ are balance factors.

Given a team TP of care providers for a patient: {(c1, CP1), (c2, CP2), ..., (cm, CPk)},

the sum of distances of TP with respect to Ccost, Dcost and Tcost among the pair

of social actors is defined as,

CommunCost =
n∑

i=1

n∑
j=i+1

Ccosti, j (3.3)

DistCost =
n∑

i=1

n∑
j=i+1

Dcosti, j (3.4)

ContactCost =
n∑

i=1

Tcosti (3.5)

where i and j are indexes of a pair of social actors in the network.

3.3.4 Belief Space

Our approach to make the belief space, which is a knowledge-based repository, has

been inspired from the belief space formation model proposed in [41]. It is defined as

the transpose matrix of the selected individuals. Let a selected individual be defined

as SIi = [TPi, TP2, . . . , TPn]. Now, assuming the number of the selected individuals

in each iteration is t , the selected population can be defined as follows:

SP =



SI1

SI2

...

SIt


=



TP 1
1 , TP

1
2 , . . . , TP

1
n

TP 2
1 , TP

2
2 , . . . , TP

2
n

...

TP t
1, TP

t
2, . . . , TP

t
n
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Thus, the belief space is defined as BS = SP T :

BS =



TP 1
1 , TP

2
1 , . . . , TP

t
1

TP 1
2 , TP

2
2 , . . . , TP

t
2

...

TP 1
n , TP

2
n , . . . , TP

t
n


In other words, for each capability (a row of the BS matrix), the BS matrix

contains the list of care providers who have previously appeared among the selected

individuals.

Assuming the optimal solution can be generated by using the extracted knowledge

from the best individuals, in the subsequent iteration, the algorithm generates a new

set of individuals by reading the data from the BS matrix and not the pool of care

providers. As a result, we expect to observe a reduction in the size of the search space

in each subsequent iteration.

3.4 Evaluation

This section reports the performance evaluation of our model.

We have taken into consideration 4 different synthetic social networks (i.e. 25, 50,

75, 100 nodes), by grouping patients and care providers using various ratios such as

the following:

1. 25 percentage of patients to 75 percentage of care providers, where care providers

can provide a maximum of 3 services at a time

2. 30 percentage of patients to 70 percentage of care providers, where care providers

can provide a maximum of 4 services at a time

3. 50 percentage of patients to 50 percentage of care providers, where care providers
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can provide a maximum of 6 services at a time

The networks are generated based on LFR benchmark for generating social networks[42]

with the default setting. In addition, Communication, Distance and Contact cost have

been assigned to the network randomly.

The random approach has been used as a base model for comparison. The random

approach involves randomly assembling a team of care providers. The fitness value

obtained from random approach is used to compare against the fitness values obtained

from our Cultural Algorithm, and a Genetic algorithm. We tested our model on a

system with the following specification:

1. Installed memory (RAM): 16 GB,

2. Processor: Intel® Core™ i5 CPU @ 2.50 GHz.

3. Java was used to develop the experimental model.

Each experiment has been conducted 5 times independently, to find the average

fitness values. The fitness values has been calculated using the fitness function based

on the weighted importance of the cost parameters α, β, andγ, which were assigned

the values of 0.6, 0.3, and 0.1 respectively.

Figures 3.2, 3.3 and 3.4 exhibit the comparison between the fitness value against

different network sizes, tested using various algorithms such as a Cultural and Genetic

algorithm, and also using a random approach. As shown in Figure. 3.2, when 25%

of the population are patients, and the rest are care providers, our algorithm can

find a near optimal team of care providers with the fitness values of 14.12, 16.61,

20.33, 29.03, when the size of the network ranges between 25 to 100 nodes. The

fitness values obtained using the genetic algorithm and through the random approach

perform relatively weaker than our proposed algorithm.

Figure. 3.3 represents the results obtained for a network consisting of 30% of

patients. We can observe the similar patterns between our approach and the other
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Figure 3.2: Experimental results for 25% patients

methods. For example, when the fitness value of our model is 31.44 for a network

with 100 nodes, the value is 35.85 and 47.38 for the genetic and random approaches

respectively. This exhibits approximately a 13% higher performance relative to the

genetic approach, and 34% relative to the random approach.

As illustrated in Figure. 3.4, when the proportion of patients and care providers

are equal, the performance of the algorithms are relatively similar, as expected. This

can be attributed to the fact that we need to have enough care providers to meet the

needs of every patient. However, even in this scenario, our algorithm outperforms the

other algorithms.

According to the results, our proposed model and algorithm showed an overall

better performance in comparison to the other algorithms tested to find a near optimal

team of care providers for the patients in a community-based palliative care network.
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Figure 3.3: Experimental results for 30% patients

Figure 3.4: Experimental results for 50% patients

3.5 Conclusion

In this paper, we proposed a novel approach of assembling a team of care providers for

palliative care patients in a community-oriented setting. Our model consists of two
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primary social entities, patient and care providers, who interact with each other in a

social network context. The patients require some support capabilities to lead a nor-

mal life style and the care providers offers these capabilities demanded by the patients.

Authors took into a consideration three different cost variables, communication, con-

tact, and distance costs. The overall goal of our research was to minimize the costs

and maximize patient satisfaction. A model has been developed using a knowledge-

based evolutionary algorithm to optimize the resource allocation and team generation

processes in order to provide patients with added value in the form of quality service

delivery and an increased quality of life. The results obtained from our evaluation

indicate that, our model is more effective at obtaining the near optimal team forma-

tion solution relative to the other algorithms currently proposed in literature within

the field.

In future we are going to enhance the algorithm and validate its performance

against clinical data. In addition, we plan to expand the experimental scope and take

additional parameters into considerations.
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Chapter 4

A Palliative Care Simulator and

Visualization Framework

Chapter 3 describes the problems and the computational solution for the palliative

care system. However, we believe that rather than just showing results as numerical

format, visualizing the networks and team distribution to each patient are flexible for

anyone who uses the framework. This chapter explains how we develop a visualization

framework for any health care network to see the solution and handle real data.

4.1 Introduction

Palliative care is a special type of care that aims to enhance the quality of life of

patients and families who are dealing with life-threatening illnesses. A key objective

here is to help patients maintain an active life and dignity by providing them a diverse

range of support services.

Generally, palliative care is a team-oriented care system where multidisciplinary

teams of formal and informal care providers including healthcare professionals, vol-

unteers, family members, and friends, work together to support the patients [1, 2].

Consequently, examining the nature of relationships and interactions among the team
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members can be useful for optimizing the overall performance of the care system and

improving the efficiency of the teams.

Our approach to model palliative care is to convert it to a social network graph. As

a result, we can apply social network analysis techniques to identify the underlying

structures of the network and its evolution and formation. Social network graphs

usually made up of two elements: individuals (nodes) and the social ties (edges)

between them. Consequently, in a palliative care network, patients and care providers

can be considered as the nodes and the relationships between them as edges. Patients

lack some basic capabilities which prevent them to have a high quality life-style.

On the other hand, care providers are ready to support and assist the patients to

cover their shortcomings. Across the cities, many hospices connect patients and

care providers and try to optimize the patient-care providers ratio. Although, there

have been major improvement in the care services during the last decade,unequal

distribution of service accessibility is still a big challenge in this field [2].

On the other hand, data visualization is a powerful tool which gives us a clearer

understanding of the structure and behaviour of a given system and its components,

either by measurement or providing visual insight [3]. It is a robust methodology for

analyzing the complex network structures. The focus of this paper is on the visualiza-

tion of palliative care networks. The schematic view of our model and designed tools

are shown in Figure. 4.1. To the best of our knowledge, this is the first framework to

visualize and analyze palliative care networks.

This framework allows the patients and care providers to explore and monitor the

evolution and changes in the cohesion and structure of the care network. It is capable

of analyzing real data as well as synthetic data and it can be used to identify the

isolated patients, imbalance resource allocation, and uneven service distribution in

the network.

The rest of the paper is organized as follows: The next section briefly reviews
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Figure 4.1: The schematic view of the proposed model.

the related work. In section 3, we present our proposed visualization framework. In

section 4, we discuss the experimental setup. Finally, section 5 concludes the idea of

this paper with directions for future work.

4.2 Related Work

Data visualization has a long and strong history in science, particularly in network-

based systems. It plays a vital role in various types of social network studies including

crime analysis, and sociological, organizational and epidemic studies. In this section

we briefly review some the recent works in the field of healthcare and social network

visualization.

In [4], the authors proposed a new approach to use visualization techniques in

social network analysis in order to enhance the performance of the analysis by incor-

porating statistical measures. The authors in [5], highlighted challenges and oppor-

tunities of big data visualization and analysis on social networks. They also proposed

a new method for visualizing the big data. In [6], the authors designed an interac-

tive tool to visualize the influence networks of artists. The authors in [7], proposed
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a novel technique to visualize a network using a hierarchical structure. In [8], the

authors proposed a visualization tool for monitoring a health network and its status

with focusing on the scalability issue.

On the other hand, the importance of teamwork in palliative care has been ad-

dressed in few computer science research works. The authors in [9], used Electronic

Health Record (EHR) data to create a system to prioritize the palliative care patients

for the follow-up meetings. The authors in [10], have proposed a new agent-based

model to allocate care providers to patients in order to maximize the satisfaction rate

and reduce the operational costs. The authors in [2], modeled palliative care using a

team-based approach.

However, still there is not any significant work and framework for visualization of

palliative healthcare system. This paper will discuss the dynamic way to analysis the

palliative care networks.

4.3 A Framework for Palliative Care Visualization

As mentioned before, our proposed framework is capable of visualizing the structure of

the palliative care network. In addition, it can be used for identifying and visualizing

suitable teams of care for a group of patients. This feature allows the care providers

and administrators to identify the best teams of experts for any given care network.

It also can be used to identify the isolated patients and imbalance service allocation

in the system. In this section we describe different components of this framework.

As shown in Figure. 4.1, our framework generally consists of four main components

which are Data Entry, Computational Engine, Visualization, and Dynamic network

representation. These components are linked together to provide a series of descriptive

and predictive analytic tools for the care providers and policy-makers.
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Figure 4.2: An example of a synthetic network data with 140 nodes.

4.3.1 Data Entry Unit

The Data Entry Unit is responsible to receive the care’s network data from the user,

store and pre-process it for the further analysis. The input data can be synthetic

or real data. In the case of synthetic network, our model use the LFR benchmark1

[11] which is an internationally recognized social network generator benchmark to

create a synthetic network. The format of the generated network can be seen as an

array of n nodes, where n is the size of the network. For example in Figure. 4.2,

we have a network with 140 nodes and each column shows a link between a source

and destination node. Users can generate various networks using this benchmark in

different sizes and complexities. However, the generated synthetic network only rep-

resents the structure of the network. In other words, it just shows who is connecting

to whom in the network, but it does not determine if the node is a patient or a care

provider. Consequently, after generating the synthetic network, this unit provides a

rich Graphical User Interface (GUI) to assign roles to each node, as well as the list

of capabilities of each patient and the list of services that each care providers can

handle. These features can be assigned automatically by the implemented algorithm

or manually by the client. By assigning these features, the synthetic network can be

seen as a real network and will be ready for the further analysis.

In the case of real-world data, actual profiles of the members of a given palliative

care network are uploaded to the system and the unit is responsible to create the

1https://sites.google.com/site/andrealancichinetti/files
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social graph based on that. As the framework supports multiple views, it can be used

by either patients or care providers. Using the GUI (Graphical User Interface), both

groups can pre-process the data by editing or adjusting the missing values or fixing

the anomalies in the graph.

After that, the processed data will be stored in the system in a NOSQL database

and will be shared between other components for analysis and visualization.

4.3.2 Computational Engine Unit

This unit provides a set of social network analysis and machine learning techniques

to process a given network. First, a community detection algorithm is applied on

the network to identify the clusters and their memberships. As a result of this step,

the network will be divided into multiple communities and the outliers and socially

isolated nodes will be determined. It can help the policy-makers and care providers to

understand the underlying structure of the network and find some patterns and sim-

ilarity indexes among the community members. It also can identify highly influential

members in the network.

In addition, the clustering process is used to identify imbalanced service allocation

in the care network. For example, if there is a nurse or a care centre in the network that

provide services to a large number of patients and at the same time another centre has

a very limited number of patients, the algorithm identify them and marks them for the

further process and optimization. For the community detection algorithm, our model

uses the existing algorithm proposed in [12]. This is a knowledge-based clustering

algorithm that uses a variation of Cultural algorithms to identify the communities on

a given social network. The knowledge extracted from this process is used during the

next analytic steps.

Another important process which is done in this unit is Team formation which can

be defined as a process of allocating suitable experts to complete a specific task. As
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we mentioned before, the palliative care is a highly team-oriented health care process.

Due to its complex nature, generally a wide range of community services is required

for a patient to have a normal life. Assuming a big list of formal and informal care

providers, finding a team of care that can work together efficiently in an optimal way

to cover all the patient’s needs is a team formation problem.

The authors in [2] proposed a method for team formation in palliative care net-

works. In their work a cultural algorithm [13] has been proposed to optimize the task

of allocating teams of care providers to the entire patients in a given network and

maximizing their satisfaction level. The optimal teams of experts can be formed in

order to satisfy patients’ requirements and other parameters such as communication

cost, geographical proximity, availability, and workload. Consequently, for the team

formation, we base our algorithm on the work published in [2].

4.3.3 Data Visualization Unit

This unit is responsible to visualize the processed data. Generally, analyzing trends

and patterns in large data sets is a very complex process, and data visualization

is a very useful technique to simplify this process and it enables decision-makers

to derive analytical results from the visually presented information. Consequently,

visualization of the processed data obtained from a given healthcare network can

be useful to understand and monitor the evolution and the hidden patterns of the

network. In addition, improving the care services, and optimizing the connections

between people all can be achieved using this visualization module. This unit is

designed to represent the raw structure of the network as a social graph, clusters

and communities, circle of care of each patients, the level of distance and similarity

between each two nodes in the graph.
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4.3.4 Dynamic Network Representation

This unit is responsible to represent the evolution of the network in a period of time.

This time-based representations helps the policy-maker to travel in time and identify

patterns and trends in the network. It also can be used as a predictive model to

predict the future state of the network based on the historical data obtained by the

system.

4.4 Experimental Analysis and Implementation

In this section we discuss the implementation details of our proposed framework. The

visualization of the palliative care networks was mainly generated by d3.js. In addi-

tion, we used Java and Spring Boot framework for our back-end works and MongoDB

was used to manage the database for real network setting. Our front-end has been

implemented with React and Bootstap.

As discussed earlier, the user can decide what type of datasets they are going to

explore, real or synthetic data. Figure. 4.3 shows the interface for uploading the

synthetic dataset.

To evaluate the performance of the framework, we have populated that with a

synthetic network generated by LFR benchmark. After generating a synthetic social

care network, we have to assign roles and other features to the network. Figure.4.5

shows the UI for assigning the required values to the network in order to imitate the

real data. At the first, some basic structural information about a given social graph

(e.g. the number of nodes and edges, the average degree of a node) is automatically

calculated and presented to the user. After that, the user can generate a customized

care network using the following parameters:

i Ratio of patients to care providers: The user can determine how many of the
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Figure 4.3: The interface for uploading synthetic dataset

nodes in the network are patients and how many are care providers by assigin a

ratio in this field.

ii Distribution: The user can choose the way that care providers and patients are

labeled in the network. The Framework provides three methods for this feature

which are ordered, random or betweenness centrality.

The ordered means that the nodes are arranged based on their degree of con-

nections, then the nodes with higher degrees are marked as care providers and

the rest will be patients. The random distribution assigns labels randomly to

the nodes, in order to meet a given number of patients and care providers. The

betweenness centrality indicates the number of times that a node acts as a bridge

along the shortest path between two other nodes. The nodes which have a high

betweenness centrality measure consider as care providers and remaining will be
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Figure 4.4: The interface for uploading profiles of Real dataset

marked as patients.

iii Number of Capabilities: the total number of capabilities that is going to be con-

sidered for a given network. In the palliative care, various types of services or

capabilities are needed by a patient, for example a patient may not be able to

make its own Meals, or doing grocery shopping, House Keeping, and laundry. For

making the synthetic care network, the user can define the number of capabilities

that must be considered for patients in the network. It can be either filled with

the names of those capabilities (e.g. grocery shopping) or be filled without pro-
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Figure 4.5: Assigning the required parameters to generate synthetic network.

viding any value; the system will automatically assign numerical values for each

capability if the name is not provided.

iv Maximum number of missing capabilities for each Patient: The user can determine

the maximum number of capabilities that a patient can miss.

v Maximum number of services for a care provider: The number of services that a

care provider can offer to the network can be adjust in this field.

In case of loading the real-world data, as the entire profiles information are up-

loaded to the system, there is no need to assign the role and other features. Figure.

4.4 shows the interface for uploading profile details of the care team in a real network.
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4.4.1 Data Visualization

The visualizing process of data will take the values from the parameter configuration

page as we discussed in the previous section. Figure 4.6 shows the visualization of a

given sample synthetic network. This tool enables the user to expand or shrink the

network visualization, to view information of a specific node, and to search for any

specific node and explore the raw network.

Figure 4.6: The visualization of palliative care - synthetic network.

As discussed before, visualization of a team of care is one of the main objectives

of this framework. Figure. 4.7 shows the optimal team members of our sample

network based on the given parameters. The sample synthetic network was generated

with 140 nodes and assigned 20% as patients and 80% as care providers, number

of capabilities/services set to 8, Maximum disability of a patient set to 30% and

the maximum service that a care provider can offer was 60%. As a result of this

visualization, anyone can easily observe which patient is getting service by which care

teams, identify the fully occupied care providers and those ones who are not providing

services, and whether every patient is getting services or not.
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Figure 4.7: The care teams in our sample synthetic network with 140 nodes.

In addition, Figure.4.8 shows the communities and identified clusters in our tested

network with 140 nodes. As discussed earlier, it is a very important tool that repre-

sents groups of nodes that have a high level of dependency to each other.

4.5 Conclusions

In this paper, we proposed a framework to generate and visualize structures and

characteristics of palliative healthcare networks using both synthetic and real-world

data. Our framework is capable of generating and customizing a wide range of care

networks for the simulation purposes. It also is capable of identifying and visualizing

clusters and efficient team of cares in a given network. This framework is useful for
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Figure 4.8: The cluster diagram of our sample synthetic network

the care providers and policy makers to explore the characteristics of the network

and monitor its evolution during the time to identify hidden patterns among the

system. In the future, we are going to add more features to this framework in order

to represent spatio-temporal events in the network and update our predictive model.



79

Bibliography

[1] S. M. Mickan, “Evaluating the effectiveness of health care teams,” Australian

Health Review, vol. 29, no. 2, pp. 211–217, 2005.

[2] K. Selvarajah, P. M. Zadeh, Z. Kobti, M. Kargar, M. T. Ishraque, and K. Pfaff,

“Team formation in community-based palliative care,” in 2018 Innovations in

Intelligent Systems and Applications (INISTA). IEEE, 2018, pp. 1–7.

[3] A. W. Crosby, The measure of reality: Quantification in Western Europe, 1250-

1600. Cambridge University Press, 1997.

[4] T. Crnovrsanin, C. W. Muelder, R. Faris, D. Felmlee, and K.-L. Ma, “Visual-

ization techniques for categorical analysis of social networks with multiple edge

sets,” Social Networks, vol. 37, pp. 56–64, 2014.

[5] N. T. Tam and I. Song, “Big data visualization,” in Information Science and

Applications (ICISA) 2016. Springer, 2016, pp. 399–408.

[6] C. Schikora and D. Isemann, “Influviz—a visualization tool for exploring and

analyzing creative influence between artists and their works,” in Information

Visualisation (IV), 2017 21st International Conference. IEEE, 2017, pp. 336–

343.

[7] K. Gemici and A. Vashevko, “Visualizing hierarchical social networks,” Socius,

vol. 4, p. 2378023118772982, 2018.



80

[8] D. Park, “Bom-vis: A visualization of network health and status.”

[9] A. Avati, K. Jung, S. Harman, L. Downing, A. Ng, and N. H. Shah, “Improving

palliative care with deep learning,” arXiv preprint arXiv:1711.06402, 2017.

[10] N. Moradianzadeh, P. M. Zadeh, Z. Kobti, S. Hansen, and K. Pfaff, “Using social

network analysis to model palliative care,” Journal of Network and Computer

Applications, vol. 120, pp. 30–41, 2018.

[11] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing

community detection algorithms,” Physical review E, vol. 78, no. 4, p. 046110,

2008.

[12] P. M. Zadeh and Z. Kobti, “A Multi-population Cultural Algorithm for Commu-

nity Detection in Social Networks,” Procedia Computer Science, vol. 52, no. 9,

pp. 342–349, 2015.

[13] R. G. Reynolds, “An introduction to cultural algorithms,” in Proceedings of the

third annual conference on evolutionary programming. World Scientific, 1994,

pp. 131–139.



81

Chapter 5

Cultural Algorithms for Cluster

Hires in Social Networks

This research examines the team formation problems in a situation where the primary

focus is to maximize the profit of projects under a given budget, called cluster hire

problem. We can see the above scenario in the industry organizational setting and

online freelancing jobs such as Upwork.com and Guru.com. This research attempts

the knowledge-based cultural algorithms in a cluster hire problem and compares it

with existing approaches.

5.1 Introduction

Team formation is a group of people with various skillsets coming together to form

teams to complete certain tasks associated with certain constraints. Past working

experiences bring compatibility among the members of teams. As a result, each

member connects with others. Their connected community can be considered as

social networks where each person represents a node, and their past relationship

represents edges. In this study, we consider a collection of tasks that requires specific

skillsets and produces a different profit upon completion. At the same time, each
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Figure 5.1: Example of project requirements, a social Networks of experts with com-
munication cost between experts and expert profile information.

person demands a certain amount of salary to invest their time and knowledge. A

budget is required to spend on those expenses. Our primary objective is to identify

a group of teams that maximizes the total profit of the tasks that can be completed

under a given budget. This problem was first introduced by Golshan et al. [1], and

called it a Cluster Hire problem.

We can observe the above similar settings in industries or online platforms such

as Freelancer, Guru, and Upwork. In these settings, people with diverse skills can be

hired to work on different types of projects. In the era of web 2.0, communication

and transferring information through the internet becomes easier. Most people realize

that teamwork has more advantages than working alone. So, the cluster hire problem

is considered as a significant problem in the real world.

The primary concern of the standard cluster hire problem was to hire a profit-

maximizing team of experts with the ability to complete multiple projects within

a given budget [1]. Later some researches examined this problem with additional

measuring parameters such as compatibility [2, 3], and productivity [4] in order to

improve the accuracy of the solution. Existing researches applied greedy algorithm

[1, 4, 3] and Linear Programming [2] to tackle this problem. Besides this, since people

are connected through the network, capturing social network features are beneficial

to solve the problem. In terms of influencing parameters, existing research failed to

combine the social compatibility of team members, the productivity of teams, and

the capacity of a person in a framework.
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For example, let us assume that a social network has 5 people, and our objective

is to complete 3 projects, as shown in Figure. 6.1. Required set of skills are artificial

intelligence (AI), databases (DB), graphics(GR), web development (WD), computer

networks (CN) and machine learning (ML). In our model, we want to find the teams of

experts who satisfy the project requirements, maximizing profit as well as minimizing

communication cost (minimum communication cost means that the compatibility

among them is high). The project requirements can be satisfied with two teams:

A = {E1, E2, E5} and B = {E2, E3, E4}. Both A and B satisfy the capacity of

individuals too. First of all, the connection between team members is important

because it increases compatibility. The communication cost can be 6 and 12 for A

and B, respectively. So, we select team A to perform these project lists to satisfy

every constraint. This process is not simple with complex networks.

The existing approaches used greedy algorithms and linear programming with

approximation algorithms. When the size of the network increases, these algorithms

are not guaranteed to find the optimal solution within a considerable runtime. So, to

avoid this issue, we employ knowledge-based cultural algorithms.

We make the following contributions in this paper:

1. We tackle the cluster hire problem by using a knowledge-based evolutionary

optimization model for the industry based settings.

2. As an extension of the basic problem [1], we consider the compatibility between

team members to collaborate with each member effectively.

3. We also consider the capacity of a person to a certain number, which means the

number of projects can be handled by that person simultaneously.

4. We also include the productivity of the person in our model. The productivity

measures the experience of a person in a specific skill.
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Our previous work in [5] considered the case study for the academic collaborations

and used social compatibility that is communication cost between team members to

measure the effective teams. It measured the communication cost in two different

methods: Diameter distance and Shortest path distance. It was a single objective

optimization problem. On the other hand, this paper considers the case study in

industry organizational settings. Since industries focus on profit, we maximize the

profit by hiring efficient teams of experts under a given budget. We use three per-

formance evaluation functions: communication cost, productivity, and workload to

measure the performance of the teams, which decide the efficient teams of experts.

This problem is a multi-objective optimization problem. The size of the solution or

chromosome in this work varies based on the budget and the profit because finding a

set of teams under the given budget might only be suitable to complete a few projects

or whole projects from the project list. Therefore, implementing this process is highly

complicated. This study has several benefits in the real world, such as in any business

for profits and online freelancing jobs.

The rest of the paper is organized as follows. In the next section, we discussed the

related work. We then present the problem statement in Section 3. In Section 4, we

discuss the knowledge-based framework to find the best team of experts. In Section

5, a comprehensive set of experiments over synthetic data is presented. Finally, we

conclude our model in Section 6.

5.2 Related Works

For the first time in social networks, Lappas et al. [6] introduced the team formation

problem to minimize the communication cost. In the last two decades, there are

several papers tackled this problem in various ways. Some of them modify the first

proposed function to some advanced version such as enhanced Steiner algorithm [7]

, shortest path method [8] and diameter distance, the longest shortest path among
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Symbols used in this paper

E set of n experts {e1, e2, . . . , en}

S set of m skills {s1, s2, . . . , sm}

T set of k project {t1, t2, . . . , tk}

T ′ sub set of project T

S(e) set of skills possessed by expert e

S(t) set of skills required for project t

ψ(e) cost of hiring expert e

Θ(e) load limit of expert e to offer his/her expertise

∆(t) profit of completing project p

τ(e) productivity of a person e

d(ei, ej) shortest distance between experts ei and ej

Γ total budget for hiring experts

team members [9] while others incorporate few other parameters such as expertise

level [9] and geographical proximity [10, 11]. At the same time, many of these models

used the greedy algorithm and the approximate method.

Some algorithms applied the evolutionary algorithms in TFP. The authors [10]

applied Genetic Algorithms and studied the geographical location of each member of

the team while optimizing the approach. The authors [11] considered the TFP in the

health care setting and applied Cultural algorithms to optimize multi-objectives.

Different from all the above works, [1] aimed to hire a profit-maximizing team

of experts with the potential to complete multiple projects, within a given budget.

It is a promising problem in real-world settings. Later [2] proposed a bit similar to

Golson’s [1] work by incorporating social compatibility, and they named their work

as TEAMGROUPING. They applied Linear Programming with an approximation

algorithm. The authors [3] proposed almost similar work to [2], but solved using

greedy algorithms.
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5.3 Problem Statement

In this paper, E = {e1, e2, . . . , en} specifies a set of n experts, S = {s1, s2, . . . , sm}

specifies a set of m skills and T = {t1, t2, . . . , tk} specifies a set of k projects. Each

individual e ∈ E has a subset of skills, i.e., S(e) ⊆ S, the set of skills possesses by

the individual e. Each project t ∈ T requires a subset of skills, i.e. S(t) ⊆ S, set of

skill required to complete project t and ∆(t) be the profit from the project t. At the

same time, each individual demands a pay ψ(e) for each task t and associates with

a number for the capacity Θ(e), the maximum number of project can be covered by

the person e. In our setting, we incorporate the productivity of the person τ(e), to

determine how best can person e work on project.

Definition 5.1. Group of Experts For a set of n experts E, a set of m skills S,

and a set of k projects P, a group of experts E ′ ⊆ E is expected to complete a subset

of projects T ′ ⊆ T with the following condition.

Load: Each team member can have different load limits, i.e., each person should

not work on more than Θ(e) number of tasks at a time. This value can be decided

based on the work history, how many projects each individual completed successfully

in parallel.

5.3.1 Social Compatibility

Social compatibility plays a significant role to decide how comfortably each member

of the teams collaborate to work together. We consider the relationship among these

individuals from a social network G(E ,R), where E represents the set of individuals

and R represents the relationship among them. Lappas et al. first introduced the

concept of social compatibility [6] in TFP. The shortest distance between any two

members can be calculated based on their past collaborations in the same project [8].
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The shortest distance between any two members can be computed as:

Wei,ej = 1−
|Tei ∩ Tej |
|Tei ∪ Tej |

(5.1)

where Tei(resp.Tej) is the set of collaboration by ei (resp. ej).

In our model, we adopt the concept of the shortest path distance to evaluate the

social compatibility between team members [8]. It can be defined as below.

SumofDistances(E ′) =
∑

(si;sj)∈P×P

d(esi , esj) (5.2)

Where d(esi , esj) indicates the possible shortest path length in the given social graph,

which connects any two members of the teams such that one of them is assigned to

cover the skill si and the other one is assigned to cover the skill sj. Here, the smaller

the shortest distance represents better social compatibility.

5.3.2 Productivity

The basic idea of productivity τ(e) of a person is to have the best expertise in the

teams. It can be decided based on the number of task e performed in the past. So,

the total sum of the productivity of the team needs to maximize to find better teams

of experts.

Productivity(E ′) =
∑

(ei∈E ′)

τ(ei) (5.3)

where τ(ei) specifies the productivity value of any expert in the team.

5.3.3 Profit of the Projects

Generally, each project experts a certain level of profit. In our setting, the profit of

a project represents as ∆(t). So, the profit of finishing a set of projects T can be

defined as follow.
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Profit(T ) =
∑

(ti∈T )

∆(ti) (5.4)

where ∆(ti) specifies the profit of any project in T .

We set the budget to Γ that helps to manage the expenses for the hiring process.

Our primary goal is to assign a group of teams to perform a set of projects while

the expenses should be under the given budget, and the profit should be maximum

as possible. Overall, we aim to find a group of teams who have the minimum sum

of distance and maximum productivity, and the group of teams should maximize the

profit while they work on their capable capacity level. So, we can formulate our

problem as a tri-objectives optimization problem. In this setting, we convert our

problem into a single objective problem by introducing trade-off parameters α, β and

γ such that α + β + γ = 1.

Problem 5.1. A set of n experts E with a set of m skills S need to complete a set of

k projects T . We assigned the trade off α, β and γ among the shortest path distance,

profit and productivity. We aimed to choose a group of teams E ′ ⊆ E and a set of

projects T ′ ⊆ T in which the following objective is maximized:

CH(T ′, E ′) = (α).(1−SumofDistances(E ′))+(β).P rofit(T ′)+(γ).P roductivity(E ′)

(5.5)

Addition to this, our budget value must be satisfied the following condition:
∑

e∈E

ψ(e) ≤ Γ , where ψ(e) specifies the payment demanded from expert e and Γ specifies

the total budget to complete T projects.

In equation 5.5, each parameter takes its own units. For example, profit will be

at dollars, and the other two are just numbers. Therefore, we normalized them to

have the same scale.
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Figure 5.2: The flow chart to describe how knowledge-based algorithm handled to
produce the best solution.

5.4 Evolutionary Algorithm

The cluster hire problem was proven to be an NP-Hard problem by Golshan et al. [1].

The existing similar problems used the methodologies which can optimally find the

solution such as greedy and Linear Programming with approximation. We already

discussed that a knowledge-based evolutionary algorithm tried to find an optimal

solution even with complex networks. In this section, we discuss the evolutionary

algorithm that we use in our proposed model.

We used knowledge-based cultural algorithms to test the model. The Cultural

algorithm uses two phases: population space and believes space [12]. Similar to
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other evolutionary algorithms, such as the Genetic algorithm, begins with the random

initial population of chromosomes. The chromosome or individual means the possible

solution to the problem. The fitness function can be used to evaluate the ability

of individuals to survive for the next generation. The cultural algorithm uses some

knowledge extractions such as situational, normative, and topological knowledge from

selected individuals. The influence function involves knowledge extraction from the

belief space, while acceptance function keeps the most suitable individual knowledge

into belief space. This process helps to guide the search direction and continue until

the termination condition. Finally, it returns the best solution to the problem.

5.4.1 Representation

The representation of the individuals is a significant task in evolutionary algorithms.

In this setting, the size of the chromosome is dynamic because we have to find the

number of projects which can be completed under the given budget. For example, if

the number of projects T is 3, to find the subset of projects T ′, which can be completed

within a given budget Γ . The chromosome sizes for this case can be {1, 2, 3}. Every

chromosome size will keep all the combinations of the projects. Let’s say, if we want

to generate the chromosome size 2, in our case we have to create C3
2 combinations of

chromosomes, for example {t1, t2}, {t1, t3}, {t3, t2} are the combinations of 3 tasks of

2 sub-tasks. In this case, we need to create 7 different size of chromosomes, as shown

in Figure 5.3. In general, the number of combinations would be 2|T |−1.

Figure 5.3: Example of chromosome structure when we test for the total number of
projects 3.
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5.4.2 Belief Space

The belief space is to utilize the extracted knowledge from selected individuals to

enhance the performance of cultural algorithms. It updates the extracted knowledge

to the next generations. In our setting, we extracted two knowledge: normative and

topological knowledge. For the first case, we adopted the methodology used in [5] to

extract the knowledge from the best individuals, while in the second case, we apply

the topology for an unexplored list which we will explain in the following section.

5.4.3 Genetic Operators

As every evolutionary algorithm, we also apply recombination and mutation in our

model. The recombination is carefully handled among the same subset of chromo-

somes. We applied a single-point crossover to generate offsprings of the subsets. For a

certain percentage of chances, we perform recombination among the best individuals,

while at other chances, it combines random two individuals. Similarly, we perform

mutation with a random gene for some probability, while in other chances, we mutate

the gene with the unexplored list that is the list of genes that are not used in the

current populations.

5.4.4 Procedure

The flow chart in Figure.5.2 describes the step by step procedure of our method.

We begin by generating a predefined number of random teams to create the initial

population. While we create each chromosome, we make sure whether each expert

exceeds their load limit or not and whether the budget Γ is greater than or equal to a

total pay of the experts ψ(E) of the chromosome. As explained in the above section,

the remaining steps will perform genetic operations to create offspring.

The process stops when the best solution is found. The best solution can be a
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set of required teams to solve all projects or a few projects. If it discovers teams for

all projects, for instance, the size of the chromosome is 11 for all 3 projects, as we

described in Figure 5.3. If the budget is enough to cover only a few projects, then

the size of chromosome changes among {3, 4, 7, 8} values, which represent the teams

to complete either 1 or 2 projects. Our model decides the above result based on the

given budget to maximize the profit.

5.5 Experiments

In this section, we test the performance of our proposed algorithms over a synthetic

Social Network generated using the LFR benchmark [13]. We create a string array to

keep a set of skills. We then assign a set of skills to each person randomly between

2 to 5. Based on the past collaborations in the network, we generate the shortest

path distance among each member. We randomly assign the load limit of a person

from 2 to 6, the productivity of a person 1 to 10, and the paid amount of a person

from 30 to 50. We generate random projects for the user-defined number. Each

project is assigned to a profit from 100 and 6000. We run each experiment for 5 times

and evaluate the average value. For the objective function, we assign the following

trade-off values: α = 0.3, β = 0.4 and γ = 0.3.

Figure 5.4: Comparison for Total profit vs. budget of CA , GA, Project Greedy,
Expert Greedy,Exact and Random Algorithm

We compare our method with project greedy, expert greedy algorithms as pro-
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Figure 5.5: Comparison for Total profit vs. budget of CA, GA, Project Greedy,
Expert Greedy, Exact and Random Algorithm

posed in [4], exhaustive algorithm, and random search method. We plot the graph for

the budget vs. profit (Figure. 5.5)and budget vs. the number of completed projects

(Figure. 5.4), in which except random method, every other algorithm perform well

for the small number of projects. However, when the number of projects increases,

the CA performs better than other algorithms. Moreover, from the graph, we can

observe that most of the time, GA and Project greedy produce almost similar results.

Although expert greedy did not perform well for the less budget, it equally performs

to project greedy for the high budget rate.

In terms of runtime, the CA takes little more time than GA but better than

project greedy algorithm. Because CA extracts knowledge and updates to the next

generation, the processing time takes a little longer than GA. Moreover, the run time

of expert greedy was lower than project greedy algorithm.

5.6 Conclusions

In this paper, we tackled the cluster hire problem, which was introduced by [1] using

the knowledge-based cultural algorithm. At the same time, we set significant mea-

suring parameters: social compatibility, load limit, productivity, and profit of the

projects to find the group of teams. We formalize this problem as a tri-objectives

problem. Then it is converted to a single-objective problem by introducing trade-off
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parameters. We test our model on synthetic social networks. Then we compare it

with other recently proposed algorithms such as project greedy and expert greedy

algorithms [4]. We also compared them with the random and exact algorithm. Our

approach outperformed against other compared methods. In the future, we would

like to test our model on real-world datasets such as Upwork and Freelancer.
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Chapter 6

A Unified Framework for Effective

Team Formation in Social

Networks

The significant objective of this chapter is to propose a unified framework for Team

Formation Problem (TFP) to solve any application in dynamic social networks. We

examine several measuring parameters to decide efficient teams and formulate it as a

multi-objective optimization problem.

6.1 Introduction

In numerous circumstances, the use of team-based opportunities has become more

common. Such teams are often confined within a group or society, especially in the

manufacturing, law, academia, healthcare, in freelancer jobs such as Upwork and

Guru, and other professional organizations. In most of these situations, people are

connected as networks based on past collaboration or colleagues. These connected

networks can be considered as social networks that contain professionals as nodes

who have a set of skills, expertise in particular areas, and the relationships between
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pairs of individuals being the edges.

Team formation is a group of individuals coming together to form a team to work

on a task with expectations that the task should be completed successfully. TFP

in social networks is to collect the group of individuals who match the requirements

of given tasks. It is a challenging process because it needs to ensure that the team

assembled to carry out a task effectively. Many researches have been conducted to

solve the TFP optimally. However, this research requires new approaches to improve

accuracy. To discover the productive or successful teams to work on projects, sat-

isfying the requirements of the projects are not sufficient. It requires several other

details related to the individuals in the teams, such as how they are connected as a

social network and what is the relationship between them.

Most of the existing models have considered communication cost among teams

because the minimum communication cost delivers their tasks more efficiently. Lap-

pas et al. [1] proved that the communication cost has a higher impact when forming

the teams in social networks. Later many researches [2, 3, 4] modified their approach

in various ways such as enhanced Steiner algorithm and shortest path distance. Some

other researches have been conducted to analyze the different parameters which in-

fluence the formation of teams such as expertise score [4, 5], geographical proximity

[6], and density [7].

Existing researches ignored to analysis the expertise as a dynamic score. Let us

consider an example; if the expert profile state that he or she has a list of skills, it

does not mean that he or she is an expert in every skill. Besides, in reality, people

never keep the same expertise level all the time, if they do not work on it. So, based

on how often anyone works on any skill, and when did they contribute their effort

on a specific skill, we can decide the current level of expertise as a dynamic score.

Moreover, although existing researches examined the communication cost of the team

using different approaches, they failed to discuss the dynamic nature of it. Bringing
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the temporal features of the expertise score and communication score is significant in

TFP. Therefore, we introduce two formulas to incorporate the dynamic behavior of

expertise score and communication cost in our framework.

A team without trust is just a group of individuals working together, often making

unsatisfactory progress. This study considers three factors to measure trust quantita-

tively: Explicit trust score, Profile similarity score, and Emotional intelligence index.

We believe that a direct trust score is not only sufficient information to evaluate trust

between any two members in a team because it might be biased. Scores which tell how

much a person has similar interest with others and whether a person emotionally fit

to work as a team or not are also significant information to calculate the trust score.

Although these scores are not quantifiable to construct a computational model, we

bring some ideas in this study based on the researches in management.

Our primary objective is to model a unified framework for team formation problem

in social networks to analysis various contexts which associate with each member of

a team: how frequently have team members work in the past, are they emotionally

fit to work as a team, how much each team member have faith in other members and

are they living close enough. To address these questions, we design a unified team

formation model to study the formation of teams and their effect on production.

The remaining of this paper is organized as follows. We discuss related works

in Section II. Section III is to define the problem definition for the TFP problem in

a dynamic environment. Then we discuss the Multi-Objective Cultural Algorithm

for TFP in Section IV. In Section V, we conduct extensive experiments on synthetic

datasets. Finally, we conclude this paper in Section VI.
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6.2 Related Works

Lappas et al. [1] first addressed the Team Formation Problem (TFP) with social

networks. They formulated TFP using communication costs and proved that it was

an NP-hard problem. In the last decade, TFP got a great deal of attention from many

researchers [2, 8, 9, 10]. In addition to communication costs, some studies examined

other aspects of contexts to form successful teams, including workload, expertise level,

personnel cost, density, geographical proximity, and trust score.

6.2.1 Communication Cost

The concept of communication cost (CommCost) is used to measure the effectiveness

of collaboration within a team. Lappas et al. [1] first suggested that it can be

calculated using social network analysis, based on the interactions of the individuals.

The success of a project relies on how well the experts in teams communicate and

collaborate with others. The CommCost measures the closeness of the individuals in

a social network G. If two individuals Vi and Vi are adjacents, the CommCost is the

weight of the edge (Vi, Vj); otherwise, the CommCost is the shortest path between

Vi and Vi. Numerous studies focused on the concept of CommCost. These studies

discussed various definition including minimum spanning tree [1, 11, 4, 12, 13, 14,

15], the weight cost of the minimum spanning tree for subgraph formed by a team,

diameter distance [1, 15, 10], the longest shortest path between any individuals in a

team and sum of shortest distance [2, 16, 15, 17, 18, 19, 10], the sum of all shortest

paths between any two individuals in a team.

6.2.2 Work Load

In the multi-project situation, adjusting the amount of work according to the capac-

ity of the individual is an essential factor to complete the work successfully. Some
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Authors CommCost Work Load
Expertise

Level

Personnel

Cost
Density Geo-Proximity

Trust

Score

[1, 2, 11],

[16, 13, 14],

[15, 18, 19],

[10]

X

[4, 12, 20] X X

[3, 17, 21] X X

[22] X X X

[23, 24] X X

[25, 5, 26],

[27, 28]
X X

[29] X

[30] X X

[31] X

[20, 32, 33],

[7]
X

Table 6.1: Team Formation Problem based on various Parameters

researches [4, 12, 20, 22] focused the load balance on formulating the TFP in Social

Networks.

6.2.3 Expertise Level

In the real world, knowledge structures of skills are quite diverse. Many people have

different knowledge and can be experts at a different level. As specialization in every

field increases, an individual who is an expert, has to maintain the level of expertise

in specialized skill in a certain discipline to perform a given task skillfully. In a given

extensive social network G, many individuals might have the ability to perform a

specific task. Some people perform at a higher level than the others. So, there should

be a method to measure the expertise score in any particular skill to find a suitable

candidate to complete the task.

The skill mastery level of the whole team decides the successful outcome of the

project. Many studies focused on the expertise level and considered it as a binary

value: if a person has a skill, it is 1; otherwise, it is 0. These studies combined
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the expertise level with the communication costs [25, 5, 26, 27, 28]. Some studies

examined the expertise level with another context, such as trust [30].

6.2.4 Personnel Cost

In many real situations such as Guru.com, Freelancer.com, and Upwork, people work

for pay, which is the personnel cost of experts. Finding teams with affordable cost

is a benefit for the projects desirable to find a team of experts with a reasonable

personnel cost [34]. The authors in [3, 17, 21] modeled the TFP with the combinations

of CommCost and Personnel Cost.

6.2.5 Geological Proximity

Collaboration and the exchange of knowledge are easier by geographical proximity.

Although many studies in social science theoretically discussed the benefits of geo-

graphical proximity in collaboration of individual, limited literature focused on com-

puter science researches [23, 24, 22]. In the era of web 2.0, some can argue that

geological proximity does not matter to work as a team. However, the chances of

collaborations are high when experts live close.

6.2.6 Trust Score

Team trust is increasingly being recognized as essential for team performance. It

has been generally agreed that a team with high collective trust is more successful

than a low trust team [35]. Working in a team without trust, it is just a group of

individuals. Research shows that in high-trust environments, people do their best

work and are motivated to produce successful outcomes. If the team members make

mistakes, everyone else in the team support and share information to produce the

task effectively and efficiently.
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The trust score gives the level of trust that members of the team have with each

other. Because it becomes an important element of the success of social networks,

many research has been examined in various perspectives [36]. Quantifying the trust

value is a challenging process. The authors of [37, 30, 31] formulated trust score for

the TFP. Awal et.al [30] used a ratings-based approach adopted from [38], which is

based on the interactions that they had earlier.

6.2.7 Density

In a given graph G, the density method finds the densest subgraph, which satisfies

the skill requirements of a project. The density of a team graph was examined in

[32, 33]. Recently, an improved method was proposed in [7].

Table 6.1 summarize the existing related works in TFP based on various parame-

ters to formulate successful teams. Many of these optimized the TFP as bi-objectives

or tri-objectives by considering two or three parameters.

Many research papers ignored an important parameter in some way. For example,

if the author proposed a model using both communication cost and workload, they

failed to analysis expertise level or trust between team members. Moreover, the

communication cost and expertise level do not remain the same with the time. For

instance, if a programmer who is an expert in Java, got promoted and mentoring team

members, or working in a different programming language such as Python, his expert

level in Java will not remain the same all the time. In this regards, we incorporate

the temporal behavior when evaluating the expertise score.

Similarly, with the communication cost, if two experts had frequent collabora-

tions in the past years, and in recent years they don’t collaborate, the chances of

collaborating in the future are less. No one consider this in to account to model TFP

with dynamic communication score. We focus these issues and propose a new uni-

fied framework for TFP by incorporating dynamic communication cost and dynamic
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expertise score.

6.3 Proposed Model

Our model aims to find experts with the highest level of expertise who can perform the

tasks, which require a certain expertise level in a cost-effective manner. To address

the inherent cost of team members in various aspects, we have to demand a new

model for the Team Formation Problem(TFP). This section will discuss the proposed

comprehensive model for the TFP and outline key definitions to formulate our model.

6.3.1 Preliminaries

Given a social network G(V , E) be an undirected weighted graph, where V represents

a set of individuals or experts and E represents the relationship between them. The

weights of the edges E in graph G can be interpreted as a indicator to measure how

efficiently the individuals work as a team. We assume that there is a set of n skills

S = {S1, S2, . . . , Sn}, a set of m individuals V = {V1, V2, . . . , Vm}. Each individual Vj

associated with a set of skills Si is a subset of skills, Si(Vj) ⊆ S. Each skill in Si is

associated with a score based on the expertise level of the expert in a specific skill.

We assume that a set of k tasks is T = {t1, t2, . . . , tk}. A task ti is simply a set

of skills Sj required to perform a project, i.e Sj(ti) ⊆ S. Similarly as expertise score

of expert in every skill, required skills set for a project is also associated with a score

based on the required expertise level of a skill for that project.

Definition 6.1. (Team of Experts) For a given set of experts V and a given task

T that requires a set of skills {Si1 , Si2 , . . . , Sir} ⊆ S, a team of experts for ti is a set

of r skill-expert pairs: ti = {〈Si1 , V
Si1
j1
〉, 〈Si2 , V

Si2
j2
〉, . . . , 〈Sir , V

Sir
jr
〉}.

where V
Siq

jp
is any expert Vjp ∈ V who posses skill Siq ∈ S, {Vj1 , Vj2 . . . Vjr} ⊆ V and

Siq ∈ S.
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Figure 6.1: A social Networks of experts with expertise skill, the communication cost
between them and the time when they did last project together.

Definition 6.2. (Tasks) For a given set of tasks T , if a task is represented as ti =

{〈S(ti), V (ti)〉}, then the set of task T = {〈S(t1), V (t1)〉, 〈S(t2), V (t2)〉 . . . 〈S(tk), V (tk

)〉}, such that
∑
|V (ti)| = |V ′|.

6.3.2 Communication Cost

Kargar et al. [2] proposed Sum of Distances to measure the communication cost of a

team. The distance in their work was the shortest path distance between the experts

for each pair of skills. The expectation was that finding the team with minimum

communication cost would finish the project on time.

• Sum of Distance: Given team of experts {〈Si1 , V
Si1
j1
〉, 〈Si2 , V

Si2
j2
〉, . . . , 〈Sir , V

Sir
jr
〉

}, the sum of distance between Vjp and Vjq of every pairs in the team can be de-

fined as.

SumDist =

jr∑
p=j1

jr∑
q=j2

dist(Vp, Vq) (6.1)

where dist(Vp, Vq) is the shortest distance between Vp and Vq in G. i.e., the sum

of weights on the shortest path between Vp and Vq.

Note that for the above cost function, the distance between two experts is defined

over the whole graph G as a static parameter. In reality, the communication cost

shows the dynamic nature and changes over time. Therefore, we enhance the above

cost function 6.1 in order to incorporate the dynamic form of communication cost.
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Time difference from current to last collaboration on a project is incorporated with

the shortest path distance to adopt the temporal feature.

Definition 6.3. Dynamic Communication Cost: Given team of experts {〈Si1 , V
Si1
j1

〉, 〈Si2 , V
Si2
j2
〉, . . . , 〈Sir , V

Sir
jr
〉}, the sum of distance between Vjp and Vjq of every pairs

in the team can be defined as.

DCC =

jr∑
p=j1

jr∑
q=j2

(dist(Vp, Vq) + α(t′ − t)) (6.2)

where dist(Vp, Vq) is the shortest distance between Vp and Vq in G. t′ is the current

time and last time he or she work on a task together, and α is an attenuation factor.

For example, to motive the concept of dynamic communication cost, we illustrate a

social network in Figure. 6.1. Assume that we need to perform a project which needs

expertise in three areas: artificial intelligence (AI), databases (DB), and graphics

(GR). We can form two teams A = {Jack, Lily, Ryan} and B = {Kyle, Joe, harry}.

The communication cost of both A and B is the same 7 if we do not consider the time

of their last collaboration. On the other hand, if we consider the last collaboration

time, we can evaluate the communication cost using equation 6.2 as below;

DCCA = (2 + 0.1(2019− 2016)) + (3 + 0.1(2019− 2016)) + (2 + 0.1(2019− 2015))

where we assume that the current year as 2019 and α = 0.1. The dynamic communica-

tion cost of teams A and B would be 8.0 and 9.3, respectively. Smaller communication

cost represents better team of experts who had frequent experience. Therefore, team

A has higher chances to collaborate in the future.

6.3.3 Team Skill Mastery Level

The limited number of researches [30, 5] examine the expertise level in TFP. However,

throughout the literature, this scale has been interpreted as a static score. Expertness
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of an individual never remains the same if he or she is not work on a specific field.

Considering the temporal behavior of the expertise score has significant influence on

completing a task successfully. Past experiences are used to obtain the expertise

score of an individual. Time difference from current to last work on specific skill is

incorporated with the expertise score to adopt the temporal feature.

Experts Skills of projects Worked Year

Jack AI 2009, 2011

Kyle GR 2009,2010

Ryan GR 2015,2017

Harry DB 2009, 2010, 2011

Joe AI 2014, 2017

Lily DB 2016, 2015

Ryan AI 2013

Table 6.2: The history of skills by each expert in a given SN G.

The expertise score of an expert vi ∈ V can be defined as the ratio between the

total number of projects or published papers |ESSj

Vi
| of the expert Vi in a skill Sj ∈ S

and the total number of projects or published papers of the experts in a given network

G in the skill Sj:

ESSj

Vi
=

|ESSj

Vi
|∑r

p=1 |ES
Sj

Vp
|
− α(t′ − t) (6.3)

where r is the number of experts who interact with projects or papers with the skill

Sj, t
′ is the current time, and last time he/she works on a task with skill Sj. α is an

attenuation factor.

For example, let us consider the network of 7 people and the history of skills by

each expert in a given SN G, as shown in table 6.2. The expertise score of Jack and

Joe for AI is the same value 0.4 if we do not consider the temporal nature. But their

score is different with temporal nature, 0.24 and 0.36 respectively if the current year

is 2019 and α = 0.02.

Definition 6.4. (Team Skill Mastery Level) Given network G, if the expertise
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level of an expert Vi ∈ V in skill Sj is ESSj

Vi
, collective expertise level of a team is the

sum of the expert level (ExpLevel) of the team of experts {〈Si1 , V
Si1
j1
〉, 〈Si2 , V

Si2
j2
〉, . . . , 〈Sir

, V
Sir
jr
〉}, can be defined as,

EL =

ir,jr∑
p=j1,q=i1

ESSq

Vp
(6.4)

6.3.4 Geographical Proximity

Geographical proximity plays a more subtle and indirect role in influencing collabora-

tion and knowledge exchange [39]. Experts who located closely with others have high

chances to collaborates due to many reasons such as cultural background, language,

and time zone [24]. Therefore, considering geographical information will be useful for

an effective team formation.

Definition 6.5. (Geographical Proximity) The Geographical Proximity (Geo-

Cost) of the team of experts {〈Si1 , V
Si1
j1
〉, 〈Si2 , V

Si2
j2
〉, . . . , 〈Sir , V

Sir
jr
〉}, can be defined

as the sum of geographical distance between Vjp and Vjq of every pairs in the team.

GC =

jr∑
p=j1

jr∑
q=j2

geodist(Vp, Vq) (6.5)

where geodist(Vp, Vq) is the geographical proximity between Vp and Vq in G.

6.3.5 Trust Score

The trust mechanisms concern trust of an individual has in another, and have been

proposed over the years. The trust score can be an explicit value that an individual

directly gives a score to another based on their experience, such as in Epinion.com

[40, 41]. The explicit value might be biased. In addition to this, if two individuals

never interact in the past, there should be a mechanism to infer the trust between

them. Moreover, if the individual A trust individual B, this does not imply that the
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individual B should trust A. In other words, the property of the trust is asymmetry

[42]. At the same time, trust does not hold the transitivity property. i.e., if a person

A trust person B and B trust person C, we can’t imply that A trust C.

To compute trust between any two individuals in a given network G, we decided

to consider three information: Explicit trust score, Profile similarity score, and Emo-

tional intelligence index.

Explicit Trust

The concept of explicit trust score is simple, and it is just the value given by an

individual to another. It can be an integer between −1 and 1. Base on the people’s

experience, they can rate the trust value. If a person A trust person B, trust can

be 1, if he/she does not trust, it can be −1, and if they have never interacted in the

past, it can be 0.

ExpTvi,vj = tr (6.6)

where tr ∈ {−1, 0, 1}.

Profile Similarity

Many social psychological researches [43, 44] addressed that people with a similar

taste like to communicate and work together. Further, Ziegler et al. [45] investigated

the relationship between trust and profile similarity, and introduce a framework to

quantify the trust using profile similarity when other trust evidence is absent.

In our research, because we primarily focus on expert networks, we consider the

expert’s skill descriptions to calculate the profile similarity. If anybody knew to what

degree every expert is a specialist in each field, they could potentially utilize this

learning to discover researchers with trust and recommend future collaborations [46].

The profile similarity between two experts can be calculated by taking into account
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the relationship between any pair of skills, where a pair is formed by elements from

the corresponding expertise expert list. For each such pair, a suitable value V ∈ [0, 1],

reflecting the strength of the relation between the two concepts, can preliminary be

associated with it. For example, V = 1, when the corresponding concepts are identical

and respectively, V = 0 if they are not related. Thus the expertise similarity SS i,j

between two expert profiles, ai and aj, can be defined by equation 6.7.

Definition 6.6. (Score of Skill Similarity) Given a network G〈V , E〉 and a set

of experts V = 〈v1, v2, . . . , vm〉 has a set set of skills S = 〈s1, s2, . . . , sn〉. The

skill set of any two experts vi and vj can be Svi = 〈vsp1i , v
sp2
i , . . . , v

spr
i 〉 and Svj =

〈vsq1j , v
sq2
j , . . . , v

sql
j , 〉 respectively. If v

spx
i and a

sqy
j are same skills V = 1, otherwise

V = 0.

ProSimvi,vj =
n∑

k=1

Vk
n

(6.7)

where n is the total number of expert’s skill list of vi and vj, n = |Svi ∪ Svj |.

Let’s consider an example that an expertA has a list of skills {ML,DB,CN,WM}

and another expert B has a list of skills {ML,DB, SE}. The profile similarity will

be 0.4, because the total number of skills is |SA ∪ SB| = 5 and number of common

skills is |SA ∩ SB| = 2.

Emotional Intelligence Index

Emotional intelligence (EI) of a person is playing a key role in team performance,

display the mental experiences, or deploying actual human behaviors. Management

researcher[47] has paid great attention to EI. Emotional intelligence fosters trust,

which can be built through EI [48]. In this study, we incorporate the EI index with

the trust score.

Emotional intelligence can be defined in several ways, including the ability to

understand emotions in oneself and others to make decisions, solve problems, and
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Figure 6.2: The representation for the method to calculate collective trust score of
the team A.

communicate with others. It requires a strenuous effort to quantify as a score. To

measure EI, many studies have used standard models or metrics such as Myers–Briggs

Type Indicator (MBTI) and Five-Factor Model (FFM) and discovered significant

associations between personality factors and the way of thinking [49]. These model

give a quantified score for emotional intelligence.

Computing Final Trust Score

This section aims to return a final trust score for two connected individuals on social

networks. As we discussed in the above sections, the final score is the combination

of explicit trust score, profile similarity and emotional index. The following equation

6.8 provides how fully the expert vi trust on vj.

TrVi,Vj
= α1ExpTVi,Vj

+ α2ProSimVi,Vj
+ α3EIVj

(6.8)

where EIvj will be the emotional index of the expert vj. α1, α2 and α3 are three

balancing factors such that α1 + α2 + α3 = 1. Note that, the trust expert vj has on

vi never be same as per the property of asymmetry.

Definition 6.7. (Collective Trust Score) Given network G, if the trust of an

expert Vi ∈ V has on Vj ∈ V is Trvi,vj , and Vj has on Vi is TrVj ,Vi
. Note that

Trvi,vj 6= TrVj ,Vi
. The collective trust score of a team is the sum of the trust score

(CT) of the team of experts {〈Si1 , V
Si1
j1
〉, 〈Si2 , V

Si2
j2
〉, . . . , 〈Sir , V

Sir
jr
〉}, can be defined
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as,

CT =

jr∑
p=j1

jr∑
q=j2

TrVp,Vq +

jr∑
p=j1

jr∑
q=j2

TrVq ,Vp (6.9)

As shown in Fig 6.2, collective trust of the team consider the trust between every

two pair of individuals separately. For example, the trust between Jack and Lily

consider Trjack,lily and Trlily,jack, where Trjack,lily 6= Trlily,jack.

6.4 Multi Objective Cultural Algorithm for TFP

The proposed TFP framework is a multi-objective optimization problem. Here, every

objective is equally important to the problem. Applying the trade-off method is favor

some objectives to other objectives. Therefore, to solve the multi-objective TFP, we

use the Multi-Objective Cultural Algorithm (MOCA) Framework. It is important

because solutions to TFP are regarded from a variety of perspectives and cannot be

expressed using only one objective.

The MOCA is the extended version of Cultural algorithms (CA), which is a class of

evolutionary algorithms and is inspired by social learning in the society [50]. It has two

phases of information: the Population Space, keeping a set of individual solutions, and

the Belief Space, keeping various knowledge (e.g., Normative, Situational, Historic,

etc.) collected from the population. The two phases communicate through Accept

and Influence functions. The Accept function is to permit a selected population to

the Belief space, which extracts the knowledge from this population. The Influence

function creates new individuals by applying the obtained knowledge.

6.4.1 Initial Population

In the setting of Cultural Algorithms, an initialization method generates individu-

als randomly. The individuals or chromosomes are solutions to the team formation

problem. The individual represents the teams of experts who qualifies to perform the
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list of projects, as shown in Figure. 6.3. In our framework, we define the level of

expertise of the skill required to complete a task or project. At the same time, we

already set the expertise level of experts, as explained in the previous section. When

we assign the experts to the required skill of a project, we randomly choose from the

qualified list of the experts who have expert level more than or equal to the required

level by the project.

Figure 6.3: The representation of an individual.

6.4.2 Objective Functions

In the spirit of the multi-objective optimization paradigm, we have defined four con-

flicting objectives to consider when forming a team: the communication cost, the

expertise, the geographical proximity, and the collective trust. It would automate a

unified way to assemble teams. The multi-objective team formation problem in social

networks can be defined in the following:

Minimize
V ′⊆V

{DCC(V ′), GC(V ′)} (6.10)

Maximize
V ′⊆V

{EL(V ′), CT (V ′)} (6.11)

Such that
∑
|V (ti)| = |V ′|

6.4.3 Generate Offspring

To generate new individuals or offspring for each generation, we utilize the benefits

of CA that uses the information of knowledge and the benefits of genetic operators.
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• The Belief Space: To influence an individual in the population with the knowl-

edge sources, we collect the best individual based on each best objective sepa-

rately. We then breakdown the chromosome into the sub-chromosomes which

represent the solution for a single project ti from the set of projects T . The

sub-chromosomes for the same projects are collected as the best team of ex-

perts. The normative knowledge information, what is believed to be good areas

to search in each dimension, is defined as the transpose matrix of the selected

sub-population composed by the selected teams as described in [10]. To update

the topological knowledge component, we mutate from the unexplored expert

list. We explain the topological knowledge extraction briefly in the following

section.

• Genetic Operators: The genetic operations in MOCA involve crossover and mu-

tations, which help to generate offspring. First, the genetic operator, crossover,

or mutation was selected. Following this, the individuals or chromosome is

chosen randomly. The chromosome then sends to the ChromosomeBreaker()

function to break down into a team of experts per project {t1, t2, . . . , tk}. One-

point crossover is then applied on each sub chromosomes, as shown in Figure.

6.4.

Similarly, the mutation operator begins with ChromosomeBreaker() function.

It will then mutate an expert from a randomly selected skill of each project.

This random expert will be chosen from an unexplored qualified expert list,

which is different from qualified experts to a set of experts in the current pop-

ulation. After every genetic operator, sub chromosomes are combined using

ChromosomeCombiner() function and then evaluate the objective values of the

new chromosome.
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Figure 6.4: The process of crossover, where red line indicates the breaking process
from ChromosomeBreaker() function and blue line indicates the random one point
crossover on sub chromosome.

6.4.4 Non-Dominated Sorting

For a multi-objective problem, MOCA uses the widely used fast non-dominated sort-

ing approach to compare solutions. We use the ranking procedure as described in

[51]. Objective values of each solution compared with every other solution in the

population to classify whether are they dominated or non-dominated. All individuals

in the first Pareto front are ranked to 1. To find the individuals in the next Pareto

front, the first front is removed temporarily, and the above procedure is repeated un-

til they reach the termination condition. In order to find the valid Pareto front, the

objective functions are considered collectively when knowledge information influence

individuals in the belief space.

6.5 Experiments

This section is to evaluate and analyze the solution produced by MOCA for TFP.

To have a unified framework for TFP, we considered highly preferred parameters

to discover teams. To the best of our knowledge, there is no real-world dataset

that matches entirely to the proposed unified team formation model. Therefore, we

examine our experiments on the synthetic dataset that generated similar to real-world

collaboration networks. However, we can still examine existing real-world dataset

such as DBLP and arXiv by turning off the objectives which are absent on any real
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dataset.

Figure 6.5: Average non-dominated sorting in different number of populations.(a),(b)
and (c) are first three instances from table 6.3.

Figure 6.6: The time taken in milli-seconds to find non-dominated sorting.

6.5.1 Dataset

The synthetic social network is generated from LFR benchmark [52] with 200 nodes

and 10136 edges. We consider the nodes as experts and edges are the past collabo-

rations. We assign random years from 2010 to 2019 to each collaboration because it

requires to evaluate the dynamic nature of communication cost. We collect 50 skill

sets as a string array. We then assign a random range of expert lists to each skill

with their mastery level score. The emotional index and geographical proximity were

generated randomly between 0 and 1. Direct trust value is assigned randomly, either

1 or −1. If any experts never collaborate in the past, we assign 0. To generate the

combined trust score of three components: emotional index, direct trust, and skill
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similarity, we use the Trade-off solutions. In which, since both direct trust and emo-

tional index are random values, we give less important in our model. Therefore, we

assign α1 = 0.25, α2 = 0.5 and α3 = 0.25.

To evaluate the communication cost, we first generate a graph file that has the

detailed list of the connection between each expert and the weight of the connection.

Two experts are connected in the network if they interacted with each other, at least

in two projects. The weights on edges are computed as:

Wvi,vj = 1−
|Tvi ∩ Tvj |
|Tvi ∪ Tvj |

(6.12)

where Tvi(resp.Tvj) is the set of collaboration by Vi (resp. Vj).

The shortest path distance between two experts is computed by an efficient index-

ing method called 2-hop cover [53]. This indexing technique returns the value of the

shortest path between any pair of experts in graphs with any large number of nodes

almost instantly.

Experiments No of Projects No of Skills

No 1 1 3

No 2 1 5

No 3 1 8

No 4 3 {2,3,5}

No 5 3 {4,5,6}

No 6 4 {2,3,4,5}

No 7 4 {3,4,5,6}

No 8 4 {5,4,8,6}

Table 6.3: Set of experiments instances where P represents the number of tasks and
S represents numbers of skills for each task

6.5.2 Experimental setup and results

The MOCA for TFP is implemented in Java (1.8), and the experiments were per-

formed on an Intel(R) Core(TM)CPU (64 bits), Windows 10 machine with 16 GB of

memory.
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The configuration details for MOCA are set to the following values, belief space

probability = 0.8, crossover probability = 0.16 and mutation probability = 0.04.

We tested our experiments by changing the number of population and generation.

To compare our model, we implement the exhaustive search algorithm (or exact

algorithm) and NSGA II. The exhaustive search algorithm iterates through the entire

search space to generate every possible combination of teams. The NSGAII finds the

Pareto-optimal team and NSGA II, which is a basic fast non-dominated searching

algorithm by Deb at.al. [54]. We can either set the skills and required expert-level

manually or generate them randomly.

We create a benchmark table, as shown in table 6.3, to do our experiments. We test

our framework with each instance of the table. First, we run each instance with the

various number of populations from 100 to 600 by varying the number of iterations

from 10 to 60. To find the ideal parameters, we manually set the required skills

and expertise level for the project: “MachineLearning”,“Python”,“SocialNetworks”,

“ArtificialIntelligence”,“Statistics”,“ProjectManagement”,“BigData”, “DataMining”

and {0.7, 0.7, 0.7, 0.5, 0.7, 0.5, 0.7, 0.5}. MOCA starts to converge toward the solution

earlier than NSGA II in terms of both the iteration and the number of population. As

shown in Figure. 6.5, our model finds most of the non-dominated solution with 500

populations and for 60 iterations. Due to time and memory constraints, and the NP-

Hard nature of the problem, we are unable to conduct the exhaustive algorithms for

complex datasets. However, the initial experiments gave ideal values for populations

and iteration because MOCA almost finds the approximate number of non-dominated

solutions. The average non-dominated sorting is calculated by running every instance

for 5 times. The running time for each instance shows the average milli-seconds in

Figure. 6.5 (d).

To check the effectiveness of the expertise level, we observe the solutions with

and without the expertise level of the project requirement. For the first case, our
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framework will always search within the qualified expert list who satisfies the required

skill as well as a level of expertise needed while in the second case, the search space

will be the list of experts who satisfy the required skill. The average non-dominated

sorting gave a totally different set of teams for both cases. At the same time, if the

expertise level of any required skill is not satisfy with the available expert’s list, our

model will not form any group until it meets the expertise level.

Figure 6.7: Pareto non-dominated fronts from multiple test instances when we con-
sider 3 objectives: Communication Cost, Expertise Level, and Collective Trust.

Any given solution V ′ can be evaluated through multiple criteria, such as shortest

path distance, diameter distance, minimum spanning tree, and combination of various

objectives. We then run our model by turning off some objectives and observe the

non-dominated solutions. We randomly plot a few instances from our benchmark to

visualize the Pareto front. The Figure. 6.7 and 6.8. We compare MOCA solutions

with those obtained by NSGAII and exhaustive algorithms over various criteria.

• DCC(V ′) ↓- Dynamic shortest path distance

• CC-Dia(V ′) ↓ - Diameter distance

• CT(V ′) ↑- Trust value of the team
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Figure 6.8: Pareto non-dominated fronts from multiple test instances when we con-
sider 2 objectives: Communication Cost and Expertise Level and the topology of
some of benchmark’s instances

• EL(V ′) ↑- Expertise level of the team

• GD(V ′) ↓- Geological proximity of the team

Table 6.4, show a comparison of the values of the solutions evaluated over various

criteria from each algorithm. Each column represents the above-listed criteria. The

bold value represents the best result from a certain experiment. Each experiment

conducted with 500 number of populations and 50 number of iteration. When the

number of skills and the number of projects increases, we couldn’t perform exhaustive

algorithms. At the same time, our model outperforms NSGA II.
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Algorithms DCC(V ′) C-Dia(V ′) GD(V ′) CT(V ′) EL(V ′)
No 1

MOCA 0.3602 0.1493 2.5932 0.8601 2.7613

NSGA II 0.3602 0.1493 2.5932 0.8601 2.7613

Exhaustive 0.3602 0.1493 2.5932 0.8601 2.7613

No 2

MOCA 1.4894 0.2479 7.0160 2.3441 4.5312

NSGA II 1.4894 0.2479 7.0160 2.3441 4.5312

Exhaustive 1.4894 0.2479 7.0160 2.3441 4.5312

No3

MOCA 1.2918 0.1116 21.6713 6.8821 7.2634

NSGA II 2.8179 0.2974 26.4526 8.6448 7.2634

Exhaustive 1.2918 0.1116 21.6713 6.8821 7.2634

No 4

MOCA 1.3388 0.3157 11.8213 3.9831 9.2343

NSGA II 1.4842 0.4592 11.2794 3.0438 8.5809

Exhaustive n/a n/a n/a n/a n/a

No 5

MOCA 2.4063 0.4614 24.5103 7.8237 13.1715

NSGA II 3.5522 0.5539 21.7146 7.7308 12.3911

Exhaustive n/a n/a n/a n/a n/a

No 6

MOCA 1.1418 0.2694 16.8631 5.6907 12.9526

NSGA II 2.0421 0.5787 14.8037 5.0422 11.5140

Exhaustive n/a n/a n/a n/a n/a

No 7

MOCA 2.4105 0.4884 27.1238 8.8307 16.2816

NSGA II 3.6805 0.7177 25.6325 7.6624 14.9901

Exhaustive n/a n/a n/a n/a n/a

No 8

MOCA 4.9812 0.6106 45.3054 14.9241 20.5816

NSGA II 7.5 0.9375 36.7541 13.2304 18.8613

Exhaustive n/a n/a n/a n/a n/a

Table 6.4: Comparison results of solutions obtained for each experiment instances of
table 6.3 over various criteria from MOCA, NSGAII and Exhaustive algorithm.

6.5.3 Run Time

In this section, we discuss the run time of the algorithms in various instances. In

experiment No1, the run time of the exhaustive search was very shorter than the

other two algorithms. It then increases suddenly, in other instances, from table 6.3.

Later we couldn’t perform the exact algorithm because of limited memory. As the

graph in Figure. 6.5(d), MOCA, and NSGAII run almost to the same time. However,

MOCA took a bit more time than NSGAII because MOCA needs to perform extra
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operations to extract knowledge and update it to the next generation. In terms of

the number of iterations, MOCA begins to converge earlier than NSGAII.

6.6 Conclusions

In this paper, we proposed a unified framework for TFP in social networks using a

multi-objective formulation that optimizes the communication cost, team skill mas-

tery level, the collective trust score, and geographical proximity. We introduced

two objective functions, the dynamic communication cost, and expertise level that

consider the temporal behavior of the social networks. Moreover, we discussed the

importance of emotional index in TFP. In addition to this, we evaluated the trust

score using various parameters such as EI, profile similarity, and direct trust score.

We introduced the new formula for the profile similarity based on similar skills. We

solved this problem using the MOCA framework for which normative and topological

knowledge are extracted to generate the next population. The experimental evalua-

tion of our method over different tasks, on a synthetic social network graph, showed a

diverse set of competitive solutions from four objectives. We generated a benchmark

table for the experiments. MOCA was compared with other algorithms, NSGA II,

and Exhaustive method. MOCA outperformed NSGA II and deliver solutions more

closed to Exhaustive search.
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[7] J. Juárez and C. A. Brizuela, “A multi-objective formulation of the team for-

mation problem in social networks: preliminary results,” in Proceedings of the

Genetic and Evolutionary Computation Conference. ACM, 2018, pp. 261–268.

[8] Y. Yang and H. Hu, “Team formation with time limit in social networks,” in Pro-

ceedings 2013 International Conference on Mechatronic Sciences, Electric Engi-

neering and Computer (MEC). IEEE, 2013, pp. 1590–1594.

[9] X. Wang, Z. Zhao, and W. Ng, “A comparative study of team formation in

social networks,” in International conference on database systems for advanced

applications. Springer, 2015, pp. 389–404.

[10] K. Selvarajaha, P. M. Zadeha, M. Kargarb, and Z. Kobtia, “Identifying a team

of experts in social networks using a cultural algorithm,” Procedia Computer

Science, vol. 151, pp. 477–484, 2019.

[11] C.-T. Li and M.-K. Shan, “Team formation for generalized tasks in expertise

social networks,” in Social Computing (SocialCom), 2010 IEEE Second Interna-

tional Conference on. IEEE, 2010, pp. 9–16.

[12] A. Majumder, S. Datta, and K. Naidu, “Capacitated team formation problem

on social networks,” in Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2012, pp. 1005–

1013.

[13] C.-T. Li, M.-K. Shan, and S.-D. Lin, “On team formation with expertise query

in collaborative social networks,” Knowledge and Information Systems, vol. 42,

no. 2, pp. 441–463, 2015.

[14] J. Basiri, F. Taghiyareh, and A. Ghorbani, “Collaborative team formation using

brain drain optimization: a practical and effective solution,” World Wide Web,

vol. 20, no. 6, pp. 1385–1407, 2017.



125

[15] W. Chen, J. Yang, and Y. Yu, “Analysis on communication cost and team per-

formance in team formation problem,” in International Conference on Collabo-

rative Computing: Networking, Applications and Worksharing. Springer, 2017,

pp. 435–443.

[16] M. Kargar and A. An, “Teamexp: Top-k team formation in social networks,” in

2011 IEEE 11th International Conference on Data Mining Workshops. IEEE,

2011, pp. 1231–1234.

[17] M. Kargar, M. Zihayat, and A. An, “Finding affordable and collaborative teams

from a network of experts,” in Proceedings of the 2013 SIAM International Con-

ference on Data Mining. SIAM, 2013, pp. 587–595.

[18] C.-T. Li, M.-Y. Huang, and R. Yan, “Team formation with influence maximiza-

tion for influential event organization on social networks,” World Wide Web,

vol. 21, no. 4, pp. 939–959, 2018.

[19] K. Selvarajah, A. Bhullar, Z. Kobti, and M. Kargar, “Wscan-tfp: weighted

scan clustering algorithm for team formation problem in social network,” in The

Thirty-First International Flairs Conference, 2018.

[20] J. H. Gutiérrez, C. A. Astudillo, P. Ballesteros-Pérez, D. Mora-Melià, and
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Chapter 7

Link Prediction by Analyzing

Temporal Behavior of Vertices

In the previous chapters, we discussed the problem of forming teams of experts in

social networks. We aim to discover teams by optimizing cost functions. We then,

in this chapter and chapter 8, focus on predicting future collaboration with the ex-

isting teams, which is typically a real-time application of Link Prediction. The link

prediction problem focuses on whether a link occurs between any two members of the

network or not. So, it is technically a classification problem.

This chapter introduces a method for predicting links in the future by analyzing

the temporal behavior of vertices. We tried the evolutionary method to predict the

links. The results confirm that it is not a good idea to use the evolutionary method

in classification problems. By observing recent researches in classification problems,

deep learning methods shows the most accurate solutions. Therefore, we apply a deep

learning framework, Multi Layer Perceptron (MLP), to train and test our model.
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7.1 Introduction

Social Networks (SN) can be used to model a comprehensive range of real-life phenom-

ena and examine the world around us. It ranges from online social interaction, includ-

ing Facebook, Twitter, and LinkedIn to human interactions such as co-authorship,

healthcare, and terrorist networks. Social networks analysis is the study of such net-

works to discover common structural patterns and explains their emergence through

computational models of network formation. The complexity and dynamics are es-

sential properties of real-world social networks. Since these networks evolve quickly

over time through the appearance or disappearance of new links and nodes, the con-

nection becomes stronger and weaker, and underlying network structure changes with

time. Therefore it has become high challenges for researchers to examine various re-

search issues in social network analysis such as classification of a node, detecting the

communities, formation of teams, and predicting links between nodes.

Understanding the mechanism of how the networks change over time is a crucial

problem that is still not well understood [1]. Significant efforts have been made

to explain the evolution of networks during the past decades [2]. However, such

researches are yet to achieve the desired results, leaving the door open for further

advances in the field. Throughout the last decades, analyzing temporal networks

has received much attention among researchers as it has enormous applications in

different disciplines such as co-authorship [3], the recommendation of friends [4] and

website links. Recently, dynamic link predictions have been approached by various

mechanisms and achieved promising results. However, the features of networks vary

from each other, and the existing studies are not efficient to represent the importance

of nodes and links. The objective of this paper is to address these issues and examines

the dynamic nature of social networks.

Link prediction problem needs to be solved by determining the potentialities of
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the appearance or disappearance of links between all node pairs of the given network

[5]. However, for example, in a collaborative network, if two experts (i.e., vertices

) collaborate once on any project, their link remains permanent, although any one

of them stops interacting with the others. Therefore, their link become weak in the

future, while experts who have frequent interactions their link become strong. In this

regard, we observe the behavior of individuals in the collaborative network when they

need to decide which new collaborations might prove fruitful in addition to existing

connections. Before anyone connects with the others in the network, they usually

examine several factors, including whether the people are active throughout the past

or not, and are they working on similar projects that they have skills. Therefore, our

study takes these factors into account and propose a new model, LATB, to predict

the links which occur with others in the future. In this paper, we propose a model

for link prediction problem on dynamic social networks and make the following major

contributions.

1. Active individuals in social networks are popular among both existing mem-

bers and new members who like to join the network. They believe that active

individuals, for instance, in the co-authorship network, always update their re-

search with current trends as well as being open to new ideas. So, to evaluate

the activeness of any member, we consider two factors on the temporal network.

(a) The score for constructing new connections (b) The score for the increased

number of interactions with existing connections (How much the existing link

becomes strong). We introduce a new score function to incorporate the impact

of the timestamps and the gap between the current time and the time of the

interaction occurred. Besides this, we introduce a probability function based

on the activeness score of a pair of nodes to decide the likelihood of occurring

a new link.

2. The smaller distance between any two individuals is higher the chances of future
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interaction. We incorporate the weighted shortest distance in LATB. In addition

to this, we include another objective function, the weighted common neighbor

index, which incorporates the time to evaluate the changes of strength of the

neighbors’ relationship.

3. In LATB, we used Multi-Layer Perceptron (MLP) as a classifier to predict the

link formation in the future and defined our model as a binary classification

problem.

The remaining of the paper is organized as follows. Section 2 describes related

works. Section 3 specifies the problem definitions. Section 4 presents the experimental

setup and the corresponding results. Finally, Section 6 concludes the research idea of

this paper with directions for future work.

7.2 Related Works

Link prediction problem on the static network examines a single snapshot of a network

structure at time t as an input, and then predicts possible unobserved links at time

t′(t ≤ t′) [1]. On the other hand, link prediction in dynamic networks investigates the

evolution of networks over time as a sequence of snapshots and then predicts new links

in the future. This section presents an overview of the link prediction problems on

social networks. Several methods have been proposed to deal with the link prediction

problem on the temporal network systems during the past decade.

The researchers designed a lot of topology-based similarity metrics for link pre-

diction such as Common Neighbors (CN) [6], Adamic-Adar Coefficient (AA) [7], and

Katz (KZ)[8]. Since the weights of links are rarely taken into account, many re-

searchers modified those metrics in order to adopt the dynamic features of the social

networks. The authors [9] examine the link prediction based on connection weight

score structural properties of a given network. Zhu et al. [10] proposed a weighted
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mutual information model which is to estimate the effect of network structures on

the connection likelihood by considering the benefits of both structural properties

and link weights.

Potgieter et al. [11] showed that temporal metrics are valuable features in terms

of accuracy. Tylenda et al. [12] proposed a graph-based link prediction algorithm and

integrated it with temporal information and extended the local probabilistic model

to involve time awareness. Yao et al. [13] used time-decay to manage the weight

of the links and modified the common neighbor index to includes nodes in 2-hop.

The authors [14] presented a time frame based unsupervised link prediction method

for directed and weighted networks and derived a score for potential links in a time-

weighted manner.

Tong W et al. [15] examined the concepts of the temporal trend of nodes by consid-

ering the changes of the degree over time using the structural perturbation method.

Munasinge et al. [16] studied the impact of a relationship between timestamps of

interactions and strength of the link for the future.

Xiaoyi Li et al. [17] proposed a deep learning method, conditional temporal re-

stricted Boltzmann machine, which adopted a combination of feature engineering and

CNN to predicts links. Recently, Goyal et al. [18] proposed DynGEM, which uses

the recent advances in deep learning methods, autoencoders for graph embeddings

to handle growing, dynamic graphs and for link prediction. Wang et al. [19] exam-

ined relational deep learning to jointly model high-dimensional node attributes and

link structures with layers of latent variables and proposed generalized variational

inference algorithm for learning the variables and predicting the links.
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7.3 A Model for Dynamic Link Prediction

7.3.1 Problem Definition

A dynamic network is evolving over time and can be considered as a sequence of

network snapshots within a time interval. The size of the network can occasion-

ally shrink or expand as the network evolves. In this work, we focus on undirected

weighted graphs.

Given a series of snapshots {G1,G2, . . . ,Gt−1} of an evolving graph GT = 〈V , ET 〉,

where the edge e = (u, v) ∈ Et′ represents a link between u ∈ Vt′ and v ∈ Vt′ at a

particular time t′. The dynamic link prediction approaches attempt to predict the

likelihoods of links in the next time step Gt. The list of graphs {G1,G2, . . . ,Gt−1}

corresponding to a list of symmetric adjacency matrices {A1, A2, . . . , At−1}. The

adjacency matrix AT of GT is a N ×N matrix where each element AT (i, j) takes 1 if

the nodes vi ∈ V and vj ∈ V , are connected at least once within time period T and

takes 0 if they are not. Given a sequence of (t− 1) snapshots {A1, A2, . . . , At−1}, the

goal is to predict the adjacency matrix At at future time t.

7.3.2 Node Activeness

The idea of node activeness is highly related to the temporal behaviors of nodes. We

can determine the active nodes through the analysis of the time-varying historical

information of the nodes. To decide the activeness of the nodes, we can examine

how they interact with others (nodes) throughout the timeframe. With any temporal

network involving humans, we believe that the following factors are highly relevant

to decide the activeness of nodes.
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New Connections:

A node can remain inactive or active. It can be decided based on how often a node

made the new interactions throughout the time frame. Let us consider any two

members A and B of a given dynamic network G with the same number of new

connections in the past; A might be connected at an early stage and not creating any

new connection later (can be named as sleeping node), while node B formed most

of his or her connection at the later stage (active node). The node B would attract

more new people and have a high probability of generating new connections in the

near future. We believe that considering this behavior of the node is significant in

predicting the new links.

Definition 7.1. (Score for New Connections) Given a network GT 〈V , ET 〉, a

set of nodes A = 〈a1, a2, . . . , an〉 at time tm. Let’s say the time windows to estimate

the new connections are |t1m − t2m|,|t2m − t3m| . . . |tn−1
m − tnm|, where t1m, t

2
m . . . t

n
m are

consecutive time stamps. The score of building new connection at time tnm of a member

or node of the network ak can be defined as:

SN (ak) =

tnm∑
i=1

NCtiak
|tnm − ti|+ 1

(7.1)

where NCtiak is the number of new connection made by the node ak at time ti. The

term |tnm − ti| is the timestamp between current time and the selected time that the

number of new connections has been made by the node ak. If the difference between

tnm and ti is high, the value of NCtiak over |tnm− ti|+ 1 become smaller although a node

made more number of new connections at early time (NCtiak is large). However, this

is opposite for the nodes which made new connection recently. The timestamp has an

addition of one to avoid the denominator become infinite when the two timestamps

are equal.
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The Frequency of Interaction:

In addition to the new interactions, a node can continuously associate with the exist-

ing connected nodes. It is another way to decide the activeness of the node. Let us

consider two nodes A and B with the same number of existing connections in the past;

A might have several interactions at an early stage and not interacting with them

later, while B is having frequent interactions with existing connections throughout

the time frame. The later one (B) would attract more new nodes and have a high

probability of generating new connections in the near future.

Definition 7.2. (Score for Frequent Interactions) The score of frequent collab-

orations with existing connection at time tnm of a node ak can be defined as:

SE(ak) =

tnm∑
i=1

ECtiak
|tnm − ti|+ 1

(7.2)

where ECtiak is the number of frequent collaboration with existing connection by a

node ak at time ti.

For instance, let’s consider a network of authors (nodes) at certain year (2012)

and the number new connection which both A and C made through last seven years

(till 2019) can be shown as Figure. 7.1.

Figure 7.1: Interaction with new and existing nodes throughout the time
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SN (A) =
2019∑

i=2012

NCiA
|2019− i|+ 1

=
3

|2019− 2012|+ 1
+

4

|2019− 2013|+ 1
+

2

|2019− 2015|+ 1

= 1.382

Similarly, the value of SN (C) can be evaluated to 2.89 as the information given

in Figure. 7.1. Although both A and C made the equal number of new connections

(= 9) in the past seven years, the score has a huge difference. The reason is C

built new connections recently than A. This shows that nodes, which generate new

connections recently have more attraction than others. Likewise, we can evaluate the

score value of active nodes in terms of frequent interaction with existing connections.

Since both building new interactions and frequent interactions with existing con-

nections have an influence on deciding the active node, the combination of these scores

is a proper way to determine the score of the active node as given in equation 7.3.

SA(ak) = λ

tnm∑
i=1

NCtiak
|tnm − ti|+ 1

+ (1− λ)

tnm∑
i=1

ECtiak
|tnm − ti|+ 1

(7.3)

where λ is a tradeoff value between the score for building new connections and expand-

ing existing connections. Algorithm 3 describe the step by step process of calculating

node activeness score for all nodes and store it in a lookup table.

At this point, every node is assigned by a score based on their activity on dynamic

networks. However, to maintain the range of values between 0 and 1, we normalize

each score. Inspired by configuration model, the probability Pai,aj of a link exists

between any two nodes ai and aj would be proportional to SA(ai).SA(aj). Since

the probability should be between 0 and 1, we drive the equation for this value by

multiplying the reciprocal of the total activeness of the nodes in the networks as given

in equation 7.5.

Pai,aj =
SA(ai)SA(aj)∑n

k=1 SA(ak)
(7.4)



140

Algorithm 3 Node Activeness

Input: Current Time stamp tc, Snapshots of a given network GT , List of vertices
LV , Trade off value λ
Output: Activeness Score lookup table SA

1: SA ← {}
2: T [ ]← {t1, t2, . . . tk} time steps
3: for all n ∈ LV do
4: Ex← 0 Existing Connection Score
5: Nw ← 0 New Connection Score
6: nb← Γ [Gt0(n)] collaborated nodes at time t = 0
7: for all ti in T do
8: nbi[ ]← Γ [Gti(n)]
9: for all m ∈ nb do

10: if m ∈ nb0 then

11: Ex← Ex+
wGti

(m,n)

tc−ti+1

12: else

13: Nw ← Nw +
wGti

(m,n)

tc−ti+1

14: end if
15: end for
16: nb← nb ∪ nbi
17: end for
18: P ← λ.Ex+ (1− λ)Nw
19: SA ← {n: P}
20: end for
21: return SA

where Pai,aj is the probability of existing link between node ai and aj, SA(ai) and

SA(aj) are the popularity scores of nodes ai and aj respectively and n is the total

number of nodes in the networks.

We name our proposed method LATB (Link prediction by Analyzing Temporal

Behaviour of vertices), because it highlights the behaviors of vertices.

7.3.3 Similarity Metrics

In the past, the majority of researches [1, 20] have examined the accuracy of several

heuristics for link prediction such as Adamic Adar, Preferential Attachment, and

Jaccard Coefficient. In this research, we consider two modified forms of heuristics:
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weighted shortest path distance and weighted common neighbors.

Weighted Shortest Path Distance:

In the undirected social network G, if some nodes have past interaction, their as-

sociated nodes in G are connected by an edge. If many levels of past interactions

between two nodes are taken into account, then the input graph G is weighted. In

this case, the smaller the edge weight between two nodes, the two nodes had more

interactions in the past and have higher chances of interactions in the future. The

distance between two nodes ai and aj, specified as dist(ai, aj), is equal to the sum of

the weights on the shortest path between them in the input graph G. If ai and aj are

not connected in graph G,i.e., there is no path between ai and aj in G, the distance

between them is set to ∞.

SDai,aj = wdist(ai, aj) (7.5)

Weighted Common Neighbors:

The Common Neighbors (CN) is the most widely used index in link prediction and

evidence to the network transitivity property. It counts the number of common

neighbors between node pair ai and aj. Newman et al. [6] has estimated this quantity

in the context of collaboration networks. The probability that ai and aj collaborate

in the future can be written as 7.6.

CN ai,aj = |Γ(ai) ∪ Γ(aj)| (7.6)

where Γ(ai) and Γ(aj) consists of number of neighbors of the node ai and aj in G

respectively.

As mentioned in the above definition, the common neighbors only consider the

binary relations between nodes and ignore the time-varying nature and number of link

occurrences. We adopt the time-varied weights into the common neighbors, which
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can give better predictions [21].

CN tw
ai,aj

=
∑

|Γ(ai)∪Γ(aj)|

W t(ai, ak) +W t(ak, aj) (7.7)

where W t(ai, ak) = W(ai, ak) − β(t′ − t), W(ai, ak) is original weight at time t, β is

an attenuation factor and t′ is the time considered for prediction.

7.3.4 Multilayer Perceptron (MLP) Framework

We treat the link prediction problem as a binary classification problem. We used

MLP as a classifier. In this regards, we generate a dataset for all existing links in a

last time step of a given dynamic network GT , for the positive link class, where for

any two vertices i and j, the link between i and j, ij ∈ Et. We generate negative link

class, where any two vertices i and j, ij /∈ Et by using downsampling technique to

avoid imbalance problem. We assign the binary cross-entropy as loss function, which

can be written as:

BCE = −y.log(p)− (1− y)log(1− p) (7.8)

where y is binary indicator (0 or 1), p is predicted probability.

Finally, we build and train a neural network for link prediction. MLP is one of

the most common and a variant of the original Perceptron model [22]. Here, we

only briefly discuss the components of an MLP since this paper is not about MLP

innovations. A typical MLP system can be built with layers of neurons, as shown

in Figure. 7.2. Each neuron in a layer calculates the sum of its inputs (x) that are

carried through an activation function (f). The output (O) from the network can be

written as:

Ojk = Fk(

Nk−1∑
i=1

wijkxi(k−1) + βjk) (7.9)

where Ojk is the neuron jth output at kth layer and βjk is bias weight for neuron j in
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Figure 7.2: MLP neural network

layer k, respectively.

7.4 Experimental Results

We conduct extensive experiments to test our model with five real-world dynamic

networks and use AUC (Area Under Curve) as evaluation metrics.

7.4.1 Dataset

We use six real world dynamic networks: Enron corpus [23] and Radoslaw [24] are

email communication networks. Each node specifies an employee and link represents

email conversation among employees. Enron has the details from 6 January 1998

until 4 February 2004 while Randoslaw is from January 2nd 2010 to September 30th

2010. Contact [25] is data from wireless devices carried by people. Every node

is people, and a link established when they contacted. The contact list represents

the active contacts during 20-second intervals of the data collection. College Mes-

sages [26] have private messages sent on an online social network at the University

among college people. EU-core [27] is an email data from a large European research

institution. Link is the communication between members from 4 different depart-

ments. Mathoverflow [27] has the interactions on the stack exchange web site Math

Overflow.

In the beginning, we sort the dataset in ascending order of time, and then we

process a sequence of snapshots for each dataset at a fixed interval. We split every
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Dataset |V | |ET | Time span in days

Enron 151 50571 165

Radoslaw 167 82900 272

Contact 274 28200 4

CollegeMessages 1899 59835 193

EU-core 986 332334 803

Mathoverflow 24818 506550 2350

Table 7.1: The statistical information of each real-world dynamic networks.

dynamic networks into five time frames G1, G2, G3, G4, G5. We evaluate each scoring

value at the last snapshot.

7.4.2 Experimental Setup

We implement our model in Python3, processed the dataset on IBM cluster, the

specification of POWER8 52 processor 256 GB of RAM. We trained and tested our

model in an Nvidia GTX 1050Ti, 4 GB GPU with 768 CUDA cores.

In the weighted common neighbor index, we set the attenuation factor β to 0.001.

To evaluate the active score of the nodes, we assign tradeoff factor λ to 0.5, because we

believe that both the score for new connections and the score for frequent interaction

with existing connections are equally important to decide the activeness of a person.

In the MLP, the first layer has four neurons with the ReLu activation function.

We use two hidden layers of 32 neurons. The output layer contains a single neuron

with the Sigmoid activation function. We train the neural network for 100 epochs.

We use 80% training set, 10% validation set, and 10% testing set. We repeat the

above process for ten times and find the average AUC.
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7.4.3 Baseline Methods

We use various methods as the baselines, including classical methods such as Com-

mon Neighbors (CN), Jaccard coefficient (JC), Adamic Adar (AA) and Preferential

attachment (PA), and network embedding methods such as node2vec, LINE, Deep-

Walk, and SDNE. The brief introduction of these methods is listed as follow:

• Common Neighbors (CN) [6]: It is one of the most common measurements used

in link prediction problem. Having a large number of the common neighbors

easily create a link.

• Jaccard Coefficient (JC): It is a normalized form of the CN index.

• Adamic-Adar Coefficient (AA) [7]: It evaluates the impotency of a node when

having less number of neighbors when predicting links.

• Preferential Attachment (PA) [28]: It generates the belief that nodes with large

number of neighbors are more likely to form more in the future.

• node2vec [29]: It is a node embedding method, which learns nodes representa-

tion of network by preserving higher-order proximity between nodes. It used a

higher probability of node occurrence in a fixed-length random walk.

• LINE [30]: It used an objective function to preserves the first-order and second-

order neighborhoods to learn node representations, most similar to node2vec.

It is useful to apply for large-scale network embedding.

• DeepWalk [31]: It used random walk model to learn vertex representations.

This embedding can be used to predict link existence.

• SDNE [32]: It used both the first-order and second-order proximities together

in an autoencoder based deep model to generate the vertex representations.
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Regarding the implementations, we evaluated the Link prediction problem from the

original code by the authors for node2vec1, LINE2, DeepWalk3 and SDNE4.

Dataset CN JC AA PA node2vec LINE DeepWalk SDNE LATB

Enron 0.8106 0.8751 0.8970 0.8442 0.7596 0.5042 0.7190 0.9437 0.9302

Radoslaw 0.8417 0.8307 0.9028 0.8753 0.7417 0.6153 0.7342 0.8709 0.9457

Contact 0.8457 0.9141 0.9142 0.9027 0.8741 0.7360 0.8451 0.9376 0.9906

CollegeMessages 0.5742 0.5774 0.5843 0.5901 0.7049 0.4905 0.7506 0.7806 0.9576

EU-core 0.9227 0.9302 0.9341 0.7553 0.8602 0.6587 0.8201 0.9574 0.9626

Mathoverflow 0.7774 0.7692 0.7430 0.7783 0.7478 0.6587 0.7456 0.9574 0.9968

Table 7.2: Experimental Results based on AUC by comparing to Classic and Embed-
ding methods.

7.4.4 Results

Our model achieves a significant improvement compared to other methods in various

dynamic networks except the dataset Enron, which is better in SDNE. The standard

network embedding methods, node2vec and LINE, perform the worst than other

methods in terms of AUC. LATB performs significantly better in Contact and Eu-

Core networks above 96% while the classic and embedding methods achieve below

92%. Moreover, LATB has an AUC higher than 93% among all tested dynamic

networks. We can conclude that LATB can perform well in both very sparse (Enron)

and dense (Radoslaw) networks. Tables 7.2 presents the results comparison of other

methods with LATB.

1https://github.com/aditya-grover/node2vec
2https://github.com/tangjianpku/LINE
3https://github.com/phanein/deepwalk
4https://github.com/xiaohan2012/sdne-keras
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Figure 7.3: Experiments on ROC curve. (a) ROC curve on College Message. (b) ROC
curve on Enron-employee. (c) ROC curve on Radoslaw.(d) ROC curve on Contact.
(e) ROC curve on Eu-Core.

7.5 Conclusions

In this paper, we propose a model for link prediction in dynamic networks by analyzing

temporal behaviors of vertices, named LATB. To model the evolving pattern of each

vertex, we propose a new scoring method, which can engage the historical changes of

vertices. To further address LATB, temporal changes of vertices are analyzed in two
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ways to measure the activeness of a node: how often a vertex interacts with existing

connected nodes - to measure the strength of the relationship with its neighbors,

and how fast and often collaborate with new nodes. Because both measures have a

strong influence on deciding the node activeness, we introduce a probability function

based on the activeness of nodes to evaluate the chances of being connected in the

future. We also use two other weighted indexes: shortest distance and common

neighbors, to incorporate the time-varying nature and number of link occurrences in

neighbor nodes. In LATB, MLP is used as a classifier, which results in the status of

link existence. Empirically, we compare LATB with classical methods and traditional

embedding methods in five different real-world dynamic networks. Overall our model,

LATB, achieves significant improvements and reaches above 93% of AUC.
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Chapter 8

Dynamic Network Link Prediction

by Learning Effective Subgraphs

using CNN-LSTM

This chapter is also to predict future collaborations. In previous work, we propose a

probability score function based on the activeness of team members and use a given

entire network for the prediction process. It leads to an expensive process with large

size networks. Motivated by our work in “Link Prediction by Analyzing Common

Neighbors Based Subgraphs using Convolutional Neural Network,” we focus on the

temporal behavior of common neighbor based subgraphs and extract the heuristic

features for the link prediction process. The subgraph based method helps us in

handling complex networks.

8.1 Introduction

Dynamic network analysis has become an important research problem in recent years

because it resembles the evolving nature of real-world networks. It has taken a great

deal of attention from various fields, including social science [1], economics [2], and
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Figure 8.1: The representation of a dynamic network G with the series of snapshots
from time 1 to t as a input and a snapshot at time t+ 1 as a output

biology [3]. Dynamic networks evolve over time, and nodes and links may appear

or disappear as time goes by. One of the primary areas of research in dynamic

networks is temporal link prediction, which attempts to predict the links in the future

using the transformation of a sequence of networks. Link Prediction (LP) has several

applications including friend recommendation [4], classify the behavior and motion of

people [5], and disease gene prediction [6].

Numerous studies have been performed in a static network setting, which considers

a single snapshot of a network at time t and is used to determine new links in time t′(>

t). Simple heuristic methods, often based on topological properties of the network,

such as common neighbors [7], Adamic-Adar [4] and Katz [8] or a combination of

such heuristics are well-defined for static networks. Link prediction in a dynamic

network is a challenging and complex process. It has a completely new dimension

of analysis because the history of network evolution provides more information to

detect potential or future links. The dynamic network settings can be generally

formulated as the sequence of network snapshots, as shown in Figure 8.1, where

the behavior of each snapshot can be described as a static network at a time. To

deal with dynamic network link prediction, various methods have been proposed in

the literature [9, 10, 11, 12]. These methods include network embedding techniques

such as DeepWalk [13], LINE [14] and Node2Vec [12] and deep learning techniques

[9, 10, 11]. The approach in [15] and [16] have explored the usage of heuristic methods

in the dynamic network link prediction.
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Most of the existing approaches in both static and dynamic settings focused only

on the target nodes, source and destination of the link and entire network for the

prediction. However, the target nodes and their neighbor nodes play a high impact

on link prediction, and analyzing the portion of the whole network reduce time com-

plexity. Recent ground-breaking methods in static networks, WLMN [17] and SEAL

[18] proposed neural network approaches to automate the selection of best heuristic

for a given network, and introduced subgraph extraction methods, based on neighbor

nodes, of the target links for the prediction. However, PLACN [19] claimed that sub-

graphs by common neighbor nodes of target link have additional information than

the subgraph from just neighbor nodes, and achieved outstanding results in various

types of static networks. Motivated from this, we extract subgraph from common

neighbors of target links and extend the benefits of heuristics to the dynamic network

settings. We believe that considering subgraph based on common neighbors of a tar-

get link bring a huge advantage to analyze the evolving pattern of the target link in

the dynamic network.

To the best of our knowledge, we are the first people using the common neighbor

based subgraph for the dynamic network link prediction problems. Our proposed

model, DLP-LES, begins with extraction of common neighbor based subgraph from

the last snapshot of a given dynamic network, and analyzes the transitional patterns of

subgraph using heuristic features throughout each time step. Due to complexity, most

of the research in dynamic settings ignored the link weight, and only considered the

existence and absence of the link. In DLP-LES, we include link weight as an additional

information with heuristic features. Besides this, we construct a lookup table with

every information of links of a given dynamic network. The primary purpose of the

lookup table is to reduce the time and space complexity when we frequently use the

information of the same links. We elaborate this further in the section for constructing

the lookup table. Thereafter, this study introduces an efficient encoding method to
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label the subgraph’s nodes. It is another significant task in our model to maintain

the consistency of the subgraph when we train the neural networks. We believe that

examining the evolving heuristic features of the subgraph has a significant impact on

introducing a new link between any two nodes of a dynamic network.

We summarize our main contributions as follows:

• We introduce a method to generate a lookup table to keep the record of links’

information of a given dynamic network, and use a hashing method to fetch

essential information when required.

• We introduce a novel encoding method for subgraph labeling.

• We propose an algorithm to construct feature matrices for the subgraph effi-

ciently.

• We propose a new framework, DLP-LES, for the dynamic network link pre-

diction using Convolutional Neural Networks (CNN) to extract higher-level

features of subgraph efficiently and Long Short-Term Memory (LSTM) neu-

ral networks to learn long-range dependencies of sequential data and capture

the evolving patterns of the subgraph in the dynamic networks.

8.2 Related Works

Link Prediction in Dynamic Networks (DN) is one of the hot topics in social network

analysis. Modeling this problem is a complex and highly challenging process. Di-

verse methods have been proposed in the literature to improve the accuracy of the

predictions.

Heuristic methods such as common neighbors [7], Adamic-Adar [4] and Katz [8]

consider the topological structure to predict the links in the future, which are very

famous for static networks. Yao et al. [20] proposed a modified common neighbors
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formula and use of time-decay to handle DN. Some others [16, 15] extended the

application of these heuristics to DN settings. Chiu et al. [16] proposed a weak

estimator to decide the link existence based on a random probability function, while

Kaya et al. [15] explored aggregate heuristic metrics by weighting snapshots.

Besides heuristic based prediction methods, various machine learning techniques

have been applied for LP in DN. Gao et al. [21] performed a method by combining

the latent matrix factorization method and graph regularization technique to learn

the structural information of time evolving patterns of links. Yu et al. [22] proposed

a model (LINE) with spatial and temporal consistency to tackle DN prediction. They

represented the network structure as a function of time. Ma et al. [23] proposed a

non-negative matrix factorization (NMF) framework which incorporated the dynamic

information of historical snapshots by using the graph regularization technique. De

et al. [24] proposed an extended node2vec method to apply on a dynamic setting.

In addition to the above two methods, deep learning approaches have become

cutting-edge techniques in DN link predictions. Li et al. [9] proposed a framework

using boltzmann machine which predicts links based on individual transition variance

in addition to influence introduced by local neighbors. The authors of [25] proposed

a network embedding method to handle DN settings. They incorporated both the

internal and dynamic transition structures in their design. Lei et al. [26] proposed a

model using GCN, LSTM, and GAN to solve the challenges in temporal LP. They used

graph convolutional network (GCN) to study the local topological structure, LSTM

to analyze the evolving features of networks, and generative adversarial networks

(GAN) to handle weighted DN.

Some other methods are also used in temporal network LP. CA Bliss et al. [27] em-

ployed evolutionary algorithms to predict the links on DN by applying the Covariance

Matrix Adaptation Evolution Strategy.
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8.3 Problem Definition

A dynamic network can be defined as a sequence of network snapshots considered

within a specific time interval where as a static network does not change the topolog-

ical structure over time. In this paper, we consider an undirected, weighted dynamic

network.

Given a series of snapshots {G1,G2, . . . ,Gt} of an evolving graph G, where Gp =

〈V , Ep〉 represents a snapshot of the given dynamic network at time p. In this study,

V specifies the same vertices shared by all snapshots. Ep specifies the links or edges of

the snapshot at time p. A snapshot Gp can be treated as a static network, and can be

written as an adjacency matrix Ap = [at(i, j)]|V |×|V | to represents the corresponding

static topological structure, where ap(i, j) > 0 if the vertices vi ∈ V and vj ∈ V are

connected, otherwise, ap(i, j) = 0. The sequence of graphs {G1,G2, . . . ,Gt} correspond

to a list of symmetric adjacency matrices {A1, A2, . . . , At}.

Definition 8.1. (Link Prediction in Dynamic Networks) Given that a se-

quence of snapshots with length k have the corresponding adjacency matrices {At−k,

At−k+1, . . . , At}, the primary objective of link prediction in dynamic networks is to

model a framework to learn the following function to predict the topological changes,

mainly in links at time t+ 1:

A(t+1) = f(At−k, At−k+1, , . . . , At) (8.1)

where f(At−k, At−k+1, , . . . , At) represents the model required to predict the adjacency

matrix A(t+1) at time t.
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8.4 Modeling Dynamic Networks Link Prediction

In this section, we discuss the backgrounds of required theories and techniques to

model a framework for predicting links in the future.

8.4.1 Heuristic Methods

Several heuristics have been proposed extensively to solve link prediction problems

on static networks, such as Common neighbors, Adamic-Adar and Katz. We can

categorize them as first, second, and high order heuristics based on their complexity

to perform. The first and second order heuristics are efficiently computable, and

measure diverse aspects of the network topology such as closeness and similarity

between any two nodes in the social networks. The following section lists down five

such heuristics used in this paper, where Γ(v) and Γ(u) specify the set of neighbors

for nodes v and u respectively.

Common Neighbors (CN)

The idea of CN is that if the nodes share links with other nodes, the chances of

forming a new link is high. It is the most simplest method and counts the number of

neighbors that any two vertices v and u directly interact with.

CN = |Γ(v) ∩ Γ(u)| (8.2)

Jaccard Coefficient (JC)

The CN measures the relative similarities between any two nodes because it does

not consider the proportion of links shared; it is not normalized. JC produces the
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normalized form of CN based on the total number of neighbors both v and u have.

J C =
|Γ(v) ∩ Γ(u)|
|Γ(v) ∪ Γ(u)|

(8.3)

Adamic-Adar (AA)

The AA is the modified version of JC. The primary purpose of AA is to give a higher

priority to the common neighbors with very few neighbors or lower degree.

AA =
∑

k∈|Γ(v)∪Γ(u)|

1

log|Γ(k)|
(8.4)

Preferential Attachment (PA)

The concept of PA is if a node has a higher degree, the chances of making new

connections is high.

PA = |Γ(v) ∗ Γ(u)| (8.5)

Resource Allocation (RA)

RA metric is much more similar to AA. The difference is that RA gives higher priority

to low-degree common neighbors than AA.

RA =
∑

k∈|Γ(i)∪Γ(j)|

1

|Γ(k)|
(8.6)

8.4.2 CNN-LSTM

Here, we briefly introduce the components of a CNN-LSTM, and it’s significance

in our model. DLP-LES comprises Convolutional Neural Network (CNN) and Long

Short-Term Memory (LSTM) neural networks [28]. CNN has been proved to be

successful in image-related tasks including image classification, object detection, and
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computer vision. Here, we take the advantage of CNN model in extracting heuristic

features of the subgraph’s adjacency matrices, which can be treated as an image in

DLP-LES. In other words, we can transform the input data into an image to use

in CNN. The LSTM model has been proved to be extremely effective in capturing

long-term temporal correlations with arbitrary length. It can be used in several

other applications, including text classification, handwriting recognition and speech

recognition. The LSTM model preserves long-term dependencies effectively using

three different gates:input gate activation (it), output gate activation (ot) and forget

gate (ft). Its unit has a memory (ct) cell, and its neuron input and output are xt and

ht respectively at time step t.

LSTM =



it : σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft : σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ot : σ(Wxoxt +Whoht−1 +Wcoct−1 + bo)

gt : tanh(Wxgxt +Whght−1 + bg)

ct : ft � ct−1 + it � gt

ht : ot � tanh(ct)

(8.7)

where σ specifies the sigmoid activation function, bs denotes the bias, and W s specify

weight.

8.5 Architecture of DLP-LES Model

In this section, we describe our DLP-LES framework for link prediction. The proposed

model has the following four major steps:

1. Link features lookup table construction.

2. Subgraph extraction and labeling.
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3. Features matrix construction for links in subgraphs.

4. Modeling with CNN and LSTM.

At the beginning, we have a dynamic network G with the information of source

and destination nodes that are observed within a time stamp T . Before we use this

network, it needs to be arranged as a series of snapshots with equal time intervals

∆(t). In our case, {Gtk,Gt−k+1, . . . ,Gt−1} is treated as a sample first k snapshots with

equal intervals as the input and the last (t)th snapshot as the output.

We name our proposed framework DLP-LES (Dynamic network Link Prediction

by Learning Effective Subgraphs), to highlight our focus on efficient common neighbor

based subgraph to handle dynamic link prediction.

8.5.1 Link Features Lookup Table Construction

In this framework, features of links play a significant role to predict links in the

future. As described in the above section, we have the sequence of snapshots of a

given dynamic network G. For the last snapshot Gt, we extract subgraphs of the

targeted links for prediction and analyze the heuristic features of each link in the

subgraph. Evaluating heuristic features of links might be a repetitive process if we

consider two targeted links from the subgraphs which have common links.

Figure 8.2: The representation of two subgraphs with common links for different
targeted links. Subgraph S1 with blue line is for the target link AB while Subgraph
S2 with red line is for the target link AC.

For example, consider two subgraphs S1 and S2 for the targeted links AB and AC

as shown in figure 8.2. In our case, we need to calculate heuristic features for S1 of links
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{AB,AF, FB,AC,AG,CG,BC,BG} and S2 of links {AB,AE,AD,AC,AG,ED,DC

,CG,BG,BC}. We need to repeat the calculation of feature for the common links

{AB,AC,AG,CG,BC,BG}.

To avoid this repeated process, we initially build a lookup table 〈R〉 to store the

following information for every links of a given network G.

〈v, u〉 =



Minimum Number of Hops

Average Path Weight

Time Stamp:



[tk〈cn, jc, aa, pa, ra, w〉]

[tk−1〈cn, jc, aa, pa, ra, w〉]

.

.

[tt〈cn, jc, aa, pa, ra, w〉]

[tt+1〈cn, jc, aa, pa, ra, w〉]

where tk〈cn, jc, aa, pa, ra, w〉, specifies the heuristic feature values of snapshots at tk,

and 〈k, (k − 1), . . . , t, (t + 1)〉 specifies the series of time. The minimum number of

hops represents the number of minimum hops between v and u from the last snapshot

t+ 1, and the average path weight is the ratio between path weight of minimum hop

and number of minimum hops from the last snapshot t+ 1. The average path weight

of a link can be calculated as below,

wavg〈v, u〉 =
1

2

(
1

h

h∑
p=0

wp

)
(8.8)

where wp specifies the shortest path distance between v and p, add up to node u and

h represents the number of hops between v and u.

Our primary objective is to construct a repository 〈R〉 that can be used to retrieve
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information of links without calculating it repeatedly. Rather than accessing the

repository as a table, using a hashing function to access the information has more

benefits. For this purpose, we formulate the following hashing function.

f(〈v, u〉|〈u, v〉) = 〈R〉 (8.9)

where v and u are any vertices and the hashing function can provide the feature

information for any order of vertex pair. We first convert the node pair 〈v, u〉 to

a unique key, which is the same key for the nodes v and u in any order (ie 〈v, u〉,

〈u, v〉). To collect any information that we store in a lookup table, we can use the

above function 8.9. So, the complexity is O(1) to gather information of a given link.

8.5.2 Subgraph Extraction and Node Labeling

Another primary process of our model is subgraph extraction. Although few subgraph

extraction methods are proposed in the existing literature [17, 18], the extracted

subgraphs using existing methods for LP do not have sufficient information. We use

common neighbors of any targeted nodes v and u to create subgraphs. The common

neighbors can be collected from different hops of both nodes, v and u. Rather than

collecting just neighbor nodes, collecting common neighbors of both nodes v and u

will have more information to decide the existence of link between them in the future.

We set a threshold value Θ to keep the number of nodes limit in the subgraph.

Definition 8.2. (Subgraph based on Common neighbors) For a dynamic net-

work of last snapshot Gt = 〈V , Et〉, G ′ = 〈V ′, E ′t〉 is a subset of sets of common neighbor

nodes of two nodes vi ∈ V ′ and vj ∈ V ′, and are denoted as Γ(vi) and Γ(vj) if and

only if V ′ ⊆ V and E ′t ⊆ Et, V ′ is a set of common neighbors for the targeted links,

and |V ′| = Θ.

The algorithm 4 shows the step by step procedure to extract subgraph G ′ for a

given link between v and u from a dynamic network of last snapshot Gt. Since dynamic
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networks evolve over time, most recent snapshot has more reliable information for

the link predictions in the future [29]. At the beginning, the first order common

neighbors Γ1(i) ∩ Γ1(j) of v and u are collected and stored to a node list NΘ. Then,

gradually increase the order of common neighbors (Γ2(i) ∩ Γ2(j)), (Γ3(i) ∩ Γ3(j)), ...,

until |NΘ| ≥ Θ, where Γp(q) is the pth order neighbor nodes of node q.

Algorithm 4 Common Neighbor Based Subgraph Extraction

Input: Target link Evu, a snapshot graph Gp = 〈(V , Ep) at time p.
Output: Subgraph 〈G′〉 for the link Evu.

1: NΘ = {v, u}
2: Ntemp = {}
3: h = 1← number of order
4: while |NΘ| ≤ Θ do
5: Ntemp = Γh(v) ∩ Γh(u)
6: NΘ = NΘ ∪Ntemp

7: h← h+ 1
8: end while
9: 〈G′〉 ← subgraph G(NΘ)

10: return 〈G′〉

The above procedure may return the number of node list of the subgraph more

than the defined threshold limit, |NΘ| > Θ. At this point, each extracted subgraphs of

last snapshot of a given dynamic network may have different number of node list. This

inconsistency situation creates problem when we train convolutional neural network.

We solve this issue by removing some nodes when we process labeling to keep the

number of nodes limits equivalent to Θ.

Node labeling is another significant process in this study. It helps to maintain the

consistency of the subgraphs. After we extract the subgraph, the nodes containing

the target link get the labels 1 and 2. We use the node list NΘ, which returns from

subgraph extraction. We then remove the nodes belonging to the targeted link from

NΘ. To order the remaining nodes RΘ = NΘ − {1, 2}, we use the information of

average minimum hops and average path weight. We can use the hashing function
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Algorithm 5 Subgraph Node Labeling

Input: Nodes List NΘ, Target link Evu, Subgraph 〈G ′〉
Output: Ordered nodes list OΘ

1: OΘ = {v, u}
2: RΘ = NΘ − {v, u}
3: M ← Map for node information
4: for all i ∈ RΘ do
5: hv,i, wavg〈v, i〉 = f〈v, i〉
6: hu,i, wavg〈u, i〉 = f〈u, i〉
7: wi

avg = 1
2
(wavg〈v, i〉+ wavg〈u, i〉)

8: hiavg = 1
2
(hv,i + hu,i)

9: M ← (encode(i, 1/wi
avg, h

i
avg))

10: end for
11: sort M
12: for i in M do
13: OΘ ← OΘ ∪ i
14: if |OΘ| = Θ then
15: break
16: end if
17: end for
18: return 〈OΘ〉

equation 8.9 to get the required information. However, we need an average number

of hops (HAvg) and average path weight (WAvg). So, we use the following formulas to

evaluate HAvg and WAvg.

Havg〈v, u〉 =
1

2
(hv,i + hi,u) (8.10)

Wavg〈v, u〉 =
1

2
(wavg〈v, i〉+ wavg〈i, u〉) (8.11)

where hv,i (resp. hi,u) is the minimum number of hops between v and i (resp. hi,u),

and wavg〈v, i〉 (resp. wavg〈i, u〉) is the average path weight of the link 〈vi〉 (resp. 〈iu〉).

Our aim is to order the nodes in RΘ in a consistent way. We can sort them first

with average hop in ascending order and then with average path weight in descending

order which helps to break tie from first ordering. Therefore, we come up with an

idea to encode both Havg and Wavg into single form which reduces the complexity.
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For example, to generate a encoder to the node with Havg = 1.5 and Wavg = 1.75, we

encode as shown in figure 8.3, where the first portion indicates the value of Havg = 1.5

and last portion indicates the reciprocal value of Wavg = 1.75, which remains always

within the range 0 < 1/Wavg ≤ 1 in our case.

Figure 8.3: Encoding Format Example: first portion of the encoder specifies the
average hop (Havg) and the last portion specifies the reciprocal of average path weight
(WAvg).

We now order remaining nodes list based on encoded value and store them until the

total nodes equal to threshold value Θ. Algorithm 5 shows the step by step labeling

process for labeling. For example, Figure 8.4 represents the process of subgraph

node labeling. The leftmost figure illustrates a subgraph from the last snapshot of a

given dynamic network for the target link 〈12〉. The nodes display the information of

average hop (HAvg) and average weight (WAvg). We encoded these values to generate

a unique code as shown in second rightmost Figure 5. Finally, every node gets a

unique label after ordering encoding values.

Figure 8.4: The representation of subgraph labeling based on encoding method. The
left most figure represents the extracted subgraph with edge weight. Nodes with
different colors indicates the various average hop distance (equal Havg has same color),
followed by average weight. The middle figure shows the encoded values and the right
most figure represents the final labeling.
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8.5.3 Feature Matrix Construction

We have a series of snapshots of a given dynamic network. The subgraph extraction

and node labeling have been processed at the last snapshot t. The same subgraph

should have evolved throughout the time series tk, tk−1, . . . , tt. We therefore construct

feature metrics for a subgraph of each snapshot. As we already discussed in the

previous section, we build feature matrices of CN, JC, AA, PA, RA and Weight.

Figure 8.5: Example: (top) the representation of how a subgraph evolving through
each snapshot, and (bottom) the way how adjacency matrices are created and the
enlarged form of adjacency matrix for weight graph.

In figure 8.5, top figures illustrates the way how a subgraph evolves through time.

We keep the same vertices of the subgraph in every snapshot and examine the evo-

lution of links. We need to construct 6 feature matrices for the subgraph in each

snapshot. Totally we construct 6 × k number of feature matrices for a subgraph,

where k is the time steps considered in our case.

Algorithm 6 describes the process of feature matrices construction. We create

empty adjacency matrix lists to store the features of CN, JC, AA, PA, RA, W in
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each snapshot as below;

{Ak
l×l〈cn〉, Ak

l×l〈jc〉, Ak
l×l〈aa〉, Ak

l×l〈pa〉, Ak
l×l〈ra〉, Ak

l×l〈w〉}

{Ak−1
l×l 〈cn〉, A

k−1
l×l 〈jc〉, A

k−1
l×l 〈aa〉, A

k−1
l×l 〈pa〉, . . . , A

k−1
l×l 〈w〉}

. . .

{At
l×l〈cn〉, At

l×l〈jc〉, At
l×l〈aa〉, At

l×l〈pa〉, . . . , At
l×l〈w〉}

where l is the size of the ordered nodes list of the subgraph. The algorithm 6 continues

until the above empty lists are filled by fetching the required information of node list

from the lookup table.

In each last snapshot of the adjacency matrix of the weighted graph, we assign

zero to the positive target link to hide the information of link existence. In Figure

8.5, the bottom figure illustrates how we construct the adjacency matrices. We fill

only the upper triangle of the matrix to avoid duplicate values. At the last snapshot,

we indicate with a red box where the value is always zero.

Algorithm 6 Feature Matrix Construction

Input: Nodes ordered List OΘ, Lookup Table 〈R〉
Output: Feature Matrices 〈F〉 = Fk〈cn, jc, aa, pa, ra, w〉,
Fk−1〈cn, jc, aa, pa, ra, w〉, . . . Ft〈cn, jc, aa, pa, ra, w〉

1: l← |OΘ|
2: Ak

l×l[ ], Ak−1
l×l [ ] . . . At

l×l[ ] = {}
3: for i ∈ OΘ do
4: for j − i ∈ OΘ do

5:

Ak
l×l[ ] = Fk〈cn, jc, aa, pa, ra, w〉

Ak−1
l×l [ ] = Fk−1〈cn, jc, . . . , w〉

. . .
At

l×l[ ] = Ft〈cn, jc, aa, pa, ra, w〉

 = F 〈i, j〉

6: end for
7: end for〈F〉
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8.5.4 Modeling with CNN and LSTM

DLP-LES uses CNN and LSTM to model the link prediction framework. As described

in the previous section, we have a sequence of adjacency matrices for a subgraph of

a targeted link for the prediction from the last snapshot of a given dynamic network.

The input data of DLP-LES is a sequence of adjacency matrices which is constructed

as a form of Θ×Θ× h, where Θ is the number of nodes of the subgraph and h is the

number of heuristic features used in our model. In DLP-LES, we treat each adjacency

matrix as an image. We have the sequence of adjacency matrices in tk, tk−1, . . . , tt as

shown in Figure 8.5 bottom one. A sequence of images are really a video. So we can

treat our model as a video classification problem, where positive and negative links are

two different classes. The positive links represent the link existence, (vi, vj) ∈ Et while

the negative links represent the absence of links between any two nodes, (vi, vj) /∈ Et.

To train the classifier, we build a dataset using last snapshot of the dynamic network

with all existing links for the positive link class and the same number of non-existing

links by using downsampling technique.

CNN is well known for image classification. We leverage this character to learn

and extract features from each image, in our case each adjacency matrix. We first

feed the input data to convolutional layers to extract the features and then pass

those sequences to a separate LSTM to learn the long-range temporal dependencies

from input sequences. In the CNN model, we use Rectified Linear Units (ReLu) as

the activation function, which is computed using f(x) = max(0, x), where, x is the

input data. In the LSTM model and the output layer, we use sigmoid activation

function, σ(x) = 1
1+e(−x) . In DLP-LES, we assign the binary cross-entropy for loss

function to measure the performance of a classification model. It can be written as

−(y.log(p) + (1− y).log(p)), where y is the label, p is predicted probability.
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8.6 Experimental Results

To evaluate the effectiveness of our model, we perform experiments with five real-

world dynamic social networks.

8.6.1 Datasets

We use five benchmark real world dynamic networks to test our model: Enron cor-

pus [30] is an email communication network from the senior management of Enron

for 6 months with 151 nodes and 50571 edges. Each node represents an employee

and link represents email sent among employees. Radoslaw [31] is also an email

communication network of a mid-sized manufacturing company from 2010-01-01 to

2010-09-30 with 167 nodes and 82900 edges. Contact [32] represents data from wire-

less devices carried by people with 274 nodes and 28200 edges. Every node specifies

people, and a link appeared when they contacted with a timestamp which recorded

every 20 seconds for 4 days. College Messages [33] contain private messages sent

on an online social network at the University of California, Irvine with 1899 nodes

and 59835 edges. The edge has the timestamp t, the time any two people contacted

each others. EU-Core [34] is an email information from a large European research

institution with 986 nodes and 332334 links. The node represents the members from

4 different departments and the links are the communications among them.

8.6.2 Performance Evaluation

We evaluate the effectiveness of DLP-LES model by comparing it with simple heuristic

methods: CN, JC, AA, PA and network embedding methods: DeepWalk, node2vec,

LINE and SDNE.

1. DeepWalk [13]: Random walks is used to learn latent representations, and con-

siders vertices from second order proximity.
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2. node2vec [12]: It learned by mapping of nodes to a low-dimensional space of

features to maximizes the probability of preserving network proximity of nodes.

3. LINE [14]: It is suitable for any type of networks, including large scale networks.

It used edge-sampling method to learn both the local and global network struc-

tures.

4. SDNE [35]: It is a semi-supervised deep model, and used both the first-order

and second-order proximities together in an autoencoder based deep model.

For the implementation of the network embedding methods, we use the original source

code by the author for node2vec1, LINE2, DeepWalk3 and SDNE4.

Evaluation Metric: Area Under the Curve (AUC) is the standard evaluation met-

ric in both static and dynamic link prediction problem. AUC estimates the probability

that the predictor gives a higher score to a randomly chosen positive link than a ran-

domly chosen negative link. The larger the AUC is, the better the model performs.

The AUC can be defined as,

AUC =
n′ + 0.5n”

n
(8.12)

where n specifies the number of Independence comparisons, n′ specifies the number

of times that the positive link gets a higher probability score than the negative link,

and n” specifies the number of times when they are equal.

8.6.3 Experimental Procedure

We use Python3 to implement the DLP-LES model. The data processing is conducted

on IBM cluster with the specification of POWER8 52 processor 256 GB of RAM. We

1https://github.com/aditya-grover/node2vec
2https://github.com/tangjianpku/LINE
3https://github.com/phanein/deepwalk
4https://github.com/xiaohan2012/sdne-keras
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trained and tested our model in an Nvidia GTX 1050Ti, 4 GB GPU with 768 CUDA

cores.

In DLP-LES, the CNN model contains 32 filters of size 5 × 5 in the convolution

layer. Afterwards, it is sent to the average pooling with the size 3 × 3. The output

is flattened before feeding into the LSTM model. The LSTM layer uses 128 internal

cells. We train our neural network for 100 epochs with Adam optimizer algorithm.

We assign 80% as training set, 10% as validation set, and 10% as testing set.

Dataset CN JC AA PA node2vec LINE DeepWalk SDNE DLP-LES

Enron 0.8106 0.8751 0.8970 0.8442 0.7596 0.5042 0.7190 0.9437 0.9769

Radoslaw 0.8417 0.8307 0.9028 0.8753 0.7417 0.6153 0.7342 0.8709 0.9330

Contact 0.8457 0.9141 0.9142 0.9027 0.8741 0.7360 0.8451 0.9376 0.9913

CollegeMessages 0.5742 0.5774 0.5843 0.5901 0.7049 0.4905 0.7506 0.7806 0.9852

EU-core 0.9227 0.9302 0.9341 0.7553 0.8602 0.6587 0.8201 0.9574 0.9729

Table 8.1: Comparison of AUC with standard baseline methods for dynamic network
link prediction.

8.6.4 Results

The performance of the experimental setup for DLP-LES using CNN-LSTM is rep-

resented in Table 8.1. The results are measured based on AUC in various benchmark

dynamic datasets. DLP-LES outperforms all the standard state-of-the-art methods

and most common heuristic methods. It also achieves above 97% of AUC in all tested

dynamic networks except Radoslaw. However, DLP-LES reaches 93% of AUC in Ra-

doslaw, which is higher than other compared methods. In College message, DLP-LES

is remarkably outperformed than all baseline methods while others reach up to 78%.

The computational complexity of DLP-LES model can be expressed based on

several factors. As we already explained in the above section, we first evaluate the

heuristic values of each links in the given networks and stored as a lookup table.

The complexity of subgraph extraction process is O(kn), where k is the average hop
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number for the subgraph and n is the number of links. The complexity of feature

matrix construction is O(sn), because our feature matrix algorithm collects required

information from the lookup table, which is O(1), where s = Θ is the number of

nodes in the subgraph.

8.7 Conclusions

In this paper, we propose a novel framework DLP-LES, which is for link prediction

problem in dynamic social networks based on effective subgraphs. This model uses

the heuristic features of common neighbor based subgraph and learns the evolving

pattern throughout the considered time to predict future links. In this work, we

introduce an encoding method for labeling subgraph consistently. To reduce the

complexity, we construct a lookup table with all required information of links to use

frequently through our proposed hash function. We also propose an algorithm for

feature matrix construction, which is thereafter feed into CNN to extract the features

and send to LSTM to learn long-term temporal feature of dynamic network. Since it

analyzes the subgraph of a target link, this model has the advantage in applying for

large-scale networks. We evaluate the performance of our model against the state-

of-the-art methods and the basic heuristic method. DLP-LES achieves significantly

high improvement than compared methods. Further, DLP-LES opens a new research

direction in temporal network compression and expanding community detection in

dynamic networks.
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bining temporal aspects of dynamic networks with node2vec for a more efficient

dynamic link prediction,” in 2018 IEEE/ACM International Conference on Ad-

vances in Social Networks Analysis and Mining (ASONAM). IEEE, 2018, pp.

1234–1241.

[25] T. Li, J. Zhang, S. Y. Philip, Y. Zhang, and Y. Yan, “Deep dynamic network

embedding for link prediction,” IEEE Access, vol. 6, pp. 29 219–29 230, 2018.

[26] K. Lei, M. Qin, B. Bai, G. Zhang, and M. Yang, “Gcn-gan: A non-linear tempo-

ral link prediction model for weighted dynamic networks,” in IEEE INFOCOM

2019-IEEE Conference on Computer Communications. IEEE, 2019, pp. 388–

396.

[27] C. A. Bliss, M. R. Frank, C. M. Danforth, and P. S. Dodds, “An evolutionary

algorithm approach to link prediction in dynamic social networks,” Journal of

Computational Science, vol. 5, no. 5, pp. 750–764, 2014.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[29] J. Chen, X. Xu, Y. Wu, and H. Zheng, “Gc-lstm: Graph convolution embedded

lstm for dynamic link prediction,” arXiv preprint arXiv:1812.04206, 2018.

[30] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email classification

research,” in European Conference on Machine Learning. Springer, 2004, pp.

217–226.



180

[31] R. Rossi and N. Ahmed, “The network data repository with interactive graph

analytics and visualization,” in Twenty-Ninth AAAI Conference on Artificial

Intelligence, 2015.

[32] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, “Impact

of human mobility on opportunistic forwarding algorithms,” IEEE Transactions

on Mobile Computing, no. 6, pp. 606–620, 2007.

[33] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics of users’

behavior and interaction: Network analysis of an online community,” Journal of

the American Society for Information Science and Technology, vol. 60, no. 5, pp.

911–932, 2009.

[34] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks,”

in Proceedings of the Tenth ACM International Conference on Web Search and

Data Mining. ACM, 2017, pp. 601–610.

[35] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceed-

ings of the 22nd ACM SIGKDD international conference on Knowledge discovery

and data mining, 2016, pp. 1225–1234.



181

Chapter 9

Summary, Conclusions and Future

Directions

Motivated by the observations from the existing researches in team formation prob-

lems in social science and management and critical challenges in computational mod-

els, in this dissertation, we provide a generic computational framework for team

formation problems in social networks. This research investigates the team formation

problem from two different perspectives: discovering teams of experts to recommend

for a set of tasks (in the first six chapters) and predicting new members who can join

teams in the future (in the last two chapters).

We consider three different networks to examine team formation problems: co-

authorship networks (chapter 2), healthcare setting (chapters 3 and 4), and industry

organizational setting (chapter 5). We begin our research on expert networks that

contain professionals who have skills and expertise in particular areas. On the other

hand, enterprises and academic staffs search to find talent and expertise from such

networks to complete projects or tasks. We aim to search the network to identify

an optimal set of experts covering the required skills while keeping the communi-

cation cost to a minimum, which measures the performance of teams. We examine
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communication costs using the shortest path distance and diameter distance in chap-

ter 1. Our major contribution in this work is to attempt knowledge-based cultural

algorithms in the team formation problems to reduce the computational challenges.

The knowledge-based cultural algorithm is an evolutionary searching technique, which

uses higher-order cultural evolution to reduce the search domain by extracting knowl-

edge and updating it in each generation. The individual representation, knowledge

extraction, and utilizing them in each evolution are the main contributions of this

research work. Our method shows the highest accuracy when compared to the other

algorithms and is the closest to the exact algorithm (exhaustive search).

In chapters 3 and 4, we attempt the healthcare settings, especially to assemble

a team of care providers for patients in community-oriented palliative care. The

main objective of this research is to optimize the patient’s care services and human

resource allocation process. In palliative care, we have a group of patients with needs

who are not able to perform some of their ordinary life activities due to their limited

capabilities, as a consequence of their disease or disorders. On the other hand, we

have a group of care providers who are capable, skilled, and ready to provide a wide

range of services to the patients to fulfill those needs. We propose a framework to

tackles the challenges of assigning members to a team of care providers in an optimal

manner to help the patient satisfy their needs while taking into consideration the

communication, distance, and contact costs. Chapter 4 provides the visualization of

the problem discussed in chapter 3. Our model provides the most effective solutions

compared to other methods.

In chapter 5, we tackle the problem of finding the profit-maximizing cluster hires.

This research is a little different from the previous chapters. Organizations or online

freelancers search for the most cost-effective teams to fulfill their goals. The recruiting

experts expect a salary to perform a set of tasks. The objective of this research is

to identify teams to maximize the profit of tasks under a given budget using the
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knowledge-based cultural algorithm while optimizing communication cost, the profit

of projects, productivity, and load limit. We implement project greedy, expert greedy,

genetic algorithms, and exact algorithms and compare our results. Our approach

outperforms other methods and reaches near to the exact method.

Chapter 6 provides a unified framework for the team formation problem in dy-

namic social networks. We propose two temporal based cost functions: dynamic

communication cost and dynamic expertise level. With these cost functions, we en-

gage the time difference from current to considered time. Our proposed cost functions

show a high impact on team formation problems. In addition to this, we incorporate

some essential ideas from management perspectives. We examine the trust score based

on emotional intelligence index, profile similarity, and explicit score. This model is a

major contribution to the research in team formation problems since it formulates the

team formation problem in dynamic environments and models as a multi-objective

optimization problem to optimize dynamic communication cost, dynamic expertise

level, geological proximity, and collective trust score. We apply the multi-objective

cultural algorithms to find the non-dominated solution while extracting situational

and topological knowledge from each generation to reduce the searching domain. Ex-

perimental results are compared against well-known non-dominated algorithm NSGA

II and exact algorithms.

Chapters 7 and 8 are designed to predict future collaboration with existing teams

of experts, which is technically an application of link prediction. Link prediction

problem aims to examine whether a link between any two nodes appear in the future or

not. This prediction mechanism is a classification problem that classifies existing links

and non-existing links. In chapter 7, we examine the temporal behaviors of vertices to

find active people in dynamic networks. We introduce a probability function to predict

links that occur in the future to connect with other members based on the activeness

of the person. We introduce a time-varying score function to evaluate the activeness
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of vertices that uses the number of new interactions and the number of frequent

interactions with existing connections. We also consider two additional objective

functions in our model: a weighted shortest distance between any two nodes and a

weighted common neighbor index. To handle this classification problem, we employ

Multi-Layer perceptron, a deep learning framework. We train (80% of the dataset),

validate (10%) and test (10%) our model, and compare our results in AUC (Area

Under Curve) with well-known baseline machine learning approaches and heuristic

methods. Our results reach above 93% of AUC.

In chapter 8, we use the existing heuristic methods to predict links in the future.

Motivated by observing the challenges in existing methods, we introduce a novel

framework to address the challenges in reaching high accuracy in various types of

networks and handling computational costs. We use common neighbors based sub-

graph of a target link and learn the transitional pattern of it for a given dynamic

network. We then extract a set of heuristic features of the evolving subgraph to

gather additional information about the target link. To reduce computational costs,

we introduce some mechanism: construct a lookup table with required information

of links in the network, uses a hashing method to store and fetch link information,

and introduce encoding method to label the nodes in subgraphs. Since we handle a

sequence of snapshots of a dynamic network, the features of the extracted subgraph

evolve in every snapshot. So we transform our problem as a video classification prob-

lem and apply Convolutional Neural Networks (CNN) to extract higher-level features

of subgraph efficiently and Long Short-Term Memory (LSTM) neural networks to

learn long-range dependencies of sequential data and capture the evolving patterns of

the subgraph in the dynamic network. To verify the effectiveness of our model, exten-

sive experiments are carried out on five real-world dynamic networks and compared

those results against four network embedding methods and basic heuristic methods.

To conclude, we describe the complex and evolving nature of dynamic social net-
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works to search and recommend teams of experts to produce successful outcomes of

tasks under some constraints. To handle the above research problems, we use an

integrated knowledge-based computational model, cultural algorithms in this disser-

tation. Our model outperforms the existing other approaches. Later, we aim to

predict future collaborations. Since this problem is a classification problem, we at-

tempt with deep learning frameworks in this dissertation. Our model performs well

in prediction and achieves high accuracy.

This dissertation has several new paths to further research with various applica-

tions. For instance, in online video games, we can research how efficiently assign team

members, and in a warehouse of distribution centers, efficiently assigning a group of

robots is a challenging research direction. Moreover, our prediction framework can

be expanded to handle community detection in dynamic networks. Another research

directions are to focus on dynamic knowledge graph completions and dynamic rec-

ommender system.
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