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Abstract

Physical Unclonable Function(PUF) is lightweight hardware that provides afford-

able security for electronic devices and systems which can eliminate the use of

the conventional cryptographic system which uses large area and storage. Among

the several models, Bi-stable Ring PUF(BR-PUF) is considered as a secure and

efficient PUF model since it has no mathematical model still found. In this thesis,

we proposed a modified design called a hybrid model of BR-PUF and a Chaotic

network to improve the BR-PUF resilience against machine learning attacks. We

experimented with the current modification XOR technique to analyze the unique-

ness, reliability and resource consumption. The proposed PUF was implemented

on Xilinx Artix 7 FPGA and the PUF metrics were captured and compared with

the results of XOR-ed based PUF integration techniques. The lightweight PUF

model was achieved with 16% resource reduction when compared to XOR-ed BR

PUF with no compromise in PUF quality.
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Chapter 1

Introduction

1.1 Motivation

With the rapid development of the Internet of Things (IoT), security has

attracted considerable interest. The embedded system and mobile devices encour-

age interconnection stages, which empowers various applications, for example, the

Internet of Things, Banking and online networking.

This interconnected platform handles secret information that should be ensured

with security. The present best practice for this sort of security application is to

make a secret key by utilizing the cryptographic algorithm and store it in non-

volatile memory, for example, EEPROM/battery-powered RAM. It further uses

cryptographic functions, for example, digital signature and encryption systems to

guarantee the security of the devices[1].

Secret keys are commonly stored in non-volatile memory, which usually is

challenging to store and verify. This approach is expensive both in terms of design

area and power consumption. They may not be relevant to resource-constrained

applications, for example, RFID Tags. These storage units are physically exposed

1
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and open to attack. These attacks include obtrusive, semi intrusive and side-

channel attacks, which can lead to crucial exposure and full security breaks.

Compared with software security, hardware security can increase the expense

and difficulties of attacks. Simultaneously, the high computational requirements

of encryption algorithms requires more utilization of hardware resources. Addi-

tionally, classic encryption algorithms perform complex mathematical operations

with keys. Subsequently, the security of the cryptographic key decides the security

of the entire system[1].

Conventionally, the key is stored in Non-Volatile Memory (NVM), which can be

exposed by non-invasive or invasive attacks. Moreover, a secure cryptographic

algorithm requires a substantial amount of resources and time, which are typically

not accessible in IoT devices. Hardware-based security primitives can give faster

and safer authentication schemes than conventional cryptographic systems.

1.2 Introduction to Hardware Security

The limited hardware resources of IoT nodes prompted the advancement of

Physical Unclonable Function(PUF). A PUF can extract the unique value from

Integrated Circuits (ICs) from process variations that happen during the man-

ufacturing process and evaluate internal mismatches using binary sequences[2].

Regardless of whether the structure of any two chips is the equivalent, there will

be minor contrasts because of manufacturing variations.

A PUF can extract these differences and provide each chip with a unique

identification, the same as a digital fingerprint for the chip. As this IC fingerprint

is acquired from the random variations in the circuit manufacturing process, even

the chip manufacturer cannot duplicate a PUF within a series of manufactured

chips.
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Moreover, the response of a PUF is electrical and naturally generated and

vanishes when the power is turned off. A PUF can be utilized for online key gen-

eration or authentication. For instance, the key is created from the PUF module

only when needed. This is more secure than storing the key in NVM as utilized

in the conventional encryption schemes[2]. The use of smart cards, RFID tags,

credit and debit cards are a common application of hardware security. However,

they are also susceptible to many attacks, such as side-channel attacks, to trace

the key stored in digital forms[3].

The described situation was one motivation that led to the development of

Physical Unclonable Function.

1.3 Physically Unclonable Function

PUF technology is considered to be particularly appropriate for IoT security

due to its unique features.

The main advantages of the PUF are that it is low in cost, and offers fast

authentication. PUF can provide integrated and lightweight security primitives

for secure communication in IoT[4]. Although the cost of PUF structures should

be as low as possible for IoT devices, many PUF proposals in the literature suffer

from consuming significant hardware resources. A Physical Unclonable Function

or a PUF is a die–specific random function that is unique for every instance of the

die.

PUFs derive their randomness from the uncontrolled random variations in the

IC manufacturing process to create practically unclonable functions[5]. PUFs are

recently produced by many multinational companies and are widely being used

for their security applications because of their randomness nature. Some of the

security applications are IP Piracy, Device Authentication, injecting a Hardware
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Trojan (HT) in the IC or an IP or an FPGA such that they can be made to use

at evaluation time and then we can disrupt the functionality after the specified

time[4].

1.4 Classification of PUF

The two most important subtypes of PUFs, which should be distinguished

explicitly in any sound treatment of the topic, are called ”Strong PUFs” and

”Weak PUFs” [1]. They are discussed in this and the upcoming section.

1.4.1 Strong PUFs

Strong PUFs derive a more complex challenge-response behavior from the

physical disorder present in the PUF. Typically, many physical components are

involved in the generation of a response, and there is a very large number of

possible challenges that can be applied to the PUF. Strong PUFs are usually

employed with a publicly available CRP interface,i.e., anyone holding the PUF

or the PUF embedding hardware can observe challenges and read out responses.

The lack of access limit mechanisms on strong PUFs is, therefore, a key difference

from weak PUFs[1]. In recent years, strong PUFs have turned out to be a very

versatile cryptographic and safety primitive: First of all, by using a fixed set of

challenges, they may be employed for inner key derivation, just like weak PUFs.

They can also implement several advanced cryptographic protocols, ranging from

identification to key exchange to oblivious transfer. They can be subsumed as

follows:
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1.4.1.1 Many CRPs

Strong PUFs have a very large number of possible challenges, ideally (but not nec-

essarily) exponentially many challenges in some system parameters. This prevents

a full read-out of all CRPs, even if an adversary holds physical possession of the

PUF for a considerable time.

1.4.1.2 Unpredictability

Even if an adversary knows a large subset of CRPs, he cannot extrapolate or

predict the other, yet unknown CRPs.

1.4.1.3 Unprotected Challenge-Response Interface

In all but very few applications of Strong PUFs, it is assumed that it has a free,

publicly accessible challenge-response interface (or a freely accessible challenge-

response mechanism, respectively). Anyone holding physical possession of the

PUF or the PUF-carrying hardware can apply arbitrary challenges to the Strong

PUF and read out the corresponding responses.

1.4.2 Weak PUFs

Weak PUFs essentially are a new form of storing secret keys in vulnerable

hardware, offering an alternative to ROM, Flash or other non-volatile memories

(NVMs)[1]. As all PUFs, Weak PUFs exhibit some internal, unclonable physical

disorder, and possess some form of challenge-response mechanism that exploits

this disorder.
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1.4.2.1 Few Challenge

A Weak PUF has got very few, fixed challenges, commonly only one challenge

per PUF instance.

1.4.2.2 Access Restricted Responses

In all but very few applications, the challenge-response interface (or the

challenge-response mechanism, respectively) of a Weak PUF needs to be access-

restricted. It is assumed that adversaries cannot access to the Weak PUF’s re-

sponses, even if they hold physical possession of the PUF-carrying hardware.

1.5 Applications of Physical Unclonable Func-

tion

PUF technology is considered to be particularly appropriate for IoT security

due to its unique features, which are unclonable, low in cost and offer fast authen-

tication. The important feature of the PUF exploits from the circuit’s internal

delay and manufacturing process variations.

1.5.1 Authentication

This is one of the main applications for the PUF, which is widely used with

less hardware overhead by a challenge-response protocol. A secure database that

stores all the set of CRPs from each PUF pair to use[6]. When we need to check

the authenticity of the circuit, the set of CRPs are queried randomly from the

database and are applied to the PUF circuit. The response which is obtained

is stored in the database and checked whether it matches the response from the
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database for the IC or FPGA. If it matches, then we can authenticate the FPGA

or the IC.

The important feature of the PUF is we can use different CRPs, and they all

are random because of the manufacturing process of the IC or the FPGA since

all the circuits are not doped in the same concentration to behave similarly and

give the same time delay to produce the output[6]. We use this property of the

PUF to build authentication for the device. It is needed to have a strong PUF for

authentication, as we can have a lot of CRPs for authentication.

1.5.2 Secret key and Random Number Generation

Modern Cryptographic Primitives need the fundamentals for generating the

Random Number Generator(RNG) and secret key for the message authentication

and secret key generation[6]. The utilization of PUF response as secret keys was

proposed, and it should be guaranteed that each bit of the response is reliable.

The PUFs cannot completely produce the exact response due to noise and environ-

mental conditions, so we need some error correction processes. During this process,

an error syndrome is evaluated when the challenge is applied, and this syndrome

is utilized when it is being utilized for reconstruction of the PUF response, which

may have a few mistakes because of noise and environmental conditions. Subse-

quent to computing and evaluating the PUF response, we hash the response, so

we get the secret key that can be utilized officially for authentication. The most

significant part is we have to generate random numbers based on this process with

a low area overhead.
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1.6 Chaos Based Cryptography

Chaos is one of the potential practices related to the development of a nonlin-

ear physical framework and happens for explicit estimations of system parameters.

The disclosure of this evidently irregular conduct following out of deterministic sys-

tem ended up being very progressive, prompting numerous issues interconnecting

security hypothesis, new geometrical highlights, and new marks portraying dy-

namical characteristics. Given an initial condition of a deterministic system, it is

notable that the future conditions of the system can be anticipated. In any case,

for the confusing system, long term expectation is inconceivable. For values of

parameters, two directions, which are at the first close, wander exponentially in

a short timeframe. This is the main reason for the chaos-based cryptography be-

ing used in security applications such as encryption and authentication. We used

this chaos principle in the PUF technology to eliminate the drawbacks of existing

system.

1.7 Thesis objective

In this research, we proposed, designed and evaluated a new hybrid PUF

model which is more lightweight compared to existing XOR-ed Bistable Ring PUF.

The proposed PUF model was tested on Xilinx Artix 7 FPGA. The experimental

study was conducted and evaluation metrics such as uniqueness, reliability and

resource utilization were computed for existing XOR based Bi-stable PUF model.

After that the hybrid PUF was proposed with one dimensional chaotic network

and experimental evaluation was conducted. Finally, both the experimental results

for existing and proposed PUF model were compared. A good lightweight PUF

model was achieved for the FPGA security applications.
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1.8 Thesis Outline

In this thesis, We begin with introduction to PUF technology followed by

literature review in chapter II. Chapter III explores the shortcoming of an ex-

isting XOR-ed BR-PUF with experimental study and suggests ways to improve.

Chapter IV presents the design and implementation of Hybrid BR-PUF using

chaotic networks. Chapter V explains the experimental results and analysis of the

proposed PUF model on FPGA and concludes the thesis with a summary and

recommendations for future work.



Chapter 2

Literature Review

2.1 Physical Unclonable Functions

Physical Unclonable Functions (PUF) are primitives that generate precise

chip-specific signatures dynamically by the use of the process variations inside

the silicon chip due to fabrication variation [1]. PUFs are classified into two

types, namely strong and weak PUFs. The strong PUFs can produce multiple

random responses by accepting challenges as input and mapping every challenge to

a corresponding response such that we will have a report of the specific challenge-

response pair and using those for authentication. On the alternative hand, Weak

PUFs generate only a limited number of responses.

A PUF makes use of random differences inside the IC manufacturing process

to provide precise identity tags for chips. It can take in a challenge and then

return a response as its output signal. The values of the undertaking-response

pairs (CRPs) are unique for each chip.

CRPs are used for authentication applications primarily based on PUFs [7].

The relationship between challenge and response is decided through the circuit

itself and must be specific and preferably unpredictable. Therefore, a PUF is like

10
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a random process P with an input C that produces an output R, as defined in

Equation 2.1. The traits of the random method are determined while the PUF is

established, and the characteristics of every PUF are different.

R = PUF (C) (2.1)

where PUF is the internal characteristic of IC, C is the input challenge and R is

the output response

2.2 PUF Metrics

To compare the overall performance of a PUF circuit, several metrics had

been proposed,which includes uniqueness and reliability. These two metrics are

the most usually used to evaluate PUFs and are also used on this work [8]. Fur-

thermore, we endorse resource utilization metric to examine the resource usage of

a PUF applied on FPGA.

2.2.1 Uniqueness

Uniqueness measures the difference between the responses of a PUF, imple-

mented on different chips, under the same challenge. The intra-Hamming distance,

i.e., uniqueness is given as follows:

U =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

(HD(Pi(C), Pj(C))

n
× 100% (2.2)

where k is the total number of chips,Pi(C) is the response of the ith chip and

Pj(C) is the response of the jth chip under the same challenge C.
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The ideal value of uniqueness should be close to 50%, indicating the maximum

difference in the responses of two PUFs. The Uniqueness denotes the randomness

of the responses, and therefore, it is also related to the security of a PUF.

2.2.2 Reliability

Reliability is an important metric of PUF performance, which is characterized

by comparing the Hamming distances of output responses generated by a same

challenge, however, under different environmental conditions such as aging, tem-

perature variations[9]. Ideally, the response of a PUF ought to remain identical

with the same challenge. However, as PUFs extract small differences in chips,

the output of a PUF is unavoidably sensitive to a change inside the running en-

vironment. Reliability displays the PUF’s balance and its ideal value should be

near to 100%, indicating that the PUF response value is stable and no bit flips

occur inside the response sequence below different test conditions. The equation

for reliability is as follows:

R =

(
1− 1

m

m∑
t=1

HD(P (Ci, t0), P (Ci, t))

n

)
× 100% (2.3)

where n is the sequence length of the response and m is the number of tests.

The P (Ci, t) denotes the tth sample of P (Ci) among m repeated responses. For a

PUF device, the reliability is established as 1 minus the average value of the inter-

Hamming distance of the response samples under different operating conditions.

2.3 Properties of PUF

The PUFs employ two properties i.e intra-chip variations and inter-chip vari-

ations.
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2.3.1 Intra-Chip Variation

It is defined by the hamming distance between the responses of a PUF for the

same given challenge. Each time a challenge is given to a PUF, due to environ-

mental parameters some bits of its final response can be different from those that

are expected by the verifier. To achieve a high level of robustness we want the

intra-chip variation to be as less as possible, so the verifier can accept the slightly

different response as a valid answer

2.3.2 Inter-Chip Variation

It is defined by the hamming distance between the responses of different PUFs

for the same given challenge. If the construction process of the PUFs is biased,

the sequence of bits of the final response will not be equally distributed. This

will compromise the security as an adversary could have more chances to predict

the response of the PUF. The best possible inter-chip variation is 50% since this

means that the response bits have equal probability to have logic value “0” or “1”.

2.4 Existing PUF Models

2.4.1 Arbiter PUF

Arbiter PUF was among the first set of Silicon PUF circuits to be proposed

[10]. This PUF circuit leverages the delay variations across chips to generate

unique challenge-response pairs. The Arbiter PUF circuit consists of a set of

delay stages followed by an Arbiter circuit as shown in Figure 2.1. Each delay

stage consists of two multiplexers with the inputs connected. The challenge bits

form the select inputs to the multiplexers that decide the path taken by the top

and bottom signals [10]. To evaluate the response bit for a particular challenge,
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Figure 2.1: Schematic of Arbiter PUF

an input rising edge is propagated through the delay stages. The response bit is

determined to be a 1 or 0 based on the top and bottom signal arrival times. In

this PUF circuit, a D latch is used as the arbiter to determine which signal arrived

first.

The arbiter PUF circuit implementation is a robust construction that supports

an exponential number of challenge-response pairs. For instance, a 64-bit Arbiter

PUF can support 264 CRPs. Another key property of this PUF circuit is that

it relies on relative comparison to generate CRPs. This improves the reliability

of the PUF circuit in the presence of environmental variations significantly. The

exponential number of delay paths available makes this circuit hard to model.

However, the Arbiter PUF is a linear structure in which the cumulative path delay

can be assumed to be a sum of the individual stage delays [10]. By assuming an

additive delay model, a software model can be created through Support Vector

Machines (SVM). SVM uses a set of challenge-response pairs as training samples

to construct the model. This model can be used to predict other challenge-response

pairs with a high degree of accuracy. Prediction rates greater than 90% can be



Chapter 2 Literature Review 15

Figure 2.2: Schematic of Ring Oscillator PUF model with N ring oscillators

achieved through SVM attacks [11].

2.4.2 Ring Oscillator PUF

The manufacturing variability intrinsic to circuit gate delay can also be used

to instantiate a ”Ring Oscillator PUF”[12]. This PUF architecture contains N

identically designed ring oscillators synthesized onto a field-programmable gate

array(FPGA) or an application-specific integrated circuit(ASIC).

Due to the variation in delay of the inverters in the ring oscillator, each will

have a slightly different frequency. The frequencies of two oscillators are measured

and compared to reveal one of the PUF output bits. If there are N oscillators,

there are N(N-1)/2 possible pairings [12]. However, the number of output bits is

limited due to correlations (if ring oscillator A is faster than B, and B is faster than

C, then clearly A is faster than C). For N oscillators, there is a specific ordering

of fastest to slowest. If the oscillators are truly identical and manufacturing 10

variations dominate, then each of these N! orderings is equally likely. Therefore,

there are a maximum of log(N!) bits that can be extracted from the PUF.
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Note that the ring-oscillator PUF is weak since there are a limited number

of ”challenge bits” that can configure the PUF’s operation. Once fabricated,

the ring oscillator’s frequency is set, so the output bits of the PUF will always

remain constant. Because the ring-oscillator PUF measures differences in gate

delay like the arbiter PUF, the ring-oscillator PUF is susceptible to the same set

of environmental variations and noise sources. Therefore, error correction will be

equally important in this application. In this architecture, several oscillator PUF

banks are instantiated, with each oscillator bank comprising 2K ring oscillators

[12]. A K-bit challenge is applied to each bank, to determine which oscillators

correspond to the top delays, and which oscillators correspond to the bottom

delays. The top and bottom rows are summed to produce x and y, respectively.

These values are used to produce a single bit PUF output and associated ”soft-

decision” information corresponding to a PUF challenge. Specifically, the output

bit is the sign of x–y.

2.4.3 Bistable Ring PUF

Bi-stable Ring is a ring involving a even number of inverting gates such gate

configuration will act like uninitialized SRAM cells and will fall into any of these

two states either ”101010...” or ”010101...”[13].

As depicted in Figure 2.3, an N stage BR PUF is made out of n phases, where

each stage has two inverting delay gates (NOR gate for instance). A challenge

vector C = C1,C2, .... ,Cn} chooses the NOR gates utilized in each Bi-stable

ring configurations by giving values to the Multiplexer(MUX) and Demultiplexer

(DEMUX) gates of the stages. Since each NOR gate has unique propagation time

delay due to the manufacturing process variation and each input challenge bits

makes a unique Bi-stable ring and altogether 2N unique setups can be made. A

typical ”RESET” signal is added to each phase to set up a known ”0” state before

letting the ring settle to deliver its response. When ”RESET” is set low or pulled
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Figure 2.3: Schematic of a Bi-stable Ring PUF with n stage

off and the ring begins to oscillate through all the selected NOR gate [13]. When

the ring achieved a stable state, the output of the selected NOR will be either

”101...” or ”010...”.

The decision among the two stable conditions of the ring relies upon manufac-

turing and process variations of the NOR gates utilized in the ring configuration

[13]. Any interconnection nodes between the two phases can be utilized as a re-

sponse port.

2.4.4 SRAM PUF

Both the arbiter PUF and the ring-oscillator PUF ultimately depend on vari-

ations in the propagation delay of gates. However, this is not the only physical

property on which a PUF can be built [14]. A popular weak PUF structure ex-

ploits the positive feedback loop in a SRAM or SRAM like structure shown in

Figure 2.4. A SRAM cell has two stable states (used to store a 1 or a 0), and

positive feedback to force the cell into one of these two states and, once it is there,

prevent the cell from transitioning out of this state accidentally.
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Figure 2.4: Schematic of Static-RAM (SRAM) PUF

A write operation forces the SRAM cell to transition toward one of the two

states. However, if the device powers up and no write operation has occurred, the

SRAM cell exists in a metastable state where theoretically, the feedback pushing

the cell toward the ‘1’ state equals the feedback pushing the cell toward the ’0’

state, thereby keeping the cell in this metastable state indefinitely [14]. In actual

implementations, however, one feedback loop is always slightly stronger than the

other due to small transistor threshold mismatches resulting from process varia-

tion. Natural thermal and shot noise trigger the positive feedback loop, and the

cell relaxes into either the ‘1’ or ‘0’ state depending on this process variation. Note

that since the final state depends on the difference between two feedback loops,

the measurement is differential.

Therefore, common mode noise such as die temperature, power supply fluc-

tuations, and common mode process variations should not strongly impact the

transition. Like other strong and weak PUF implementations, the SRAM PUF is

also sensitive to noise. If the two feedback loops of the SRAM cell are sufficiently

close, then random noise or other small environmental fluctuations can result in

an output bit flip [14]. Therefore, error correction of this output will be neces-

sary. Like the ring-oscillator PUF, the architecture of the SRAM PUF can be

used to make intelligent decisions regarding error coding. The key recognition is



Chapter 2 Literature Review 19

that the relative strengths of the two feedback loops in a SRAM cell are relatively

static. A cell strongly biased toward ‘1’ or ‘0’ will remain strongly biased toward

‘1’ or ‘0’ respectively. Therefore, by using repeated measurements, one can assess

the stability of a SRAM PUF output bit and selectively use the most stable bits

as the PUF output. This process is used in conjunction with traditional coding

techniques to mitigate the noise inherent to SRAM PUFs [1].

2.5 Attacks on Physical Unclonable Functions

Recently, it has been exhibited that Machine Learning based modeling attacks

utilizing logistic regression techniques can break all current PUF developments[11].

Utilizing a polynomial measure of resources and CRPs, it is conceivable to break

the security of these PUF circuits. The authors present an attack model for

various order of PUF circuits to be specific strong PUFs, controlled PUFs and

weak PUFs in [11],[15]. In all machine learning, it is basic to approach a lot

of challenge-response pairs that structure the training samples. In the event of

strong PUFs, access to CRPs is unhindered and an attacker can acquire CRPs

either through listening stealthily or by direct access of the PUF circuit.

Most delay-based PUFs, for example, Arbiter PUFs, Feedforward Arbiter

PUFs, Bi-stable Ring PUFs, and Lightweight Secure PUFs and in any event, Ring

oscillator PUFs are viewed as strong PUFs. Controlled PUFs utilize a strong PUF

and obfuscate the challenge inputs and responses produced through one way hash

functions. Right now, attackers can’t acquire the CRPs legitimately [15]. Anyway,

it is conceivable to probe the challenge and response of the strong PUF by figuring

out techniques to acquire computerized CRP data. This procedure is over the top

expensive and lumbering. Given that CRPs are acquired right now, the Controlled

PUF convention can be broken if the fundamental solid PUF can be effectively

demonstrated. Weak PUFs regularly offer barely any CRPs that are not let out to
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the outside world. These are vulnerable to figuring out and side-channel attacks.

Some weak PUFs are built by incorporating solid PUFs and this usage again ends

up being helpless to machine learning attacks.

2.6 Modification and Performance Improvements

of PUFs

To eliminate this machine learning vulnerability and resist the PUF against

modeling attacks, some modified designs have proposed by researchers. These

include XOR-based PUF fusion design and hybrid PUF integration techniques.

These ideas will combine the security behavior of two or more PUFs and act as a

resilient model for the authentication applications as proposed in [16],[17] and [18].

In this section, we are going to concentrate on these two types of PUF modification

techniques.

2.6.1 XOR-Based PUF Integration

The design of XOR PUFs is based on placing multiple linear PUFs in parallel.

As illustrated in Figure 2.5, the XOR PUF uses n PUFs as components, where

Figure 2.5: Block Diagram of XOR based PUF fusion model
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all of the PUFs use the same challenge C as input challenge. The responses from

all individual PUFs are XORed together to produce the final response for the

corresponding input challenge. Thus, the response of an n-stage PUF as presented

in Figure 2.5 can be expressed as:

Response = ⊕j=1...nRj

The employment of XOR operation in this design is in fact important. It

increases the non-linearity of the relationship between the response r and the

transformed challenges. Although adding PUFs increase the chip area and silicon

implementation cost of the PUFs, it considerably increases the dimensionality of

the parameter space needed to be machine-learned by attackers, leading to higher

resistance against machine learning attacks.

2.6.2 Hybrid PUF Integration

Due to increased complexity of XOR-Based PUFs, it is harder for machine

learning approaches to learn the patterns of these type of PUFS. Therefore, it

has been suggested to combine two (or more) PUFs each with its own source of

randomness in order to improve the uniqueness while maintaining or improving

the FoM of the combined system.

Integration of two different PUFs is a challenging task as the designer needs

to get a outline of how the control signals will be combined. In this case, each

PUF has a unique process control which requires control signal to be in time to

get a actual randomness.

There are many models proposed such as hybrid design of Ring oscillator

and Anderson PUF [17], Arbiter and Butterfly PUF [16], and Ring Oscillator and

Arbiter PUFs [18].
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Figure 2.6: Block diagram of Hybrid PUF integration technique with PUF A
and B

The idea of integration is to reduce the disadvantages associated with a par-

ticular model of PUF, when it is used in fusion with another strong PUF. However,

the main drawback is that this concept of hybrid PUF fusion utilizes large amount

of resources only for drafting the control signal integration as mentioned in the

Figure 2.6.



Chapter 3

Experimental Study of

XOR-Based BR-PUF Model

In this chapter, the implementation results of the XOR-based PUF is presented.

Experimental results of the design, as well as its evaluation metrics, are provided.

3.1 Design Concepts

Since the Bistable Ring PUF model does not have any valid mathematical

model. Therefore, it is considered a more secure and reliable strong PUF. For this

reason, we conducted an experimental study of XOR-based Bi-stable Ring PUF

fusion to understand the behaviour of this PUF in terms of its evaluation metrics

such as Uniqueness, Reliability, and Resource utilization.

The basic principle of XOR-based Bi-stable Ring PUF is as follows: a group

of PUFs each is presented with the same challenge, generates n unique output

responses, These responses then will be XOR-ed together to produce 1-bit final

response. The general building block of an XOR-based PUF is presented in Figure

3.1.

23
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Figure 3.1: Block diagram of XOR-ed Bi-stable Ring PUF

The reason for XOR-based PUFs is that assessing the response of each in-

dividual PUF dependents on the last XOR response is extremely complex and

tedious. This is the reason XOR PUFs are accepted to be more secure than stan-

dard Hybrid PUF models[19].

As shown in [19], the security and stability of an XOR PUF emphatically rely

upon the number of PUFs utilized for the XOR activity. The training time of

a Hybrid PUF model increases exponentially with the number of parallel PUFs,

which is exceptionally alluring from a security angle. In any case, the level of

unstable response likewise increments exponentially, which implies that the higher

security of XOR PUFs includes some significant pitfalls of lower stability.

3.2 Experimental Evaluation

To analyze the working principle of XOR-based Bistable Ring PUF, we started

creating verilog HDL (Hardware Description Language) for each component of

desired PUF model. By using the Xilinx Vivado design suite[20], we synthesized

the Verilog model of the PUF for implementation and evaluation in Xilinx Artix

7 FPGA[21].
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Figure 3.2: RTL schematics of XOR-ed Bi-Stable Ring PUF

We employed two BR-PUFs for this XOR operation, as presented in Figure

3.2. For this experiment, The Look-Up Tables (LUTs) are considered the main

resource of the FPGA device. For our purpose, using only 2 BR-PUF can produce

sufficient results for evaluation of XOR-based BR-PUF. We implemented PUF

components such as MUX, DEMUX and 2 NOR gates in the desired location

using manual place and route feature in Xilinx Vivado.

3.2.1 IP Integration

To provide the control signal for the PUF, we designed a MicroBlaze-based

processing unit to control the PUF’s input challenge and acquire the output re-

sponse. With the help of Vivado’s IP integrator tool, we utilized the Xilinx IPs

such as AXI interconnection bridges, AXI GPIO, Memory units, and Xilinx UART

IP.

The IP integration plays a major role for the PUF evaluation because prac-

tically, we cannot handle the real-time 32-bit input and output acquisition of

Bi-stable Ring PUF manually. Hence it is easier to create a processing unit that

can provide 32 challenge bits and capture all the 32-bit output response as shown

in Figure 3.3.
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Figure 3.3: Interface diagram of the top module of the system designed

Figure 3.4: Block diagram of the Xilinx IP integrator
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Figure 3.5: Floor-plan of the PUF for two locations on FPGA IC

As presented in Figure 3.4, we integrated the above-mentioned IPs to control

the PUF using the AXI GPIO, which can be controlled by the Xilinx SDK[22].

This function helps us to collect the CRPs in text files through the UART serial

port. We used the LabVIEW VISA[23] tool to monitor the CRPs and collect that

in text files.

3.2.2 Manual Place and Route

To study the resource utilization, we needed to separate the actual PUF circuit

and the processing unit we designed. Generally, the Vivado tool will synthesize

the entire circuit model into a whole schematic which will bring the confusion on

studying the actual resource utilized by the PUF. By using the P-block allocation,

we were able to set up the dedicated place for the PUF circuit in the FPGA. This

helps us to obtain the resource utilization for the PUF.



Experimental study of XOR BR-PUF 28

For this experiment, we analyzed the intra-chip Hamming distance of the

response produced by the PUF in two different locations. This allow us to charac-

terize the uniqueness metric. By using the TCL command, the constraint files were

created to place the individual components of the PUF, such as MUX, DEMUX

and NOR gates in desired LUTs.

The Figure 3.5 shows the floor plan of the PUF circuit on two different locations

by creating the P-blocks.

3.3 Experimental Results

As mentioned in the previous section, the quality of PUF can be evaluated

mainly by three metrics such as uniqueness, reliability and resource consumption.

Figure 3.6: Graph representing the Hamming distance between the PUF re-
sponses on two locations

For demonstrating the uniqueness analysis on XOR-based Bi-stable Ring

PUF, we collected Challenge-Response Pairs (CRPs) on two different locations

of the FPGA to evaluate the intra-chip Hamming Distance (HD). The calculated



Experimental study of XOR BR-PUF 29

HD values were used in the Equation 2.1 to find the uniqueness between these two

PUFs.

The graph in Figure 3.6 shows the Hamming distance of the two PUF re-

sponses on two different locations and for the same challenges. By analyzing the

uniqueness as described by Equation 2.2, we can state that the uniqueness between

these two PUFs is 50.1%, which is a very good result.

Figure 3.7: A graph represents Hamming Distance between the PUF responses
reproduced in a PUF

To analyze the reliability metrics of the PUF model, we collected CRPs on a

PUF with a time interval. This will gives an idea of how the PUF can reproduce

the responses over time. We evaluated the two sets of CRPs to find the Hamming

distance, and the graph (Figure 3.7) represents the hamming distance between the

collected responses over the time interval.

This calculated Hamming distance values were used in Equation 2.3 to for-

mulate the reliability of the PUF circuit. This equation gives the value of 96%,

which is also a good result. The total number of CRPs used for this calculation

was 1000 CRP sets.
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As a part of the evaluation, resource utilization for the PUF circuit was recorded

using Xilinx Vivado synthesis tool.

Figure 3.8: Chart representing resource utilization using Xilinx Vivado

As mentioned in Figure 3.8, the XOR based Bistable Ring PUF uses 44%

of total LUTs presented in the Artix 7 FPGA (this value excludes the resource

consumed by MicroBlaze processing unit). This particular model uses 2 Bi-stable

Ring PUF to perform XOR operation.

3.4 Limitation of XOR-ed PUF model

In this section, we elaborate on the limitation of the XOR-ed Bistable Ring

PUF model in the FPGAs.

The primary motivation of the Physically Unclonable Function is to deliver

the security with less resource usage as lightweight circuits [24]. As mentioned in

this section, XOR-based PUF operation involves two or more PUF integration,

which will give rise to the utilization of hardware resources greatly. It further
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increases the cost and time of the implementation, making it less efficient. As

the experimental results shows, the XOR operation will not be suitable for many

resource-constrained applications. So it requires some modification to reduce the

high amount of resource usage.



Chapter 4

Proposed PUF Design

In this chapter, we provide the implementation results for the proposed de-

sign in terms of uniqueness, reliability and resource utilization. First, design and

implementation of proposed design was explained, followed by comparison of the

results of the proposed design and XOR-based PUF model.

4.1 Design Procedure of the Proposed Hybrid

PUF

In this section, we propose the novel hybrid PUF model. This Hybrid PUF

combines randomness of Bistable Ring PUF and chaotic network function in or-

der to make the design more lightweight while keeping the performance metrics

competitive.

This structure is based on the basic Bi-stable Ring PUF, which is combined

with the one-dimensional chaotic mapping function that produces shuffled response

as shown in Figure 4.1.

32
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Figure 4.1: Block diagram of the proposed design

4.2 One-Dimensional Chaotic Mapping

The Chaotic mapping can be defined as a polynomial mapping of degree two,

often cited as an archetypal example of how complex, chaotic behaviour can arise

from very simple non-linear dynamical equations as follows.

xn+1 = r · xn(1− xn) (4.1)

where xn is a number between zero and one that represents the ratio of the existing

population to the maximum possible population and the values of interest for the

parameter r are those in the interval [0,4], the value of r beyond 4 will give rise to

negative population sizes[25] which is not useful for our purpose.

When r is greater than or equal to 3.57, then this function will give rise

to chaotic behaviour in terms of stretching and folding operation on the interval

(0,1)[26]. These stretching and folding values can be used as a chaotic factor for

the design to shuffle the response of the BR PUF.

4.2.1 Simulation of Chaotic Mapping

To study the behaviour of the chaotic mapping function, we created a sys-

tematic model of this network using the LabVIEW software. This model was then
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tested for some random initial values as 0.1, 0.125, 0.15 and 0.1525 and simulation

results are shown in Figures 4.2, 4.3, 4.4 and 4.5.
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Figure 4.2: Chaotic response for initial value 0.1

Figure 4.3: Chaotic response for initial value 0.125
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Figure 4.4: Chaotic response for initial value 0.15

Figure 4.5: Chaotic response for initial value 0.1525
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These graphs explain how the chaotic network behaves in a non-linear way

for given initial values. These output responses from the network can be used for

our purpose.

Hence we used this chaotic function for our method to shuffle the response

further to enhance the security of the Bi-stable Ring PUF.

4.3 Development of the Chaotic Network

We synthesized the popular chaotic network called ”One-dimensional logis-

tic mapping function”[27] into the digital circuit using the Xilinx High-Level

Synthesis[28] tool. This function includes complex floating-point arithmetic which

was synthesis by the Xilinx HLS tools.

4.4 Hardware Implementation of the Proposed

Hybrid PUF

The basic function blocks of the proposed Hybrid PUF are illustrated in

Figure 4.6. This figure explains the integration part of the BR-PUF and chaotic

response generator. Here this chaotic part was used to eliminate the bit repetition,

which occurs in the Bi-stable Ring PUF, and it gives more non-linearity to the

model.

We used the Xilinx HLS tool to design the hardware to implement the one-

dimensional chaotic mapping function. Initially, we modelled this design using the

C++ program and then synthesized the code to Register Transfer Level (RTL)

design using the HLS tool.
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Figure 4.6: Functional block diagram of Proposed Hybrid PUF

We included many optimizing techniques such as HLS Pipeline and Unroll to

get an optimized design. After this process, we then created a custom IP block,

which includes all the functional blocks of chaotic mapping function. As shown in

the Figure 4.7, the RTL interface ports of custom IP are Challenge, Response,

Response V alid and Control Signals such as ap start, ap clock and ap done.

4.4.1 Chaotic Response IP

The IP block for chaotic mapping function was created as shown in the Figure

4.7. This IP can be used for creating 32-bit chaotic response bit for our proposed

design.
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Figure 4.7: Custom IP generated using the Xilinx HLS
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4.4.2 Computing Response from the Chaotic IP

By analyzing the Equation 4.1, we designed a list of computational steps

to compute the response from the IP created using Xilinx HLS as shown in the

Algorithm 1 below.

Algorithm 1: Computation of output response through chaotic mapping

Result: Response[32] = [R0,R1,....,R31];

Input: Challenge[32] = [C0,C1,...,C31];

Challengesum = 0 ; // Initialization

r = 3.57;

X0= 0;

Xn=[X0,X1,....,X31];

for i← 0 to 31 do

challengesum =
∑31

i=0 challenge[i]; ; // Loop 1

end

X0 = challengesum
32

for n← 0 to 31; // Loop 2

do

Xn+1 = r.Xn(1−Xn); ; // Chaotic mapping equation

end

for n← 0 to 31; // Loop 3

do

if Xn < 0.5 then
Rn = 0

else
Rn = 1

end

end

Return Response[32];
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Here, the RTL ports of the IP are Challenge[32] and Response[32]. The HLS

C++ code for performing this operation is given in Appendix 2.

4.4.3 Integration of IPs

As we mentioned in the previous chapter, the acquisition of Challenge and

Response Pairs (CRPs) can be carried easily by developing a processing unit. We

developed a MicroBlaze processing unit similar to the experimental study to ease

that process. The Figure 4.8 shows the schematic of the PUF and MicroBlaze

processor integration.
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4.4.4 Implementation of proposed PUF on FPGA

By using the Xilinx Vivado tool, we synthesized the whole model (shown

in the Figure 4.8) and implemented in the Xilinx Artix 7 FPGA. To measure

the quality of the PUF, we used two different locations of the chip to analyze the

intra-chip Hamming distance. We used P-block allocation feature to fix placement

as mentioned in Chapter 3. We differentiated these two locations as Location A

and Location B, as shown in Figure 4.9. The orange line shown in the Figure 4.9

represents the communication signal between the component blocks.

Figure 4.9: Floor plan of implemented PUF on two different locations

Here the figure represents four P-blocks which include BR-PUF, Chaotic Net-

work, XOR gates, and MicroBlaze System.
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4.5 Implementation Results

In this section, we analysed the quality of proposed PUF in terms of Unique-

ness, Reliability and Resource utilization.

4.5.1 Uniqueness Analysis

For demonstrating the uniqueness analysis for the proposed hybrid PUF, we

collected 1000 Challenge-Response Pairs (CRPs) on two different locations of the

FPGA to evaluate the intra-chip Hamming Distance (HD).

Figure 4.10: Hamming distance between two responses for two locations

The Figure 4.10 shows the Hamming distance of the two PUF responses on two

different locations for the same challenges. These calculated HD values were used

in the Equation 2.1 to find the uniqueness between these two PUFs. The proposed

hybrid model produces the uniqueness value of 48%, which can be considered as

good value.
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4.5.2 Reliability Analysis

As mentioned in the Chapter 3, to analyze the reliability metrics of the PUF

model, we collected 1000 CRPs on a PUF with a random time interval.

Figure 4.11: Hamming Distance between two responses reproduced at differ-
ent time

We evaluated the two sets of CRPs to find the hamming distance, and Figure

4.11 shows the hamming distance between the collected responses over a time

interval. The proposed hybrid model produces reliability of 91%, which is a good

result as explained in Chapter II.

4.5.3 Resource Utilization

This section provides resource consumption of the proposed hybrid PUF de-

sign. Here we used LUT utilization as the main parameter to determine the

resource utilization of the PUF circuit.

As shown in Figure 4.12, our proposed model uses 28% of total LUTs available

in the Artix 7 FPGA (this value excludes the resource consumed by MicroBlaze
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Figure 4.12: Resource utilization of proposed PUF in Xilinx Artix 7 FPGA

processing unit). By analysing the obtained result, there is a significant reduction

in resource usage which is 16% in LUT reduction.

4.6 Result and Discussion

In this section, we present the overall comparison of the existing XOR based

PUF model with our proposed hybrid PUF model.

As we mentioned in our experimental study, XOR-ed BR PUF requires 44%

of LUT in Artix 7 FPGA and it has uniqueness of 50% and reliability of 96%.

To reduce resource consumption without compromising the strength of the PUF

model, we proposed a Hybrid PUF model that will consume 28% of FPGA LUT

and produce similar uniqueness value and reliability.

The Table 1 shows the comparison of Bistable Ring PUF, XOR-ed Bistable

ring PUF and our hybrid model in terms of resource usage, uniqueness, reliability

and challenge length.
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Content BRPUF XOR-ed BRPUF Our proposed PUF

Resources(LUT) 24% 44% 28%
on-chip power(W) 0.193 0.193 0.193

Uniqueness 34% 50% 48%
Reliability 98% 96% 91%

Challenge length 32 32 32

Table 1: BR vs XOR-based BR PUF vs Our proposed model

From the Table 1, our proposed PUF has less design complexity in terms of

resource utilization, while maintaining the uniqueness and reliability competitive.

So our hybrid model can be considered as a good replacement for XOR-ed based

PUF integration model.
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Conclusion

In this chapter, we summarize the main contributions in this thesis and pro-

pose future work in related area.

5.1 Summary of Contribution

In this thesis, we have implemented following PUF structures, Bi-stable Ring

PUF, XOR-ed Bi-stable Ring PUF and a Hybrid model PUF, on Xilinx Artix 7

FPGA and have investigated their performance in terms of reliability, uniqueness

and resource utilization. We have proposed a Hybrid PUF scheme in which a PUF

and Chaotic network are combined to improve the randomness of the response. In

the traditional approach such as XOR PUFs, large resource utilization is needed

since it combines two or more PUF models to increase the non-linearity. This

significantly increases the area and power consumption of design.

The proposed hybrid model can be considered as a good replacement of

XOR-ed based PUF fusion and make the system much more lightweight. Exten-

sive experimental analyses were done by collecting 1000 CRPs for every instance

for all the three PUFs. Implementation results show that the proposed Hybrid
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PUF scheme provides good values in uniqueness and reliability while at the same

time,there is significant reduction in resource utilization.

The results presented in this work are all obtained by implementing the

schemes on the Xilinx FPGA board with many instances. Additionally, as dis-

cussed previously, the proposed Hybrid PUF is a general method and its charac-

teristics can be further investigated using other strong PUF models.

5.2 Future Work

We would recommend that this proposed method can be used for other strong

PUF models to enhance the security. It can be considered as a good replacement

for the two or more PUF integration methods used. This research can be extended

for the high generation FPGAs such as Intel Arria, Stratix and Xilinx Zynq. We

can explore further optimization of the chaotic network for application such as

authentication and secure key generation systems.
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Appendix A

Verilog code for BR-PUF

A.1 Multiplexor

\‘timescale 1ns / 1ps

(* keep_hierarchy = "true"*)module mux(

input ia,

input ib,

input isel,

output oout

);

wire oout;

assign oout = (isel) ? ia : ib;

endmodule

A.2 Demultiplexor

‘timescale 1ns / 1ps

(* keep_hierarchy = "true"*)module demux(
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input i,

input isel,

output outa,

output outb);

wire outa;

wire outb;

assign outa = i & isel;

assign outb = i & ~(isel);

endmodule

A.3 Bistable Ring

‘timescale 1ns / 1ps

module ring(

input [31:0]challenge,

input reset,

output response

);

(*keep = "true"*) wire [96 : 0]net;

assign net[0] = net[96];

generate

genvar i;

for (i = 1; i <= 32; i = i + 1)

begin

demux inst_demux(

.i(net[i * 3 - 3]),

.isel(challenge[i - 1]),

.outa(net[i * 3 - 2]),
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.outb(net[i * 3 - 1])

);

mux inst_mux(

.ia(~(net[i * 3 - 2]|reset)),

.ib(~(net[i * 3 - 1]|reset)),

.isel(challenge[i - 1]),

.oout(net[i * 3])

);

end

endgenerate

assign response = net[48];

endmodule

A.4 BR-PUF

‘timescale 1ns / 1ps

module BR_PUF(

input [31:0] challenge,

input reset,

output [31:0] response

);

(*keep = "true"*)wire [31:0] net;

generate

genvar i;

for (i = 1; i <= 32; i = i + 1)

begin

ring inst_ring(.challenge(challenge),
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.reset(reset),

.response(net[i-1])

);

end

endgenerate

assign response = net;

endmodule



Appendix B

C++ code for Xilinx HLS

void chaoticnet(bool challenge[32],bool response[32])

{

#pragma HLS ARRAY_PARTITION variable=response complete dim=0

#pragma HLS ARRAY_PARTITION variable=challenge complete dim=0

int challengesum=0;

float xn[32];

float x0;

for (int h = 0; h < 32; h++)

{

challengesum=challengesum+challenge[h];

}

x0=(float)challengesum/32;

xn[0]=x0;
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for (int i=0;i<32;i++)

{

xn[i+1]=xn[i]*4*(1-(xn[i]));

}

for (int j = 0; j < 32; j++)

{

#pragma HLS UNROLL

if (xn[j]<0.5)

{

response[j] = 0;

}

else

{

response[j] = 1;

}

}

}
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