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ABSTRACT

To structural researchers, predicting protein structures currently remains a chal-

lenging task. During the past decades, different methodologies have been devel-

oped to address this issue. One such protein structure prediction problem is the

Alpha Carbon (Cα) Trace Problem. The Cα trace problem is to determine the

3-D coordinates of the main chain atoms(C, N, and O) from just the Cα carbon

coordinates. This master’s thesis presents a novel approach for solving the Cα

trace problem by using a molecular distance geometry approach.

The current approach uses the algorithms which are used to solve the Molecular

Distance Geometry Problem to find the coordinates of the atoms in the peptide

plane of a given protein. Once, the coordinates of the atoms(Cα, C, N, and O)

in the single peptide plane are computed, the two Cα atoms are aligned with

the first two Cα atoms in the Cα trace by finding the appropriate rotation and

translation. The same rotation and translation are applied to all the other atoms

in the peptide plane(C, N, and O). The process is then repeated for the entire trace,

and the coordinates of all the atoms in the main chain of the protein are retrieved.

In order to predict the side-chain atoms from the main Chain, SCWRL4.0 is

used. The output generated by SCWRL4.0 is then subjected to LBFGS energy

minimizer using a tool called MESHI.

The key advantage of using our approach is that it eliminates the building

and searching for a huge protein fragment library. Experiments show that our

approach is highly comparable to other approaches such as BBQ, PD2Main, and

PULCHRA for solving the Cα trace problem.

iv



DEDICATION

To my loving family, who has supported me in every step of my life.

v



ACKNOWLEDGMENTS

I express my sincere gratitude to Dr. Asish Mukopadhyay, without whose patient

guidance and constant supervision, I would not have come so far.

I offer my sincere appreciation to the committee members, Dr. Myron Hlynka

and Dr. Dan Wu for their useful critiques and advice.

My special thanks to my loving sister Dharna, who spent most of her time in

active discussions and gave moral support that helped me to finish up my thesis.

My grateful thanks is also extended to my colleagues-cum-friends Md. Zamilur

Rahman, Sudiksha, Aayushi, Saurav, Anjali, Jayanth, Parth and Dipesh for their

invaluable help throughout my Master’s degree. I would also like to thank my

uncle Mr. Sanjiv Aggarwal and aunt Mrs. Meena Aggarwal for providing moral

support during the course of my degree in Canada. Finally to my loving parents

for their unmatched support and encouragement.

vi



TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGMENTS vi

LIST OF FIGURES xi

LIST OF TABLES xii

1 Introduction 1

1.1 The Molecular Distance Geometry Problem . . . . . . . . . . . . . 2

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 What is a Protein? . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 The Peptide Plane . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 The Protein Data Bank(PDB) . . . . . . . . . . . . . . . . . 4

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature review of approaches to the Alpha Carbon(Cα) trace

problem 9

2.1 PULCHRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



2.2 BBQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 PD2ca2main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Analytical approach for protein backbone reconstruction . . . . . . 18

2.4.1 Determination of β-carbon positions . . . . . . . . . . . . . 18

2.4.2 Backbone reconstruction . . . . . . . . . . . . . . . . . . . . 19

3 Distance Geometry approach 21

3.1 Review of the Distance geometry techniques . . . . . . . . . . . . . 21

3.1.1 Cayley-Menger Determinant . . . . . . . . . . . . . . . . . . 22

3.1.2 Decomposition of Distance matrix . . . . . . . . . . . . . . . 23

3.1.3 Graph Reduction . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3.1 ABBIE . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.4 Least-Squares Formulation . . . . . . . . . . . . . . . . . . . 26

3.1.4.1 DGSOL . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.5 Alternating Projection Algorithm . . . . . . . . . . . . . . . 28

3.2 Crippen and Havel’s algorithm . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Bound Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Metrization . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Molecular Distance Geometry approach for the Cα trace problem 32

4.1 Overview of the Method . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Prediction of main chain atoms using Cα atoms . . . . . . . 34

4.2.2 Appropriate Rotation and Translation . . . . . . . . . . . . 37

4.2.3 Side Chain prediction using SCWRL4 . . . . . . . . . . . . . 40

4.2.4 Energy Minimization using MESHI . . . . . . . . . . . . . . 41

4.3 Experminental results . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions 52

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



BIBLIOGRAPHY 55

VITA AUCTORIS 61

ix



LIST OF FIGURES

1.1 Structure of an amino acid [7] . . . . . . . . . . . . . . . . . . . . . 3

1.2 Synthesis of Protein [21] . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the Peptide Plane . . . . . . . . . . . . . . . . . . . . . 4

1.4 Snapshot of Cα trace PDB file . . . . . . . . . . . . . . . . . . . . . 6

1.5 Snapshot of complete PDB file . . . . . . . . . . . . . . . . . . . . . 6

2.1 Frame of reference used for reconstruction of the backbone and

side-chain atoms[45]. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The procedure of hydrogen bond pattern optimization[45]. . . . . . 12

2.3 Protein backbone reconstruction flowchart[18] . . . . . . . . . . . . 13

2.4 Example cis and trans components of a 6-mer fragment[34]. . . . . . 15

2.5 Schematic Representation of reference coordinate system to fix the

position of Cβ atom[43]. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Full atom representation of protein backbone[43]. . . . . . . . . . . 20

3.1 Distance between points and origin . . . . . . . . . . . . . . . . . . 30

4.1 Flowchart of our Proposed Methodology . . . . . . . . . . . . . . . 34

4.2 Rotation and Translation . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Graph depicting RMSD vs No. of Residues for different methods . . 46

4.4 A Ramachandran plot generated for 2BK1 by PROCHECK[27] . . . 47

4.5 Graph depicting Allowed Region Percentage vs No. of Residues for

different methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 A Ramachandran plot generated for 1AHL by PROCHECK[27] . . 49

x



4.7 Graph depicting Run time comparison between different methods. . 50

xi



LIST OF TABLES

4.1 Distance between each atom in the peptide plane. . . . . . . . . . . 35

4.2 RMSD comparison on incomplete PDB files relative to our method. 44

4.3 RMSD comparison on synthetic PDB files between different meth-

ods and actual structure. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Ramachandran Plot allowed region comparison on incomplete PDB

files between different methods. . . . . . . . . . . . . . . . . . . . . 45

4.5 Ramachandran Plot allowed region comparison on synthetic PDB

files between different methods. . . . . . . . . . . . . . . . . . . . . 48

4.6 Run time comparisons between different methods(in milliseconds). . 50

xii



Chapter 1

Introduction

Distance Geometry [49] is the study of techniques on the set of points given only

the distances between the pair of points. Nowadays, due to the several real-life

applications, a large community of researchers are actively working in the field

of distance geometry. One such application is in the field of telecommunication

networks, where the distance between some sensors were known; the problem is to

calculate the position of all sensors in space. Another intriguing application is in

the field of biology, where the experimental techniques will measure the distance

between a molecule’s pair of atoms, and the question would be to determine a

molecule’s three-dimensional conformation.

Distance Geometry Problem can also be understood in the form of graph em-

bedding problem given by Saxe[46]. The problem is formally defined as: Given

an incomplete edge-weighted graph G and a parameter k, map the vertices of the

graph G to the points in a Euclidean k-space in such a way for any two vertices

connected by an edge, its edge weight is equal to the corresponding points in

the k-dimensional space. Deciding if such an embedding exists is strongly NP-

complete[46].
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1.1 The Molecular Distance Geometry

Problem

The Molecular Distance Geometry Problem (MDGP) tries to find the coordinates

of the atoms of a molecule given only the subset of distances between the pair

of atoms. Therefore, it can be termed as the three-dimensional version of Saxe’s

Problem. The MDGP finds its use case in NMR experimental techniques[5] which

provides a set inter-atomic distance dij for a certain pairs of atoms (i, j) for a

given molecule.

Formally, MDGP can be defined as: To determine a unique three-dimensional

structure of a molecule when only the distances between all the pairs of atoms

in that molecule are provided. However, if there are errors or certain distances

are unavailable, the unique and correct structure of the molecule may not be

calculated[8].

1.2 Preliminaries

This section provides some of the terminologies which are required before defining

the actual problem statement of the thesis.

1.2.1 What is a Protein?

Proteins are long-chain molecules made up of amino acids. There are only 20

different kinds of amino acids that are present in proteins. Proteins are one of

the living organism’s most abundant organic molecules and have the most diverse

functional spectrum of all the macromolecules. They perform a wide range of

functions within humans, including catalyzing metabolic processes, replicating

DNA, reacting to stimuli, providing structure to cells, and transporting molecules

from one site to another and so on.

2



Amino Acids are the building blocks of a protein molecule. Each amino acid

consists of a central carbon atom (Cα), hydrogen, a carboxyl group, and a variable

R group. This R group is attached to Cα atom. The R group uniquely distin-

guishes which class of amino acids it belongs to, electrically charged hydrophilic

side chains, polar but uncharged side chains or nonpolar hydrophobic side chains,

and special cases. The structure of a typical amino acid is given below:

Figure 1.1: Structure of an amino acid [7]

The primary sequence of a protein is linked together using dehydration syn-

thesis, which is defined as the loss of water molecule. This process combines the

carboxylic acid of the upstream amino acid (Amino Acid - 1) with the amine func-

tional group of the downstream amino acid (Amino Acid - 2). The amide linkage

formed between two amino acids is called the peptide bond. Figure 1.2 shows the

formation of a peptide bond.

Figure 1.2: Synthesis of Protein [21]

3



1.2.2 The Peptide Plane

In proteins, an important structural feature is that all the five atoms (Cα, C,N,O

and Cα) lie in the same rigid planar structure i.e., all these atoms are co-planar.

This is because of the fact that there is a partial double bond character between

the C and N atoms[40]. The structure of a peptide plane is shown in figure 1.3.

Figure 1.3: Structure of the Peptide Plane

From figure 1.3, we can also see the average value of the bond lengths and

bond angles between the different atoms in the peptide plane. These values are

published by Engh and Huber [15]. In proteins, two peptide planes are joined

together at mutual Cα atoms, and each peptide plane can rotate about its bond

to the Cα atom. The rotation around Cα − N bond is called phi(φ), and the

rotation around Cα − C bond is called psi(ψ).

1.2.3 The Protein Data Bank(PDB)

The Protein Data Bank (PDB) [3] was first born at Brookhaven National Labo-

ratories in the year 1971. This archive contained only seven structures of proteins

in the beginning. The advent of new technologies such as Nuclear Magnetic Reso-

nance(NMR) imaging[5] and X-ray crystallography[9] for structure determination

in the year 1980s exponentially increased the number of available structure in

the archive. A major role was played by the internet in making this bank highly

accessible.

4



All the known and newly discovered protein structures are stored in this repos-

itory in the PDB format. The PDB format consists of data for each atom present

in the structure, viz. its type and (x,y,z) coordinates, residue number, and the

type of the residue. This information about each atom takes up a single line in

the PDB file. For instance, an entry in the PDB file for the HYDROLASE which

has PDB code 2LYM is as follows:

ATOM 99 CA ARG A -13.957 14.877 14.796 .....(1)

Similarly if there are two other atoms:

ATOM 110 CA HIS A -11.867 14.864 17.926 .....(2)

ATOM 120 CA GLY A -13.752 17.862 19.314 .....(3)

In short, a pdb file is a digitized record of the actual protein structure. The above

(1) indicates that there is a carbon atom with the value of x, y, and z coordinates

(-13.957,14.877,14.796). Moreover, the ’CA’ shows that is the central Cα atom of

a residue, namely residue 14 of type ’ARG’ from chain A. The value 99 is a unique

atom identifier within the file. Similarly, the other two are also shown in atom(2)

and atom(3).

1.3 Problem Statement

Coarse-grained protein models (with some missing atomic details) are the result

of many experimental or computational methods used for investigating a large

number of protein structures and their dynamics. In this regard, there is an open

problem called the Cα trace problem, which is the major focus of this thesis work.

To understand this problem, we must first take a quick look at how the struc-

ture of a protein is determined. One of the traditional techniques used for pro-

tein structure determination is X-ray crystallography[9]. This technique is time-

consuming because we need to first crystallize the purified protein. Once the

process of crystallization is complete, X-ray diffraction is used to determine the

5



electron density map of the crystal. The crystallographer is then able to determine

the coordinates or positions of the constituent heavy atoms (other than hydrogen)

of the protein crystal. Another popular technique is Nuclear Magnetic Resonance

(NMR) spectroscopy[5]. This technique creates a graph consisting of peaks that

correspond to the shift due to each nucleus in the molecule. The high-resolution

structure is generated, but these structures are still subject to inaccuracies.

The Cα trace problem arises when we are provided with only estimated alpha

carbon(Cα) atom coordinates or positions for a given protein, and we would like

to determine the rest of the structure given that information alone. Figure 1.4

shows the snapshot of an incomplete Cα trace PDB file.

Figure 1.4: Snapshot of Cα trace PDB file

We aim to complete the above PDB file by adding other atoms, namely C, N,

and O between the peptide plane formed between two successive Cα atoms. In

order to generate the all-atom representation, we also need to add the atoms for

side chains belonging to each residue in the Cα trace. Therefore, a snapshot of a

complete PDB file is given below:

Figure 1.5: Snapshot of complete PDB file

6



1.4 Motivation

The motivation of the problem lies in the number of applications that are asso-

ciated with Cα trace problem. As we know that X-ray crystallography is used

for determining the positions of the atoms of a protein molecule is expensive and

time-consuming. Therefore, a number of files in the Protein Data Bank consist of

protein structure where only the positions of Cα atoms are given. Thus, a method

is required to calculate the precise location of all the atoms of a protein molecule.

There are some protein structure prediction techniques such as [16], which

begins by generating Cα trace as the first step. To improve the quality of the

structure predicted and complete it, we need a solution to Cα trace problem.

1.5 Thesis Organization

The list below presents the organization of the chapters, which makes up this

thesis.

A brief description of the topics is also given that each chapter deals with.

• Chapter 2 gives a clear background knowledge of the protein structure pre-

diction techniques used for solving the Cα trace problem. This includes four

existing methods to solve the Cα trace problem. A detailed description of

each method is given. The first three methods use the protein fragment

library approach, whereas the latter method uses an analytical approach to

determine the structure of a protein molecule.

• Chapter 3 provides a review of the existing distance geometry techniques

and also includes the Crippen and Havel’s algorithm in depth which forms

the basis for solving molecular distance geometry problem.

• Chapter 4 describes the proposed approach and its inner workings and also

shows the experimental results after applying our algorithm.

7



• Chapter 5 concludes the work done in this thesis and suggests some possible

future research directions.

• Bibliography declares a detailed list of references from which have been used

as a guide for this thesis.

8



Chapter 2

Literature review of approaches

to the Alpha Carbon(Cα) trace

problem

The problem of determining the structure of a protein molecule remains one of the

most challenging tasks for computational chemists. We know that several exper-

imental and computational methods are used for investigating protein structure

generate coarse-grained protein models (with some missing atomic details). These

coarse-grained modeling tools are highly efficient in terms of the time required to

build such models[25]. But protein models should be complete so that it can be

used for practical structure-based studies, including drug design and protein de-

sign. Thus, an integration between coarse-grained modeling tools and tools which

can efficiently complete the protein models is required. Alpha carbon(Cα) trace

is one such coarse-grained model of a protein, which consists of only the positions

of Cα atoms.

In this chapter, we will review four techniques that are being used for deter-

mining the coordinates of all the other atoms of a protein molecule given just the

coordinates Cα atoms. The three techniques namely PULCHRA[45], BBQ[18] and

PD2 ca2Main[34] are dependent on building and using a large protein fragment

9



library for reconstructing the missing atoms. The fourth technique[43] gives an

analytical approach for finding the coordinates of the missing atoms. All these

four techniques are discussed in the following sections.

2.1 PULCHRA

PULCHRA (Protein Chain Reconstruction Algorithm)[45] is a tool which is used

for reconstructing full-atom representation of a protein molecule from the Cα trace.

This tool can be installed locally as a standalone program, which is written in the C

programming language. It reads coordinates of the atoms of the protein molecule

in PDB format and outputs full-atom PDB files. The method generally works

in three steps: optimization of Cα positions, reconstruction of backbone and its

optimization, and finally, reconstruction of side chains. Each step in the program

is independent of one another so the user can choose which step to perform based

on different applications.

In the first step, the positions of Cα atoms are optimized, which is done by

removing irregular configurations. This is achieved by using the steepest-descent

gradient minimization algorithm and a simple harmonic potential. The potential

(V) consists of the following terms: pairwise Cα−Cα distances, Cα−Cα−Cα virtual

bond angles, Cα excluded volume, and the deviation from the initial positions [eq.

(2.1)]

V = w1

∑N−1
i=1 (di,j+1 − d0)2 + w2

∑N−2
i=1 (θi,j+1,i+2 − θ0)2

+w3

∑N−2
i=1

∑N
j=i+2 (di,j − dex)2 + w4

∑N
i=1 (di,i0 − du)

2
(2.1)

where N is the number of Cα atoms; w1, w2, w3 and w4 are the weights which

corresponds to the potential terms; di,i+1 is the distance between the ith and the i

+ 1 th Cα atoms and d0 is the equilibrium Cα−Cα distance equal to 3.8Å; θi,i+1,i+2

is the virtual bond angle which consists of the ith, i + 1 th and the i + 2 th Cα

atoms; θ0 = 70◦ is the equilibrium angle; dex is equal to 4Å; di,i0 is the distance

between actual and initial Cα atom positions. The values of potential terms for

10



the weights w1, w2, w3 and w4 were calculated by hand and are equal to 1.0, 2.0,

10.0 and 0.5 respectively.

After running the steepest-descent minimization procedure, the resultant struc-

ture consists of Cα − Cα distances and Cα − Cα − Cα virtual bond angles which

are nearly close to native values. In a typical scenario, 100 minimization steps are

required for the procedure to converge.

The second step is to perform the backbone reconstruction. This step is based

on the method proposed by Milik et al [33] but is more refined than the original

algorithm. The procedure requires four successive Cα atoms. Each of these four

Cα atoms forms a fragment. These fragments are used to rebuild the peptide plane

atoms between the second and third Cα atoms. Four distances between Cα atoms

are calculated, namely the distances between the first and third (r13), second and

fourth (r24), and first and fourth (r14) as shown in figure 2.1.

Figure 2.1: Frame of reference used for reconstruction of the backbone and side-
chain atoms[45].

Now, r13 and r24 are divided into 10 bins where the distance lies between the

range 4.5 to 7.5Åand r14 is divided into 75 bins where the distance lies between

the range -11 to 11Å. Therefore, a lookup table is created using these bins, which

is used to select proper fragments from the protein backbone fragment library to

calculate the local coordinates of N, C, and O atoms that lies between the second

and the third Cα atoms of the target fragment. The local system of coordinates

is defined by three orthogonal axes vx, vy, vz:

vx = r13
|r13|

vy = r23×r12
|r23×r12|

11



vz = vx × vy

Here rxy is a vector which connects x and y Cα atoms. The reconstructed backbone

often has a hydrogen bond pattern distorted. A simple optimization procedure

is used to calculate the hydrogen bond energy of every peptide plate using the

hydrogen bond definition found in the DSSP program[22]. The hydrogen bond

(C-O...H-N) is rotated along with the Cα−Cα virtual bonds, and the bond energy

is calculated repeatedly, which is shown in figure 2.2.

Figure 2.2: The procedure of hydrogen bond pattern optimization[45].

The energy function defined by the DSSP program[22] is described below:

EHB = 332q1q2(
1

rON
+

1

rCH
+

1

rOH
+

1

rCN
) (2.2)

where q1 = 0.42e and q2 = 0.20e, with e being the electron charge unit, rXY the

distance between atoms X and Y. The energy is calculated and every time a better

peptide plate orientation is found, the new orientation replaces the old one. This

procedure repeats itself for every peptide plate.

The last step is to add the side-chains to predicted backbone atoms. Each

bin that is present in the lookup table consists of a list of possible side-chain

conformations. The conformation, which is nearest to the Center of Mass (CM),

is used for reconstruction. If no CM is provided at the input, the side-chain

conformation, which has the highest occurrence in the rotamer library, is used.

This finally returns the full-atom model from the reduced Cα trace.

12



2.2 BBQ

The BBQ (Backbone Building from Quadrilaterals) method[18] adopts a similar

approach for reconstruction of the protein backbone as proposed by Milik et al [33].

The dataset consisted of 1259 protein chains, which has mutual pairwise similarity

not higher than 90%. This protein chain dataset was decomposed into fragments,

which resulted in a library of 263,000 fragments. Figure 2.3 shows the protein

backbone reconstruction flowchart.

Figure 2.3: Protein backbone reconstruction flowchart[18]

The first step is to define two coordinate systems, namely the R-coordinate

system and L-coordinate system. R-coordinates are computed as three distances,

which are marked by the red dashed line, as shown in figure 2.3(a). R13 is defined as

the distance between first and third Cα atoms, similarly R24 and R14 are defined.

Here, each of the Cα atoms is treated as a point. Each continuous fragment

consisting of four Cα atoms is called a quadrilateral. These R-coordinates are
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used to describe a quadrilateral for each fragment. The second coordinates (L-

coordinates) define a local Cartesian coordinate system, which is centered on a

given Cα atom. Therefore, for each quadrilateral, L-coordinates are defined as a

system of simple linear combinations:

~vx = ( ~v12 + ~v23)/| ~v12 + ~v23|

~vy = ( ~v12 − ~v23)/| ~v12 − ~v23|

~vz = ~vx × ~vy

where ~vx,~vy and ~vz are the L-coordinates vectors and ~vij denotes a vector pointing

from ith to j th Cα atom. The L-coordinates define the local positions of the

backbone atoms.

For each of these quadrilaterals, the L-coordinates are computed for the atoms

which form the central peptide i.e., the atoms lying between the second and third

Cα atoms. R-coordinates are also computed and were divided 0.2 and rounded to

the nearest integer. This resulted in discretized space defined by R-coordinates.

Now, all the quadrilaterals which are defined by R-coordinates are stored in the

lookup table. Also, the average grid positions of N, C, and O backbone atoms

defined by L-coordinates are also computed for each of the grid elements, as shown

in figure 2.3(b).

In the final reconstruction step, the R-coordinates of the target fragments

are calculated. These R-coordinates are used to find a quadrilateral which is

already stored in the lookup table. The retrieved quadrilateral also consists of

the proper set of local coordinates for N, C, and O atoms. There are some rare

cases in which a quadrilateral defined by a particular combination of R-coordinates

cannot be found in the entire lookup table. In these cases, the algorithm inspects

the neighborhood. If all the neighborhood is empty, the algorithm checks all

quadrilaterals in the database and the entry which minimizes the distance rQD

(eq.2.3) between the R-coordinates of the query and an element in the lookup

table(D):

rQD =

√
(RQ

13 −RD
13)

2 + (RQ
24 −RD

24)
2 + (RQ

14 −RD
14)

2 (2.3)
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2.3 PD2ca2main

PD2ca2main[34] is based on constructing Structural Alphabet (SA) in order to

solve the Cα trace problem. A Structural Alphabet (SA) is a short library of motifs

that together are able to describe most of the protein conformational space[37,

44]. A motif is defined as the smaller, and similar three-dimensional structures

present the whole protein molecule, which performs a similar function. Therefore,

Structural Alphabet represents a three-dimensional protein structure as a series

of one-dimensional ”letters”[38, 39]. Once the Structural Alphabet is constructed,

it is used to find the missing backbone atoms and build a full backbone model.

The novelty in this work lies in the use of Gaussian mixture models (GMMs) for

constructing this Structural Alphabet. A Gaussian mixture model is a probabilis-

tic model that represents normally distributed subpopulations within an overall

population. Here, the mixture model does not require any knowledge regarding a

data point belonging to which subpopulation. Therefore, GMM is an unsupervised

form of clustering technique. For building a structural alphabet using GMM, a

large number of high-resolution PDB structures were used, which were decom-

posed into fragments. Several fragment sets were built for comparison, ranging

in length from 4 to 7 consecutive Cα atoms, but the comparisons suggested that

6-mer fragments are the most suitable in this scenario. This resulted in a library

of 480,000 fragments from the training PDB structures. An example of a typical

fragment is shown in figure 2.4.

Figure 2.4: Example cis and trans components of a 6-mer fragment[34].
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A GMM is used on the library of fragments generated where each fragment

is of length 6 i.e., six consecutive Cα atoms. This is achieved by converting the

fragment library to a dataset of 12-dimensional data points. Using the figure 2.4

as a reference, a single point in the dataset is represented as:

x = (Cx
α−2, C

y
α−2, C

z
α−2, . . . , C

x
α+3, C

y
α+3, C

z
α+3)

Since the Cα0 and Cα+1 are adjacent to the fixed idealized peptide bond, this

results in a minimal variation in their positions. Therefore, this information is not

included in the data used by GMM fitting.

The GMM fitting to this dataset started with hierarchical clustering of data

points which gives starting values for the expectation-maximization (EM) algo-

rithm. Since a large number of points are present in the beginning, only 2000

random sample points were chosen to perform the initial clustering. These clus-

ters then initialize the iterative rounds of EM, which used the complete dataset

until the convergence is reached.

The Bayesian information criterion (BIC) was used to evaluate the optimum

number of model components or clusters. While fitting a model using GMM, it

is possible to add parameters in order to increase the likelihood of a model, but

this can overfit the model. To avoid this, BIC introduces a penalty term for the

number of parameters in the model. Since these penalty terms are stronger than

the Akaike information criterion (AIC), it is particularly more suitable in this

instance. There is always a trade-off between the number of components resulting

from the model and the complexity of the model. It is expected that a large

number of components would result in better performance, but this will increase

the complexity of the model. Thus, we need a model that is reasonably constrained

in order to retrieve an alphabet small enough to maintain a fast reconstruction.

In this scenario, BIC leads to the selection of 528 component mixture model.

To find the coordinates of the actual structure given a target Cα trace, the

structure is first divided into 6-mer fragments. Now we are given a set of target 6-

mer fragments and Structural Alphabet (SA) created before using the GMM. The
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member of the Structural Alphabet (SA) which minimizes the weighted Cα RMSD

superposition value using a fast quaternion-based method[30, 48] is determined.

The Weight Factor (W) was successively decreased by a factor of ten for Cα atoms

which are present at the outer positions such that

W (Cα−3) = 1
100

, W (Cα−2) = 1
10

, W (Cα−1) = 1

W (Cα0) = 1, W (Cα+1) = 1
10

, W (Cα+2) = 1
100

The significant advantage of using this type of weighting scheme is to reduce

the impact of averaging errors, which can distort the geometry of the outermost Cα

atoms in some members of the alphabet. The factor of ten, which is used for the

above weighting scheme, is not optimized thoroughly but gave the results which

are adequate. The rotation matrix, which is determined by fitting the Cα atoms

of the optimal ”letter” or component, is then utilized to find the final placement

of the peptide bond atoms on the target structure.

In addition to the EM algorithm used by the Gaussian Mixture Modelling tech-

nique to find the appropriate number of components, this software also provides

an optional gradient energy minimization procedure, which can further improve

the result of the computed structure. This can lead to the longer running time

of the overall procedure. During energy minimization, the positions of Cα atoms

are kept fixed while the other backbone atoms are free to move. This minimiza-

tion procedure is performed using a previously defined simple backbone potential

energy function[32].

This complete algorithm was implemented as part of a protein structure model-

ing software package called PD2 and was entirely written in the C++ programming

language.
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2.4 Analytical approach for protein back-

bone reconstruction

This section presents an analytical method for generating the entire backbone of

the protein structure using only the coordinates of the Cα atoms [43]. This method

has a purely analytical foundation since it uses only the trigonometric relations

that exist between different bond lengths and bond angles in a protein molecule.

There are two major steps involved in the reconstruction of the protein backbone

(i) Determination of β-carbon positions (ii) Backbone reconstruction. These steps

are briefly explained in the following subsections.

2.4.1 Determination of β-carbon positions

The first step in the reconstruction procedure is to determine the position of the

β-carbon atoms. A Cβ atom is defined as the first atom of the side chain in an

amino acid[1]. The bond between α and β carbon atom is fixed between each

residue. There is a need to determine the appropriate reference system which can

uniquely find the position of the Cβ atom. Such a reference system is defined using

figure 2.5.

Figure 2.5: Schematic Representation of reference coordinate system to fix the
position of Cβ atom[43].
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The mathematical equations for the reference system can be stated as:

ρi,i+1 =
ri,i+1

|ri,i+1| ρi,i−1 =
ri,i−1

|ri,i−1|

u1 =
ρi,i+1×ρi,i−1

|ρi,i+1×ρi,i−1|

u2 = − ρi,i+1+ρi,i−1

|ρi,i+1+ρi,i−1|

u3 = u1 × u2

Here ri,i+1 and ri,i−1 are defined as the two vectors joining Cα
i with Cα

i+1 and Cα
i

with Cα
i−1 respectively (refer Fig 2.5). Moreover, u1, u2 and u3 are the reference

axis.

Now the position of Cβ
i with respect to Cα

i is determined by knowing the

distance between the chemical bond Cα and Cβ, dαβ, and three direction cosines

δ1, δ2 and δ3 between this bond and the reference system defined above. The

average values of distance between Cα and Cβ, dαβ, and three direction cosines

δ1, δ2 and δ3 are summed up in a table. These values are defined for each of 20

residues that are possible.

2.4.2 Backbone reconstruction

Once the coordinate of Cβ
i for a given residue, is determined using the above step,

the coordinates of Carbon (C) and Nitrogen (N), connected to the Cα
i atom, are

determined. Refer to figure 2.6 for a full representation of a protein backbone that

defines different bond lengths and bond angles between different atoms.

To compute the coordinates of C and N, the distance between Cα
i and C (dαC)

and the distance between Cα
i and N (dαN) are assumed to be known. Along with

this the angles τNαβ, τβαC , τNαC are also assumed to be known. These distances

and angles are depicted in figure 2.6. All these values were found, for each residue,

by analyzing the Protein Data Bank (PDB).

Several geometrical constraints are applied in the form of mathematical equa-

tions. The various geometrical constraints under which these equations lies are:
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Figure 2.6: Full atom representation of protein backbone[43].

(i) Bond Angle, (ii) Bond Length, (iii) Cα chirality and (iv) Angles η and ε. All

these equations must be satisfied simultaneously to find the coordinates of Ci and

Ni atoms connected to Ci
α. For a detailed description of these mathematical equa-

tions, please refer to [43]. The solution to these equations leads to the coordinates

Ci and Ni atoms.

By knowing the coordinates of Ci, one can easily determine the coordinates of

Oi by using the distance between Ci and Oi (dCO) and the angle τOαα. The angle

is defined as the angle between atom O, atom Ci
α and atom Ci+1

α . This process is

repeated for all the Cα atoms in the protein molecule and the coordinates of all

the atoms of the protein backbone are calculated.
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Chapter 3

Distance Geometry approach

Distance Geometry problem is to find the coordinates of a set of points when only

distances between some pairs of points are provided. A lot of applications of Dis-

tance Geometry problem lies in the field of biology where experimental techniques

such as Nuclear Magnetic Resonance(NMR)[5] can measure the distances between

pair of atoms of a given molecule. The problem to identify the three-dimensional

structure of the molecule is called the Molecular Conformation problem. The

major focus is on proteins because the three-dimensional structure of the protein

provides clues about the functioning of that particular protein. Since the problem

of Distance Geometry is used in the domain of a molecule, it is often termed as

the Molecular Distance Geometry problem. In this thesis, the distance geometric

approach is considered for solving the Cα trace problem, which does not involve

the use of building huge protein fragment libraries.

3.1 Review of the Distance geometry tech-

niques

This section will provide a thorough discussion of the algorithms and techniques[50],

which are used for solving the Distance Geometry Problem. Also, an overview of

some software packages which are built using these techniques is mentioned. The
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first two techniques are concerned with finding the solution to the problem know-

ing all the exact distances between the points. The third technique reduces the

problem into smaller subproblems, which can be solved to get a solution. The

least-square minimization algorithm, which solves the distance geometry problem

as a type of optimization, is discussed towards the end of the section.

3.1.1 Cayley-Menger Determinant

Let us assume that all the exact distances between all the pairs of points are

provided then the mandatory conditions for the distance matrix

D(p0 , ...., pn) =



0 d01 ... d0n

d10 0 ... d1n

... ... ... ...

dn0 dn1 ... 0


of n+1 points p0, p1, ..., pn which can be embedded in euclidean space En is given

by Cayley-Menger [47] such that the CM determinant(p1, ...pn) ≥ 0. The given

distance matrix for the points p0, p1, p2, p3 can be represented in the form of Cayley-

Menger determinant[47]: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 d201 d202 d203

1 d210 0 d212 d213

1 d220 d221 0 d223

1 d230 d231 d232 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The rank of the Cayley-menger matrix gives the minimum embedding dimension.

For details please refer to [51].

One important use of Cayley-Menger matrix is to find the missing distances

present in the distance matrix. For an arbitrary graph with n vertices, the pre-

distance matrix D = [Dij] is a symmetric matrix such that Dij = d2ij, where dij

is the distance between the vertices (points) i and j of the arbitrary graph. The
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Cayley-Menger matrix, C = [Cij ] is a symmetric (n + 1) × (n + 1) matrix such

C0i = Ci0 = 1 for 0 < i ≤ n, C[0, 0] = 0 and Cij = Dij for 1 < i, j ≤ n [14].

3.1.2 Decomposition of Distance matrix

Suppose all the exact distances between all pair the points are known, then we can

represent this in a form of a matrix, D = [dij], where dij corresponds to the distance

between points i and j. Let’s assume we have set of points x0, x1, x2, ..., xn. We

also assume that coordinates of x0 to be (0,0,0) to be the origin.

Our problem is to calculate coordinates of these points. The distance con-

straints are given as:

|xi − xj | = dij , i , j = 1 , ....n

or equivalently

|xi |2 = d2
i0

where d2i0 is distance between point i and origin

|xi − xj |2 = d2
ij

by expansion

d2
i0 − d2

ij + d2
j0 = 2xT

i xj , i , j = 1 , 2 , ....., n

Let

Dij = (d2
i0 − d2

ij + d2
j0 )/2 ,

then a matrix D can be defined as

D = [Dij ]

Let X be an n × 3 coordinate matrix

X = [xT1 ; .....;xTn ; ]
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we have

D = XXT

For a solution to exist the rank of matrix D must be 3. Therefore, we can perform

a singular value decomposition for D to get

D = UσU T

Where U is an n× 3 orthogonal matrix and σ is the eigen value diagonal matrix

with diagonal elements represented by σ1, σ2, σ3. These diagonal elements are

three non-zero singular values of D. A solution for

D = XXT

exists and is given as

X = Uσ(1/2)

The time complexity of singular value decomposition is O(n3) time. Therefore, a

polynomial time solution to the distance geometry problem can be obtained given

all the exact distances. More details can be found in [8].

3.1.3 Graph Reduction

Let’s consider the distance geometry problem in terms of the graph embedding

problem where points are considered as nodes and distances as edges. The weights

on the edges are the distance values. Now the solution to the problem is to embed

the graph in a Euclidean space. This is called the graph embedding problem. The

graph is more often not a complete graph, meaning that some edges are missing.

In such a case, there will not be a unique embedding. In other words, there is

more than one way to position the points in euclidean space such that distance

constraints are still satisfied. This type of graph is called a flexible graph.
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The property of rigidity of a distance graph is important for studying the

distance geometry problem. A mandatory condition that a graph has a unique

embedding is that it must be rigid. A graph that has partial reflections is also not

said to have unique embedding. This condition can only be ensured if, for three-

dimensional embedding, a graph is four-connected. These conditions are used

to find graphs or subgraphs that have unique embeddings. In order to solve the

embedding problem for a given distance graph, decompose the distance graph into

such sub-graphs. Once the solution for subgraphs is found, they can be combined

to form a solution for the whole graph. For more details, refer to [20].

3.1.3.1 ABBIE

The ABBIE software package Hendrickson developed by [20] can be used to obtain

the three-dimensional embedding of a molecular structure by inputting just the

pairwise distance measurements. This software uses the method based on graph

reduction. A given distance graph is first recursively decomposed into smaller

sub-graphs, each having a unique three-dimensional embedding. Each of these

sub-graphs is solved by minimizing the least-square error function. The idea here

is to apply a divide-and-conquer approach to find the overall solution of the original

distance graph. There are quite a bit of advantages in using this algorithm. Firstly,

even if there is insufficient information solving a bigger graph, the method is able

to solve uniquely for small chunks of the graph. Secondly, sometimes only the

solution to sub-graphs holds importance, not the original graph, so the algorithm

can be used to solve only for those important sub-graphs. Third, the algorithm

can also determine whether sufficient information is provided to solve the problem.

Lastly, the problematic sub-graph i.e., the one which cannot be solved due to

erroneous data, can be identified.
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3.1.4 Least-Squares Formulation

In this subsection, we will formulate the distance geometry problem as a global

least-squares problem. Let us consider the problem with exact distances; the

problem can be defined with a set of equality constraints as,

|xi − xj | = dij , (i,j) ∈ S

Where S may or may not contain the whole set of distance pairs. If we want

to solve these types of problems, we can measure the relative errors between the

calculated and given distance using the following equation,

|xi − xj |2 − d2
ij

d2
ij

, (i,j) ∈ S

This relative error is collected for each pair of points to obtain an overall error

function,

f (x1 , ...xn) =

∑
i,j∈S

[
|xi − xj |2 − d2

ij

d2
ij

]2

Here we can notice, if the distance constraints are properly met then the error

function is equal to zero. Similarly, for problems involving bounds on the distance,

we have below inequalities,

lij ≤ |xi − xj | ≤ uij , (i,j) ∈ S

Then an error function can be written as,

f (x1 , ...xn) =

∑
i,j∈S

min2 [
|xi − xj |2 − d2

ij

d2
ij

, 0 ] + max 2 [
|xi − xj |2 − d2

ij

d2
ij

, 0 ]

It is not very difficult to verify that if all the inequality constraints are met, the

error function will be equal to zero.
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With the above error function f, we can easily see that a set of coordinates

x1, x2, ...xn gives the solution to the distance geometry problem if and only if it

is the global minimizer of f and the global minimum should be equal to zero.

Therefore, the distance geometry problem can be formulated as an optimization

problem.

minx1 ,..,xn f (x1 , ..., xn)

More details could be found in [8].

3.1.4.1 DGSOL

DGSOL software package, which was developed by More and Wu [35][36], tries

to solve the molecular distance geometry problem by using global smoothing and

continuation approach. This particular approach still works without having the

availability of all distance or bounds and takes into consideration the least-squares

formulation of the distance geometry problem.

The least-squares problem generally consists of many local minimizers. To

locate an actual global minimizer, the least-squares function is first transformed

into a set of gradually deformed but smoother or easier functions with fewer local

minimizers by using the global smoothing and continuation method. This method

is used on some small to medium-sized test problems, which consists of approx-

imately 200 points or atoms. From the result, it was evident that the technique

was able to find the global minimizer of the least-squares function with a very

high probability.

One of the major advantages of using this approach is that it does not require

all the distances or bounds to be known. Since the method uses a small num-

ber of terms, the cost for solving the distance geometry problem becomes cheap.

The technique becomes more practical when only sparse set of distance bounds

are available. The bound smoothing technique can be helpful for getting some

additional distance data but are generally not so reliable.
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3.1.5 Alternating Projection Algorithm

Glunt et al. [17] proposed an Alternating Projection algorithm, which can be

used for solving the distance geometry problem with only a given set of bounds on

distances. The main idea here is to first determine the set of distances from the

given distance bounds. The resulting distance geometry problem is then solved by

minimizing an error function(optimization). The program stops when a solution is

found; otherwise the violated constraints adjust the distances, and the algorithm

is repeated again for a new set of distances.

An important condition for the program to run is the availability of bounds

on all the distances. In each iteration, a least-squares problem is solved, and this

requires a huge amount of computation. For instance, if Newton’s algorithm is

used, the total cost can be as high as O(n)3 and if n is too large and the problem

needs to be solved in many iterations which can be too expensive to use. Therefore

spectral gradient algorithm is used in the alternating projecting algorithm instead,

which is much cheaper.

3.2 Crippen and Havel’s algorithm

Crippen and Havel [8], pioneering work in the field of distance geometry for molec-

ular conformation, resulted in an algorithm that is used for solving the molecular

conformation problem arising in NMR spectroscopy[5] and protein structure de-

termination. There are three main stages involved in the algorithm. The first step

is to take the input distance bounds and convert these bounds into distance lim-

its(bound smoothing). The second step is to choose a random value between the

limits and fix the distance for all pairs of points. In the final stage, coordinates

from the distance constraints(least-squares optimization) are retrieved. A brief

description of all the stages is given in the upcoming sections.
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3.2.1 Bound Smoothing

Due to imperfect measurements, the distance between the points is generally spec-

ified as pairs of upper and lower bounds. In order to calculate the coordinates of

the points, the distance bounds should be first tightened into appropriate limits,

and the process of converting given bounds into limits is called bound smoothing.

Those limits which satisfy triangle inequality are known as triangle inequality lim-

its. A modified version of Floyd’s algorithm presented by Dress and Havel [10] is

used to convert the bounds into limits to ensure that the limits satisfy the trian-

gle inequality. If there a triangle inequality violation lij > uij is found, then the

program stops the execution of the current process and repeats itself to find out

the limits.

There are some geometric rules which are used in the bound smoothing. For

given three points i,j, and k, let the lower and upper bounds be denoted as lij,

uij, ljk and ujk. Then the lower and upper limits for the distance between points

i and k must agree with the following rules [10],

lik = max(lik, lij − ujk, ljk − uij)

uik = min(uik, uij + ujk)

Similar to this other rules can also be derived for the distance bounds with more

than three points [10].

3.2.2 Metrization

The next step after bound smoothing is to find the distance from these distance

limits. This process is called Metrization. As a part of this process, we first take

one of the distances and choose a random value between its lower and upper limits

as the distance value. Next, we set its lower and upper limits to this random value

and recompute the triangle inequality limits using these changed limits as the
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upper and lower bounds. Repeating the same process for each distance results in

a set of lower and upper triangle inequality limits that are equal to each other and

lies within the original limits. The distances which are generated this way form

the desired distance matrix that satisfies both the triangle inequality and original

limits. For details, please refer to [8],[10].

3.2.3 Embedding

The last piece of the puzzle left in the Crippen and Havel’s algorithm is to find

the coordinates from the distance matrix. This consists of the following steps:

(i) The distance between each point from the origin is calculated, to avoid

overemphasizing any set of points, according to

D2
i0 =

1

N

N∑
j=1

D2
ij +

1

N2

N∑
j=2

j−1∑
k=1

D2
jk

where Di0 is the distance of the point i from the origin and Dij is the distance

between points i and j as shown in the below figure

X1

X2 X3

X0 d13d12

d23

d02

d01

d03

Figure 3.1: Distance between points and origin

(ii) Now the elements aij of the metric matrix A are computed from the distance

of points from the origin as,

aij =
1

2
(D2

i0 +D2
j0 −D2

ij)

(iii) Let W be the diagonal matrix of weights W = diag(w1, ....., wn), we assume
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all the weights to be 1 in our case the weights, then the B matrix is calculated as,

B = W AW

(iv) According to Gale and Householder equation[51], If B matrix is positive

semi-definite, the final coordinate matrix X is obtained by diagonalizing the B

matrix,

B = σ L2 σ
′

and

L2 = [λ21, λ
2
2, ........λ

2
r, 0, ...0]

Finally,

X = σ
√
L

where L is the diagonal matrix of latent roots of the B matrix, and σ is the

diagonalized eigen vectors of the corresponding latent roots.
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Chapter 4

Molecular Distance Geometry

approach for the Cα trace

problem

Building from the knowledge and material provided in the previous chapters, we

will describe the main contribution of this thesis in this chapter. We propose

a new method for solving the Cα trace problem using the Molecular Distance

Geometry approach. The subsequent sections will discuss the overall proposed

methodology, followed by the detailed description of every step of the algorithm.

The key advantage of using our approach is that it eliminates the building and

searching of a huge protein fragment library.

4.1 Overview of the Method

The method described here consists of several steps to solve the Cα trace problem.

An incomplete PDB file that consists of only the coordinates of the Cα atoms

is read using the Biopython package[6] developed in python. After reading an

incomplete PDB file, the coordinates of the atoms of the single peptide plane are

calculated. A peptide plane consists of five atoms, namely two Cα, C, N, and O
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atoms. In order to compute the coordinates of these atoms in the peptide plane,

we used EMBED algorithm[19], which is used to solve the Molecular Distance

Geometry Problem. The computed coordinates are then subjected to appropriate

rotation and translation with respect to the first two original Cα coordinates, which

are present in the incomplete PDB file. Once, the two Cα atoms are aligned with

the two original Cα atoms, the same rotations, and translation are then applied

to all the other atoms present in the single peptide plane. Now, the process

is repeated for the entire chain of the protein molecule taking two Cα atoms

successively, finding the appropriate rotation and translation, and applying the

same rotation and translation to all the atoms of the peptide plane. SCWRL4[26]

is used to predict the side chains for the protein described above. The above

output is then subjected to LBFGS energy minimizer[29], which is implemented

using a molecular modeling tool called MESHI[23].

4.2 Proposed Methodology

Our methodology works in four major steps:

a) Step 1: Prediction of main chain atoms using Cα trace: This step

mainly calculates the coordinate of a single peptide using the prior known bond

lengths and bond angles. The coordinates are calculated using the EMBED

algorithm[19].

b) Step 2: Appropriate Rotation and Translation: This step iteratively

calculates the appropriate rotation and translation, which can be applied to all

the atoms in the peptide plane based on the two successive Cα atoms in the trace.

c) Step 3: Side Chain prediction using SCWRL4: This step uses SCWRL4[26],

which is designed for the task of prediction of side-chain conformations given fixed

main chain atoms of a protein.

d) Step 4: Energy Minimization using MESHI: The final step mini-

mizes the overall energy of the calculated protein structure using the LBFGS
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algorithm[29] using a molecular modeling suite MESHI[23].

A flowchart of our proposed approach is given in figure 4.1.

Figure 4.1: Flowchart of our Proposed Methodology

4.2.1 Prediction of main chain atoms using Cα

atoms

The main chain of a protein consists of C, N, O atoms in addition to two Cα

atoms. A rigid planar structure is formed between these five atoms called the

peptide plane, as described in chapter 1 section 1.2.2. Figure 1.3 depicts the
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Table 4.1: Distance between each atom in the peptide plane.

Cαi C O N Cαi+1

Cαi 0 1.51 2.4 2.42 3.8
C 1.51 0 1.24 1.33 2.43
O 2.4 1.24 0 2.25 2.76
N 2.42 1.33 2.25 0 1.46
Cαi+1 3.8 2.43 2.76 1.46 0

peptide plane formed by these atoms. It also depicts the various bond lengths and

bond angles between different atoms in the peptide plane. The values of covalent

bond lengths and angles, as shown in figure 1.3 of a peptide plane, were suggested

by Engh and Huber[15]. They were able to find the covalent bond lengths and

angles with remarkable accuracy.

Using these values of the bond lengths and bond angles, we have calculated

the all remaining the distances between atoms in the peptide plane namely Cα, C,

N, O. Since there are a total of five atoms between the peptide plane, we need a

total of ten distances to compute the coordinates of the atoms in the peptide plane

using EMBED algorithm[19]. We know only four distances between atoms in the

peptide plane in terms of bond length. The other six distances are computed by

using the cosine law. The distance between two Cα atoms, which is also called

as the plane length is taken to be equal to 3.8Å. Thus, all the distances between

each pair of atom in the peptide plane are given in table 1.

A version of EMBED algorithm[19] was implemented using python program-

ming language[24]. The author has used the EMBED algorithm to tackle The

Point Placement Problem in the inexact model. In this work, the author tries

to find the location of n points on a line given only the upper bound and lower

bound distances between some pairs of points. The primary motivation of this

work comes from the probe location problem in DNA mapping. For solving this

problem, the author has developed the DGPL program[24], which takes a set of

input distances in the form of upper and lower bounds between the pair of n points

and finds the coordinates of the points in the given dimension. The working of

the DGPL program is explained below:
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DGPL Program

Input data: i. The total number of points used. ii. The embedding dimension.

Output : Final coordinates of the points in the embedding dimension.

Process:

Step 1 : A random layout of n given points is created such as {p0, p1, ...., pn}.

Step 2 : If there are unknown distances between certain pairs of points, [−∞,∞]

is assigned as the values in upper and lower bounds distance matrix.

Step 3 : A modified version of the Floyd’s shortest path algorithm[19] is used which

can convert the given distance bounds into distance limits.

procedure Floyd( Natom,Lower,Upper )

for k from 1 to Natom do

for i from 1 to Natom - 1 do

for j from i + 1 to Natom do

comment: Path lengths in left-hand network.

if Upper[i,j] > Upper[i,k] + Upper[k,j] then

Upper[i,j] :=Upper[i,k] + Upper[k,j];

comment: Path lengths from left to right-hand network.

if Lower[i,j] < Lower[i,k] - Upper[k,j] then

Lower[i,j] :=Lower[i,k] - Upper[k,j];

else

if Lower[i,j] < Lower[j,k] - Upper[k,i] then

Lower[i,j] :=Lower[j,k] - Upper[k,i];

comment: Check for triangle inequality violations.

if Lower[i,j] > Upper[i,j] then

exit( ‘‘bad bounds’’ );

endfor endfor endfor

endproc

Step 4 : A random number is chosen between upper and lower limit. The
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process is repeated until all the distances get fixed.

Step 5 : B matrix is calculated which is equal to the sum of squared distances

between two points and is given by [51]:

bij = (d2in + d2jn − d2ij)/2

where dij is the distance between points i and j, n is the starting point(origin) p0.

Step 6 : The eigenvalue decomposition of the B matrix is calculated. The resultant

coordinates of the points are found by finding the product of the largest eigenvalue

with its corresponding normalized eigenvectors.

We have used the DGPL program[24] explained above to find the coordinates

of the atoms of the peptide plane by using only the distances given in Table 1.

The coordinates of these atoms were calculated in three-dimensional space.

4.2.2 Appropriate Rotation and Translation

Once the atoms of the single peptide bonds are generated using the EMBED

algorithm[19], the atoms of the peptide plane are subjected to appropriate rota-

tions and translation to determine the actual positions of these atoms with respect

to the given Cα trace. The process of rotation and translation can be explained

by using figure 4.2.

The structure shown in violet color in figure 4.2 depicts the peptide plane

calculated using the EMBED algorithm. For doing the translation and rotation,

we need to take the first and the last atom of the peptide plane. These atoms

are the two Cα atoms. We align these two atoms with the two subsequent Cα

atoms in the original trace (shown in blue) by performing appropriate rotation

and translation. This process of alignment is then repeated for the entire chain

of the protein molecule, every time taking the original two subsequent Cα atoms.

The values of rotation and translation calculated at each step are then applied to

other atoms (C, N, and O) in the peptide plane. This reconstructs the main chain
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Figure 4.2: Rotation and Translation

of the protein molecule.

We present an algorithm to find appropriate translation and rotation for the

atoms in the peptide plane. This algorithm is given below:

Algorithm 1: Rotation and Translation

Result: Final Rotation and Translation
input : EList, CAList
output : finalList
while i←length of CAList do

EListTemp ← EList
fixedList ← (CAList[i], CAList[i+1])
moveList ← (EListTemp[0], EListTemp[4])
tM ←fixedList[0] - moveList[0]
fixedList ← translation(moveList,fixedList,tM)
θ1, dir1 ← rotation1(moveList,fixedList)
yList← any two random points lying on the Y-axis
θ2, dir2 ← rotation2(fixedList,yList,moveList)
θ3, dir3 ← rotation3(moveList,fixedList)
θ4, dir4 ← rotation4(moveList,fixedList,θ2,!dir3)
while n← length of EListTemp do

EListTemp[n]← rotate(EListTemp[n],
θ1, θ1, θ1, θ1, dir1, dir2, dir3, dir4, tM)

finalList.append(EListTemp)

return finalList

The above algorithm takes two lists as input, the coordinate list generated

by EMBED algorithm (EList), and the given Cα trace atom list (CAList). The
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algorithm runs for the length of atoms in the Cα trace. Each time two subsequent

Cα atoms are picked from CAList and stored in fixedList. The first and the last

element from EList are picked stored in moveList. The goal is to align the first

two atoms in moveList with the first two atoms in fixedList. The translation is

carried out first, which coincides the first atom in fixedList with the first atom in

moveList. Once the two atoms coincide, rotation is carried out next. A total of

four rotations are carried out. These sets of rotations need to follow a particular

sequence in order to align fixedList and moveList atoms.

In general, the angle between the two vectors X & Y is calculated by using the

following formula:

θ = cos−1
(X.Y )√
X2 + Y 2

The direction for rotation i.e., whether to rotate clockwise or anti-clockwise, is

determined by finding the determinant (D) between vector X and Y. If D > 0

anti-clockwise rotation otherwise clockwise rotation.

Let us consider vector A as target vector and vector B as reference vector,

which are formed by joining atoms in the moveList and fixedList, respectively.

Rotation1 is done only on vector A along the z-axis so that both vectors A & B lie

in the same plane. Rotation 2 is done along the z-axis on both vectors A & B such

that both the vectors lie in the yz-plane. Rotation 3 on vector A such that two

vectors get aligned along x-axis. Rotation 4 is done to bring back both the vectors

to the original position of vector B along the z-axis. The result of these rotations

aligns the two Cα atoms calculated using the EMBED algorithm with the two

consecutive Cα atoms from the original trace. The rotations and translation are

stored and applied all to other atoms of peptide plane calculated using EMBED

algorithm i.e., C, N, and O. The process is then repeated for all the subsequent

pairs of Cα atoms until the end of the chain is reached. The resultant list is finally

returned, which consists of the coordinates of the atoms of the main chain of a

protein molecule.
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4.2.3 Side Chain prediction using SCWRL4

Determining side-chain conformations is a vital step in protein structure predic-

tion and protein design. Many side-chain prediction methods are based on sample

space, which depends on a rotomar library. A rotomar library is defined as a sta-

tistical clustering of side-chains that are observed in known protein structure[11].

There are two types of rotomar libraries, such as backbone-independent[31], where

all the side chains are grouped together regardless of the local protein backbone

conformation, and backbone-dependent where the frequencies and dihedral angles

are varied according to the protein backbone dihedral angles φ and ψ[12, 13].

SCWRL3[4] is one of the most used programs for side-chain predictions. As of

April 30, 2009, it has around 2986 licenses in 72 countries[26]. It uses a backbone-

dependent rotamer library[12], a simple energy function based on the library ro-

tamer frequencies and a purely repulsive steric energy term and uses graph de-

composition to solve the combinatorial packing problem[4]. There are three main

reasons as to why SCWRL3 became popular. The first one is speed, the sec-

ond one is accuracy, and the third one is usability. The input to this program

is the PDB coordinates for the backbone atoms and outputs the coordinates for

the structure with predicted side-chains while maintaining the same residue num-

bering and chain identifiers as the input structure. One disadvantage of using

SCWRL3 is the method used for graph decomposition sometimes does not result

in a combinatorial optimization, which can be solved easily and quickly. This may

take many hours to finish instead of finishing in seconds.

SCWRL4[26] is a major improvement over SCWRL3. The accuracy of SCWRL4

is greater than the accuracy SCWRL3 or comparable to many other programs that

were developed before, for side-chain prediction. Secondly, the speed is greater

than SCWRL3 and also maintains the usability. It overcomes the disadvantage

of SCWRL3 by ensuring that the program is always able to solve the prediction

problem in a reasonable time, even when the graph is not decomposable. This is
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achieved by taking an approximation that does not guarantee a global minimum of

energy function in a given rotamer search space, but this performs the calculation

quickly in most of the cases.

In summary, SCWRL4 is available as a downloadable program which takes

input as PDB coordinates calculated from the Step 1 and Step 2 of our approach

and predicts the coordinates of side-chain atoms of the protein molecule. This

program generates an output PDB file which consists of all the missing atoms

along with their respective coordinates.

4.2.4 Energy Minimization using MESHI

MESHI[23] is an object-oriented molecular modeling suite written in Java. The

main reason for choosing Java as the language for developing this tool is that Java

enforces object-oriented design more vigorously, has a built-in garbage collector,

and is platform-independent. Due to this object-oriented approach, every aspect

of molecular modeling can be represented by either a class or an interface. In this

sense, MESHI consists of classes not just for molecular elements, such as atoms,

residues, and proteins, but also for geometrical concepts, such as distances and

angles, for energy terms and for algorithmic procedures, such as line-search. The

various classes in MESHI are logically grouped together and are arranged in a

hierarchy of packages. A brief summary of the five major packages is presented

below.

Molecular Elements: This package consists of classes to represent atoms, residues,

and proteins. This package also consists of specialized lists. These general-purpose

classes are extended by specific molecular models such as All-atom and Cα-only

proteins in the form of sub-packages.

Geometry: This package consists of classes that represent coordinates, dis-

tances, angles, and torsion angles, as well as specialized containers. The objects

of these classes can be shared among different energy functions.

Energy: The classes included in this package consists of abstract classes that
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represent different aspects of energy terms. These abstract classes perform activi-

ties such as reading parameters from files, binding of atoms and geometry elements

to their different roles in the energy function, and the actual evaluation of the en-

ergy. The Total energy class is a container which is able to store a large number

of energy terms.

Optimizers: This package consists of classes that implement optimization and

conformational search algorithms. The most useful algorithms which rely on en-

ergy function derivability such as LBFGS[29] and MCM[28] are implemented in

this package.

Util: The classes included in this package are able to handle files, lists, and

command interpretation.

We used the MESHI library and implemented a Java Class, which is used to

minimize the energy of the protein using the LBFGS algorithm[29]. This class min-

imizes the protein structure according to standard energy terms, such as a bond,

angle, plane, out-of-plane (chirality), torsion pair (Ramachandran+rotamers). The

output of the program is the final PDB file, which contains a complete protein

structure.

4.3 Experminental results

We have implemented our proposed approach for solving the Cα trace prob-

lem using python 3.7 on a computer with the following configurations: Intel(R)

Core(TM) i5-3230M CPU @ 2.60GHz, OS: Windows 10, Architecture: 64-bit. We

have used Click python package to integrate different parts of our approach. Using

this python package, we are able to streamline each step in our approach using a

single Command Line Interface (CLI) application. In this section, we will focus

on presenting various computational results we have obtained using the approach

mentioned in section 4.2. This will be followed by a discussion on these results

and conclusions that can be derived from these results. The following chapter will
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discuss the final conclusions and scope of future work with the current approach.

We have experimented with proteins whose Cα trace is given in the Protein

Data Bank (PDB)[2]. We implemented our approach, as described in section 4.2,

in order to determine the complete full 3-D structure of the protein molecule. Also,

we have used other state of the art methods such as PULCHRA[45] (discussed in

section 2.1), BBQ[18] (discussed in section 2.2) and PD2Main[34] (discussed in

section 2.3) for comparing our results. All these methods are used to solve the Cα

trace problem, but these methods use a large protein fragment library in order to

calculate the main chain atoms of the protein molecule.

We have used two different approaches to evaluate the quality of our approach

in comparison to other approaches. We have also made a Run-time comparison

between different methods to gain further insight into our approach.

The first method to evaluate our approach with other methods is the root-

mean-square deviation of atomic positions (or simply root-mean-square deviation,

RMSD). RMSD is the measure of the average distance between the atoms (usually

the backbone atoms) of two superimposed protein molecules. It is given by:

RMSD =

√
1

N

∑N
i=1 δi

where δi is the distance between atom i of the target structure and atom i of the

reference structure. The RMSD is often calculated for the heavy backbone atoms

such as C, N, O, and Cα.

The next approach to evaluate our approach is the measure the stereo-chemical

quality of our protein structure. For calculating the stereo-chemical quality, we

have used PROCHECK[27], which computes the Ramachandran Plot[42] of the

predicted structure. A Ramachandran plot is a good way to visualize energetically

allowed regions in a protein structure. It plots dihedral angles φ against ψ of amino

acid residues in a protein structure. This plot of dihedral angles is a good way to

show the distribution of amino-acid residue in a single protein structure. This can

be used for structure validation. A large percentage of data points in the favored

regions of the plot implies a better quality structure.
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In order to evaluate the results of our approach, two kinds of PDB files will be

used. First, the actual Cα trace files PDB files from the Protein Data Bank. These

files do not have all the coordinates of the atoms in the protein chain. Second,

the synthetic Cα trace files which are made by deleting all the other atoms except

Cα atoms. An RMSD value comparison is made between our method and the

other methods such as PULCHRA, BBQ, and PD2 ca2main in terms of only the

backbone atoms, namely C, O, N, and Cα. The other comparison is in terms

of the Ramachandran Plot. Here, a Ramachandran plot will be plotted for each

structure predicted through different methods, and the percentage of residues in

the favored regions will be compared.

PDB ID Residues PULCHRA[45] BBQ[18] PD2ca2Main[34]
1HIO 95 1.339 1.698 1.310
1A1D 146 1.383 1.695 1.340
1F6G 160 1.272 1.63 1.322
1BDX 190 1.413 1.746 1.338
1AE4 324 1.304 1.624 1.315
1LBG 357 1.359 1.641 1.323
2BK1 444 1.446 1.838 1.405
1QCR 446 1.355 1.641 1.330
2BK2 456 1.316 1.650 1.337
1KVP 497 1.322 1.627 1.328

Table 4.2: RMSD comparison on incomplete PDB files relative to our method.

Table 4.2. shows RMSD comparison on the incomplete PDB files between our

method and other methods such as PULCHRA, BBQ, and PD2 ca2main. We

can note that the backbone coordinates calculated by our method on the basis

of the Cα trace is comparable to other methods. This is evident from the low

RMSD values between the structure computed by our method and the structure

computed by other methods.

Table 4.3. on the other hand, measures the RMSD value between our method

and actual protein structure. Table 4.3 also captures the RMSD values for other

methods such as PULCHRA, BBQ, and PD2Ca2Main. The synthetic Cα trace

files are generated by deleting all the atoms except Cα from the actual PDB file of
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PDB ID Residues PULCHRA[45] BBQ[18] PD2ca2Main[34] Our Approach
1AHL 49 0.9310 1.3988 0.5686 1.3158
4PTI 58 0.6034 1.1553 0.4163 1.3277
1AIW 62 0.8758 1.2522 0.7247 1.2522
1CTF 68 0.5174 1.1947 0.2126 1.3308
1ADR 76 0.5427 1.1770 0.4140 1.3636
1UBQ 76 0.4091 1.1391 0.3363 1.4073
1PLC 99 0.5921 1.1398 0.4107 1.3798
2MHR 118 0.3973 1.1118 0.2617 1.3840
2LYM 129 0.5201 1.14779 0.3375 1.3749
1A3K 137 0.4715 1.1112 0.2426 1.3517
111M 154 0.3834 1.0880 0.2925 1.3320
1AEW 170 0.3517 1.1045 0.2845 1.3205
1VCA 199 0.5846 1.1423 0.3526 1.2658
1TIM 247 0.6356 1.1881 0.5796 1.3962
1A3X 487 0.6118 1.1493 0.4706 1.3456
1A5U 519 0.4825 1.0776 0.3125 1.3411
1A49 519 0.4622 1.0869 0.3193 1.3369

Table 4.3: RMSD comparison on synthetic PDB files between different methods
and actual structure.

the protein molecule. A graph is plotted between the number of residues on the

x-axis and the RMSD values obtained from different approaches on the y-axis, as

shown in figure 4.2. Moreover, we can see that the RMSD values lie between 1.2

and 1.4 as the number of residues varies. More importantly, our method shows

RMSD values, which are very comparable to the BBQ approach. Thus, from table

4.3 and figure 4.3, it is evident that our method shows RMSD values, which are

comparable to other methods.

PDB ID Residues PULCHRA[45] BBQ[18] PD2ca2Main[34] Our Approach
1HIO 95 87.7% 91.7% 94.3% 77.8%
1A1D 146 66.2% 69.2% 77.6% 69.2%
1F6G 160 82% 84.5% 89.5% 75.5
1BDX 190 85.9% 89.7% 92.4% 75.3%
1AE4 324 78.4% 82.9% 88.2% 70%
1LBG 357 74.1% 72.8% 80.1% 75%
2BK1 444 77.3% 81.3% 84.1% 73.3%
1QCR 446 78.7% 77.6% 81.4% 73.6%
2BK2 456 81.1% 85.9% 90.2% 70.5%
1KVP 497 78.2% 80.1% 87.3% 68.9%

Table 4.4: Ramachandran Plot allowed region comparison on incomplete PDB
files between different methods.

Table 4.4 shows the percentage of total residues in a protein molecule that

lies in the favorable region in the Ramachandran plot. The PDB files used here
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Figure 4.3: Graph depicting RMSD vs No. of Residues for different methods

are incomplete in the Protein Data Bank. The values obtained using different

approaches are captured and compared in table 4.4. Figure 4.4 depicts actual

Ramachandran plots for one of the PDB files with PDB ID-2BK1. From figure

4.4, we can note that the area described in red represents the favored region of

the Ramachandran plot. Each black dot represents a residue present in the given

protein molecule. The higher is the percentage of residues falling in the favorable

regions of the plot, the higher is the stereo-chemical quality of the protein. The

figure also depicts the Ramachandran Plot generated using all the four techniques.

We can see that using our approach, more than 70% of the residues are falling

under the favorable region, which shows high stereo-chemical quality.

Table 4.5 shows the percentage of residues lying in the allowed region of the

Ramachandran plot for synthetic PDB files for different methods. Figure 4.5 is a

graphical representation of table 4.5, where the x-axis represents the number of

residues in a protein molecule, and the y-axis represents the percentage of residues

lying in the allowed regions. From figure 4.5, it is clearly evident that using our

approach; we can get 75% of the residues lying in favorable regions most of the

time. This is true for protein molecules having a large number of residues, greater

than 154.
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(a) PULCHRA (b) BBQ

(c) PD2ca2Main (d) Our Approach

Figure 4.4: A Ramachandran plot generated for 2BK1 by PROCHECK[27]

Figure 4.6 depicts an actual Ramachandran plot for one of the PDB files with

PDB ID-5PCA. We can see Ramachandran Plots generated for a PDB file after

adding the coordinates of the missing atoms using all the different techniques.

This PDB file has 307 total number of residues out, which 75.7% of the residues

lie in the allowed region of the Ramachandran plot using our approach. Also,

5PCA is an example of a synthetic PDB file.

Thus, from all the results that we have seen so far, we can safely conclude that

our approach of using the Molecular Distance Geometry technique to solve Cα

trace problem is comparable to other methods. This can be seen from the RMSD
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PDB ID Residues PULCHRA[45] BBQ[18] PD2ca2Main[34] Our Approach
1AHL 49 69.4% 77.8% 80.5% 80.6%
4PTI 58 82.6% 91.3% 91.3% 80.4%
1AIW 62 48% 68% 62% 68%
1CTF 68 86.4% 88.1% 94.9% 72.9%
1ADR 76 83.1% 82.1% 91% 68.7%
1UBQ 76 84.8% 92.4% 95.5% 59.1%
1PLC 99 84.1% 89% 90.2% 65.9%
2MHR 118 41.9% 88.7% 94.3% 70.8%
2LYM 129 77.9% 86.7% 92% 74.3%
1A3K 137 79.7% 85.6% 87.3% 64.4%
111M 154 89.1% 94.2% 92% 75.2%
1AEW 170 89% 92.9% 94.8% 75.3%
1VCA 199 80.09% 81.8% 88.1% 75%
1TIM 247 79.5% 82.9% 85.8% 75.7%
1A3X 487 80.4% 84.6% 86.7% 73.7%
1A5U 519 81.5% 87.6% 91.3% 76.5%
1A49 519 83.2% 86.5% 92.2% 75.4%

Table 4.5: Ramachandran Plot allowed region comparison on synthetic PDB files
between different methods.

Figure 4.5: Graph depicting Allowed Region Percentage vs No. of Residues for
different methods

values and Ramachandran plot percentage values. The novelty of our work lies

in the fact that our approach only uses distances to find the coordinates of the

missing atoms in the peptide plane.

Now, we are going to present a runtime comparison of our approach with other

methods such as BBQ and PULCHRA. We are not able to calculate runtime for
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(a) PULCHRA (b) BBQ

(c) PD2ca2Main (d) Our Approach

Figure 4.6: A Ramachandran plot generated for 1AHL by PROCHECK[27]

PD2Ca2Main because it is available as a web application. We were able to run

BBQ and PULCHRA in our local machine. Thus, the configuration under which

BBQ, PULCHRA, and our approach solved the problem is the same.

Table 4.6 shows the runtime comparisons between different methods for solv-

ing the Cα trace problem. The time is measured in milliseconds for all three

approaches, and a graph is also plotted, as shown in figure 4.6. The graph shows a

number of residues in a protein molecule (x-axis) against running time in millisec-

onds (y-axis). It is clearly evident that the run time of our approach is significantly

less when compared to other approaches. We notice that the highest run time is
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PDB ID No. of Residues PULCHRA[45] BBQ[18] Our Approach
1AHL 49 61.22 1054.65 30.97
4PTI 58 63.907 1078.88 43.97
1AIW 62 66.26 1186.15 36.97
1CTF 68 66.91 1204.72 39.97
1ADR 76 97.93 1276.143 43.97
1UBQ 76 83.9041 1261.53 43.97
1PLC 99 92.90 1189.49 55.96
1ACX 108 289.22 1320.49 58.96
2MHR 118 120.7296 1187.52 64.95
2LYM 129 184.6233 1233.72 66.96
1A3K 137 118.185 1040.407 73.95
111M 154 130.01 1296.3922 79.949
1AEW 170 144.417 1221.387 155.902
1VCA 199 159.9616 1248.785 98.93
1TIM 247 270.248 1236.4231 122.924
1AE4 324 447.5575 1283.888 182.885
1A3X 487 426.142 1359.248 233.854
1A5U 519 415.66 1337.627 244.851
1A49 519 420.906 1405.1902 252.842

Table 4.6: Run time comparisons between different methods(in milliseconds).

Figure 4.7: Graph depicting Run time comparison between different methods.

shown by the BBQ method in all cases. We can see a linear increase in the run

time using our approach with an increasing number of residues.
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If we analyze the data given in table 4.6, we can say that, on average, our

approach shows a 44% run time improvement as compared to PULCHRA. Simi-

larly, when compared to BBQ, the run time improvement is nearly 92% using our

approach. The reason for this improved run time is because of the fact that we are

not searching the protein fragment library as opposed to other approaches that

are mentioned. The searching of the protein fragment library adds to the over-

all complexity of the algorithm. Moreover, building a protein fragment library is

requires a lot of effort and domain knowledge.

The primary reason for getting higher RMSD values and a low percentage of

residues in the favored regions of the Ramachandran plot as compared to other

methods is because we are using average values of bond lengths and bond angles.

Now, these average values can sometimes deviate from the real data. Since we

are calculating the coordinates of the atoms using these averages distances, we

get a structure that deviates from the actual structure. Moreover, the protein

molecules which are found in Protein Data Bank sometimes go through different

optimization procedures, which further optimizes the resultant geometry of the

structure determined using crystallographic experiments. This means that differ-

ent optimization procedures can sometimes produce, to some degree, a different

set of coordinates for a given structure. The fragment library search methods have

an intrinsic edge in this regard.

These reasons do not cause our approach to lose any kind of importance. The

major advantage of our approach is the faster run time as compared to other

methods. Moreover, our approach is very flexible because it uses geometrical

constraints and is independent of using any real protein structures. This makes

our approach ideal for solving non-complete models of a protein molecule that are

present in theory.
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Chapter 5

Conclusions

This thesis contributes towards the goal of providing an efficient solution to the

Cα trace problem using only the set of distances. Cα trace problem is one of the

critical problems in the field of protein structure determination. Many solutions

are available for solving this problem. Almost all the solutions use some form of

protein fragment library search. Building this protein fragment library requires a

lot of effort and domain knowledge. Furthermore, the process becomes complex to

search for a matching fragment from the vast fragment library. Here in this thesis,

we present a simple approach that does not involve any kind of protein fragment

library for predicting the backbone atoms of the protein molecule. It simply uses

one of the Molecular Distance Geometric Approach to find the main chain atoms

of the protein molecule.

Chapter 1 introduced the problem statement in detail, along with all the pre-

liminary definitions and concepts required to understand the problem statement

clearly.

Chapter 2 discussed the prior work done in the field of protein structure pre-

diction using only Cα trace. We can see that all these methods are based upon the

fundamental concept of using a protein fragment library in order to predict the

structure of the unknown protein molecule. Both PULCHRA[45] and BBQ[18]

are available as downloadable softwares and can be used locally. Both these
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techniques use a large protein fragment library built using Protein Data Bank.

PD2Ca2Main[34] is available as a web application. This technique is based on

using a Structural Alphabet(SA). A Structural Alphabet is constructed by per-

forming a Gaussian Mixture Modelling technique on a large protein fragment

library. This resulted in a selection of 528 components. Moreover, an analytical

technique for calculating the coordinates of the main chain of a protein molecule,

is also presented. A detailed description of these techniques was discussed.

Chapter 3 discussed in detail various distance geometry techniques and tools

which can be used to solve the Molecular Distance Geometry Problem. EMBED

algorithm, proposed by Crippen and Havel[8], is a very fundamental technique

that embeds points in space, is also explained in detail. This algorithm works in

three stages. This algorithm forms the basis of our proposed approach.

The main contribution of this thesis comes in chapter 4, which explains in

detail our proposed approach for solving Cα trace problem using molecular distance

geometry technique. All the major four steps involved in solving the problem are

explained in detail. This chapter also consists of experimental results performed,

which compares our approach to other methods used for solving the same problem.

The other methods which are presented use a large protein fragment library to

build a complete protein molecule. It requires a lot of effort and domain knowledge

to construct these fragment libraries. Our approach, on the other, does not involve

the use of any such fragment library and relies upon distance geometry techniques

to build a complete protein molecule.

From the different results we obtained by running our algorithm against PDB

files consisting of a different number of residues, we can conclude that our approach

is comparable to other methods in terms of Root Mean Squared Deviation (RMSD)

and Ramachandran Plot. We can also conclude that our approach is simpler to

implement and also takes less run time when compared to other methods. All

these results can be verified by various tables and graphs that are being plotted

in section 4.3.
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5.1 Future work

There are several areas where further work can be done. The current work can

be further extended to take cis and trans configuration of a protein molecule into

account. A cis configuration is defined when both Cα atoms in a single peptide

lies on the same side of the peptide bond, whereas in trans configuration both Cα

atoms lies on the different side of the peptide plane. A peptide bond is a bond

between carbon and nitrogen atom in the peptide plane.

Another direction to further extend the work will be to use the Distance Matrix

Completion Algorithm (DMCA)[41]. In this case, we can use four subsequent Cα

atoms and use DMCA to find the missing distances between all the atoms between

these four subsequent Cα atoms. These distances can then be used to find the

coordinates of the missing atoms.

A potential area will be to explore whether these distance geometry approaches

can be used for determining the side-chain atoms of the protein molecule. More-

over, we can have an hybrid approach between distance geometry approach and

the database approach where the database can be used to obtain the average val-

ues for bond lengths and bond angles for a peptide plane. These average values

should be obtained before using the distance geometry approach.
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[22] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary

structure: pattern recognition of hydrogen-bonded and geometrical features.

Biopolymers: Original Research on Biomolecules, 22(12):2577–2637, 1983.

[23] Nir Kalisman, Ami Levi, Tetyana Maximova, Dan Reshef, Sharon Zafriri-

Lynn, Yan Gleyzer, and Chen Keasar. Meshi: a new library of java classes

for molecular modeling. Bioinformatics, 21(20):3931–3932, 2005.

[24] Varaharajan Kannan Kishore Kumar. The point placement problem in an

inexact model and its applications. 2015.

[25] Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Alek-

sandra Elzbieta Dawid, and Andrzej Kolinski. Coarse-grained protein models

and their applications. Chemical reviews, 116(14):7898–7936, 2016.

[26] Georgii G Krivov, Maxim V Shapovalov, and Roland L Dunbrack Jr. Im-

proved prediction of protein side-chain conformations with scwrl4. Proteins:

Structure, Function, and Bioinformatics, 77(4):778–795, 2009.

57



[27] Roman A Laskowski, Malcolm W MacArthur, David S Moss, and Janet M

Thornton. Procheck: a program to check the stereochemical quality of protein

structures. Journal of applied crystallography, 26(2):283–291, 1993.

[28] Zhenqin Li and Harold A Scheraga. Monte carlo-minimization approach to

the multiple-minima problem in protein folding. Proceedings of the National

Academy of Sciences, 84(19):6611–6615, 1987.

[29] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[30] Pu Liu, Dimitris K Agrafiotis, and Douglas L Theobald. Fast determination

of the optimal rotational matrix for macromolecular superpositions. Journal

of computational chemistry, 31(7):1561–1563, 2010.

[31] Simon C Lovell, J Michael Word, Jane S Richardson, and David C Richard-

son. The penultimate rotamer library. Proteins: Structure, Function, and

Bioinformatics, 40(3):389–408, 2000.

[32] James T MacDonald, Katarzyna Maksimiak, Michael I Sadowski, and

William R Taylor. De novo backbone scaffolds for protein design. Proteins:

Structure, Function, and Bioinformatics, 78(5):1311–1325, 2010.

[33] Mariusz Milik, Andrzej Kolinski, and Jeffrey Skolnick. Algorithm for rapid

reconstruction of protein backbone from alpha carbon coordinates. Journal

of Computational Chemistry, 18(1):80–85, 1997.

[34] Benjamin L Moore, Lawrence A Kelley, James Barber, James W Murray, and

James T MacDonald. High–quality protein backbone reconstruction from al-

pha carbons using gaussian mixture models. Journal of computational chem-

istry, 34(22):1881–1889, 2013.
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