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ABSTRACT

Deep learning believed to be a promising approach for solving specific problems in

the field of artificial intelligence whenever a large amount of data and computation is

available. However, tasks that require immediate yet robust decisions in the presence

of small data are not suited for such an approach. The superior performance of the

human brain in specific tasks like pattern recognition in comparison to traditional

neural networks convinced neuroscientists to introduce a biologically plausible model

of the neuron, which is known as spiking neurons. In opposition to conventional

neuron, spiking neurons use a short electrical pulse known as a spike to transfer the

information. The complexity and dynamic of these neurons allow them to perform

complex computational tasks. However, training a spiking neural network does not

follow the rule of conventional ANN, and we need to devise new methods of training

that are compatible with the unsupervised nature of these networks. This thesis

aims to investigate the unsupervised approaches of training spiking networks using

spike time-dependent plasticity (STDP) and assess their performance on real-world

machine learning applications like handwritten digit recognition.

iv



to

My Parents

for Their Unconditional Love

and Support

v



ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my advisor, Dr. Majid Ahamdi. His

continuous support, encouragement, and patience have been instrumental to this

thesis.

I am also inclined to express my profound appreciation to my committee members,

Dr. Esam Abdel-Raheem of the Department of Electrical and Computer Engineering

and Dr. Afsane Edrisy of the Department of Mechanical, Automotive & Materials

Engineering for their insightful comments during the development of this thesis.

Special gratitude belongs to my family, my parents, and my brother, for providing me

with incredible support and encouragement throughout the years of my study. This

work would not have been possible without their sacrifice and continued care.

vi



TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGMENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiii

1 INTRODUCTION 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Why SNN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Dynamic of a Biological Neuron . . . . . . . . . . . . . . . . . . . . . 5

1.3 Models of a Single Neuron . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 McCulloch-Pitts Model . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Hodgkin-Huxley Model . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Integrate-And-Fire Models . . . . . . . . . . . . . . . . . . . . 13

1.3.4 Izhikevich Model . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.5 Spike Response Model(SRM) . . . . . . . . . . . . . . . . . . 21

1.4 Neural Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Rate vs Temporal Coding . . . . . . . . . . . . . . . . . . . . 24

vii



1.4.2 Population Coding . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.3 Sine Wave Encoding . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.4 Spike Density Code . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Synaptic Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.1 Mathematical Formulation of Hebb’s Rule . . . . . . . . . . . 29

1.5.2 Pair-based Models of STDP . . . . . . . . . . . . . . . . . . . 30

1.5.3 Triplet model of STDP [38] . . . . . . . . . . . . . . . . . . . 33

1.6 Unsupervised Learning [15] . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.1 Rate model learning . . . . . . . . . . . . . . . . . . . . . . . 35

1.6.2 STDP Learning Equations . . . . . . . . . . . . . . . . . . . . 38

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.8 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 SURVEY OF RELEVANT LITERATURE 41

2.1 A Review of Supervised Learning in SNN . . . . . . . . . . . . . . . . 41

2.2 Unsupervised Learning in SNN . . . . . . . . . . . . . . . . . . . . . 43

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 PROPOSED SNN FOR IMAGE CLASSIFICATION 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 MNIST dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Input Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.4 Learning Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.5 Parameters Tuning . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 HANDWRITTEN DIGIT RECOGNITION USING STDP 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Neuron and Synapse Model . . . . . . . . . . . . . . . . . . . 70

4.2.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Learning Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.4 Adaptive Threshold . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 CONCLUSION 87

5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

BIBLIOGRAPHY 90

VITA AUCTORIS 96

ix



LIST OF TABLES

1.1 Comparison of the SNN and other machine learning techniques [25]. . 5

3.1 Comparison of three SNN. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Parameters for simulation of the SNN. . . . . . . . . . . . . . . . . . 84

4.2 Performance of different methods on the MNIST dataset. . . . . . . . 85

x



LIST OF FIGURES

1.1 A model of Spiking Neuron [37]. . . . . . . . . . . . . . . . . . . . . . 3

1.2 Diagram of a Neuron [10]. . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Scheme of synaptic transmission [3]. . . . . . . . . . . . . . . . . . . . 8

1.4 McCulloch and Pitts Model. . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Hodgkin-Huxley Model. . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Electrical properties of the Integrate-And-Fire neuron. . . . . . . . . 14

1.7 Potential of the cell membrane (bottom) when a step current (top)

injected to the membrane. . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Izhikevich neuron model. . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Comparison of different neuron models [24]. . . . . . . . . . . . . . . 21

1.10 Spike Response Model [16]. . . . . . . . . . . . . . . . . . . . . . . . . 23

1.11 Illustration of the temporal coding principle [37]. . . . . . . . . . . . 25

1.12 Definition of mean firing rate by temporal average. . . . . . . . . . . 26

1.13 Spike-Timing Dependent Plasticity (schematic) [42]. . . . . . . . . . 31

1.14 The triplet STDP rule with local variables [16]. . . . . . . . . . . . . 34

2.1 Unsupervised learning rule in SNN proposed in [35]. . . . . . . . . . . 43

2.2 Architecture of the memristor-based SNN proposed in [39]. . . . . . . 45

2.3 Architecture of the Diehel & Cook network [13]. . . . . . . . . . . . . 46

3.1 Proposed SNN architecture for image classification. . . . . . . . . . . 50

3.2 Sample images from MNIST test set. . . . . . . . . . . . . . . . . . . 51

3.3 Sample images used for classification. . . . . . . . . . . . . . . . . . . 52

xi



3.4 Membrane potential of the simplified neuron in response to random

input spike train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 STDP curve of (Eqn.3.6). . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Neuron B (Winner) sends lateral signals to Neuron A and C. . . . . . 59

3.7 Receptive field of output neurons. . . . . . . . . . . . . . . . . . . . . 62

3.8 Membrane potential of the neuron 4 in response to input images. . . . 63

3.9 Membrane potential of the neuron 1 in response to input images. . . . 63

3.10 Membrane potential of the neuron 8 in response to input images. . . . 64

3.11 Membrane potential of the neuron 7 in response to input images. . . . 64

3.12 Membrane potential of the neuron 2 in response to input images. . . . 65

3.13 Membrane potential of the neuron 5 in response to input images. . . . 65

3.14 Membrane potential of the neuron 3 in response to input images. . . . 66

3.15 Membrane potential of the neuron 6 in response to input images. . . . 66

4.1 Two-layer SNN based on the architecture proposed in [40]. . . . . . . 71

4.2 Schematic of the STDP based on equation (Eqn. 4.5) and (Eqn. 4.4). 73

4.3 STDP weight change based on pre ans postsynaptic spike timing [43]. 74

4.4 Encoding the input image to Poisson-distributed spike train. . . . . . 77

4.5 Raster diagram of SNN network with 400 output neurons. . . . . . . 79

4.6 Selectivity of the neuron. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 2D receptive field of the network with 625 output neuron. . . . . . . . 81

4.8 2D receptive field of the SNN network with 400 output neuron. . . . . 82

4.9 Confusion matrix of the testing results. . . . . . . . . . . . . . . . . . 83

xii



LIST OF ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

EPSP Excitatory Postsynaptic Potential

GA Genetic Algorithm

IF Integrate And Fire Neuron

IPSP Inhibitory Postsynaptic Potential

LIF Leaky Integrate And Fire Neuron

LTD Long Term Depression

LTP Long Term Potentiation

MLP Multilayer Perceptron

PSP Postsynaptic Potential

SNN Spiking Neural Network

SOM Self Organizing Map

SRM Spike Response Model

STDP Spike Timing Dependent Plasticity

WTA Winner Takes All Strategy

xiii



Chapter 1

INTRODUCTION

1.1 Introduction

Recent advances in the field of artificial intelligence and machine learning affected

various aspects of human life. With the emergence of self-driving cars, the prolifer-

ation of virtual assistants, and highly intelligent search engines, we feel the presence

of AI in our life more than ever.

One of the milestones in the history of artificial intelligence happened when Hinton

and Osindero [20] published their work about deep neural networks. In their paper,

they proposed a method to pre-train deep neural networks one layer at a time and

lay the foundation for the field of deep learning, which finds its way for widespread

industrial use.

In comparison with the first generation of neural network with linear activation func-

tion, the second generation (deep networks) consist of neurons with non-linear activa-

tion function (sigmoid function) which can perform much more complicated machine

1



Chapter 1 INTRODUCTION

learning tasks than the previous generation.

However, comparing the performance of the best deep neural networks with human-

level performance highlights the need for a more biologically plausible model of a

neuron, which known as spiking neuron. Spiking neural networks are a class of neuron

models developed to mimic the behavioral dynamics of the biological neurons. The

ability to exhibit the dynamics of one or more variable states enabled them to capture

phenomena not seen in artificial neural networks. These spiking neurons communicate

by sending short period, high amplitude pulse of activity referred to as spikes [1].

In the spiking neurons, the output of activation function computed by each neuron not

only depends on the value of its inputs but also on the timing of input arrival. Such

temporal coding allows a spiking neuron to surpass its sigmoidal counterpart in terms

of flexibility of computational tasks. The dynamics of a spiking neuron influenced by

the incoming spikes determines the condition and time for sending spikes.

2



Chapter 1 INTRODUCTION

Figure 1.1: A model of Spiking Neuron [37].

Figure 1.1 illustrates a model of spiking neuron; neuron Nj generates an action po-

tential (spike) whenever the weighted sum of incoming PSP (postsynaptic potential)

approaches the threshold value. The diagram below shows the changes in membrane

potentials of Nj in response to four incoming spike.

There are different types of dynamical SNN models with varying levels of sophisti-

cation. However, training a spiking neural network is not as straightforward as the

conventional neural networks with the backpropagation algorithm, and the question

of training a spiking neural network is still wide open. Recent studies have shown that

precise spike encoding broadly used by the brain, providing a higher transformation

speed and metabolic efficiency [46].

3



Chapter 1 INTRODUCTION

1.1.1 Why SNN?

SNN hold exceptional qualities that make them superior in a few aspects in compar-

ison with traditional machine learning techniques [25]:

• Effective modeling of processes that include various time scales

• Event prediction

• Parallel information processing

• Compact information processing

• Low energy consumption on neuromorphic hardware

Dharmendra Modha manager and lead researcher of the Cognitive Computing group

at IBM highlights the significance of brain-inspired computing as follow:

“The goal of brain-inspired computing is to deliver a scalable neural network substrate

while approaching fundamental limits of time, space, and energy”.

Table 1.1 illustrates a comprehensive comparison of the spiking neural networks with

other machine learning methods over different inclinations.

4



Chapter 1 INTRODUCTION

Method/Features Statistical

Method

ANN SNN

Information Scalars Scalars Spike sequences

Data

Representation

Scalars, vectors Scalars, vectors Whole TSTD

patterns

Learning Statistical, limited Hebbian rule STDP

Dealing with TSTD Limited Moderate Excellent

Parallel

Computation

Limited Moderate Massive

Hardware Support Standard VLSI Neuromorphic

VLSI

Table 1.1: Comparison of the SNN and other machine learning techniques [25].

1.2 Dynamic of a Biological Neuron

Although neurons are only one of many brain cells, they have attracted more attention

than other brain cells because of their fundamental role in computational operations.

The fundamental function of a neuron is simple: the neuron receives input signals

from other neurons via connections called Synapses, and if the input signals excite

them sufficiently, they will fire an action potential (spike) that propagates through

synapses to other neurons.

Neurons consisted of three main parts: the dendrite, the soma, and the axon. Den-

drites considered as the receiver of input signals, and neurons receive input current

via their dendrites. This input current then transmitted to the main body of the cell,

called the soma. When a neuron generates an action potential, it sends current down

its axon, causing neurotransmitters to release at the synapses, which are connections

5



Chapter 1 INTRODUCTION

from a neuron’s axon to the dendrites of other neurons. This neurotransmitter release

causes the flow of dendritic currents in other connected neurons.

The main body of the neuron called soma. From a computational perspective, this is

where all the incoming currents from dendrites integrated. The process of producing

an action potential also occurs in the soma.

Figure 1.2: Diagram of a Neuron [10].

When a neuron is in resting state, the soma has a negative potential called the resting

potential and controlled by ion pumps that maintain a particular concentration of ions

(mostly sodium Na+, potassium K+, and calcium Ca2+) inside the cell. The incoming

current from dendrites causes the cell membrane to depolarize.

Figure 1.2 illustrates the neuron as a complicated information-processing unit, which

receives thousands of signals from the dendrite of other neurons through synaptic

6



Chapter 1 INTRODUCTION

connection. The single output of this neuron is an action potential (spike) which

emits whenever the membrane voltage reaches a threshold.

Whenever the potential in the soma becomes high enough, it starts to trigger sodium

channels, which allow sodium ions to enter the cell and further depolarizing it. The

process continues until the electrical gradient of the sodium channel opposes the

chemical gradient of imbalance in sodium charge inside and outside of the cell. This

process causes a considerable change in membrane potential and alters the membrane

potential from a negative to a positive charge.

The considerable depolarization of the membrane potential triggers the potassium

channels and let them reach out of the cell and eventually repolarize it. At the

same time, the sodium channels become inactivated. The open potassium channels

finally bring the cell to a potential lesser than its resting potential, which called the

hyperpolarized state. Here process continues for a short while in which the neuron is

not capable of generating spikes, which called the absolute refractory period.

7



Chapter 1 INTRODUCTION

Figure 1.3: Scheme of synaptic transmission [3].

Figure 1.3 demonstrates the schematic of synaptic transmission in a neuron. In

part (a), the neuron is ready to transmit a signal. Part (b) presents the sending of

spike upon arrival of the spike into the terminal. Here, calcium appears as a second

messenger hence triggering a cascade of biochemical responses.

The difference in ionic concentrations inside the cell membrane is considerably small

during a single spike, but throughout many spikes, the ion pumps require to maintain

the proper concentrations of sodium and potassium. The immediate depolarization

of membrane potential triggers the sodium channel in axonal parts and generates a

voltage wave that moves down the axon. Eventually, this voltage wave triggers the

synaptic vesicles proximate to the ends of the axon and let them release neurotrans-

mitters.

8



Chapter 1 INTRODUCTION

1.3 Models of a Single Neuron

1.3.1 McCulloch-Pitts Model

In 1943, McCulloch and Pitts published their famous model of a neuron, which known

as the logic threshold unit. The computational ability of their two-state neural model

presented in [31]. In such a model, the neuron can be either in an active or inactive

state. Whenever the current value of the neuron surpasses a predefined value known

as the threshold, neuron’s state will change from inactive to active. They also used the

structure of inhibitory synapses in which a neuron connected to inhibitory synapses

is not able to become active by itself.

One of the great results of their works is that we can implement some of the most

fundamental logical gates using their model. This property attracted much attention

among computer scientists and lay the foundation for what we know as Von Neumann

architecture.

However, the McCulloch and Pitts model does not represent the full functionality of

an actual neuron and has its limitations. The input to this neuron model is in binary

form, and inputs with real value do not apply to this neuron. In addition to this, the

McCulloch and Pitts model is only able to perform linearly separable functions, and

we can not implement linearly non-separable functions like XOR using this neuronal

model.

Figure 1.4 demonstrates the McCulloch-Pitts neural model with a set of input x1, x2,

..., xn and one output y. The output is in binary form. We can represent the function

of the neuron using (Eqn.1.1) and (Eqn.1.2).

9



Chapter 1 INTRODUCTION

Figure 1.4: McCulloch and Pitts Model.

g =
n∑
i=1

xiwi (1.1)

y = f(g) (1.2)

Where w1, w2, ..., wn are weight values normalized in range (0, 1). The function f

expressed as f(x) = h(x − T ), where h is the Heaviside step function, and T is the

threshold value.

1.3.2 Hodgkin-Huxley Model

In 1952, following a comprehensive set of experiments on the giant axon of the squid,

Hodgkin and Huxley presented their mathematical model for describing the dynam-

ics of a neuron. In their model, action potentials are the result of currents that

pass through ion channels. They used differential equations to describe the dynamic

behavior of these ion channels. Their model immediately acknowledged as a ground-

breaking achievement in neuroscience society and eventually led to the Nobel Prize

10



Chapter 1 INTRODUCTION

in 1963 [21].

For decades, neuroscientists successfully used this model to simulate the actual op-

eration in the human brain. However, the computational cost is the main barrier for

simulating a network consisting of a large number of neurons.

Hodgkin and Huxley described the dynamic of a neuron using three different ion

channels consisted of the potassium channel, sodium channel, and a channel that

handles other types of ions known as the leakage channel. The cell body acts as a

semipermeable membrane and allows only specific ions to pass through it. The flow of

those ions across the membrane defines the internal potential concerning the potential

outside of the cell [15].

Figure 1.5: Hodgkin-Huxley Model.

The model explained by the aid of Figure 1.5. The cell membrane separates the

interior of the cell from the extracellular environment. This membrane, therefore,

can think of as a capacitor in an electrical circuit. If we introduce the input current

I(t) into the cell, it may increase the charge of capacitors or leak into ionic channels

of the cell membrane. Each ion channel outlined in the Figure 1.5 using a resistor.

The resistance of sodium, potassium and leakage channel indicated by respectively

11



Chapter 1 INTRODUCTION

RNa, RK, and R. We denote the potential across this membrane by u. Three current

components of their model formulated, as shown in (Eqn.1.3). The channels char-

acterized by their respective conductance, which denoted by gNa, gK and gL. The

value of conductance for sodium and potassium is at its maximum level when those

channels are open.

∑
k

Ik = gNa m
3h (u− ENa) + gK n

4 (u− EK) + gL (u− EL) (1.3)

ENa, EK, and EL are respectively, the reversal potential of sodium, potassium, and

leakage channel. We can express the activation of each channel of the model in terms

of voltage-dependent transition rates α and β as:

ṁ = αm(u) (1−m)− βm(u)m

ṅ = αn(u) (1− n)− βn(u)n (1.4)

ḣ = αh(u) (1− h)− βh(u)h

The terms m and h are controlling variables for the sodium channel while the potas-

sium channels constrained by the term n. Here ṁ, ṅ and ḣ are respectively the

derivative of the m, n and h with respect to the time.

The differential equations in (Eqn.1.5) determine how the gating variables m, n and h

evolving over time. This gating variable defines the probability for which a particular

channel is open since most of the time; one of these channels is blocked.

12
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ẋ = − 1

τx(u)
[x− x0(u)], (1.5)

Hodgkin-Huxley model can successfully describe the dynamic of the squid neuron

(their experimental subject); however, experiments confirm that there are other kinds

of electrophysiological properties in cortical neurons of the vertebrates, which need

additional channels to explain the behavior of the neuron sufficiently. Detailed mod-

els of these types of neurons developed over the years, however, the computational

demand of these models made the Hodgkin-Huxley model the first choice for neuro-

scientific investigations.

1.3.3 Integrate-And-Fire Models

Integrate-and-Fire models represent action potentials as events in which if the volt-

age ui(t) (which comprises the summed effect of all inputs) reaches a threshold ϑ,

the neuron fires a spike. The shape of the action potentials is not of the highest

importance in this model. To describe the dynamics of the neuron, integrate and

fire models use two separate components; first, an equation that defines the evolu-

tion of the membrane potential ui(t); and second, a mechanism for generating action

potentials [16].
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Figure 1.6: Electrical properties of the Integrate-And-Fire neuron.

The variable ui represents the membrane potential of neuron i. Usually, the potential

is at its resting value urest when there is no incoming input to the cell membrane.

Whenever the neuron receives synaptic input from other neurons, the potential will

be different from its resting value.

Figure 1.6 illustrates the electrical properties of the integrate-and-fire neuron. We

can link the instantaneous voltage of the cell membrane to the input current from

synaptic input using the elementary laws of electricity. Considering the neuron which

surrounded by a cell membrane, we can think of it as a capacitor which will charge if

a short current pulse I(t) injected into the neuron. Since the insulator is not ideal,

we have a slow leakage of potentials through the cell membrane. Finally, we can

characterize the cell membrane by a finite leak resistance R.

The basic integrate-and-fire model consists of a capacitor C in parallel with a resistor

R and input current I(t).
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Using the law of current and splitting it into two elements we have:

I(t) = IR + IC (1.6)

Using Ohm’s law, we can rearrange (Eqn.1.6) to the equation presented below:

I(t) =
u(t)− urest

R
+ C

du

dt
(1.7)

Multiplying (Eqn.1.7) by R and using the time constant τm = RC yields the standard

form:

τm
du

dt
= −[u(t)− urest] +RI(t) . (1.8)

The solution to this differential equation considering the initial condition u(t0) =

urest + ∆u is in form:

u(t)− urest = ∆u exp

(
−t− t0

τm

)
for t > t0 . (1.9)

When there is no incoming input to the membrane, the potential exponentially decay

to its resting value. The membrane time constant determines the characteristic time

of the decay.
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Figure 1.7: Potential of the cell membrane (bottom) when a step current (top) injected to the

membrane.

Figure 1.7 demonstrates the smooth reaction of the cell membrane in response to a

step input current. We can interpret the result considering the electrical diagram of

the RC-circuit in Figure 1.6. Whenever the circuit enters a steady-state, the charge

on the capacitor no longer increases, and all the incoming input current should pass

through the resistors.

Leaky Integrate-and-fire model [14]

A specific case of integrate and fire neurons which incorporates the notion of leakage

channel in membrane potential is leaky integrate and fire model. The leakage channel

reflects the diffusion of ions that happens through the membrane when some equi-

librium condition is not satisfied in the cell. The differential equation of the leaky

integrate-and-fire model represented as:
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dv

dt
= −v − veq

τ
+ I(t) (1.10)

Where veq is the is the equilibrium potential, τ = RC is the time constant of the

membrane, and v represents the membrane potential. Integrating the differential

equation over an arbitrary input current I we have:

u(t) = η(t− t̂) +

∫ ∞
0

Θ(t− t̂− s) exp(−s/τ) I(t− s)ds (1.11)

Where t̂ is the firing time of the last spike of the neuron, u = v − veq is the potential

following the reset after each spike, Θ is the Heaviside step function, and η is the

spike shape function which determines the mean shape of spike and represented as:

η(t− t̂) = (vreset − veq) exp[−(t− t̂)/τ ] (1.12)

The leaky integrate and fire is a simplified model of an actual neuron, and it misses

several characteristics which neuroscientists have observed when they study neurons

in the living brain. However, this model considered as a reliable model for generating

spikes since it is surprisingly precise for simulating timed events phenomena [16].

The study suggests that after each spike neurons enter a refractory period during

which they are incapable of generating new spikes. In addition to refractoriness,

neurons show adaptation, which constitutes over hundreds of milliseconds. We can

increase the accuracy of the simple leaky integrate-and-fire model by adding adap-

tation and refractoriness to a much higher degree. A simple method to satisfy this

property is to consider a dynamic threshold for the neuron model. The neuron thresh-

old will increase by constant value θ after each spike and will approach to its stable
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value in the quiescent period. Using the delta function, we can formulate this idea:

τadapt
d

dt
ϑ(t) = −[ϑ(t)− ϑ0] + θ

∑
f

δ(t− t(f)) (1.13)

Where t(f) = t(1), t(2), t(3)... are firing time of the neuron, and τadapt is the time constant

for adaptation. ϑ(t) and ϑ0 are respectively, membrane and resting potential of the

neuron.

1.3.4 Izhikevich Model

The Izhikevich neuron model is a simplified model of the biological neuron which can

describe the dynamic properties of the cell membrane using two distinct differential

equations. This model of the neuron is capable of generating various kinds of action

potentials observed in biological neurons, which include regular spiking, intrinsically

bursting, chattering, and many others [23].

Differential equations in (Eqn.1.14) and (Eqn.1.15) used to describe the Izhikevich

model. Here, v is the membrane potential, and u is the membrane recovery variables,

which provides negative feedback to v. These two variables are dimensionless. The

threshold value set to 30 mV and if the voltage v is larger than the threshold, v and

u will reset as (Eqn.1.16). There are four additional dimensionless parameters which

are a, b, c, and d. The parameter a represents the time scale on which the membrane

potential u operates and parameter b represents the sensitivity of u to fluctuations in

v. The parameter c used to define the reset potential of v after a spike and parameter

d specifies the reset potential of the variable u after producing an action potential.
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v′ = 0.04 v2 + 5v + 140− u+ I (1.14)

u′ = a(bv − u) (1.15)

if v ≥ 30 mV, then

v ←− c

u←− u+ d

(1.16)

Figure 1.8: Izhikevich neuron model.

The input current to the system denoted using parameter I. By adjusting the model

parameters a, b, c, and d, we can present different kinds of spiking patterns. Figure
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1.8 demonstrates the ability of the Izhikevich neuron to produce various kinds of ac-

tion potentials, including intrinsically bursting (IB), chattering (CH), thalamocortical

(TC), and resonator (RZ).

As a consequence of simplification, the Izhikevich model does not reflect the refractory

period after generating spikes, which may lead to unrealistic behavior of the neuron

under specific situations. A solution to this problem proposed in [44].

To incorporate a refractory period, we need to interrupt the dynamic equation in

(Eqn.1.16) whenever v reaches the threshold value at time tf . Therefore we need to

modify the (Eqn.1.16) adding a new constraint as shown in (Eqn.1.17) and (Eqn.1.18)

if v ≥ 30 mV, and t− tprev ≥ ∆(abs)

v ←− c

u←− u+ d

(1.17)

else if v ≥ 30 thenv ←− 30 (1.18)

Possessing a strong biological characteristics and regarding the computational effi-

ciency, the Izhikevich neuron is a liable candidate for big network simulations. Figure

1.9 is a comparison between different neuronal model which presented in [24].
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Figure 1.9: Comparison of different neuron models [24].

1.3.5 Spike Response Model(SRM)

There is another approach rather than using the system of differential equations

to describe the behavior of the cell membrane, and that is replacing parameters of

the model by a (parametric) function of time called filters. Spike response model

is a generalized version of the integrate-and-fire model formulated using filters. In

contrast to the leaky integrate-and-fire model, this model incorporates the notion of

the refractoriness [17].

In the spike response model, the membrane potential denoted by u, which is an

essential factor for determining the state of the neuron. In the absence of the input

cuurent, the membrane potential is at its resting state urest. Adding a short current

pulse into the cell membrane will change its potentials, and it takes a while before u
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return to its resting state.

Because of the linear characteristics of the membrane potential below the threshold

value, we can express the voltage response h of the membrane to a time-dependent

simulating current by (Eqn.1.19).

h(t) =

∫ ∞
0

κ(s) Iext(t− s) ds (1.19)

Here the function κ(s) defines the time scale of the voltage response to a short current

pulse at time s = 0. Since many ion channels are still open immediately after the

spike, the membrane time constant is shorter during that brief period.

We can represent the evolution of u in regards to incoming spike trains using equation

in (Eqn.1.20). Here, the function η, represents various forms of the action potentials,

including depolarizing, hyperpolarizing, and resonating spike-after potential [2].

u(t) =
∑
f

η(t− t(f)) +

∫ ∞
0

κ(s) Iext(t− s) ds+ urest (1.20)

We can rearrange the sum over all past firing times to a convolutional form as in

(Eqn.1.21)

u(t)

∫ ∞
0

η(s)S(t− s)ds+

∫ ∞
0

κ(s) Iext(t− s) ds+ urest (1.21)

It is essential to specify that in the SRM model, the threshold value is a time-

dependent variable, which differs from the leaky integrate-and-fire model with a fixed

threshold (Eqn.1.22). Here we observe an increase in the threshold voltage shortly

after the spike. The threshold will decay to its resting state afterward.
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ϑ −→ ϑ(t) . (1.22)

Whenever the membrane potential u approaches the dynamic threshold ϑ(t) from the

below, the neuron will generate an action potential (Eqn.1.23).

t = t(f) ⇔ u(t) = ϑ(t) and
d[u(t)− ϑ(t)]

dt
> 0 . (1.23)

Figure 1.10: Spike Response Model [16].

Figure 1.10 describes the spike response model (SRM). Input current passes through

the filter κ(s) and creates the potential h. If the membrane potential reaches the

threshold ϑ, the neuron generates an action potential. After each spike, the membrane

threshold increases by θ1. Furthermore, each spike produces a voltage contribution η

to the membrane potential.

The Spike Response Model is incapable of explaining the following properties of the

biological neuron:
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• In comparison with the Hodgkin and Huxley model, the spike response model

is incapable of describing the biophysics of membrane potential explicitly and

therefore performs poorly on the prediction of the individual ion channel. This

model considers the effect of several ion channels and predict their spike shape

using function η and filter κ. For explaining the behavior of an individual ion

channel, Hodgkin and Huxley is a more reliable choice [14].

• As observed in the biological neuron, the action potential delay differs according

to the amplitude of the input pulse. We can not see this property in the spike

response model. There are another type of neurons, such as the quadratic [28] or

exponential integrate-and-fire model [6], which can represent this characteristic.

1.4 Neural Coding

Spiking neural networks employ precise timing of spikes for transferring information,

which is significantly different from what we saw in conventional neural networks.

Therefore, a different approach for presenting input stimuli to the network required.

Various procedures for converting input data to an understandable stimuli for SNN

proposed, here we discuss different techniques of neural coding.

1.4.1 Rate vs Temporal Coding

The rate coding refers to encoding the input to a stimulus in terms of firing rate or

frequency of action potentials. Contraction of the muscle which is in accordance with

the number of spike per time unit, considered as an example of the rate coding in the

nervous system [33].
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However, studies suggest that the human brain employs a different procedure for

interpreting visual stimuli considering the response time of the visual receptors to

these stimuli, which is remarkably short, and no time will remain for ascertaining

the average firing rate by the neural system [15]. Though this is not the case in

temporal coding, and the timing of individual spikes is equivalently important. Role

of precise spike timing for localization of sound in the auditory system is an example

of temporal coding [7].

Figure 1.11: Illustration of the temporal coding principle [37].

Figure 1.11 Illustrates the temporal coding procedure for encoding and decoding of

real vectors into spike trains. The network supplied by serial of n-dimensional input

vectors X = (x1, x2, ..., xn) which translates to the train of spikes within the successive

temporal window. In each time window, a pattern X is temporally coded relative to

the timing of the spike emission of the neuron.

To understand the limitation of the current definition of the rate and temporal coding,

we should consider the case of two neurons with the same firing rate but different

timing for generating spikes. The first neuron generates all its spikes at the beginning

of the period and is silent afterward. The second neuron generates its spikes in an
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evenly distributed time during the given period.

To differentiate between these neurons, we should consider the notion of the instan-

taneous firing rate. It seems clear that the instantaneous firing rate is higher for the

first neuron at the beginning, however, the second neuron has a fixed instantaneous

firing rate for the whole period [12]. If a rapid change in the instantaneous firing rate

observed, which contains essential information about input stimuli, the method used

called temporal coding.

Figure 1.12: Definition of mean firing rate by temporal average.

Figure 1.12 presents the definition of the mean firing rate ν based on the number

of spikes nsp in a period T. Generally, Using the temporal code, neurons have a

fluctuating firing rate in response to constant stimulus, whereas using rate code, the

neurons exhibit the same firing pattern during the entire given period.

1.4.2 Population Coding

In opposition to rate and temporal coding, which consider the firing rate of an in-

dividual neuron, population coding illustrates the encoding behavior of a population

of neurons. Regarding a large population of neurons that all execute the same code

constitutes a high degree of redundancy between neurons. In population coding, we
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have different groups of neurons that respond to a specific pattern of stimulus. For

instance, if the aim is to identify the direction of an arrow in a picture, there are

neurons that represent the direction fully turned to left, others to the right and a

group of neurons that are specific to centered direction.

There is a direction for which a neuron has the highest firing rate. We call this

direction the preferred direction of the neuron. Generally, neurons respond to the

inputs which are close to their preferred direction, and they infrequently fire for the

direction which is not similar to their preferred course.

1.4.3 Sine Wave Encoding

There is a specific type of encoding for supervised learning in spiking neural networks,

known as sine wave encoding. In this method, the amplitude of the sine wave is

proportional to the normalized feature of the raw input. We present this sine wave

input for some portion of the simulation time. This method is quite similar to what

we have seen in conventional neural networks as here, the amplitude of the sine wave

is equivalent to the intensity of the input [41].

1.4.4 Spike Density Code

Spike density code is a specific form of population coding which consider the number

of firing neuron during a given period. The aim is to set up a population of neurons

such that the number of firing neurons is proportional to the input size. Therefore,

the input information encoded as the density of the spikes produced by the population

of the neurons [37].
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The problem associated with this method appears when we use a large population

of neurons to encode a relatively small input. The increased number of neurons and

consequently increase in synaptic connection add more computational complexity to

the system.

1.5 Synaptic Plasticity

In conventional neural networks, we optimize the performance of the network, mod-

ifying the connection weight wij between neurons i and j. The procedure of weight

modification referred to as learning rule. A well-known method used to modify the

connection weights in spiking neural networks is base on the work done by Konorski

in 1948 [27] and Donald Hebb in 1949 [19].

Experiments confirm that the amplitude response of a postsynaptic neuron is not

fixed and changes over time. In neuroscience, this change of the synaptic strength

referred to as synaptic plasticity. In the presence of a proper stimulation paradigm,

we can observe a persistence change in postsynaptic response, which may last for

several hours.

If a persistent strengthening of synapses observed, the effect described as long-term

potentiation of synapses (LTP). In opposition to long-term potentiation is long-term

depression when we witness a reduction in the efficacy of neuronal synapses.

Hebb and Konorski described the change procedure in connection from presynaptic

neuron A to a postsynaptic neuron B.

If an axon of the neuron A, which is in the proximity of the neuron B, persistently

contributes to firing it, a rapid metabolic change occurs in both neurons such that
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the synaptic efficiency of their connection increase. An oversimplified summary of

their law presented in the following sentence [19].

“Neurons that fire together wire together.”

However, this sentence does not precisely describe the Hebbian rule as we know the

presynaptic neuron has to be active just before the latter one.

1.5.1 Mathematical Formulation of Hebb’s Rule

Considering a single synapse with efficacy denoted by wij, we can present a mathe-

matically formulated learning rule based on Hebb postulate. The synapse transmits

electrical pulses from the presynaptic neuron i to the postsynaptic neuron j. Here,

νi and νj represent the activity of the presynaptic and postsynaptic neurons in terms

of the mean firing rate.

In Hebbian postulate, the changes of synaptic efficacy only depend on local variables

and not on the activity of other neurons. Employing this characteristic, we can

write a general formula (Eqn.1.24) for synaptic efficacy, having variables like pre and

postsynaptic firing rates and the actual value for synaptic efficacy.

d

dt
wij = F (wij; νi, νj) (1.24)

Here,
d

dt
wij denote the rate of change in synaptic strength, and F is a function that

describes the synaptic change based on the local variable.

Other features of Hebb’s postulate indicate that the change in synaptic weight hap-

pens when we have both pre and postsynaptic neurons active simultaneously.
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Assuming that F is a well-behaved function we can use Taylor series to expand the

function (Eqn.1.25)

d

dt
wij =c0(wij) + cpre

1 (wij) νj + cpost
1 (wij)νi + cpre

2 (wij) ν
2
j

+ cpost
2 (wij) ν

2
i + ccorr

11 (wij) νi νj +O(ν3) .

(1.25)

In general, the Hebbian learning rule requires either the bilinear term ccorr
11 (wij) νi νj or

higher-order term (c21(wij) ν
2
i νj) that includes both pre and postsynaptic activity. If

we disclude these terms form the equation (Eqn.1.25), we would have a non-Hebbian

learning rule.

1.5.2 Pair-based Models of STDP

Employing a spike description for synaptic plasticity, we can present a pair-based

update rule for synaptic strength. Assume that tpre and tpost are respectively the

time in which pre and postsynaptic spike happen. The change in synaptic weight is

a function of temporal difference |∆t| = |tpost− tpre|. a simple pair based update rule

presented in (Eqn.1.26).

∆w+ = A+(w) · exp(− |∆t| /τ+) at tpost for tpre < tpost

∆w− = A−(w) · exp(− |∆t| /τ−) at tpre for tpre > tpost (1.26)

Where A±(w) represents the update dependency on the current value of the synaptic

weight. A+(w) and A−(w) normally have a positive and negative value respectively.

Whenever a presynaptic and postsynaptic spike happens(respectively at time tpre and

tpost), we need to update the synaptic weight.
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Figure 1.13: Spike-Timing Dependent Plasticity (schematic) [42].

Figure 1.13 presents the diagram of spike-timing-dependent plasticity. The STDP

rule describes the changes in synaptic weights as a function of timing of pre and

postsynaptic spikes.

Generally, we can specify a pair-based model by:

• the weight-dependence parameters A+(w) and A−(w)

• The choice of pairs which have to take into consideration for performing the

update.

The reason not to consider all possible pair of neurons is that neurons which are far
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apart rarely participate in each others firing because of fast exponential decay of the

update amplitude [43]. A reasonable choice is to consider pre and postsynaptic spike

which are in proximity with each other.

Considering Sj =
∑

f δ(t− t
(f)
j ) and Sj =

∑
f δ(t− t

(f)
j ) as pre and postsynaptic spike

trains, we can represent the update rule as follow:

d

dt
wij(t) = Sj(t)

[
apre

1 +

∫ ∞
0

A−(wij)W−(s)Si(t− s) ds

]
+ Si(t)

[
apost

1 +

∫ ∞
0

A+(wij)W+(s)Sj(t− s) ds

] (1.27)

Here apre
1 and apost

1 are non-Hebbian parameters and and W±(s) represent the time

scale of the learning window [26].

In the standard pair-based STDP rule, we can write:

W±(s) = exp(−s/τ±) and apre
1 = apost

1 = 0

Studies suggest that the pair-based STDP rule can not provide a satisfactory descrip-

tion of experimental results with synaptic plasticity protocols. One of the principal

deficiencies of the pair-based model is its inability to produce dependence of plasticity

on the spike frequency [16].

To address the issues associated with the pair-based model, Pfister and Gerstner

introduced the triplet rule of STDP, which can resolve the problem of the frequency

dependence [38].
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1.5.3 Triplet model of STDP [38]

In the triplet model, every spike in the presynaptic neuron, j participates in the

generation of a trace xj. Denoting the firing time of presynaptic neuron with tfj , we

can implement the triplet model of STDP model as (Eqn.1.28):

dxj
dt

=
xj
τ+

+
∑
tfj

δ
(
t− tfj

)
, (1.28)

Using this model, we need a combination of three spikes (one presynaptic and two

postsynaptic) for simulating LTP.

dyi,1
dt

= −yi,1
τ1

+
∑
f

δ(t− tfi ) (1.29)

dyi,2
dt

= −yi,2
τ2

+
∑
f

δ(t− tfi ) (1.30)

Here, there are two different traces yi,1 and yi,2 for individual postsynaptic spike j.

The time scale of these two traces are different, and we have τ1 < τ2 [38].

Now, we can represent the weight change rule based on the presynaptic trace xj im-

mediately after a postsynaptic spike and also postsynaptic trace yi,2 from the previous

postsynaptic firing.

∆w+
ij

(
tfi

)
= A+ (wij) xj

(
tfi

)
yi,2

(
tf−i

)
(1.31)

The term tf−i implies that we should calculate yi,2 before its increase due to the effect

of the postsynaptic spike at tfi . In triplet STDP, LTD is analogous to what we have
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seen in the pair-based model [16].

The experiments confirm the full compatibility of this model with explicit triplet

experiments [36].

Figure 1.14: The triplet STDP rule with local variables [16].

Figure 1.14 describes the triplet STDP rule using local variables. xj(t) is the spike

trace of presynaptic neuron j, while yi,1(t), and yi,2(t) are respectively fast and slow

spike trace of postsynaptic neuron j. The update of the weight wij at the moment of

a presynaptic spike is similar to pair based model of STDP.

1.6 Unsupervised Learning [15]

In contrast to supervised learning where the network parameters optimized for every

input stimuli to achieve the least error, unsupervised learning refers to the change of

synaptic connection according to the statistics of the input stimuli. Assume that we
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have N input neurons with index of 1 ≤ j ≤ N . We denote the firing rate of these

neurons by νj. These firing rates belong to a set of P different firing rate pattern

with the index of 1 ≤ µ ≤ P .

In a static pattern scenario, we present an input pattern like ξµ = (ξµ1 , . . . , ξ
µ
N) to the

network for a predefined period ∆t. Note that here, the firing rates of the neurons in

the input layer are νj = ξµj .

Using the Hebbian learning rule of the form (Eqn.1.32), we can take advantage of

competitive learning.

d

dt
wij = γ νi [νj − νθ(wij)] , (1.32)

Here, γ is a positive constant, and νθ is the firing rate reference, which depends on

the current value of the synaptic weight.

Considering a group of active neurons that connected to the postsynaptic neuron j,

we will observe an increase in the strength of the synaptic connection. The firing of

the postsynaptic neuron leads to long term potentiation(LTP). At the same time, the

firing of the postsynaptic neuron causes the long term depression(LTD) on inactive

synaptic pathways. The procedure here is similar to the “winner takes all” strategy

in competitive learning.

1.6.1 Rate model learning

For a rate-based learning model, we can use a simple Hebbian rule to illustrate the

joint activity of pre and postsynaptic neurons which leads to change in synaptic

weights as (Eqn.1.33):
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∆wi = γ νpost νpre
i . (1.33)

Where γ called learning rate and has the range of 0 < γ � 1. In the general form of

the rate-based model, we can represent the postsynaptic firing rate as a function of

the input stimuli (Eqn.1.34).

νpost = g

(∑
j

wj ν
pre
j

)
; (1.34)

To gain a better understanding of the learning equation in (Eqn.1.33), we consider a

simple linear model for the firing rate of the postsynaptic neuron. Suppose that g is

a linear function, we can write (Eqn.1.34) as:

νpost =
∑
j

wj ν
pre
j = w · νpre , (1.35)

Note that using a linear function, we can represent the firing rate of the postsynaptic

neuron as the projection of the input vector onto the weight vector. Coupling the

learning rule in (Eqn.1.33) and linear rate model of (Eqn.1.35) we have:

∆wi = γ
∑
j

wj ν
pre
j νpre

i = γ
∑
j

wj ξ
µ
j ξ

µ
i . (1.36)

Then, we can illustrate the change in the weight vector after each iteration by equation

(Eqn.1.37):

wi(n+ 1) = wi(n) + γ
∑
j

wj ξ
µn
j ξµni , (1.37)
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Using the equation (Eqn.1.37), we update the synaptic weight after presentation of

each input pattern. For this reason, the method called the online learning rule of

the rate-based model, which is in contrast to presenting a large number of the input

pattern to the network.

We can consider the situation when we present all input patterns to the network

before an update happens.

wi(n+ 1) = wi(n) + γ̃
∑
j

wj

P∑
µ=1

ξµj ξ
µ
i (1.38)

Here γ̃ = γ/P is the new learning rate called the batch learning rate. We can

rearrange equation (Eqn.1.38) as:

wi(n+ 1) = wi(n) + γ
∑
j

Cij wj(n) , (1.39)

Where Cij is the correlation matrix of the form:

Cij =
1

P

P∑
µ=1

ξµi ξ
µ
j = 〈ξµi ξ

µ
j 〉µ . (1.40)

It is clear now that the change in synaptic weights determined by the correlation of

input vector.
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1.6.2 STDP Learning Equations

In a pair-based STDP, we can use a Poisson model to generate the output spike train

at the postsynaptic neuron. The firing rate of this Poisson group determined by:

νi(ui) = [αui − ν0]+ (1.41)

Here u is the membrane potential, α is the scaling factor, and ν0 is the threshold value.

Note that the positive sign at the right side of the equation, denotes a piece-wise linear

function in which: [x]+ = x for x > 0

Supposing all input spike trains as Poisson group of the firing rate νj, we can represent

the expected firing rate of the postsynaptic neuron as (Eqn.1.42)

〈νi〉 = −ν0 + αε̄
∑
j

wij νj , (1.42)

Where ε̄ is the area under the postsynaptic potential of an excitatory neuron denoted

by ε̄ =
∫
ε(s)ds.

Finally, the correlation between pre and postsynaptic spike train estimated as:

〈ẇij〉 = νj 〈νi〉 [−A−(wij)τ− + A+ (wij) τ+]

+ αwijνj A+(wij)

∫
W+(s)ε(s)ds

(1.43)
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1.7 Summary

Neurons use a short voltage pulse called action potential (spike) to communicate with

each other. These pulses distributes to several postsynaptic neurons where they excite

postsynaptic potentials. If a sufficient number of spikes reaches to the postsynaptic

neuron, its membrane potential exceeds a critical voltage (threshold), and neuron

generates an action potential (fire a spike). This spike consider as the output signal

of the neuron and transmits to other neurons.

There are different models of neurons with various levels of sophistication. The

Hodgkin-Huxley model explains the generation of action potentials using three ion

channels and ion current flow. The model stands paramount in describing the dy-

namic behavior of the biological neuron and incorporates most of the fundamental

properties of an actual neuron. However, the complexity of the Hodgkin-Huxley neu-

ron convinced neuroscientists to seek a more simplistic but computationally efficient

model of neurons.

A simple model of a spiking neuron is the leaky integrate-and-fire (LIF) model, which

applies a linear differential equation to represent how input currents integrated and

converted into a membrane voltage u(t). The simple model does not incorporate

the notion of refractoriness. Including the mechanism of adaptation, the model can

successfully predict spike times of cortical neurons.

Experiments demonstrated that the relative timing of the pre and postsynaptic spike

plays an essential rule in determining the amplitude and direction of change in synap-

tic efficacy. To demonstrate the spike timing effects, standard pair-based models of

STDP (synaptic time-dependent plasticity) formulated, which consider a learning

window for modification of synaptic weights. If the presynaptic spike occurs before a
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postsynaptic one, the synaptic weight will increase. In the case when a presynaptic

spike arrives after a postsynaptic one, synaptic efficacy decrease. Nevertheless, classi-

cal pair-based STDP models ignore the frequency and voltage dependence of synaptic

plasticity. Modern variants of STDP like triplet rule proposed to fix deficiencies of

the pair-based model.

1.8 Outline of the thesis

This thesis has organized into five chapter. Chapter 2 presents a brief review of

supervised and unsupervised learning in spiking neural networks.

A computationally efficient SNN for classification of images of handwritten digit has

proposed in Chapter 3. Chapter 4 belongs to an unsupervised SNN for recognition

of the MNIST dataset. Conclusion and potential future work delivered in Chapter 5.
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Chapter 2

SURVEY OF RELEVANT LITERATURE

2.1 A Review of Supervised Learning in SNN

The first supervised algorithm which used a gradient-based technique to transfer

information in the timing of the single spike was SpikeProp [4]. In this model, each

neuron can produce at most one action potential during the spike interval. If the

neuron fires more than one spike during the period, the algorithm only considers the

first spike as the exact firing time. The model comprised of the connections with

different synaptic delays and weights, which enable them to solve linearly inseparable

problems(like XOR function) and attain high-grade results on the problem with a

small dataset. However, having multiple connection weights per synapse and adopting

a single spike optimization procedure restricted its application to the problems with

small datasets.

McKennoch, Liu, and Bushnell [32] proposed the method to enhance the convergence

rate of the SpikeProp, though their approach was not expandable to large datasets.

An alternative method to SpikeProp proposed in [34] which specially designed for non-
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leaky integrate and fire models. The model replaced the multi delay elements of the

SpikeProp model with an exponential connection between each pair of neurons. The

model replaced the multi delay elements of the SpikeProp model with an exponential

synaptic connection between each pair of neurons. The single and two-layer model

of the proposed network achieved the test error of 2.45% and 2.86%, respectively.

The main associated problems with the proposed method is a dropout since most of

the regularization techniques do not apply to the network and some times prevents

neurons from firing.

Stromatias and Marsland [45] used a different approach than the previous works and

employed the genetic algorithm to optimize multiple spikes of each neuron instead of

considering only the first spike. However, this method only applies to small networks

with less than ten neurons in the hidden layer. One of the main reasons is the

limitation of the genetic algorithm for scaling to problems with so many parameters.

Lee, Delbruck, and Pfeiffer [30] proposed a different method for optimizing multiple

spikes of the neuron, assuming the output of the neuron as a linear function of its

input. This simplification allows them to train the network in the forward direction

and still can perform backpropagation in the backward direction. The method ignores

the refractory period following the generation of a spike and use the property of lateral

inhibition to enhance the performance of the network. Despite all the simplification,

the model still able to achieve good results on the MNIST dataset, obtaining a test

error of 1.30% using stochastic gradient descent.
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2.2 Unsupervised Learning in SNN

During recent years, various strategies for unsupervised learning in spiking neural

networks developed, which often based on variants of the Hebbian method. Inspired

by the Hopfield’s idea, Natschläger and Ruf [35] introduced an unsupervised clustering

method in spiking neural networks. Their approach is analogous to the radial basis

function (RBF) except the input, which is in terms of spike timing.

A winner-takes-all learning rule used to adjust the synaptic weights between the

source neuron and the first firing neuron in the target layer. If the start of the

postsynaptic potential occurs immediately before the spike in the target neuron, the

weights of the synapse will increase. On the other hand, the synaptic weights of the

earlier and later synapses will decline, which indicates their negligible impact on the

firing of the target neuron. Employing this learning procedure, we can encode input

patterns into synaptic weights in such a way, the spike timing of the output neurons

indicates the difference between the evaluated pattern and the learned input pattern,

which is quite similar to unsupervised learning in RBF neuron.

Figure 2.1: Unsupervised learning rule in SNN proposed in [35].

To improve accuracy and expand the clustering capacity of the Natschläger and Ruf
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network, Bohte [5] applied a temporal version of population coding. He applied

multiple receptive fields to encode the input data into temporal spike-time patterns.

Bohte proved using such an encoding technique, spiking neural networks are capable

of performing efficient clustering tasks. Figure 2.1 presents the unsupervised SNN

proposed by Natschläger and Ruf in which individual connection considered as mul-

tisynaptic. The weights are random and a set of increasing delays introduced to

facilitate unsupervised learning of input patterns.

Querlioz and his colleagues [39] introduced a simplified and customized spike time-

dependent plasticity (STDP) scheme for unsupervised learning in memristive devices.

Their network comprised of an unsupervised layer that extracts features of the inputs

images utilizing a rectangular shape of STDP and achieves the accuracy comparable

to traditional supervised learning models with the same number of parameters. They

imployed homeostasis and lateral inhibition to encourage competition among neurons.

The neuron used in their network is a current based leaky integrate and fire model

with the equation presented in (Eqn.2.1)

τ
dX

dt
+ gX = γIinput (2.1)

Where τ is the time constant of the leakage, and Iinput describe the flowing current

through the crossbar lines connected to the neuron. g and γ are also other constants

of the equation which describe the dynamic of the neuron. They illustrated the high

adaptivity of their systems to various environments, which can lay the foundation for

circuit design with compact and low power consumption.

Figure 2.2 displays the crossbar layout of the network proposed by Querlioz [39] in

which neurons are CMOS silicon devices, and their associated synaptic connections
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are the dots. The synapses serve as adaptive resistors. Employing the crossbar layout,

the output calculated directly as the sum of the currents passing through the synapses.

Figure 2.2: Architecture of the memristor-based SNN proposed in [39].

Diehel and Cook [13] proposed an unsupervised method for digit recognition using

a conductance-based model of leaky integrate and fire neuron. They introduced an

adaptive threshold method which prevents a neuron from dominating the response

to the input pattern and facilitate the competition among neurons. Using 3600 exci-

tatory neurons, they obtained an accuracy of 95% on the handwritten digits of the

MNIST dataset. Their model consists of the same number of inhibitory neurons in

the output layer. The neurons in the excitatory layer are connected in a one to one

fashion to the corresponding inhibitory neuron in the output layer. The neurons in

the inhibitory layer connect to all the other neurons in the excitatory layer except
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their corresponding neuron in the excitatory layer (See Figure 2.3). This architecture

allows them to use the property of lateral inhibition in which the first firing neuron

inhibits all the other neurons in the output layer plus their corresponding excitatory

neuron. The lateral inhibition enables the neuron to adapt its weights according to

the input pattern.

Figure 2.3: Architecture of the Diehel & Cook network [13].

2.3 Summary

The first algorithm which performed supervised learning in spiking neural networks

was SpikeProp [4]. This algorithm and other similar methods, which referred to as

spike-based methods, optimize the firing time of individual neurons to reduce the
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overall error of the network. A problem associated with the spike-based methods

is the high nonlinearity of the problem in which a small change in the input of the

neuron can push the membrane potential to its firing threshold and substantially

change the neuronal output.

In contrast to supervised methods, we have unsupervised approaches that utilize the

properties of the Hebbian learning rule and competitive learning for modification of

synaptic weights. A biologically plausible spike-timing-dependent plasticity (STDP)

rule updates the weights based on the timing of the pre and postsynaptic spikes.
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PROPOSED SNN FOR IMAGE

CLASSIFICATION

3.1 Introduction

In this section, a python implementation of the spiking neural network applied to

classify the black and white handwritten digit of the MNIST [29] dataset . The

neuron model employed in this section inspired by the simplified spike response model

proposed by [22]. The learning method for updating synaptic weights is the pair-

based spike time-dependent plasticity (STDP). The proposed method incorporates

some of the fundamental properties of the biological neuron, such as homeostasis and

lateral inhibition. The later parts belong to the simulation results for classifying of

the handwritten digits of the MNIST dataset and the comparison of the suggested

network to some of the related works such as [22] and [8].
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3.2 Network Architecture

The SNN model presented here is a two-layer feedforward network consisted of 784

neurons in the input layer (equal to the size of an MNIST image which is 28×28), and

eight inhibitory neurons in output layer for classifying six different input patterns.

Each neuron in the input layer connected to all the neurons in the output layer

through a weighted synaptic connection (See Figure 3.1 ). Input neurons in the first

layer require spike trains, and we should encode the input image to a train of spikes

in which the frequency of the spike pattern is proportional to the intensity of the

pixel in the input image. The membrane potential of the neuron updated after each

time step according to the learning rule and the associated synaptic weights. First

firing output neuron inhibits all the other neuron in the output layer form generating

spikes and win the competition for the specific input pattern.
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Figure 3.1: Proposed SNN architecture for image classification.

3.2.1 MNIST dataset

The MNIST database [29] (which stands for Modified National Institute of Standards

and Technology database) is a big database of gray scale handwritten digits which

widely adopted for training of various image processing methods.
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Figure 3.2: Sample images from MNIST test set.

The database contains 60,000 training and 10,000 testing images, each of the size

28 × 28 pixels. The intensity of each pixel in the image represented by a number in

range 0 to 255 in which higher numbers correspond to bright colors and darker shades

represented by small values. Figure 3.2 illustrates sample images of the MNIST test

set.

3.2.2 Input Encoding

Input images to the network are six arbitrary images of the MNIST dataset illustrated

in Figure 3.3. Each image is of size 28 × 28 pixels and represented as a matrix in
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which the value of each position is proportionate to the intensity of the corresponding

pixel in the input image.

Figure 3.3: Sample images used for classification.

Since this input representation is not understandable for our spiking neural network,

we should encode the image input to train of spikes in which the frequency of the

spike train is proportional to the intensity of the pixel in the image. This type of

encoding in which the information represented as the firing rate of the neuron called

rate coding.

3.2.3 Neuron Model

Considering a spike response model (SRM), the postsynaptic neuron generates a

potential (postsynaptic potential) whenever it receives a presynaptic spike. This

potential is excitatory whenever the membrane potential increased and is inhibitory

when it decreased. To determine the instant value of membrane potential, we need

to aggregate all existing PSP at the neuron input. When the membrane potential

exceeds the critical threshold value, neuron generates an action potential and enter

its refractory period. During the refractory period, neuron is overpolarised and is not

able to generate action potentials. After this short period, membrane potential resets

to its resting value and can produce spikes again. Input neurons in the first layer

require spike trains, and we should encode the input image to a train of spikes in

which the frequency of the spike pattern is proportional to the intensity of the pixel
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in the input image.

We can describe the postsynaptic function as follow:

PSP(t) = e(− t
τm

) − e(− t
τs

) (3.1)

Where τm and τs are the time constants that describe the steepness of the curve for

LTP, and LTD respectively, and t is the time after the arrival of the presynaptic spike.

Denoting the threshold value by υ, we can present the refractory η function by equa-

tion

η(t) = −υe( t
τr

)H(t) (3.2)

Here H is the Heaviside function, and τr is the time constant for the refractory period.

Considering a train of spikes Fi =
{
t
(g)
i , ... , t

(K)
i

}
arriving at a postsynaptic neuron,

we can write the potential equation for j-th neuron as (Eqn.3.3)

Pj =
K∑
i

∑
t
(g)
i ∈Fi

wijPSP(∆tij)
∑

t
(f)
j ∈Fj

η
(
t− t(f)

j

)
(3.3)

Where ∆tij is the time difference between presynaptic spike and the change in post-

synaptic potential considering the delay dij, and described by equation

∆tij = t− t(g)i − dij (3.4)

Here, Fj is the trains of spike generated by the postsynaptic neuron.
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Simplified SRM Neuron [22]

Without losing the generality of the SRM model, we can consider a simplified model

of spike response model as [22] in which the membrane potential of the postsynaptic

neuron increases according to incoming spike trains Sit, i = [1, ..., n]. On the other

hand, the membrane potential decreases by a constant value D in every time instant

(considering time instants as discrete values).

The postsynaptic potential donated by (Eqn.3.5)

Pt =



Pt−1 +
n∑
i=1

WiSit −D, ifPmin < Pt−1 < Pthreshold

Prefract ifPt−1 ≥ Pthreshold

PR ifPt−1 ≤ Pmin < 0

(3.5)

Figure 3.4 illustrates the membrane potential of the simplified neuron in response to

random input spike trains for a duration of 50 time units.
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Figure 3.4: Membrane potential of the simplified neuron in response to random input spike train.

3.2.4 Learning Rule

A pair-based spike time-dependent plasticity rule employed to update synaptic weight

connections. Generally speaking, we can explain the STDP rule as follow:

• All the synaptic connections which contribute in the firing of the postsynaptic

neuron should strengthen, and in other words, we should increase their associ-

ated weights.

• Synapses that are not contributing to the firing of the postsynaptic neuron
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should weaken, and the learning rule reduces their corresponding weights.

Here, the firing rate of the presynaptic neurons is proportional to the intensity of

the input signals. The frequency of the spike train transferred to the postsynaptic

neuron depends on the strength of the synaptic connection. Whenever the membrane

potential of the postsynaptic neuron exceeds the threshold value, it generates an

action potential. At this moment we should monitor all the presynaptic neuron which

have produced spikes immediately before the postsynaptic neuron, and increase their

corresponding synaptic weights.

The weight change in the synaptic connection represented in equation (Eqn.3.6).

Note that this change is inversely proportional to the time difference between pre and

postsynaptic firing. See Figure 3.5.

STDP(∆t) =

A
+e−∆t/τ+ if ∆t > 0

A−e∆t/τ− if ∆t < 0

(3.6)
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Figure 3.5: STDP curve of (Eqn.3.6).

Here, A+ and A− are respectively positive and negative constant of the weight change.

τ+ and τ− are time course of the LTP and LTD, which describe the steepness of the

function.

The total weight change ∆w presented as:

∆w =
N∑
f=1

N∑
n=1

STDP(tni − t
f
j ) (3.7)

Where tfj and tni are firing times of the pre and postsynaptic neuron.

And finally, the new weight obtained by (Eqn.3.8)

wnew =

wold + η∆w(wmax − wold) if ∆w > 0

wold + η∆w(wold − wmin) if ∆w < 0

(3.8)
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Where η is the learning rate which controls the speed of the weight adaptation. To

prevent synaptic weights to become extremely large or negative, we should consider

a boundary condition for the connection weight such that wmin < w < wmax.

Lateral Inhibition

Since STDP considered as an unsupervised learning method, we can apply the char-

acteristics of the competitive learning to our problem to build competition between

neurons in the output layer. From a biological perspective, the ability of an excited

neuron to degrade the activity of its neighbor called lateral inhibition. Adopting lat-

eral inhibition, we can produce a contrast in stimulation, which leads to an increase

in sensory perception. This quite similar to what we have seen as the winner takes

all strategy (WTA) in unsupervised learning methods in machine learning.

Here, the winner is the neuron, which produces the first action potential in response

to the input pattern. Following the generation of the first spike, it inhibits all the

other neurons in the output layer from firing and fully adapts its associated synaptic

weights to the input pattern (See Figure 3.6).
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Figure 3.6: Neuron B (Winner) sends lateral signals to Neuron A and C.

Adaptive Variable Threshold

Choosing a fixed threshold value for all neurons creates a situation in which a single

neuron dominates the response pattern and prevents all the other neurons from par-

ticipating in the competition. To resolve the issue, we can apply an adaptive value

of threshold in which we increase the threshold value of a neuron whenever it fires an

action potential. we can represent this adaptive threshold as Vth + θ, in which the

value of θ increases after an action potential and decaying afterward.

Adopting the adaptive threshold, it turns out that the excited neuron requires more

input spikes to fire again in the short-period following its action potential and there-

fore provides the opportunity for the other neurons to compete for the next input

patterns. This feature in which the inhomogeneity of the input patterns, cause exci-
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tatory neuron to have different firing rates called homeostasis.

3.2.5 Parameters Tuning

Some of the most significant parameters that need to be taken care of while designing

a spiking neural network are:

• Learning rate

• Potential threshold

• Initialization of the synaptic weights

• Range of the weights

• Firing rate of the input neurons

Learning rate determines the speed of weight adaptation during the learning process.

Selecting a higher value for learning rate, speeds up the creation of the receptive field.

However, this may lead to what we know as negative learning.

Similar to what we observed in conventional neural networks, the initialization of the

weight is of the highest importance, which can reduce the computational expense to

a substantial level and further increase the accuracy of the network to an optimal

point.

The firing rate of the input neurons determines the magnitude of change in synaptic

weights. Selecting a lower value for the firing rate of the input layer causes the

membrane potential not to cross the threshold, and consequently, no changing of the
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weights would take place. On the other hand, choosing a higher value of firing rate

leads to negative learning and the creation of a noisy receptive field.

3.3 Simulation Results

After training the network and obtaining the optimal value of the weights, we can

assess the performance of the system using the learned weights. Figures 3.8 - 3.15

depict the membrane potential of the output neuron in response to the input pattern.

We present the input patterns to the network for the time unit of 500 ms and asses the

performance of the system by monitoring the activity of the membrane potential of

the output neurons in response to input images. Presenting the images of zero to five

to the network consecutively, we observe that six out of eight neurons are responding

to a specific input and consequently learned that particular pattern. The neurons 3

and 6 are noisy outputs and did not learn any input pattern. These neurons generate

random spikes at the beginning of any input presentation and remained silent for the

rest of the period.

An essential feature of the spiking neural networks, which is highly beneficial in

analyzing the training process, is the generative properties of SNN. If we properly

scale all the synapses connected to an output neuron and rearrange them in the form

of the input image, it reveals the specific pattern that the output neuron learned.

In our case, we need to properly scale all the 784 synapses connected to the output

neuron and rearrange them into an image of size 28× 28.
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Figure 3.7: Receptive field of output neurons.

Figure 3.7 depicts the receptive field of output neurons. For instance; neuron 4

learned the pattern zero, and neuron 8 corresponds to the digit two. Neuron 3 and 6

considered as noisy output neurons and do not present any input pattern.

Some of the essential parameters for updating the synaptic connection are A+ = 0.8,

A− = 0.3, τ+ = 6 τ− = 4, η = 0.1.

The simulation time for the classification of six digits of the MNIST dataset using

eight output neurons lasted 32.25 seconds, which indicates a reduction of 78 percent

in the overall simulation time in comparison with the classic SRM model (Using the

same architecture and simulation time of 152.3 seconds).

The hardware used to run the simulation was intel Core i7 4747 CPU with 8 GB

RAM.
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Figure 3.8: Membrane potential of the neuron 4 in response to input images.

Figure 3.9: Membrane potential of the neuron 1 in response to input images.

63



Chapter 3 PROPOSED SNN FOR IMAGE CLASSIFICATION

Figure 3.10: Membrane potential of the neuron 8 in response to input images.

Figure 3.11: Membrane potential of the neuron 7 in response to input images.
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Figure 3.12: Membrane potential of the neuron 2 in response to input images.

Figure 3.13: Membrane potential of the neuron 5 in response to input images.
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Figure 3.14: Membrane potential of the neuron 3 in response to input images.

Figure 3.15: Membrane potential of the neuron 6 in response to input images.
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3.4 Conclusion

The model proposed in this chapter is a computationally efficient SNN for classifying

the handwritten digit images of the MNIST dataset. The neuron model is a simplified

spike response model inspired by the model presented in [22]. The main distinction

between our model and the model in [22] is that their model uses a convolutional

filter for preprocessing of data before presenting the input to the network. They also

use a modified asymmetric STDP rule to update the synaptic weights. However, the

model suggested in this chapter does not perform any preprocessing of data, and the

learning rule is a standard pair-based STDP.

A different architecture presented in [8], includes a hidden layer and two neurons in

the output layer. The neurons in the network joined in a fully-connected fashion. One

neuron in the output layer represents the input pattern, and the other one considered

as a neutral neuron for handling noisy input. One of the problems associated with this

architecture is that in every step of training, the network presents a single pattern and

can not memorize more than one image. Another problem associated with this model

is that we require different numbers of neurons in the hidden layer according to input

images of various sizes. The model presented here is a multi-class classifier and is

adjustable to the input images of various sizes. Table 3.1 present a basic comparison

of the aforementioned network.
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Architecture Preprocessing

of Data

Learning

Rule

Multi/Single

Classifier

Correct

Learning

Simplified

Neuron [22]

3 Asymmetric

STDP

Multi 100%

SNN in [8] 7 Standard

STDP

Single 80.3%

Proposed

Method Here

7 Standard

STDP

Multi 100%

Table 3.1: Comparison of three SNN.
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HANDWRITTEN DIGIT RECOGNITION

USING STDP

4.1 Introduction

In this section, an unsupervised learning approach suggested for the recognition of

handwritten digits of the MNIST dataset. The neuron model is leaky integrate and

fire model with conductance-based synaptic representation. An online spiking time-

dependent plasticity (STDP) rule applied for modification of the weighted connec-

tions. The proposed method incorporates some of the significant properties of the

biological neuron, such as lateral inhibition and homeostasis. BRIAN2 and python

programming language used to simulate the spiking neural network [18].
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4.2 Method

4.2.1 Neuron and Synapse Model

The model used to describe the dynamic of the network is the simple leaky integrate

and fire (LIF) model. The differential equation that defines the dynamic behavior of

the LIF neuron expressed as:

dV

dt
=

[(Vrest − V ) + I]

τ
(4.1)

Where τ is the leakage time constant, V is the membrane potentials, and Vrest is the

membrane resting potential and I is the input current.

We can represent the input current as I = Ie + Ii, in which Ie and Ii are respectively

excitatory and inhibitory input currents.

To define the synaptic change equation, a conductance-based model presented in

which the conductance of the synapse increases by synaptic weight w whenever a

presynaptic spike arrives at the synapse and will decline exponentially in other sit-

uations. The dynamic of the conductance for excitatory and inhibitory synapses

presented as (Eqn.4.2) and (Eqn.4.3).

τge
dge
dt

= −ge (4.2)

τgi
dgi
dt

= −gi (4.3)

In which ge and gi are respectively conductance of the excitatory and inhibitory

synapses. τge and τgi are time constant of the postsynaptic potentials.
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4.2.2 Network Architecture

Similar to the architecture proposed in [40], the network comprised of two layers that

connected in a feedforward fashion. The input layer constituted of 784 neurons, equal

to the size of the input image, which is 28 × 28. The neurons in the output layer

are connected by inhibitory synapses, which allow the first firing neuron to perform

lateral inhibition and prevent other neurons in the output layer to generate spike (See

Figure 4.1).

Figure 4.1: Two-layer SNN based on the architecture proposed in [40].
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During the inhibition time tinhibit, the membrane potential of the non-firing neurons

will reset to their resting value Vrest. On the other hand, the neuron enters a refractory

period whenever it generates an action potential. During the refractory period tref,

the neuron is incapable of producing new spikes. Adopting an equivalent value of the

refractory period as inhibition time, we can provide a situation in which all neurons

in the output layer have an equal chance to compete for a new pattern.

4.2.3 Learning Rule

A general form of STDP describes the synaptic weight change equation as (Eqn. 4.4)

∆w =
∑
tpre

∑
tpost

W (tpost − tpre) (4.4)

Here W is a function of the difference in the spike times of the pre and postsynaptic

neurons. To determine the synaptic weight change, we need to calculate the sum

of W for all pre and postsynaptic spike times. A common form of the function W

represented as (Eqn. 4.5):

W (∆t) =

Apree
−∆t/τpre ∆t > 0

Aposte
∆t/τpost ∆t < 0

(4.5)

Figure 4.2 represents the schematic of the STDP function regarding the timing of pre

and postsynaptic spike. The right side of the figure belongs to the time when the

presynaptic spike occurs before the postsynaptic one and is analogous to long term

potentiation (LTP). The reversed timing of the pre and postsynaptic neuron denoted
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on the left side of the diagram, that lead to long term depression(LTD).

Figure 4.2: Schematic of the STDP based on equation (Eqn. 4.5) and (Eqn. 4.4).

However, using this equation does not seem to be computationally efficient since we

need to sum it over each pair of spikes. On the other hand, for calculating the sum,

the neuron needs to remember all its previous spike time.

Introducing two new variables, we can resolve the issue and get the same effect of

(Eqn.4.4).

We represent two new variables apre and apost, which stand for traces of pre- and

post-synaptic activity. Theses variables described by the differential equations in

(Eqn.4.6)
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τpre
d

dt
apre = −apre

τpost
d

dt
apost = −apost

(4.6)

When a presynaptic spike happens, the weight modification rule expressed as

apre → apre + Apre

w → w + apost

(4.7)

And whenever a postsynaptic spike occures we have:

apost → apost + Apost

w → w + apre

(4.8)

Figure 4.3: STDP weight change based on pre ans postsynaptic spike timing [43].
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Figure 4.3 demonstrates the STDP rule for weight change based on the timing of pre

and postsynaptic spike using the spike trace xj.

Employing pre and postsynaptic variables, we have the formulation that only depends

on differential equations and spike events.

To acknowledge that this formulation is equivalent to (Eqn.4.4), we need to check

that the equations sum linearly and consider two different cases based on the timing

of the pre and postsynaptic spikes. Drawing the diagram of equations in (Eqn.4.7)

and (Eqn.4.8), we observe the exact curve as Figure 4.2.

From a biological perspective, a boundary condition of wmin < wj < wmax for synaptic

weights should retain to keep the network in a stable situation.

To control the growth of the synaptic change and prevents them from becoming too

large or negative, we can consider an online weight-dependent STDP rule for weight

modification in which whenever a postsynaptic spike occurs we have:

∆w = ηpost(apre − atar)(wmax − w)µ (4.9)

Where ηpost is the learning rate of the postsynaptic spike, atar is the target value of

the presynaptic trace whenever a postsynaptic spike happens, and µ is the parameter

that determines the weight dependence.

And the weight change for a presynaptic spike is:

∆w = −ηpreapostw
µ (4.10)

Where ηpre is the learning rate for a presynaptic spike.

Since the firing rate of the postsynaptic neuron is quite low, we can limit the time
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for weight modification to the moment when a postsynaptic neuron generates a spike.

Applying this approach, we can reduce the computational cost to a great extent [13].

There are other types of STDP, like triplet rule [38] and symmetric rule, which are

computationally more expensive for software simulation. Using a triplet STDP rule,

we need to calculate the weight change of every single postsynaptic neuron for every

presynaptic event.

4.2.4 Adaptive Threshold

One of the problems affiliated by selecting a fixed value for threshold appears when

neurons with higher firing rates dominate the response to input patterns and prevent

other neurons from participating in the competition. To exploit the full advantages of

competitive learning, we have to provide the situation in which all the neurons have

an equal chance to win the race for a new pattern. Having the same firing rate among

neurons, we can encourage the competition among neurons and hence improve the

performance of the network. An adaptive threshold value has been proposed in [47]

to satisfy the same firing rate condition among neurons.

Applying the new adaptive method, we can describe the new threshold as Vth + θ, in

which the value of θ increases (by a predefined value) whenever the neuron generates

a spike; otherwise, it will decay exponentially. We can describe the dynamic of θ as:

τθ
dθ

dt
= −θ (4.11)

Where τθ is the time constant, which determines the steepness of the decay. The

instant increase of the membrane potential causes the firing neuron to need more
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input to produce a spike in the short term.

In the case when the firing rate of the excitatory neuron is less than the expected

value ( for instance, less than 5 spikes in 350 ms), we can increase the intensity of the

input pattern until the issue resolved.

4.2.5 Training

The images presented to the network for training are from the MNIST dataset [29],

which comprised of 60000 grayscale images of handwritten digit, each of the size

28× 28 pixels. The intensity of each pixel in the image denote by a number between

0 to 255. To provide an acceptable input pattern for the network, we employ the

Poissonson-distributed spike train in which the firing frequency of the input neuron

is proportional to the intensity of the corresponding pixel in the image (see Figure

4.4).

Figure 4.4: Encoding the input image to Poisson-distributed spike train.

For training the network, we present each input pattern for a duration of 350 ms

and then reset the membrane potential of all neurons to their resting value before

introducing the new input. We repeat this process three times for the whole 60000
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MNIST training set and allow the output neurons to fully adapt their synaptic weights

to the input pattern of the training set. After training, we label each of the neurons

in the output layer with the digit for which it fires the most spike. To assess the

performance of the system, we use another 10000 images of the test set, which we did

not present to the network during the training process. During the test phase, we

classify new input examples by taking the majority vote of the labels for the output

neurons, which fire for a test data sample. Concerning the testing phase, we should

use the fixed value of the synaptic weight (by putting the learning rate of the STDP

equation equal to zero) and the threshold at the end of the training phase to classify

the input images of the test set.

4.3 Results

We evaluated the performance of the network with two different numbers of output

neurons. Using 400 neurons in the output layer, we obtained an accuracy of 91.35%.

To enhance the performance of the system, we expanded the number of output neurons

to 625 and obtained a test accuracy of the 92.7%. However, this improvement in

performance comes at the price of computational cost as we increase the number of

updatable parameters from 313600 to 490000.

Figure 4.5 show the raster diagram of the network with 400 output neurons. It is

clear, over time, fewer neurons generate spikes in response to the input pattern, and

they become selective to the specific pattern learned during training.
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Figure 4.5: Raster diagram of SNN network with 400 output neurons.

Figure 4.6 illustrates the normalized firing rates of the output neurons in response to

the input pattern after training on 40,000 images of the training set. As can be seen

from the figure, most of the neurons are selective to one specific pattern they learned

during the training process and generate fewer spike for other input patterns.
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Figure 4.6: Selectivity of the neuron.

Rearranging the weight of the connections to each of the neurons in the output layer,

we can construct the 2D receptive field of the network. Figures 4.7 and 4.8 show the

receptive field of the respectively 625 and 400 output neurons.
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Figure 4.7: 2D receptive field of the network with 625 output neuron.

An essential factor for enhancing the performance of the system is to produce a

differentiated receptive field, which implies that each neuron of the output layer learns

a distinctive pattern of the training set. To achieve this goal, we used lateral inhibition

and an adaptive threshold.
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Figure 4.8: 2D receptive field of the SNN network with 400 output neuron.

Figure 4.9 represents the confusion matrix of the test results in which the high value

on the identity diagonal indicates the correct classification and a high value on any

other places represent the frequency of the incorrect classifying. As can be seen from

the figure incorrect classifying of 4 as 9 presented with different color indicates the

frequency of the faulty prediction. Incorrect classifying of 9 as 4 and 7 as 9 are other

instances of frequent false recognition of the system.
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Figure 4.9: Confusion matrix of the testing results.

And finally, the table 4.1 is represents the list of parameters used to simulate the

network.
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Parameters Default Value Unit

Vrest (excitatory) 0 mV

Vrest (inhibitory) 0 mV

Vreset (excitatory) 0 mV

Vreset (inhibitory) 0 mV

Vth 0.6 mV

tref 10 ms

τ 100 ms

τpre 25 ms

µ 1 -

ηpre 1× 10−4 -

ηpost 1× 10−2 -

wmax 1 -

wmin 1× 10−4 -

atar 1 -

Table 4.1: Parameters for simulation of the SNN.

4.4 Conclusion

The architecture of the network suggested here inspired by the SNN presented in

[39]. The main difference between their system and the proposed work here is in the

model of synapse and learning rule, which applied to adjust the wights. We use an

exponential conductance-based (biologically plausible) synapse model with an online

mode of power-law STDP to update synaptic weight, however, the network in [39],

adopted a current-based synaptic model and simplified rectangular shape of STDP
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for the weights adjusting. A different architecture for unsupervised digit recogni-

tion presented in [13] incorporates a layer of inhibitory neurons in the output layer to

perform lateral inhibition. Although it is biologically acceptable to use inhibitory con-

ductance, it takes a lot of effort to fine-tune the value of the refractory and inhibitory

time constant to obtain the optimal result. The network here uses a simple but more

efficient process for inhibition in which the winner neuron inhibits all the other neu-

rons for a period tinhibit and reset their membrane potential to their resting value.

Applying this method, we can choose tref such that all the neurons have the same

chance of firing after the refractory period and consequently improve the competition

among neurons. The performance of the proposed network with 400 output neurons

is comparable to the performance of a supervised fully connected neural network with

the same number of neurons in the hidden unit by the test accuracy of 92.51%. A

superior ANN presented in [9] obtains the accuracy of 99.7 on the MNIST dataset,

though the network composed of over 12 million updatable parameters, which looks

massive in comparison with 490000 parameters of our SNN with 625 output neurons.

Table 4.2 illustrates a comparison between the performance of different methods on

the MNIST dataset having the same number of neurons.

Method Learning

Method

Biological

Plausibility

#Neurons Accuracy

Dihel & Cook [13] Unsupervised 3 400 90.54%

Querlioz & Bichler [39] Unsupervised 7 400 93.75%

Fully-Connected ANN Supervised 7 400 92.51%

Proposed Method Here

(400 Output Neurons)

Unsupervised 3 400 91.35%

Table 4.2: Performance of different methods on the MNIST dataset.
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As can be seen from the table 4.2, the network suggested here outperform the SNN

proposed in [13] and obtained an accuracy near to a conventional fully-connected

neural network comprised of 400 neurons in the hidden layer with the difference

of 1.16%. However, we should take it to the consideration that the fully-connected

network uses a supervised learning method for updating the weighted connection. The

procedure implies that after each forward propagation, we should present the correct

label of the input image to the network to adjust its wights. The method is similar to

providing a feedback signal after each presentation of the input image. The learning

method for the other three networks is unsupervised learning, which indicates that

we should not present any additional information about the input to the system. The

highest accuracy belongs to the network presented in [39], with a recognition rate of

93.75%. The main reason for the difference in the performance of the proposed method

here and the SNN in [39] can address under the model of synaptic connection and

learning rule for weight modification. It would be easier to fine-tune the parameters

like tinh and tref to obtain an optimal result using a current-based synaptic model by

properties of linear summation instead of the exponential conductance-based model

deployed here. However, considering a current-based synapse, we should compromise

the biological plausibility of the synaptic weight change in the network.
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CONCLUSION

This thesis incorporates two different implementations of spiking neural networks for

image classification of the handwritten digit of the MNIST dataset.

The first implementation is a computationally efficient SNN that can successfully

classify differernt samples of the MNIST dataset. The network consists of a simpli-

fied spike response model similar to [22]. However, the SNN presented here employs

a different form of STDP and does not perform any preprocessing of data to fa-

cilitate the learning process. To encourage competitive learning among neurons an

adaptive threshold applied to guarantee the equal chance of winning the competition

among neurons. The program for simulation of the network has written in python

programming language.

The second SNN implements an unsupervised procedure for recognition of black and

white handwritten digit of the MNIST dataset. The model incorporates some of the

properties of the networks proposed in [39] and [13]. Here a leaky integrate and fire

(LIF) neuron with conductance-based synaptic model used to describe the dynamic

of the network. An online form of STDP with weight dependence rule used to modify

87



Chapter 5 CONCLUSION

the synaptic weights. The network trained over 60,000 images of the MNIST dataset.

After the training process, the performance of the system evaluated over 10,000 unseen

pictures of the test set and obtained an accuracy of 92.7% using 625 neurons in the

output layer. BRAIN2 used for simulation, and supplementary programs have written

in the python programming language.

5.1 Future Works

A problem affiliated with the simulation of a big network in BRIAN is the slow

training process, which requires several hours for one pass of the MNIST training

set.(in our case 9 hours using intel core-i7 4770 CPU). One potential improvement is

to reduce the number of time steps used per iteration of the training and test phases.

To attain this goal, we should adjust the parameter of the equations which govern

the neurons in the network to decrease the response time of the neuron to input data.

The actual ratio of 1 to 4 between inhibitory and excitatory neurons observed in

mammalian neocortex, can offer essential information about the lateral inhibition of

excitatory neurons [13]. A proper architecture can investigate the impact of this ratio

on the overall performance of the system.

Computational complexity of the triplet rule of STDP forced us to consider other

types of synaptic plasticity. However, evidence suggests the superior performance of

the triplet law over different sorts of learning rules. Possessing powerful hardware, it

makes more sense to use triplet rule for mimicking a biologically plausible learning

procedure.

To take full advantage of spiking neural networks, a parallel computing approach re-
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quired to speed up the computation and transmission of spikes between neurons. One

promising field to attain this goal can be found within neuromorphic hardwares. A

neuromorphic processor that scales to 8 million neurons introduced in [11], which is

10,000 times more efficient than conventional processor in terms of power consump-

tion.
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Bataller-Mompeán, and Jose V Francés-Vı́llora. Simplified spiking neural net-

work architecture and stdp learning algorithm applied to image classification.

EURASIP Journal on Image and Video Processing, 2015(1):4, 2015.

[23] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on

neural networks, 14(6):1569–1572, 2003.

[24] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE

transactions on neural networks, 15(5):1063–1070, 2004.

[25] Nikola K Kasabov. Time-space, spiking neural networks and brain-inspired arti-

ficial intelligence. Springer, 2019.

[26] Werner M Kistler and J Leo van Hemmen. Modeling synaptic plasticity in

conjunction with the timing of pre-and postsynaptic action potentials. Neural

Computation, 12(2):385–405, 2000.

[27] Jerzy Konorski. Conditioned reflexes and neuron organization. 1948.

92



[28] Peter E Latham, BJ Richmond, PG Nelson, and S Nirenberg. Intrinsic dynamics

in neuronal networks. i. theory. Journal of neurophysiology, 83(2):808–827, 2000.

[29] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.

2010.

[30] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking

neural networks using backpropagation. Frontiers in neuroscience, 10:508, 2016.

[31] Warren S McCulloch. Walter pitts (1943).“a logical calculus of the ideas imma-

nent in nervous activity”. Bulletin of mathematical biophysics, 5(4):115–133.

[32] Sam McKennoch, Dingding Liu, and Linda G Bushnell. Fast modifications of

the spikeprop algorithm. In The 2006 IEEE International Joint Conference on

Neural Network Proceedings, pages 3970–3977. IEEE, 2006.
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