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Abstract

In this thesis, we propose a new nonparametric approach based on Bernstein poly-

nomials to estimate the conditional density function. The proposed estimators have

desired properties at the boundaries, and can outperform the kernel and local lin-

ear estimators in terms of Integrated Mean Square Error for an appropriate choice

of the polynomials’ order. The idea is constructing a two-stage conditional proba-

bility density function estimator based on Bernstein polynomials. Specifically, the

Nadaraya-Watson (NW) and local linear (LL) conditional distribution function esti-

mators were smoothed using Bernstein polynomials in the first stage. Secondly, the

proposed estimators are obtained by differentiating the smoothed Bernstein NW and

LL estimators.

Further, the asymptotic properties of these estimators are established such as

asymptotic bias, variance and normality under mild regularity conditions.

Finally, a simulation study is carried out to assess the relative advantage of our

estimators compared to other estimators. Also, the well known Old Faithful Geyser

data were analyzed using the proposed estimators.
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Chapter 1

Introduction and motivation

Conditional probability density functions indicate comprehensive information on the

relationship between an outcome and some predictor random variables. So, con-

ditional density functions play an important role in statistics. The estimation of

conditional densities responds to two fundamental problems in statistics: finding the

distribution underlying a data set and describing the relationships between the differ-

ent variables. From this point of view, the conditional densities estimation is a richer

problem than two problems which have been intensively studied:

• the estimation of densities, which is naturally included by the estimation of

conditional densities by not considering any variable as an auxiliary, and

• the problem of regression, conditional density actually contains more informa-

tion than the regression function, which is simply conditional expectation, since

from conditional density, we can obtain the regression function, but the reverse

is false.

Compared to the two above mentioned problem, the literature is much poorer to deal

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

with the problem of estimating conditional densities, while there is a high demand in

many fields of application such as economics (Hall et al., 2004), medicine (Takeuchi

et al., 2009), actuarial (Efromovich, 2010) among others.

Usually, if the conditional density function has a known form, then the estimation

turns to estimate some parameters, this is so-called parametric method. However,

for certain statistical problems, the selection of a parametric model adapted to the

data processed is not always easy. For this reason, nonparametric estimation and

inference methods are good alternatives for this type of data. In this thesis, we focus

on using nonparametric methods to estimate the conditional density function. Several

nonparametric approaches have been proposed to estimate conditional density, such

as kernel density estimators (Rosenblatt, 1969; Hyndman et al., 1996) and different

methodologies for the bandwidth selection (Fan and Yim, 2004; Hall et al., 2004);

local linear estimators (Fan and Gijbels, 1996; Hyndman and Yao, 2002) and methods

based on Bernstein polynomials (Vitale, 1975; Babu et al., 2002; Babu and Chaubey,

2006; Belalia et al., 2017; Belalia, 2016; Leblanc, 2009, 2010), among others.

Nonparametric methods were used initially to estimate univariate density function

by introducing histogram or kernels method. Furthermore, the regression function

was estimated nonparametrically by Nadaraya (1965) and Watson (1964). Using

the same approach, but in the context of conditional density estimation, Rosenblatt

(1969) proposed a nonparametric estimator through plug-in kernel methods, which

became the famous Nadaraya-Watson estimator.

The Nadaraya-Watson conditional distribution function estimator suffers from an

excessive bias in the boundaries region. Furthermore, the fact that this estimator is

a step function (not continuous) makes its derivative impossible. Thus, this latter
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does not came with an associated density, which is too strict to apply under many

circumstances. To correct the bias, local linear estimator (cf. Fan and Gijbels, 1996,

Section 2.3.1) was developed. However, the local linear estimator still lead to that

step function.

To overcome the limitation above, recently, Based on Bernstein polynomials, Belalia

et al. (2017) proposed a new two stage conditional distribution estimators, which

smooth the Nadaraya-Watson and local linear estimators and outperform the exist-

ing local polynomial conditional distribution estimator (see, Hansen (2004) and Hall

et al. (1999)) in term of integrated mean square error. The resulting estimators are

continuous, differentiable, and have an associated density.

Nonparametric estimation methods based on Bernstein polynomials start with the

work of Vitale (1975). In that work, a Bernstein estimator for probability density

function was introduced. It is studied further by Babu et al. (2002) and many oth-

ers. This approach seems preferable to the kernel method on the boundary prop-

erties, see Leblanc (2012b). Bernstein polynomials were then used by many other

researchers. For example, Babu and Chaubey (2006) considered the multivariate dis-

tribution function, and Belalia (2016) discussed the properties of the multivariate

distribution function. The work of Ghosal (2001) and Petrone (1999b,a) discussed

the Bayesian approach based on Bernstein polynomial. More recently, Bernstein

polynomials were used by Belalia et al. (2019) to provide a nonparametric estimator

of the conditional density function with application to conditional distribution and

regression functions estimation.

The focus of this thesis is to study the resulting conditional probability density func-

tion using Bernstein polynomials. Specifically, the smoothed version of the Nadaraya-
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Watson and local linear estimators proposed in Belalia et al. (2017) are derived to ob-

tain the conditional density estimators based on Bernstein polynomial. The reminder

of this thesis is organized as follow: In Chapter 2, an overview of kernel nonpara-

metric estimation method for statistical quantities such as, cumulative distribution

and its associated density functions, the conditional mean and conditional density

functions are summarized. Similarly, nonparametric estimation methods based on

Bernstein polynomials will be discussed in Chapter 3. Finally, The main contribu-

tion of this thesis is presented in chapter 4. This include, presenting the two-stage

Bernstein conditional density estimator, providing its asymptotic properties: such as

asymptotic bias, variance and establishing the asymptotic normality. A simulation

study is carried out to assess the performance of the proposed estimators compared

to Nadaraya-Watson and local linear estimators. the proposed estimators were used

to analyze the Old Faithful Geyser Data.



Chapter 2

Kernel estimation methods

2.1 Statistical model

Assume that we are observing n independent and identically distributed (i.i.d.) sam-

ple (X1, Y1), . . . , (Xn, Yn) drawn from a couple of random variable (X, Y ). Let F be

the joint cumulative distribution function (cdf) and f its associated density function.

This joint density satisfies

P [a ≤ X ≤ b, c ≤ Y ≤ d] =
∫ b

a

∫ d

c
f(x, y) dx dy. (2.1)

The marginal cdf of X and its associated density are denotes by G, and g respectively.

The conditional density of Y givenX can be calculated by the ratio of the joint density

f to the marginal density g and is shown in the following formula

fx(y) = f(x, y)
g(x) , (2.2)

5



CHAPTER 2. KERNEL ESTIMATION METHODS 6

where the value of g(x) is fixed and greater than 0. The probability that Y will fall

between a and b given that X = x is obtained by

P
[
a ≤ Y ≤ b | X = x

]
=
∫ b

a
fx(y) dy.

Before moving to the conditional density function estimation, let us review some most

commonly used nonparametric estimation method for cumulative distribution and its

associated density functions. The next section deals with the simplest nonparametric

method to estimate a density f of a random variable X.

2.2 Univariate kernel density estimation

2.2.1 Histogram

The oldest and most widely used nonparametric estimator of a density f from an in-

dependent and identically distributed (i.i.d.) sample X1, . . . , Xn is the histogram. The

idea consists in aggregating the observation in intervals of the form [x0, x0 + h) and

then use their relative frequency to approximate the density at x ∈ [x0, x0 + h) , f(x)

by the estimate of

f(x0) = F ′(x0)

= lim
h→0+

F (x0 + h)− F (x0)
h

= lim
h→0+

P[x0 < X < x0 + h]
h

.

Precisely, given an origin x0 and a bin width h > 0, the histogram builds a piecewise
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constant function in the intervals {B` =
[
x0 + `h, x0 + (`+ 1)h

)
, ` ∈ Z} by counting

the number of sample points inside each of them. These constant-length intervals are

also denoted bins. The fact that they are of constant length h is important, since it

allows to standardize by h in order to have relative frequencies per length in the bins.

For a given point x ∈ B`, the histogram is defined as

f̂nh(x) = 1
nh

(numbers of Xi in same bin as x) = 1
nh

n∑
i=1

I{Xi∈B`,x∈B`},

where n is the number of observations.

The intuition of this density estimator is that the histogram assign equal density

value to every point within the bin. Note that, to construct the histogram, we have

to choose both an original x0 and a bin width h. The choice of h, primarily, controls

the amount of smoothing inherent in the procedure.

The histogram may be affected by three effects, the choice of origin, the coordinates

and the smooth parameter, thus though the histogram is a good estimate for large

sample size, it is difficult to get a high precision estimate for small sample size as

illustrated in Figure 2.1.
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Figure 2.1: The histogram density estimator for the standard normal density. The
sample size is n = 100, 500, 1000, 2000.

2.2.2 Kernel estimation methods construction

In this section, we review some of most widely used nonparametric estimation kernel

based methods. The approach was introduced to estimate statistical quantities such

as, cdf and its associated density, regression and quantile functions, among others. For
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more details about nonparametric techniques, the reader is referred to the excellent

monograph by Li and Racine (2007). In what follows, we will focus on density function

estimation.

The kernel density function estimator was proposed by Rosenblatt (1956) based on

the idea of that deriving the empirical cumulative function. Let Fn : R −→ [0, 1] the

empirical cumulative distribution function, which a nonparametric way to estimate

the cdf G, given by

F (x) = P (X ≤ x) . (2.3)

Starting from a i.i.d sample (X1, X2, . . . , Xn) drawn from F , intuitively, the empirical

cumulative distribution function at point x is the number of observation Xi, i =

1, 2, . . . n fall before x, formally, Fn is defined as

Fn(x) = 1
n
{numbers of Xi

′s ≤ x} = 1
n

n∑
i=1

I(Xi ≤ x) (2.4)

where I(·) is the indicator function.

Some of the most important asymptotic properties of Fn, such as asymptotic bias,

variance, and distribution limit are postponed in A.2.

To avoid the dependence of the histogram estimator on the origin x0, the moving

histogram or naive density estimator was introduced as alternative. Starting from

the definition of a probability density function (pdf ) denoted as f , we have

f(x) = d

dxF (x), (2.5)
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then an estimate of f(x) can be obtained as

f̂nh(x) = d

dx
Fn(x) = lim

h→0+

Fn(x+ h)− Fn(x− h)
2h , (2.6)

where h > 0 is a small positive increment. By substituting (2.4) into (2.6), we have

f̂nh(x) = 1
2nh{numbers of X ′is falling into [x− h, x+ h]}

= 1
2nh

n∑
i=1

I{x−h<Xi<x+h}. (2.7)

This estimator is also called naive density estimator, and is illustrated in Figure 2.2

with the effect of the bandwidth parameter h.

The properties of f̂nh(x) as a random variable follows by observing that

n∑
i=1

I{x−h<Xi<x+h} ∼ Binomial(n, px,h),

where

px,h := P[x− h < X < x+ h] = F (x+ h)− F (x− h).

Therefore, employing the bias and variance expressions of a binomial, it follows:

Theorem 2.1. The expectation and variance of f̂nh(x) are given, respectively by

• The expectation

E[f̂nh(x)] = F (x+ h)− F (x− h)
2h ,
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• The variance

Var[f̂nh(x)] = F (x+ h)− F (x− h)
4nh2 −

(
F (x+ h)− F (x− h)

)2
4nh2 .

Proof of Theorem 2.1: A detailed proof of this theorem is given in A.3.

X

−2 0 2 4 6 8

h = 0.1
h = 0.32
h = 1

Figure 2.2: Illustration of naive density estimator with three value of the bandwidth
parameter h = 1 (orange line), h = 0.32 (green dashed line), and h = 1 (blue dotted
line).

We follow this idea to extend the naive density estimator to the general weight func-

tion estimator Silverman (1986). The general weight function estimator is the con-

volution of the empirical distribution function and a weight function. But we firstly

need the introduction of Dirac Delta function as a useful tool for the derivation of
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this class of estimators.

The Dirac delta function is the derivative of the Heaviside function defined as

H(x) =


0 if x < 0

1 if x > 0
,

we denote it as δ(x). The Dirac delta function is actually a distribution which satisfies

following properties

i.

δ(x) =


0 if x 6= 0

∞ if x = 0
,

ii. ∫ ∞
−∞

δ(x) dx = 1,

iii.

xδ(x) ≡ 0,

since the δ(x) is zero for x 6= 0 and suppose f(x) is a continuous function, then

properties of delta function allow us to write

∫ ∞
−∞

f(x)δ(x) dx =
∫ ∞
−∞

f(0)δ(x) dx

= f(0),
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thus the derivative of empirical distribution function can be rewritten as

f̂nh(x) = 1
n

n∑
i=1

δ(x−Xi).

The general weight function estimator denoted as f̂w(x) is given by

f̂w(x) =
∫ ∞
−∞

f̂n(x− t)w(t) dt

=
∫ ∞
−∞

1
n

n∑
i=1

δ(x− t−Xi)w(t) dt

= 1
n

n∑
i=1

∫ ∞
−∞

δ(x− t−Xi)w(t) dt

= 1
n

n∑
i=1

w(x−Xi), (2.8)

where w(·) is a continuous function satisfying the following conditions

∫ ∞
−∞

w(x, t) dt = 1,

and w(x, t) ≥ 0 for all x and t.

However, when

w(x, t) = 1
h
K

(
t− x
h

)
,

where K(·) satisfies the following regularity conditions:

∫ ∞
−∞

K(v)dv = 1, K(v) = K(−v), and
∫ ∞
−∞

v2K(v)dv = κ2 > 0, (2.9)

the resulting weight function estimator is called kernel density estimator, and it is
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given by

f̂nh(x) = 1
nh

n∑
i=1

K

(
Xi − x
h

)
. (2.10)

Note that if the kernel is reduced to the rectangular function defined as

K(x) =


1/2 if |x| < 1

0 otherwise
,

the kernel density estimator is reduced to the naive density estimator. Some of the

asymptotic properties of f̂nh(x) are given in the following theorem.

Theorem 2.2. Let X1, ..., Xn denote i.i.d. observations having a three-times differ-

entiable pdf f(x), and let f (s)(x) denote the sth order derivative of f(x)(s = 1, 2, 3).

Let x be an interior point in the support of X. Assume that the kernel function K(·)

is bounded and satisfies (2.9). Also, as n → ∞, h → 0 and nh → ∞, then, the

estimator (2.10) satisfies;

MSE(f̂nh(x)) = h4

4
[
κ2f

(2)(x)
]2

+ κf(x)
nh

+ o(h4 + (nh)−1)

= O(h4 + (nh−1)), (2.11)

where κ2 =
∫
v2K(v)dv and κ =

∫
K2(v)dv.

The proof of Theorem 2.2 is given in Appendix A.4.

An intuitive construction of the kernel density estimator defined by Equation (2.10) of

the sample X = 65, 75, 67, 79, 81, 91, is depicted in Figure 2.3. This construction can

be done as follows: we place a normal kernel with standard deviation 5.5 (indicated

by the red dashed lines) on each of the data points xi, i = 1, 2, . . . , 6. The kernels are
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summed to make the kernel density estimate (solid blue curve). The smoothness of the

kernel density estimate is evident compared to the discreteness of the histogram, as

kernel density estimates converge faster to the true underlying density for continuous

random variables. Also, an application on the Faithful Geyser dataset to estimate

the waiting time before the next eruption is illustrated in in Figure 2.4. Finally, the

effect of the bandwidth parameter is shown in using a sample of size n = 100 drawn

from the standard normal distribution.

X

D
e

n
s
it
y

50 60 70 80 90 100 110

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 2.3: Kernel density estimate constructed using the same data. The six indi-
vidual kernels are the red dashed curves, the kernel density estimate the blue curves.
The data points are the rug plot on the horizontal axis.
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waiting
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e
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0.04 density histogram

KDE gaussian (denstiy)

KDE gaussian (kde)

KDE rectangular (kde)

Figure 2.4: Kernel density estimation (KDE) of the waiting time before the next
eruption.
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Figure 2.5: Kernel density estimate (KDE) with different bandwidths of a random
sample of 100 points from a standard normal distribution. Black: true density (stan-
dard normal). Red: KDE with h = 0.1. Green: KDE with h = 0.337. Blue: KDE
with h = 2.

2.3 Multivariate kernel density estimation

Kernel density estimation discussed above can be generalized to estimate multi-

variate densities f ∈ Rd in a straightforward way. Suppose now we have obser-

vations (X1,X2, ...,Xn), where each of the observations is a d-dimensional vector

Xi = (Xi1, Xi2, . . . , Xid)T . The multivariate kernel density estimator at point x =
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(x1, x2, ..., xd)T is defined as

f̂nH(x) = 1
n|H|1/2

n∑
i=1
K
(
H−1/2(x−Xi)

)
, (2.12)

with K denoting a multivariate kernel function, a d−variate density that is (typically)

symmetric and unimodal at 0, and that depends on the bandwidth matrix H , a d×d

symmetric and positive definite matrix.

A common simplification is to consider a diagonal bandwidth H = diag(h2
1, . . . , h

2
d),

which leads to the multivariate kernel density estimator employing product kernels:

f̂nh(x) = 1
n

n∑
i=1

1
h1...hd

K

(
Xi1 − x1

h1

)
K

(
Xi2 − x2

h2

)
. . . K

(
Xid − xd

hd

)
, (2.13)

where Xi = (Xi,1, . . . , Xi,d)> and h = (h1, . . . , hd)> is the vector of bandwidths.

To illustrate the usefulness of the bivariate kernel density estimator, the joint density

of the duration and waiting time in the Faithful Geyser dataset is plotted in Figure 2.6.
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Figure 2.6: Bivariate kernel density estimation of duration and waiting time of faithful
geyser data.

2.4 Kernel conditional density estimation

In this section the main kernel nonparametric method for conditional density esti-

mates is presented. Indeed, the Nadaraya-Watson estimator is presented in subsec-

tion 2.4.1, and the Local Linear estimator in the section 2.4.2.

2.4.1 Nadaraya-Watson Estimator

To help motivate the construction of the Nadaraya-Watson conditional density es-

timator, we first discuss the regression function m : R → R estimator. Due to its
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definition, m(·) can be rewritten as

m(x) = E(Y |X = x) =
∫ ∞
−∞

y
f(x, y)
g(x) dy. (2.14)

This expression shows an interesting point: the regression function can be com-

puted from the joint density f and the marginal g. Therefore, given a sample

(X1, Y1), . . . , (Xn, Yn), a nonparametric estimate of m can be obtained by replac-

ing the previous densities by their kernel density estimators. We can therefore define

the estimator of m as

∫
y f̂nh(x, y) dy
ĝnhx(x) =

∫
y

1
n

n∑
i=1

Khx(x−Xi)Khy(y − Yi) dy

1
n

n∑
i=1

Khx(x−Xi)

=

1
n

n∑
i=1

Khx(x−Xi)
∫
yKh2(y − Yi) dy

1
n

n∑
i=1

Khx(x−Xi)

=

1
n

n∑
i=1

Khx(x−Xi)Yi

1
n

n∑
i=1

Khx(x−Xi)

=
n∑
i=1

Khx(x−Xi)
n∑
i=1

Khx(x−Xi)
Yi.

The resulting estimator the so-called Nadaraya–Watson estimate of the regression

function:

m̂n(x) :=
n∑
i=1

Kh(x−Xi)∑n
i=1 Kh(x−Xi)

Yi =
n∑
i=1

wNW
i (x)Yi, (2.15)
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where hx = h, and

wNW
i (x) := Kh(x−Xi)∑n

i=1 Kh(x−Xi)
.

For a visual aspect of m̂n, the Example 1 of Hall et al. (1999) and also considered by

Veraverbeke et al. (2014) is used for illustration. Specifically, consider the case where

Zi = 2 sin(πXi) + εi, i = 1, ..., n, (2.16)

and where {Xi} and {εi} are two independent sequences of independent random

variables each having density 1 − |x| on [−1, 1]. Figure 2.7 displays a typical data

set generated from model (2.16) using n = 200 observations with the associated

regression curve y = 2 sin(πx).
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Figure 2.7: Typical data set generated from model (2.16) using n = 200 and true
mean curve y = 2 sin(πx). The bandwidth parameter is h = 0.1.

Now we can follow the idea in Stone (1977) to construct the Nadaraya-Watson con-

ditional distribution estimator. In fact, the conditional cumulative distribution can

be rewritten as the conditional mean of I(Y ≤ y) given X = x, namely,

Fx(y) = P
[
Y ≤ y|X

]
= E

[
I(Y ≤ y)|X

]
.

This naturally suggests to use a regression approach to estimate Fx and is the basis

for most of the work done so far on conditional CDF nonparametric estimation. For
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instance, using the same approach as Nadaraya (1964, 1965) and Watson (1964), we

can estimate Fx(y) by

F̂x,h(y) =
∑n
i=1 Khx(x−Xi) I(Yi ≤ y)∑n

j=1 Khx(x−Xj)
,

which can also be written as

F̂x,h(y) =
n∑
i=1

wNW
i (x) I(Yi ≤ y), (2.17)

where Kh(x) = h−1K(x/h), K is a kernel function, h = hx is the smoothing band-

width and the definition of the weights wi is obvious.

Similarly, by using the definition of the conditional density function given by Equa-

tion (2.2), the Nadaraya-Watson estimator of the conditional density fx, can be ob-

tained as

f̂x,h(y) = f̂nh(x, y)
ĝnhx(x) =

∑n
i=1 Khx (Xi − x)Khy (Yi − y)∑n

i=1 Khx (Xi − x) . (2.18)

Theorem 2.3. Assuming the the conditional density function fx(y) has bounded and

continuous second order derivative with respect to y, we have

Bias
(
f̂x,h(y)

)
=
h2
yκ2

2
∂2fx(y)
∂y2 + o(h2

y),

where κ2 =
∫
t2Ky(v)dv. Also, we have

Var
(
f̂x,h(y)

)
= κ2

nhxhy

fx(y)
g(x) + o((nhxhy)−1),
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where κ =
∫
Ky(v)dv, g(·) is the univariate pdf . And

AMSE
(
f̂x,h(y)

)
=
h4
yκ

2
2

4

(
∂2fx(y)
∂y2

)2

+ κ2

nhxhy

fx(y)
g(x) ,

provided that the bandwidth hx and hy converge to zero in such a way that nhxhy →∞.

2.4.2 Local Linear Estimator

In this section, we will discuss the limitation of NW regression estimator and introduce

an improved estimator called local linear estimator.

Consider a simple case of regression function such as Yi = α+Xiβ, the performance

of this regression function will depend on the marginal distribution of the Xi. If they

are not spaced at uniform distances, then m̂n(x) 6= m(x). One way to see the source

of the problem is to consider the nonparametric equation E(Xi−x|Xi = x) = 0. The

numerator of the NW estimator is

n∑
i=1

K

(
Xi − x
h

)
(Xi − x),

but this is non-zero. Another problem of NW estimator occurs at the boundary

of the support. In fact, the estimator is inconsistent at the boundary. To solve

these problems, the local polynomial estimator is introduced, see Fan and Gijbels

(1996). The motivation for the local polynomial fit comes from attempting to find an

estimator m̂n of m that minimizes the residual sum of squares (RSS)

n∑
i=1

(
Yi − m̂(Xi)

)2 (2.19)



CHAPTER 2. KERNEL ESTIMATION METHODS 25

without assuming any particular form for the true m. We use Taylor expansion

m (Xi) ≈ m(x) +m′(x) (Xi − x) + . . .+ m(p)(x)
p! (Xi − x)p (2.20)

to induce a local parametrization on m with pth order.

Then we replace (2.20) into (2.19), we have

n∑
i=1

Yi − p∑
j=0

βj (Xi − x)j
2

,

where βj = m(j)(x)
j! . In this way, we eliminate the m(·), and turn to estimate β =(

β0, β1, . . . , βp
)
. The final touch is to use a weighted least squares by the kernel

function to estimate the β, which is

β̂h = arg min
β∈Rp+1

n∑
i=1

Yi − p∑
j=0

βj (Xi − x)j
2

Khx (Xi − x) . (2.21)

We denote

X =


1 X1 − x · · · (X1 − x)p

... ... . . . ...

1 Xn − x · · · (Xn − x)p

 ,

and

W = diag(Khx(X1 − x), . . . , Khx(Xn − x)), Y =


Y1

...

Yn

 .
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Then we can re-express (2.21) as

β̂h = arg min
β∈Rp+1

(Y−Xβ)′W (Y−Xβ)

⇒ 2(−X′)W (Y−Xβ) = 0

=
(
X′WX

)−1
X′WY.

The estimate for m(x) can be rewritten as

m̂n(x) = e1
′β̂h

= e1
′
(
X′WX

)−1
X′WY

=
n∑
i=1

W p
i (x)Yi,

where

W p
i (x) = e′1

(
X′WX

)−1
X′Wei,

and ei is the ith standard basis vector. We can notice that the local polynomial

estimator is a weighted linear combination with the responses, just the same as the

Nadaraya-Watson estimator. In fact, when p = 0, the local polynomial estimator is

the NW estimator, also called local constant estimator. When p = 1, we have

X =


1 X1 − x
... ...

1 Xn − x

 ,
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and

W = diag(Khx(X1 − x), . . . , Khx(Xn − x)), Y =


Y1

...

Yn

 .

Let

Sj =
n∑
i=1

Khx(x− xi)(x− xi)j, for j = 0, 1, 2.

And

V0 =
n∑
i=1

Khx(x− xi)Yi, V1 =
n∑
i=1

Khx(x− xi)(x− xi)Yi.

Then we have

m̂n(x) = e′1




1 X1 − x
... ...

1 Xn − x



′ 
Khx(x− xi) · · · 0

... . . . ...

0 · · · Khx(Xn − x)




1 X1 − x
... ...

1 Xn − x





−1

X′WY

= e′1

 S0 S1

S1 S2


−1  V0

V1

 .

According to the inverse formula of partitioned matrix

 A B

C D


−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

 ,
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thus, we have

m̂n(x) =
(
S0 − S1S

−1
2 S1

)−1 (
V0 − S1S

−1
2 V1

)

=

n∑
i=1

wLL
i (x)Yi

n∑
i=1

wLL
i (x)

, (2.22)

where wLL
i (x) = Khx(x− xi)[1− S1S

−1
2 (x− xi)].

Note that, one can handle the local linear regression estimator to get a conditional

distribution function estimator in the same way as the NW regression estimator,

which lead to

F̂x,h(y) =
∑n
i=1 w

LL
i (x)I (Yi ≤ y)∑n
i=1 w

LL
i (x) ,

where wLL
i (x) is the same as in (2.22).

As described in Fan and Gijbels (1996), and following the same strategy as for the

NW conditional density estimator, the local linear (LL) conditional density function

estimator can be stated as,

f̂x,h(y) ≈ E
(
Khy(Y − y)|X = x

)
=
∑n
i=1 w

LL
i (x)Khy(Yi − y)∑n
i=1 w

LL
i (x) , (2.23)

where Kh(·) is a kernel function as previously.

Theorem 2.4. Under Condition 2 in Fan and Gijbels (1996, Section 6.6), we have

Bias
(
f̂x,h(y

)
= h2

xµ2

2
∂2fx(y)
∂x2 +

h2
yµK

2
∂2fx(y)
∂y2 + o(h2

x + h2
y),
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where µK =
∫
t2Ky(v)dv, µj =

∫
tjKx(v)dv. Also, we have

Var
(
f̂x,h(y

)
= νKν0

nhxhy

fx(y)
g(x) + o((nhxhy)−1),

where νK =
∫
{Ky(v)}2dv, νj =

∫
tj{Kx(v)}2dv, g(x) is the univariate PDF. And

AMSE
(
f̂x,h(y

)
= νKν0

nhxhy

fx(y)
g(x) + h4

xµ
2
2

4

(
∂2fx(y)
∂x2

)2

+
h4
yµ

2
K

4

(
∂2fx(y)
∂y2

)2

+
h2
xh

2
yµ2µK

2
∂2fx(y)
∂x2

∂2fx(y)
∂x2 ,

provided that the bandwidth hx and hy converge to zero in such a way that nhxhy →∞.



Chapter 3

Bernstein estimation methods

3.1 Bernstein estimation methods

Nonparametric estimation methods based on Bernstein polynomials (Lorentz, 1986,

cf.) are known by their optimal properties in terms of the mean square error (MSE). In

addition, these estimation procedures behave in an interesting manner in the bound-

aries of the support of the distribution function or of its density, in particular the

absence of bias at the border points.

The story started in 1913 when Sergëı Bernstein sought to give a constructive and

probabilistic demonstration of Weierstrass’ classical theorem, on the approximation

of continuous functions over closed and bounded intervals, which can be stated as

follow.

Theorem 3.1. (Weierstrass Theorem). Let f : [a, b] → R be a continuous real-

30
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function. Given ε > 0, there exists a polynomials Qn(x) satisfying

for all x ∈ [a, b], |f(x)−Qn(x)| < ε.

It is in this perspective that Sergëı Bernstein introduced a family of polynomials,

which will bear his name later, an example of these polynomials are depicted in

Figure 3.1a, and its definition is as follows.

Definition 3.1 (Bernstein polynomials). For m ∈ N and 0 ≤ k ≤ m, the Bernstein

polynomials Pm,k of degree m are defined as

Pm,k(x) =
(
m

k

)
xk(1− x)m−k, k = 0, 1, 2, . . . ,m.

for x ∈ [0, 1].

These polynomials have analytical-probabilistic properties, which until today attract

many probabilistic and statisticians combined. We cite some of them by way of

illustration.

Proposition 1. (Properties) Bernstein polynomials have the following properties:

(i) Partition of unity:
m∑
k=0

Pm,k(x) = 1, x ∈ [0, 1],

(ii) Positivity :

∀k ∈ {0, . . . ,m} Pm,k(x) ≥ 0,

(iii) Symmetry :

∀k ∈ {0, . . . ,m} Pm,k(x) = Pm,m−k(1− x),
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(iv) recurrence formula: for m > 0,

Pm,k(x) =



(1− x)Pm−1,k(x) si k = 0

(1− x)Pm−1,k(x) + xPm−1,k−1(x) ∀k ∈ {1, . . . ,m− 1}

xPm−1,k−1(x) si k = m.

Based on the definition above, Weierstrass Theorem can be restated as

Theorem 3.2. Let f : [0, 1] → R be a continuous real-functions. The Bernstein

polynomials of order m associate to f are give by :

∀m ∈ N, ∀x ∈ [0, 1], Bm(f)(x) =
m∑
k=0

f

(
k

m

)m
k

xk (1− x)m−k .

Then, we have

lim
m→∞

‖f −Bm(f)‖∞ = lim
m→∞

sup
x∈[0,1]

|f(x)−Bm(f)(x)| = 0.

In particular, any continuous function on [0, 1] is the uniform limit of a sequence of

Bernstein polynomials.

Proof of Theorem 3.2. We shall compute the value of

T =
m∑
k=0

(k −mx)2Pm,k(x)

=
m∑
k=0

(k −mx)2 m!
k!(m− k)!x

k(1− x)m−k

=
 m∑
k=0

k2 m!
k!(m− k)!x

k(1− x)m−k +
m∑
k=0

m2x2 m!
k!(m− k)!x

k(1− x)m−k
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−
m∑
k=0

2kmx m!
k!(m− k)!x

k(1− x)m−k


= mx

 m∑
k=0

k
(m− 1)!

(k − 1)!(m− k)!x
k−1(1− x)m−k +mx

− 2mx
m∑
k=0

(m− 1)!
(k − 1)!(m− k)!x

k−1(1− x)m−k


= mx

 m∑
k=1

k
(m− 1)!

(k − 1)!(m− k)!x
k−1(1− x)m−k −mx


= mx

m−1∑
`=0

(`+ 1) (m− 1)!
`!(m− 1− `)!x

`(1− x)m−1−` −mx


= mx

m−1∑
`=0

(m− 1)x (m− 2)!
(`− 1)!(m− 1− `)!x

`−1(1− x)m−1−` + 1−mx


= mx[(m− 1)x+ 1−mx]

= mx(1− x),

since x(1− x) ≤ 1/4 on [0, 1], we obtain the inequality

∑
| k

m
−x|≥δ

Pm,k(x) ≤ 1
δ2

∑
| k

m
−x|≥δ

(
k

m
− x

)2

Pm,k(x) ≤ 1
m2δ2T = x(1− x)

mδ2 ≤ 1
4mδ2 ,

for
∣∣∣ k
m
− x

∣∣∣2 /δ2 ≥ 1. If now the function f is bounded, say |f(u)| ≤ M in 0 ≤ u ≤ 1

and x a point of continuity for a given ε > 0, we can find a δ > 0 such that |x− x′|, δ

implies that |f(x)− f(x′)| < ε. We denote the Bernstein polynomial by Bm(x), then

we have

|f(x)−Bm(x)| =

∣∣∣∣∣∣∣
m∑
k=0

f(x)− f
(
k

m

)Pm,k(x)

∣∣∣∣∣∣∣
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≤
∑
| k

m
−x|<δ

∣∣∣∣∣∣f(x)− f
(
k

m

)∣∣∣∣∣∣Pm,k(x) +
∑
| k

m
−x|≥δ

∣∣∣∣∣∣f(x)− f
(
k

m

)∣∣∣∣∣∣Pm,k(x)

≤ ε
m∑
k=0

Pm,k(x) + 2M(4mδ2)−1.

Therefore, ∣∣f(x)−Bm(x)
∣∣ ≤ ε+M(2mδ2)−1 (3.1)

and if m si sufficiently large, |f(x)−Bm(x)| < 2ε. Finally, if f(x) is continuous in the

whole interval [0, 1] then (3.1) holds with a δ independent of x, so that Bm(x)→ f(x)

uniformly. This completes the proof.
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Figure 3.1: (a) Bernstein polynomials, (b) Approximation of function f(x) =
x cos(5πx) using Bernstein polynomials of degree m = 30, 40, 50, 60, 80, 500.

3.1.1 Bernstein distribution function estimator

Given a random sample X1, . . . , Xn draw from a random variable X of distribution

function F defined on [0, 1]. Motivated by the problem of smooth estimation of
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F , Babu et al. (2002) proposed the univariate Bernstein estimator, which takes the

following form

F̂n,m(x) =
m∑
k=0

Fn

(
k

m

)
Pm,k(x), k = 0, ...,m. (3.2)

where m is the smoothing parameter, Pm,k(x) =
(
m
k

)
xk(1−x)m−k are binomial proba-

bilities and Fn denotes the empirical distribution function constructed from a sample

of size n. They have shown it to be uniformly strongly consistent when both n and m

increase to infinity. This estimator was further studied by (Leblanc, 2009, 2012a,b)

among other authors. The following theorem states the asymptotic properties of F̂n,m

Theorem 3.3. Assuming F is continuous (and bounded) and admits two continuous

and bounded derivatives on [0, 1], we have for x ∈ (0, 1) that

(i)

Bias[F̂n,m(x)] = E
[
F̂n,m(x)

]
− F (x) = m−1b(x) + o(m−1),

where b(x) = 2−1x(1− x)F ′′(x). Also, we have

(ii)

Var
[
F̂n,m(x)

]
= n−1σ2(x)− n−1m−1/2V (x) + o(n−1m−1/2),

where V (x) = f(x)[2x(1− x)/π]1/2 and σ2(x) = F (x)[1− F (x)].

(iii) And

MSE[F̂n,m(x)] = n−1σ2(x)−n−1m−1/2V (x)+m−2b2(x)+o(m−2)+o(n−1m−1/2),

as both n,m→ 0.
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Proof of Theorem 3.3 is given in Appendix A.5. For a discussion of the asymptotic

normality, see Babu et al. (2002, Theorem 3.2).

In the multivariate case, let X = (X1, ..., Xd) denote a d−dimensional random vec-

tor, with a common cumulative distribution function F , with its associated density

function f , supported on the d−dimensional hypercube. We assume for convenience

(without loss of generality) that this support is the unit square [0, 1]d. Obviously, it

is possible to adapt our method to more general cases, when the data is defined on

other intervals by taking appropriate transformations.

Babu and Chaubey (2006) introduced a Bernstein polynomial estimator for a distri-

bution function F on a hypercube. Their Bernstein multivariate distribution function

estimator is defined as follows

F̂m,n(x, . . . , xd) =
m∑

k1=0
. . .

m∑
kd=0

Fn

(
k1

m
, . . . ,

kd
m

)
d∏
j=1

Pkj ,m(xj). (3.3)

They have shown it to be uniformly strongly consistent when n,m → ∞. Note

that F̂ is a proper distribution function and a polynomial in xj. Recently, Belalia

(2016) derived the asymptotic bias, variance and normality of this estimator. He also

identified the asymptotically optimal choice of the parameter m in the sense of MSE.

Under the following notations:

1. FX (resp.fX) and FY (resp. fY ) are the marginal distribution functions (resp.

densities) of X and Y .

2. Fx, Fy, Fxx, Fyy and Fxy are the first and second partial order derivatives of F .
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The asymptotic properties of F̂m,n(x, y) can be stated in the following theorem from Be-

lalia (2016).

Theorem 3.4. Assume that F is continuous and all its partial derivatives up to the

second order are continuous and bounded on [0, 1]2. We have for x, y ∈ [0, 1] that

(i) E[F̂m,n(x, y)] = Fm(x, y)

=



F (x, y) +m−1B(x, y) + o(m−1) if 0 < x, y < 1

0 if x = 0 and/ or y = 0

FX(x) +m−1b(x)f ′X(x) + o(m−1) if 0 < x < 1, y = 1

FY (y) +m−1b(y)f ′Y (y) + o(m−1) if x = 1, 0 < y < 1

1 if (x, y) = (1, 1) ,

where B(x, y) and b(z) are defined by

B(x, y) = 1
2[x(1− x)Fxx(x, y) + y(1− y)Fyy(x, y)], b(z) = z(1− z)/2.

(ii) Var[F̂m,n(x, y)]

=



n−1σ2(x, y)−m− 1
2n−1V (x, y) + o(m− 1

2n−1) if 0 < x, y < 1

0 if x = 0 and/ or y = 0

n−1σ2(x)−m− 1
2n−1VX(x) + o(m− 1

2n−1) if 0 < x < 1 and y = 1

n−1σ2(y)−m− 1
2n−1VY (y) + o(m− 1

2n−1) if x = 1 and 0 < y < 1

0 if (x, y) = (1, 1) ,
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where,

V (x, y) =
{
Fx(x, y)

(
2x(1− x)/π

)1/2 + Fy(x, y)
(
2y(1− y)/π

)1/2
}
,

σ2(x, y) = F (x, y)[1− F (x, y)],

and for Z = X or Y ,

σ2
Z(z) = FZ(z)[1− FZ(z)], VZ(z) =

{
FZ(z)

(
2z(1− z)/π

)1/2
}
.

The proof of this theorem can be found in Belalia (2016).

3.1.2 Bernstein probability density function estimator

Assume that the cumulative distribution F has an associated density f . Suppose that

f is continuous (and bounded) and admits two continuous and bounded derivatives

on [0, 1]. Through differentiation, the estimator (3.2) naturally leads to a density

estimator

f̂n,m(x) = d

dx
F̂n,m(x) = d

dx

m∑
k=0

Fn

(
k

m

)
Pm,k(x)

=
m∑
k=0

Fn

(
k

m

)
d

dx

[
m!

k!(m− k)!x
k(1− x)m−k

]

=
m∑
k=0

Fn

(
k

m

)
m!

k!(m− k)!
[
kxk−1(1− x)m−k − xk(1− x)m−k−1(m− k)

]

=
m∑
k=0

Fn

(
k

m

)
m!

k!(m− k)!kx
k−1(1− x)m−k

−
m∑
k=0

Fn

(
k

m

)
m!

k!(m− k)!x
k(1− x)m−k−1(m− k)
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=
m∑
k=1

Fn

(
k

m

)
m!

(k − 1)!(m− k)!x
k−1(1− x)m−k

−
m∑
k=0

Fn

(
k

m

)
m!

k!(m− k)!x
k(1− x)m−k−1(m− k).

Put ` = k − 1,

f̂n,m(x) = m

m−1∑
`=0

Fn

(
`+ 1
m

)
(m− 1)!

`!(m− `− 1)!x
`(1− x)m−`−1

−
m−1∑
k=0

Fn

(
k

m

)
(m− 1)!

k!(m− k − 1)!x
k(1− x)m−k−1


= m

m−1∑
k=0

Fn
(
k + 1
m

)
− Fn

(
k

m

)Pm−1,k(x), (3.4)

is a polynomial of degree (m − 1). This estimator can be further written as a finite

mixture of Beta densities with data-driven weights:

f̂m,n(x) =
m−1∑
k=0

Wk,m βk+1,m−k(x), (3.5)

where Wk,m = Fn
(
(k + 1)/m

)
−Fn(k/m) form a sequence of nonnegative weights that

sum to unity and βa,b stands for the beta density with parameters a, b > 0. From this,

we see that f̂m,n is a density for any observed sample. We note that this estimator

can also be represented as

f̂m,n(x) = m

n

m−1∑
k=0

Mk,m Pm−1,k(x), (3.6)
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where Mk,m corresponds to the number of observations falling in the interval

Ak,m =
(
k

m
,
k + 1
m

]
, for k = 0, 1, . . . ,m− 1.

In other words, M0,m,M1,m, . . . ,Mm−1,m correspond to the bin counts obtained from

a histogram constructed with m bins of equal length over the unit interval. The

Bernstein density estimator was originally introduced by Vitale (1975), who has shown

it to be consistent in the Mean Squared Error (MSE) when m → ∞ and mn−1 → 0

as n→∞.

The asymptotic properties of estimator (3.4) are stated in the following theorem

Theorem 3.5. Assuming f is continuous (and bounded) and admits two continuous

and bounded derivatives on [0, 1], we have for x ∈ (0, 1) that

E
[
f̂n,m(x)

]
= f(x) +m−1∆1(x) +m−21/6[1− 6x(1− x)]f ′′(x) + EB,f,m(x),

where ∆1(x) = 1/2[(1 − 2x)f ′(x) + x(1 − x)f ′′(x)], and EB,f,m(x) = o(T2,m(x)) +

o(m−1[T2,m(x) + 1/m2]1/2) + o(m−2). Also we have

Var
[
f̂n,m(x)

]
= m

n
f(x)Sm−1(x) + EV,f,m(x),

where EV,f,m(x) = O(mn−1[T2,m−1(x)Sm−1(x)]1/2) +O(n−1). And

MSE[f̂n,m(x)] = n−1m1/2f(x)ψ1(x) +m−2∆2
1(x) + o(n−1m1/2) + o(m−2),

where ψ1(x) is defined as in Lemma 3.
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Turning our attention to the multivariate case, following Babu and Chaubey (2006),

the Bernstein estimator of order m of the joint cumulative distribution function F is

defined by (3.3). For the sake of clarity, we consider here the bivariate case. Applying

a second order mixed derivative, this estimator naturally leads to a smooth estimator

of f . Specifically, we have

f̂m,n(x, y) = ∂2

∂x∂y
F̂m,n(x, y)

=
m∑
k=0

m∑
`=0

Fn

(
k

m
,
`

m

)
d

dx
Pm,k(x) d

dy
Pm,`(y)

= m2
m−1∑
k=0

m−1∑
`=0

B
(n)
k,`,m Pm−1,k(x)Pm−1,`(y),

where

B
(n)
k,`,m = Fn

(
k + 1
m

,
`+ 1
m

)
− Fn

(
k + 1
m

,
`

m

)
− Fn

(
k

m
,
`+ 1
m

)
+ Fn

(
k

m
,
`

m

)
,

and Fn denotes the bivariate empirical distribution constructed from a sample of size

n.

Now, let Mk,`,m denote the numbers of pairs (Xi, Yi) inside the square

Ak,`,m =
{

(s, t) : k
m
< s ≤ k + 1

m
,
`

m
< t ≤ `+ 1

m

}
,

for k, ` = 0, 1, . . . ,m − 1. Then, by observing that B(n)
k,`,m = 1

n
Mk,`,m, we can rewrite

f̂m,n as

f̂m,n(x, y) = m2

n

m−1∑
k=0

m−1∑
`=0

Mk,`,m Pm−1,k(x)Pm−1,`(y). (3.7)

This is the original expression for the Bernstein estimator of a bivariate density defined
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on the unit square as it was proposed by Tenbusch (1994).

3.1.3 Numerical Illustration

To illustrate the effectiveness of Bernstein distribution estimators (3.2) and (3.4) the

Beta(1, 6) cumulative distribution function and its associated density are used. Fig-

ure 3.2a shows the Bernstein density estimator (3.4) of degree m = 50 (red dashed

line) compared to the kernel estimator (blue dotted line) with bandwidth parameter

h = 0.0302. We point out that the Bernstein estimator has a good performance,

in particular close to the boundary x = 0. The Bernstein cumulative distribution

function estimator with degree m = 35 (red dashed line), and the empirical distribu-

tion function (blue dotted line) are depicted in Figure 3.2b. Also, one can notice the

smoothness of Bernstein estimator against the empirical distribution function.
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Figure 3.2: (a) Bernstein density estimator compared to kernel estimator, (b) Bern-
stein cumulative distribution compared to the empirical distribution.
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3.2 Bernstein conditional density estimation

For x ∈ [0, 1] such that g(x) > 0, the conditional density of Y given X = x is given

by

fx(y) = f(x, y)
g(x) for y ∈ [0, 1],

and hence, can be simply viewed as the ratio of two unconditional densities. This

leads to a simple strategy for the estimation of fx. Indeed, an estimator of fx is

naturally defined through

f̂x(y) = f̂(x, y)
ĝ(x) , (3.8)

where f̂ and ĝ are consistent estimators of the joint density f and of the marginal

density g, respectively. This approach was first used in a context of kernel estimation

by Rosenblatt (1969), and has been used by many other authors since then (e.g.

Hyndman et al., 1996; Bashtannyk and Hyndman, 2001; Hall et al., 2004); see the

interesting discussion presented by Efromovich (2007).

Recently, Belalia et al. (2019) proposed a new estimator for fx based on Bernstein

polynomials. At this point, our new estimator of the conditional density function fx

can be defined via (3.8) as

f̂x,m,n(y) = f̂m,n(x, y)
ĝm,n(x) , (3.9)

where ĝm,n and f̂m,n are respectively defined in (3.6) and (3.7). We refer to this

estimator as the Bernstein estimator of order m of the conditional density fx. The

proposed estimator is clearly nonnegative and is a genuine conditional density for

any value of x. To see this, one can see that it can be written as a mixture of beta
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densities with data-driven weights. Specifically, we have that

f̂x,m,n(y) =
m−1∑
`=0

Wx,`,m β`+1,m−`(y), (3.10)

where

Wx,`,m =
∑m−1
k=0 Mk,`,m Pm−1,k(x)∑m−1
k=0 Mk,m Pm−1,k(x)

.

The weights Wx,`,m are nonnegative and sum to unity since

m−1∑
`=0

Mk,`,m = Mk,m.

Belalia et al. (2019) studied the asymptotic properties of f̂m,n, which include the

asymptotic bias, variance, and distribution limit.



Chapter 4

Two-Stage Conditional Density

Estimation Based on Bernstein

Polynomials

In the previous chapters two main nonparametric estimation methods were discussed,

namely, kernel based estimation methods, and nonparametric estimation methods

based on Bernstein polynomials. In this chapter a conditional density estimator is

presented and studied, the proposed approach will combine the previous kernel and

Bernstein based methods.

4.1 Two-Stage Conditional Density Estimator

Recently, Belalia et al. (2017) have combined both methods to construct a two-stage

estimator of the conditional distribution function Fx, their estimator is defined as

45
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follows

F̂x,mh(y) = BF̂x,h,m
(y) =

m∑
k=0

F̂x,h(k/m)Pm,k(y), (4.1)

where F̂x,h is the Nadaraya-Watson estimator of Fx defined as in Chapter 2 by

F̂x,h(y) =
∑n
i=1 Kh(x−Xi) I(Yi ≤ y)∑n

j=1 Kh(x−Xj)
=

n∑
i=1

wi(x, h) I(Yi ≤ y), (4.2)

where the weights wi = Kh(x−Xi)/
∑n
j=1 Kh(x−Xj), Kh(x) = h−1K(x/h) with K

is a kernel function and h is bandwidth parameter. Typically, K is taken to be an

symmetric density function and h = hn is a deterministic sequence depending on n

in such a way that hn → 0 as n→∞.

It was shown in Belalia et al. (2017) that the estimator (4.1) comes with a companion

density estimators. Indeed, differentiation with respect to y leads to the following

simple estimator of fx,

f̂x,mh(y) = d

dy F̂x,mh(y) = m
m−1∑
k=0

[
F̂x,h

(
[k + 1]/m

)
− F̂x,h(k/m)

]
Pm−1,k(y), (4.3)

which is a polynomial of degree m − 1. We point out that this estimator can be

rewritten as data driven mixture Beta densities, specifically, we have

f̂x,mh(y) =
m−1∑
k=0

Wm,kβk+1,m−k(y), (4.4)

whereWm,k =
[
F̂x,h

(
[k + 1]/m

)
− F̂x,h(k/m)

]
form a sequence of non-negative weights

and βa,b stands for the beta density with parameters a, b > 0.

This chapter is devoted to the study of the asymptotic behaviour of the Bernstein
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conditional density estimator, including its asymptotic bias, variance and integrated

mean squared error (IMSE). We also establish its asymptotic normality. Our results

are based on the following regularity conditions.

Assumption 1. The marginal density of X, denoted g(x), is twice continuously dif-

ferentiable with respect to x, with bounded second derivative. The conditional

distribution function Fx(y) is twice continuously differentiable with respect to

both x and y, the first and second order derivatives being bounded.

Assumption 2. The kernel function K is a symmetric, bounded and compactly

supported density function.

Assumption 3. As n→∞, we also have h→ 0, nh→∞ and m→∞.

In what follows, we use the following notation

F (i,j)
x (y) = ∂i+j

∂xi∂yj
Fx(y), i, j = 0, 1, 2,

κ2 =
∫
R
y2K(y) dy, κ =

∫
R
K2(y) dy.

We point out that Assumption 2 implies both κ and κ2 are finite.

Before stating our main results, some needed auxiliary intermediate results are pro-

vided in the following lemma.

Lemma 1. Under Assumption 1, we have

1. ∑m−1
k=0 F

(0,1)
x

(
k/m

)
Pm−1,k(y) = F (0,1)

x (y)−m−1yF (0,2)
x (y) + o(m−1),

2. ∑m−1
k=0 F

(0,2)
x

(
k/m

)
Pm−1,k(y) = F (0,2)

x (y) + o(1),
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3. ∑m−1
k=0 F

(1,1)
x

(
k/m

)
Pm−1,k(y) = F (1,1)

x (y) + o(1),

4. ∑m−1
k=0 F

(2,1)
x

(
k/m

)
Pm−1,k(y) = F (2,1)

x (y) + o(1).

Proof of Lemma 1. Using Taylor expansion, we get

F (0,1)
x

(
k/m

)
= F (0,1)

x (y) +
(
k/m− y

)
F (0,2)
x (y) + o

(
k/m− y

)
. (4.5)

This expansion along with the fact that

m−1∑
k=0

(
k/m− y

)
Pm−1,k(y) = [(m− 1)Tm−1,1(y)− yTm−1,0(y)]/m = −y/m,

where Tm−1,j(y) = (m− 1)−j∑m−1
k=0 (k − (m− 1)y)jPm−1,k(y) for j = 0, 1.

Substituting the result into equation (4.5), and doing the same expansion for F (0,2)
x

(
k/m

)
,

F (1,1)
x

(
k/m

)
and F (2,1)

x

(
k/m

)
, we obtain the Lemma 1.

4.2 Asymptotic Bias

To provide the asymptotic bias of our estimator (4.3), we first state an intermediate

result that calculates the asymptotic expectation of

N̂x(y) =
[
f̂x,mh(y)− fx(y)

]
Ĝ(x),

where Ĝ(x) corresponds, up to a factor 1/n, to the denominator in the expression of

the estimator (4.3), that is

Ĝ(x) = 1
n

n∑
i=1

Kh(x−Xi).
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The following proposition provides the asymptotic expectation of N̂x(y), which will

be used to establish the asymptotic bias of the proposed estimator.

Proposition 2. Under Assumption 1 to 3, we have

E
(
N̂x(y)

)
= g(x)

[
−m−1yf ′x(y) + 1

2m
−1f ′x(y) + h2κ2

g′(x)
g(x) F

(1,1)
x (y) + h2κ2

2 F (2,1)
x (y)

]
+ o(h2) + o(m−1). (4.6)

Proof of Proposition 2. First, we rewrite N̂x(y), as a sum of independent random

variables

N̂x(y) =
m

m−1∑
k=0

[
F̂x,h

(
[k + 1]/m

)
− F̂x,h(k/m)−m−1fx(y)

]
Pm−1,k(y)

 Ĝ(x)

= m
m−1∑
k=0

∑n
i=1 Kh(x−Xi) I(Yi ≤ k+1

m
)∑n

j=1 Kh(x−Xj)
−
∑n
i=1 Kh(x−Xi) I(Yi ≤ k

m
)∑n

j=1 Kh(x−Xj)

Pm−1,k(y)Ĝ(x)

−
m−1∑
k=0

fx(y)Pm−1,k(y)Ĝ(x)

= m

n

n∑
i=1

m−1∑
k=0

I(Yi ≤ k + 1
m

)
− I

(
Yi ≤

k

m

)
−m−1fx(y)

Pm−1,k(y)Kh(x−Xi)

= m

n

n∑
i=1

Zi,m, (4.7)

where

Zi,m =
m−1∑
k=0

I(Yi ≤ k + 1
m

)
− I

(
Yi ≤

k

m

)
−m−1fx(y)

Pm−1,k(y)Kh(x−Xi).
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Since for a given m the random variables Z1,m, ..., Zn,m are i.i.d., one can write that

E[N̂x(y)] = mE
[
Z1,m

]
= m

m−1∑
k=0

E


I(Y1 ≤

k + 1
m

)
− I

(
Y1 ≤

k

m

)
−m−1fx(y)

Kh(x−X1)
Pm−1,k(y)

= m
m−1∑
k=0

E

I(Y1 ≤
k + 1
m

)
Kh(x−X1)

Pm−1,k(y)

−m
m−1∑
k=0

E

I(Y1 ≤
k

m

)
Kh(x−X1)

Pm−1,k(y)− fx(y)E
[
Kh(x−X1)

]
.

(4.8)

From the same calculation as Equation (17) in Belalia et al. (2017), we can have

E

I(Y1 ≤
k

m

)
Kh(x−X1)

 = g(x)Fx
(
k

m

)
+ h2κ2

2

g(x)F (2,0)
x

(
k

m

)

+2g′(x)F (1,0)
x

(
k

m

)
+ g′′(x)Fx

(
k

m

)+ o

h2γ

(
k

m

) ,
where γ(·) is a function on the support [0, 1]. Similarly, we get

E

I(Y1 ≤
k + 1
m

)
Kh(x−X1)

 = g(x)Fx
(
k + 1
m

)
+ h2κ2

2

g(x)F (2,0)
x

(
k + 1
m

)

+2g′(x)F (1,0)
x

(
k + 1
m

)
+ g′′(x)Fx

(
k + 1
m

)
+ o

h2γ

(
k + 1
m

) .
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Thus, equation (4.8) is equivalent to

E
[
N̂x(y)

]
= m

m−1∑
k=0

g(x)
Fx

(
k + 1
m

)
− Fx

(
k

m

)+ h2κ2

2 g(x)
F (2,0)

x

(
k + 1
m

)
− F (2,0)

x

(
k

m

)
+ h2κ2g

′(x)
F (1,0)

x

(
k + 1
m

)
− F (1,0)

x

(
k

m

)+ h2κ2

2 g′′(x)
Fx

(
k + 1
m

)
− Fx

(
k

m

)
+

o
h2γ

(
k + 1
m

)− o
h2γ

(
k

m

)

Pm−1,k(y)− fx(y)E[Kh(x−X1)].

(4.9)

By using Taylor expansion for Fx
(
k+1
m

)
, F (1,0)

x

(
k+1
m

)
and F (2,0)

x

(
k+1
m

)
around k

m
we

get

Fx

(
k + 1
m

)
= Fx

(
k

m

)
+m−1fx

(
k

m

)
+ 1

2m
−2f ′x

(
k

m

)
+ o(m−2),

F (1,0)
x

(
k + 1
m

)
= F (1,0)

x

(
k

m

)
+m−1F (1,1)

x

(
k

m

)
+ o(m−1),

F (2,0)
x

(
k + 1
m

)
= F (2,0)

x

(
k

m

)
+m−1F (2,1)

x

(
k

m

)
+ o(m−1).

By taking the same expansion for γ
(
k+1
m

)
, and then substituting back in the equa-

tion (4.9), we get

E
[
N̂x(y)

]
= m

m−1∑
k=0

g(x)
fx

(
k

m

)
m−1 + 1

2f
′
x

(
k

m

)
m−2 + o(m−2)


+ h2κ2

2 g(x)
F (2,1)

x

(
k

m

)
m−1 + o(m−1)

+ h2κ2g
′(x)

F (1,1)
x

(
k

m

)
m−1 + o(m−1)


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+ h2κ2

2 g′′(x)
fx

(
k

m

)
m−1 + 1

2f
′
x

(
k

m

)
m−2 + o(m−2)

+ o(m−1h2)
Pm−1,k(y)

− fx(y)E[Kh(x−X1)].

By the Equation (16) in Belalia et al. (2017), we have

E[Kh(x−X1)] = g(x) + h2

2 κ2g
′′(x) + o(h2),

then according to Lemma 1 we can simplify the result as

E
[
N̂x(y)

]
= m

[
g(x) + h2κ2

2 g′′(x)
]
m−1∑
k=0

fx

(
k

m

)
m−1Pm−1,k(y)

+m

[
g(x)o(m−2) + h2κ2

2 g(x)o(m−1) + h2κ2g
′(x)o(m−1) + h2κ2

2 g′′(x)o(m−2)
]

+m

[
1
2g(x)m−2 + h2κ2

4 g′′(x)m−2
]
m−1∑
k=0

f ′x

(
k

m

)
Pm−1,k(y)

+ h2κ2g
′(x)

m−1∑
k=0

F (1,1)
x

(
k

m

)
Pm−1,k(y) + h2κ2

2 g(x)
m−1∑
k=0

F (2,1)
x

(
k

m

)
Pm−1,k(y)

+ o(h2)− fx(y)
[
g(x) + h2

2 κ2g
′′(x) + o(h2)

]

=
[
g(x) + h2κ2

2 g′′(x)
] [
fx(y)−m−1yf ′x(y) + o(m−1)

]

+
[
g(x)o(m−1) + h2κ2

2 g(x)o(1) + h2κ2g
′(x)o(1) + h2κ2

2 g′′(x)o(m−1)
]
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+
[

1
2g(x)m−1 + h2κ2

4 g′′(x)m−1
] [
f ′x(y) + o(1)

]
+ h2κ2g

′(x)
[
F (1,1)
x (y) + o(1)

]

+ h2κ2

2 g(x)
[
F (2,1)
x (y) + o(1)

]
+ o(h2)− fx(y)

[
g(x) + h2

2 κ2g
′′(x) + o(h2)

]

= g(x)fx(y)− g(x)m−1yf ′x(y) + g(x)o(m−1) + h2κ2

2 g′′(x)fx(y)− h2κ2

2 g′′(x)m−1yf ′x(y)

+ h2κ2

2 g′′(x)o(m−1) +
[
g(x)o(m−1) + h2κ2

2 g(x)o(1) + h2κ2g
′(x)o(1)

+h
2κ2

2 g′′(x)o(m−1)
]

+ 1
2g(x)m−1f ′x(y) + h2κ2

4 g′′(x)m−1f ′x(y) + 1
2g(x)m−1o(1)

+ h2κ2

4 g′′(x)m−1o(1) + h2κ2g
′(x)F (1,1)

x (y) + h2κ2g
′(x)o(1) + h2κ2

2 g(x)F (2,1)
x (y)

+ h2κ2

2 g(x)o(1) + o(h2)− g(x)fx(y)− h2κ2

2 g′′(x)fx(y)− fx(y)o(h2)

= g(x)
[
−m−1yf ′x(y)− h2κ2

2
g′′(x)
g(x) m

−1yf ′x(y) + 1
2m

−1f ′x(y) + h2κ2

4
g′′(x)
g(x) m

−1f ′x(y)

+ h2κ2
g′(x)
g(x) F

(1,1)
x (y) + h2κ2

2 F (2,1)
x (y)

]
+ g(x)o(m−1) + h2κ2

2 g′′(x)o(m−1)

+
[
g(x)o(m−1) + h2κ2

2 g(x)o(1) + h2κ2g
′(x)o(1) + h2κ2

2 g′′(x)o(m−1)
]

+ 1
2g(x)m−1o(1) + h2κ2

4 g′′(x)m−1o(1) + h2κ2g
′(x)o(1) + h2κ2

2 g(x)o(1)

+ o(h2)− fx(y)o(h2)
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= g(x)
[
−m−1yf ′x(y)− h2κ2

2
g′′(x)
g(x) m

−1yf ′x(y) + 1
2m

−1f ′x(y) + h2κ2

4
g′′(x)
g(x) m

−1f ′x(y)

+ h2κ2
g′(x)
g(x) F

(1,1)
x (y) + h2κ2

2 F (2,1)
x (y)

]
+ o(h2) + o(m−1)

= g(x)
[
−m−1yf ′x(y) + 1

2m
−1f ′x(y) + h2κ2

g′(x)
g(x) F

(1,1)
x (y) + h2κ2

2 F (2,1)
x (y)

]

+ o(h2) + o(m−1),

which completes the proof.

Employing the same strategy as in Li and Racine (2007, Section 6.1), one can rewrite

the difference between the density function and its estimate as

f̂x,mh(y)− fx(y) = N̂x(y)
g(x) +Op

(
h2 + (nh)−1/2

)
, (4.10)

the asymptotic bias (denoted as ABias) of the two-stage estimator f̂x,mh(y) can be

deduced, and is given in the following theorem.

Theorem 4.1. Under Assumptions 1-3, we have for y ∈ (0, 1) that

ABias
[
f̂x,mh(y)

]
=
[
(2m)−1 −m−1y

]
f ′x(y) + h2κ2

g′(x)
g(x) F

(1,1)
x (y) + h2κ2

2 F (2,1)
x (y).

(4.11)

Note as m tends to infinity, and h to 0, f̂x,mh(y) becomes asymptotically unbiased.
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4.3 Asymptotic Variance

In the goal to provide the asymptotic variance of our estimator f̂x,mh(y), we begin by

calculating the asymptotic variance of N̂x(y) by stating the following lemma.

Proposition 3. Under Assumption 1− 3, we have for y ∈ (0, 1) that

Var
(
N̂x(y)

)
= (nhg(x))−1m1/2κ(g(x))2fx(y)ψ1(y) + o((nh)−1m1/2), (4.12)

where ψ1(y) = [4πy(1− y)]−1/2.

Proof of Proposition 3. From equation (4.7), we know that

N̂x(y) = m

n

n∑
i=1

Zi,m.

Since Zi,m are i.i.d for each m, thus the variance is given by

Var
(
N̂x(y)

)
= m2

n
Var(Z1,m),

and as we have calculated the E
[
N̂x(y)

]
which is bounded as n→∞,m→∞, h→ 0,

we have

Var(Z1,m) =
[
E(Z2

1,m) +O(1)
]
.

Then,

E[Z2
1,m] = E


m−1∑
k=0

m−1∑
`=0

I(Y1 ≤
k + 1
m

)
− I

(
Y1 ≤

k

m

)
−m−1fx(y)

 I(Y1 ≤
`+ 1
m

)

− I
(
Y1 ≤

`

m

)
−m−1fx(y)

×K2
h(x−X1)Pm−1,k(y)Pm−1,`(y)


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= E


m−1∑
k=0

m−1∑
`=0

I(Y1 ≤
k + 1
m

)
I
(
Y1 ≤

`+ 1
m

)
+ I

(
Y1 ≤

k

m

)
I
(
Y1 ≤

`

m

)

− I
(
Y1 ≤

k + 1
m

)
I
(
Y1 ≤

`

m

)
− I

(
Y1 ≤

`+ 1
m

)
I
(
Y1 ≤

k

m

)
×K2

h(x−X1)Pm−1,k(y)Pm−1,`(y)


− E


m−1∑
k=0

m−1∑
`=0

m−1fx(y)I
(
Y1 ≤

k + 1
m

)
−m−1fx(y)I

(
Y1 ≤

k

m

)
−m−2f 2

x(y)

+ m−1fx(y)I
(
Y1 ≤

`+ 1
m

)
−m−1fx(y)I

(
Y1 ≤

`

m

)
×K2

h(x−X1)Pm−1,k(y)Pm−1,`(y)


= E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k + 1
m

,
`+ 1
m

)K2
h(x−X1)Pm−1,k(y)Pm−1,`(y)


+ E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k

m
,
`

m

)K2
h(x−X1)Pm−1,k(y)Pm−1,`(y)


− E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k + 1
m

,
`

m

)K2
h(x−X1)Pm−1,k(y)Pm−1,`(y)


− E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k

m
,
`+ 1
m

)K2
h(x−X1)Pm−1,k(y)Pm−1,`(y)


− A5,m

= A1,m + A2,m − A3,m − A4,m − A5,m.

For A1,m, we have

A1,m = E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k + 1
m

,
`+ 1
m

)K2
h(x−X1)Pm−1,k(y)Pm−1,l(y)


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=
m−1∑
k=0

E

I(Y1 ≤
k + 1
m

)
K2
h(x−X1)

P 2
m−1,k(y)

+ 2
∑∑

0≤k<`≤m−1
E

I(Y1 ≤
k + 1
m

)
K2
h(x−X1)

Pm−1,k(y)P`−1,k(y)

=
m−1∑
k=0

Γk+1,mP
2
m−1,k(y) + 2

∑∑
0≤k<`≤m−1

Γk+1,mPm−1,k(y)P`−1,k(y),

where Γk+1,m = E[I(Y1 ≤ k+1
m

)K2
h(x −X1)]. Then, A2,m, A3,m and A4,m are handled

in the same way,

A4,m = E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k

m
,
`+ 1
m

)K2
h(x−X1)Pm−1,k(y)Pm−1,v(y)


=

m−1∑
k=0

E

I(Y1 ≤
k

m

)
K2
h(x−X1)

P 2
m−1,k(y)

+ 2
∑∑

0≤k<`≤m−1
E

I(Y1 ≤
k

m

)
K2
h(x−X1)

Pm−1,k(y)Pm−1,`(y)

=
m−1∑
k=0

Γk,mP 2
m−1,k(y) + 2

∑∑
0≤k<`≤m−1

Γk,mPm−1,k(y)P`−1,k(y).

From Belalia et al. (2017), we have the result of A2,m, which is

A2,m = E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k

m
,
`

m

)K2
h(x−X1)Pm−1,k(y)Pm−1,`(y)


=

m−1∑
k=0

E

I(Y1 ≤
k

m

)
K2
h(x−X1)

P 2
m−1,k(y)

+ 2
∑∑

0≤k<`≤m−1
E

I(Y1 ≤
k

m

)
K2
h(x−X1)

Pm−1,k(y)Pm−1,`(y)

=
m−1∑
k=0

Γk,mP 2
m−1,k(y) + 2

∑∑
0≤k<`≤m−1

Γk,mPm−1,k(y)P`−1,k(y),
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one can find that A4,m = A2,m, thus A2,m − A4,m = 0, we turn to calculate A3,m and

A5,m, we have

A3,m = E


m−1∑
k=0

m−1∑
`=0

I

Y1 ≤ min
(
k + 1
m

,
`

m

)K2
h(x−X1)Pm−1,k(y)P`−1,k(y)


=

m−1∑
k=0

E

I(Y1 ≤
k

m

)
K2
h(x−X1)

P 2
m−1,k(y)

+ 2
∑∑

0≤k<`≤m−1
E

I(Y1 ≤
k + 1
m

)
K2
h(x−X1)

Pm−1,k(y)Pm−1,`(y)

=
m−1∑
k=0

Γk,mP 2
m−1,k(y) + 2

∑∑
0≤k<`≤m−1

Γk+1,mPm−1,k(y)P`−1,k(y),

A5,m = E


m−1∑
k=0

m−1∑
`=0

m−1fx(y)I
(
Y1 ≤

k + 1
m

)
−m−1fx(y)I

(
Y1 ≤

k

m

)
−m−2f 2

x(y)

+ m−1fx(y)I
(
Y1 ≤

`+ 1
m

)
−m−1fx(y)I

(
Y1 ≤

`

m

)
×K2

h(x−X1)Pm−1,k(y)Pm−1,`(y)


= E


m−1∑
k=0

m−1fx(y)
I(Y1 ≤

k + 1
m

)
− I

(
Y1 ≤

k

m

)K2
h(x−X1)Pm−1,k(y)


+ E


m−1∑
`=0

m−1fx(y)
I(Y1 ≤

`+ 1
m

)
− I

(
Y1 ≤

`

m

)K2
h(x−X1)Pm−1,`(y)


− E


m−1∑
k=0

m−1∑
`=0

m−2f 2
x(y)K2

h(x−X1)Pm−1,k(y)Pm−1,`(y)


= 2m−1fx(y)
m−1∑
k=0

E


I(Y1 ≤

k + 1
m

)
− I

(
Y1 ≤

k

m

)K2
h(x−X1)

Pm−1,k(y)

−m−2f 2
x(y)

m−1∑
k=0

m−1∑
`=0

E

K2
h(x−X1)

Pm−1,k(y)Pm−1,`(y)
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= 2m−1fx(y)
m−1∑
k=0

[
Γk+1,m − Γk,m

]
Pm−1,k(y)

−m−2f 2
x(y)

m−1∑
k=0

m−1∑
`=0

h−1κg(x) +O(h)
Pm−1,k(y)Pm−1,`(y).

Finally we have,

E
[
Z2

1,m

]
= A1,m − A3,m − A5,m

=
m−1∑
k=0

[
Γk+1,m − Γk,m

]
P 2
m−1,k(y)− 2m−1fx(y)

m−1∑
k=0

[
Γk+1,m − Γk,m

]
Pm−1,k(y)

−m−2f 2
x(y)

m−1∑
k=0

m−1∑
`=0

h−1κg(x) +O(h)
Pm−1,k(y)Pm−1,`(y).

Similar calculation as Equation (21) in Belalia et al. (2017), we have

Γk+1,m = E

K2
h(x−X1)E

I
(
Y1 ≤

k + 1
m

) ∣∣∣∣∣∣X1




= E

K2
h(x−X1)FX1

(
k + 1
m

)
= h−2

∫
g(z)Fz

(
k + 1
m

)
K2

(
z − x
h

)
dz

= h−1
∫
g(x+ hv)Fx+hv

(
k + 1
m

)
K2(v)dv

= h−1
∫ [

g(x) + hvg′(x) + o(h)
] Fx

(
k + 1
m

)
+ hvF (1,0)

x

(
k + 1
m

)
+ o(h)

K2(v)dv

= h−1κg(x)Fx
(
k + 1
m

)
+O

hγ (k + 1
m

) .
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One can use Taylor expansion to get

Fx

(
k + 1
m

)
= Fx

(
k

m

)
+m−1fx

(
k

m

)
+ o(m−1),

and expand γ
(
k+1
m

)
too, then we have

m−1∑
k=0

[
Γk+1,m − Γk,m

]
P 2
m−1,k(y) =

m−1∑
k=0

h−1κg(x)
m−1fx

(
k

m

)
+ o(m−1)

P 2
m−1,k(y)

+
m−1∑
k=0

o(m−1h)P 2
m−1,k(y). (4.13)

According to Lemma 3, we have

m−1∑
k=0

Fx

(
k

m

)
P 2
m−1,k(y) = Fx(y)Sm−1(y) +O(Im−1(y)),

where Im−1(y) = ∑m−1
k=0 |k/m− y|P 2

m−1,k(y) = Oy(m−3/4). Then

m−1∑
k=0

m−1fx

(
k

m

)
P 2
m−1,k(y) = m−1{fx(y)Sm−1(y) +O(Im−1(y))},

substituting the result into equation (4.13), and using Lemma 3, we obtain

m−1∑
k=0

[
Γk+1,m − Γk,m

]
P 2
m−1,k(y) = h−1κg(x)[m−1fx(y)Sm−1(y) +O(m−1Im−1(y))

+ o(m−1Sm−1(y)) + o(m−1Im−1(y))] + o(m−1hSm−1(y))

= h−1κg(x)
{
m−1fx(y)m−1/2[ψ1(y) + o(1)] +O(m−1m−3/4)

+ o
(
m−1m−1/2[ψ1(y) + o(1)]

) }
+ o

(
m−1hm−1/2[ψ1(y) + o(1)]

)
= h−1κg(x)

[
m−1fx(y)m−1/2ψ1(y)

]
+ o(h−1m−3/2) +O(h−1m−7/4)
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+ o(h−1m−3/2) + o(hm−3/2)

= h−1κg(x)
[
m−1fx(y)m−1/2ψ1(y)

]
+ o(h−1m−3/2),

(4.14)

where ψ1(y) = [4πy(1− y)]−1/2. Similarly, we have

m−1∑
k=0

[
Γk+1,m − Γk,m

]
Pm−1,k(y) =

m−1∑
k=0

h−1κg(x)
m−1fx

(
k

m

)
+ o(m−1)

Pm−1,k(y) + o(m−1h)

= h−1m−1κg(x)fx(y) + o(h−1m−1).

As for the variance of N̂x(y), we have

Var
[
N̂x(y)

]
= m2

n
E[Z2

1,m]

= n−1m2
[
h−1κg(x)

[
m−1fx(y)m−1/2ψ1(y)

]
+ o(h−1m−3/2)

− 2m−1fx(y)
[
h−1m−1κg(x)fx(y) + o(h−1m−1)

]
− m−2f 2

x(y)
(
h−1κg(x) +O(h)

)
m−1/2[ψ1(y) + o(1)]

]
= n−1m2

[
h−1m−3/2κg(x)fx(y)ψ1(y) + o(h−1m−3/2)

− 2h−1m−2κg(x)f 2
x(y)− o(h−1m−2)− h−1m−5/2κg(x)f 2

x(y)ψ1(y)

− O(hm−5/2)− o(h−1m−5/2)
]

= (nh)−1m1/2κg(x)fx(y)ψ1(y) + o((nh)−1m1/2),

where ψ1(y) is defined as previous.

Theorem 4.2. Under Assumptions 1-3, and assuming (nh)−1m → 0, we have for
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y ∈ (0, 1) that

AVar[f̂x,mh(y)] = (nhg(x))−1m1/2κfx(y)ψ1(y), (4.15)

where ψ1(y) = [4πy(1− y)]−1/2.

Now, we can calculate the asymptotic integrated mean squared error (AIMSE) for

each fixed x by using following equation

IMSE(f̂x,mh(y)) =
∫ 1

0
E
(
f̂x,mh(y)− fx(y)

)2
dy.

Corollary 1. Under the assumption of Theorem 4.1 and Theorem 4.2, we have

AIMSE
(
f̂x,mh(y)

)
= m−2

(
C2 + 4−1C0 − C1

)
+m−1h2κ2

[g′(x)
g(x)

]
F1 − 2

[
g′(x)
g(x)

]
E1

− E2 + 2−1F2

+ h4κ2
2

4−1D2 +
[
g′(x)
g(x)

]
G+

[
g′(x)
g(x)

]2

D1


+ (nhg(x))−1m1/2κH, (4.16)

for i = 0, 1, 2 and j = 1, 2, where

Ci =
∫ 1

0
yi
[
f ′x(y)

]2
dy, Dj =

∫ 1

0

[
F (j,1)
x (y)

]2
dy,

Ej =
∫ 1

0
yf ′x(y)F (j,1)

x (y)dy, Fj =
∫ 1

0
f ′x(y)F (j,1)

x (y)dy,

G =
∫ 1

0
F (1,1)
x (y)F (2,1)

x (y)dy, H =
∫ 1

0
fx(y)ψ1(y)dy,

and where ψ1(y) is defined as in Theorem 4.2.

We point out that with similarity to the estimators based on kernel method, this

AIMSE can be minimized with respect to (m,h) to select the optimal choice of the
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bandwidth parameters m,h.

4.4 Asymptotic Normality

In order to establish the asymptotic normality for the proposed two-stage estimators.

We first, derive the distribution limit of N̂x(y), and consequently obtain that of f̂x,mh.

Proposition 4. Under the Assumption 1 − 3, assuming (nh)−1m → 0, we have for

y ∈ (0, 1) that

(nh)1/2m−1/4
{
N̂x(y)− g(x)

[
−m−1yf ′x(y) + (2m)−1f ′x(y) + h2κ2

g′(x)
g(x) F

(1,1)
x (y) + h2κ2

2 F (2,1)
x (y)

]}
D−→ N

(
0, κ(g(x))2

g(x)
[
fx(y)ψ1(y)

])
, (4.17)

where ψ1(y) defined as in Proposition 3 and ” D−→” denotes convergence in distribution.

Proof of Proposition 4. We know that

N̂x(y) = m

n

n∑
i=0

Zi,m

under the condition that the random variables Z1,m, ..., Zn,m are i.i.d., thus Zi,m is

an average of the i.i.d. random variables. Then we can use the central limit theorem

for double arrays (e.g. (Serfling, 2002, Section 1.9.3)), that means if the following

Lindberg condition holds we can have the desired asymptotic normality of N̂x(y),

An = 1
s2
m

E
{

[Z1,m − E(Z1,m)]2I
(
|Z1,m − E(Z1,m)| > εsmn

1/2
)}
→ 0, (4.18)

for every ε > 0, as n → ∞, where s2
m = Var(Z1,m) is given by (4.14). Following the
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idea of Babu et al. (2002, Proof of Proposition 1), we observe that

|Z1,m| =
∣∣∣∣∣∣
m−1∑
k=0

I(Y1 ≤
k + 1
m

)
− I

(
Y1 ≤

k

m

)
−m−1fx(y)

Pm−1,k(y)Kh(x−X1)
∣∣∣∣∣∣

≤ max
0≤k≤m−1

(
Pm−1,k(y)Kh(x−X1) +m−1fx(y)Kh(x−X1)

)

≤

m−1∑
k=0

P 2
m−1,k(y)

1/2

h−1MK +m−1Mfh
−1MK

= O(h−1m−1/4) +O(h−1m−1)

= O
(
h−1m−1/4

)
, (4.19)

where MK , Mf is such that K(x) ≤ MK and fx(y) ≤ Mf respectively. From the

equation (4.6), we have

E(Z1,m) = m−1E(N̂x(y)) = O(m−2) +O(h2m−1),

then

|Z1,m − E(Z1,m)| ≤ O
(
h−1m−1/4

)
+O(m−2) +O(h2m−1) = O

(
h−1m−1/4

)
.

Then for checking the Lindberg condition, we have

|Z1,m − E(Z1,m)|
smn1/2 ≤

O
(
h−1m−1/4

)
smn1/2

=
O
(
h−1m−1/4

)
n1/2(hg(x))−1/2m−3/4(κfx(y)ψ1(y))1/2 = O

((
(nh)−1m

)1/2
)
,

and we notice that when m → ∞ , n → ∞, nh → ∞ and (nh)−1m → 0, then
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An → 0, which completes the proof.

Theorem 4.3. Under Assumption 1-3, assuming (nh)−1m → 0, we have for y ∈

(0, 1) that

(nh)1/2m−1/4
{
f̂x,mh(y)− fx(y)−

[
−m−1yf ′x(y) + 1

2m
−1f ′x(y)

+ h2κ2
g′(x)
g(x) F

(1,1)
x (y) + h2κ2

2 F (2,1)
x (y)

]}
D−→ N

(
0, κfx(y)ψ1(y)

g(x)

)
,

where ψ1(y) = [4πy(1− y)]−1/2.

Note that, additionally, under the condition nh5 → 0, we have

(nh)1/2m−1/4
(
f̂x,mh(y)− fx(y)

) D−→ N

(
0, κfx(y)ψ1(y)

g(x)

)
. (4.20)

We can construct a 100%(1− α) confidence interval as the follows

f̂x,mh(y)− z1−α/2

√√√√m1/2κfx(y)ψ1(y)
nhg(x) , f̂x,mh(y) + z1−α/2

√√√√m1/2κfx(y)ψ1(y)
nhg(x)

 .

4.5 Simulation study

We observe (X1, Y1), ..., (Xn, Yn) that are independently identically distributed ran-

dom vectors. The variables Xi are assumed to be distributed uniformly on [0, 1] and

Yi conditioned on Xi = x has the density

fx(y) = y10x(1− y)4

B(10x+ 1, 5) (4.21)

for 0 < y < 1, where B(·, ·) stands for the beta function. Note that, the conditional
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mean of this distribution is given

r(x) = E
[
Y | X = x

]
=
∫ 1

0
y fx(y) dy = 10x+ 1

10x+ 6 . (4.22)

The latter can be estimated using the plug-in approach and the conditional density

estimator (4.3), namely, simple algebra leads to

r̂m,n(x) =
∫ 1

0
y f̂x,mh(y) dy =

m−1∑
k=0

k + 2
m+ 1

[
F̂x,h

(
[k + 1]/m

)
− F̂x,h(k/m)

]
. (4.23)

The shape of this conditional density function is shown in Figure 4.1a (True). A

Typical sample of size n = 200 from Model (4.21) with the true curve of the regression

function (4.22)(black line), The Bernstein estimator (4.23)(blue line and m = 25),

the Nadaraya-Watson estimator(Red line), and local linear estimator(green line) are

depicted in Figure 4.1b, as one can see the Bernstein regression estimator is more

closer than to the true regression curve that the NW, and LL estimator, in particular

at the boundaries of the support of X.
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Figure 4.1: Left: The true conditional density of model (4.21). Right: Typical
sample of size n = 200 from Model (4.21) with the true curve of the regression
function (4.22)(black line), The Bernstein estimator (4.23)(blue line and m = 25),
the Nadaraya-Watson estimator(Red line), and local linear estimator(green line).

To study the finite-sample behaviour of the proposed estimator (Bcde) (4.3) compared

to that of (NW) and (LL), a B = 500 samples of sizes n = 50, 100, 150, 200, 250, 500

were generated form Model (4.21). On each sample the estimators Bcde, NW and

LL were calculated. Further, we evaluated the global properties of these estimators

in terms of the integrated mean square error (IMSE)

I(f) =
∫
x

∫
y

E
[
f̂x(y)− fx(y)

]2
dydx (4.24)

where the integrals are approximated by a 50×50 grid on (y, x) and f̂x(y) representing

an estimate of the true conditional density function fx(y). The estimators, NW and

LL, and their bandwidth parameters are obtained using the function cde in the R

package hdrcde. This function selects the best bandwidth parameter in terms of
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IMSE. However, for a fair comparison, the best bandwidth in direction of X was

calculated automatically using that function and a grid of value of hy = m/350.

For the Bcde, a grid of values of m, from m = 5 to m = 80 spaced by 5 was taken.

Figure 4.2 illustrates the IMSE of Bernstein estimator as a function of m and provides

the IMSE for the two competitors. First, we see that the IMSE decreases, and the

optimal bandwidth parameter increases as the sample size n increases. Second, for all

sample size, our estimator outperforms Nadaraya-Watson estimator. Third, for small

and moderate sample size (n = 50, 100), the optimal IMSE of Bernstein estimator

is better than that of the local linear and their performance in terms of IMSE is

comparable for large sample size. We point out that in Figure 4.2, another version

of the proposed estimator based on the local linear conditional distribution function

estimate(dark green dotted line) smoothed in the first stage was also added.
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Figure 4.2: The estimate integrated mean square error as a function of m,h = m/350
for Bernstein estimator Bcde (black and dark green lines) plotted with the local
polynomial estimators (red dashed red line corresponds to NW and blue dotted line
to LL). The sample size was taken to be n = 50, 100 (first row), n = 150, 200 (second
row), n = 250, 500 (third row).
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4.6 Old Faithful Data Application

We apply the Bernstein conditional density estimator on the Old Faithful Geyser

data, which is the data of waiting time between eruptions and the duration of the

eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

This data set is firstly analyzed by Azzalini and Bowman (1990) and then is widely

used in the nonparametric statistics for real data application, for example, see the

work of Silverman (1986) for comparing density estimates, Di Lucca et al. (2013) for

Bayesian nonparametric auto-regression model and Matzner-Løber et al. (1998) for

nonparametric forecasting. The data has 272 observations and 2 variables depicted in

Figure 4.3 with the estimated regression function. Also, we plot the estimators (4.1)

and (4.3) for eruption duration conditional on waiting time. We can notice that the

they capture the information of the data very well, especially, the bi-modality of the

data captured with the Bernstein conditional density estimator.
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Figure 4.3: Eruptions duration against waiting time with estimated regression curve
using the Bernstein estimator (4.23).
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Figure 4.4: Bernstein estimates of the distribution of eruption duration conditional
on waiting time; (a) the conditional density (m = 25), (b) the conditional distribution
function (m = 25).



Chapter 5

Conclusions and Further Questions

In this thesis, we have discussed nonparametric estimation through kernel or Bern-

stein polynomials based methods with focusing on the conditional density estimate.

Simulation study have shown some performance of the Bernstein-type estimators

compared to the kernel-type estimators for an appropriate choice of the polynomials

order m. Besides, it is well-known that the bandwidth parameter h has dominating

influence on the behaviour of kernel-type estimators. Many techniques have been de-

rived for this process, such as cross-validation, plug-in and normal reference method.

Also, it the case of the proposed estimator, which can be affected by the choice of two

bandwidth parameters (h,m). A suggested selection method can be done by mini-

mizing the integrated mean square error with respect to (h,m) using cross-validation

approach.

Further, an extension of the proposed estimator to multivariate predictor case, which

will make it more flexible and adaptive for practical implementation is left for future

work . Moreover, the work of Xian (2005) pointed out that, Bernstein polynomials

72
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can be transformed as in the examples of Feller (1971, Lemma 1, Section VII.1).

For instance, we can have a polynomial with Poisson distribution based on Bernstein

polynomials. Indeed, using the notation in Theorem 3.2, for a Poisson distribution

with parameter λ, let λ = mx and m→∞, we have

Pm(f)(x) = exp(−mx)
∞∑
k=0

f

(
k

m

)
(mx)k
k! → f(x)

uniformly in every finite x-interval. Using this type of polynomials to play the smooth-

ing role in the first stage can be an alternative approach.
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Appendix A

Supplementary materials

A.1 Indicator Function

Definition A.1. Let Ω be a sample space and E ⊆ Ω be an event. The indicator

function of the event E is a random variable defined as follows:

IE(ω) =


1 if ω ∈ E

0 if ω /∈ E

where ω indicate a event, for simplicity we denote IE(ω) by I(E).

The indicator function is widely used in nonparametric statistics with following basic

properties.

• The nth power of I(E) is equal to I(E),

(
I(E)

)n = I(E).

75
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• The expected value of IE is equal to P(E),

E
(
I(E)

)
=
∑
x

xP(x)

= 1 · P(1) + 0 · P(0)

= 1 · P(E) + 0 · P(Ec)

= P(E).

• The variance of I(E) is equal to P(E)(1− P(E)),

Var
(
I(E)

)
= E

((
I(E)

)2)− E
(
I(E)

)2
= E

(
I(E)

)
− E

(
I(E)

)2
= P(E)− P(E)2

= P(E)(1− P(E)).

• Intersections. If E and F are two events, then

I
(
E
⋂
F
)

= I(E)I(F ).

Because if E ⋂F happens then I (E ⋂F ) = 1, we have E and F both happen, then

I(E)I(F ) = 1; if E ⋂F does not happen, then I (E ⋂F ) = 0, that means E or F does

not happen, then I(E)I(F ) = 0.



APPENDIX A. SUPPLEMENTARY MATERIALS 77

A.2 Empirical Distribution Function Properties

At any fixed value x, we have

E
(
Fn(x)

)
= 1
n

n∑
1
E
(
I(Xi ≤ x)

)
= 1
n

n∑
i=1

P(X < x)

= F (x).

which means Fn(x) is an unbiased estimator for F (x). And

Var
(
Fn(x)

)
= 1
n2

n∑
i=1

Var
(
I(Xi ≤ x)

)
= 1
n2

n∑
i=1

(
F (x)(1− F (x))

)
= 1
n
F (x)(1− F (x)).

The convergence property of empirical distribution function is based on following

theorems.

Theorem A.1. (Strong Law of Large Number) Let (Xn)n≥1 be a sequence of inde-

pendent and identically distributed (i.i.d.) random variables with E(X4
1 ) < ∞ and

E(X1) = µ. Then
Sn
n

:= 1
n

n∑
i=1

Xi → µ almost surely.

For a given x ∈ R, we can apply the strong law of large number to the sequence
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I(Xi < x), i = 1, . . . , n to assert that

Fn(x)→ F (x)

almost surely, because E[|I(Xi < x)|] <∞.

In this case, Fn(x) is a reasonable estimate of F (x) for a given x ∈ R. But when

Fn(x) and F (x) both are viewed as function of x, the strong law of large number

cannot be applied.

Theorem A.2. (Glivenko-Cantelli) Let X1, X2, . . . Xn be a collection of i.i.d. random

variables with cdf F , and let Fn(x) denote the empirical distribution function. Then

as n→∞,

P
[
sup
x∈R
|Fn(x)− F (x)| → 0

]
= 1,

or equivalently

P
[

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| → 0

]
= 1,

that is, the convergence is uniform in x.

Proof. Let ε > 0, then fix k > 1/ε, and consider ”knot” points κ0, . . . , κk such

that

−∞ = κ0 < κ1 ≤ κ2 ≤ · · · ≤ κk−1 < κk =∞,

that define a partition of R into k disjoint intervals such that

F (κ−j ) ≤ j

k
≤ F (κj) j = 1, . . . , k − 1.
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where, for each j,

F (k−j ) = P[Xj < κj] = F (κj)− P[X = κj].

Then, by construction, if κj−1 < κj,

F (κ−j )− F (κj−1) ≤ j

k
− (j − 1)

k
= 1
k
< ε.

Recall from the strong law of large number we can write

|Fn(κj)− F (κj)| a.s.−−→ 0 and |Fn(κ−j )− F (κ−j )| a.s.−−→ 0

as n→∞. So looking at the maximum over all j, we have

4n = max
j=1,...,k−1

{
|Fn(κj)− F (κj), Fn(κ−j )− F (κ−j )|

}
a.s.−−→ 0

as n→∞.

For any x, find the interval within which x lies, that is, identity j such that

κj−1 ≤ x < κj.

Then we have following inequality hold

Fn(x)− F (x) ≤ Fn(κ−j )− F (κj−1) ≤ Fn(κ−j )− F (κ−j ) + ε,
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and

Fn(x)− F (x) ≥ F (κj−1)− Fn(κ−j ) ≥ Fn(κj−1)− F (κj−1)− ε.

Thus for any x,

Fn(κj−1)− F (κj−1)− ε ≤ Fn(x)− F (x) ≤ Fn(κ−j )− F (κ−j ) + ε,

and then

|Fn(x)− F (x)| ≤ 4n + ε
a.s.−−→ ε

as n→∞. And

sup
x∈R
|Fn(x)− F (x)| a.s.−−→ ε

as n→∞, which follows

P
[

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| → 0

]
= 1,

that completes the proof.

This result is a very important result in empirical process theory and modern econo-

metrics.

A.3 Naive Density Estimator Properties

We review the statistical properties for the naive density estimator with the method
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in Rosenblatt (1956), we have

E(Fn(x)Fn(x′)) = E

 1
n2

n∑
i=1

I(Xi ≤ x)I(Xi ≤ x′)


= E

 1
n2

 n∑
i=1

I(Xi ≤ x)I(Xi ≤ x′) +
∑∑
i 6=j

I(Xi ≤ x)I(Xj ≤ x′)



= 1
n
F (min(x, x′)) + n− 1

n
F (x)F (x′).

Then

Cov
(
Fn(x), Fn(x′)

)
= 1
n

[
F (min(x, x′))− F (x)F (x′)

]
,

by (2.6), we have

Cov(f̂nh(x), f̂nh(x′)) = 1
4h2Cov

(
Fn(x+ h)− Fn(x− h), Fn(x′ + h)− Fn(x′ − h)

)
= 1

4nh2

[
F (min(x+ h, x′ + h))− F (x+ h)F (x′ + h)

− F (min(x+ h, x′ − h)) + F (x+ h)F (x′ − h)− F (min(x− h, x′ + h))

+ F (x− h)F (x′ + h) + F (min(x− h, x′ − h))− F (x− h)F (x′ − h)
]
.

Set x = x′,

Var(f̂nh(x)) = 1
4nh2

[
F (x+ h)− F (x− h)−

(
F (x+ h)− F (x− h)

)2 ]. (A.1)

Now we consider the behaviour of f̂n(x) by evaluating the mean square error (MSE),

where x is fixed as n→∞ and h→ 0,

E
[
f̂nh(x)− f(x)

]2
= Var

(
f̂nh(x)

)
+ Bias

(
f̂nh(x)

)2
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= 1
4nh2

[
F (x+ h)− F (x− h)−

(
F (x+ h)− F (x− h)

)2 ]

+
[

1
2h(F (x+ h)− F (x− h))− f(x)

]2

. (A.2)

Assuming F (·) is third differentiable, we use the Taylor expansion for the MSE,

F (x+ h)− F (x− h) =
∫ x+h

x−h
f(t)dt

=
∫ x+h

x−h

[
f(x) + f ′(x)(t− x) + f ′′(x)

2 (t− x)2 +O((t− x)3)
]
dt

= 2hf(x) + 1
3h

3f ′′(x) +O(h4),

then

E
[
f̂nh(x)− f(x)

]2
∼ f(x)

2nh + h4

36
(
f ′′(x)

)2
+ o

(
1
nh

+ h4
)

as h→ 0 and n→∞.

A.4 Kernel Density Estimator Properties

Proof of Theorem 2.2. The mean squared error formula is given as

MSE
(
f̂nh(x)

)
= Var

(
f̂nh(x)

)
+
[
Bias

(
f̂nh(x)

)]2
.

We will evaluate the Bias
(
f̂nh(x)

)
and Var

(
f̂nh(x)

)
terms separately. For the bias

calculation we use the Taylor expansion.
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The bias term is given by

Bias
(
f̂nh(x)

)
= E

 1
nh

n∑
i=1

K

(
Xi − x
h

)− f(x)

= h−1E

K (
X1 − x
h

)− f(x)

= h−1
∫ ∞
−∞

f(X1)K
(
X1 − x
h

)
dX1 − f(x)

= h−1
∫ ∞
−∞

f(x+ hv)K(v)hdv − f(x)

=
∫ ∞
−∞

{
f(x) + f (1)(x)hv + 1

2f
(2)(x)h2v2 +O(h3)

}
K(v)dv − f(x)

=
{
f(x) + 0 + h2

2 f
(2)(x)

∫ ∞
−∞

v2K(v)dv +O(h3)
}
− f(x)

= h2

2 f
(2)(x)

∫ ∞
−∞

v2K(v)dv +O(h3), (A.3)

where the O(h3) term comes from

(1/3!)h3
∣∣∣∣∣
∫ ∞
−∞

f (3)(x̃)v3K(v)
∣∣∣∣∣ dv ≤ Ch3

∫ ∞
−∞

∣∣∣v3K(v)dv
∣∣∣ = O(h3),

where C is a positive constant, and where x̃ lies between x and x+ hv.

Next we consider the variance term, observe that

Var
(
f̂nh(x)

)
= Var

 1
nh

n∑
i=1

K

(
Xi − x
h

)
= 1
n2h2


n∑
i=1

Var
K (

Xi − x
h

)+ 0


= 1
nh2Var

K (
X1 − x
h

)
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= 1
nh2

E
K2

(
X1 − x
h

)−
E

K (
X1 − x
h

)


2
= 1
nh2


∫ ∞
−∞

f(X1)K2
(
X1 − x
h

)
dX1 −

∫ ∞
−∞

f(X1)K
(
X1 − x
h

)
dX1

2
= 1
nh2

h
∫ ∞
−∞

f(x+ hv)K2(v)dv −
[
h
∫ ∞
−∞

f(x+ hv)K(v)dv
]2


= 1
nh2

h
∫ ∞
−∞

[f(x) + f (1)(ξ)hv]K2(v)dv −O(h2)


= 1
nh

f(x)
∫ ∞
−∞

K2(v)dv +O

(
h
∫ ∞
−∞
|v|K2(v)dv

)
−O(h)


= 1
nh
{κf(x) +O(h)},

where κ =
∫
K2(v)dv. Then

MSE(f̂nh(x)) = 1
nh
{κf(x) +O(h)}+

[
h2

2 f
(2)(x)κ2 +O(h3)

]2

= h4

4
[
κ2f

(2)(x)
]2

+ κf(x)
nh

+O(h5 + (n−1h0))

= h4

4
[
κ2f

(2)(x)
]2

+ κf(x)
nh

+ o(h4 + (nh)−1)

= O(h4 + (nh−1)),

which concludes the proof.

In order to prove the convergence in probability f̂nh(x), we will rely on following

definitions and theorem.

Definition A.2. (Order in Probability: Big Op(·) and Small op(·)) A sequence of

real (possibly vector-valued) random variables {Xn}∞n=1 is said to be bounded in prob-

ability if, for every ε > 0, there exists a constant M and a positive integer N (usually
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M = Mε and N = Nε), such that

P
[
||Xn|| > M

]
≤ ε, (A.4)

for all n > N .

That is, we say that Xn is bounded in probability if, for any arbitrary small positive

number ε, we can always find a positive constant M such that the probability of the

absolute value (or norm) of Xn being larger than M is less than ε.

Equation (A.4) can be equivalently written as

P
[
||Xn|| ≤M

]
> 1− ε,

for all n ≥ N and we write Xn = Op(1) to indicate that Xn is bounded in probability.

Definition A.3. (Convergence in Probability) Let {Xn}∞n=1 be a sequence of real

random variables (possibly a finite dimensional vector or matrix-valued), and let X

be a random variable having the same dimension as Xn, we say that Xn converge to

X in probability if for every (small) ε > 0,

lim
n→∞

P
(
|Xn −X| < ε

)
= 1.

We use Xn
P−→ X to indicate that Xn converges to X in probability and write Xn =

op(1) if Xn
P−→ 0.

Theorem A.3. Let {Xn}∞n=1 be a sequence of real (possibly vector-valued) ran-

dom variables, and let an and bn be sequences of some non-stochastic, non-negative
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numbers. Then

(i) If E[||Xn||] = O(an), then Xn = Op(an).

(ii) If E[||Xn||2] = O(bn), then Xn = Op(b1/2
n ).

Proof. (i) From E[||Xn||] = O(an), we know that E[||Xn/an||] ≤M0, for some M0 >

0. For any ε > 0, choose M = M0/ε(a finite positive constant). Then by Markov’s

inequality, we have P(||Xn/an|| > M) < E[||Xn/an||]
M

≤ ε, which means ||Xn/an|| =

Op(1) or ||Xn|| = Op(an).

(ii) From E[||Xn||2] = O(bn), we know that E[||X2
n/bn||] ≤M0, for some M0 > 0. For

any ε > 0, choose M = M0/ε(a finite positive constant). Then by Markov’s inequality,

we have P(||Xn/b
1/2
n || > M1/2) < E[||X2

n/bn||]
M

≤ ε, which means ||Xn/b
1/2
n || = Op(1) or

||Xn|| = Op(b1/2
n ).

By using theorem A.3 (ii) and Theorem 2.2, we have

f̂nh(x)− f(x) = Op(h2 + (nh)−1/2) = op(1),

thus f̂nh(x) is a consistent estimator for f(x).

Proof. From the definition, one can write

f̂nh(x)− f(x) = Op(h2 + (nh)−1/2) = P


∣∣∣f̂(x)− f(x)

∣∣∣
h2 + (nh)−1/2 < M

 > 1− ε

= lim
nh→∞,h→0

P
(∣∣∣f̂(x)− f(x)

∣∣∣ < M
[
h2 + (nh)−1/2

])
> 1− ε

= lim
nh→∞,h→0

P
(∣∣∣f̂(x)− f(x)

∣∣∣ < M
[
h2 + (nh)−1/2

])
= 1
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= op(1),

which concludes the proof.

A.5 Proof of Bernstein Estimators Properties

In order to prove Theorem 3.3, some intermediate results are, and are given bellow.

Lemma 2. (Leblanc, 2012b, Lemma 1) Assuming F is continuous (and bounded) and

admits two continuous and bounded derivatives on [0, 1] and let

Tj,m(x) = m−j
m∑
k=0

(k −mx)jPm,k(x).

Then, the following results are valid. For all x ∈ [0, 1],

T0,m(x) = 1, T1,m(x) = 0, T2,m(x) = m−1x(1− x).

Proof of Lemma 2. We have

T0,m(x) = m−0
m∑
k=0

(k −mx)0Pm,k(x) = 1,

T1,m(x) = 1
m

m∑
k=0

(k −mx) m!
k!(m− k)!x

k(1− x)m−k

= 1
m

 m∑
k=0

(
m!

(k − 1)!(m− k)!x
k(1− x)m−k − m ·m!

k!(m− k)!x
k+1(1− x)m−k

)
= x

 m∑
k=0

(
(m− 1)!

(k − 1)!(m− k)!x
k−1(1− x)m−k − m!

k!(m− k)!x
k(1− x)m−k

)
= 0,
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T2,m(x) = m−1x(1− x),

which completes the proof.

Lemma 3. (Leblanc, 2012a, Lemma 2) Let ψ1(x) = [4πx(1 − x)]−1/2 and ψ2(x) =

[x(1− x)/(2π)]1/2. We define

Sm(x) =
m∑
k=0

P 2
m,k(x),

and, for j = 0, 1 and 2,

Rj,m(x) = m−j
∑∑

0≤k<l≤m
(k −mx)jPm,k(x)Pm,l(x),

then the following results hold:

(i) 0 ≤ Sm(x) ≤ 1 for x ∈ [0, 1],

(ii) Sm(x) = m−1/2[ψ1(x) + o(1)] for x ∈ (0, 1),

(iii) Sm(0) = Sm(1) = 1,

(iv) R1,m(x) = m−1/2[−ψ2(x) + o(1)] for x ∈ (0, 1),

(v) 0 ≤ R2,m(x) ≤ (4m)−1 for x ∈ (0, 1),

(vi) Rj,m(0) = Rj,m(1) = 0 for j = 0, 1, 2.

Proof of Lemma 3. First note that (i), and (vi) trivially hold. We turn to prove

(ii), (iii), (iv) and (v). We follow the proof of Babu et al. (2002, Lemma 3.1) for (ii)

based on following theorem.
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Theorem A.4. (Feller (1971)) If F is a lattice distribution with span h, then as

n→∞ √
n

h
pn(x)− φ(x)→ 0

uniformly in x. Where φ(x) is the standard normal density function and pn(x) =

P
(
Sn√
n

= x
)

with Sn denotes n times summation of independent random variables

X1, . . . , Xn identically distributed as F such that

E(X1) = 0, Var(X1) = 1.

Note that a lattice distribution is a distribution F such that the random variables X

is restricted to values of the form b, b± h, b± 2h, . . . . Then let Ui, Wj, i, j = 1, . . . ,m

be i.i.d. Bernoulli random variables with P (U1 = 1) = x = 1 − P (U1 = 0), and let

Ri = (Ui −Wi)/
√

2x(1− x). Then we have E(Ri) = 0 and Var(Ri) = 1, and

Sm(x) =
m∑
k=0

P 2
m,k(x) = P

 m∑
i=1

Ui =
m∑
i=1

Wi

 = P

 m∑
i=1

Ri = 0
 ,

because the number of events happened is equal in the two m times Bernoulli exper-

iments. Notice that Ri is a lattice distribution with span
√

2x(1− x) and we apply

Theorem A.4 to have

√
m(√

2x(1− x)
)−1P

 1√
m

m∑
i=1

Ri = 0
→ φ(0) = 1√

2π
,
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then

Sm(x) = P

 1√
m

m∑
i=1

Ri = 0


= m−1/2[ψ1(x) + o(1)].

And for (iii), since 00 = 1,

Sm(0) = Sm(1) = 1.

The proof for (iv) and (v), one can find them at Leblanc (2012a, Lemma 2).

Now we turn to proof Theorem 3.3.

Proof of Theorem 3.3.

(i) We begin by calculating the bias

E[F̂n,m(x)] = E

 m∑
k=0

Fn(k/m)Pm,k(x)


=
m∑
k=0

F (k/m)Pm,k(x)

=
m∑
k=0

[
F (x) + F ′(x)(k/m− x) + F ′′(x)

2! (k/m− x)2 + o(k/m− x)2
]
Pm,k(x)

= F (x) + F ′(x)T1,m(x) + F ′′(x)
2! T2,m(x) + o(T2,m(x)).

From the Lemma 2, we can get

E[F̂n,m(x)] = F (x) + (2m)−1x(1− x)F ′′(x) + o(m−1),
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thus,

Bias[F̂n,m(x)] = E[F̂n,m(x)]− F (x) = m−1b(x) + o(m−1),

where b(x) = 2−1x(1− x)F ′′(x).

(ii) Then we take a look at the variance,

F̂n,m(x)− E[F̂n,m(x)] =
m∑
k=0

[Fn(k/m)− F (k/m)]Pm,k(x)

=
m∑
k=0

 1
n

n∑
i=1

I(Xi ≤ k/m)− F (k/m)
Pm,k(x)

= 1
n

n∑
i=1

 m∑
k=0

(I(Xi ≤ k/m)− F (k/m))Pm,k(x)


= 1
n

n∑
i=1

Yi,m,

where Yi,m = ∑m
k=0(I(Xi ≤ k/m)− F (k/m))Pm,k(x).

Since

Var(F̂n,m(x)) = Var(F̂n,m(x)− E[F̂n,m(x)]) = 1
n
Var(Y1,m),

then we calculate the Var(Y1,m), we have

E[Y1,m] = E

 m∑
k=0

(I(X1 ≤ k/m)− F (k/m))Pm,k(x)
 = 0,

and

E[Y 2
1,m] = E


 m∑
k=0

(I(X1 ≤ k/m)− F (k/m))Pm,k(x)
2


= E

 m∑
k=0

(I(X1 ≤ k/m)− F (k/m))2P 2
m,k(x)


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+ E

2
∑∑

0≤k<`≤m
(I(X1 ≤ k/m)− F (k/m))(I(X1 ≤ `/m)− F (`/m))Pm,k(x)Pm,`(x)

 .
Since then,

E[(I(X1 ≤ k/m)− F (k/m))2] = E[I2(X1 ≤ k/m) + F (k/m)2 − 2F (k/m)I(X1 ≤ k/m)]

= E[I(X1 ≤ k/m)] + F (k/m)2 − 2F (k/m)E[I(X1 ≤ k/m)]

= F (k/m)− F (k/m)2,

thus,

E

 m∑
k=0

(I(X1 ≤ k/m)− F (k/m))2P 2
m,k(x)

 =
m∑
k=0

F (k/m)P 2
m,k(x)−

m∑
k=0

F (k/m)2P 2
m,k(x).

Besides, we have

E

 ∑∑
0≤k<`≤m

(I(X1 ≤ k/m)− F (k/m))(I(X1 ≤ `/m)− F (`/m))


= E[I(X1 ≤ k/m)I(X1 ≤ `/m)] + E[F (k/m)F (`/m)]− E[F (`/m)I(X1 ≤ k/m)]

− E[I(X1 ≤ `/m)F (k/m)].

Since k < ` and E[I(X1 ≤ k/m)I(X1 ≤ `/m)] = F (k/m), thus

E

 ∑∑
0≤k<`≤m

(I(X1 ≤ k/m)− F (k/m))(I(X1 ≤ `/m)− F (`/m))
 = F (k/m)− F (k/m)F (`/m),
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therefore, one can rewrite the E[Y 2
1,m] as

E[Y 2
1,m] =

m∑
k=0

F (k/m)P 2
m,k(x) + 2

∑∑
0≤k<`≤m

[F (k/m)− F (k/m)F (`/m)]Pm,k(x)Pm,`(x)

−
m∑
k=0

F (k/m)2P 2
m,k(x)

=
m∑
k=0

F (k/m)P 2
m,k(x) + 2

∑∑
0≤k<`≤m

F (k/m)Pm,k(x)Pm,`(x)

−

 m∑
k=0

F (k/m)Pm,k(x)
2

. (A.5)

By Taylor expansion, F (k/m) = F (x) +O(|k/m− x|), then we have

m∑
k=0

F (k/m)P 2
m,k(x) = F (x)Sm(x) +O(Im(x)),

where Im(x) = ∑m
k=0 |k/m − x|P 2

m,k(x). For the second term of (A.5), we can

rewrite F(k/m) as

F (k/m) = F (x) + (k/m− x)F ′(x) +O((k/m− x)2),

and note that

1 =
m∑
k=0

m∑
l=0

Pm,k(x)Pm,`(x) = 2R0,m(x) + Sm(x),

then

R0,m(x) = 1
2[1− Sm(x)].
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Thus, according to Lemma 3 (v)

∑∑
0≤k<l≤m

F (k/m)Pm,k(x)Pm,`(x) = F (x)R0,m(x) + F ′(x)R1,m(x) +O(R2,m(x))

= 1
2F (x)[1− Sm(x)] + F ′(x)R1,m(x) +O(m−1).

By then, we denote ∑m
k=0 F (k/m)Pm,k = Bm(x), one can write

E[Y 2
1,m] = F (x) + 2F ′(x)R1,m(x) +O(m−1) +O(Im(x))−B2

m(x).

By using Lemma 3 (iv), we have

E[Y 2
1,m] = F (x)−B2

m(x)−m−1/2V (x) +O(m−1) +O(Im(x)),

where V (x) = F ′(x)[2x(1− x)/π]1/2.

By using Cauchy-schwarz inequality and Lemma 3 (ii), we have

Im(x) =
m∑
k=0
|k/m− x|P 2

m,k(x) ≤
 m∑
k=0

P 3
m,k(x)

m∑
k=0

Pm,k(x)(k/m− x)2

1/2

=
T2,m(x)

m∑
k=0

P 3
m,k(x)

1/2

= O

 1
m

m∑
k=0

P 3
m,k(x)

1/2

= O(m−3/4),

where ∑m
k=0 P

3
m,k(x) = O(m−1/2) by the same operation in Lemma 3 (ii).
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Then,

E[Y 2
1,m] = F (x)−B2

m(x)−m−1/2V (x) + o(m−1/2)

= σ2(x)−m−1/2V (x) + o(m−1/2)

where V (x) = f(x)[2x(1− x)/π]1/2 and σ2(x) = F (x)[1− F (x)]. Thus,

Var[F̂n,m(x)] = n−1σ2(x)− n−1m−1/2V (x) + o(n−1m−1/2).

(iii) Finally, we get that

MSE[F̂n,m(x)] = n−1σ2(x)−n−1m−1/2V (x)+m−2b2(x)+o(m−2)+o(n−1m−1/2),

which concludes the proof.
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