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ABSTRACT 

A critical emerging factor in the fitness of individuals is their microbiome, defined 

as the community of microorganisms found in and on the body of an individual. 

Despite the rapidly accumulating evidence of the significant role of the 

microbiome to host health and disease, there is a lack of studies partitioning 

microbiome variation into explanatory source components in fish, especially those 

relating to host genetics. To address this knowledge gap, this thesis made several 

contributions to estimate the transgenerational effects on the microbiome of an 

ecologically, economically and culturally important salmonid – Chinook salmon 

(Oncorhynchus tshawytscha). To achieve this goal, breeding designs were utilized 

to estimate various genetic architecture components, including additive among-

population variance, additive genetic variance and maternal effects. DNA was 

extracted from hindgut contents of saltwater juveniles, the surface of eyed eggs, 

and maternally sourced gut content and ovarian fluids. Polymerase chain reactions 

(PCRs) were conducted to amplify and metabarcode the 16S rRNA encoding gene, 

and high throughput sequencing was then used to generate millions of sequences 

based on amplified PCR products. Taxonomic operational units (OTUs) were 

generated to measure microbiome diversity and allow for microbial community 

profiling. Using a combination of parametric and non-parametric modelling, 

significant hybrid-cross and sire were found on the gut microbiome at the juvenile 

saltwater stage, respectively indicative of population and additive genetic effects. 

Further, significant maternal effects were found on the surface of eyed eggs. 

Although no correlations were found between the ovarian fluid and the eyed eggs, 

a surprising and significant similarity was found between the microbiomes of the 

dam-sourced ovarian fluid and hindgut samples. Together, the findings presented 

in this thesis contribute to the characterization of the genetic architecture 

underlying microbiome variation in Chinook salmon and to its adaptive potential. 

The results presented in this thesis will have critical consequences for fisheries and 

conservation efforts and lead the way to exciting microbiome research with the 

ultimate goal of selecting for microbiomes associated with improved survivability 

and performance. 
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CHAPTER ONE 
General Introduction 

The host-associated microbiome, and its role in fish  

Multicellular organisms host diverse resident microbial communities, together known as 

their microbiome (Lederberg & McCray, 2001; Mandel, 2010). These microbiomes were 

first described as ecological frameworks characterized by their microbial community 

composition and functional role, found within a specific habitat defined by 

physiochemical parameters (Burge, 1988). Rapidly accumulating evidence gained from 

high throughput sequencing is revealing the universality of the potential benefits 

conferred by resident microbiomes –primarily bacteria– found externally or internally in 

numerous host species, ranging from vertebrate animals (Colston & Jackson, 2016) to 

invertebrates (Nyholm & Graf, 2012) and plants (Vandenkoornhuyse et al., 2015). 

Although vertebrates’ microbiomes vary by body site (e.g. in humans, Spor et al., 2015; 

in fish, Zhang et al., 2019), the majority of the microbial diversity and abundance is 

found within the gut, where a diverse community of microbes maintain and improve host 

health by playing critical roles in nutrition, immunity, behaviour, development and 

reproduction (reviewed in Nayak, 2010; Ghanbari et al., 2015; Colston & Jackson, 2016). 

Curiously, although fish comprise half of the known vertebrate species (Nelson et al., 

2016), most gut microbiome studies have focused on mammals (Tarnecki et al., 2017) 

rather than fish (Llewellyn et al., 2016; Tarnecki et al., 2017), with mammals making up 

less than 10% of all described vertebrate species (Table 3a “Summary statistics”, IUCN, 

2020). Nonetheless, studies across a wide range of fish taxa have shown evidence of the 

benefits provided by the microbial communities harbored within the gut (Nayak et al., 

2010; Ghanbari et al., 2015), similar to those reported for mammals. 
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In recent years, interest has grown in characterizing the factors influencing the gut 

microbiome to quantify their effects on host fitness and the partition the differences 

observed among and within hierarchical levels of organismal organization across various 

habitats (Bahrndorff et al., 2016). These factors are classified as either host- or 

environment-driven (Figure 1.1), and sometimes require controlled experiments to 

partition the contribution of each factor driving the microbiome (Goodrich et al., 2014). 

Collectively, studies have consistently shown the significant roles of the host and the 

environment in determining the microbiome composition. 

 

Figure 1.1. Schematic of the various environmental and host-mediated factors (EF 
and HF, respectively) and their effects on the gut microbiome in fish. Numbers in 
boxes represent studies that used high-throughput sequencing techniques to study the 
effects of those factors on the bacterial microbiome: 1) Bolnick et al., (2014); 2) He et 
al., (2019); 3) Ingerslev et al., (2014); 4) Larsen et al., (2014); 5) Li et al., (2013); 6) Li 
et al., (2015); 7) Llewellyn et al., (2016); 8) Schmidt et al., (2016); 9) Sullam et al., 
(2015); 10) Ye et al., (2014).  

Host
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The association of the microbiome with the host encompasses diverse forms of 

ecological interactions, such as host-parasite, host-symbiont, and microbe-microbe 

interactions (Foster et al., 2017; O’Brien et al., 2019). The observed complexity in host-

microbe interactions led to the development of various ecological and evolutionary 

theories to describe how they might evolve in parallel (Foster et al., 2017; Koskella et al., 

2017; O’Brien et al., 2019). In some cases, adaptations arise to increase the fitness of the 

microbe, while being costly to the host; this has been seen in host-parasite/pathogen 

interactions, which results in selection acting on the host (Paterson et al., 2011). Such 

interactions may select for increased host genetic diversity to effectively compete with 

the microbe, resulting in an “arms race” (Kaltz et al., 1998). For example, 

Caenorhabditis elegans infected with the bacterial pathogen Serratia marcescens were 

selected for outbreeding, leading to the replacement of selfing as a mode of reproduction 

(Morran et al., 2011). In that study, C. elegans evolved greater outcrossing rates as a 

means to reduce infection (Mallo et al., 2002), and in response, S. marcescens co-evolved 

greater infectivity rates (Morran et al., 2011). However, since the microbiome mediates a 

diverse array of processes in the gut, it is expected that selection would favor associations 

that lead to positive impacts on host’s fitness (Koskella et al., 2017). This is the case in 

mutualism, where reciprocal adaptations evolve to benefit both the host and the 

microbiome (Herre et al., 1999). A classic example of these mutual symbioses in host-

microbe systems is found in squids, which have evolved specialized light organs that host 

a monospecific culture of the light-producing Vibrio fischeri bacterium (Ruby & McFall-

Ngai, 1992). Another example is found in pea aphids (Acyrthosiphon pisum), which have 

evolved specialized cells to host bacterial symbionts (Buchnera aphidicola) that 
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synthesize nutrients essential to the host (Baumann et al., 1997). Mutualism is also seen 

within the microbiome: Adaptive interactions among microbes arise to increase their 

overall survival, as exemplified by bacterial cell-to-cell communication in quorum 

sensing, the process of responding to cell population density through gene regulation 

(Darch et al., 2012). Finally, microbiome-host interactions may be intergenerational, as 

observed in maternal vertical transmission in pea aphids, where microbes transferred 

through a maternal line provide the potential for them to co-evolve with their host 

(Baumann et al., 1997; O’Brien et al., 2019). Therefore, the microbiome and its host are 

competing in a constant arms race, developing adaptations against each other as they 

continue to coevolve (Kaltz et al., 1998). Characterizing these complex interactions 

within the microbiome and between the microbiome and its host are important to 

determining the evolutionary mechanisms that promote the coevolution of the 

microbiome with its host (Koskella et al., 2017). 

Quantitative Genetics 

Quantitative genetics is the study of traits that vary continuously due to differences in 

gene contributions and interactions across many loci (Falconer & Mackay, 1996; Connor 

& Hartl, 2004). The history of quantitative genetics begins in the twentieth century, when 

the genetic basis for evolution consisting of genetic elements following Mendelian 

inheritance were cemented into the original Darwinian theory of evolution and 

incorporated into a mathematical framework, known as the modern synthesis (Fisher, 

1930). The modern synthesis (or evolutionary synthesis) relied on decades of 

advancements in the fields of Mendelian genetics, evolution, and population ecology 

(Fisher, 1930), and gave rise to population genetics and quantitative genetics. This 
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perspective stated that phenotypic variation is dictated by various allelic combinations in 

individuals, and that higher degrees of individual survivability within a population are 

attributable to the possession of certain combinations of alleles, which allowed them to be 

phenotypically better adapted to their environment, and to attain higher reproductive 

success, i.e. fitness (Fisher, 1930 Huxley, 1942). The goal of quantitative genetics is to 

use frequency distributions of phenotypic variation among related individuals to partition 

the variance into main explanatory source components, such as the environment and host 

genetics (Falconer & Mackay, 1996; Connor & Hartl, 2004). To this end, quantitative 

genetics utilizes breeding designs involving parents and offspring in parent-offspring 

regression or sibling analyses (among others) to quantify the mean and variance of traits, 

and statistically determine the significant sources of variation (e.g. Connor & Hartl, 

2004). Thus, it is possible to design experiments to partition the effects of a common (or 

unique) environment factor and host genetics on the total phenotypic variance of a trait. 

Examples of studies partitioning phenotypic variance into genetic and environmental 

sources of variance are common for traits related to fitness (reviewed for Atlantic salmon 

(Salmo salar) in Garcia de Leaniz et al., 2017; and for salmonids, in general, in Carlson 

& Seamons, 2008). Examples of similar breeding designs are also used to study 

microbiomes in fish are scarce (e.g. Wilkins et al., 2016), with studies more often 

utilizing natural populations to experimentally partition microbiome variation into 

explanatory components (e.g. Bolnick et al., 2014; Chiarello et al., 2018). 

The total observed variation in a trait is referred to as phenotypic variance (VP), and 

is attributable to genetic, environmental, and gene-by-environment interactions (Falconer 

& Mackay, 1996; Connor & Hartl, 2004; Visscher et al., 2008). The total genetic 
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variance can be attributed to various subcomponents such as among-population variance 

(additive population effects), additive genetic variance, non-additive genetic variance, 

and maternal effects (Falconer & Mackay, 1996; Connor & Hartl, 2004; Visscher et al., 

2008; Aykanat et al., 2012a; Aykanat et al., 2012b), together comprising the genetic 

architecture of a trait (Aykanat et al., 2012a). 

Additive genetic variance (VA) refers to the deviation from the mean phenotypic 

trait due to inheriting various combinations of alleles from either parent (Falconer & 

Mackay, 1996; Visscher et al., 2008). Estimates of additive genetic variance are 

population-specific and are known to be sensitive to changes in the environment or 

evolutionary forces acting upon a population (Visscher et al., 2008). Because selection 

directly acts on additive genetic variance (Falconer & Mackay, 1996; Visscher et al., 

2008; Garcia de Leaniz et al., 2017), estimates of additive genetic variance are important 

to predicting the population’s response to natural and artificial selection (Clayton et al., 

1957; Falconer & Mackay, 1996; Visscher et al., 2008; Hill 2010; Garcia de Leaniz et al., 

2017). Additive genetic variance has been estimated for many traits in salmonids. This is 

reviewed by Garcia de Leaniz et al. (2007) for Atlantic salmon, where VA estimates are 

given for size and growth rates (e.g. body size), life history traits (e.g. egg survival), 

disease resistance and health conditions (e.g. red blood cell count); and in Chinook 

salmon (Oncorhynchus tshawytscha), where additive genetic effects were found in 

various studies for similar traits, including body length and weight (Winkelman and 

Peterson, 1994), jacking rates (Heath et al., 2002), flesh color (Withler, 1986) and plasma 

lysozyme activity (Johnson et al., 2003). The development of high-throughput 

sequencing has made it easier to measure various components of the microbiome such as 
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its diversity or composition, allowing us to partition genetic and environmental variance 

components for the microbiome. Thus, many microbiome studies have used next 

generation sequencing to characterize the microbiome to test for additive genetic variance 

effects on the microbiome, and examples of studies investigating the extent of these 

effects are scarce in fish (but see Navarrete et al. (2012) and Kokou et al. (2018) for 

family effects; Wilkins et al. (2016) for additive effects). Studies investigating the 

presence of additive genetic variance (or lack thereof) outside humans remain scarce and 

present an exciting opportunity to study the role of host genetics on the composition and 

diversity of the microbiome. 

Maternal effects represent another critical subcomponent of additive genetic 

variance and can lead to unpredictable responses to selection (Kirkpatrick & Lande, 

1989; Falconer & Mackay, 1996). Two sources of variation may give rise to maternal 

effects. First, the maternal phenotype may influence the offspring phenotype for the same 

trait by altering the environmental conditions that affect the offspring’s phenotype 

(Falconer & Mackay, 1996; Conner & Hartl, 2004; Freeman & Herron, 2007; Wolf & 

Wade, 2009). This is seen in mice, for instance, where maternal body size positively 

correlates with milk yield and thus offspring growth and size (El Oksh et al., 1967; 

Falconer & Mackay, 1996). Second, maternal effects may arise among offspring of the 

same dam, but not between the offspring and the dam herself (Falconer & Mackay, 

1996). In these instances, the correlation is not due to environmental factors, but rather 

due to a maternal genetic (i.e. additive) component (Falconer and Mackay, 1996; Wolf & 

Wade, 2009). Increasing evidence suggests that maternal effects may have been shaped 

by natural selection and have evolved as a mechanism for adaptive phenotypic responses 
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to environmental heterogeneity in the offspring’s environment (Mousseau & Fox, 1998). 

This is supported in Chinook salmon studies, where maternal effects have been shown for 

traits related to fitness such as immune response (Aykanat et al., 2012a) and for 

numerous early life-history traits such as egg size (Heath et al., 1999) and survival 

(Aykanat et al., 2012b). Evidence of maternal effects on the microbiome is growing 

rapidly, and the current body of literature shows their universality across various animal 

taxa, including marine animals (Funkhouser & Bordenstein, 2013). Currently, there are 

very few studies utilizing NGS to investigate maternal effects on the microbiome in fish 

(e.g. Wilkins et al., 2016). Despite this, maternal effects on the microbiome have been 

characterized across vertebrate taxa such as rabbits (Kovács et al., 2006), squirrels (Ren 

et al., 2017) birds (van Dongen et al., 2013), apes (Ochman et al., 2010) and humans 

(Faith et al., 2013); and in marine invertebrates such as corals (Sharp et al., 2012). 

Furthermore, studies in humans have shown the influence of various maternal traits on 

the microbiome, including maternal diet (Chu et al., 2016), breastfeeding (Gregory et al., 

2016), and maternal health condition such as obesity (Garcia‐Mantrana & Collado, 2016) 

or HIV infection (Bender et al., 2016). The potential for maternal effects to impact traits 

related to fitness in terms of selection pressures (e.g. in Atlantic salmon, Houde et al., 

2015) and estimates of genetic contributions (e.g. in Chinook salmon, Aykanat et al., 

2012a) presents exciting opportunities to explore their contribution to microbiome 

variation and its evolutionary trajectory. 

 When a population becomes more phenotypically suited to its environment than 

other populations of the same species and exhibits higher fitness (i.e. reproductive 

success and survival), it is said be ‘locally adapted’ to that environment (Kawecki & 
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Ebert, 2004; Garcia de Leaniz et al., 2007; Fraser et al., 2011; Savolainen et al., 2013). 

Local adaptation arises due to selection pressures mediated by spatial environmental 

heterogeneity (Kawecki & Ebert, 2004; Garcia de Leaniz et al., 2007; Fraser et al., 2011; 

Savolainen et al., 2013). Local adaptation is often reported across fish taxa, and the 

extent of its occurrence and the mechanisms leading to its formation are extensively 

discussed, especially in salmonids (reviewed in Garcia de Leaniz et al. (2007), Fraser et 

al. (2011), and Savolainen et al. (2013)). The idea that the gut microbiome is locally 

adapted to host populations has been discussed extensively in humans for many bacterial 

species (reviewed in Walter & Ley, 2011; discussed in Alberdi et al., 2016). In fish, local 

adaptation of the microbiome has also been proposed by Webster et al. (2019), who 

tested interpopulation differences in the microbiome among Atlantic salmon populations 

originating from wild or hatchery environments (Webster et al., 2019). Among-

populations differences in the microbiome indicate patterns of co-divergence in host-

microbiome systems, possibly reflecting their co-evolution (O’Brien et al., 2019). 

Detecting patterns of local adaptation for various traits (including the microbiome) is 

critical for conservation and restoration efforts across species of salmon (Hendry et al., 

2003; Taylor et al., 2011; Kawecki & Ebert, 2011). 

Microbiome 16S metabarcoding 

Until the 1990s, culture techniques were the only approach used to advance the field of 

microbiology and contributed to our knowledge of the microorganisms in the gut (Fraher 

et al., 2012). Although culture techniques have become more sophisticated (Fraher et al., 

2012), they result in incomplete descriptions of microbial communities, since many 

microbes require special culturing conditions, many of which remain unknown (Asfie et 
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al., 2003; Nayak et al., 2010). However, the field of microbiology was revolutionized 

with the use of the 16S rRNA gene sequence in phylogenetic characterization of 

microbes (Olsen et al., 1986; Woese et al., 1987; Woese et al., 1990). For example, in the 

human microbiome, cloned 16S rRNA gene sequencing showed that only 20% to 30% of 

the gut microbiome had been identified by culture (Wilson & Blitchington. 1996; Suau et 

al., 1999; Eckburg et al., 2005). Therefore, culture techniques were replaced with 

molecular genetic techniques that capitalized on sequence variation observed in the 

variable regions of the 16S rRNA encoding gene to profile microbial communities. 

Therefore, many techniques were developed to accomplish this goal, including: 

denaturing gradient gel electrophoresis (DGGE; Liu et al., 1997); temperature gradient 

gel electrophoresis (TGGE; Muyzer et al., 1998); terminal restriction fragment length 

polymorphism (T-RFLP; Marsh et al., 1999); DNA microarrays (Amann et al., 1992); 

fluorescence in-situ-hybridization (FISH; Cummings & Relman, 2000)). However, those 

microbiome characterization techniques were replaced by high throughput sequencing 

techniques (Fraher et al., 2012; Bordenstein & Funkhouser, 2013; Ghanbari et al., 2015; 

Koskella et al., 2017), which now represent the majority of studies of gut microbiome 

composition (Ghanbari et al., 2015). Also referred to as next generation sequencing 

(NGS), high throughput sequencing has facilitated the collection of sequence data from 

mixed microbial communities (Nayak et al., 2010; Foster et al., 2012; Fraher et al., 2012; 

Ghanbari et al., 2015). NGS can target either whole bacterial genomes (“metagenomics”) 

or 16S rRNA gene amplicons (“metabarcoding”; Foster et al., 2012; Fraher et al., 2012; 

Ghanbari et al., 2015). NGS sequencing platforms are distinguished by their speed, large 

data generation capacity, and their ability to provide taxonomic information for 



 

11 
 

uncharacterized bacteria (Fraher et al., 2012; Ghanbari et al., 2015). Overall, 

advancements in sequencing technology have allowed us to characterize the microbiome 

to levels that were previously unattainable. 

Although the generation of millions of sequences allows better characterization of 

the microbiome, it also represents many bioinformatic and statistical challenges. First, to 

improve diversity estimates, sequences undergo quality control, removing sequences that 

show mismatches from expected sequences, yielding high quality usable sequences for 

processing (Bokulich et al., 2013). In microbial sequence analysis, sequences are initially 

used to cluster sequences based on a pre-defined percent similarity —usually 97%— of 

sequence composition amongst them, generating operational taxonomic units (OTUs) – 

the 97% threshold was originally proposed as proxy for species-level variation in bacteria 

(Stackebrandt et al., 1994). Various methods have been proposed to forming OTU 

clusters (Navas-Molina et al., 2013), and alternatives to the 97% threshold have been 

proposed, with some studies suggesting the use of ‘zero-radius’ OTUs (Edgar, 2018), or 

amplicon sequence variants (ASVs; Callahan et al., 2017) in place the 97% threshold 

OTUs (Callahan et al., 2017; Edgar, 2018). Second, the generation of sequences with 

NGS rarely occurs uniformly across samples, resulting in a biased representation of 

sampling depth (i.e. the number of sequences per sample), and the subsequent 

normalization (rarefaction) methods to remedy this issue is another area of debate (see 

opposing views in McMurdie & Holmes (2014), and Weiss et al. (2017)). Third, 

differential sequence read number abundance used as a proxy for differences in the 

relative frequencies of OTUs or ASVs is often used with disregard of the underlying data 

structure and characteristics, furthering the necessity for development of mathematical 
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models to accurately test microbiome hypotheses (Xu et al., 2015; Weiss et al., 2017). 

The inconsistency in these bioinformatic and statistical approaches across NGS generated 

microbiome data analyses has generally resulted in studies choosing to rarefy their data 

and apply non-parametric models (e.g. Llewellyn et al., 2017) or to normalize their 

sequence read counts and analyzing it with parametric models (e.g. Ingerslev et al., 

2014). The application of NGS to characterize the microbiome, and the development of 

bioinformatic and statistical modelling tools to study it, allows us to quantify the 

microbiome semi-quantitively and test microbiome-specific ecological and evolutionary 

hypotheses (e.g. Bolnick et al., 2014; Ye et al., 2014; Llewellyn et al., 2017). 

Study system: Chinook salmon 

Chinook salmon (Oncorhynchus tshawytscha) is the largest of the Pacific salmonid 

species, and is thought to have evolved around 500,000 to 1,000,000 years ago with the 

other Pacific salmonids. (Neave, 1958). 

Chinook salmon have evolved a complex life history (Quinn, 2005). It begins in 

freshwater streams, where they hatch in gravel nests and later become free-swimming fry 

(Groot & Margolis, 1991). As fry, the individuals adapt physiologically to transitioning 

to the saltwater environment (“smolting”), where they then spend the majority of their 

life cycle until they are ready to return to their natal streams to spawn (Groot & Margolis, 

1991). Chinook salmon are anadromous and semelparous, meaning they ascend up natal 

rivers from sea water to spawn and die (Quinn, 1990; Quinn, 2005; Hasler, 2012). In this 

thesis, the microbiome is characterized for Chinook salmon reared in saltwater net pens 

(Chapter 2), and for the surface of fertilized eggs from freshwater incubators (Chapter 3). 

Microbiome diversity (Chao1) and microbiome composition (Unifrac) is known to be 
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differentiated between the freshwater and marine environments in Atlantic salmon 

(Llewellyn et al., 2016); thus, the life history patterns of Chinook salmon (and salmon, in 

general) involves a wide range of environmental selective pressures and necessitates the 

characterization of the microbiome at various life stages of salmon. 

Chinook salmon are ecologically, economically and culturally important through 

their range (Ruckelshaus et al., 2002; Quinn, 2005; Heard et al., 2007). First and 

foremost, the significance of salmon for the economy is rooted in aquaculture production 

and various fishing activities (Ruckelshaus et al., 2002; Heard et al., 2007; Kendall & 

Quinn, 2011). In 2017, Canadian aquaculture produced 191,416 tones of finfish and 

shellfish, of which 63% was accounted for by salmon species (Statistics Canada, 2017a). 

This production output was valued at $1 billion (out of $1.4 billion total for aquaculture), 

with British Columbia being the biggest contributor to production value (CAIA, 2018). 

Currently, British Columbia is the only province to use Chinook salmon in aquaculture, 

where it has been farmed since the 1970s – making up a fifth of all farmed salmon stocks 

in the province (Kim et al., 2004; Bryden et al., 2004; CAIA, 2018). Chinook salmon 

support important commercial fisheries, which occur in Oregon, Washington, British 

Columbia, Alaska and Bristol Bay (Heard et al., 2007). In addition, sports, subsistence 

and recreational fisheries all target Chinook salmon and contribute to the economy 

(Heard et al., 2007; Kendall & Quinn, 2011). Second, salmon are important to 

maintaining regional biodiversity, as they themselves are considered important prey for 

various vertebrate predators in fresh water (Willson & Halupka, 1995). Third, Chinook 

salmon are coveted species among the First Nations people in Canada, and to the states of 

Alaska and Oregon in the United States of America. Every year, “First-salmon 
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ceremonies” ensue to celebrate the first Chinook salmon catch in the Spring (Jackson, 

1978). In Alaska and Oregon, Chinook salmon is known as “king salmon” for its large 

body size, where it is used as the state’s fish symbol. In summary, Chinook salmon is 

indispensable to the ecology, economy, and culture of many Pacific regions. 

Pacific salmon face many challenges throughout their range that threaten their 

survival and reproduction. These threats include increasing ocean temperatures (Richter 

& Kolmes, 2005), pathogens (Fryer & Pilcher, 1974), predation, competition, negative 

interactions between wild and hatchery salmon, and anthropogenic stressors such as 

hydropower projects (Keefer et al., 2004) and harvesting (reviewed in Ruckelshaus et al., 

2002, and Weber & Fausch, 2005). Due to their immense value to the economy, human 

culture and ecological biodiversity, it is critical to preserve populations of salmonids 

(Willson & Halupka, 1995; Ruckelshaus et al., 2002). Using genetic techniques, many 

populations of Chinook salmon have been shown to be reproductively isolated, providing 

evidence of local adaptation, and thus constituting distinct ESUs that require separate 

management efforts (Beacham et al., 2006; Davis et al., 2008). Studies have shown 

patterns of inherited adaptive traits in salmon, but this evidence remains incomplete and 

challenged (Garcia de Leaniz et al., 2006). Of the many traits studied in fish, the 

microbiome has gained increasing interest in the past decade, coinciding with the advent 

of high-throughput sequencing technology (Ghanbari et al., 2015). Although studies have 

determined the effects of various environmental and host drivers on the microbiome in 

salmonid species (e.g. Ingerslev et al., 2014; Schmidt et al., 2016; Llewellyn et al., 

2016), evidence of host-microbiome codivergence in salmonids, and to a broader extent, 
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in fish, is lacking. Characterizing the microbiome will have important implications for the 

conservation and management efforts of animal species (Bahrndorff et al., 2016). 

Compared to other salmonid species the gut microbiome of Chinook salmon has 

received less attention, and this may present a hurdle in conservation efforts for this 

species. For instance, the gut microbiome has only been recently described in Chinook 

salmon using small sample sizes of farmed fish (n = 4, Booman et al., 2018; n = 30, Ciric 

et al., 2018; n = 30, Ciric et al., 2019). On the other hand, the gut microbiome of Atlantic 

salmon has been more extensively studied, including factors such as the effect of gut 

morphology (Gajardo et al., 2016) and biogeography (Llewellyn et al., 2016) on the 

composition of the gut microbiome bacterial community. Utilizing Chinook salmon as an 

animal model to characterize the microbiome and its interactions with the host will allow 

us to achieve a more holistic view of the microbiome composition across salmon species 

and, ultimately, their co-evolutionary history. 

Thesis objectives 

The main goal of this thesis is to characterize the role of transgenerational effects in 

driving the composition and diversity of the microbiome in Chinook salmon. Here, we 

define transgenerational microbiome effects as processes that drive microbiome effects in 

offspring resulting from genetic and non-genetic signals from the parents, including 

multiple generation effects. As discussed, Chinook salmon were selected as my study 

species due to their cultural, economic and ecological importance in the Pacific 

Northwest as well as logistical aspects of their life history that makes quantitative genetic 

analyses straightforward (e.g. many large eggs and no parental care). The specific 

objectives that address my main goal comprise two data chapters: 
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In Chapter 2, I investigate the nature of inheritance acting among and within 

populations in determining the diversity and composition of the gut microbiome. More 

specifically, eggs from 12 highly inbred females were mixed and subsets of the mixed 

eggs were fertilized by 10 sires from each of one domestically farmed and seven wild 

populations of Chinook salmon to produce 80 full- and half-sib families. By dividing 

offspring from each family between replicate pens and using an inbred dam, this breeding 

design allowed me to partition microbiome variance into population-of-origin (hydrid-

cross) and additive genetic (sire) effects while controlling for environmental (pen) and 

maternal (dam) effects. 

In Chapter 3, the presence and mechanisms of maternal effects on offspring 

microbiome composition and diversity are studied, with an emphasis on possible 

maternal vertical transmission of microbiome components on the surface of fertilized 

(eyed) eggs. To achieve these goals, milt from 6 domestically farmed males were mixed, 

and a subset of the mixture was used to fertilize a set of eggs from each of 39 females of 

a domestically farmed population of Chinook salmon. The maternal effect on the 

resulting eyed eggs’ microbiome were examined using surface egg material, along with 

maternally sourced gut and ovarian fluid samples. 

In both chapters, I apply quantitative genetics and evolutionary theory to determine 

the nature and extent of the forces driving gut microbiome composition among and 

within hybrid-crosses of Chinook salmon using microbiome meta-barcode 16S rRNA 

sequence data. By testing for population effects in a common garden experiment, I was 

able to determine the extent of host-microbiome co-diversification. Multiple sires used 

within each hybrid-cross allowed me to determine the magnitude of additive genetic 
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variance within the observed variation in the gut microbiome (Chapter 2), and the 

utilization of various dams (Chapter 3) allowed me to explore maternal effects and the 

possibility of maternal vertical transmission. Highlighting the roles of population, 

additive, and maternal effects is crucial to characterizing how the microbiome may 

evolve in parallel with its host, and to determining the role of host genetics in mediating 

differences observed among the microbiomes. 
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CHAPTER TWO 
The effects of host genetic architecture on the gut microbiome composition of 

Chinook salmon (Oncorhynchus tshawytscha) 

Introduction 

The microbiome is a community of microbes that live in or on a multicellular organism, 

and is most commonly studied in the gastrointestinal tract (“gut microbiome”), where it 

plays important roles both in the health and development of the host (reviewed in Nayak, 

2010; Romero, Ringø & Merrifield, 2014; Ghanbari, Kneifel & Domig, 2015). In fish, 

the gut microbiome has been shown to be symbiotically associated with the host, and it 

plays many beneficial roles, such as aiding in metabolism (Semova et al., 2012; 

Tremaroli & Bäckhed, 2012), immunity (Galindo-Villegas, García-Moreno, de Oliveira, 

Meseguer, & Mulero, 2012; Milligan-Myhre et al., 2016), and development (Bates et al., 

2006). Additionally, the gut microbiome generally reflects host species (Ye, Amberg, 

Chapman, Gaikowski & Liu, 2014), life stage (Llewellyn et al., 2016), diet (Bolnick et 

al., 2014a; Bolnick et al., 2014b; Webster, Consuegra, Hitchings & de Leaniz, 2018), 

physiology (Bolnick et al., 2014b; Ye et al., 2014), geographical isolation (Ye et al., 

2014; Webster et al., 2018), and genetic divergence (Sullam et al., 2015; Webster et al., 

2018). While the gut microbiome for many fish species has been characterized, variation 

in diversity, establishment mechanisms, and role in host phenotype/genotype requires 

additional study (Nayak, 2010; Llewellyn, Boutin, Hoseinifar & Derome, 2014; Ghanbari 

et al., 2015; Sullam et al., 2015). 

In addressing the factors that shape the host’s gut microbiome (hereafter 

“microbiome”) composition, it is important to consider the broad effects of the 

environment, host genetics, and gene-by-environment interactions. With over 32,000 
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described species (Eschmeyer & Fong, 2015), fish comprise more than half of the known 

vertebrate species and encompass a wide range of phenotypes, life histories and ecologies 

(Neslon, Grande & Wilson, 2016). Thus, even with a wealth of published fish 

microbiome studies, the effects of host genetics, the environment, and their interactions 

on the microbiome composition remain poorly understood (Wong & Rawls, 2012; 

Bolnick et al., 2014b; Ghanbari et al., 2015). Host genome variation is expected to play a 

role in shaping the microbiome, as it is responsible for encoding intestinal mucosa and 

immune factors that play essential roles in the establishment and maintenance of the 

microbiome (Roeselers et al., 2011; Spor, Koren & Ley, 2011; Romero et al., 2014; 

Ghanbari et al., 2015). Using high throughput sequencing technology, the effects of host 

genetics on the microbiome have been investigated at various levels, ranging from 

species-level effects (Roeselers et al., 2011; Ye et al., 2014; Larsen, Mohammed & 

Arias, 2014; Li et al., 2015) to among-population (Roeselers et al., 2011; Webster et al., 

2018) and within-population effects (Webster et al., 2018). For example, at the species-

level, individuals from three species of carp (Ctenopharyngodon idella, Carassius 

carassius and Hypophthalmichthys nobilis) reared in a common environment showed 

strong microbiome compositional differences, despite their taxonomic relatedness and 

common environment (Li et. al 2014). Gut microbiome composition and diversity 

differences have also been found at the population level, and have been attributed to 

genetic drift and bottleneck effects using zebrafish (Danio rerio; Roeselers et al., 2011) 

or to environmental variation and genetic divergence using zebrafish (Roeselers et al., 

2011) and Atlantic salmon (Salmo salar; Webster et al., 2018). Finally, within-population 

effects were shown to explain less variation than among-population effects for 
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microbiome composition in Atlantic salmon (Webster et al., 2018) but explained less 

variation than diet in shaping the microbiome of various rainbow trout families 

(Oncorhynchus mykiss; Navarrete et al., 2012). Differences among families within a 

population may be indicative of heritable components in the microbiome, defined as the 

proportion of phenotypic variance in a population attributable to additive genetic variance 

(Visscher, Hill & Wray, 2008). Thus, host-based drivers of the gut microbiome often 

have a strong underlying genetic architecture, which may include among-species, among-

population (within a species) or among-family (within a population) variance 

components; however, population effects are perhaps the least understood (Ghanbari et 

al., 2015). More importantly, there are currently no studies on interpopulation effects on 

microbiome composition in fish using controlled environmental conditions. Collectively, 

the literature shows that the host genome plays a pivotal role in determining the 

composition of the microbiome across various fish species, but there is still a gap in our 

understanding of the variance components of host genetic effects on the microbiome in 

fish. 

In addition to host genetics, it is known that the host environment affects gut 

microbiome establishment during various ontogenetic stages of fish development 

(Llewellyn et al., 2016; Bledsoe, Peterson, Swanson & Small, 2016). Fish ingest water 

and particulate matter directly from their aquatic environment, which unquestionably 

affects their gut microbiome (Llewellyn et al., 2014; Ghanbari et al., 2015). Various 

environmental conditions such as diet (Naverrete et al., 2012; Wong et al., 2013; Webster 

et al., 2018), or fish rearing environments (Roeselers et al., 2011; Wong et al., 2013; 

Webster et. al 2018; Parshukov et al., 2019) also contribute strongly to microbiome 
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variation. Thus, it is critical to consider the potential environmental factors and control 

for them while investigating non-environmental drivers of the microbiome (Goodrich et 

al., 2014a; Ghanbari et al., 2015). 

Selection pressures are known to act on the host-microbiome interactions, leading 

to co-evolved microbiomes across host species over evolutionary timescales (O’Brien, 

Webster, Miller & Bourne, 2019). These co-evolutionary dynamics may be demonstrated, 

for example, as genetic co-divergence of the host and their associated microbiome, as 

evident between ecotypes of Trinidadian guppies (Poecilia reticulata; Sullam et al., 

2015) and among Atlantic salmon populations (Webster et al., 2018). In addition, these 

patterns may be reinforced by the presence of strong metabolic complementarity between 

the microbiome and its host (O’Brien et al., 2019), as reported in diet and microbiome 

correlations across mammals (Ley et al., 2008), and in fish (Sullam et al., 2015). 

Therefore, the microbiome itself reflects evolutionary selection pressures acting at the 

host level and the microbial cell level (Ley et al., 2006). Despite this, evidence for 

reciprocal adaptation in host-microbiome systems as a result of bi-directional selection is 

weak, and more empirical work is needed to better understand co-evolutionary dynamics 

(Foster, Schulter, Coyte & Rakoff-Nahoum, 2017; Koskella, Hall & Metcalf, 2017). 

While host-microbiome co-evolution in fish has not been explicitly characterized, 

salmonids are known to show strong patterns of population divergence, consistent with 

local adaptation (Garcia de Leaniz et al., 2017). Putative locally adapted traits are 

exhibited across many populations of Atlantic and Pacific salmon, ranging from trophic 

ecology and feeding behavior to immune and metabolic function (reviewed in Fraser, 

Weir, Bernatchez, Hansen & Taylor, 2011). Since the host itself exerts selection 



 

30 
 

pressures on its microbial community through host related factors (Ley et al., 2006), it is 

intuitive that if host populations were locally adapted to their environments, that 

microbiome differences would be observed among-populations as a consequence of 

variation in host-related factors. However, the role of host genetic architecture in 

determining fish microbiome composition is under-studied, especially at the among-

population and among family (within-population) levels. Demonstrating among-

population microbiome variation in a controlled environmental setting may therefore 

indicate the microbiome’s co-divergence with the host genome. 

Perhaps among the best studied genetic architectures of non-model animals are 

those of salmonids’, including the Pacific salmon (Waples, Naish & Primmer, 2019). In 

this study, we focus on the economically and ecologically important Chinook salmon 

(Oncorhychus tshawytscha), which are native to the North Pacific Ocean and grow to be 

the largest of the Pacific salmon species (Quinn, 2018; Ohlberger, Ward, Schindler & 

Lewis, 2018). Chinook salmon are anadromous and semelparous, and many populations 

remain in coastal waters until they return their natal streams to spawn (Rounsefell, 1958; 

Quinn, 2018). Underpinning the ecological significance of salmon is their importance in 

nutrient cycling, freshwater and saltwater trophic ecology, community behavioural 

interactions, and evolutionary relationships (reviewed in Hilderbrand, Farley, Schwartz & 

Robbins, 2004). Salmon production contributes significantly to the Canadian economy: 

Over 123,000 tonnes of salmon were farmed in 2018 alone, accounting for over 1.1 

billion Canadian dollars (DFO, 2018). While there are limited recent statistics to partition 

the economic contribution of Chinook salmon from that of all salmon species, they are 

the largest cultured species of salmon in BC and have domesticated in the province since 
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the 1970s, accounting for a fifth of all farmed salmon stocks in the province (Kim, 

Withler, Ritland & Cheng 2004). The mid- and distal- gut microbiome of farmed 

Chinook salmon from New Zealand was recently sequenced and Vibrionaceae was 

dominant in both (Ciric et al., 2018; Ciric et al., 2019). Furthermore, the diversity and 

composition of the gut microbiome in Chinook salmon is known not react to a soybean 

(plant) based diet (Booman et al., 2018). However, other than those studies, Chinook 

salmon gut microbiome dynamics research has not been reported. 

This study aims to address two main questions: 1) do evolutionary forces reflective 

of genetic divergence among natural populations affect the microbiome composition in 

controlled hybrid crosses of Chinook salmon?, and 2) are there within-population sire 

effects that act on the microbiome differentially among populations, reflective of additive 

genetic variance (heritability) effects? Salmonids are known to lend themselves to 

traditional breeding designs, permitting us to partition genetic and environmental sources 

of variance (Lynch & Wash, 1998). Here, we reared half-sib families from a single fully-

domesticated and seven wild-domestic hybrid crosses of Chinook salmon in replicated 

pens to test for population and within-population additive genetic effects on gut 

microbiome diversity and composition. Measuring the extent of gut microbiome variation 

among and within populations is important in efforts pertaining to the management and 

conservation of salmonids (Garcia de Leaniz et al., 2007). 

Materials and Methods 

Field collections, breeding design and rearing environment 

All fieldwork was carried out at Yellow Island Aquaculture Ltd. (YIAL), a Chinook 

salmon hatchery and organic-based farm located east of Campbell River on Quadra 
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Island, Vancouver Island, British Columbia, Canada (Figure 2.1). Wild sourced eggs 

from Robertson Creek and milt from Big Qualicum were used to produce the seven-

generation, fully-domesticated, stock of Yellow Island (YIAL), which has been in 

production since 1985. Eggs from 17 highly inbred female (offspring from a self-crossed 

hermaphrodite) were mixed, and subsets of the mixed eggs were individually fertilized 

using 10 sires from each of the domestic wild stocks of Chinook salmon (details of 

breeding in Semeniuk et al., 2019). This produced 80 full- and half-sib families 

belonging to seven outcrossed hybrid stocks (YIAL x Wild) and a fully inbred 

domesticated stock (YIAL x YIAL; Figure 2.1). Consequently, the maternal line is 

identical for all crosses, but the paternal line for those crosses varies depending on the 

geographical origin of the paternal line. The aim of this breeding design was to minimize 

maternal effects (Heath, Fox & Heath, 1999; Semeniuk et al., 2019), while allowing the 

characterization of the genetic architecture underlying the microbiome variation due to 

sire (additive genetic variation) effects, pen (environmental) effects, and hybrid cross or 

‘population’ effects. Husbandry conditions are detailed in Semeniuk et al. (2019). 



 

33 
 

 

Figure 2.1. Map of stock sources of the male Chinook salmon used for fertilization 
of eight pure and hybrid crosses used in this study. Crosses included pure (YIAL) and 
hybrid (CAP, CHILL, NIT, PUNT, RC, BQ, QUIN) crosses of Chinook salmon. 
Abbreviations: Robertson Creek “RC”, Big Qualicum River “BQ”, Capilano River 
“CAP”, Chilliwack River “CHILL”, Nitinat River “NIT”, Puntledge River “PUNT”, 
Quinsam River “QUIN”. 

Sample collection, DNA extraction and next generation sequencing 

A subset of 2 year-old fish ranging from 10 to 25 (mean size = 182g) was randomly 

selected from each pen (Sampling distribution in Appendix A1), and the fish were 

humanely euthanized and sacrificed to sample the gut contents. To obtain gut content 

samples for DNA extraction, the body cavity was cut open with a sterile scalpel and the 

distal gut of each offspring was collected. We chose to study the distal gut as opposed to 

other compartments due to the lower alpha diversity associated with that part of that gut 
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(McDonald, Schreier & Watts, 2012 ; Gajardo et al., 2016), reflective of a specialized 

(McDonald, Schreier & Watts, 2012) or well-adapted microbial community (Gajardo et 

al., 2016) in that region. The gut samples were immediately stored in RNAlaterTM for 

transport to the research facility, where it was stored in the freezer at -20oC until DNA 

extraction. 

We extracted DNA from gut content (digesta) of the distal intestine using 

commercially available E.Z.N.A Stool DNA Kit (OMEGA Bio-tek) following the 

manufacturer’s protocol. Next generation sequencing library construction was completed 

in two steps as previously described (He et al., 2017). Briefly, the universal primer set of 

787F (V5F; ATTAGATACCCNGGTAG) and 1046R (V6R; 

CGACAGCCATGCANCACCT) was first used to PCR amplify the 16S rRNA encoding 

gene sequences containing the V5-V6 hypervariable regions. A short, Ion Torrent adaptor 

sequence was added to the 5’ end of the forward (acctgcctgccg) and reverse 

(acgccaccgagc) primers. The PCR product was visualized for amplification success on a 

2% agarose gel, and PCR product purification was then carried out using Agencourt 

AMPure XP beads (Beckman Coulter Genomics GmbH, Mississauga, ON, Canada). A 

second short-cycle of PCR was conducted to ligate adaptor and the barcode sequences to 

the amplicon using purified PCR product from the first round PCR. The second round of 

PCR used: forward primer UniA 

(CCATCTCATCCCTGCGTGTCTCCGACTCAGXXXXXXXXXXGATacctgcctgccg), 

and reverse primer UniB (CCTCTCTATGGGCAGTCGGTGATacgccaccgagc), where 

the underlined sequence in UniA consisted of unique 10-12 bp barcode sequences 

necessary for the sample demultiplexing in sequence analysis and the lower-case 
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sequence were the reverse compliment of the added sequence in the first primer set. 

Barcoded samples were combined based on PCR band intensity and a commercially 

available kit (GenCatchTM, Epoch Life Science, Inc., Sugar Land, TX., USA) was used to 

purify the PCR product from incomplete amplicons and primer dimers. The final library 

was sequenced with an Ion Torrent™ Personalized Genome Machine (Thermo Fisher 

Scientific, Inc., Mississauga, Canada). 

Sequence processing and data analysis 

Sequence quality checks were initially conducted using personal genome machine (PGM) 

software (Torrent Suite™, v5.6) using default parameters to conduct the following tasks: 

1) removal of mixed clonal libraries on Ion Sphere Particles (ISPs) known as polyclonals, 

2) removal of low-quality sequences, and 3) removal of sequences with low quality data 

at the 3’ end of the read. 

Unless otherwise stated, all sequence processing was performed using the 

Quantitative Insights into Microbial Ecology (QIIME) pipeline, v1.9.1 with default 

parameters (Caporaso et al., 2010). Briefly, raw sequences were processed with a Phred 

quality score cut-off of 25 and then demultiplexed. Any raw sequence with one or more 

mismatches in the primer sequence were detected and excluded. In addition, forward and 

reverse primer sequences, and barcode and adapter sequences were removed. Chimeric 

sequences were detected using USEARCH v6.1 (Edgar, 2010) and excluded from 

analysis. To perform operational taxonomic unit (OTU) clustering, the open reference 

approach in QIIME was used with default parameters and a 97% sequence identity 

threshold. In this approach, clustering is completed with the UCLUST algorithm (Edgar, 

2010), wherein a reference database was used to determine a cluster of sequences, and 
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unassigned sequences were allowed to cluster de novo (Caporaso et al., 2010). To assign 

taxonomy to OTUs, alignment of candidate OTU sequences was completed in PyNAST 

(Caporaso et al., 2009) against the GreenGenes database (v13.8) at 90% sequence 

identity using UCLUST (Edgar, 2010). 

After sequence processing in QIIME, 6,411,635 high quality sequences (out of 

6,602,610 usable sequences) remained for analyses. After filtering unassigned taxa 

OTUs, and OTUs from Archaea, mitochondria and Chloroplasts, a total of 8,038 unique 

OTUs were identified, with 6,317,692 working sequences (out of 6,411,635) and used for 

all subsequent statistical analyses. After sequence filtering and alignment, any samples 

with 3,000 reads or less were dropped from all statistical analyses. The mean sample 

depth across all samples was 22,871, and the range was 3,061 to 175,783 reads per gut 

sample. In the final analysis, a total of 278 gut samples were used (Appendix A1). 

Alpha Diversity analyses 

To estimate diversity and richness of the microbiomes, the Shannon and Chao1 indices 

were computed for all samples in QIIME by rarefaction with 999 iterations using a 3000-

sequence cutoff, and the average was calculated across all bootstrap runs. The purpose of 

this analysis was to ensure comparable estimates of alpha diversity across samples with 

non-uniform sequencing depth. To test for differences from the overall means in alpha 

diversity, linear mixed effects models were fit for Shannon diversity and Chao1 indices, 

and likelihood ratio tests (LRTs) were used to test for the significance of cross, sire 

(nested within stock) and pen (nested within stock) effects on each index. To test for 

specific differences between pairs of hybrid-crosses outside of the grand mean, multiple 

t-tests were conducted in the emmeans package (v1.3.5; Lenth, Singmann, Love, 
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Buerkner & Herve, 2018) in R (v3.6.0; R Core Team, 2016), and corrections for multiple 

tests were made using false discovery rate (BH; Benjamini & Hochberg, 1995).  

To explore differences in the microbiome community structure, OTUs with 3 reads 

or less across all samples were discarded from the analysis. Then, the number of 

sequences across all samples was normalized to relative frequencies using the cumulative 

sum scaling (CSS) technique (Paulson, Stine, Bravo & Pop, 2013), and Bray-Curtis 

dissimilarity matrices were generated using adonis in the R (v3.6.0; R Core Team, 2016) 

package vegan (v2.5-5) for beta diversity analysis (Oksanen et al., 2013). The CSS 

normalization method was chosen as it considerably enhances PCoA clustering (Paulson 

et al., 2013) and outperforms other normalization techniques in clustering accuracy, 

especially for libraries with high variation in the pair-wise distance measures, such as 

observed in this study (Bray-Curtis; Weiss et al., 2017). 

To visualize patterns of differences in the microbiome composition among 

population crosses, principal coordinate analyses (PCoA) were performed on the Bray-

Curtis dissimilarity matrix in PAST (v3.25; Hammer, Harper & Ryan 2001). To simplify 

the visualization of a large number of samples (n = 278) on the PCoA plots, the averages 

and 95% confidence intervals of the first two principle coordinates were calculated across 

crosses and used to construct a representative coordinate of each cross on the plots.  

To characterize the microbiome composition among crosses, a list of all OTUs 

present in each stock was created and an intersection plot was created using the UpSetR 

package (v1.4.0; Lex, Gehenborh, Strobelt, Vuillemot & Pfister, 2014) in R (v3.6.0; R 

Core Team, 2016). The intersection plot shows the OTUs found exclusively in certain 

stocks, and OTUs found commonly among multiple stocks. 
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To test for cross, sire and pen effects on the microbiome community structure, a 

nested form of the permutational multivariate analysis of variance (PERMANOVA; 

Anderson, 2001) was used in the vegan package (v2.5-5) using the adonis function on the 

Bray-Curtis dissimilarity matrices with 9999 permutations. The model was used to test 

for among-cross effects, among sires (within cross) effects, and between pens (within 

cross) effects, with the strata argument specified at the pen-level. The mean sum square 

values were subsequently used to partition the variance explained due to all factors. 

Separate models were also constructed for each stock to partition the variance explained 

due to sire and pen effects within each stock separately, and to test for their effects. To 

further explore specific patterns in community composition differences in the 

microbiome among populations, ad-hoc test comparisons were conducted using 9999 

permutations to quantitatively assess the differences among stocks using adonis in the R 

(v3.6.0; R Core Team, 2016) vegan package (v2.5-5). Corrections for multiple 

simultaneous ad hoc tests were adjusted using BH (Benjamini & Hochberg 1995). 

OTU and bacterial family-level abundance analysis 

To explore variation in the microbiome at the level of taxonomic groups, unique OTUs 

that were most abundant, and bacterial families (consisting of OTUs that were identified 

and collapsed to the family level), were used for differential abundance analyses. Unique 

OTUs and taxonomic families that were most abundant with 3000 and 1000 sequences or 

more, respectively, were selected for analysis. In total, 110 OTUs and 45 taxonomic 

families were used, accounting for 92.3% and 99.5% of all sequences and all sequences 

with assigned taxonomy, respectively. Cumulative sum scaling was used to normalize 

OTU and family-level data to account for differences in read-depths and allow for a 
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meaningful differential abundance analysis (Paulson et al., 2013). The OTUs and 

taxonomic families of interest were fitted to zero-inflated linear mixed effects models 

(LMM), with population cross as a fixed factor, and sire and pen as random factors 

nested within cross using the glmmTMB package (v.0.2.3; Magnusson et al., 2017) in R 

(v3.6.0; Brooks et al., 2017). The Akaike information criterion (AIC; Akaike, 1973) was 

calculated for models with competing zero-inflation structures (absent, constant, or 

population cross-specific; Brooks et al., 2017) and used to select the best model in the 

analysis (as suggested in Xu, Paterson, Turpin & Xu, 2015). To test the statistical 

significance of fixed and random terms in the model, a reduced model for each term was 

used, and the change in the log likelihood between the models was compared against a c2 

distribution using the likelihood ratio test (LRT). Estimated marginal means were 

calculated using the selected model and pairwise comparisons were computed in the 

emmeans package (v1.3.5; (Lenth et al., 2018). Multiple comparisons were adjusted for 

each factor (in LRTs) and within each factor (for pairwise comparisons) using false 

discovery rate (Benjamini & Hochberg 1995). Barplots were created using the ggplots2 

(Wickham, 2016) in R (v3.6.0; R Core Development Team, 2016). 

Results 

Factors driving microbiome alpha diversity 

The microbiome community mean observed Chao1 index ranged from 240 (NIT) to 311 

(CHILL), and Shannon’s H diversity ranged from 3.4 (NIT) to 3.9 (YIAL; see Figure 2.2) 

within crosses. Large standard errors in the alpha diversity measures were observed 

across all crosses in the study for Shannon and Chao1 indices. Using LRTs, no significant 

differences were found among crosses, among sires within crosses, or between pens 
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within crosses (Table 2.1). Pairwise t-tests analyses showed no statistically significant 

differences in the means between the pairs of crosses for Chao1 and Shannon indices 

(Table 2.1), corroborating the overall analysis results. Finally, the no significant 

population cross, sire or pen factors effects were found for either of the diversity indices 

(Table 2.1). 

 

Figure 2.2. Mean (± 1 SEM) Shannon's index and Chao1 across all breeding crosses. 
Significant cross differences (P < 0.05) from the grand mean were not found for Chao1 or 
Shannon’s index. No statistically significant pairwise differences between stocks were 
found for either alpha diversity metric. Hybrid cross abbreviations are defined in Figure 
2.1. 
Table 2.1. Alpha diversity analysis results using LMMs. The likelihood ratio test was 
used to calculate the significance of the differences for each alpha diversity metric. 

a-diversity 
index Factor χ2 Df P-value 

Shannon 
Cross 7.45 7 0.38 
Pen 0 2 1 
Sire 0.73 2 0.70 

Chao1 
Cross 14.44 7 0.065 
Pen 0 2 1 
Sire 0.33 2 0.88 
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Factors driving global microbiome composition: Beta diversity 

Overall, the first two PCs accounted for almost 40% of all variance in the Bray-Curtis 

distances across all samples. The clustering patterns revealed YIAL as an outlier cross, 

CHILL as intermediate, and the remaining stocks clustering more closely together on the 

axes (Figure 2.3). Using the overall PERMANOVA model, significant cross effects were 

found in the overall microbial community structure using Bray-Curtis distances (p = 

0.001, R2 = 0.05; Table 2.2). Pairwise PERMANOVA tests using Bray-Curtis distances 

showed that YIAL was statistically different from BQ (p = 0.0028), CAP (p = 0.005), 

NIT (p = 0.005), PUNT (p = 0.005), QUIN (p = 0.0065), and RC (p = 0.005) but not from 

CHILL (p > 0.05), and all other pairwise PERMANOVA comparisons showed a lack of 

significant pairwise differences (Table 2.3). 
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Figure 2.3. Principal coordinate analysis (PCoA) plot with the first two principal 
coordinate (PC) values. PCoA used pairwise Bray-Curtis distances across all gut 
microbiome samples from Chinook salmon hybrid offspring with sires from each 
identified source hybrid cross (see Figure 2.1). Each open circle represents the average 
PC coordinates for a breeding cross, and error bars represent 95% confidence intervals 
(CI). Hybrid cross abbreviations are defined in Figure 2.1. 
Table 2.2. Overall PERMANOVA analysis using Bray-Curtis dissimilarity 
distances. Sire and Pen factors are nested within Cross. (Significance codes: ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05) 

Factor Df Sums of Squares Mean Squares F-Model R2 P-value 
Cross 7 3.72 0.53 1.97 0.05 0.001*** 
Sire 59 19.91 0.34 1.25 0.25 0.002** 
Pen 8 2.17 0.27 1.01 0.03 0.443 
Residuals 203 54.68 0.27  0.68  

Total 277 80.47 1.41  1.00  
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Table 2.3. Pairwise PERMANOVA comparisons (BH-corrected p-values) based on 
Bray-Curtis. The number of permutations used in the analysis was 9999. P-values are 
corrected to two significant figures. (Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05) 
 BQ CAP CHILL NIT PUNT QUIN RC 
CAP 0.75       

CHILL 0.067 0.08      

NIT 0.52 0.79 0.067     

PUNT 0.71 0.76 0.067 0.75    

QUIN 0.31 0.54 0.076 0.79 0.50   

RC 0.75 0.87 0.11 0.76 0.70 0.75  

YIAL 0.0028** 0.005** 0.097 0.005** 0.005** 0.0065** 0.005** 

In the overall PERMANOVA model, sire effects were found to have significant 

effects on the microbial community (p = 0.002, R2 = 0.25; Table 2.2). Furthermore, using 

a unique PERMANOVA model for each cross, sire effects on Bray-Curtis distances were 

found to be significant within CHILL and NIT (p = 0.001, R2 = 0.434 and p = 0.006, R2 = 

0.308, respectively), but no significant sire effects were found within other crosses (Table 

2.4). Finally, while pen effects did not contribute significantly to differences in overall 

microbiome community composition for Bray-Curtis distances, a significant difference 

was found between replicate pens for RC (p = 0.021 and R2 = 0.262, Table 2.4). 
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Table 2.4. Population cross-specific results of nested-PERMANOVA analysis using 
the Bray-Curtis distance. Sire and pen factors are nested within population crosses. 
Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05) 

Population 
Cross Factor Df Sum of 

Squares 
Mean 

Squares F-Model R2 P(>F) 

BQ 

Sire 7 2.26 0.32 1.16 0.20 0.20 
Pen 7 1.96 0.28 1.00 0.18 0.48 
Residuals 25 6.98 0.28  0.62  
Total 39 11.21 0.88  1.00  

CAP 

Sire 7 2.24 0.32 1.05 0.24 0.37 
Pen 6 1.13 0.19 0.61 0.12 1.00 
Residuals 19 5.80 0.31  0.63  
Total 32 9.17 0.81  1.00  

CHILL 

Sire 7 3.15 0.45 2.01 0.43 0.001*** 
Pen 6 1.21 0.20 0.90 0.17 0.73 
Residuals 13 2.91 0.22  0.40  
Total 26 7.27 0.87  1.00  

NIT 

Sire 8 3.10 0.39 1.65 0.31 0.006** 
Pen 6 1.80 0.30 1.27 0.18 0.11 
Residuals 22 5.18 0.24  0.51  
Total 36 10.07 0.92  1.00  

PUNT 

Sire 8 2.45 0.31 1.14 0.25 0.21 
Pen 7 2.16 0.31 1.15 0.22 0.21 
Residuals 19 5.11 0.27  0.53  
Total 34 9.73 0.88  1.00  

QUIN 

Sire 8 2.71 0.34 1.22 0.30 0.14 
Pen 7 1.69 0.24 0.87 0.19 0.75 
Residuals 17 4.71 0.28  0.52  
Total 32 9.11 0.86  1.00  

RC 

Sire 7 2.07 0.30 1.21 0.24 0.18 
Pen 6 2.30 0.38 1.56 0.26 0.021* 
Residuals 18 4.41 0.25  0.50  
Total 31 8.78 0.92  1.00  

YIAL 

Sire 7 1.91 0.27 0.97 0.17 0.55 
Pen 8 2.41 0.30 1.06 0.21 0.32 
Residuals 25 7.07 0.28  0.62  
Total 40 11.38 0.86  1.00  
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Factors driving microbiome composition: OTU and family-level differential abundance 

Overall, 1239 OTUs were found to be commo90o78n to all crosses, and the largest 

number of unique OTUs per cross (tripletons removed) were found to be in CHILL (220), 

YIAL (118) and BQ (105; Figure 2.4). 

 

Figure 2.4. Unique OTU analysis presenting the largest overlap sizes and the 
corresponding hybrid crosses of Chinook salmon used in this study. OTUs occurring 
less than 3 times (tripletons) in the dataset were removed prior to the analysis. Overall, 
1,239 OTUs commonly occurred in all crosses. CHILL, YIAL, and BQ were the stocks 
with the greatest number of unique OTUs. Conversely, YIAL, QUIN, and RC showed the 
greatest number of missing OTUs commonly found in other crosses. Hybrid cross 
abbreviations are defined in Figure 2.1. 

After correcting for multiple tests (FDR), significant cross effects were found for 

13 of the 110 tested microbial OTUs in the differential abundance analysis using linear 

mixed effects models (Appendix B1), and sire and pen effects were found for a single 

OTU (OTU.315506; Order: Lactobacillales). YIAL and CHILL crosses showed the most 

substantial divergence at the OTU level (Figure 2.5). Specifically, YIAL was 

significantly different from at least one stock for 11 of the 13 OTUs showing significant 
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cross effects, while additionally showing the highest or second highest relative abundance 

in 8 of them, after normalizing for uniform sequencing depth (Figure 2.5). YIAL 

exclusively accounted for all the pairwise differences in 3 OTUs (OTU.1061429, family: 

Comamonadaceae; OTU.1085832, family: Streptococcus; OTU.567840, family: 

Bradyrhizobiaceae), and CHILL in a similar way for a single OTU (OTU.315506, 

family: Lactobacillales). Interestingly, each of RC and NIT additionally showed 

significant pairwise comparison differences for a single OTU (OTU.145914, family: 

Mycoplasmataceae; OTU.NR.92, family: Sphingomonadaceae). A single OTU did not 

occur in CAP: OTU.315506 (Order: Lactobacillales). 
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Figure 2.5. Histograms showing relative frequencies of candidate gut microbiome 
OTUs across all eight Chinook salmon hybrid crosses. Shown are 13 OTUs that 
showed significant differences among the crosses. Error bars represent standard error of 
the mean. Letters above the error bars represent post-hoc pairwise statistical differences 
among crosses, based on multiple student T tests of the mean (P < 0.05), adjusted for 
multiple comparisons with BH. Hybrid cross abbreviations are defined in Figure 2.1. 

Using linear mixed effects model to test for hybrid cross, sire and pen effects, 

significant cross differences were found for seven (out of 44) tested taxonomic families 

(Appendix B2), pen effects were found for 3 taxonomic families (Streptococcaceae, 
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Carnobacteriaceae, and Lactobacillaceae) and sire effects were found for a single 

taxonomic family (Bacillaceae). Similar to OTU-level differences, YIAL and CHILL 

showed the greatest divergence in pairwise comparisons across all taxonomic families 

(Figure 2.6). Substantial divergence was exhibited by YIAL in 4 taxonomic families 

(Bacillaceae, Streptococcaceae, Chitinophagaceae, and Mycobacteriaceae) and by 

CHILL in 2 taxonomic families (Leuconostocaceae, Lactobacillaceae), and by both 

crosses in Carnobacteriaceae (Figure 2.6). 

 

Figure 2.6. Histograms showing relative frequencies of candidate gut microbiome 
taxa families across all eight Chinook salmon hybrid crosses. Shown are seven 
taxonomic families that showed significant differences among the crosses. Error bars 
represent standard error of the mean. Letters above the error bars represent post-hoc 
pairwise statistical differences among crosses, based on multiple student T tests of the 
mean (P < 0.05), adjusted for multiple comparisons with BH. Hybrid cross abbreviations 
are defined in Figure 2.1. 

Discussion 

Host effects on the microbiome are less commonly reported at the among-population than 

within-population level, since many studies are based on single populations, albeit often 

involving various treatments (see Tables 2 & 3, Ghanbari et al., 2015). Here, we provide 

evidence for significant cross effects reflective of strong inter-population genetic 

divergence effects, and significant sire effects indicative of additive genetics effects 
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acting within populations on the composition of the microbiome at the community 

(alpha- and beta-diversity) and finer (OTUs and taxonomic families) levels of the 

microbiome. In addition, we also found significant, but small and rare, pen effects that 

reflect environmental effects. The pen effects were not expected as the replicate pens 

were designed to be as similar as possible (size, water quality, feeding regime, etc.); 

however, these differences are likely due to the generally reported high magnitude of 

environmental drivers on the microbiome (Wu et al., 2013; Goodrich et al., 2014a; 

Sullam et al., 2015; Rothschild et al., 2018). Based on the published literature for fish, 

we expected to find among-population gut microbiome differences, indicative of 

previously reported host genetic divergence effects and the known role of the microbiome 

in assisting the hosts to cope with their environment (Sullam et al., 2015; Webster et al., 

2018). As for sire effects, the differences observed in the microbiome phenotypic 

outcome were not expected due to the generally low heritability reported for humans 

(Yatsunenko et al., 2012; Kurilshikov, Wijmenga, Fu & Zhernakova, 2017; Rothschild et 

al., 2018; but see Goodrich et al., 2014b), although this is the first report of additive 

genetic variation studies in fish microbiome composition. Given that all of the offspring 

in this study were reared in a common environment, from a common dam, two 

evolutionary processes may explain the among-stock differences found among the 

microbiomes: genetic drift and natural selection. Overall, the pattern of observed 

microbiome-based phenotypic differences among population crosses are consistent with 

patterns of host-microbiome co-divergence (Sullam et al., 2015), while the pattern of 

within-population additive genetic variance may have been shaped by population-specific 
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selection pressures resulting from local stressors experienced in their native habitats 

(Savolainen, Lascoux & Merilä, 2013). 

We found significant and consistent population cross effects on the composition of 

the microbiome, which reflect, primarily, among-population effects. Interpopulation 

differences and effects of origin (wild vs. hatchery) on the gut microbiome were recently 

reported using three hatchery-reared and four wild Atlantic salmon populations, showing 

substantial differences in the overall microbiome composition (beta diversity) and the 

core microbiome (Webster et al., 2018). While the study did find larger differences 

among the genetically more divergent populations (based on microsatellite marker 

genotypes), it lacked the power to control for environmental effects, and diet was 

suspected to be a major factor driving the variation in composition of the microbiome 

among the studied populations (Webster et al., 2018). It is critical to note in the breeding 

design used in this study, emphasis was placed on studying the contribution of cross and 

sire effects while controlling for maternal effects on growth (Semeniuk et al., 2019). In 

our breeding design, we were able to estimate additive effects while virtually eliminating 

the potential for maternal effects. Maternal effects are composed of environmental and 

dam effects (Aykanat, Bryden & Heath, 2012a) and are known to contribute substantially 

to among-population phenotypic variation in Chinook salmon for life history and fitness-

related traits (Aykanat, Heath, Dixon & Heath, 2012b). By using a common dam in our 

breeding design, we eliminated the potential for these maternal effects, thereby 

potentially limiting the detection of the maternal adaptive microbiome variance, such as 

those relating to immunity in Chinook salmon (Aykanat et al., 2012a). 
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While consistent beta diversity population effects were observed, alpha diversity 

effects were not, despite other studies that did report them (Dehler, Secombes & Martin, 

2017; Reveco et al., 2014; Webster et al., 2018). This might be due to the common and 

controlled pens. In this study, the magnitude of population cross effects on the 

microbiome varied in a consistent manner across analytical approaches: beta diversity 

and variation at the individual OTU or taxonomic family levels showed that the fully-

domesticated cross, YIAL, exhibited the most divergent microbiome characteristics 

relative to all the hybrid crosses. It is likely that these differences derive from strong 

domestication selective pressures experienced within the YIAL production stock, perhaps 

driving rapid divergence in both the host and gut microbiome community. Interestingly, 

YIAL was not found to be significantly different in microbial community structure from 

CHILL, indicating that CHILL possess an intermediate microbiome structure. Although 

we found no differences in pairwise comparisons of microbial community structure level 

for CHILL versus the other hybrid cross stocks, they did approach significance for some 

populations (BQ, NIT, and PUNT), which suggests that functional differences may be 

present, but were undetectable given the statistical power of this study. Using the same 

study system and hybrid crosses, the CHILL hybrid cross was shown to vary from the 

other crosses in related studies. For example, in a study designed to detect gene 

expression differences among and within the hybrid crosses, CHILL exhibited a marked 

difference in gene transcription profile relative to the other hybrid cross stocks (including 

YIAL) consistent with the observe divergence pattern in this study (Toews, Wellband, 

Dixon & Heath, 2019). Furthermore, over the entire production period, CHILL was found 

to exhibit the lowest survival relative to the other crosses (Semeniuk et al., 2019). Local 
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adaptation occurs when there is strong selection and limited drift effects (Yeaman and 

Otto, 2012). While large floods were experienced in the Chilliwack River (CHILL) 

between the years of 1952 and 1980 (Ham, 1996), conclusions about possible drift 

genetic (e.g. bottleneck events) are difficult to make, as the impact of those floods on 

Chilliwack River Chinook salmon stocks is unknown (Bradford, 1995). While we cannot 

rule out genetic drift acting to differentiate our study populations for gut microbiome 

composition (e.g., Whitehead, 2012), the patterns we observed at the OTU and bacterial 

family levels —which may involve crucial symbiotic roles— suggest divergent selection 

effects (Kawecki and Ebert, 2004). Therefore, our individual taxon analyses (at the OTU 

and taxonomic family levels) allowed us to explore potentially functional patterns of 

differences among the hybrid cross stocks. With some exceptions, YIAL and CHILL 

harboured significantly lower counts of several lactic acid bacteria (LABs), thought to 

contribute favourably to host health in fish (Ingerslev et al., 2014; He, Chaganti & Heath, 

2018). If higher LAB abundance is indeed adaptive, this suggests that lower LAB levels 

may account for the low survival observed in CHILL (Semeniuk et al., 2019). However, 

it also leaves the higher levels of Lactobacillales and Lactobacillaceae in CHILL 

unexplained. Interestingly, CHILL also showed high levels of the pathogen Micrococcus 

luteus, which has been associated with health disorders in rainbow trout (Austin and 

Stobie, 1992; Pękala et al., 2018) and brown trout (Salmo trutta; Pękala et al., 2018). 

Together, these patterns suggest that individuals from our hybrid population crosses may 

experience reduced resistance, potentially due to hybrid breakdown, wherein a farmed 

population outbreeding with a wild counterpart results in reduced performance 

(Edmands, 1999; Lehnert, Love, Pitcher, Higgs & Heath, 2014). Furthermore, given that 
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YIAL exhibited intermediate cumulative survival (Semeniuk et al., 2019), this begs the 

question of whether YIAL has adapted to survive in this environment through means 

other than accumulating beneficial bacteria through its multi-generational domesticated 

rearing. Finally, YIAL and CHILL harboured higher counts of OTUs classified as 

Comamonadaceae or Bradyrhizobiaceae, which commonly exhibit biochemical and 

ecological versatility (de Souza, Carrareto Alves, de Mello Varani & de Macedo Lemos, 

2014; Willems, 2014). While not conclusive, these results point towards non-neutral co-

divergence in host genetic architecture and microbiome community structure. Further 

work is needed to characterize the effects culminating in the formation of divergent 

microbiome community compositions among population crosses. 

Significant within-population family differences, or sire effects, allowed us to 

estimate additive genetic variation effects. Additive genetic variation is a critical 

component of the overall genetic architecture for any trait, and it defines the scope for 

traditional evolutionary response to selection (Gjedrem, 1983; Garcia de Leaniz et al., 

2007; Visscher et al., 2008; van Open, Oliver, Putnam & Gates, 2015). Within-

population microbiome variation was found among unrelated families of rainbow trout 

(Naverrete et al., 2012), but estimates of additive genetic variation in fish gut microbiome 

studies are lacking. This study presents the first report of additive genetic variance effects 

on the microbiome composition in fish. While the contribution of additive genetic effects 

to the composition of the gut microbiome in fish has not been studied, efforts have been 

made to quantify it in human studies, mainly showing that the microbiome generally 

exhibits low heritability (Yatsunenko et al., 2012; Kurilshikov et al., 2017; Rothschild et 

al., 2018). In the breeding design used in this study, variation among sires within stocks 
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were estimated using half-sibling families as a measure of additive genetic variance, 

since a common egg source (i.e. highly inbred females combined) was used for all stocks. 

Given this breeding design and previous reports of low additive genetic variance, we 

expected that no additive genetic effects would be observed in this study. Despite that, we 

found consistent additive genetic effects on the on the microbiome composition at the 

beta-diversity level of the microbiome. Interestingly, significant additive genetic effects 

were found to be stock-specific (e.g., CHILL and NIT), perhaps reflecting lower selection 

pressures on the microbiome experienced in those populations. A previous study showed 

that microbial quantitative trait loci (mbQTLs) interact with host immunity to shape the 

gut microbiome in humans (Kurilshikov et al., 2017). Additionally, MHC class II 

complex genotypes contribute to the regulation of the microbiome composition among 

hosts in a sex dependent manner in three-spine stickleback (Gasterosteus aculeatus; 

Bolnick et al., 2014b). Although maternal vertical transmission is unlikely to be 

contributing to our additive genetic variation estimates, the role of paternal vertical 

transmission or other epigenetic effects on offspring microbiome composition have not 

yet been investigated. Variation in underlying genetic architecture (specifically additive 

genetic variance) among populations is critical to predict a population’s response to 

selection and are a requisite for selective commercial (e.g. aquaculture) and non-

commercial (e.g. conservation and restoration) breeding applications (Gjedrem, 1983; 

Visscher et al., 2008; van Open et al., 2015). 

Pairs of replicate net pens for each population were included to allow the 

partitioning of possible environmental effects; however, our use of common rearing 

environments and matched net pens made strong environmental effects on gut 
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microbiome unlikely. Nevertheless, replicate pens effects were found to be significant for 

microbial community composition for the RC hybrid-cross, and in the differential 

abundance analysis at a single OTU (OTU.315506, order Lactobacillales) and three 

taxonomic families (Carnobacteriaceae, Lactobacillaceae and Leuconostocaceae), 

suggesting that some form of environmental effects across pens contributed to 

microbiome variation at the specific taxon level. These environmental effects may be 

explained by fine-scale environmental heterogeneity. Such effects can drive subtle 

phenotypic differences, often complicating the study of local adaptation, or genetics, in 

host-microbe systems (Kaltz & Shykoff, 1998; Savolainen et al., 2013). Furthermore, we 

suspect that uncontrollable variation in social interactions among individuals may exist 

within pens (Gilmour et al., 2005), and drive microbiome differences between replicates. 

This emphasizes the challenge in minimizing the effect of the environmental factors 

driving the gut microbiome, which have been shown to dominate host-related factors in 

humans (Wu et al., 2013; Rothschild et al., 2018). 

In conclusion, our study shows a rarely reported pattern of population-level 

variation in the gut microbiome community in fish. Such a pattern is consistent with local 

adaptation, perhaps due to strong selection associated with seven generations of 

domestication combined with local selection forces acting to create divergent microbiome 

community compositions. Inter-population effects were the largest and most consistent 

drivers of gut microbiome variation among the hybrid cross stocks. Additive genetic 

variance and environmental effects contributed to variation at different hierarchical levels 

of the microbiome, with additive genetic contributing at the overall microbiome 

composition more strongly than pen effects. Microbiome OTU and taxonomic family 
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effects were found to be population-specific, further supporting the role of local 

population effects driving microbiome structure, despite rearing in a common 

environment with a common dam. Our results highlight the importance of preserving 

genetic variation in Chinook salmon to respond to environmental heterogeneity especially 

in the face of oceanic climate changes and habitat degradation from urban development 

and anthropogenic practices. 
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CHAPTER THREE 
Maternal effects on the egg-surface microbiome of Chinook salmon (Oncorhynchus 

tshawytscha) 

Introduction 

Organisms host complex microbial communities (“microbiomes”; McFall-Ngai et al., 

2013) across diverse organs, and these microbiomes are known to play important roles in 

host health and performance (de Bruijn et al., 2017). Previous work has shown that the 

ontogenesis of the microbiome is generally a multi-step process involving interactions 

with the environment, host-specific selective immune factors, feeding-mediated microbial 

diversification (reviewed in Llewellyn et al., 2014), and maternal vertical transmission 

(reviewed in Funkhouser & Bordenstein, 2013, and in Rosenberg & Rosenberg, 2013). 

Despite recent reports of ontogenetic effects on microbiome community composition and 

diversity in early and late fish life history stages (Bledsoe et al., 2016; Llewellyn et al., 

2016), few studies have characterized the composition and function of the “egg-

associated microbiome” (de Bruijn et al., 2017). The egg-associated microbiome is used 

to describe microbial communities from either whole-egg homogenates or those that are 

found on external surfaces of eggs (Wilkins et al., 2015a; Wilkins et al., 2015b; Wilkins 

et al., 2016). Historically, studies on egg-associated microbes focused on infective 

pathogenic strains during early egg development in salmonids, or “vertical transmission” 

(Evelyn et al., 1986a; Cipriano 2005; Thoen et al., 2011). The outer layer of fish eggs 

enables surface cell adhesion and colonization by microorganisms from the environment 

(Hansen et al., 1989; Ringo and Birkbeck 1999), where bacteria colonize eggs as soon as 

they are laid (Yoshimizu et al., 1980). Pathogenic bacteria capitalize on these growth-

promoting conditions, proliferating on the surfaces of embryos prior to hatching, and 
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rapidly infect larvae shortly after hatching occurs (Olafsen, 1984; Olafsen & Hansen, 

1992; Bergh & Hansen, 1992). In spite of the overall negative effects observed in single-

strain infection studies, the majority of bacteria isolated from fish hatcheries are not 

found to be harmful to their hosts (Verner-Jeffreys et al., 2003). For example, the 

microbiome bacteria play a critical role in egg health, forming the first line of defense 

against potential invading opportunistic pathogens (Boutin et al., 2012; Liu et al., 2014) 

— quite different from the pathogen-focused studies. The microbiome continues to 

develop once the fish start feeding, and numerous studies have shown evidence of diet-

mediated gut microbiome establishment at this stage (Korsnes et al., 2006; Reid et al., 

2009; Lauzon et al., 2010; Bledsoe et al., 2012; Ingreslev et al., 2014). However, in 

catfish (Ictalurus punctatus) the gut microbiome community structure stabilizes around 4 

months post-hatch (Bledsoe et al., 2012). Therefore, due to the presence of egg-

associated pathogens and the known role of the microbiome in host health and 

performance, more studies should focus on characterizing the microbiome development 

in early life stages in fish (Llewellyn et al., 2014). 

Despite the early work focusing on vertical transmission of pathogens in eggs, there 

is limited published research on the impact of environmental and host-related factors 

driving egg-associated microbiome diversity and composition (Wilkins et al., 2015a; de 

Bruijn et al., 2017). The microbiome of fish during their early-life stages was initially 

thought to be determined primarily by the surrounding aquatic environment (Llewellyn et 

al., 2014; Ghanbari et al., 2015). With the advent of next generation sequencing (NGS) 

technology and hence microbial community meta-barcoding, the estimation of various 

environmental and host effects on microbial communities became feasible (Funkhouser 
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& Bordenstein, 2013). Studies using NGS showed that fish egg-associated microbiomes 

are driven by variation in pathogenic stress (Liu et al., 2014), water temperature (Wilkins 

et al., 2015a), host development stage (Wilkins et al., 2015b), nutrient-availability, and 

parental effects (i.e. sire and dam effects; Wilkins et al., 2016). Furthermore, culture-

based studies show species-specific differences in microbial communities enveloping the 

chorion (outer layer of eggs), suggesting a host receptor-mediated selective process in 

recruiting microbial communities to developing eggs (Hansen & Olfasen, 1989; Hansen 

& Olfasen, 1999). Host genome effects on microbiome community structure may be 

supplemented by maternal effects, which are mediated by maternal-environmental or 

maternal-genome contributions (Falconer, 1960; Heath & Blouw, 1998; Aykanat et al., 

2012a). Although maternal effects have been demonstrated for the eyed-egg associated 

microbiome of brown trout (Salmo trutta; Wilkins et al., 2016), the potential mechanisms 

driving those reported effects have not been explored. Overall, despite recent studies that 

partition the role of genetics and the environment on eyed egg microbiome composition 

(Wilkins et al., 2016), there is still a lack of certainty on what controls the egg surface 

microbiome, but it is expected that the aquatic environmental microbial community 

would be the major factor. 

Chinook salmon are a species of Pacific salmonid occurring from northern Asia 

through North America (Beacham et al., 2016). Female Chinook salmon prepare nests 

(redds) in the gravel and guard the redds from disturbance from other salmon (Quinn 

2018). Maternal effects have been widely documented in Chinook salmon, and include, 

for example, immune response transcription variation (Aykanat et al., 2012a), offspring 

size (Aykanat et al., 2012b; Heath et al., 1999), and flesh pigmentation (McCallum et al., 



 

66 
 

1987). Maternal vertical transmission of the causative agent of enteric redmouth disease 

(ERM), Yersinia ruckeri, has been documented on unfertilized egg, eyed eggs, and fry 

surfaces (Glenn et al., 2014). Further, intra-ovum infections with Renibacterium 

salmoninarum have been reported in Chinook salmon when exposed to ovarian fluid with 

higher concentrations of this bacterium agent (Lee & Evelyn, 1980). While there are no 

published reports of the egg-associated microbiome in Chinook salmon, a few studies 

have reported the gut microbiome in Chinook salmon (Booman et al., 2018; Ciric et al., 

2018; Ciric et al., 2019; Chapter 2, this thesis). Detailed study of Chinook salmon 

microbiome composition and function is particularly relevant as Chinook salmon have 

important economic and ecological significance. In 2017, the aquaculture production of 

Chinook salmon was in excess of 14,800 tonnes, valued at over $195 million USD, while 

the global Chinook salmon capture amounted to 5,751 tonnes (FAO, 2017). Chinook 

salmon are key to ecosystem ecology through nutrient cycling (Helfield et al., 2001), 

trophic ecology (Koehler et al., 2006), behavioural (Bernatchez & Dodson, 1987), and 

evolutionary relationships (Waples et al., 2004).  

While gut and skin microbiome dynamics have been widely studied in fish 

(Ghanbari et al., 2014), the mechanisms of host-associated microbial community 

development are not well understood (Llewellyn et al., 2014). To address this knowledge 

gap, we quantify maternal effects on bacterial egg surface microbiome diversity and 

composition in domesticated Chinook salmon (Oncorhynchus tshawytscha) from British 

Columbia (BC). Here, we measured dam effects, combining all genetic and 

environmental components of maternal inheritance, and tested for vertical transmission of 

microbial operational taxonomic units (OTUs) from the ovarian fluid to the egg surface 
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microbiome. Specifically, we estimate the maternal microbiome diversity and 

composition variance among individuals then tested for maternal vertical transmission by 

determining shared OTUs between ovarian fluid and eyed egg surface microbiomes, and 

tested for correlations between the alpha- and beta-diversity of the ovarian fluid and eyed 

eggs surface microbiomes. Estimating maternal effects is an essential component of 

characterizing the role of host genetic architecture on egg-associated microbiome 

diversity and function. Furthermore, determining the composition and mechanisms of 

egg-associated microbiome development is important to a more holistic characterization 

of the factors determining the microbiome composition in early life history stages of 

Chinook salmon, and may guide future conservation efforts of wild populations. 

Materials and Methods 

Experimental fish, and offspring maintenance and collection 

Fieldwork was completed at Yellow Island Aquaculture Ltd. (YIAL), a commercial 

Pacific salmon hatchery and farm, located on Quadra Island, British Columbia, Canada. 

Production fish at YIAL have been domesticated for 11 generations, and were used to 

create all breeding crosses in this study. Briefly, milt from six Chinook salmon sires were 

mixed, and a subset of the mixture was used to fertilize eggs from each of 39 dams. The 

adult fish were humanely euthanized, and ovarian fluid (4 mL) and distal gut samples 

were collected from each dam to study maternal microbiome effects. The ovarian fluid (4 

mL) was sampled from unfertilized eggs by immersing a sterile Falcon tube into bucket 

containing the eggs immediately after expressing the eggs, and subsequently stored in 

11mL of high salt solution (Recipe: 25 mM sodium citrate, 10 mM EDTA, 70.3 g 

ammonium sulfate/100 ml solution, pH 5.31) in sterile 15 mL Flacon tubes for later DNA 
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extraction. The body cavity was cut open with a sterile scalpel, and the hindgut (1 to 1.5 

inches long) was aseptically removed and stored in high salt buffer for later DNA 

extraction. Fertilized eggs from each full-sib family were reared in replicate cells in 

vertical incubation trays at 10°C with dissolved oxygen levels above 90% saturation. 

Accumulated thermal units (ATUs) were used to quantify the development stage of 

fertilized eggs, and at 280 ATUs, the “eyed” eggs were subsampled (15 eggs per tray 

cell) in duplicate. All eggs were stored in high salt buffer (see above) and held at -80°C 

for later DNA extraction. 

Sample processing and DNA Extraction 

Eyed egg surface DNA was collected as described by Liu et al., (2014), with 

modifications to the protocol. Briefly, eyed eggs (n = 15 eggs per sample tube) were first 

rocked for 4 hours in the high salt buffer solution at a low speed using a Nutating 3D 

Platform Mixer (Thermo Scientific) at room temperature. The eggs were removed from 

the supernatant, which was then centrifuged at 20°C for 20 minutes, which precipitated a 

pellet in all tubes. The high salt buffer was removed without disturbing the pellet, and 

400 μL of ddH2O was added to each tube to resuspend the pellet for DNA extraction. The 

ovarian fluid samples were centrifuged at room temperature for 30 mins, then the 

supernatant was removed without disturbing the pellet, and the pellet (yellowish orange) 

was resuspended in 400 uL of ddH2O. DNA from the resuspended pellet (400 uL) from 

the centrifuged ovarian fluid and eyed egg supernatant was extracted using the sucrose 

lysis buffer method as described in Shahraki et al., (2018). DNA from hindgut content 

samples was extracted using a commercially available DNA extraction kit (SKU: D4015-

01, Omega Bio-tek). 
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Library preparation and next generation sequencing 

Library preparation of the PCR amplicons for next generation sequencing (NGS) was 

completed using two rounds of PCR. First, the V5-V6 region 16 rRNA gene (~220bp) 

was amplified from all extracted DNA samples in a 25 μL reaction mixture. The mixture 

contained 15.9 μL of ddH2O; 2.5 μL of 10 ´ buffer (including Mg2+); 3.5 μL of MgSO4 (2 

μM); 0.5 μL dNTPs (10 mM), 0.5 μL of V5F forward primer (10 μM, 

acctgcctgccgATTAGATACCCNGGTAG) and 0.5 μL V6R reverse primer (10 μM, 

acgccaccgagcCGACAGCCATGCANCACCT), 0.1 μL Taq polymerase (5 units/ μL, 

BioBasic, SKU: D0089) and 2 μL of DNA. The thermal cycler protocol consisted of an 

initial denaturation step (95°C for 60s), followed by 28 cycles of repeated denaturation, 

annealing and elongation (95°C for 15s, 55°C for 30s, and 72°C for 30s, respectively) 

and a final elongation stage (72°C for 7 min). The PCR product was visualised on a 2% 

agarose gel to determine amplification success. AMPure XP SPRI paramagnetic beads 

(Beckman Coulter Genomics GmbH, Mississauga, ON, Canada) were used to purify the 

PCR products. A second round of PCR was conducted to ligate adaptor and barcode 

sequences to the first-round amplicon for sample multiplexing in NGS (see Wellband et 

al., 2019). The PCR reaction mixtures (total volume of 20 μL) consisted of 2.3 μL of 

ddH2O, 2.5 μL of 10 ´ Buffer (including Mg2+), 3.5 μL of MgSO4 (2 μM); 0.5 μL dNTPs 

(0.10 mM), 0.5 μL UniA forward primer (10 μM, 

CCATCTCATCCCTGCGTGTCTCCGACTCAGXXXXXXXXXXGATacctgcctgccg), 

0.5 μL UniB reverse primer (10 mM, 

CCTCTCTATGGGCAGTCGGTGATacgccaccgagc), 0.2 μL Taq polymerase (5 units/ 

μL) and 10 μL of purified first PCR product. In this round of PCR, the forward primer 
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consisted of a string of unique sequences (barcodes) for each sample which were used 

later to assign sequences to each sample based on the unique sequence (denoted above by 

XXXXXXXXXX) used for that sample. The thermal cycler protocol consisted of an 

initial denaturation step (95°C for 60s), followed by 7 cycles of repeated denaturation, 

annealing and elongation (95°C for 15s, 60°C for 30s, and 72°C for 30s) and a final 

elongation stage (72°C for 7 min). Amplicons were run on an agarose gel to visualize 

band intensity, and pooling of the amplicons was performed based on relative PCR band 

intensity. A commercially available gel extraction kit (GenCatchTM Gel Extraction Kit, 

Epoch Life Science, Inc., Sugar Land, Texas, USA) was used to purify the barcoded PCR 

product mix. We used the Agilent 2100 Bioanalyzer (Agilent Technologies, CA, U.S.A) 

to measure DNA concentration and verify amplicon size of the sample pool, followed by 

dilution appropriately for NGS (50 pM). The Ion Torrent™ Personalized Genome 

Machine (PGM; Thermo Fisher Scientific, Inc., Streetsville, Canada) was used for 

sequencing using a 318™ chip. 

Sequence filtering and processing 

Initial sequences quality check using default parameters was performed in the PGM 

software (Torrent Suite™ v5.7) to remove polyclonal and low-quality sequences. Further 

quality control and processing was performed on the sequences generated from the PGM 

in Quantitative Insights into Microbial Ecology (QIIME) pipeline, version 1.9.1 

(Caporaso et al., 2010). Raw sequences were demultiplexed, barcodes and adapter 

sequences were removed, and a quality sequence score threshold of 25 was maintained 

across all sequences. We identified and removed chimeric sequences using the 

USEARCH 6.1 algorithm (Edgar et al., 2011). Clustering of sequences into operational 



 

71 
 

taxonomic units (OTUs) was performed and taxonomy assigned with UCLUST (Edgar 

2010) at 97% similarity level. We used a 0.9 consensus threshold against the GreenGenes 

database for taxonomic identification (v13.8; DeSantis et al., 2006). Non-bacterial OTUs 

were identified and removed. After sequence quality filtering, all samples with fewer than 

3,000 reads were removed from further analysis. 

Ordination analysis and community composition across all samples 

The OTU table containing all generated OTUs (n = 12,280; singletons, doubletons, and 

tripletons removed) for eyed egg, dam gut and ovarian fluid samples was normalized 

using cumulative sum scaling (CSS), and then used to generate the Bray-Curtis based 

distance matrices. To visualize relationships among microbiome community composition 

across all samples (eyed egg surface, ovarian fluid, dam gut content), a principal 

coordinates analysis plot was generated in the PAST (v3.25) software package (Hammer 

et al., 2001) based on a Bray-Curtis dissimilarity distance matrix. To test for beta-

diversity level differences among microbiome types (ovarian fluid, dam gut content, and 

eyed egg samples) a permutational multivariate analysis of variance (PERMANOVA) 

with 9,999 permutations was run on the Bray-Curtis distance matrix in PAST (v3.25; 

Hammer et al., 2001). 

Testing maternal effects on eyed egg surface microbiome 

Nested PERMANOVA models were conducted using the adonis function in the vegan 

package (v2.5-6; Oksanen et al., 2013) to test for relative pairwise divergence of the 

surface bacterial community composition within versus among maternal family eyed egg 

samples. The PERMANOVA model (9,999 permutations) for eyed egg surface 

microbiome samples (n = 116) included the 39 dams, with incubation replicates nested 
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within dams. The mean (± 1.0 standard error) of pairwise Bray-Curtis distance between 

eyed egg microbiomes for each dam versus all other dams was calculated and used to 

create a summary histogram in PAST (v3.25; Hammer et al., 2001). 

Passive vertical transmission analyses 

Microbiome sequence data from the ovarian fluid and eyed egg samples for 11 dams 

were used to assess the role of the maternal ovarian fluid as a source of the egg-surface 

microbiome. Only 11 of the 39 maternal families were used due to rejection of ovarian 

fluid microbiome sequencing data (i.e. failed QC). To test whether possible dam effects 

resulted from maternal vertical transmission, we identified the OTUs shared between 

eyed egg surface and ovarian fluid microbiomes within families. The OTUs that were 

shared between eyed egg and ovarian fluid samples from the same family was determined 

across all families; however, very few shared OTUs were found in more than 2 maternal 

families (most were shared in only one family, while some were shared in two families, 

out of 11). We then calculated the ovarian fluid and eyed egg OTU overlap for all 

“common” shared OTUs, that is, those found in at least 3 (out of 11) ovarian-fluid and 

eyed egg sample pairs. The shared OTUs represent evidence for possible vertical 

transmission. The OTU table for 11 pairs of dam and offspring was normalized using 

CSS, and a pairwise Bray-Curtis distance matrix was used to estimate PC1 and PC2 

scores of ovarian fluid microbiome and mean eyed egg surface microbiome OTU 

composition. Pearson correlation coefficients were calculated between ovarian fluid 

microbiome PCs and eyed egg surface microbiomes using the PCoA scores from PC1 

and PC2. Finally, the Chao1 index was estimated for each microbiome from the 11 

family pairs (i.e. ovarian fluid and eyed egg surface) in QIIME v1.9.1 (Caporaso et al., 
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2010) using OTU tables rarefied to minimum library size (3268 reads). We then tested 

for a correlation between ovarian fluid and eyed egg surface microbiome Chao1 index, 

PC1 and PC2 values using Pearson’s correlation in PAST (v3.25; Hammer et al., 2011). 

Ovarian fluid and dam gut content analyses 

To explore the potential for the dam gut microbiome as a source for the ovarian fluid 

microbiome, we compared the microbiomes for 10 dams (these are dams which had both 

ovarian fluid and gut microbiome data). To test for an association between ovarian fluid 

and gut microbiomes, we first normalized the OTU table for the 10 families of interest 

using CSS normalization. We then calculated the pairwise distance matrix using the 

Bray-Curtis dissimilarity index and tested for correlations between ovarian fluid and gut 

microbiome PC1 and PC2 scores using Pearson’s correlation in PAST v3.25 (Hammer et 

al., 2011). To test for correlations in alpha diversity between the two sample types, the 

Chao1 index was estimated for each microbiome from 10 pairs of maternal gut content 

and ovarian fluid sample pairs in QIIME v1.9.1 (Caporaso et al., 2010) using OTU tables 

rarefied to minimum library size (3317 reads). Using the Chao1 index, we tested for 

correlations (using Pearson’s correlation) between ovarian fluid and dam gut diversity in 

PAST v3.25 (Hammer et al., 2011). 

Results 

Ordination analysis and community composition across all samples 

To ensure adequate sequencing depth, samples with less than 3,000 sequence reads were 

removed from the study; the minimum number of reads was 3,024. After removing low-

read samples, a total of 1,094,241 sequences were recovered across all ovarian fluid (n = 
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11), eyed egg surface (n = 116), and dam gut (n = 25) samples. The highest number of 

unique OTUs were found for eyed eggs (8,697), followed by dam gut (1,782) and ovarian 

fluid (912). In total, 7.15% of the OTUs found in the eyed eggs were also found in the 

ovarian fluid, and 40.7% of the OTUs found in the ovarian fluid microbiome were also 

found in the gut microbiome. 

The first two PCs generated from the all microbiome data Bray-Curtis distance 

matrix accounted for 42.1% and 5.0% of the variance, respectively (Figure 3.1). 

Substantial separation was observed between the eyed egg microbiome and the ovarian 

fluid/ gut content microbiome PCs, while the gut and ovarian microbiome composition 

showed substantial overlap (Figure 1). Using permutational multivariate analysis of 

variance (PERMANOVA) of the Bray-Curtis matrix, a significant overall effect was 

found (F-model: 54.82; P = 0.0001) among three microbiomes (ovarian fluid, maternal 

gut and eyed egg surface). Pairwise PERMANOVA tests showed significant differences 

between eyed egg surface versus ovarian fluid (F-model: 38.79; P = 0.0001) and gut 

content (F-model: 88.74; P = 0.0001) OTU composition, but not between ovarian fluid 

and gut content OTU composition (F-model: 1.62; P = 0.076). 
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Figure 3.1. Scatterplot of the PC1 and PC2 from the principal coordinates analysis 
of pairwise Bray-Curtis dissimilarity distances. Samples include ovarian fluid (n = 
11), dam gut content (n = 25) and eyed egg surface (n = 116) microbiomes from Chinook 
salmon. Bray-Curtis distances were calculated at the OTU-level for bacterial OTUs. 

Testing maternal effects on eyed egg surface microbiome 

After sequence filtration and using our minimum read depth cut-off, 116 eyed egg surface 

microbiome samples remained for the microbiome analyses. Of those, 16 families had 

four replicates, 10 had either two or three replicates, and 3 had a single replicate (Sample 

distribution in Appendix C1). After singleton, doubleton and tripleton removal, 764,838 

reads were used for the analysis with 8,697 OTUs. Using nested PERMANOVA, 

significant dam (Df = 38, F-model = 1.53, R2 = 0.41, P < 0.001) and replicate effects (Df 

= 32, F-model = 1.20, R2 = 0.27, P < 0.001) were found for the microbial community 

composition of the eyed egg surface microbiome. The mean Bray-Curtis dissimilarity 

distances for eyed egg samples from each dam against all other unrelated dams ranged 

from 0.50 to 0.59 (Figure 3.2). 
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Figure 3.2. Histogram showing mean pairwise Bray-Curtis dissimilarities of egg eye 
surface microbiome composition among dams (X-axis). Dams are arranged from 
lowest (0.50) to highest (0.59) mean pairwise distance. Error bars represent one standard 
error. 

Passive vertical transmission analyses 

Our correlation analyses used 11 dam-offspring pairs as it was limited by low sequencing 

depth achieved for ovarian fluid samples. These analyses were performed to test for 

vertical transmission of specific microbial taxa from mother (ovarian fluid) to offspring 

(eyed egg surface). A total of 367 OTUs were found to be shared between eyed egg 

surface and ovarian fluid samples from at least a single same family (out of 11). This 

drops to 41 shared OTUs with a two-family threshold, and 7 OTUs when at least three-

family overlap is set as the threshold. We tested for presence/absence patterns indicative 

of passive vertical transmission between ovarian fluid and eyed egg surface relative 

abundance for the 7 overlapping OTUs (three-pair threshold criterion) to allow for a 

conservative analysis (Figure 3.3). Considering the same family, 3 OTUs (OTU 818052, 

genus: Lactococcus; OTU 396697, Clostridium perfingens; OTU 398350, family: 

Bacillaceae) were shared in three families, 2 OTUs (OTU 465079, genus: Bacillus; OTU 

31013, genus: Carnobacterium) were shared in four families, and 2 OTUs (OTU 112, 

genus: Bacillus; OTU 820837, genus: Bacillus) were shared in five families. Using pairs 

of ovarian fluid and eyed eggs corresponding to 11 families, we found no correlation 

between ovarian fluid and eyed egg surface composition based on the first two principal 
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coordinate scores of Bray-Curtis distances (PC1, R = -0.44, P = 0.18; PC2, R = 0.38, P = 

0.25). Further, no significant correlation was found between the Chao1 index for ovarian 

fluid and eyed egg samples from the same family (Pearson’s R = -0.46, P = 0.18). These 

correlation analyses indicate that simple maternal vertical transmission of the ovarian 

fluid microbial community to the surface of the eyed eggs is not likely responsible for the 

observed maternal effects on eyed egg surface microbiome composition. 

 

Figure 3.3. Stacked histogram showing OTU presence/ absence patterns across 
ovarian fluid (OF) and eyed eggs surface (EE) from 11 tested Chinook salmon 
families. Stacked bars represent the number of families in which the candidate OTU was 
detected (OF, or EE or both). 

Ovarian fluid and dam gut analyses 

40.7% of the OTUs found in the ovarian fluid microbiome were also found in the gut 

microbiome. Using pairs of ovarian fluid and dam gut samples corresponding to 10 

different dams (due to read depth limitations for the gut and ovarian fluid samples), we 

found no evidence for a correlation between ovarian fluid and dam gut microbiomes 

based on the first two principal coordinates scores of Bray-Curtis distances (PC1, R = -
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0.22, P = 0.54; PC2, R = 0.63, P = 0.051). However, a significant correlation was found 

for the Chao1 alpha diversity index between the ovarian fluid and dam gut microbial 

communities (R = 0.73, P = 0.017). 

Discussion 

We detected substantial dam effects on the surface bacterial community composition of 

eyed eggs in Chinook salmon. The dam effects reported here reflect a combination of 

maternal and additive genetic effects based on our breeding design (Aykanat et al., 

2012a; Wilkins et al., 2016). Although a previous study showed differences among-dams 

on the eyed egg surface microbial community in brown trout (Wilkins et al., 2016), our 

study presents exciting avenues to explore the mechanisms that underpin microbial 

community composition differences among dams. This includes an analysis of passive 

vertical transmission between ovarian fluid and eyed egg samples, and potential gut-level 

inoculation of the ovarian fluid microbial composition. Determining the role of maternal 

contribution in the developing microbiome community composition of eyed eggs will be 

critical to characterize microbial colonization and functional patterns at this life-history 

stage (Wilkins et al., 2016).  

Although we expected the environment to dominate in determining the composition 

of the eyed egg surface microbiome, we found unexpected but substantial dam effects. 

There are two possible mechanisms that can explain the observed dam-related variation 

among eyed egg surface microbiomes: 1) Additive effects mediated through embryo gene 

expression and 2) maternal effects, which may be adaptive or non-adaptive. First, the 

dam effects found in our study may result from host additive genetics-driven selection of 

bacterial assemblages, guided by known egg surface receptors (Hansen & Olfasen, 1999; 
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Olfasen 2001; de Brujin et al., 2018) and dictated by host (embryo) genotype (Llewellyn 

et al., 2014). Second, our observed dam effects may reflect non-genetic maternal effects, 

specifically, passive vertical transmission of bacteria (Brown, 1995). The final, and most 

likely explanation of the observed differences in the surface microbiome among eyed 

eggs due to dam of origin is a non-genetic, potentially adaptive, true maternal effect 

(Heath & Blouw, 1998; Heath et al., 1999; Allen et al., 2008). 

Eyed egg embryos are known to express genes that code for proteins critical for 

their development and immune regulatory function in rainbow trout (Oncorhynchus 

mykiss; Wang et al., 2010) and for immune system and various cell communication 

functions in Atlantic salmon (Bicskei et al., 2016). For example, the immune regulatory 

FoxP3 protein expressed in rainbow trout (Wang et al., 2010) is known to promote 

microbiome diversification (Kawamoto et al., 2014). The chorion of Chinook salmon 

eggs is known to be permeable to large proteins, such as steroids (Warriner et al., 2020), 

providing a mechanism for embryo-expressed proteins to be displayed on the eyed egg 

surface and hence modify egg surface microbiome composition. Finally, large maternal 

additive and dominance components drive expression patterns for the genes expressed in 

embryos in Atlantic salmon embryos (Bicskei et al., 2016). Therefore, a maternally 

driven additive genetic component of egg surface microbial colonization by embryonic 

control is possible. 

In salmonids, dams may directly transfer specific (potentially pathogenic) bacteria 

to eggs, (e.g. Evelyn et al., 1986b; reviewed in Funkhouser & Bordenstein, 2014) which 

prompted us to use the ovarian fluid bacterial microbiome data to study passive 

transmission of bacteria to eyed eggs as a form of non-adaptive maternal effect. Although 
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over 900 and 8,000 OTUs were detected for ovarian fluid and eyed eggs, respectively, 

only 7 were found to overlap the two sample types in three or more families out of 11 

tested. Although we found a high degree of overlap of OTUs classified as Bacillus and 

Lactococcus between the ovarian fluid and the eyed eggs, 5 (of 7) OTUs that showed 

three or more families with sharing between ovarian fluid and eyed egg surface 

microbiomes were also found in in more eyed egg surface microbiomes but without 

corresponding maternal ovarian fluid presence. This suggests that the majority of our 

identified “shared” OTUs are likely actually acquired from the environment. 

Furthermore, there was a lack of microbial community composition and alpha diversity 

correlation between ovarian fluid and egg surface abundance for these 7 overlapping 

OTUs – making simple vertical transmission unlikely to be a factor in our observed dam 

effects. Despite the lack of bacterial vertical transmission observed, it is critical to note 

that the power of our analysis was limited by a small number of ovarian fluid samples (n 

= 11) achieving sufficient sequencing depth. Nevertheless, given the very strong dam 

effect we detected, the potentially subtle role of bacterial vertical transmission in driving 

microbiome community structure on eyed egg surfaces is unlikely to be a major 

contributor. 

Various molecules are acquired through maternal provisioning of the egg, such as 

yolk proteins in various fishes (Arukwe & Goksøyr, 2003), immune factors in Atlantic 

salmon and rainbow trout (Lillehaug, 1996; Løvoll et al., 2006; Løvoll et al., 2007) and 

mRNAs in sea bream (Sparus aurata L.; Picchietti et al., 2006). Such provisioning plays 

a significant role in the survival and performance of the offspring in early-life stages by 

supporting its growth and protecting it against pathogens (reviewed in Zhang et al., 
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2013). Perhaps the strongest indication of the adaptive significance of actively 

transmitted maternal components are immune factors (Seppola et al., 2009; Zhang et al., 

2013). For example, this was shown for antibacterial properties of maternally transferred 

complement proteins in zebrafish (Wang et al., 2008). Furthermore, variation in the 

inheritance of various maternally-derived immune factors exists (Swain & Nayak, 2009), 

and this may contribute to variation in egg-associated bacterial communities. In 

salmonids, maternal effects in general are known to be greater during the early 

development stages, decreasing in later life stages (Kinghorn, 1983; Heath & Blouw, 

1998; Heath et al., 1999; Aykanat et al., 2012b). Finally, the mechanisms of active 

maternal transfer of such parental signals are currently unknown, although the ovarian 

fluid may be one mode of delivery. This study presents the first report of the ovarian fluid 

microbiome. Surprisingly, the composition of the ovarian fluid microbiome is correlated 

with that of the maternal gut microbiome at the alpha and beta-diversity level, with 

considerable overlap in OTU composition. This is counterintuitive: Fish are known to 

host diverse microbiomes that vary considerably by body site (Ye et al., 2014; Gajardo et 

al., 2016; Zhang et al., 2017; Zhang et al., 2019). However, as the urogenital papilla and 

the anus are proximal in salmonids (see Peaks et al., 1997), the inoculation of ovarian 

fluid with bacteria from the gut is possible. If the ovarian fluid microbiome originates 

from the gut microbiome via inoculation effects, then the ovarian fluid would be expected 

to have a lower alpha diversity. Indeed, our alpha diversity analysis shows that ovarian 

fluid has a significantly lower Chao1 index. Previous studies have shown the presence of 

bacteria in the ovarian fluid in salmon using culture-techniques (Barnes et al., 2010). 

Despite this, ovarian fluid is commonly studied exclusively for its role in reproduction 
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(e.g. see review in Johnson et al., 2014), with disregard to its role in microbiome 

ontogenesis. Although this significance has not been investigated in fish, a recent study in 

humans showed that beneficial intestinal bacteria such as Bifidobacterium are transmitted 

from mother to infant during childbirth (Makino et al., 2011; Milani et al., 2015). Given 

the weak evidence found in this study for passive transmission of bacteria to the eggs, a 

gut-level inoculation of the eyed egg surface is unlikely, but further research employing a 

larger sample size or with larger sequencing depth may uncover evidence of passive (or 

active) maternal transmission. Finally, it is also possible that following ovarian fluid 

inoculation from the environment, host immune function may equally apply to the 

ovarian fluid microbiome and the gut microbiome, resulting in a similar composition. 

This would be possible since the ovarian fluid is known to be partially derived from 

filtered maternal blood plasma (Lahnsteiner et al., 1995), and that previous studies 

detected bacterial response proteins (e.g. matrix metalloproteinase-9 precursor) in its 

composition (Johnson et al., 2014). Therefore, ovarian fluid microbiome research 

provides exciting opportunities to study the role of maternal transfer in offspring 

microbiome composition and, ultimately, fitness. 

In conclusion, we determined the maternal component of variation in the eyed egg 

surface microbiome community in Chinook salmon. Surprisingly, we found a strong dam 

component on the surface microbiota on eyed eggs, indicative of previously unreported 

maternal effects in Chinook salmon. However, what the mechanism driving these 

maternal effects might be, and how the processes underlying it are regulated by the 

developing embryo or by the mother remain unclear. Characterizing the mechanisms 
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driving these differences will be critical to determining whether they are truly adaptive or 

merely physiological by-products. 
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CHAPTER FOUR 
General Discussion 

One of the fundamental pre-requisites for selection in any population is phenotypic 

variation, as determined by the host genetic architecture, the environment, and their 

interaction. As populations experience various evolutionary pressures, the genetic 

architecture of their fitness traits changes, leading populations to change in their 

responses to selective pressures (Kawecki and Ebert 2004). Quantifying the relative 

contributions of these components is critical to predicting host fitness and response to 

stressors. A critical emerging factor in the fitness of individuals is their microbiome, 

defined as the consortium of microorganisms found in and on the body of an individual 

(Llewellyn et al., 2014; Ghanbari et al., 2015). The microbiome is shown to be affected 

by various environmental factors across many animal taxa, from invertebrates such as 

squids and fruit flies, to vertebrates such as fish, mice, and humans (reviewed in Kostic et 

al., 2013). However, the degree to which sources of genetic variation affecting 

microbiome composition have been characterized varies considerably among animal 

models. For example, the genetic architecture underlying microbiome composition is 

arguably best characterized in humans, with studies establishing many heritable taxa in 

the gut (Goodrich et al., 2016) and determining single nucleotide polymorphisms (SNPs) 

in the host associated with specific microbiome taxa (Bleckman et al., 2015; Wang et al., 

2016). These studies generally show that the environment dominates host-genetics in 

determining the microbiome composition and diversity (Rothschild et al., 2018). This is 

contrasted in fish, where a few key knowledge gaps still exist and impact our 

understanding of the role of host genome versus environmental effects. As shown and 

reviewed in this thesis, numerous studies show that the microbiome is controlled by a 
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combination of environmental and host-related factors. The environmental factors range 

from application of dietary treatments (Ingerslev et al., 2014; Ye at al. 2014; Sullam et 

al., 2015) and probiotic applications in aquaculture (Ringø et al., 2016) to those effects of 

rearing conditions and temporal effects (Sullam et al., 2015). However, studies 

determining host-related drivers of the microbiome in fish have largely disregarded the 

overall effects of the underlying genetic architecture, while instead focusing on other host 

factors such as feeding behavior (Ingerslev et al., 2014), intestinal structure (Ye et al., 

2014), or metabolic characteristics (Li et al., 2013). Overall, these knowledge gaps can be 

summarized into three main categories: 1) the lack of fish-based experimental studies 

partitioning the effects of host-genetics and the environment; 2) the relative scarcity of 

studies employing multiple populations to examine among- and within- population 

genetic architecture components, especially under controlled settings, such as a common 

environment; and 3) the role of parental non-genetic effects, especially maternal effects, 

in driving microbial community composition and function. These knowledge gaps result 

in an overall weak characterization of genetic architecture underlying variation in the 

microbiome with respect to drivers occurring at the within-population and among-

population levels in fish-microbiome research. 

The overall goal of my thesis was to answer the question: What is the role of the 

host genetic architecture in driving the microbiome composition and diversity in Chinook 

salmon? To address that goal, my thesis made several contributions to the 

characterization of the microbiome in Chinook salmon, showing patterns of microbiome 

inheritance at two important life stages (eyed egg and salt-water juveniles) of Chinook 

salmon. As described in chapter 2, I characterized among-population and within-
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population genetic variance components as factors in the composition of the gut 

microbiome in salt-water juvenile Chinook salmon. Despite small environmental effects, 

I showed strong evidence for 1) among-cross effects, indicative of population effects, and 

2) within-cross, among families (sires) additive genetics effects driving the microbiome 

at the community (beta-diversity) and individual OTU levels. These effects were found 

for fish that were reared in the same environment — a necessary form of control for 

addressing possible confounding environmental effects that is rarely used to study host-

genetics drivers of microbiome diversity and composition in fish. In chapter 3, I 

determined that the eyed-egg surface microbiome community composition is highly 

impacted by dam effects. Moreover, I provided the first report of Chinook salmon 

ovarian fluid microbiome but showed that there is no correlation or overlap with the eyed 

egg surface microbiomes. Interestingly, I found a surprising and previously unreported 

similarity between ovarian fluid and dam gut microbiome composition in terms of beta-

diversity, and a significant positive correlation in alpha-diversity (Chao1 index). Finally, 

while my work on maternal effects on egg surface microbiome indicated a strong dam 

effect (41% of the variance explained by dam), there was a significant incubation cell 

effect (~27% of the variance explained) likely indicating significant environmental 

effects, and possibly (but unlikely) dam-by-environment interaction effects. Taken 

together, my findings show that in a controlled setting, microbiome acquisition from the 

environment undergoes selection by host factors. The outcomes of this thesis add to our 

knowledge of the effects of the underlying host genetic architecture on the microbiome at 

the among- and within-population levels. 
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Based on findings from both of my data chapters, I propose that the host and its 

microbiome have co-evolved for mutual benefit, reflective of local adaptation. A critical 

pre-requisite for these co-evolutionary dynamics is bi-directional, genetic-based effects of 

host-microbiome interactions (O’Brien et al., 2019). Here, I postulate that selective 

pressures directly affecting the host also indirectly shape its microbiome, leading to host-

microbiome co-evolution. To support this, I first showed that among-cross effects 

(population effects, Chapter 2), reflective of the native environment of sires, drive 

microbiome compositional differences. Although not conclusive evidence, I maintain that 

these results reflect additive among-population effects. Inter-population diversification of 

the microbiome phenotype may be random or adaptive. Despite short generation time and 

high rates of mutation in most bacteria (Linz et al., 2014), evidence for neutral processes 

influencing microbiome evolution is weak, and deterministic processes (e.g. mutualism 

and parasitism and their associated selection pressures) appear to be the main driver 

(Kostella et al., 2018). Therefore, the among-cross effects on I observed on the 

microbiome phenotype likely reflect non-random effects that are possibly an adaptive 

product of local adaptation (Taylor, 1991). Second, I found significant, cross 

(population)-specific, additive genetics effects on the composition of the gut microbiome 

(sire effects, Chapter 2). Additive effects are required for evolution by natural selection 

(Fisher, 1958; Aykanat et al., 2012) and have been shown to drive the eyed egg surface 

microbiome in brown trout (Salmo trutta; e.g. Wilkins et al., 2016) and in skin 

microbiomes of brook charr (Salvelinus fontinalis; Boutin et al., 2014). Partitioning 

additive and non-additive genetic variance components for microbiomes associated with 

host fitness (e.g. gut microbiome, Vasemägi et al., 2017; or eyed eggs, Wilkins et al., 



 

96 
 

2016) will be critical to determining if local adaptation patterns are mediated by additive 

or non-additive gene action models. Third, I showed that the surface-microbiome of eyed 

eggs is controlled by maternal effects (Chapter 3). Fitness related early-life trait variation 

among populations in salmonids have been shown to be primarily driven by maternal 

effects (Aykanat et al., 2012). Thus, the strong maternal component in eyed egg surface 

microbiome composition I reported may well have a population-specific component, a 

potentially fascinating line of research. In summary, although my data did not allow for 

an explicit test of local adaptation, evidence of host genetic architecture effects across my 

two data chapters supports patterns of local adaptation, in the forms of 1) additive 

among-population genetic variance, 2) within-populations, among-families additive 

genetics effects and 3) maternal effects on early-life history stages. Since there is an 

abundance of evidence for local adaptation effects on a wide range of phenotypic traits in 

salmonids (Taylor, 1991; Garcia de Leaniz et al., 2007; Fraser et al., 2011), it is critical 

to conduct further research on the adaptive potential of microbiome diversity in salmon. 

Determining the extent of adaption for traits related to host-fitness in populations of 

salmon is important for maintaining biodiversity (Fraser & Bernatchez, 2001). 

By utilizing a common garden experiment (Chapter 2), I have shown that even 

when placed within the same environment, individuals from various crosses or families 

differ dramatically in the composition of the microbiome they host, challenging the 

notion that “the environment selects (Sanghera, 2015).” This adds to a growing body of 

literature showing host-mediated microbiome acquisition and colonization effects 

comprising host factors are driven by a genetic component, such as those observed in 

studies utilizing classical breeding designs for salmon (Wilkins et al., 2016). By testing 
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microbiome differences associated with genetic architecture effects, I show that host-

factors with a genetic basis allow individuals to select for microbial symbionts from the 

environment, establishing microbiomes that vary considerably in their composition. This 

begs the question: What mechanism underlies microbiome acquisition differences among 

related individuals in a common habitat? One common explanation for this observation is 

feeding behavior (Bolnick et al., 2014b); however, as feeding behaviors are often linked 

to species-level differences (Ghanbari et al., 2015), a more likely explanation of these 

host-mediated differences, at least partly, are variations in immune defenses (Bolnick et 

al., 2014a). Variations in immune defenses impact both the hosts ability to evade or 

counter (i.e. select) microbial symbionts (Van Opstal & Bordenstein, 2015), indirectly 

contributing to microbiome variation. Overall, I have shown that microbiome selection 

from the environment could indirectly be influenced by the host genetic architecture. 

A central purpose of this thesis was to fill the knowledge gap concerning the 

underlying genetic architecture associated with salmon microbiome composition, 

allowing us to better predict future microbiome evolution under changing environments 

and management strategies (Waples et al., 2019). Despite increasing census population 

sizes, declining effective population sizes of Chinook salmon have been reported 

(Shrimpton & Heath, 2002), necessitating management efforts to maintain their potential 

adaptive genetic variation and to minimize inbreeding effects (Rieman & Allendorf, 

2011). Microsatellite analyses reveal a highly structured underlying genetic architecture 

among populations of Chinook salmon (Bartley & Gall, 1990; Shirmpton & Heath, 

2003), and in Pacific salmon in general (Waples et al., 2019). Evidence presented in this 

thesis supports this, as indications of local adaptation are supported by demonstrating 
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additive among-population effects and maternal effects on early-life traits. Further, 

salmonids maintain a high capacity for evolution (Fraser et al., 2011), and despite being 

anadromous and hence experiencing diverse aquatic environments, they evolve rapidly 

(Garcia de Leaniz et al., 2007). As highlighted in chapter 2, perhaps this explains the 

presence of an additive genetic component to gut microbiome variation in Chinook 

salmon, defining the scope for traditional evolutionary response to selection (Visscher et 

al., 2008). Nonetheless, because of the small effective population sizes reported for 

Chinook salmon (Heath et al., 2002), theory predicts that responses to selection under an 

additive gene action model should decline over selection cycles, with epistatic gene 

action providing more long-term responses to environmental perturbations (Jannink et al., 

2003). Therefore, it is necessary to determine the potential for non-additive genetic 

components of host to contribute to the microbiome composition if the goal is to achieve 

a complete holistic of the evolutionary responses in rapidly changing environments 

(Jannink 2013). Finally, although genetic improvement programs have been initiated for 

Chinook salmon for traits relating to higher performance such as increased growth and 

feeding efficiency (Devlin et al., 1995; Fjalestad et al., 2003), no work has been 

attempted to utilize microbiome manipulation in these programs. This is perhaps due to 

the lack of knowledge of the microbiome’s underlying genetic architecture in salmon. To 

artificially select for microbiomes that may be useful for hatcheries, two conditions 

should be met: 1) it must first demonstrated that the microbiome’s diversity or 

composition (e.g. at the OTU or community level) has an additive genetics effect basis 

and 2) the microbiome should be either correlated directly to higher fitness in stocks or 

indirectly correlated with traits that confer such advantage. The reported additive genetics 
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effects (Chapter 2) contribute to the potential of selecting for microbiomes associated 

with higher fitness (Reed et al., 2015). Thus, determining the role of host genetic 

architecture in driving microbiome composition and function might allow us to select for 

microbiomes (Zilber-Rosenberg & Rosenberg, 2008; Llewellyn et al., 2014) that are 

possibly more diversified and stabilized (Llewellyn et al., 2014). Once we master some 

level of control of microbiome function, we may be able to achieve the ultimate goal of 

fish farmers and conservation hatcheries: to select for microbial communities associated 

with lower mortality and better performance in fish. 

Future directions 

Although the work presented in this thesis contributes to our understanding of 

transgenerational control of the microbiome, the fields of quantitative genetics and 

population genetics have yet to answer many questions to better define this process. The 

host-associated microbiome is characterized by many factors that highlight its high 

capacity to evolve, including: fast generational turn-over, potential horizontal gene 

transfer, variable capacity of vertical transmission, capability to evolve community-level 

functions, and exposure to a wide-range of biotic selective pressures (Koskella et al., 

2018). With the advent of high throughput ‘omics’ approaches, we are on the cusp of new 

era in biology characterized by the rapid generation of large host-microbiome datasets 

(Misra et al., 2019). These approaches capitalize on various levels of biological 

organization, with genomics focusing on DNA, transcriptomics on RNA, and proteomics 

on proteins to name a few. The integration of these tools into microbiome research will 

be key in advancing future research efforts, permitting studies to transition from focusing 

on taxonomic profiling to taxonomic and functional profiling (Ghanbari et al., 2015). 
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Here, I propose some avenues for future microbiome research efforts as it relates to 

genetics and microbial ecology and propose areas where meta- ‘omics’ tools could be 

usefully integrated. 

Many questions regarding the role of the host genetic architecture remain 

unanswered, making it a major line of future microbiome research. Opportunities to 

further explore the role of the host genetic architecture in controlling the microbiome 

range from interactions within and among loci (non-additive genetics), to whole-genome 

studies, and epigenetic effects. Utilizing tools in genomics will allow us to study the 

interaction of the host genome and its microbiome to determine, for example, if the 

additive genetic effect detected in my thesis (sire effects; chapter 2) are driven by a few 

major loci or many loci with small effects. Since the microbiome is a host phenotype with 

a complex genetic architecture (i.e. one that is polygenic; Benson et al., 2016), genome-

wide association studies (GWAS) may be the best approach to quantify the effects of 

various loci contributing to microbiome variation (e.g. Blekhman et al., 2015). Further, 

by utilizing whole-genome comparative sequencing tools (“metagenomics”), more 

insight will be gained on the dynamics behind host genetic architecture variation and the 

microbiome response to it. For example, since mutations have a larger impact on 

microbial symbionts (due to their small genomes; Koskella et al., 2018), the true the 

genetic potential for microbiome evolution is of critical interest (Ghanbari et al., 2015). 

Finally, what is the role of host epigenetics on microbiome dynamics, and how does the 

microbiome itself influence host epigenetics? Surprisingly, even some the most 

comprehensive reviews on the microbiome do not address this problem (Nayak, 2010; 

Ghanbari et al., 2015; Koskella et al., 2018). Excitingly, evidence in human studies show 



 

101 
 

that microbial symbionts can indirectly guide epigenetic mechanisms by changing the 

repertoire of available metabolites utilized in epigenetic pathways (Hullar & Fu, 2015). 

The function of the microbiome will likely continue to be another growing line of 

future microbiome research as ‘omics’ tools become more affordable (Misra et al., 2019). 

Studies utilizing such tools can advance our knowledge of the function of the 

microbiome. For example, metatranscriptomics relies on cloning and sequencing 

messenger RNA (mRNA) molecules to determine active bacterial taxa in a microbiome, 

and which genes are being expressed in a specific environment (Franzosa et al., 2015). 

These will include well-established functions such as nutrition (e.g. Nayak, 2010), or less 

understood ones such as the role of the microbiome in host ontology (Bledstoe et al., 

2016) or social behaviour (Soares et al., 2019). Examples of studies using these tools are 

becoming more frequent (Misra et al., 2019) and their applications will allow us to better 

characterize the role of microbiome in host health and disease. 

The functions studied for the microbiome give evidence of its significance, but the 

adaptive potential of the microbiome is still to be quantified. The findings in this thesis 

suggest that population-level patterns of host-microbiome co-diversification exist 

(Chapter 2); however, further research is required to determine if the patterns observed 

among populations and among families within populations are truly a result of local 

adaptation. Ideally, future research should focus on utilizing natural populations (Hird, 

2017) and utilize reciprocal transplants to determine if microbiome variation observed 

among populations (Chapter 2) is truly adaptive (Garcia de Leaniz et al., 2007). 

Moreover, the role of microbiome variation in early-life stages remains unclear, and so 

does its adaptive potential. The maternal effects I found on the surface microbiome add to 
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growing knowledge that non-genetic maternal effects contribute significantly to 

population-level effects for fitness traits in salmon, sometimes more strongly than 

additive genetics (Aykanat et al., 2012). Therefore, quantifying maternal effects will be 

critical to determining the adaptive potential of the microbiome. Finally, quantifying the 

adaptive potential of the microbiome will require a better characterization of host-

responses to the microbiome. To measure host-mediated selection of the microbiome, the 

mechanisms underlying host immunity and protection against pathogens (Van Opstal & 

Bordenstein, 2015), competition for nutrients (in the gut; Coyte et al., 2015), and 

development-based factors (Llewellyn et al., 2014) will be the major areas of focus. 

Conclusions 

In addition to providing the first microbiome community characterization for Chinook 

salmon eyed eggs, my work contributes important findings to the genetic architecture 

effects on the microbiome composition and diversity in Chinook salmon. Specifically, I 

demonstrate, for the first time, genetic effects at the among-population and among-family 

(within-population) levels in a controlled semi-natural environment. Furthermore, I 

demonstrate significant maternal effects on the surface microbiome of eyed eggs, and the 

first description of the ovarian fluid microbiome in fish, and the similarity to that of the 

gut microbiome in dams. Overall, this thesis will lead the way to conducting more 

research into the adaptive potential of the microbiome in salmon and will have critical 

implications for conservation biology and commercial aquaculture. 
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APPENDICES  

Appendix A1. Distribution of the samples used in Chapter 2. Crosses are divided into 
two columns representing the pens, and the sires used in each replicate pen are listed 
beside it. The original number of samples surviving to the sea net pen are shown, and the 
numbers in brackets indicate the samples realized in the final study analysis with overall 
depth of 3000 sequences or higher. 

Population 
hybrid 
cross 

Pen 1 Sires in 
Pen 1 

No. of 
samples 
(Individuals 
with ³3000 
reads) 

Pen 2 Sires in 
Pen 2 

No. of 
samples 
(Individuals 
with ³3000 
reads) 

Big 
Qualicum 
(BQ) N = 69 
(40)  

2BN 
N = 
40 
(22) 

BQ1 6 (3) 

2BS 
N = 29 
(18) 

BQ1 3 (2) 
BQ2 4 (3) BQ2 2 (1) 
BQ3 6 (5) BQ3 1 (1) 
BQ4 5 (4) BQ4 11 (7) 
BQ5 4 (1) BQ5 5 (3) 
BQ6 6 (5) BQ6 2 (1) 
BQ7 2 (1) BQ7 2 (2) 
BQ8 1 (0) BQ8 1 (1) 
BQ9 5 (0) BQ9 1 (0) 
Unrecorded 1 (0) Unrecorded 1 (0) 

Capillano 
(CAP) N = 
50 (33)  

7A 
N = 
20 
(15) 

C1 4 (3) 

21BS 
N = 30 
(18) 

C1 4 (2) 
C2 3 (3) C2 5 (3) 
C3 3 (1) C3 1 (1) 
C4 4 (4) C4 6 (5) 
C5 2 (2) C5 3 (1) 
C6 1 (0) C6 4 (3) 
C7 0 (0) C7 0 (0) 
C8 2 (2) C8 2 (2) 
C9 1 (0) C9 1 (1) 
C10 0 (0) C10 3 (0) 

Chilliwack 
(CHILL) N 
= 53 (27) 

19BN 
N = 
24 
(10) 

Ch1 1 (0) 

22BS 
N = 29 
(17) 

Ch1 3 (2) 
Ch2 4 (2) Ch2 3 (2) 
Ch3 1 (0) Ch3 1 (1) 
Ch4 3 (1) Ch4 5 (4) 
Ch5 5 (1) Ch5 3 (2) 
Ch6 3 (2) Ch6 4 (2) 
Ch7 4 (3) Ch7 3 (3) 
Ch8 1 (1) Ch8 3 (1) 
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Ch9 0 (0) Ch9 1 (0) 
Ch10 2 (0) Ch10 0 (0) 
Unrecorded 0 (0) Unrecorded 3 (0) 

Puntledge 
(PUNT) N = 
59 (35) 

4BS 
N = 
26 
(15) 

P1 1 (1) 

10BS 
N = 33 
(20) 

P1 4 (2) 
P2 4 (2) P2 2 (1) 
P3 4 (3) P3 7 (5) 
P4 2 (1) P4 4 (2) 
P5 4 (3) P5 5 (4) 
P6 3 (1) P6 2 (2) 
P7 1 (1) P7 0 (0) 
P8 5 (3) P8 2 (2) 
P9 1 (0) P9 5 (2) 
P10 1 (0) P10 2 (0) 

Nitinat 
(NIT) N = 
55 (37) 

10BN 
N = 
26 
(20) 

N1 6 (6) 

7BS 
N = 29 
(17) 

N1 2 (2) 
N2 1 (1) N2 5 (3) 
N3 3 (1) N3 2 (2) 
N4 3 (2) N4 4 (3) 
N5 0 (0) N5 3 (2) 
N6 5 (5) N6 3 (2) 
N7 2 (2) N7 0 (0) 
N8 2 (2) N8 7 (3) 
N9 2 (0) N9 0 (0) 
N10 1 (1) N10 1 (0) 
Unrecorded 1 (0) Unrecorded 2 (0) 

Quinsam 
(QUIN) N = 
49 (33) 

21BN 
N = 
25 
(19) 

Q1 1 (1) 

19A 
N = 24 
(14) 

Q1 4 (2) 
Q2 2 (2) Q2 0 (0) 
Q3 2 (2) Q3 1 (1) 
Q4 4 (4) Q4 3 (3) 
Q5 3 (3) Q5 4 (3) 
Q6 3 (2) Q6 4 (2) 
Q7 3 (2) Q7 1 (0) 
Q8 2 (2) Q8 3 (2) 
Q9 4 (0) Q9 1 (0) 
Q10 1 (1) Q10 3 (1) 

Robertson 
Creek (RC) 
N = 51 (32) 

19BS 
N = 
29 
(17) 

RC1 3 (2) 

22BS 
N = 22 
(15) 

RC1 4 (4) 
RC2 2 (2) RC2 1 (0) 
RC3 3 (3) RC3 2 (1) 
RC4 2 (2) RC4 4 (3) 
RC5 4 (3) RC5 2 (2) 
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RC6 2 (2) RC6 2 (1) 
RC7 3 (3) RC7 2 (2) 
RC8 0 (0) RC8 2 (2) 
RC9 4 (0) RC9 1 (0) 
RC10 6 (0) RC10 2 (0) 

Yellow 
Island 
(YIAL) N = 
80 (41) 

4BN 
N = 
30 
(16) 

Y1 3 (2) 

7BN 
N = 50 
(25) 

Y1 6 (5) 
Y2 3 (2) Y2 6 (4) 
Y3 5 (3) Y3 4 (3) 
Y4 2 (1) Y4 5 (4) 
Y5 4 (3) Y5 5 (2) 
Y6 2 (1) Y6 2 (1) 
Y7 3 (3) Y7 4 (3) 
Y8 2 (1) Y8 7 (3) 
Y9 1 (0) Y9 6 (0) 
Y10 4 (0) Y10 5 (0) 
Unrecorded 1 (0) Unrecorded 0 (0) 
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Appendix B1. OTU-level differential abundance analysis results corresponding to 
LRT on fitted LMMs. The Benjamini-Hochberg method was used to adjust for multiple 
comparisons. Abbreviations: NR = “New Reference”. Significance codes: ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1) 

OTU Cross LRT 
P-value 

Pen LRT 

P-value 

Sire LRT 

P-value 
OTU taxonomic classification 
(Lowest identified rank) 

OTU.511679 0.25 1.00 1.00 Genus: Mycoplasma 

OTU.145914 0.021* 1.00 1.00 Family: Mycoplasmataceae 

OTU.147311 0.77 1.00 1.00 Family: Mycoplasmataceae 

OTU.816470 0.11 1.00 1.00 Genus: Bacillus 

OTU.349839 0.27 0.68 1.00 Genus: Photobacterium 

OTU.1823053 0.11 1.00 1.00 Genus: Lactococcus 

OTU.1061429 0.044* 0.68 1.00 Family: Comamonadaceae 

NR.OTU.145 0.18 1.00 1.00 Class: ZB2 

NR.OTU.6 0.84 1.00 1.00 Genus: Mycoplasma 

OTU.785565 0.43 1.00 1.00 Class: Gammaproteobacteria 

NR.OTU.188 0.11 1.00 1.00 Family: Micrococcaceae 

OTU.106476 0.75 1.00 1.00 Order: Vibrionales 

NR.OTU.125 0.37 1.00 1.00 Family: Mycoplasmataceae 

NR.OTU.163 0.49 1.00 1.00 Genus: Mycoplasma 

OTU.974121 0.05 1.00 1.00 Genus: Pseudomonas 

OTU.84937 0.20 1.00 1.00 Family: Vibrionaceae 

OTU.594370 0.36 1.00 1.00 Family: Bacillaceae 

OTU.995978 0.07 1.00 1.00 Family: Comamonadaceae 

NR.OTU.282 0.66 1.00 1.00 Genus: Mycoplasma 

OTU.538602 0.16 1.00 1.00 Family: Vibrionaceae 

OTU.854050 0.11 1.00 1.00 Genus: Bacillus 

OTU.592425 0.34 1.00 1.00 Family: Desulfovibrionaceae 

OTU.939811 0.31 1.00 1.00 Genus: Vibrio 

OTU.396697 0.58 1.00 1.00 Clostridium perfringens 

OTU.516115 0.31 1.00 1.00 Genus: Lactococcus 
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OTU.783719 0.25 1.00 1.00 Genus: Ralstonia 

OTU.586387 0.07 1.00 1.00 Genus: Lactococcus 

OTU.1097359 0.63 1.00 1.00 Genus: Acinetobacter 

OTU.567840 0.044* 0.68 1.00 Family: Bradyrhizobiaceae 

OTU.815406 0.13 1.00 1.00 Genus: Acidovorax 

OTU.739614 0.17 1.00 1.00 Genus: Vibrio 

OTU.818603 0.42 1.00 1.00 Genus: Bacillus 

NR.OTU.43 0.49 1.00 1.00 Genus: Photobacterium 

OTU.1076969 0.16 1.00 1.00 Genus: Streptococcus 

NR.OTU.76 0.64 1.00 1.00 Class: Gammaproteobacteria 

OTU.120952 0.13 1.00 1.00 Genus: Burkholderia 

OTU.805055 0.09 1.00 1.00 Genus: Lactococcus 

OTU.540940 0.27 1.00 1.00 Genus: Leuconostoc 

OTU.556100 0.044* 1.00 1.00 Genus: Bdellovibrio 

OTU.1716185 0.43 1.00 1.00 Genus: Enterovibrio 

OTU.584580 0.16 1.00 1.00 Genus: Hydrogenophaga 

OTU.326324 0.36 1.00 1.00 Order: Vibrionales 

OTU.580625 0.07 0.90 1.00 Bosea genosp. 

OTU.712047 0.48 1.00 1.00 Family: Clostridiaceae 

OTU.877752 0.25 1.00 1.00 Genus: Pseudomonas 

NR.OTU.26 0.42 1.00 1.00 Family: Mycoplasmataceae 

NR.OTU.184 0.43 1.00 1.00 Genus: Mycoplasma 

NR.OTU.75 0.45 1.00 1.00 Class: Gammaproteobacteria 

NR.OTU.130 0.84 1.00 1.00 Family: Bacillaceae 

NR.OTU.106 0.95 1.00 1.00 Family: Mycoplasmataceae 

OTU.818052 0.67 1.00 1.00 Genus: Lactococcus 

OTU.244657 0.40 1.00 1.00 Bosea genosp. 

NR.OTU.231 0.62 1.00 1.00 Family: Mycoplasmataceae 

OTU.1110763 0.25 1.00 1.00 Family: Enterobacteriaceae 

OTU.18223 0.58 1.00 1.00 Family: Vibrionaceae 

OTU.1085832 0.043* 0.90 1.00 Genus: Streptococcus 
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OTU.331652 0.43 1.00 1.00 Family: Vibrionaceae 

OTU.144640 0.09 1.00 1.00 Family: Comamonadaceae 

OTU.106340 0.044* 0.68 1.00 Family: Vibrionaceae 

NR.OTU.14 0.45 1.00 1.00 Genus: Mycoplasma 

OTU.930834 0.18 1.00 1.00 Pseudomonas veronii 

OTU.1074801 0.18 1.00 1.00 Genus: Sphingomonas 

NR.OTU.242 0.84 1.00 1.00 Genus: Bacillus 

NR.OTU.56 0.85 1.00 1.00 Genus: Mycoplasma 

OTU.310131 0.0066** 1.00 1.00 Genus: Carnobacterium 

OTU.553472 0.42 1.00 1.00 Genus: Vibrio 

OTU.200890 0.18 1.00 1.00 Class: Betaproteobacteria 

NR.OTU.197 0.40 1.00 1.00 Genus: Mycoplasma 

NR.OTU.110 0.45 1.00 1.00 Class: Gammaproteobacteria 

NR.OTU.118 0.90 1.00 1.00 Family: Mycoplasmataceae 

OTU.590960 0.23 1.00 1.00 Family: Comamonadaceae 

OTU.668105 0.15 1.00 1.00 Family: Sphingomonadaceae 

NR.OTU.108 0.11 1.00 1.00 Genus: Lactococcus 

OTU.366419 0.60 1.00 1.00 Genus: Geobacillus 

OTU.750840 0.29 1.00 1.00 Family: Comamonadaceae 

NR.OTU.92 0.044* 1.00 1.00 Family: Sphingomonadaceae 

NR.OTU.225 0.77 1.00 1.00 Family: Mycoplasmataceae 

OTU.2874742 0.77 1.00 1.00 Genus: Bacillus 

OTU.319533 0.45 1.00 1.00 Class: Gammaproteobacteria 

NR.OTU.170 0.18 1.00 1.00 Genus: Vibrio 

NR.OTU.208 0.37 1.00 1.00 Family: Vibrionaceae 

OTU.554346 0.36 1.00 1.00 Genus: Photobacterium 

NR.OTU.166 0.42 1.00 1.00 Family: Mycoplasmataceae 

NR.OTU.21 0.15 1.00 1.00 Mycoplasma microti 

NR.OTU.16 0.25 1.00 1.00 Shewanella benthica 

NR.OTU.10 0.30 1.00 1.00 Genus: Bacillus 

OTU.731707 0.0097** 0.22 1.00 Family: Comamonadaceae 
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OTU.668303 0.40 1.00 1.00 Genus: Burkholderia 

NR.OTU.216 0.20 1.00 1.00 Family: Comamonadaceae 

OTU.323791 0.17 1.00 1.00 Family: Rhizobiaceae 

OTU.820837 0.91 1.00 1.00 Genus: Bacillus 

OTU.315506 8.13E-7*** 2.32E-5*** 0.017*** Order: Lactobacillales 

NR.OTU.273 0.18 1.00 1.00 Family: Vibrionaceae 

NR.OTU.79 0.36 1.00 1.00 Genus: Hyphomicrobium 

OTU.928776 0.27 1.00 1.00 Genus: Acinetobacter 

OTU.780555 0.044* 0.68 1.00 Family: Comamonadaceae 

OTU.928829 0.38 1.00 1.00 Genus: Pseudomonas 

NR.OTU.230 0.45 1.00 1.00 Family: Mycoplasmataceae 

NR.OTU.278 0.30 1.00 1.00 Clostridium perfringens 

OTU.1101451 0.021* 0.52 1.00 Micrococcus luteus 

OTU.306996 0.42 1.00 1.00 Genus: Burkholderia 

OTU.1108275 0.45 1.00 1.00 Family: Comamonadaceae 

NR.OTU.192 0.12 1.00 1.00 Family: Vibrionaceae 

NR.OTU.281 0.71 1.00 1.00 Order: Bacillales 

OTU.874999 0.36 1.00 1.00 Enhydrobacter aerosaccus 

OTU.415661 0.033* 1.00 1.00 Genus: Ralstonia 

NR.OTU.12 0.25 1.00 1.00 Family: Mycoplasmataceae 

OTU.938794 0.20 1.00 1.00 Genus: Acinetobacter 

NR.OTU.191 0.33 1.00 1.00 Family: Bradyrhizobiaceae 

NR.OTU.207 0.07 1.00 1.00 Family: Sphingomonadaceae 
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Appendix B2. Taxonomic family-level differential abundance analysis results 
corresponding to LRT on fitted LMMs. The Benjamini-Hochberg method was used to 
adjust for multiple comparisons. Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1). 

Bacterial Family Cross LRT P-value Pen LRT P-value 
Sire 

LRT P-value 

Mycoplasmataceae 0.17 1.00 0.68 

Vibrionaceae 0.55 0.60 1 

Bacillaceae 4.92E-05* 0.87 1.73E-03* 

Streptococcaceae 5.35E-04* 0.74 0.052 

Comamonadaceae 0.23 0.38 0.016 

Micrococcaceae 0.022 1.00 0.17 

Pseudomonadaceae 0.16 0.090. 0.0063 

Clostridiaceae 0.045 0.68 1 

Bradyrhizobiaceae 0.31 0.36 9.63E-04* 

Moraxellaceae 0.13 0.58 2.80E-03* 

Oxalobacteraceae 0.15 0.23 0.68 

Desulfovibrionaceae 0.16 1.00 0.046 

Sphingomonadaceae 0.92 0.47 0.15 

Burkholderiaceae 0.7 0.40 0.036 

Enterobacteriaceae 0.011 0.10 0.18 

Leuconostocaceae 7.48E-06* 2.99E-04*** 0.64 

Bdellovibrionaceae 0.015 0.11 0.011 

Carnobacteriaceae 5.31E-06* 2.66E-04*** 0.80 

Rhodobacteraceae 0.29 0.98 0.98 

Hyphomicrobiaceae 0.43 0.53 0.51 

Enterococcaceae 0.1 1.00 0.38 

Shewanellaceae 0.16 0.79 1 

Rhizobiaceae 0.068 0.14 0.47 

Flavobacteriaceae 0.29 0.82 0.20 

[Weeksellaceae] 0.033 0.68 0.80 
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Rhodocyclaceae 0.017 0.12 0.11 

Rhodospirillaceae 0.011 0.350 0.081 

Propionibacteriaceae 0.19 0.63 0.79 

Chitinophagaceae 7.73E-03* 0.663 0.066 

Methylobacteriaceae 0.057 0.35 0.077 

Xanthomonadaceae 0.2 0.90 0.90 

Corynebacteriaceae 0.063 0.39 0.15 

Methylophilaceae 0.89 1.00 1 

Lactobacillaceae 5.32E-05* 1.20E-03** 0.082 

Staphylococcaceae 0.18 0.80 0.81 

Phyllobacteriaceae 0.038 0.20 0.45 

Nitrospiraceae 0.73 1.00 0.011 

[Borreliaceae] 0.99 1.00 1 

Pirellulaceae 0.7 1.00 0.84 

Listeriaceae 0.25 0.76 0.63 

Alcaligenaceae 0.062 0.34 0.34 

Mycobacteriaceae 2.54E-03* 0.025 0.025 

Endozoicimonaceae 0.63 0.89 0.95 

Pseudoalteromonadaceae 0.26 1.00 1 
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Appendix C1. Sample distribution of eyed egg samples used in Chapter 3. Eyed eggs 
were divided between replicate cells across all dams. Replicate cells were divided either 
between replicate trays (F1-F16 and F17-F32) or within the same tray (F33-F39). 

No. of eyed egg samples 
No. of dams Replicate cell 

1 
Replicate cell 

2 
2 2 16 
2 1 10 
1 1 7 
2 0 3 
1 0 3 
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