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ABSTRACT

Graph theory is an important field that enables one to get general ideas about

graphs and their properties. There are many situations (such as generating all

linear layouts of weakly chordal graphs) where we want to generate instances to

test algorithms for weakly chordal graphs. In my thesis we address the algorithmic

problem of generating weakly chordal graphs. A graph G=(V , E), where V is its

vertices and E is its edges, is called weakly chordal graph, if neither G, nor its

complement G, contains an induced chordless cycle on five or more vertices.

Our work is in two parts. In the first part, we carry out a comparative study of

two existing algorithms for generating weakly chordal graphs. The first algorithm

for generating weakly chordal graphs, repeatedly finds a two-pair and adds an

edge between them. The second generation algorithm starts by constructing a

tree and then generates an orthogonal layout (also weakly chordal graph) based

on this tree. Edges are then inserted into this orthogonal layout till there are m

edges. The output graphs from these two methods are compared with respect to

several parameters like number of four cycles, run times, chromatic number, the

number of non two-pairs in the graphs generated by the second method.

In the second part, we propose an algorithm for generating weakly chordal

graphs by edge deletions starting from an arbitrary input random graph. The

algorithm starts with an arbitrary graph to be able to generate a weakly chordal

graph by the basis of edge deletion. The algorithm iterates by maintaining weak

chordality by preventing any hole or antihole configurations being formed for any

successful deletion of an edge.
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Chapter 1

Introduction

Graph theory is a field of study that helps supply numerical information for enu-

merative problems and to provide a source from which specimen graphs can be

taken for use in real-life problems. It enables one to get general ideas about graphs

and their properties. There are many situations (such as generating all linear lay-

outs of weakly chordal graphs) where we would want to generate instances of

these to test algorithms for the class of weakly chordal graphs. In this thesis,

we address the algorithmic problem of generating weakly chordal graphs. Weakly

chordal graphs are a class of perfect graphs introduced by Hayward in 1985 [13].

1.1 Graph Generation

Early work in the field of generating graphs used to focused mainly on creating

catalogues of small sized graphs. The authors [8] published a catalogue of all

graphs to exist on 10 vertices. The motivation to do this was that, such repositories

were considered extremely useful for providing counterexamples to old conjectures

and to come up with new ones. The focus then shifted to generating graphs of

arbitrary size uniformly at random be it labeled or unlabeled. As a generation

method like that, would require a solution for the counting problem, research was

then focused to the classes of graphs for which the counting problem could be

solved and yielded polynomial time generation algorithms. Such were graphs with

1



prescribed degree sequences, special classes of graphs such as outer planar graphs,

maximal planar graphs, regular graphs. One can refer to [25] for a complete survey

work prior to 1990.

As stated in [20], there are many situations where one would want to generate

instances of these to test algorithms for weakly chordal graphs. For example, in

[3] the authors have generated all the existing linear layouts of weakly chordal

graphs. A generation mechanism could be used to obtain test instances for this

algorithm. It can do the same for more optimization algorithms, like finding a

maximum clique, maximum stable set, minimum clique cover, minimum coloring,

for both weighted and unweighted versions, for weakly chordal graphs proposed

in [21] and their improved versions in [22], [23].

1.2 Problem Statement

We focus on the problem of generating a weakly chordal graph. While there is

a considerable amount of research done in order to generate algorithms to gen-

erate weakly chordal graph but the authors in [1] proposed an open problem of

generating weakly chordal graph starting from an arbitrary graph. A solution to

this open problem in [1] starting from an arbitrary graph is the main contribution

of this thesis. An application of this generation algorithm would be to obtain

test-instances for an algorithm for enumerating linear layouts of a weakly chordal

graph proposed in [3].

1.3 Motivation

The motivation of the problem comes from the need to establish test-instances for

an algorithm. When the distribution is unknown, the assumption of uniform dis-

tribution might still help. Otherwise, we might look upon a generation algorithm

as providing test-instances for an algorithm to enumerate linear layouts of weakly

2



chordal graph. With this motive, an algorithm for generating weakly chordal

graphs by adding edges incrementally was recently proposed in [20]. An applied

application of this generation algorithm would be to obtain test-instances for an

algorithm for enumerating linear layouts of a weakly chordal graph proposed in

[3].

1.4 Thesis Organization

The list below presents the organization of the chapters which makes up this thesis.

Also given is a brief description of the topics each chapter deals with.

• Chapter 2 gives a clear background knowledge on the class of weakly chordal

graphs. The chapter outlines the theoretical characterizations about weakly

chordal graphs along with a preliminaries section that has all definitions

and notations used in the remainder of this thesis. It outlines summary

from current literature while reviewing a comparison of two already existing

methods to generate a weakly chordal graphs.

• Chapter 3 describes the proposed algorithm and its inner workings giving

justification for the chosen approach at each step and also shows the exper-

imental results after applying our algorithm.

• Chapter 4 concludes the work done in this thesis and suggests some possible

future research directions.

• Bibliography declares a detailed list of references from which facts and num-

bers have been used as a guide for this thesis.

3



Chapter 2

Weakly Chordal Graphs

A simple, undirected graph G = (V,E) is said to be weakly chordal if neither G

nor its complement, G, has an induced chordless cycle on five or more vertices

(a hole). Figure 2.1 shows an example of a weakly chordal graph, G, and its

complement, G.

c

e a

b

f

d

e

d

f a

bc

Figure 2.1: Weakly chordal graph G and its complement G

A chord is namely an edge connecting two non-consecutive vertices on the cycle.

Every chordal graph is also a weakly chordal graph. G is chordal if it has no

induced chordless cycles of size four or more.

However, as Figure 2.2 shows, the complement of a chordal graph G can contain

an induced chordless cycle of size four. The complement cannot contain a five cycle

though, as the complement of a five cycle is also a five cycle (see Figure 2.3). The
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a

f e

d

c

d

b e

a

cf

Figure 2.2: Chordal graph G with it’s complement G that has a chordless 4-cycle

above example makes it clear why chordal graphs are also weakly chordal.

Weakly chordal graphs were introduced by Hayward in [13] as a generalization of

v1

v2

v3v4

v5

(a) G

v1

v3v4

v2 v5

(b) G

Figure 2.3: Complement of a five cycle is also a five cycle

chordal graphs, these graphs form a subclass of the perfect graphs. The authors

[21] characterised weakly chordal graphs via the presence of a two-pair, namely

a pair of nonadjacent vertices such that every induced path between them has

exactly two edges. Their theorem is as follows.

Theorem 2.0.1 [16] A graph is weakly chordal if and only if each induced sub-

graph either is a clique or contains a two-pair of the subgraph.

A number of algorithms on weakly chordal graphs work by repeatedly finding

a two-pair {x, y} and modifying the neighborhoods of x and/or y. This is the

basis of the previously best algorithms for recognizing weakly chordal graphs [24]

and for solving a variety of optimization problems on weakly chordal graphs [[24],

[16]] (namely, weighted and unweighted versions of maximum clique, minimum

5



vertex coloring, maximum independent set and minimum clique covering). The

algorithm for finding a two-pair in a sparse graph is due to Arikati and Rangan

[2] and runs in O(mn) time.

An alternate definition that does not refer to the complement graph is that G

does not contain a hole or an antihole, which is the complement of a hole. Berry

et al. [6] gave a very different and interesting definition of a weakly chordal graph

as one in which every edge is LB-simplicial. They also proposed the open problem

of generating a weakly chordal graph from an arbitrary graph. A solution to this

problem is the subject of this thesis.

The next sections in this chapter are organised as follows: Section 2.1 Pre-

liminaries outlines the commonly used terms and notations used throughout this

book. Section 2.2 is a literature survey on two of the existing algorithms to gener-

ate the class of weakly chordal graphs. ( Section 2.2.1 covers the first generation

algorithm by Arikati and Rangan [2], they use the notion of a two-pair to gener-

ate weakly chordal graphs. Section 2.2.2 covers the second existing algorithm to

generate weakly chordal graphs is studied and explained. Section 2.2.3 outlines a

few experiments conducted on the implementation of these 2 algorithms in order

to gain some structural insights about the structure of the weakly chordal graphs

produced by the two algorithms.)

2.1 Preliminaries

The following section gives a background details of the terms and notations used

subsequently. We will assume that G is a graph on n vertices and m edges, that

is, |V | = n and |E| = m. The neighborhood N(v) of a vertex v is the subset of

vertices {u ∈ V | (u, v) ∈ E} of V . The degree deg(v) of a vertex v is equal to

|N(v)|. A vertex v of G is simplicial if the induced subgraph on N(v) is complete

(alternately, a clique). A path in a graph G is a sequence of vertices connected by

6



edges. We use Pk(k ≥ 3) to denote a chordless path, spanning k vertices of G.

For instance, a path on 3 vertices is termed as a P3 and, similarly, a path on 4

vertices is termed as a P4. If a path starts and ends in the same vertex, the path

is a cycle denoted by Ck, where k is the length of the cycle. A chord in a cycle is

an edge between two non-consecutive vertices in the cycle.

1

6
5

4 3

2

Figure 2.4: {5,6} is a 2-pair

The author [12] characterized weakly chordal graphs via the presence of a two-

pair, namely a pair of nonadjacent vertices such that every induced path between

them has exactly two edges. Their theorem is as follows. A graph is weakly chordal

if and only if each induced subgraph either is a clique or contains a two-pair of the

subgraph. A clique is a subset of vertices of an undirected graph such that every

two distinct vertices in the clique are adjacent; that is, its induced subgraph is

complete. A two-pair is a pair of vertices {u, v} in G, if the only chordless paths

between the u and v are of length 2. For example, consider Figure 2.4, the paths

that exist between {5,6} are

A vertex is simplicial if its neighborhood is a clique. For a set of vertices A, a

confluence point is a vertex of A that sees all the vertices in N(A).

In Figure 2.5, {a,b} is called as the minimal vertex separator for vertices {u, v}

7



x y x y

w

v

w

vb

a a

b
(a) (b)

Figure 2.5: {a,b} is a minimal vertex separator for {u, v}

because it separates vertices into disjoint components. For X ⊆ V , C(X) denotes

the set of connected components of G(V −X) (connected components are also

vertex sets). S ⊂ V is called a separator if ‖C(S)‖≥ 2, an ab-separator if a and b

are in different connected components of C(S), a minimal ab-separator if S is an

ab-separator and no proper subset of S is an ab-separator, and a minimal separator

if there is some pair {a, b} such that S is a minimal ab-separator.

From [14], an S-saturating is defined as: Given a set S of vertices, an edge e

of G(V −S) is said to be S-saturating if, for each component Sj of G(S), at least

one endpoint of e sees all vertices of Sj.

The authors in [7] define an LB-simplicial edge based on the role an edge plays

in a weakly triangulated graph. An edge e of E is LB-simplicial if, for each min-

imal separator S included in the neighborhood of e, e is S-saturating. An edge e

is LB-simplicial such that e ∪ N(e) = V . According to Theorem 2 [7], the set of

minimal separators included in the neighborhood of an edge e can be computed

in the following fashion: for each component C of C(e∪N(e)), compute N(C).

In the figure 2.6 borrowed from [6] we conduct an LB-simplicality test for the

edge bh. First we compute the neighbourhood of edge bh which is equal to {d,

e, f , g}. Next we compute the closed neighbourhood of edge bh which is equal

to {a, c}. The only minimal separator of G included in the neighborhood of bh is

8



Figure 2.6: LB-Simpliciality test for edge bh

N({a, c}) = {d, e, g}. Connected components of G({d, e g}) are {d} and {e, g}.

Vertex h sees both vertices in {e, g}, and b sees d. Hence bh is {d, e, g}-saturating

and thus LB-simplicial. Note that de ∪ N(de) = V , thus edge de will generate

no minimal separator. The total set of minimal separators is S(G) = {{a, d, g},

{a, d, h}, {b, e, g}, {b, e, h}, {c, e, g}, {d, e, g}, {d, e, h}, {d, f, h}}.

A hole is an induced cycle with five or more vertices and an antihole is the

complement of a hole. A graph is weakly chordal (also called weakly triangulated)

if it contains no holes and no antiholes. The class of weakly chordal graphs,

introduced in [12], is a well-studied class of perfect graphs. A graph is called

perfect if the chromatic number and the clique number have the same value for

each of its induced subgraphs. The chromatic number of a graph G is the smallest

number of colors needed to color the vertices of G so that no two adjacent vertices

share the same color. Chromatic number gives information about how connected

is the graph.

2.2 Literature review of existing algo-

rithms

2.2.1 Two-pair method

To review the existing work done in the area of generation algorithms, this section

summarizes an existing algorithm for generating weakly chordal graphs. This
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method was proposed by the authors [2], this method uses the notion of a two-

pair in a graph. A pair of vertices u, v in a graph G is termed as a two-pair if the

only chordless paths between the u and v are of length 2.

Figure 2.7: Two-pair in a graph

In the figure 2.7, vertex 5 and vertex 6 make a two-pair as the only chordless

paths between them are of length 2 i.e. {5,4,6}, {5,1,6}. A weakly chordal graph

that is not a clique has a two-pair [16]. A clique is a subset of vertices of an

undirected graph G such that every two distinct vertices in the clique are adjacent;

that is, its induced subgraph is complete. The generation algorithm proposed by

the author starts by supposing, let {u, v} be a two-pair in an arbitrary graph G.

Then G + {u, v} is weakly chordal iff G is weakly chordal [24]. The algorithm

to generate a weakly chordal graph on n vertices, starts by making a tree which

satisfies the definition of weak chordality and then repeatedly finds a two-pair

{u, v} and add to G the edge joining u to v. To find a two-pair we can use an

O(mn) algorithm proposed in this method by the authors, Arikati and Rangan

[2].

2.2.1.1 Overview of Algorithm

Let {u; v} be a two-pair in an arbitrary graph G. Then G + {u; v} is weakly

chordal iff G is weakly chordal [24]. We can then generate a weakly chordal graph

10



on n vertices by starting with a tree (as the complements of a five-cycle is also a

five-cycle) and repeatedly find a two-pair {u; v} and add to G the edge joining u

to v. To find a two-pair we can use an O(mn) algorithm proposed in this method

by the authors, Arikati and Rangan [2].

This algorithm to find a two-pair [2] takes an input of any graph G that has V

vertices and E edges, for which it outputs a pair of two vertices {u, v} that make

a two-pair as defined within the input graph G. It begins by choosing a random

vertex out of all the present vertices in the given input graph, next, we compute

the neighbourhood of the chosen vertex v to be N(v). Let us assume that v is a

fixed vertex in G and N(v) ={u|u is adjacent to v}. Next, we remove from the

input graph G, the chosen vertex v and its neighbourhood N(v) to compute the

connected components present in graph H1, ..., Hk (after removal of v and N(v)).

Let the connected components of H= G-{v}-N(v) be H1, ..., Hk. The algorithm

proceeds by identifying a vertex in H that can form a two-pair with v. Ni(v)=

{u|u ∈ N(v) and u is adjacent to some vertex in Hi}.

Lemma 1 [2] : Let u be any vertex in some connected component, say Hi of H.

Then, (u, v) is a two-pair if and only if u is adjacent to every vertex of Ni(v).

Hence, for every vertex u ∈ H, first define label(u) to be the index such that u

∈ H label(u). Then, for every vertex u ∈ H, define NV (u) = {w|w adjacent to u

and w ∈ N(v)}. Lemma 2 from [2] states, ”A pair (u, v) of vertices, where u ∈ H,

form a two-pair if and only if |N label(u)(v)| = |NV (u)|. Let G be an arbitrary

graph with two-pair {u; v}. Then the graph obtained by adding the edge {u; v},

G′ is weakly triangulated if and only if G is weakly triangulated [15].

This algorithm is rewritten from [2].
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Algorithm 2.1 Two-Pair

Input: A graph G = (V,E), and adjacency lists denoted by N(v), v ∈ V .
Output: A two-pair, if it exists
1: for all v ∈ V , do compute the connected components H1, ..., Hk for H = G

- {v} - N(v);
2: for all x ∈ N(v) do label(x) = 0;
3: for all u ∈ H do compute label(u)
4: for all u ∈ H do compute |NV(u)|
5: for i=1 to k do
6: Ni(V ) = ∅;
7: for all x ∈ N(v) do
8: for all u ∈ N(x) do
9: if label(u) 6= 0, then Nlabel(u)(v) := Nlabel(u)(v) ∪ {x}
10: end for
11: end for
12: end for
13: for all u ∈ H do compute |N label(u)(v)|;
14: for all u ∈ H do if( |N label(u)(v)| = |NV (u)|) then declare (u,v) is a two-pair

and STOP;

2.2.1.2 Example

Consider the following example in figure 2.8 below to implement algorithm to

find a two-pair in the given graph.

a

b

c d

e

f

g

Figure 2.8: Example to find two-pair

Let, H = G - {v} - N(v) where v is the chosen vertex to find a two-pair with,

N(v) is the neighbourhood of the vertex v. We begin by randomly choosing any

vertex as v. Let chosen vertex v be c from the figure 2.8. Hence the N(v = c)
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= {a, b, d}. After substituting, the equation becomes, H = G - {c} - {a, b, d}.

Next, we compute the connected components left in the graph G after H = G -

{c} - {a, b, d}. After removal of vertex c and it’s neighbours {a, b, d}, the graph

G is broken into 2 connected components. These two components are H1 = {g}

and H2 = {e, f}. Next, we assign a Label = 0 to {v = c} and N(v = c) i.e.

{c, a, b, d} all get assigned a Label = 0. i.e. Label(a)=0, Label(b)=0, Label(c)=0,

Label(d)=0. Next, we compute NV (u): u is adjacent to some v in H, u is subset

of vertices in neighbours NV (u = g)= {a, b}, NV (u = f)= {d}, NV (u = e)=

{d}. Next, we compute NiV (u): label 0 neighbours N1V (u = {g}) = {a, b},

N2V (u = {e, f}) = {d}. The algorithm identifies a vertex in one of the components

Hi,...,Hk that can form two-pair with v.

| N1V (u) = {a,b}| = |NV(u=g)= {a,b}|

Hence, {c, g} is a two-pair in figure 2.8.

In order to generate a weakly chordal graph using the method of two pairs,

first an input of N vertices and E edges is given. It begins by generating an initial

tree layout is generated. Since trees are weakly chordal graph, in the first phase

it generates a tree with at least N vertices. In the next phase it calculates the

number of edges e in the initial tree layout. To match the expected number of

input edges E, subtract e from E (say m).

2.2.1.3 Results

After implementation of this algorithm in Python below are a few examples at-

tached as results. For every example there are two graphs, first graph shows the

initial layout showing the four cycles generated on at least V input vertices.n the

next phase it calculates the number of edges e in the initial tree layout. To match

the expected number of input edges E, subtract e from E (say m). Now the al-

gorithm to find runs m times to find m two-pairs that are joined by an edge in

every iteration maintaining weak chordality.
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This example takes an input of 6 vertices and 12 edges. It first produces an

initial layout 2.9 and the second figure 2.10 is the final graph on 6 vertices and

12 edges.

The two-pairs added are:

Two-pair 1- {10,8} Two-pair 2- {7,10} Two-pair 3- {8,7} Two-pair 4- {10,6} Two-

pair 5- {9,11} Two-pair 6- {9,6}

Figure 2.9: Two-pair Example 1.1 Initial Graph on 6 Vertices 6 Edges
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Figure 2.10: Two-pair Example 1.2 Final Weakly Chordal Graph for 6 Vertices 12
Edges

This example takes an input of 8 vertices and 15 edges. It first produces an

initial layout 2.11 and the second figure 2.12 is the final graph on 8 vertices and

15 edges.

Figure 2.11: Two-pair example 2.1 Initial Graph on 8 Vertices 10 Edges

Two-pair 1- {11,1} Two-pair 2- {10,0} Two-pair 3- {14,10} Two-pair 4- {1,3}

Two-pair 5- {14,1}
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Figure 2.12: Two-pair example 2.2 Final Weakly Chordal Graph on 8 Vertices 15
Edges

This example takes an input of 10 vertices and 17 edges. It first produces an

initial layout 2.13 and the second figure 2.14 is the final graph on 10 vertices and

17 edges.

Figure 2.13: Two-pair example 3.1 Initial Graph on 10 Vertices 13 Edges

Two-pair 1- {3,16} Two-pair 2- {18,17} Two-pair 3- {19,3} Two-pair 4- {13,3}
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Figure 2.14: Two-pair example 3.2 Final Weakly Chordal Graph on 10 Vertices
17 Edges

2.2.1.4 Complexity

The tree generation in the initial phase can be constructed in time O(n), where n

is the number of nodes in a tree. For n nodes in the tree, we insert 3n+ 1 edges in

the layout and each edge insertion can be done in a constant time. So the initial

tree layout can be generated in O(n) time.

The algorithm two-pair by [2] finds a two-pair if it exists, in a given input graph

G=(V,E), in time O(nm). Hence, the overall complexity is O(nm2).

2.2.2 Separator-based method

This paper by the authors [20] outlines a proposed algorithm to generate weakly

chordal graphs on a given set of input of n vertices and m edges. The base a

graph G to be generated based on the concept of a separator based method that

generalizes owing to Markenzon [19] for generating chordal graphs and inturn

allows them to be able to exploit structural properties of a weakly chordal graph.

The authors [20] in this method to generate weakly chordal graph, first begin by

constructing a tree and then generate an orthogonal layout which is also a weakly
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chordal graph on n vertices. Then authors [20] insert additional edges, as needed,

for a total of m edges to match the m input. Their algorithm ensures that the

graph remains weakly chordal after each edge is being added or inserted. The time

complexity of an insertion query is O(n3) and an insertion takes constant time.

The main advantages of this method are that it uses very simple data structures

and exploits the basic structural properties of a weakly chordal graph. Another

advantage of this generation scheme is that this algorithm is able to join an edge

between two non-two pair vertices maintaining weak chordality property.

2.2.2.1 Overview of Algorithm

The inputs to this algorithm are the number of vertices, n, and the number of

edges, m, of a weakly chordal graph to be generated. The algorithms is divided

into three phases, it begins with Phase 1 comprising of trees as trees are weakly

chordal graphs. In the first phase, the algorithm begins by generating a tree with

at least n vertices. In the second phase, the algorithm uses the tree to generate

an orthogonal layout. An orthogonal layout is also a weakly chordal graph on at

least n vertices. The orthogonal layout is made up of 4-cycles and edges incident

on the vertices of these 4-cycles. In the third and the final phase, vertices are

removed from the graph if the count exceeds n and additional edges are introduced

to bring up the edge tally to m, by maintaining weak chordality. Inserting an

edge between two vertices u and v so that weak chordality is preserved requires

meticulous consideration. Let Iu,v be the set of common neighbors of u and v.

If Iu,v = ø, the alogrithm needs to check whether the removal of Iu,v separates u

and v, that is put them in different components of G[V - Iu,v]. To check for this

a breadth-first-search in G[V - Iu,v] is done, starting at u to see if v is reachable.

This search can be done in the induced graph of a reduced set of vertices called

AuxNodes. If v is not reachable from u, the algorithm inserts an edge between

u and v, else we search for shortest paths between u and v. We do not insert

the edge {u, v} if the length of a shortest path is greater than 3. Otherwise, the
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algorithm has to check for other conditions, such as single or multiple shortest

paths, forbidden configurations, alternate longer paths between u and v to decide

whether the insertion of {u; v} preserves weak chordality. If {u,v} = ø, it proceeds

in the same way as when I{u,v} does not separate u and v. The only difference is

that here it has to consider the entire graph to search for shortest paths between

u and v but the other details remain essentially the same.

2.2.2.2 Phase 1: Generation of Tree

The first phase begins by generating a tree, T , on n
2

nodes is generated such that

each node has degree of at most four. Starting with a single node, the algorithm

add new ones either by splitting an edge into two or joining a new node to an

existing node, chosen at random. After n
2

nodes have been added, the algorithm

traverses the tree to check if a pair of degree-4 nodes or a degree-3 node and a

degree-4 node are adjacent. Each such pair is separated by inserting a new node

adjacent to both. Let k ≥ n
2

be the number of nodes in the resulting tree, T ’.

a

b

c

d

Figure 2.15: Tree generation (figure borrowed from [20])

2.2.2.3 Phase 2: Generation of Initial Layout

In the second phase, the algorithm proceeds by generate an orthogonal layout that

corresponds to T ’ in the following way. For each node in T ’, the algorithm creates

a 4-cycle. By keeping 4-cycles in the initial layout, the authors in [20] are trying
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to ensure that the algorithm generates proper weakly chordal graphs, and not just

chordal graphs. Two 4-cycles have an edge in common iff the corresponding tree

nodes are adjacent. Figure 2.16(a) shows a tree T1 with two nodes, a and b. The

corresponding layout is shown in figure 2.16(b). It has two 4-cycles, corresponding

to each of the nodes of T ’; these share an edge in common as the tree nodes a and

b are adjacent. The authors defined this as the initial layout. For the example

tree of figure 2.16(c), the corresponding initial layout is shown in figure 2.16(d).

b

a

(a)
Tree
T1

a

b

(b) Ini-
tial lay-
out G1

c

e

a
b d

(c) T2

a

c

d

e

b

(d) Initial layout G2

Figure 2.16: Tree to layout of four-cycles (figures borrowed from [20])

After the tree is generated, if there exists any two degree-4 nodes or a degree-3

node and a degree-4 node that are adjacent, a new node is inserted between them

to separate them ( Figures 2.17(a), 2.17(b), 2.17(c)). This is essential because

otherwise, the orthogonal layout will force two 4-cycles that do not correspond to

adjacent tree nodes to share an edge. If the resulting orthogonal layout has more

than n vertices, enough vertices are deleted from the 4-cycles to bring the count

down to n. The orthogonal layout has 2 * k + 2 > n vertices where k ≥ (n
2
) is

the number of vertices in the tree generated in Phase 1. Vertices that make as

a candidates for deletion are the ones that have degree equal to two. Once the

vertex-deletion is completed, if the number of edges m′ in the resulting layout is m

or more, the algorithm stops and returns the layout which is also a weakly chordal

graph, as the output. Otherwise, the algorithm proceeds to the next phase.
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(c) Initial layout G3

Figure 2.17: Tree to layout of four-cycles (figures borrowed from [20])

2.2.2.4 Phase 3: Generation of Weakly Chordal Graph

In the third and final phase, (m − m′) additional edges are required to be inserted

into the initial layout while weakly chordality is preserved. Two cases can arise,

according to the value of Iu,v. Either Iu,v 6= ø; or Iu,v = ø;

Case 1: Iu,v 6= ø or Iu,v is non empty

Since the value of Iu,v is non-empty, the algorithm needs to check whether the

removal of Iu,v separates u and v. This is achieved by checking for the existence

of a path from u to v by using a breadth-first search in the induced graph G[V

− Iu,v]. To make this breadth first search more efficient we perform this search

in a smaller set than V − Iu,v. This set is called as AuxNodes. For the class

of chordal graphs [19] defined this set to be N(x) − Iu,v, where x is any vertex

in Iu,v. They define AuxNodes = N(Iu,v) ∪ N(N(Iu,v) ∪ {Iu,v}), which as an

extended neighborhood of Iu,v.

Two subcases arrive (a) Exactly one P 4 or (b) More than one P 4 connects u to v.

Case 1.1: Exactly one P 4

Let SP be the set of vertices of the unique P 4 = u−x−y−v, where x and y are
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internal vertices. Just as in our search for P 4-paths relative to Iu,v we need to

define the set AuxNodes for shortest paths relative to P 4. Shortest paths relative

to P4 can have vertices from the sets SP , N(SP ) and N(N(SP )). Thus we set

AuxNodes in three different ways by removing either one of the internal vertices

or both the

Case 1.2: More than one P 4 connects u to v

When multiple P 4’s exist, we need to check for a forbidden configuration formed

by a pair of P 4’s as shown in Figure 2.18(a). Inserting an edge {u, v} into this

configuration does not create a chordless cycle of size five or more in G, but it

creates a chordless six cycle in G as can be seen from the complement of the con-

figuration in Figure 2.18(b). Since a graph G is weakly chordal if neither G nor

its complement G contains a chordless cycle of size 5 or more, such an insertion is

not permitted.

u

v

(a)

u

v

(b)

Figure 2.18: Forbidden configuration formed by P 4’s from [20])

Having checked for forbidden configurations, the next step is to check if a

chordless path longer than a P 4 exists between u and v. Let P 1
4, P

2
4,..., P

k
4 be

k (≥ 2) P4’s from u to v, whereP i
4 = u - xi - yi - v and xi, yi are its internal

vertices. Define all SP = {u, x1, x2,..., xi, y1, y2,...,yj, v} to be the set of vertices

on all the P 4’s between u and v. As in case 1.2, the search for a chordless path

longer than a P 4 can be restricted to the set of vertices N(allSP ) ∪ N(N(allSP )

∪ allSP).

Case 2: Iu,v is empty
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In this case, there are no common neighbors of u and v but a path exists between u

and v. This case can be solved in a similar way as for case 1.2. Here the AuxGraph

is the entire graph because Iu,v is empty. If any of the paths is greater than P 4,

we do not insert {u, v} and choose another pair of vertices. Otherwise, we use

the same algorithms as for case 1.2 to check if the addition of {u, v} keeps the

graph weakly chordal or not. The corresponding cases are referred to as case 2.1

and case 2.2.

2.2.2.5 Example

Consider generating a weakly chordal graph with n = 8 vertices and m = 12

edges. Figure 2.19 shows a tree on n
2

nodes. There are four nodes in the tree

and on expanding each node to a 4-cycle, we get the orthogonal initial layout of

Figure 2.19(a)) with n = 10 vertices. Then we removed two vertices 8 and 9 from

the initial layout and we get a layout with n = 8 vertices and m’ = 10 edges as

shown in Figure 2.19(c)). Need to insert (m-m′) = 2 more edges into this initial

layout to generate a weakly chordal graph with the requisite number of vertices

and edges.

Say we want to insert edge between the vertices 3 and 4. Since I3,4 is non-empty

we have Case 1. As the removal of I3,4 leaves the vertices 3 and 4 in two different

components, we can safely insert an edge between vertices 3 and 4 as per case 1.0

as shown in Figure 2.19(d). Next, we try to insert edge {3, 6}. The insertion of

this edge corresponds to case 1.1 because the removal of their common neighbor,

viz., {5} does not separate 3 and 6. Now, N(5) is {3, 4, 6} and N(N(I3,6)∪ I3,6)

is {0, 2, 7}; and therefore AuxNodes = {0, 2, 3, 4, 6, 7}. In G[AuxNodes] we

search for paths from 3 to 6. There is a single shortest path SP = {3, 4, 7, 6}

and this corresponds to Case 1.1. Since N(SP ) = {0, 2} is not an empty set, we

need to compute {N(N(SP ) ∪ SP} which is empty. Thus AuxNodes = N(SP )

∪ N(N(SP ) ∪ SP ) SP = {0, 2, 3, 4, 6, 7} vertices. We create different induced

graphs on G[AuxNodes] by removing both the internal vertices from SP or exactly
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Figure 2.19: Tree to weakly chrodal graph (figures borrowed from [20])

one of them and observed that there is no chordless path between 3 and 6. Hence,

we can insert an edge between 3 and 6.

2.2.2.6 Results

This example takes an input of 6 vertices and 12 edges. It first produces an initial

layout 2.20 on 6 vertices and 7 edges then it produces the second figure 2.21

which is the final graph on 6 vertices and 12 edges.
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Figure 2.20: Initial graph for 6 vertices 7 edges

Figure 2.21: Final weakly chordal graph on 6 vertices 12 edges
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This example takes an input of 8 vertices and 15 edges. It first produces an

initial layout 2.22 and the second figure 2.23 is the final graph on 8 vertices and

15 edges.

Figure 2.22: Initial graph for 8 vertices 10 edges

Figure 2.23: Final weakly chordal graph on 8 vertices 15 edges
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This example takes an input of 10 vertices and 17 edges. It first produces an

initial layout 2.24 and the second figure 2.25 is the final graph on 10 vertices and

17 edges.

Figure 2.24: Initial graph for 10 vertices 13 edges

Figure 2.25: Final weakly chordal graph on 10 vertices 17 edges
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2.2.2.7 Complexity

The tree generation in the initial phase can be constructed in time O(n), where n

is the number of nodes in a tree. For n nodes in the tree, we insert 3n+ 1 edges in

the layout and each edge insertion can be done in a constant time. So the initial

tree layout can be generated in O(n) time. In the third phase, a pair of vertices

{u, v} is chosen at random to insert an edge between them. Two types of failures

may arise. One is that the pair of vertices {u, v} corresponds to an existing edge

and the other is that the addition of {u, v} violates weak chordality property. To

avoid the first type of failure one can either maintain a list of edges belonging to

the complement graph or we can check the existence of an edge in constant time

by maintaining the adjacency matrix representation of the current graph.

To bound the query complexity of adding an edge {u, v} to the existing weakly

chordal graph, we note that this is dominated by the case when there are multiple

P 4’s between u and v and we have to consider these in pairs and run breadth-first

search on the entire graph (the case when Iu,v = ø in Algorithm 3). An upper

bound on the number of pairs P 4’s can be estimated this way.

Assume G has n vertices. Let {v1, v2,. . ., vl} be the set of vertices adjacent to v

that lie on the P 4 shortest paths between u and v. If dv is the degree of v then l

< dv. Likewise, let {v′1, v′2, v′3, v′4. . ., v′k} be the set of vertices adjacent to u

that lie on these shortest paths. Again k ≤ du, where du is the degree of u. Thus

dudv is an upper bound of the number of P 4 paths between u and v.

Let di be the degree of vi relative to the vertices {v′1, v′2, v′3, v′4. . ., v′k}

for i = 1,. . ., l. Then an upper bound on the number of pairs of edge-disjoint

P 4 paths between u and v is given by PathCount =
∑

i 6=j di dj. Let,
∑

di = t.

Now it follows from the equality 2l
∑

di dj = (l −1) (
∑

di)
2−

∑
i 6=j (di −dj)2

that PathCount is maximum when all di’s are equal. Therefore an upperbound

on PathCount is l2 ( t
l
)2 =t2. Since t = O(lk), we have PathCount =O(d2

ud
2
v).
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2.2.3 Comparative Studies

In this section we carry out experiments on the weakly chordal graphs generated

by the two generation algorithms studied above. We provide same input i.e. same

number of V vertices and E edges to yield weakly chordal graphs generated on

same input by two different generation algorithm. The underlying motivation to

conduct this comparative study is to be able to draw structural information about

how different are these weakly chordal graphs generated on same input by two

different algorithms. First in table 2.1 we compute the number of non two-pairs

joined by an edge in the second algorithm to see presence of long chordless paths

within the graphs. Next, we compare the outputs based on the chormatic number

in table 2.2, in table 2.4 and 2.3 we compute the number of 3 cycles and number

of chordless 4 cycles for each of the weakly chordal generated. Lastly, we compare

the run times on same input graphs for two different generation methods for WCG

in table 2.5, In the following sections, each parameters comparison is discussed.

2.2.3.1 Non Two-pairs

The first generation algorithm studied is based on joining only two-pairs [2], and

the second generation algorithm is based on separator [20] which is also able to join

non-two pairs along with two-pairs. Hence we decided to compute the number of

non-two pair edges joined by the separator based generation algorithm for weakly

chordal graphs to see how many non two-pair edges comprise the final graph. This

experiment was conducted with the motivation to be able to mark the existence of

long chordless paths. The column for non 2-pair edges added depicts the existense

of long chordless paths within the graphs in Table 2.1. As shown, the results of

the experiment are documented below in the Table 2.1 that outline the input total

number of vertices and edges in the first column, edges added in initial layout in

second column, non 2-pair edges added in third column and 2-pair edges added in

final column.
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{Vertices, Edges} Intital layout edges Non 2-pair edges 2-pair edges
{50,100} 72 20 8
{50,300} 71 156 73
{50,500} 70 210 220
{50,1000} 73 514 413
{100,200} 142 28 30
{100,500} 146 108 248
{100,1000} 145 359 496
{150,300} 218 58 24
{150,500} 222 185 93
{200,500} 294 144 62
{200,1000} 297 234 469

Table 2.1: Number of non two-pairs added in separator based method

2.2.3.2 Chromatic Number

The chromatic number of a graph G is the smallest number of colors needed to

color the vertices of G so that no two adjacent vertices share the same color i.e., the

smallest value of k possible to obtain a k-coloring. Empty graphs have chromatic

number 1. For a graph G =(V , E) let the chromatic number be k. Then the ratio

k
n

is related to the average path length (n=|1|). We compare k
n

with n
n
, as for a

complete graph, the average path length is 1, k
n
< n

n
. For a completely disjoint

graph ratio is 1
n
, in this case the average path length is infinity.

The motivation to chose this characteristic of chromatic number to compare the

two outputs yielded was to be able to see the sparsity of the graph and to be able

to find a pattern between how connected are the graphs generated. The Table 2.2

below mentions the edges taken by the two generation methods to reach the target

ratio between chormatic number (k) ratio and the number of vertices(n) for the

weakly chordal graphs by inputs to both the algorithms. The ratio column depicts

the target ratio (chormatic number (k) / number of vertices (v)) and the following

columns represent the number of edges added on a graph with 50 vertices by each

of the generation algorithms to reach that given ratio.
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Ratio Number Number Number Number
(k/50) of Edges of Edges of Edges of Edges

(Two-Pair Based) (Separator Based)
0.08 80 95 51 75
0.10 100 130 80 100
0.14 155 190 130 180
0.18 310 430 245 200
0.20 450 475 265 295
0.22 510 540 320 355
0.24 570 585 380 420
0.30 620 635 555 570
0.40 710 735 685 705

Table 2.2: Number of edges added for a weakly chordal graph on 50 vertices by
two-Pair method and separator based method for generating WCG to attain a
fixed ratio of chromatic number (k) to number of vertices (n=50)

2.2.3.3 Number Of Cycles

In this section we summarize the experiment conducted on two of the generation

algorithms to generate weakly chordal graphs. The first generation algorithm

studied is based on joining two-pairs by the authors [2], and the second generation

algorithm is based on separator by the authors [20]. The underlying motive to

conduct this experiment was to be able to assess the structure of the graph. We

compute the number of 3 cycles existing within an input graph as well as we

compute the number of chordless 4 cycles. For the class of weakly chordal graphs,

chordless four cycles are the only chordless cycles allowed, hence it was important

to consider this as a factor to generalize about the structure of the graph. We

computed the number of chordless four cycles in every weakly chordal graph from

both the algorithms implemented. We then computed the number of three cycles

within these graphs, in order to be able to gain information if the graphs being

generated are more chordal than the other. The results of the experiments are

documented in the Table 2.3 and Table 2.4 below showing the ratio of number

of chordless four cycles to the number of three cycles for the two methods. For

an input of given vertices and edges we generate different number of graphs and

report the number of cycles for respective graphs. We then compute the average
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of these cycles and depict the average ratio of number of 3 cycles to number of

chordless 4 cycles.

Number Input Input Input Input Input Input Input
of Runs {10,15} {10,20} {20,50} {20,60} {30,60} {40,60} {40,80}

(number of 3 cycles, number of chordless 4 cycles)
1 (4,2) (14,0) (42,5) (97,5) (35,5) (6,15) (42,6)
2 (6,0) (14,1) (42,6) (66,10) (33,8) (12,9) (43,8)
3 (5,1) (13,1) (43,4) (73,7) (31,8) (10,13) (41,9)
4 (4,2) (13,0) (43,1) (67,9) (34,4) (8,13) (41,12)
5 (5,1) (14,1) (43,4) (82,6) (32,10) (12,9) (45,9)
6 (3,2) (13,38) (42,6) (60,12) (30,8) (10,13) (48,3)
7 (5,2) (14,0) (42,4) (77,5) (31,7) (8,13) (41,10)
8 (6,1) (14,1) (43,2) (66,10) (34,8) (12,6) (43,8)
Average
Ratio 3.45 2.65 10.625 9.18 4.48 0.85 5.29

Table 2.3: Two-Pair Method: Ratio of 3 cycles to chordless 4 cycles reported for
average ratio

Number Input Input Input Input Input Input Input
of Runs {10,15} {10,20} {20,50} {20,60} {30,60} {40,60} {40,80}

(number of 3 cycles, number of chordless 4 cycles)
1 (3,4) (9,11) (35,25) (51,48) (20,31) (4,17) (13,74)
2 (4,2) (12,3) (32,32) (59,29) (27,16) (2,23) (35,22)
3 (2,6) (8,11) (37,17) (52,51) (25,20) (8,13) (23,43)
4 (4,3) (12,6) (34,24) (61,44) (19,36) (2,21) (36,20)
5 (3,4) (10,8) (32,26) (65,18) (21,31) (4,17) (23,42)
6 (0,10) (11,5) (30,42) (55,34) (23,23) (2,23) (22,41)
7 (7,2) (12,13) (34,26) (62,41) (19,38) (5,16) (27,37)
8 (0,11) (10,9) (35,25) (50,49) (13,51) (0,25) (26,46)
Average
Ratio 0.54 1.27 1.23 1.44 0.67 0.17 0.63

Table 2.4: Separator Method: Ratio of 3 cycles to chordless 4 cycles reported for
average ratio
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2.2.3.4 Run Times

In this section we summarize the experiment conducted on two of the generation

algorithms to generate weakly chordal graphs on the basis of their average run

times. The first generation algorithm studied is based on joining two-pairs by

the authors [2], and the second generation algorithm is based on separator by

the authors [20]. Both these algorithms were implemented in Python 2.7. Both

these algorithms are given same input values, and recorded for 10 iterations, the

time taken by each of the algorithm to generate a weakly chordal graph on the

input n vertices and m edges. The times reported by the two pair based generation

algorithm [2] are reported in seconds in the Table 2.5 below along with the average

run time. The times reported by the separator based generation algorithm [20]

are reported in seconds in the Table 2.6 below along with the average run time.

Number Input Input Input Input Input Input Input
of Runs {30,60} {40,70} {50,100} {60,120} {80,150} {90,190} {100,170}
1 34.99 92.16 41.90 26.67 13.88 10.87 7.53
2 33.57 89.27 41.68 34.36 24.68 5.41 5.03
3 36.76 102.78 55.31 28.84 22.13 3.05 5.06
4 33.15 95.53 37.91 28.32 13.06 7.84 6.66
5 33.63 98.28 53.57 36.37 18.39 4.96 4.01
6 31.63 91.03 43.24 22.54 21.43 3.52 6.32
7 34.25 96.74 52.34 23.12 11.54 6.13 4.23
8 37.23 93.32 47.42 29.23 15.34 7.43 6.32
9 32.68 101.54 59.23 33.42 18.43 4.43 7.12
10 31.72 97.43 41.43 31.69 21.43 3.54 7.43
Average
Time 33.96 95.80 47.40 29.45 18.03 5.71 5.97

Table 2.5: Two-Pair Method for generating WCG: Average Run Times

33



Number Input Input Input Input Input Input Input
of Runs {30,60} {40,70} {50,100} {60,120} {80,150} {90,190} {100,170}
1 0.19 0.22 0.91 1.80 1.61 2.79 3.04
2 0.30 0.33 0.77 1.42 1.85 3.48 3.01
3 0.20 0.28 0.67 1.53 1.28 2.15 2.91
4 0.22 0.27 0.71 1.85 1.83 3.22 3.89
5 0.32 0.17 0.74 0.77 1.43 2.95 2.71
6 0.53 0.34 0.59 1.23 1.93 3.78 3.82
7 0.28 0.47 0.73 1.71 1.08 4.12 2.43
8 0.21 0.25 0.69 .67 1.23 4.00 3.49
9 0.23 0.33 0.55 1.10 1.22 2.32 2.94
10 0.31 0.41 0.68 1.09 1.56 3.69 2.83
Average
Time 0.27 0.30 0.70 1.31 1.50 3.25 3.10

Table 2.6: Separator Based Method for generating WCG: Average Run Times

34



Chapter 3

Proposed method

In this chapter we explain the proposed approach to generate a weakly chordal

graph while starting from an input of an arbitrary graph. This chapter begins

with an overview of the complete approach and then outlines detailed explanation

for each step followed in the process. This chapter is finally concluded with the

proposed algorithm posted for publication and extremely detailed examples from

its implementation in Python 2.7. In the proposed method, we propose a scheme

to generate weakly chordal graphs by first beginning with an input of vertices and

edges required for the final weakly chordal graph to be obtained. The algorithm

initiates by generating a random graph on given input, let this be G. The al-

gorithm then reduce G to a chordal graph G′, using the minimum vertex degree

heuristic. The fill edges that are added while converting an arbitrary input graph

to a chordal graph, are marked as potential candidates for subsequent deletion.

Since G′ is necessarily a weakly chordal graph, we use an algorithm for deleting

edges from a weakly chordal graph to remove fill edges, maintaining the weak

chordality property. In order to delete as many fill edges as possible we create

a queue of all the fill edges. A fill edge is removed from the front of the queue,

which we then try to delete. If we don’t succeed we put it at the back of the

queue. We keep doing this until no more fill edges can be removed. Operationally,

we implement this by defining a deletion round as one in which the edge at the
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back of the queue is at the front. We stop when the size of the queue does not

change over two successive deletion rounds. The subsequent sections elaborate

this process in detail.

3.1 Overview of the method

The algorithm begins by generating a random graph G on n vertices and m edges.

Before this we already check if G is weakly chordal, using the LB-simpliciality

recognition algorithm by to [7]. If G is weakly chordal, we stop terminate to find

another. Otherwise, we proceed as follows. We first convert random graph G to

a chordal graph H by introducing additional edges, which are named as fill-edges

using the minimum degree vertex (mdv, for short) heuristic [11].

Arbit rary Graph

Is Weakly Chordal?

Chordal Graph

Weakly Chordal Graph

Add Fill-Edges

NoYes

Delete Fill-Edges

Figure 3.1: Overview of process (figure borrowed from [17])

The edges that are added to convert the random graph into a chordal graph is

done on the basis of mdv heuristic that adds edges so that the minimum degree

vertex in the current graph is simplicial. All the edges that are added which are

named as fill-edges are entered into a queue, named as a fill-edge queue, FQ. These

fill-edges are the only candidates for following the upcoming deletion process from
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H. Since H is chordal, it is also a weakly chordal graph. We propose an algorithm

that deletes edges from this weakly chordal graph to remove fill-edges, maintaining

the weak chordality property. A fill-edge is deleted on the criteria that it does not

create a hole or an antihole in the graph. We propose a criteria for detecting holes

and anti-holes in a weakly chordal graph. Starting from the front of the queue, a

fill-edge in taken to try for deletion. If deleting the fill-edge does not result in a

hole or anti-hole configuration then we successfully delete this edge, else we put

it at the back of the queue. We keep doing this until no more fill-edges can be

deleted. We implement this by defining one deletion round as one in which the

fill-edge at the back of the queue is at the front. We stop when the size of the

queue does not change over two successive deletion rounds. Figure 3.1 is a flow

chart for the flow of control followed subsequently.

3.2 Generating random arbitrary graphs

The first step is to generate a random graph on the given input. To generate a ran-

dom graph, we use the algorithm by Keith M. Briggs, called ‘dense gnm random graph’.

This algorithm is based on Knuth’s Algorithm from the Selection sampling tech-

nique, of section 3.4.2 of [18]. It initiates by taking two input variables n and

m, where n is the number of vertices and m is the number of edges to produce a

random graph. For a given input n, we set m to a random value lying in the range

between n− 1 and n(n−1)
2

. The output graph may or may not be disconnected. In

case it is disconnected we connect the disjoint components using additional edges.

3.2.1 LB-simpliciality Test

A recognition algorithm propsed by the authors in [6] is used for the next step.

In [7] Berry et al. proved the following result:

Theorem 3.2.1 [7] A graph is weakly chordal if and only if every edge is LB-

simplicial.
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We apply this recognition algorithm to the random graph generated by the

previous step. We then continue with the next steps only in the case that the

recognition algorithm fails. Otherwise, we return G.

3.3 Arbitrary Graph to Chordal Graph

We started with a random arbitrary graph G and then converted it into a chordal

graph H. The starting random arbitrary graph G is actually embedded within the

chordal graph H. This process of addition of edges and the process is known as

fill-in or triangulation. Triangulations in which a minimum or a minimal number

of edges is added, are desirable. A triangulation H = (V,E ∪ F ) of G = (V,E)

is minimal if (V,E ∪ F ′) is non-chordal for every proper subset F ′ of F . In a

minimum triangulation the number of edges added is the fewest possible. Berry

at al. [5] proposed an algorithm, known as LB-Triangulation, for the minimal fill-in

problem. LB-Triangulation works on any ordering α of the vertices, and produces

a fill that is provably exclusion-minimal. In the proposed algorithm, we have used

the mdv heuristic [11], as the experiments conducted have shown that this adds

fewer fill-edges as compared to LB-Triangulation. The next section briefly explains

this heuristic.

3.3.1 The Minimum Degree Vertex Heuristic

Let H = (V,E ∪F ) be the graph obtained from G = (V,E), where F is set of fill-

edges. We start to prune from the graph G all the vertices that have a degree equal

to 1 and assign it to H for the resulting graph G. From the vertices remaining

of G, we choose v a vertex of minimum degree by breaking the ties arbitrarily

and turn the neighborhood N(v) of v into a clique by adding edges. These are

fill-edges that we add to the edge set of H, as well as to the fill-edge queue, FQ.

Finally, we then remove from G, the vertex v and all the edges that are incident

on it. We continue to repeat this process until the graph G is empty. The graph
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H is now a chordal graph and is identical with the initial graph G, sans degree 1

vertices, and with fill-edges added. This is illustrated with an example.

v1

v2

v3v4

v0

v5

(a) Arbitrary graph

v1

v2

v3v4

v0

v5

(b) Chordal Graph

Figure 3.2: Arbitrary graph to chordal graph (figure borrowed from [17])

The initial graph G shown in Fig. 3.2(a) and the graph H with all fill-edges

added shown in Fig. 3.2(b). In the initial graph G both v1 and v5 have a minimum

degree. We break the tie in favour of v5. Since the induced subgraph on N(v5) is

already a clique no fill-edges are added and G is set to G− {v5}. In the reduced

graph G, v1 is of minimum degree and the induced graph on N(v1) is turned into

a clique by adding {v3, v4} as a fill-edge, which is also added to H. Since the

reduced graph G − {v1} is a clique, we can pick the vertices v0, v2, v3, v4 in an

arbitrary fashion to reduce the graph G to an empty graph, without the need to

be introducing any further fill-edges into H. The algorithm [17] for this process is

described below:

Algorithm 3.1 ArbitraryToChordal

Input: An arbitrary graph G = (V,E)
Output: Returns a chordal graph H = (V,E ∪ F ) and fill-edge queue FQ
1: Delete all vertices of degree 1 from G and assign to H
2: Sort V in ascending order of degrees
3: Choose a vertex v of minimum degree
4: Turn N(v) of v into a clique by adding edges, which are added to the edge set

of H and to the fill-edge queue, FQ
5: Remove the vertex v from G and all the edges incident on it
6: Repeat steps 2 to 5 until G is empty
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3.4 Chordal Graph to Weakly Chordal

Graph

The chordal graph H is necessarily a weakly chordal, and hence, we apply an

algorithm that will be based on deleting edges to H that preserves weak chordality.

The edges that were added by the mdv heuristic are the edges that make candidate

for deletion. The candidate edge each time is deleted temporarily from H, so we

can check if the deletion of this edge results in a hole or an antihole configuration in

H. If the deletion of this edge does not result in a hole or an antihole configuration,

we delete this edge. This complete process is detailed in the sections to follow.

3.4.1 Fill-Edge Queue

We define a fill-edge as each edge that was added to convert an arbitrary input

graph into chordal graph. To be able to delete as many fill-edges as possible, a

queue of fill-edges FQ is maintained. From the front of the queue, a fill-edge is

removed which we try to then delete from H. Incase this gives rise to a hole or

an antihole configuration, we put it at the end of the queue. We keep repeating

this until from FQ no more fill-edges can be removed.

e

a

b c

d a

b c

d

ef

(a) One P4 and one P3 (b)TwoP4

Figure 3.3: Detecting Holes
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3.4.2 Detecting Holes

A hole in a graph G can be defined as an chordless cycle induced on five or more

vertices. Since, a graph is weakly chordal if it is (hole, antihole)-free [10], it is

important to detect if the deletion of an edge gives rise to a hole configuration.

The class of weakly chordal graphs allows the biggest cycle of size four, the holes

can hence be formed either by a pair of two P4’s or a by a pair of a P3 and a P4,

as shown in Fig. 3.3.

We can detect a hole configuration in H by starting with an edge {u, v} of

H and start by deleting it temporarily. Next, we must make sure to check if the

deletion of this edge has created a hole in H. To detect a hole, a breadth-first

search in H is performed with u as the starting vertex and find all chordless P3

and P4 paths between the two vertices u and v. A hole can be created in two

following ways: (a) by a disjoint pair of P4, having six distinct vertices between

them such that there exists no chord joining an internal vertex on one P4 to an

internal vertex on the other, this is termed as a hole on two P4s; (b) by a disjoint

pair of P3 and P4 between the two vertices u and v of the temporarily deleted edge,

with five distinct vertices between them, such that there exist no chord joining an

internal vertex on the P4 to the internal vertex of the P3; this is termed as a hole

on a P3 and a P4.

For example in Figure 3.3, (a) has {a,b,c,d} as one P4 and {a,e,d} as one P3,

which together join to make a cycle of size 5 which is not permitted for a weakly

chordal graph. In Figure 3.3, (b) has {a,b,c,d} and {a,f,e,d} are two P4’s, which

together join to make a cycle of size which is not permitted for a weakly chordal

graph.
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3.4.3 Antiholes

By definition an antihole in a graph is the complement of a hole [10]. An antihole

configuration in a weakly chordal graphs has the structure shown in Fig. 3.4. This

is an induced graph on six distinct vertices each of which is of degree three.

Carefully note the structure shown in Fig. 3.4. It is created by two P3 paths,

{a, c, d}, {a, f, d}, and one P4 path, {a, b, e, d}, between a and d. Furthermore,

there is an edge connecting b to c and another connecting e to f . All the vertices

have a degree of 3 if {a,d} are deleted.

a

d

f

c

b

e

Figure 3.4: Antihole

3.4.4 Detecting Antiholes

For an antihole configuration to be detected in the graph, we pick an edge {a, d}

and delete it from the graph temporarily. We then check if deletion of the edge

{a, d} creates an antihole structure in the graph. To detect this, we first implement

breadth-first search with a as the starting vertex to find all chordless P3 and P4

paths between a and d. An antihole structure is formed by a pair of two P3 and one

P4 such that the induced graph on the six vertices, are uniformly all of the same

degree equal to three and there exists a chord from the internal vertex of each P3

to one of the internal vertices in the P4. For example, in Fig. 3.4, {a, b, e, d} is a

P4, {a, c, d} and {a, f, d} are two P3 paths. There exists exactly one chord from b

to c and exactly one from e to f and, in the induced graph on these six vertices,

42



every vertex has degree three, making it an antihole configuration.

3.5 Proposed Algorithm

This section outlines the proposed algorithm for deleting edges from a weakly

chordal graph to remove fill edges while maintaining its weak chordality property.

To be able to delete as many fill-edges as possible, we start by removing a fill-edge

{u, v} from the front of the fill-edge queue, which we then try to delete from H.

If we do not succeed in deleting the fill-edge, we put it at the back of the queue.

We keep repeating this until no more fill-edges can be removed from the fill-edge

queue. In practise, we implement this by defining one deletion round as one in

which the edge at the end of the queue is at the start. One deletion round com-

prises of picking an edge from the start of the queue and deleting it from H. Now

we check if the deletion of {u, v} creates a hole or an antihole configurations in H.

If it creates a hole or an antihole configuration, we do not delete the edge {u, v}

and add it back to the fill-edge queue. Otherwise, we delete the edge from H and

also remove it from the fill-edge queue FQ. When the size of the fill-edge queue

FQ does not change over two successive deletion rounds, we stop.

A random arbitrary graph on 6 vertices and 8 edges is taken for example in

Fig. 3.5. It is converted into a chordal graph by inserting two additional edges.

These two additional edges added are put in the fill-edge queue [{b, d}, {a, d}]. We

first maintain a temporary copy of chordal graph G in T . The deletion algorithm

begins by picking first edge {b, d} in the fill-edge queue and temporarily deletes it

from graph T to check for hole and antihole configurations. Since deleting {b, d}

does not give rise to any hole or antihole configurations, {b, d} is permanently

deleted from starting graph H which is now a weakly chordal graph. Now the

updated fill-edge queue is [{a, d}]. The deletion algorithm now picks the first edge

in {a, d} in the fill-edge queue and temporarily deletes it from graph T to check for
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Algorithm 3.2 ChordalToWeaklyChordal

Input: A chordal graph H = (V,E ∪ F ) with fill-edge queue FQ
Output: A weakly chordal graph Gw

1: T ← H . Make a copy of H
2: FQ← fill-edges of H
3: prevSize← 0
4: newSize← |FQ|
5: while (prevSize 6= newSize && newSize 6= 0) do . Check size of FQ over

two deletion rounds
6: prevSize← newSize
7: for (each edge{u, v} infill-edge queue, FQ) do
8: Delete edge {u, v} from T
9: if (Hole or Antihole Detected) then
10: Do not delete edge from graph H, add edge back to temporary graph

T , and to the back of the queue FQ
11: else
12: Delete edge {u, v} from graph H
13: end if
14: end for
15: newSize← |FQ|
16: end while
17: Gw ← H
18: return Gw

hole and antihole configurations. Since deleting {a, d} gives rise to a hole configu-

ration on one P4 {a, b, c, d} and one P3 {a, f, d}, {a, d} is not permanently deleted

from H. Since the queue is now empty, the graph Gw returned by the algorithm

is weakly chordal with a small subset of fill-edges added to the original graph G.

Consider Figure 3.6 for another example, a random arbitrary graph on 6 ver-

tices and 9 edges is obtained. It is converted into a chordal graph H (see Fig-

ure 3.6) by adding three additional edges. These three additional edges added are

put in the fill-edge queue [{a, c}, {b, d}, {a, d}]. Maintain a temporary copy of the

chordal graph H in T . The deletion algorithm begins by picking first edge {a, c}

in the fill-edge queue and temporarily deletes it from graph T to check for hole

and antihole configurations. Since deleting {a, c} does not give rise to any hole or

antihole configurations, {a, c} is permanently deleted from starting graph H which

is now a weakly chordal graph shown in Figure 3.6. Now the updated fill-edge
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Figure 3.5: Arbitrary graph to weakly chordal graph

queue is [{b, d}, {a, d}]. The deletion algorithm now picks the first edge in {b, d}

in the fill-edge queue and temporarily deletes it from graph T to check for hole

and antihole configurations. Since deleting {b, d} does not give rise to any hole

or antihole configuration, {b, d} is permanently deleted from starting graph H,

which is now a weakly chordal graph. Now the updated fill-edge queue is [{a, d}].

The deletion algorithm now picks the first and only edge {a, d} in the fill-edge

queue and temporarily deletes it from graph T to check for a hole or an antihole

configuration. Since deleting {a, d} gives rise to an antihole configuration on two

P3 paths {a, f, d},{a, e, d} and one P4 {a, b, c, d}, the edge {a, d} is not perma-

nently deleted from starting graph H. Since the queue is now empty, the graph

Gw returned by the algorithm is weakly chordal with a small subset of fill-edges
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Figure 3.6: Arbitrary graph to weakly chordal graph

added to the original graph G as shown in Figure 3.6.

3.5.1 Results

3.5.1.1 Output 1

The following example takes an input of 10 nodes and 15 edges.

Consider Figure 3.7(a), a random arbitrary graph on 10 vertices and 15 edges

is obtained.

It is converted into a chordal graphH (see Figure 3.7(b)) by adding 2 additional

edges.

These 2 additional edges added are put in the fill-edge queue [{8, 4}, {8, 5}].

Maintain a temporary copy of the chordal graph H in T .
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The deletion algorithm begins by picking first edge {8, 4} in the fill-edge queue

and temporarily deletes it from graph T to check for hole and antihole configura-

tions. Since deleting it does not give rise to any hole or antihole configurations,

{8, 4} is permanently deleted from starting graph H.

Now the updated fill-edge queue is [, {8, 5}]. The deletion algorithm now picks

the first edge in {8, 5} in the fill-edge queue and temporarily deletes it from graph

T to check for hole and antihole configurations. Since deleting {8, 5} does not

give rise to any hole or antihole configuration, {8, 5} is permanently deleted from

starting graph H, which is now a weakly chordal graph.

Since the queue is now empty, the graph Gw returned by the algorithm is

weakly chordal with a small subset of fill-edges added to the original graph G as

shown in Figure 3.7(c).
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(a) Arbitrary Graph (G)
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(b) Chordal Graph (H)
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(c) Weakly Chordal Graph (H = H−
{v4, v8} = Gw)

Figure 3.7: Arbitary graph to a weakly chordal one
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3.5.1.2 Output 2

The following example takes an input of 12 nodes and 18 edges.

Consider Figure 3.9(a), a random arbitrary graph on 12 vertices and 18 edges

is obtained.

It is converted into a chordal graphH (see Figure 3.9(b)) by adding 2 additional

edges.

These 2 additional edges added are put in the fill-edge queue [{8, 4}, {3, 5}].

Maintain a temporary copy of the chordal graph H in T .

The deletion algorithm begins by picking first edge {8, 4} in the fill-edge queue

and temporarily deletes it from graph T to check for hole and antihole configura-

tions. Since deleting it does not give rise to any hole or antihole configurations,

{8, 4} is permanently deleted from starting graph H.

Now the updated fill-edge queue is [, {3, 5}]. The deletion algorithm now picks

the first edge in {3, 5} in the fill-edge queue and temporarily deletes it from graph

T to check for hole and antihole configurations. Since deleting {3, 5} does not

give rise to any hole or antihole configuration, {3, 5} is permanently deleted from

starting graph H, which is now a weakly chordal graph.

Since the queue is now empty, the graph Gw returned by the algorithm is

weakly chordal with a small subset of fill-edges added to the original graph G as

shown in Figure 3.9(c).
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(a) Arbitrary Graph (G) (b) Chordal Graph (H)

(c) Weakly Chordal Graph

Figure 3.8: Arbitary graph to a weakly chordal one

3.5.1.3 Output 3

The following example takes an input of 15 nodes and 20 edges.

Consider Figure 3.9(a), a random arbitrary graph on 15 vertices and 20 edges

is obtained.

It is converted into a chordal graphH (see Figure 3.9(b)) by adding 3 additional

edges.

These 3 additional edges added are put in the fill-edge queue [{8, 6}, {3, 8}, {10, 14}].

Maintain a temporary copy of the chordal graph H in T .

The deletion algorithm begins by picking first edge {8, 6} in the fill-edge queue

and temporarily deletes it from graph T to check for hole and antihole configura-

tions. Since deleting it does not give rise to any hole or antihole configurations,

{8, 6} is permanently deleted from starting graph H.

Now the updated fill-edge queue is [{3, 8}, {10, 14}]. The deletion algorithm

now picks the first edge in {3, 8} in the fill-edge queue and temporarily deletes it
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from graph T to check for hole and antihole configurations. Since deleting {3, 8}

does not give rise to any hole or antihole configuration, {3, 8} is permanently

deleted from starting graph H, which is now a weakly chordal graph.

Now the updated fill-edge queue is [{10, 14}]. The deletion algorithm now

picks the first edge in {10, 14} in the fill-edge queue and temporarily deletes it

from graph T to check for hole and antihole configurations. Since deleting {10, 14}

does not give rise to any hole or antihole configuration, {10, 14} is permanently

deleted from starting graph H, which is now a weakly chordal graph.

Since the queue is now empty, the graph Gw returned by the algorithm is

weakly chordal with a small subset of fill-edges added to the original graph G as

shown in Figure 3.9(c).
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(a) Arbitrary Graph (G)
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(b) Chordal Graph (H)
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(c) Weakly Chordal Graph

Figure 3.9: Arbitary graph to a weakly chordal one
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3.5.1.4 Output 4

The following example takes an input of 20 nodes and 25 edges.
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(a) Arbitrary Graph (G)
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(b) Chordal Graph (H)
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(c) Weakly Chordal Graph

Figure 3.10: Arbitary graph to a weakly chordal one
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3.5.2 Experiments

To convert an arbitrary graph G to a chordal graph H we use a triangulation

algorithm. In order to add as few edges as possible while converting arbitrary

graph G to chordal graph H, and to be able to assess which triangulation algo-

rithm adds fewer edges when converting arbitrary graph G to a chordal graph

H, we conduct an experiment to compare the two existing triangulation algo-

rithms, minimum degree vertex (explained in detail in section 3.3.1) and minimal

triangulation. The author in [5] introduced an algorithm that provides minimal

triangulation in O(nm) time, and can create any minimal triangulations of an ar-

bitrary graph in any order of vertices. LB- Triangulation is an efficient algorithm

to compute minimal triangulation using an arbitrary ordering on the vertices [5].

In this algorithm, any ordering on the vertices,produces minimal triangulation by

adding only the necessary edges at each step, instead of making the current vertex

simplicial.

In this experiment we start by generating an arbitrary graph G on the input num-

ber of vertices v and edges e. We supply the same arbitrary graph G to both

minimum degree vertex and LB-triangulation method to report the number of

edges added by each algorithm to convert arbitrary graph G to chordal graph H.

We then proceed to convert both chordal graphs H generated by the two methods

to make the final weakly chordal graph and report the final number of edges in

the weakly chordal graph by the two methods.

Arbitrary Fill Edges Final Edges Fill Edges Final Edges
Graph added by left in added by left in
{V,E} MDV WCG LBT WCG
{10,30} 4 30 4 30
{10,30} 4 31 6 31
{10,30} 8 33 14 33
{10,30} 4 30 4 30
{10,30} 7 32 9 33
{10,30} 3 30 5 30

Table 3.1: Comparison for number of edges added by MDV and LB-Triangulation
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Arbitrary Fill Edges Final Edges Fill Edges Final Edges
Graph added by left in added by left in
{V,E} MDV WCG LBT WCG
{15,20} 6 23 5 22
{15,20} 8 23 8 24
{15,20} 4 21 4 21
{15,20} 4 22 4 22
{15,20} 14 27 11 26

Table 3.2: Comparison for number of edges added by MDV and LB-Triangulation

Arbitrary Fill Edges Final Edges Fill Edges Final Edges
Graph added by left in added by left in
{V,E} MDV WCG LBT WCG
{12,15} 6 18 5 17
{12,15} 3 15 1 15
{12,15} 8 20 5 18
{12,15} 7 17 5 17
{12,15} 2 15 2 15

Table 3.3: Comparison for number of edges added by MDV and LB-Triangulation

Arbitrary Fill Edges Final Edges Fill Edges Final Edges
Graph added by left in added by left in
{V,E} MDV WCG LBT WCG
{12,20} 10 25 9 24
{12,20} 7 22 6 22
{12,20} 4 21 3 21
{12,20} 12 20 7 22
{12,20} 7 23 6 24

Table 3.4: Comparison for number of edges added by MDV and LB-Triangulation

Arbitrary Fill Edges Final Edges Fill Edges Final Edges
Graph added by left in added by left in
{V,E} MDV WCG LBT WCG
{20,25} 6 29 8 29
{20,25} 11 30 20 35
{20,25} 16 31 22 30
{20,25} 4 26 7 28
{20,25} 15 34 21 36

Table 3.5: Comparison for number of edges added by MDV and LB-Triangulation

On computing experiments for more graphs, it is evident the minimum degree

vertex adds fewer or equal edges in comparison to LB-Triangulation to convert an

arbitrary graph G to a chordal graph H. Hence, we chose to use minimum degree
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vertex for converting an arbitrary graph G to a chordal graph H for the remainder

of the proposed algorithm.

3.5.3 Complexity

To compute the complexity we first consider that the mdv heuristic can be imple-

mented in O(n2m) time, while the time-complexity of the recognition algorithm

based on LB-simpliciality is in O(nm). Next to be able to bound the query com-

plexity of deleting from the weakly chordal graph an edge {u, v}, we note that

this is dominated by the task of finding multiple P3 and P4 paths between u and v

and we have to consider these in pairs and run the breadth-first search. An upper

bound on the number of pairs of P3 and P4 paths between u and v is O(d2ud
2
v),

where du and dv are the degrees of u and v respectively. For consider such a path

from u to v (see Figure 3.11): x is one of the at most du vertices adjacent to u and

y is one of the at most dv vertices adjacent to v, so that we have at most O(dudv)

P4 paths from u to v and thus O(d2ud
2
v) disjoint pairs of P4 paths from u to v.

u x y v

Figure 3.11: A P4-path from u to v

Now, if If |E| be the number of edges currently, in the weakly chordal graph,

the complexity of running a breadth-first search is O(n + |E|). Since m is the

number of edges in the final weakly chordal graph, an upper bound on the query

complexity is O(d2ud
2
v(n + m)). The deletion of an edge take constant time since

we maintain an adjacency matrix data structure to represent G.
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Chapter 4

Conclusions

In this thesis, we focus on the problem of generating weakly chordal graphs. In the

first part, we carry out a comparative study of two existing algorithms for gener-

ating weakly chordal graphs. Their outputs are compared with respect to several

parameters to study how they differ structurally. Chapter 1 provides outline to

the overview of this thesis, problem statement and the underlying motivation to

carry out this research. Chapter 2 discusses two of the existing algorithms in the

literature to generate weakly chordal graphs. These two algorithms are explained

in detail and results from it’s Python implementation are attached. The two im-

plementations are compared in Chapter 2 in order to understand how the outputs

differ structurally from the graphs being generated by two different generation

algorithms.

In [7] the authors proposed an open problem of generating weakly chordal

graph starting from an arbitrary graph. A solution to this open problem forms

the second part of this thesis. Chapter 3 outlines the main contribution of this

thesis providing a solution to the open problem by proposing an algorithm to

generate weakly chordal graphs starting from an arbitrary input graph. While

the two existing generation algorithms studied are based on the various structural

properties of weakly chordal graphs, the first generation algorithm [2] is based

on notion of a two-pair in a graph and the other [20] is based on separators in

55



a graph to generate weakly chordal graphs, the proposed algorithm to generate

weakly chordal graph [17] uses the notion of holes and anti-holes. The proposed

algorithm allows us to be able to generate dense weakly chordal graphs and it

does not require any complex data structures. An application of this generation

algorithm would be to obtain and discover the test-instances for an algorithm for

enumerating linear layouts of a weakly chordal graph proposed in [3].

4.1 Future work

Further work can be done on several fronts. More work needs to be done in order

to be able to understand how the outputs of the different algorithms to generate

weakly chordal graphs are structurally different.

An interesting open problem will be to be able to prove minimality for the proposed

method, to be able to establish if the proposed method to generate weakly chordal

graph starting from an arbitrary graph, adds a minimal number of edges.

Another open problem to put forward is for counting the number of labeled weakly

chordal graphs on n vertices and m edges, which will further help generate weakly

chordal graphs uniformly at random.
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