
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

7-29-2020

Towards Engineering Reliable Keystroke Biometrics Systems Towards Engineering Reliable Keystroke Biometrics Systems

Anjali Parag Shah
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Shah, Anjali Parag, "Towards Engineering Reliable Keystroke Biometrics Systems" (2020). Electronic
Theses and Dissertations. 8421.
https://scholar.uwindsor.ca/etd/8421

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8421?utm_source=scholar.uwindsor.ca%2Fetd%2F8421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Towards Engineering Reliable Keystroke
Biometrics Systems

By

Anjali Shah

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2020

c©2020 Anjali Shah

Towards Engineering Reliable Keystroke Biometrics Systems

by

Anjali Shah

APPROVED BY:

A. Azab

Department of Mechanical, Automotive and Materials Engineering

B. Boufama

School of Computer Science

S. Saad, Advisor

School of Computer Science

June 11, 2020

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

In this thesis, we argue that most of the work in the literature on behavioural-

based biometric systems using AI and machine learning is immature and unreliable.

Our analysis and experimental results show that designing reliable behavioural-based

biometric systems requires a systematic and complicated process. We first discuss

the limitation in existing work and the use of conventional machine learning meth-

ods. We use the biometric zoos theory to demonstrate the challenge of designing

reliable behavioural-based biometric systems. Then, we outline the common prob-

lems in engineering reliable biometric systems. In particular, we focus on the need for

novelty detection machine learning models and adaptive machine learning algorithms.

We provide a systematic approach to design and build reliable behavioural-based bio-

metric systems. In our study, we apply the proposed approach to keystroke dynamics.

Keystroke dynamics is behavioural-based biometric that identify individuals by mea-

suring their unique typing behaviours on physical or soft keyboards. Our study shows

that it is possible to design reliable behavioral-based biometrics and address the gaps

in the literature.

IV

DEDICATION

I would like to dedicate this thesis to my mom for her incredible love and support.

Because I believe that she is the real backbone of our family, this is to appreciate her

selfless hard work and efforts towards the family.

Furthermore, I dedicate it to my dad to raise me like a son and give me wings to

fly. To my grandfather, for always trusting me and supporting me in my hard times,

without his encouragement, nothing would have been easy. And to my entire family

for their unconditional affection towards me.

V

AKNOWLEDGEMENTS

I would like to sincerely express my most profound gratitude towards my super-

visor Dr. Sherif Saad Ahmed, whose input helped me immensely. With his input, I

was able to look at my research with a different perspective and a more critical eye.

Secondly, I would like to express my gratitude to my thesis committee members

for their beneficial advices and suggestions for my thesis.

I would also like to thank my friend Saurav for always encouraging and supporting

me.

I humbly extend my thanks to the School of Computer Science and all concerned

people who helped me in this regard.

VI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

DEDICATION V

AKNOWLEDGEMENTS VI

LIST OF TABLES XI

LIST OF FIGURES XIV

LIST OF ABBREVIATIONS XVII

1 Introduction 1
1.1 Access Control System . 1

1.1.1 Authentication Methods . 1
1.2 Biometrics . 2
1.3 Machine Learning . 2
1.4 Motivation . 3
1.5 Problem Statement . 3
1.6 Thesis Contribution . 3
1.7 Thesis Organization . 4

2 Related Works 6
2.1 Biometric Zoo . 6

2.1.1 Doddington’s Biometric Zoo 7
2.1.2 Yager and Dunstone’s Biometric Zoo 8
2.1.3 Doddington’s Biometric Zoo Vs. Yager and Dunstone’s Bio-

metric Zoo . 9
2.1.4 Significance Of The Biometric Zoo 10

2.2 Biometric Zoo Evolution . 11
2.3 Performance Evaluation and Enhancement Of Biometric Systems Us-

ing Doddington’s Zoo . 12
2.4 Doddington’s Zoo Effects On Keystroke Dynamics 15
2.5 Machine Learning Based Biometric Systems 16
2.6 Use Of Anomaly Detection In Keystroke Biometrics 18
2.7 Gap Between The Production Based And Research Based Approaches 19

3 Access Control Systems 21
3.1 Access Control System . 21
3.2 Authentication Factors/Methods . 22
3.3 Biometrics . 23

VII

3.3.1 Biometric Authentication Process 25
3.3.2 Evaluation Metrics . 26
3.3.3 Physical Biometrics . 27
3.3.4 Behavioral Biometrics . 27
3.3.5 Keystroke Dynamics . 28

3.3.5.1 Digraph Representation 29

4 Machine Learning Techniques 31
4.1 Machine Learning . 31
4.2 Multi-Class Classification . 32

4.2.1 Support Vector Machine (SVM) 33
4.2.2 Decision Tree . 34
4.2.3 K Nearest Neighbor (KNN) 35
4.2.4 Näıve Bayes . 36
4.2.5 Logistic Regression . 36
4.2.6 Random Forest . 37
4.2.7 Multi Layer Perceptron (MLP) 38
4.2.8 Light Gradient Boosting Machines (LightGBM) 38

4.3 Anomaly Detection (One-Class Classification) 39
4.3.1 Working Of An Anomaly Detector 40
4.3.2 K Nearest Neighbor (KNN) 42
4.3.3 IsolationForest (IForest) . 42
4.3.4 One-Class Support Vector Machine (One-Class SVM) 43

4.4 Evaluation Metrics . 43

5 Methodology 46
5.1 Multi-class Machine Learning Methods 48

5.1.1 Methodologies Used In The Literature 48
5.1.2 Data Preprocessing . 49

5.1.2.1 Grid Search Method 49
5.1.3 Part-I: Find Sheep, Goat, Lamb 50
5.1.4 Part-II: System Generated Errors 51

5.2 Anomaly Detection . 52
5.2.1 Methodologies Used In The Literature 52
5.2.2 Data Preprocessing . 54
5.2.3 Anomaly Detection With 70 - 30 Train/Test Ratio 54
5.2.4 Effects Of Feature Selection And Normalization 55
5.2.5 Differences In Production Based And Research-based Approaches 57
5.2.6 Feature Selection With Less Data 57
5.2.7 Without Updating The User Profile 58
5.2.8 Methods To Update User Profile 59

5.2.8.1 Batch Mode Approach 59
5.2.8.2 Sliding Window Approach 60

5.3 Summary . 61

VIII

6 Experiments and Results 62
6.1 Environment and Toolkits . 62
6.2 Dataset Description . 63

6.2.1 Personal Computer Keyboard Based Keystroke Dataset 63
6.2.2 Android Keystroke Dataset - I 64
6.2.3 Android Keystroke Dataset - II 65

6.3 Multi-class Machine Learning Methods 66
6.3.1 Data Preprocessing . 66

6.3.1.1 Grid Search Method 66
6.3.2 Part-I: Find Sheep, Goat, Lamb 70

6.3.2.1 Classification . 71
6.3.2.2 Problem In Finding The Lamb 71
6.3.2.3 Find Sheep And Goat 73
6.3.2.4 Sheep And Goat Results 74
6.3.2.5 How Close Are Some Goats From Being A Sheep? . . 77
6.3.2.6 Analysis Of Goatish Behavior 82

6.3.3 Part – II : System Generated Errors 90
6.3.3.1 Artificial Wolf Results 91

6.3.4 Summary Of The Experiments’ Findings 94
6.4 Anomaly Detection . 95

6.4.1 Data Preprocessing . 95
6.4.2 Experiments Of Anomaly Detection With 70 - 30 Train/Test

Ratio . 96
6.4.2.1 Personal Computer Keyboard Based Keystroke Dataset 96
6.4.2.2 Android Keystroke Dataset - I 97
6.4.2.3 Android Keystroke Dataset - II 97

6.4.3 Effects Of Feature Selection And Normalization 98
6.4.3.1 Feature selection results 98
6.4.3.2 Feature Selection Effects On The Performance Of Anomaly

Detectors . 99
6.4.4 Feature Selection With Less Data 102

6.4.4.1 Personal Computer Keyboard Based Keystroke Dataset102
6.4.4.2 Android Keystroke Dataset - I 103
6.4.4.3 Android Keystroke Dataset - II 103

6.4.5 Experiment Without Updating The User Profile 103
6.4.6 Methods To Update User Profile 104

6.4.6.1 Batch Mode Experiments And Results 105
6.4.6.2 Sliding Window Experiments And Results 108

6.5 Comparisons And Discussions . 112
6.5.1 Comparison Of Batch Mode And Sliding Window Approach . 112

6.5.1.1 Personal Computer Based Keystroke Dataset 112
6.5.1.2 Android Keystroke Dataset-I 113
6.5.1.3 Android Keystroke Dataset-II 114

6.5.2 Comparison Of Literature And 70-30 Train/Test Approach . . 116
6.5.2.1 Personal Computer Based Keystroke Dataset 116

IX

6.5.2.2 Android Keystroke Dataset - I 117
6.5.2.3 Android Keystroke Dataset - II 117

6.5.3 Comparison Of Literature And Proposed Approach 118

7 Conclusion and Future Work 119
7.1 Conclusion . 119
7.2 Future Work . 120

REFERENCES 121

VITA AUCTORIS 128

X

LIST OF TABLES

6.2.1 Feature Set - Android Keystroke Dataset-I 65

6.2.2 Feature Set - Android Keystroke Dataset-II 66

6.3.1 Classification results . 71

6.3.2 Sheep and Goat Results for Support Vector Machine 74

6.3.3 Sheep and Goat Results for Decision Tree 75

6.3.4 Sheep and Goat Results for K - Nearest Neighbors 75

6.3.5 Sheep and Goat Results for Naive Bayes 75

6.3.6 Sheep and Goat Results for Logistic Regression 76

6.3.7 Sheep and Goat Results for Random Forest 76

6.3.8 Sheep and Goat Results for Multi-layer Perceptron 77

6.3.9 Sheep and Goat Results for LightGBM 77

6.3.10 Artificial Wolf Results for Support Vector Machine 92

6.3.11 Artificial Wolf Results for Decision Tree 92

6.3.12 Artificial Wolf Results for K - Nearest Neighbors 92

6.3.13 Artificial Wolf Results for Naive Bayes 93

6.3.14 Artificial Wolf Results for Logistic Regression 93

6.3.15 Artificial Wolf Results for Random Forest 93

6.3.16 Artificial Wolf Results for Multi-layer Perceptron 94

6.3.17 Artificial Wolf Results for LightGBM 94

6.4.1 Anomaly Detection with 70-30 ratio results for Personal Computer

Keyboard based Keystroke Dataset 97

6.4.2 Anomaly Detection with 70-30 ratio results for Android Keystroke

Dataset - I . 97

6.4.3 Anomaly Detection with 70-30 ratio results for Android Keystroke

Dataset - II . 98

6.4.4 Feature selection results for Personal Computer Keyboard based Keystroke

Dataset . 100

XI

6.4.5 Feature selection effects on the performance of Personal Computer

Based Keystroke Dataset . 101

6.4.6 Feature selection effects on the Android Keystroke Dataset-I 101

6.4.7 Feature selection effects on the Android Keystroke Dataset-II 102

6.4.8 Batch mode overall results of anomaly detectors for PC keystroke

dataset . 105

6.4.9 Batch mode results for subjects ‘S002’ and ‘S003’ from PC keystroke

dataset . 106

6.4.10 Batch mode overall results of anomaly detectors for android keystroke

dataset-I . 107

6.4.11 Batch mode results for users ‘600’ and ‘601’ from android keystroke

dataset-I . 107

6.4.12 Batch mode overall results of each anomaly detectors for android

keystroke dataset-II . 108

6.4.13 Batch mode results for users ‘1’ and ‘2’ from android keystroke dataset-

II . 108

6.4.14 Sliding window overall results of anomaly detectors for PC keystroke

dataset . 109

6.4.15 Sliding window results for subjects ‘S002’ and ‘S003’ from PC keystroke

dataset . 109

6.4.16 Sliding window overall results of anomaly detectors android keystroke

dataset-I . 110

6.4.17 Sliding window results for subjects ‘600’ and ‘601’ from android keystroke

dataset-I . 110

6.4.18 Sliding window overall results of anomaly detectors android keystroke

dataset-II . 111

6.4.19 Sliding window results for users ‘1’ and ‘2’ from android keystroke

dataset-II . 111

6.5.1 PC based keystroke dataset EER 70/30 train/test ratio 116

6.5.2 Android Keystroke Dataset - I EER 70/30 train/test ratio 117

XII

6.5.3 Android Keystroke Dataset - II EER 70/30 train/test ratio 117

6.5.4 Comparison of literature and proposed approach 118

XIII

LIST OF FIGURES

1.3.1 Machine Learning Process . 2

2.1.1 Relationships between genuine and imposter match scores and the

resulting animal . 10

3.3.1 Biometrics . 24

3.3.2 Biometric Authentication Process 25

3.3.3 Equal Error Rate or Crossover Rate 27

3.3.4 Digraph representation for typing no 29

4.2.1 Classifying users into genuine or imposter user category 33

4.2.2 Support Vector Machine: (left) Possible Hyper planes (right) model

selected optimal hyper plane with maximum margin 34

4.2.3 Decision Tree example . 34

4.2.4 KNN training set plotting . 35

4.2.5 KNN find K nearest neighbors . 35

4.2.6 Logistic Regression Example . 36

4.2.7 Random Forest Example . 37

4.2.8 Structure of Multi Layer Perceptron 38

4.2.9 How a Light GBM works . 39

4.2.10 How other boosting algorithm works 39

4.3.1 Training of an anomaly detector . 40

4.3.2 Anomaly Detection for Genuine User 41

4.3.3 Anomaly Detection for Imposter User 41

4.3.4 How a trained anomaly detector works (internally) 42

4.4.1 Two Class Confusion Matrix . 44

4.4.2 Multi class Confusion Matrix . 44

5.0.1 Working of keystroke authentication system 47

5.1.1 Working of part-I: find sheep, goat, lamb 50

XIV

5.1.2 Working of part-II: find system generated errors 51

5.2.1 Flowchart for Anomaly Detection with 70 - 30 ratio 54

5.2.2 Flowchart illustrating the methodology for user profile without update 58

5.2.3 Working of the Sliding Window . 60

6.2.1 Benchmark dataset snapshot . 64

6.3.1 Two Class Confusion Matrix [38] . 72

6.3.2 Illustrating FN, FP, TP, TN in resultant multiclass confusion matrix 72

6.3.3 Goat users’ plotting with TPR and sheep threshold for SVM 78

6.3.4 Goat users’ plotting with TPR and sheep threshold for Decision Tree 79

6.3.5 Goat users’ plotting with TPR and sheep threshold for KNN 79

6.3.6 Goat users’ plotting with TPR and sheep threshold for Naive Bayes 80

6.3.7 Goat users’ plotting with TPR and sheep threshold for Logistic Re-

gression . 80

6.3.8 Goat users’ plotting with TPR and sheep threshold for Random Forest 81

6.3.9 Goat users’ plotting with TPR and sheep threshold for MLP 81

6.3.10 Goat users’ plotting with TPR and sheep threshold for LGB 82

6.3.11 SVM plot for Goat and Sheep user hold times for typing password

‘.tie5Roanl’ and ‘.tie’ . 83

6.3.12 Decision Tree plot for Goat and Sheep user hold times for typing

password ‘.tie5Roanl’ and ‘.tie’ . 84

6.3.13 KNN plot for Goat and Sheep user hold times for typing password

‘.tie5Roanl’ and ‘.tie’ . 85

6.3.14 Naive Bayes plot for Goat and Sheep user hold times for typing pass-

word ‘.tie5Roanl’ and ‘.tie’ . 86

6.3.15 Logistic Regression plot for Goat and Sheep user hold times for typing

password ‘.tie5Roanl’ and ‘.tie’ . 87

6.3.16 Random Forest plot for Goat and Sheep user hold times for typing

password ‘.tie5Roanl’ and ‘.tie’ . 88

XV

6.3.17 MLP plot for Goat and Sheep user hold times for typing password

‘.tie5Roanl’ and ‘.tie’ . 89

6.3.18 LGB plot for Goat and Sheep user hold times for typing password

‘.tie5Roanl’ and ‘.tie’ . 90

6.4.1 Impact of No Profile Update on FRR for user ‘s002’ 104

6.5.1 PC keystroke dataset EER plot for batch mode vs. sliding window . 112

6.5.2 PC keystroke dataset Accuracy plot for batch mode vs. sliding window113

6.5.3 Android keystroke dataset-I EER plot for batch mode vs. sliding

window . 113

6.5.4 Android keystroke dataset-I accuracy plot for batch mode vs. sliding

window . 114

6.5.5 Android keystroke dataset-II EER plot for batch mode vs. sliding

window . 114

6.5.6 Android keystroke dataset-II accuracy plot for batch mode vs. sliding

window . 115

6.5.7 Minimum EER comparison plot for each dataset 118

XVI

LIST OF ABBREVIATIONS

TP True Positive

FN False Negative

FP False Positive

TN True Negative

TPR True Positive Rate

FPR False Positive Rate

FNR False Negative Rate

TNR True Negative Rate

FRR False Rejection Rate

FNMR False Non Match Rate

FAR False Rejection Rate

FMR False Match Rate

EER Equal Error Rate

SVM Support Vector Machine

DT Decision Tree

KNN K Nearest Neighbors

NB Naive Bayes

LR Logistic Regression

RF Random Forest

MLP Multi Layer Perceptron

LGB Light Gradient Boosting Machines

XVII

NN Neural Network

GA-KNN Genetic Algorithm -K Nearest Neighbors

IForest IsolationForest

One-Class

SVM

One Class Support Vector Machine

XVIII

CHAPTER 1

Introduction

1.1 Access Control System

Any hardware, software, or administrative policy or process that controls access to

resources is called an access control system [27]. In other words, it is a security

technique that controls who or what resources can be viewed or used in a comput-

ing environment. It is a fundamental concept of security that reduces the risk to a

company or organization. Its main goal is to provide authorized access and to avoid

unauthorized access to resources. It performs the following overall steps: 1.) Identify

and authenticate users or other subjects attempting to access the resources 2.) Deter-

mine whether access is authorized 3.) Grant or restrict access based on the subject’s

identity 4.) Monitor and record access attempts

1.1.1 Authentication Methods

Authentication verifies the identity of the subject by comparing one or more factors

with a database of valid identities [27]. There are three basic methods of authentica-

tion:

Type-1: Something you know. Examples: passwords, personal identification num-

ber(PIN) or passphrase

Type-2: Something you have. Examples: smart card, hardware token, memory card,

universal serial bus drive(USB)

Type-3: It is a physical attribute of a person identified with different kinds of bio-

metrics, which includes Something you are. Examples: fingerprints, iris patterns, face

1

1. INTRODUCTION

patterns, etc. OR Something you do. Examples: signature, keystroke dynamics and

voice.

1.2 Biometrics

Biometrics are physical or behavioural characteristics that can be used to identify a

person electronically in order to provide access to systems, devices or data. Examples

of biometrics include finger print, facial patterns, iris patterns, voice, typing cadence.

These identifiers are unique to an individual and can be used in conjunction to ensure

greater identification accuracy.

1.3 Machine Learning

It is a branch of artificial intelligence focused on the premise that, with minimal

human input, systems can learn from data, recognize patterns, and make decisions.

Fig. 1.3.1 depicts three significant parts of the machine learning system:

Model: the system that makes predictions or identifications.

Parameters/features: the signals or factors used by the model to form its decisions.

Learner: the system that adjusts the parameters and, in turn, the model by looking

at differences in predictions versus actual outcome.

Fig. 1.3.1: Machine Learning Process

2

1. INTRODUCTION

1.4 Motivation

The most important aspect of a biometric device is its accuracy. To use a biometric

system for identification, a biometric device must be able to detect minute differences

in the information. It is essential to learn the characteristics of the particular system.

By doing that, one can get more understanding of the behavior of algorithms applied

in such systems. This information helps to take appropriate actions when it is needed

to maintain the system’s reliability. In the keystroke systems, the user gets used to

the typing device in a short time, so the typing patterns are likely to change over

time. To adapt the changing typing behavior, a system has to have some policy to

handle the situation. But what methodology a system should follow to address the

condition? We are trying to answer this question through our research.

1.5 Problem Statement

Throughout the years, advancements in software and hardware technologies have

reduced the costs of biometric authentication in addition to the advancement of com-

puting resources, networking and database systems have made it easy to connect

across a wide variety of geographic and networked areas. Thus, the acceptance of

the biometric authentication systems has increased over time. The current state-of-

the-art methods are used in various biometric systems to either identify or verify the

user. The techniques include statistical learning, machine learning, anomaly detec-

tion, etc. Less emphasis is given on designing reliable behavioural-based biometric

systems. In this aspect, the research focuses on providing a systematic approach

to design and build reliable behavioural-based biometric systems. To implement pro-

posed methodology experiments are performed using keystroke dynamics based access

control system.

1.6 Thesis Contribution

In summary, we make the following contributions:

3

1. INTRODUCTION

• We conducted a detailed study of behavioral biometrics’ based access control

systems which are using machine learning techniques. We studied how the

previous researches have built different biometrics based on various machine

learning algorithms and provided an in-depth analysis of how machine learning

works in keystroke biometrics.

• To better understand the system’s quality and performance, we have experi-

mented using the widely used biometric zoo’s [13] concept and provided our

findings and observations on it.

• Further, we investigated anomaly detection techniques techniques and used two

more datasets (from the android platform) to generalize our findings and also

to look for platform-dependent variances in our experimental results.

• Our main objective here is to provide guidelines of how to design and build

reliable keystroke dynamics based access control system. Furthermore, through

this research, we tried to understand the behavior of keystroke biometrics over

time. So, if the user’s typing patterns gradually change with time, then how

to update the user profile passively without altering user and maintain the

system’s reliability. All these research and findings led us to understand the

steps that one can take to engineer building the reliable keystroke biometrics-

based authentication system.

1.7 Thesis Organization

The rest of the thesis is organized as follows:

• In Chapter 2, we discuss how biometric zoos got proposed and how its evolution

took place. Additionally, we present an analysis of the works that have been

done using biometric zoo concepts for performance evaluation and enhancement

of different biometric systems. A study of machine learning-based biometric

systems, as well as anomaly detection based keystroke system, is also presented.

4

1. INTRODUCTION

• In Chapter 3, we discuss the access control systems and authentication methods.

The biometric authentication method with it’s authentication process and types

are described in detail. An introduction to the keystroke biometrics is also

provided.

• In Chapter 4, we mentioned various machine learning techniques including

multi-class classification and anomaly detection models. Additionally, evalu-

ation metrics for the classification is discussed.

• In Chapter 4, we show the design and implementation of our approach to test

the reliability of the keystroke biometrics based access control system.

• In Chapter 5, experiments and results of different machine learning-based bio-

metric access control system is demonstrated using biometric zoo concepts to

indicate the reliability of the existing techniques. In addition, experimental re-

sults of an anomaly detection based biometric authentication system with three

datasets, one with a regular PC keyboard and two additional datasets from

having touch screen keypads from the android platform, is also shown. In the

end, the observations are drawn from the comparison and similarities of the

different anomaly-based results.

• Finally, In Chapter 6 we conclude the thesis and discuss the potential future

work

5

CHAPTER 2

Related Works

Biometrics is a widely used technique to authenticate the users using their physical

or behavioral traits. There are many ways by which one can evaluate the biometrics

system’s performance. The most general evaluation metrics for biometrics are false

rejection rate, false acceptance rate, equal error rate and failure to enroll rate which

are described in detail in the section 3.3.2. Additionally, there is one more approach

familiar to biometric researchers and practitioners to evaluate the biometric systems,

that is the concept of biometric zoo.

2.1 Biometric Zoo

In a biometric authentication system, there are often the cases that some users are

consistently performing poor. The researchers and integrators are interested in finding

this type of poor performing user groups. Generally, majority of the users faces few

issues like they are rarely falsely accepted or falsely rejected by the system. However, a

small group of users may always behave in a way which increases system’s verification

errors. This type of users are naturally difficult to recognize and analysis of this kind

of users and their common characteristics can expose the fundamental weaknesses

of the biometric system. By considering these traits of the users one may be able

to develop more robust authentication systems. Several problem groups have been

characterized and given animal names which describe their behavior. The concept

of biometric zoo is introduced by Doddington et al. [13] which is described in the

following section.

6

2. RELATED WORKS

2.1.1 Doddington’s Biometric Zoo

In 1998, while performing statistical tests for the performance discrepancy in speech

and speaker recognition systems, Doddington et al. [13] considered differences in

distinguishability of individual types of users. In particular, the authors proposed a

menagerie in which speaker differences were characterized using animal names, like

Sheep, Goat, Lamb, and Wolf [13]. They considered two scores, i.e., genuine score

and imposter score, to categorize the users in animal classes. Genuine Score is the

set of scores in which user k is matched with user k’s template. For example; when an

apple has a match with an apple (True Positive). In other words, it derives number

of times one can be easily matched with their samples. Imposter Score is the set

of scores in which either any j user is matched with user k or k user is matched with

any user j. For example, when an apple has a match with a peach or a peach has

a match with an apple (False Positive). In other words, it derives the number of

times when someone can successfully pretend to be someone else. The members of

the Doddington’s biometric zoo are described below:

• Sheep:

Sheep users have very high genuine scores meaning these are the kind of the

users who can easily access their accounts. So for them, the system performs

quite well. When these types of users provide their biometric for a match, the

sample matches nicely with saved samples of themselves and poorly with other

user’s saved samples.

• Goat:

Goat users have low genuine scores meaning these are the kind of the users who

are unable to access their accounts. Users categorized as goats are very hard

to recognize by the system. When they provide their biometric for a match,

they cannot match with one of their saved samples and as a result, the system

rejects the user. They are the ones who are responsible for the majority of the

system’s False Rejection Rate (FRR).

• Lamb:

7

2. RELATED WORKS

Lamb users have high imposter scores. They are easy to mimic, meaning any

random user can get into the system pretending to be a lamb. When lambs

biometric is combined with a different person’s biometric, the resulting match

score will be higher than average. The majority of the system’s False Acceptance

Rate is due to the lambs.

• Wolf:

Wolf users also have high imposter scores. They are experts in impersonation,

meaning they can get into other users’ accounts by imitating their patterns.

When these users provide their biometric for a match, they have a higher chance

of getting matched with a different person’s stored biometric sample. It is said

that the wolves prey upon the lambs because, by definition, lambs are easy to

imitate.

2.1.2 Yager and Dunstone’s Biometric Zoo

Yager and Dunstone introduced four additional animals: Dove, Phantom, Chameleon,

and Worm in 2007 [53, 54]. It is based on the user’s relationship between their genuine

and imposter match scores. Following are the definitions for the animals introduced

in this category:

• Dove:

These users are the best possible users for a biometric system. The users have

high genuine score and low imposter scores. Their samples match well with

other saved samples of themselves and poorly against others. Doves are rarely

involved in any type of verification error.

• Phantom:

User categorized as Phantoms have low genuine and imposter scores. It is

implicit that they generate lower match scores regardless of who they are being

matched against. They can be the cause of False rejects but are unlikely to be

involved in False Accepts.

8

2. RELATED WORKS

• Chameleon:

Chameleons always appear similar to others receiving high match scores for all

verifications. The users have high genuine and imposter scores. In other words,

they receive high match scores for all verifications, both genuine and imposter.

They are likely to cause False accepts.

• Worm:

Worms are the worst types of users that a system can have. They fall in

the range of highest imposter score and lowest genuine score. They are lowly

creatures, having few distinguishing characteristics, and hence match poorly

against themselves also they can be parasitic, leading to high match scores when

matched against others. They are said to be the cause of a disproportionate

number of system errors.

2.1.3 Doddington’s Biometric Zoo Vs. Yager and Dunstone’s

Biometric Zoo

Doddington’s zoo is based on the user’s average genuine or imposter match scores, on

the other hand, Yager and Dunstone’s zoo considers the relationship between genuine

and imposter match scores.

Goats are the users who are difficult to match and have lower genuine scores.

In here, Doddington has not considered the associated imposter score for each user.

shown on Fig. 2.1.1 [53], if the imposter score is also low, then the user falls into

the ‘Phantom’ category, but if the imposter score is high, then one can fall in the

‘Worms’ category.

9

2. RELATED WORKS

Fig. 2.1.1: Relationships between genuine and imposter match scores and the
resulting animal

Lambs tend to produce high match scores when being matched against by other

users. Wolves are the users who get high scores when matching against others. In

both cases, imposter match scores are high, so, as per the fig. 2.1.1, if we consider

high genuine score, then the user falls in ‘Chameleons’ category, and if the genuine

score is low, then one falls in the ‘Worms’ category.

We can say that the Yager and Dunstone’s zoo is making the Doddington’s zoo

complete by introducing the concept of correlation between genuine and imposter

match scores.

2.1.4 Significance Of The Biometric Zoo

The biometric performance evaluation metrics like false rejection rate, false accep-

tance rate or equal error rate provides overall idea of how a system is performing

while, to get an insight of system’s issues the various categories of biometric menagerie

helps. The three metrics average out individuals and problems associated with the

subgroups of populations. The biometric menagerie serves as a diagnostic tool that

takes a more user-centric approach. It helps in finding the users who are affecting

10

2. RELATED WORKS

the system’s performance and also what kind of behaviors do they exhibit. The three

animal categories Goats, Lambs or Wolves makes this task easy for any researcher or

any biometric authentication device development companies to know their device’s

characteristics.

Biometric zoos can be used to improve the design quality of biometric based

authentication systems. By looking at each animal groups’ characteristics, it can

be said that if one apply the biometric zoo concepts on any biometric authentication

system and find out the possible goats/lambs and wolves categories then they can take

actions to handle and reduce those kind of user effects on the system. Additionally,

it can also help one to develop techniques to convert poor performing users like

goat, lamb or wolf into the sheep or dove categories, which can help to enhance the

reliability of the biometric system. Also, just to check the performance of the system

one can check for number of goats/lambs and wolves, the lower the value the better

the performance of the system.

2.2 Biometric Zoo Evolution

The works under this category show that the biometric zoo does exist in every bio-

metric technology and the authors try to understand why the zoo exists.

Teli et al. [49] proposed a theoretical framework to generalize biometric zoos across

algorithms and datasets by experimenting on the human face recognition dataset.

They tried to demonstrate the tests which show the existence of different levels of

biometric zoos like zeroth level, first level, second-level, and third-level zoos. Ex-

periments were carried out on two face recognition algorithms using two previously

proposed approaches by Doddington et al. [13] and Yager and Dunstone et al. [53, 54],

respectively. X2 test was performed to check the existence of different animals. Re-

sults concluded that zoos of order greater than one are rare, or it is non-existent.

Bodorin et al. [37] claimed that the biometric menagerie previously proposed

by Doddington et al. [13] and Yager et al. [53, 54] is fuzzy and inconsistent for

the iris recognition system, whether it refers to the user or its biometric templates.

11

2. RELATED WORKS

It was tested using 12 iris recognition tests on the iris image dataset. All tests were

performed using the second version of the Circular Fuzzy Iris Segmentation procedure.

The results suggest that the Goat concept is the most consistent, while the wolf is

not a fuzzy concept. It also presents that biometric menagerie in any terms depends

on the calibration of the iris recognition system.

Zheng et al. [16] believed that both the theories carried out by Doddington et

al. [13] and Yager et al. [53, 54] disregarded threshold in biometric systems when

classifying animals which intern might reduce the accuracy of the animal detection.

To prove their belief, they experimented with both the concepts on a 100 % accu-

rate finger vein dataset with 0.3 as a threshold using Kruskal Wallis Test to test

Doddington Zoo’s presence and to detect Yager zoo genuine and imposter scores were

considered. Results showed the existence of both the menagerie animals (Goat, Lamb,

wolf, Chameleon, Worm, and Phantom) in the dataset, which should not be the case.

They proposed an optimized method Biometric Menagerie Detection with threshold

(BMDT) based on Yager’s theory and experimentally demonstrated that its accuracy

is better.

2.3 Performance Evaluation and Enhancement Of

Biometric Systems Using Doddington’s Zoo

Authors under this category have used biometric zoo to check for the number of

goats/lambs/wolves that are considered as the system’s flaws. Some of them have

utilized this knowledge to enhance their system’s performance by proposing different

techniques.

In the context of fingerprint and iris datasets, Ross et al. [42] proposed a selective

fusion approach by getting the weakest users, which contributes to the majority of

FAR (False Acceptance Rate) and FRR (False Rejection Rate) with the help of Dod-

dington’s zoo. Statistical framework based on the concept of percentiles of match

scores and F-ratio was used to categorize the users. Only weak users were asked

12

2. RELATED WORKS

for further information. Through this incremental method, they claimed that the

system’s overall matching accuracy increased and computational time got decreased.

Jeffery et al. [33] classified subjects from the iris dataset as biometric zoo animals for

several algorithms and studied the consistency of the classification algorithms. iris-

BEE, MIRLIN and OSIRIS algorithms were compared and to present results ROC

(receiver operating characteristic) curve depicting FAR and FRR was plotted. Their

results showed that biometric menagerie classification is algorithm dependent and it

also relies on which kind of iris is chosen(left/right). The authors also claimed that

a person classified as weak should not be considered as weak because of algorithms’

disagreement and the mismatched classification. Howard et al. [17] observed that

biometric menagerie is based on the assumption that match scores are partially de-

pendent on the specific subjects involved in the comparison operation. They claimed

that the rate of identification is significantly affected by certain inherent properties

of the subject, such as its ethnicity, gender and color of the eye, as well as the char-

acteristics of the image, in particular the wavelength of light used by the sensor. To

understand the iris recognition system’s performance, a regression tree model was

used to perform experiments.. Results demonstrated that only a single factor differ-

ence was found to cause a 2-3 times increase in the false rejection rate(number of goat

users).

Ahmad et al. [45] analyzed the goat user within the population of an offline signa-

ture biometrics using HMM (Hidden Markov Model) based computational approach.

They identified four goat populations on the basis of four local features (pixel den-

sity, center of gravity, angle, and distance) to interpret if they have any correlation.

They tried to test whether different features influence the goat results, experiments

demonstrated that they were highly correlated with each other. EER (Equal Error

Rate) was considered to analyze their co-relationship. Sundararajan et al. [47] stud-

ied the challenges of a biometric system based on the writing style of individuals by

investigating the system for the presence of goats, wolves, or lambs. The presence of

the animals was verified using match score, FAR and FRR. They Suggested a method

using person-specific characteristics referred to as “style signatures” To obtain Style

13

2. RELATED WORKS

signatures for each person, they trained N One-vs-Rest (OVR) binary classifiers for

N individuals. Experimental results showed that the use of person-specific Style sig-

natures might be better at lowering false acceptance and false rejection rates, thereby

addressing the goat/wolf/lamb behavior of individuals to a certain extent.

DeCann et al. [12] studied the impact of the biometric zoo on the relationship

between the ROC curve and CMC (Cumulative Match Characteristic) curve created

by the collection of genuine and impostor match scores. They designed a sampling

procedure that reassigns the match scores to the animals of Doddington’s zoo [13].

Experiments were performed using figure print and gait scores. ROC curves were plot-

ted using false match rate (FMR) and the false non-match rate (FNMR) CMC curves

were potted using the top 10 match scores, which exceeded threshold and system’s

identification accuracy for the same. Observations showed that several CMC curves

could be linked to a single ROC curve. Kirchgasser et al. [21] used Doddington’s

zoo [13] concept to describe the Fingerprint template ageing influence. To investigate

the same, they labelled data of users, including time separation of 4 years with dif-

ferent animal category names described by biometric menagerie concept. F-Test and

Kruskal – Wallis tests were used to generate animal groups. The results demonstrated

that regardless of which dataset and recognition systems were considered, the labelled

users in the older datasets were not the same as in the new ones. They confirmed

that fingerprint ageing could be the cause of the high amount of fluctuation in the

detection results.

Neal et al. [31] explored the soft biometric classification of demographic and

behavioral attributes using phone data collected from several subjects. Due to people

exhibiting high intra-class variance templates and queries are affected in terms of how

well they match. To analyze further in the matching error, biometric menagerie has

been used. The similarity matrix was generated to evaluate animal results. Findings

showed that many subjects are characterized as goats or wolves in their calling and

SMS habits.

Poh et al. [36] claimed that Doddington’s categorization [13] does not provide a

criterion for ranking users in a database on the basis of their performance variability.

14

2. RELATED WORKS

They proposed a user-dependent performance criterion that requires a limited num-

ber of genuine training scores. Three Log Likelihood Ratios were discussed: Z-norm,

Z-shift and F-norm and developed a user specific score normalization scheme, which

is a constrained F-norm ratio. Experimental results proved that user-dependent vari-

ability could be decreased by this scheme. Benchmark dataset XM2VTS containing

match scores of 7 face systems and 6 voice systems were used. Schnitzer et al. [43]

investigated the relationship of the animals of the Doddington Zoo [13] to the con-

centration of distances and the problem of hubness in a speaker verification system.

Experiments have shown that, due to the high feature dimensions, goats and wolves

are likely to emerge. For evaluation, GMM (Gaussian Mixture Model) trained on

Mel frequency cepstrum coefficient (MFCC) is used. They claimed that hubness is

an integral part of the development of the Doddington Zoo for speaker verification

systems.

2.4 Doddington’s Zoo Effects On Keystroke Dy-

namics

Wang et al. [51] presented frog boiling attacks that stealthily leverages the template

update scheme of the keystroke verification system to poison user templates. The

impact of the attack on the user groups identified by the biometric menagerie was

investigated. They illustrated how the attack mutates the “Doddington Zoo [13],”

as it turns historically well-performing animals (sheep) into ill-performing animals

(lambs or goats) systematically. Attacks were performed on scaled manhattan verifier,

selective fusion verifier and all fusion verifier.

Mhenni et al. [25] proposed method that used keystroke dynamics to help password-

based applications to overcome hacking attacks. Users were classified into multiple

categories according to the Doddington Zoo classification [13]. They applied an adap-

tive strategy specific to each category of users. Three different adaptive mechanisms

were used: the growing window mechanism, the sliding window mechanism and the

15

2. RELATED WORKS

least frequently used mechanism. An update strategy specific to the user class has

been identified, which improved the obtained performances. Users with significant

intra-class differences (Goats) have a greater comparison scale. Also, users who were

more vulnerable to hacker attacks (lambs) were given higher decision thresholds. Ad-

ditionally, Mhenni et al. [26] proposed a user-dependent adaptive strategy based

on the Doddington zoo [13] as well as Yager and Dunstone’s menagerie [53, 54], for

the recognition of the user’s keystroke dynamics. They applied an adaptive strategy

specific to the characteristics of each user of both the menagerie aiming to solve the

intra-class variation problems. Experiments were performed using the GA-KNN clas-

sification algorithm. An update strategy specific to the user class has been identified,

which improved the obtained performances.

2.5 Machine Learning Based Biometric Systems

Under this category, we have reviewed the biometric systems that are using machine

learning-based algorithms for either identification or verification task. Additionally,

the evaluation metrics considered are also mentioned. Please note that none of the

mentioned researches has considered quality score factor while taking its decisions.

Quality score denotes the quality of the user’s provided sample, in other words it

derives how good is quality of the user’s provided sample.

Boles et al. [9] used the Support Vector Machine algorithm for identification task

in a voice biometric system . They considered accuracy for evaluation of the sys-

tem. Marsico et al. [11] applied Support Vector Machine and various neural network

algorithms like Wavelet Probabilistic NN, Back Propagation NN, Radial Basis Func-

tion NN, Restricted Boltzman Machine and Multi Layer Perceptron for identification

of Iris biometrics. They have considered the threshold in the system and evalu-

ated the system with accuracy, false acceptance rate(FAR), false rejection rate(FRR)

and equal error rate(EER). For identification of brain EEG signals Bashar et al. [7]

used machine learning algorithms like multiscale shape description (MSD), multiscale

wavelet packet statistics (WPS), multiscale wavelet packet energy statistics (WPES)

16

2. RELATED WORKS

for feature extraction and for matching purposes they have considered error-correcting

output code multiclass model (ECOC) using SVM. They calculated accuracy to eval-

uate the system’s performance. Sundararajan et al. [48] have presented a survey

on deep learning based biometric systems. In the survey, they have mentioned var-

ious other works that have used deep learning algorithms like Convolutional Neural

Network (CNN), Deep Belief Network (DBN), Deep Boltzman Machine (DBM), Con-

volutional DBN (CDBN), Restricted Boltzmann Machines (RBM), Recurrent Neural

Networks, etc. for both identification and verification tasks for the biometric modal-

ities like Face, Fingerprint, Palm Print, Iris, Voice, Signature, Gait and Keystroke.

The works mentioned have considered accuracy, false acceptance rate (FAR), false

rejection rate (FRR), mean absolute error (MAE), equal error rate (EER) or their

combination for the assessment of the system.

Alghamdi et al. [3] used Medians Vector Proximity (MVP), K-Nearest Neighbor

(KNN) and Random Forest Classifier for identification of smartphone user’s gestures.

They have considered the threshold in the system and evaluated the system on the

basis of equal error rate(EER) and classification time. Bo et al. [8] applied two class

SVM model for identification of touch and movement based biometric. They have

used threshold in the system and considered accuracy, false acceptance rate and false

rejection rate for system evaluation.

For identification in keystroke biometrics, Krishnamoorthy et al. [22] have ap-

plied SVM-RBF with one vs. one decision shape function. They have considered

the threshold in the system and evaluated the system using F1-Score and accuracy.

Ramu et al. [40] used the Gaussian probability density function and SVM with lin-

ear kernel for identification of keystroke biometric. They have used threshold in the

system and considered accuracy, false acceptance rate and false rejection rate for sys-

tem evaluation. In the context of tap and Keystroke biometric, Miluzzo et al. [28]

considered Ensemble Classification Technique by using K-Nearest Neighbor (KNN),

Random Forest Classifier, Multinomial Logistic Regression, Support Vector Machine

and Bagged Decision Trees for identification task. They used accuracy to assess the

system’s performance.

17

2. RELATED WORKS

2.6 Use Of Anomaly Detection In Keystroke Bio-

metrics

Kevin Killourhy and Roy Maxion [19] applied various anomaly detection algorithms

on the benchmark keystroke dataset and examined which are the top-performing al-

gorithms for the keystroke biometrics. The main goal of their research was to collect

a data set, establish an evaluation procedure and equally evaluate the performance

of several anomaly detection algorithms like; Manhattan (scaled), Nearest Neighbor

(Mahalanobis), Outlier Count (z-score), SVM (one-class), Mahalanobis, Mahalanobis

(normed), Manhattan (filter), Manhattan, Neural Network (auto-assoc), Euclidean,

Euclidean (normed), Fuzzy Logic, k Means, Neural Network (standard). In the pro-

cess, they identified which detectors have the lowest error rate on their collected

dataset (e.g., the Nearest Neighbor (Mahalanobis) detector) and they provided a

data set and evaluation methodology that can be used by the community to evaluate

new detectors and report comparative results. Furthermore, Kevin Killourhy and Roy

Maxion [20] tried to find out the factors which affect the error rates of the anomaly

detectors in the context of keystrokes dynamics. The factors that they considered

for testing are the algorithm itself, amount of training, choice of features, use of

updating, impostor practice, and typist-to-typist variation. They also experimented

to know the approach that can be used to assess the effects of the factors on the

anomaly detectors. In their approach, they experimented using a benchmark dataset,

done statistical analysis using linear mixed analysis models and validated the model’s

predictions using new data. Their results showed that all the factors had a major

influence on error rates except impostor practice and feature set.

Ivannikova et al. [18] proposed two approaches for detecting anomalies in the CMU

dataset [19]. Dependence Clustering based approach and a k-NN-based approach

that demonstrated strong results. Some of the current methods do use real data from

users for training and validation. They designed a cross-validation procedure with

artificially generated impostor samples that improve the learning process and allows

for a fair comparison with previous works. They adapted a spectral clustering style

18

2. RELATED WORKS

algorithm previously used only for clustering problems for the anomaly detection task.

Experimental results demonstrated that both proposed approaches outperformed the

previous state-of-the-art results for the CMU dataset for unsupervised learning.

John V. Monaco [30] described fifteen anomaly detection systems submitted to the

Keystroke Biometrics Ongoing Competition (KBOC). The competition presented a

task to identify anomaly with a public keystroke dataset containing over 300 subjects

typed case-insensitive repetitions of their first and last name, and as a result, keystroke

sequences could vary in length and order depending on the usage of modifier keys.

Participants had the task of designing biometric keystroke verification systems that

achieved a low cross over rate on a set of unlabeled query samples. To counter this,

a preprocessing algorithm for keystroke alignment was developed in order to obtain

a semantic correspondence between keystrokes in inconsistent sequences.

Mudhafar M. Al-Jarrah [2] presented an anomaly detector for keystroke dynam-

ics authentication, based on a medians vector proximity method, validated by an

empirical analysis of an independent keystroke data benchmark. A password typing-

rhythm classifier is introduced, which can be used as an anomaly detector in genuine

and impostor users’ authentication.

2.7 Gap Between The Production Based And Re-

search Based Approaches

In our opinion, there are two cases:

1. While doing their experiments with the benchmark keystroke dataset Killourhy

and Maxion [19] have considered half of the samples from the total available

samples to train the 14 different anomaly detectors and provided their findings

based on its results. But in reality, that is not a feasible task. One can not ask

the user to enter the password for say 200 times or 300 times. It will take long

time and meanwhile, the typing behavior of the user may change or the user

might get frustrated. In other kinds of literature, as mentioned in the category

19

2. RELATED WORKS

“Machine Learning Based Biometric Systems” in the section 2.5, they are using

various multi-class classification techniques, which is fine, but again majority

of these researches are using a large number of data for training. Also, in the

machine learning classification for the unseen sample, it is easy to identify a user

because the classifier has a tendency always to find an identity, it will never say

no.

2. The best results that the authors are getting in [19] are mostly the distance-

based anomaly detectors. But in the keystroke dynamics, user typing patterns

change over time, so the distance may not remain the same all the time. On the

other hand, If we consider the fingerprint detection system, then the distance-

based detectors work well because the distances almost remain the same, so the

system accepts the user as a genuine user for a longer duration. So, it is not

clear from the works of literature on how keystroke biometrics impacts on the

accuracy of the system over time.

3. The majority of the works in the literature are using same password to record

users’ keystroke samples. However, in the keystroke dynamics, if the user

changes his password then the typing pattern completely changes. In this case

the feature selection will not work. Because, in reality, different users will have

different passwords with different length. One would not be able to build the

classifiers using the feature selection when the samples don’t share the same

feature dimensions.

20

CHAPTER 3

Access Control Systems

In this chapter, we start by describing what is access control systems and what are the

various authentication methodologies used in those systems. The chapter also talks

about biometrics in detail including it’s authentication process and general evaluation

metrics. Furthermore, a brief introduction of physical and behavioral biometrics

is provided. Additionally, keystroke dynamics a type of behavioral biometrics is

described in detail with digraph representation.

3.1 Access Control System

Access control is a selective restriction to the access of the data. It performs identifi-

cation, authentication and authorization of users and entities by evaluating required

login credentials. Where, identification is the process of subject claiming an identity.

A subject is required to provide its identity to proceed further for authentication

and authorization operations. Authentication is a method used to determine whether

someone is what they appear to be. It verifies the identity of the subject by comparing

one or more factors with a database of valid identities [27]. Authorization indicates

who is trusted to perform certain actions. If the operation is permitted the subject

is authorized otherwise it is not authorized. The access controls can be implemented

in three ways: administratively, logically/technically, or physically [27].

• Administrative Access Controls: Administrative access controls are the

policies and procedures established by the safety policy and other regulations

or specifications of an organization. Examples of administrative access controls

21

3. ACCESS CONTROL SYSTEMS

include policies, procedures, hiring practices, background checks, classifying

and labeling data, security awareness and training efforts, reports and reviews,

personnel controls, and testing [27].

• Logical/Technical Controls: Logical access controls are the tools used to

monitor access and to secure systems and resources through hardware or soft-

ware. Examples of logical or technical access controls include authentication

methods (such as passwords, smartcards, and biometrics), encryption, con-

strained interfaces, access control lists, protocols, firewalls, routers, intrusion

detection systems, and clipping levels [27].

• Physical Controls: Physical access controls involve specific measures used to

prevent, monitor or identify external interaction with devices or locations inside

the facility. Examples of physical access controls include guards, fences, motion

detectors, locked doors, laptop locks, badges, swipe cards, video cameras and

alarms [27].

3.2 Authentication Factors/Methods

To verify the user’s identity authentication system considers some factors or methods.

There are three factors or methods for authentication:

• Knowledge Based Factor (Type-1): It is depended on what the user knows.

Examples of knowledge based or type-1 factors include passwords, personal

identification number(PIN) or passphrase.

• Possession-based factors (Type-2): It is based on what a user possess(has).

Illustrations of knowledge based or type-2 factors include smart card, hardware

token, memory card, universal serial bus drive(USB)

• Inherence-based factors (Type-3): This is defined according to what the

user is, or how he does. It is a physical attribute of a person identified with

different kinds of biometrics [27] Examples in what user is includes fingerprints,

22

3. ACCESS CONTROL SYSTEMS

iris patterns and face patterns. Examples in how he does category include

signature and keystroke dynamics

All these factors become stronger over time if they are implemented correctly. Au-

thentication can be performed using the combination of one or more above mentioned

factors. Based on number of factors considered authentication can be divided into

three categories:

• Single Factor Authentication: As the name suggests it uses only one factor

to authenticate a user trying to get access into the system. It is more vulnerable

to attacks.

• Two Factor Authentication: It combines any two factors to increase the

system security. For example, there are many banking applications which re-

quires users to enter their password as well as a one time password(OTP) sent

by the bank to the individual’s device to authenticate the user.

• Multi Factor Authentication: It uses more than one authentication factors

to generate a layered structure of authentication. In simple words, It requires

the user to enter two or more credentials to login into the system. It not only

increases the security but generates a reliable false proof system.

3.3 Biometrics

It refers to any automatically measurable physiological or behavioral traits which are

distinctive to an individual. Physiological characteristics are related to the shape of

the body (Something you are). As shown on Fig. 3.3.1 [55], examples of physiological

characteristics include finger print, face, hand, iris, finger vein. Behavioral character-

istics are related to the pattern of behavior of a person (Something you do). As shown

on Fig. 3.3.1 [55], examples of behavioral characteristics include voice, keystroke, sig-

nature. By using unique biological characteristics, biometrics is the most suitable

means of identifying and authenticating individuals in a reliable and fast way.

23

3. ACCESS CONTROL SYSTEMS

Fig. 3.3.1: Biometrics

With the biometric technology there is nothing to lose or forget since the char-

acteristics or traits of the person serve as the identifiers [55]. Also, many of these

identifiers remain intact for longer time. The authentication factors like passwords

and PINs can be stolen easily. Biometrics should reduce the risk of compromise the

likelihood that an adversary can present a suitable identifier and gain unauthorized

access [55].

According to the requirements, biometrics are utilized for either of the two pur-

poses: identification or verification. In identification, the biometric system asks and

tries to answer the question “Who is X?” In this process, the biometric device reads

and compares the samples against each record or template in the database. This type

of comparison is referred to as one to many (1:n) search. Verification is when the

systems ask and try to answer the question, “Is this X?” After the user claims the

identity of X. In a verification procedure, the biometric device needs input from the

24

3. ACCESS CONTROL SYSTEMS

user, at which time the user asserts his or her identity through a password, token, or

user name (or any combination of the three). The user input points the system to a

template in the database. It then processes and compares the sample with or against

a user-defined template. This kind of search is called one to one (1:1). In this case,

the system either finds a match or fails to find a match.

3.3.1 Biometric Authentication Process

Fig. 3.3.2: Biometric Authentication Process

As shown on Fig. 3.3.2 [32], the biometric authentication process starts with the

“Data Acquisition”, where the user provides there biometric sample through any bio-

metric sensor. The sample is acquired and forwarded to the “Signal Processing” unit

for matching purposes through the transmission channel. When the sample arrives at

the signal processing unit, segmentation is performed, and any unwanted data(noise)

is removed from the sample. Next, the segmented sample is provided to the feature

extractor unit that extracts essential features out of the sample and generates a tem-

plate for matching. The output of the “Extraction and Segmentation” unit is “Quality

Score” which scores the quality of the user-provided sample. The matching algorithm

considers template generated through “Extraction and Segmentation” and based on

the application, it matches the template with one or more reference templates and

produces a matching score that describes how well a template matches the reference

template(s). Both the scores are considered by “Decision Policy” of the system to

decide whether there is a match (Yes?) or not (No?). Generally, a predetermined

25

3. ACCESS CONTROL SYSTEMS

threshold for both scores are considered. If both scores are above that threshold, it

is said to be a match (Yes). Otherwise, if the quality score is above threshold and

match score is below the threshold, then the system rejects the user and if the match

score is above the threshold and quality score is below the threshold, then the system

asks the user to provide the biometric sample again.

3.3.2 Evaluation Metrics

False Rejection Rate (FRR) / False Non-Match Rate (FNMR):

It describes the number of times someone who should be identified positively is instead

rejected.

FRR =
FR

N
× 100 (1)

where FR = Number of incidents of False Rejections

N = Total number of samples

False Acceptance Rate (FAR) / False Match Rate (FMR):

Describes the number of times someone is inaccurately positively matched

FAR =
FA

N
× 100 (2)

where FA = Number of incidents of False Acceptance

N = Total number of samples

Equal Error Rate (EER) / Crossover Rate:

Combination of FAR and FRR helps to understand the usefulness of a particular

biometric device in the given scenario. Equal Error rate or Cross Over Rate is the

intersection of false rejection rate and false acceptance rate (Fig. 3.3.3 [32]). The

lower the rate the better the biometric system.

26

3. ACCESS CONTROL SYSTEMS

Fig. 3.3.3: Equal Error Rate or Crossover Rate

Failure To Enroll Rate (FER) It is the percentage of population that are

unable to enroll into the system.

3.3.3 Physical Biometrics

Physiological characteristics such as fingerprints, iris, finger vein patterns and face

geometry play a vital role in user verification to verify users belonging to a large

population. It is very convenient way of presenting identity because different shape

of body presents the identity so there are no risks that a user tend to forget. Also,

it almost remains the same for several years so there is no need to update it now

and then. It is stable and reliable as well as easy to use and setup. Though these

structures make each individual body unique, they are static, which leaves them more

vulnerable to being scanned or photographed, then reconstructed for malicious use

[35].

3.3.4 Behavioral Biometrics

Behavioral biometrics is used to uniquely identify a user through their particular

behavioral pattern or actions. The benefit of using behavioral biometrics over the

physical biometrics is that it is stored in terms of numeric timing, position and statistic

27

3. ACCESS CONTROL SYSTEMS

data which is not a physical representation like a shape of a finger print or a face.

So, even if the information is stolen the attacker is unable to interpret the data and

regenerate certain behavior. Also, unlike physical biometrics the stored data keeps

evolving and changes over time which means even if the behavior biometrics is stolen

after some time it is of no use because it keeps on changing. Whereas, physical

biometrics like finger print once stolen then it can be used for multiple purposes for

longer duration. Every person behaves in a completely individual way. The gait with

which someone walks, the fluctuations in vocal tone as they speak, and the cadence

with which they type are as unique as fingerprints but are much harder for malicious

actors to capture, much less duplicate. Behavioral biometrics uses these patterns to

authenticate users and protect data [35]. Behavioral biometrics includes gait, voice

patterns, keystroke dynamics, touch screen swipes/ mobile interactions and cursor

movements.

3.3.5 Keystroke Dynamics

It is a type of behavioral biometrics that measures how a subject uses a keyboard

based on the timing and latency between a key press and key release event on a

keyboard. Software is used to capture it, so the technique can be applied to any

system that accepts and processes keyboard input events [32]. It can be used for

single authentication events or continuous monitoring. For example; It can be used

to harden the passwords, which means that the keystroke dynamics can be deployed

for each user to augment the existing password by requiring that the password should

be entered in a manner consistent with the intended user [32].

It is a strong authentication procedure which involves typing a password and the

way of typing it. This double-layer defence provides better protections against all

threats on the internet, such as brute force attack, dictionary attack, and actual

shoulder surfing. The brute-force attack includes a hacker trying out all possible

combinations of passwords, and is easier to interpret if the intruder knows what

we know. The dictionary attack is a type of brute force attack which consists of

trying every word of the dictionary as a password which works in most of the cases.

28

3. ACCESS CONTROL SYSTEMS

In the shoulder surfing the attacker observes the password while one is typing it.

The keystroke dynamics serves as the best solution for all these attacks, because it

combines the biometric pattern with the password. By doing so, it becomes hard

for an attacker to impersonate means that it is tough to regenerate if observed or

even if one knows the correct password. One’s typing pattern is a unique behavioral

characteristic of an individual. Additionally, keystroke dynamics has a resettable

signature which means that if you change the text, then the typing behavior also

changes. So, if an intruder somehow get the typing traces for a particular password

typed by a user then the legitimate user can reset the typing traces by changing the

password.

3.3.5.1 Digraph Representation

In reality, timing traces used for pattern matching are commonly represented as a

set of digraphs. A digraph is an adjacent pair of characters in typing sequence and

associated timing delay between the pressing of the first key and the pressing of the

second key [32]. Fig. 3.3.5 [32] shows an example digraph representation for typing

no.

Fig. 3.3.4: Digraph representation for typing no

The data is kept as a table of time stamps containing key-down and key-up events.

The resulting features are expressed as dwell time (time that key is depressed) and

flight time (latency between key down events) for the various digraphs. Moreover,

29

3. ACCESS CONTROL SYSTEMS

some character sequences and words can be represented as trigraphs or tetragraphs

(for instance, ing and tion) or word graphs.

30

CHAPTER 4

Machine Learning Techniques

The chapter introduces machine learning techniques. Two types of classifications:

multi-class classification and one class classification (anomaly detection) are discussed

in detail. The multi-class classification working is explained and eight different types

of classification algorithms are described in depth. Also, anomaly detection’s working

is explained and four kinds of anomaly detectors are discussed. In the end, the

evaluation metrics for the classification methods are explained.

4.1 Machine Learning

Machine learning is an application of artificial intelligence (AI) that provides sys-

tems the ability to automatically learn and improve from experience without being

explicitly programmed [14]. It is generally categorized as supervised or unsupervised.

Supervised algorithms for machine learning are developed to learn from labelled

data. The term “supervised” comes from the idea that training this kind of algorithm

is like having an instructor monitor the entire operation. The training data for the

supervised algorithm’s training consist of inputs with the correct outputs. During the

training, the algorithm looks for the patterns in the training data, which corresponds

with the correct output. Once the training is complete, the algorithm can take unseen

data as inputs and determine the correct label for it based on the data it has seen

during the training phase. Supervised learning aims to predict the correct label

for the unseen sample. The supervised learning can be divided into two sub-types:

classification and regression. In this thesis, we are focusing on supervised machine

31

4. MACHINE LEARNING TECHNIQUES

learning methods, specifically classification for user identification.

Unsupervised learning is where you simply have input data (X) with no associ-

ated output variables. The aim of unsupervised learning is to simulate the underlying

structure or distribution of data to get more knowledge about the data. It is consid-

ered unsupervised, since unlike supervised learning above there are no correct labels

associated with the data. The system doesn’t work out the right output, but examines

the details and can draw inferences from datasets to explain hidden constructs from

unlabeled input. Unsupervised learning is further divided into two subcategories:

clustering and association.

4.2 Multi-Class Classification

Classification is the method of determining the class of given data points. Often the

classes are called targets/labels or categories. Classification predictive modeling is a

process in which input variables (X) and it’s related independent output variables (Y)

are used in an algorithm to learn the mapping function from input to output Y = f(X).

The goal is to estimate the mapping function so efficiently that the output variables

(Y) can be predicted for every new input variable (X). The process of learning the

mapping function is called training and the process of getting the output variable for

new(unseen) input variable is called testing.

Fig. 4.2.1 illustrates how the classification works to identify whether the user is a

genuine user or an imposter user. To train the model combination of both the types of

users with their correct labels, genuine/imposter is used. Once a predictive model is

ready, a random unknown user is fed into the predictive model to get its label(class)

as either genuine or imposter user. It is an example of a two-class classification

wherein there are only two classes (genuine / imposter). There can be more than two

classes; those types of classification techniques are called multi-class classification

techniques. Mostly, the systems have more than two users, so generally, the multi-

class classification is deployed to identify the users.

32

4. MACHINE LEARNING TECHNIQUES

Fig. 4.2.1: Classifying users into genuine or imposter user category

4.2.1 Support Vector Machine (SVM)

The objective of the support vector machine algorithm is to find a hyperplane in

N-dimensional space (N — the number of features) that distinctly classify the data

points [41]. As shown on Fig. 4.2.2, generally, the model finds a group of hyperplanes

and based on the margin value, it selects an optimal hyperplane that has maximum

margin value, i.e., the maximum possible distance between two classes’ data points.

Support vectors are data points that are closer to the hyperplane and influence the

position and orientation of the hyperplane [41]. The hyperplanes act as decision

boundaries. Points falling on either side of the plane can be given different classes

accordingly. The dimensions of hyperplanes changes with the number of features. So,

for example, for 2 input features the hyper plane is just a line and the hyper plane

for 3 features is a two-dimensional plane.

To measure the similarity between the data points, a kernel function is used. The

function is data dependent and hence it can be selected according to the problem

at hand. If the data points are not linearly separable then the kernel function maps

them into higher dimensions to make it linearly separable and predicts their target

class.

33

4. MACHINE LEARNING TECHNIQUES

Fig. 4.2.2: Support Vector Machine: (left) Possible Hyper planes (right) model
selected optimal hyper plane with maximum margin

4.2.2 Decision Tree

The goal of the decision tree is to create a model that predicts the value of a target

variable by learning simple decision rules inferred from the data features [44]. A tree

can be “learned” by splitting the source set into subsets based on a test of the value

of the attribute. This procedure is repeated recursively, called recursive partitioning

on each derived subset. The recursion is completed when the subset at a node all has

the same target variable value, or when splitting does not add value to the predictions

anymore. Fig. 4.2.3 [56] describes an example of a binary tree for predicting a person’s

fitness. It predicts the label from fit/unfit based on the parameters like age, eating

habits and exercise habits.

Fig. 4.2.3: Decision Tree example

At each new node of the tree, the algorithm specifies new rules which led it to the

final target class label.

34

4. MACHINE LEARNING TECHNIQUES

4.2.3 K Nearest Neighbor (KNN)

KNN is a lazy learning algorithm since it does not have a dedicated training process

and uses all the data during classification for training. Additionally, It is a non-

parametric learning algorithm because it assumes nothing about the underlying data.

KNN operates by finding the distances between a query and all the examples in the

data, choosing the K number of examples listed nearest to the query, then votes

for the most common label. For instance, we have a dataset having 2 classes in it

(red/blue) and its plotting look like the figure 4.2.5 [50].

Fig. 4.2.4: KNN training set plotting

Suppose now a new data point comes in as the one in black colour. Let’s take

K=3. So, here the K nearest neighbor will find the 3 most nearest data points to the

new data point, As shown on the figure below.

Fig. 4.2.5: KNN find K nearest neighbors

Fig. 4.2.5 [50] demonstrates that the two most nearest data points are from the

35

4. MACHINE LEARNING TECHNIQUES

red class and one point belongs to the black class. So, by majority voting, the black

coloured data point will be assigned the label of the red class.

4.2.4 Näıve Bayes

Naive Bayes is based on the Bayes theorem, which assumes that each feature of the

feature set is independent of each other. The key purpose of the Bayesian classification

is to determine the posterior probabilities, i.e. the likelihood of a category given

certain observable characteristics. It estimates the probabilities of membership for

each class, such as the likelihood that a given record or data point belongs to a specific

class. The class with the highest likelihood is considered to be the most likely class.

4.2.5 Logistic Regression

It is an algorithm for predictive analysis and based on the principle of probability.

Logistic regression uses a cost function named ‘Sigmoid function’ or also known as

‘Logistic function’. The hypothesis of logistic regression tends to limit the cost func-

tion between 0 and 1 [6].

Fig. 4.2.6: Logistic Regression Example

The classifier is expected to provide the classes or labels when we provide the input

features through a prediction function and it gives the probability scores in between

36

4. MACHINE LEARNING TECHNIQUES

0 and 1. As shown on Fig. 4.2.6 [6] for example, we have two classes genuine user and

imposter user and we keep a threshold of 0.5 to decide which class a sample belongs.

If the score values go below the threshold, then it will be assigned an imposter class

and if it is above the threshold, then it is genuine. Now, suppose the classifier outputs

a probability score of 0.7, then the sample will be labelled as genuine.

4.2.6 Random Forest

Random forests or random decision forests are an ensemble learning method for clas-

sification. Random forest, as the name suggests, is made up of a large number of

individual decision trees that act as an ensemble. Every single tree in the random

forest provides class predictions and in the end, a final class is decided through ma-

jority voting (Fig.4.2.7 [1]).

Fig. 4.2.7: Random Forest Example

The benefit of using the random forest over a decision tree is that each tree

provides the prediction, which helps to correct the error in any other individual tree’s

class prediction.

37

4. MACHINE LEARNING TECHNIQUES

4.2.7 Multi Layer Perceptron (MLP)

It is a deep artificial neural network algorithm. Fig.4.2.8 [29] shows the structure

of MLP. The network consists of an input layer which contains a set of neurons

representing the input features {x1, x2, ..., xn}, an output layer which makes the pre-

dictions and in between these two layers there can be N number of hidden layers which

performs the intermediate computations. The model is trained using a set of input-

output variables from which the model learns the association or dependence between

the input and the target variables. The training requires tuning the parameters like

weights and biases of the model to eliminate the error.

Fig. 4.2.8: Structure of Multi Layer Perceptron

4.2.8 Light Gradient Boosting Machines (LightGBM)

Light GBM is a gradient boosting framework that uses a tree-based learning algo-

rithm. What makes it different from other tree-based algorithms is the way it expands.

It grows vertically instead of horizontally (Fig.4.2.9 [39]), which means that it expands

leaf-wise and not level-wise. It always chooses a leaf with a maximum delta loss to

expand, which helps it to reduce more loss than any other level-wise algorithm.

38

4. MACHINE LEARNING TECHNIQUES

Fig. 4.2.9: How a Light GBM works

Fig. 4.2.10: How other boosting algorithm works

Light GBM has gained popularity because it is a high-speed algorithm and it can

handle a large amount of data with fewer memory requirements. Also, it majorly

focuses on the accuracy of the results.

4.3 Anomaly Detection (One-Class Classification)

Anomaly detection is the process of finding data objects with behaviors that are

very different from expectation. Such objects are called outliers or anomalies. Many

systems need the ability to determine whether a new observation belongs to the same

distribution as existing observations (it is an inlier), or should be considered to be

different (it is an outlier).

There are three broad categories of anomaly detection techniques. Unsupervised

anomaly detection techniques detect anomalies in an unlabeled test data set on the

assumption that most instances in the data set are normal by searching for instances

that appear to fit the least to the rest of the data set. Supervised anomaly de-

tection techniques require a collection of data that has been labelled “normal” and

“anomalous” and requires training a classifier. Semi-supervised anomaly detection

39

4. MACHINE LEARNING TECHNIQUES

techniques create a model that reflects normal behavior from a given standard train-

ing data set and then evaluates the probability of a test instance being created by the

learned model. Among all the unsupervised anomaly detection is the most preferred

approach because, in reality, we don’t have a data set that is explicitly labelled as

normal or anomalous.

4.3.1 Working Of An Anomaly Detector

Every model, in some way, scores a data point than uses threshold value to determine

whether the point is an outlier or not. According to the data given as an input to

the anomaly detector, it decides the threshold value for considering a point to be

an inlier or outlier. For illustration, let us understand it using the concept of the

imposter and genuine user. Fig. 4.3.2 shows the training of an anomaly detector for

a single genuine user. The detector is trained using a part of the genuine user’s data.

The detector decides the threshold and learns a decision boundary according to the

threshold value.

Fig. 4.3.1: Training of an anomaly detector

The trained anomaly detector is tested using the remaining part of the genuine

user’s data (Fig. 4.3.3). The anomaly detector outputs the information of inliers,

outliers and the anomaly score. As the training and testing set are both from the

same user, the anomaly score is called genuine score.

40

4. MACHINE LEARNING TECHNIQUES

Fig. 4.3.2: Anomaly Detection for Genuine User

The trained anomaly detector is tested using a few samples of the imposter user

(Fig. 4.3.4). The anomaly detector outputs the information of inliers, outliers and

the anomaly score for the imposter user. As the training and testing set are from a

different user, the anomaly score is called imposter score.

Fig. 4.3.3: Anomaly Detection for Imposter User

The trained anomaly detector outputs anomaly scores as well as inliers and out-

liers. So, how an anomaly detector decides a point to be an inlier or outlier? Fig

4.3.5 demonstrates how a trained anomaly detector makes its predictions. Firstly,

the anomaly score is calculated for a data point; then, it is provided to the deci-

sion function. The decision function compares the anomaly score with the predefined

threshold value. If the score is equal to or higher than the threshold value, then the

data point is categorized as an outlier; otherwise, it is considered as an inlier.

41

4. MACHINE LEARNING TECHNIQUES

Fig. 4.3.4: How a trained anomaly detector works (internally)

4.3.2 K Nearest Neighbor (KNN)

KNN anomaly detector saves a list of training vectors during the training and learns

the covariance matrix. During testing, it calculates Mahalanobis distance between

the training and test vectors. Mahalanobis distance is the distance between a point

and a distribution. The distance provides a way to measure how similar a data point

is to a known set of data points. The distance of the test vector to its kth nearest

neighbor is considered to calculate the anomaly scores.

Average - K Nearest Neighbor (AVG-KNN)

Average KNN is a variant of KNN detector with a minor change at the time of

its application. While calculating the anomaly score, the mean(average) of all k

neighbors are considered.

4.3.3 IsolationForest (IForest)

The IsolationForest ‘isolates’ observations by randomly selecting a feature and then

randomly selecting a split value between the maximum and minimum values of the

selected feature [34]. The algorithm partitions the data into a set of trees. Anomaly

score is provided by looking at how isolated the point is in the tree structure [24].

42

4. MACHINE LEARNING TECHNIQUES

4.3.4 One-Class Support Vector Machine (One-Class SVM)

It is the one-class variant of the standard Support Vector Machine (SVM) developed

explicitly for anomaly detection. A data point from a single class is projected in a

high dimensional space. A separator is found between the origin and the projection.

Following the same process during the training, it builds the model using the training

data vectors. The test vectors are also projected in the same space. The distance

between the test vector and the partition is calculated as the anomaly score.

4.4 Evaluation Metrics

Any classification’s performance is generally evaluated based on metrics named the

confusion matrix (Fig. 4.4.1 [38], Fig. 4.4.2 [23]). It is plotted using actual values

against the predicted values. In the case of two-class classification, one class is consid-

ered as positive and another one is considered as negative. For example, we have two

classes genuine user (+ve) and imposter user (-ve). based on the confusion matrix,

some parameters are deduced as follows:

• True Positive: When positive class is predicted as positive. For example,

when a genuine user is predicted as a genuine user.

• False Negative: When positive class is predicted as negative. For example,

when a genuine user is predicted as an imposter user.

• False Positive: When negative class is predicted as positive. For example,

when an imposter user is predicted as a genuine user.

• True Negative: When negative class is predicted as negative. For example,

when an imposter user is predicted as an imposter user.

43

4. MACHINE LEARNING TECHNIQUES

Fig. 4.4.1: Two Class Confusion Matrix

Fig. 4.4.2: Multi class Confusion Matrix

Based on the above parameters, some metrics are generated:

• False Positive Rate (FPR): Proportion of negative cases classified as positive

cases.

FPR =
FP

FP + TN
× 100 (1)

• False Negative Rate (FNR): Proportion of positive cases classified as neg-

ative cases

FNR =
FN

FN + TP
× 100 (2)

• True Positive Rate (TPR): Proportion of positive cases classified as positive

44

4. MACHINE LEARNING TECHNIQUES

cases.

TPR =
TP

FN + TP
× 100 (3)

• True Negative Rate (TNR): Proportion of negative cases classified as neg-

ative cases

FPR =
TN

FP + TN
× 100 (4)

• Accuracy: The fraction of predictions classification model got right.

Accuracy =
Numberofcorrectpredictions(TP + TN)

Totalnumberofpredictions(TP + FN + TN + FP)
× 100 (5)

45

CHAPTER 5

Methodology

The previous chapters have introduced the access control systems, keystroke bio-

metrics and various machine learning techniques. This chapter walks you through

various methods used to build a keystroke-based access control system. Firstly, we

show how multi-class machine learning algorithms can be implemented as a keystroke

based access control system and how it is evaluated using the widely known biometric

menagerie concepts. Secondly, the procedure to use the anomaly detection technique

in the keystroke based authentication system is introduced. This chapter also in-

cludes the process of doing the feature selection on the available feature set. An

insight into the various research based approaches of machine learning and anomaly

detection is provided. The differences between the research based and production

based approaches are also described. In the keystroke systems, the user gets accus-

tomed to the typing device in a short time consequently, their typing patterns change

with time. If the system continues to rely only on the previously trained user profiles

then the chances of user rejections gets increased over time. To lay emphasis on the

problem, two approaches of how a keystroke biometrics-based authentication system

can be updated with the time is provided.

Fig.5.0.1 demonstrates the keystroke authentication process. The procedure starts

with a keystroke sensor like a normal computer keyboard, touch screen keypad or from

any device which can process keystroke. The user provides its keystroke sample by

typing a password, passphrase or a small paragraph. The keystroke sample is cap-

tured in the form of digraph or trigraph. The sample is next forwarded to the feature

extractor unit which processes the raw samples and prepares the template for match-

46

5. METHODOLOGY

Fig. 5.0.1: Working of keystroke authentication system

ing process. It also generates the quality score which indicates how good is the quality

of the provided sample. In the matching phase the system considers the template and

according to the requirement (i.e, verification or identification) it tries to match the

given template with one or more available templates and generates a matching score.

The template matching unit is generally a trained machine learning or statistical

model which does the pattern matching process and generates the matching score.

Matching score denotes how well a template matches with the reference template.

In the end, the quality score and match score are considered for deciding the match.

According to the threshold value considered by the system, a decision for accepting or

rejecting a user is taken. If the match score and quality score are above the threshold

value the user is accepted otherwise the system may reject the user or simply asks

the user to reenter the sample.

The work in this thesis focuses on the template matching part of the authentication

process. It is one of the most important and talked about aspects of the biometrics. It

is the critical part of any biometric authentication system’s decision policy. We have

considered conventional machine learning as well as anomaly detection techniques for

our research. As observed from the fig 5.0.1 every unit contributes in the matching

process. So, the matching process gets affected by variances introduced by individual

units.

47

5. METHODOLOGY

5.1 Multi-class Machine Learning Methods

In this section, we demonstrate how multi-class machine learning methods perform

in a keystroke based biometrics system to identify users. In the beginning, we discuss

some of the machine learning approaches implemented in the literature. To under-

stand the behavior of a machine learning based keystroke access control system, we

have experimented on a benchmark keystroke dataset [19]. In our work, we have

done classification using eight different classification models. Various researches in

the fields of biometrics have used the concept of biometric menagerie to get better

understanding of the system’s performance. The most commonly used approach is

Doddington’s Biometric Zoo. So, we implemented the Doddington’s Biometric Zoo

concepts in our classification experiments to get an insight into the system’s behavior.

5.1.1 Methodologies Used In The Literature

In the literature ‘Machine learning based soft biometrics for enhanced keystroke recog-

nition system’ [40] Ramu et al. have considered the use of Support Vector Machine

(SVM) for classification. They have performed 5-fold cross validation to evaluate the

soft biometric accuracy. The data was partitioned into 5 subsets. For each experi-

ment run, 4 subsets are used for training the classifier and the remaining 1 subset

is used for testing. The biometric recognition accuracy was calculated by taking an

average of the accuracies of all the runs.

Margit Antal and Lehel Nemes in [5] have implemented two class classification

techniques like KNN, Bayes Net and Random Forest on their collected android keystroke

dataset. Firstly, they select genuine and imposter samples from their dataset. To cre-

ate the negative samples set they have selected random 2 samples from each other user

(users other than the current user). Then they perform N-runs of the randomization

followed by N-Fold cross validation for the given user data and all these steps were

repeated for all the users of the dataset. In other words, if the value of N is 10 then

for each run of cross validation process 90% of the user’s data is used for the training

and rest 10% data is considered for testing. To evaluate the classification based on

48

5. METHODOLOGY

the users’ score they select a threshold and calculate False Positive and False Negative

rate values and derive the Equal Error Rate (EER) value through their intersection.

To perform keystroke identification, Antal et al. in [4] have considered classifica-

tion methods like Naive Bayes, K Nearest Neighbors (KNN), Support Vector Machines

(SVM), Decision Trees and Multi Layer Peceptron (MLP). They have experimented

on an android keystroke data set. For comparison purposes, they performed clas-

sification for keystroke data with and without touch screen based features. They

have experimented by executing 10 runs of 10-folds cross validation on entire dataset.

Consequently, 90% data is considered for training the model and rest is used for the

testing purpose. They have reported the accuracy values based on the average of the

10 10-fold cross validation accuracies.

5.1.2 Data Preprocessing

Data preprocessing is a procedure to convert the data into the format suitable for

a machine learning model. Cleaning and putting the data in a formatted way is

essential. As a part of data preprocessing, we verified our data for missing values,

class imbalances and duplicates. Finally, we removed some features from the dataset,

which are qualitative and not crucial for the classification task. Additionally, before

doing classification, we found the best hyper parameters for the classifier by tuning

the parameters for the classifier using the ‘Grid Search’ method.

5.1.2.1 Grid Search Method

We applied the grid search method for parameter tuning using the function ‘Grid-

SearchCV’ of the sklearn’s library model selection. The method finds the best param-

eter set for the given development set. We started by providing three parameters to

the ‘GridSearchCV’ method: classification model, parameter set for tuning and scor-

ing method. Next, we fit the model for the training set and training label to get the

best parameters. We perform the grid search to get the best parameter set for both

‘precision’ and ‘recall’ scores. Precision expresses the proportion of the data points

49

5. METHODOLOGY

our model says was relevant actually were relevant [Precision = TP
FP+TP

] [52]. Recall

expresses the ability to find all relevant instances in a dataset [Recall = TP
FN+TP

] [52].

At the end of each loop iteration, the algorithm outputs the best parameter set found

for the particular scoring method selected during the iteration.

The Methodology is divided into two parts, in the first part we discussed the method-

ology to categorize individual users into sheep, goat or lamb animal class. In the

second part we describe the methodology for finding the system generated errors.

5.1.3 Part-I: Find Sheep, Goat, Lamb

Fig. 5.1.1: Working of part-I: find sheep, goat, lamb

Fig. 5.1.1 shows the overall flow for part-I, we first divide the preprocessed feature

set into two parts: Training set consisting of 70% data per user and testing set has

50

5. METHODOLOGY

remaining 30% data per user. We forward this data to the classifiers for classification.

As a result of classification, we get a confusion matrix from which we calculate FPR,

FNR and TPR and apply the constraints of sheep, goat and lamb.

5.1.4 Part-II: System Generated Errors

Fig. 5.1.2: Working of part-II: find system generated errors

In this approach, we held one user out for testing and rest are used for the training.

That is, in each iteration, one out of N users is used as a test set. For training, 70%

data from the N-1 users and for testing 30% data from the held-out user is considered

for each iteration. The output will be plotted in terms of the confusion matrix in

order to visualize the distribution of the test user’s samples in other classes. The

reason for doing this is to address our need to understand system’s response towards

51

5. METHODOLOGY

a sample unavailable in it’s training. We decide the wolf by verifying that in how

many classes the test user is present, in other words, in how many classes the test

user’s samples are getting distributed. The higher the number of classes, the higher

the chances of the test user for being a wolf. We believe that the machine learning

based keystroke access control systems will not be able to provide correct predictions

when it encounters unknown samples. It will categorize the given unknown sample

as one of the available categories.

5.2 Anomaly Detection

This section presents the design and implementation of the anomaly detection for

keystroke biometrics based access control system. Firstly, it discusses about the al-

ready implemented works in the literature and their approach to implement anomaly

detection in keystroke biometrics. It also demonstrates the use of feature selection

and normalization. Furthermore, it states differences in the practical and research-

based approaches in addition to introducing practical methodologies to implement

in the system with a limited number of user samples. We claim that the keystroke

biometrics has a tendency to change over time and hence the users’ profiles must

be updated periodically. We describe the methodologies for with and without up-

dating the users’ profiles. To generalize our findings and also to look for platform-

dependent variances in our experimental results we have performed anomaly detection

on the three datasets proposed in [19], [4] and [5] respectively. The first dataset was

collected through a normal PC keyboard; the other two are android device based

keystroke datasets. In the methodology the experiments are described for four dif-

ferent anomaly detectors namely, one-class support vector machine, isolation forest,

k-nearest neighbors and average k-nearest neighbors.

5.2.1 Methodologies Used In The Literature

Killourhy and Maxion, who proposed the benchmark keystroke dataset [19], have

considered 50% data from the total data to train the model. They started by desig-

52

5. METHODOLOGY

nating one of the 51 subjects as the genuine user, and the rest as impostors. They

run the training phase of the detector using the timing information of the first 50%

(200) password repetitions typed by the genuine user. Once the detector builds a

model of the user’s typing behavior, they ran the test phase of the detector using the

remaining 50% (200) repetitions typed by the genuine user and recorded the anomaly

scores as user scores. Finally, they run the test phase of the detector on the timing

vectors from the first five repetitions typed by each of the 50 impostors that are in

total 250 test samples and again recorded the anomaly scores as impostor scores. The

process was then repeated, designating each of the other subjects as the genuine user

in turn. They performed the same process for all the 14 detectors.

Margit Antal and Lehel Nemes in [4] have used five detectors implemented in the R

script provided by Killourhy and Maxion [19] to experiment on the android keystroke

dataset. In their script, they split the data into three equal parts, each containing

20 samples from each user and there are 54 users in their dataset. So, each part

contains 54 x 20 = 1080 samples in total. The detectors are trained separately for

each user using two-third (66.67%) of the data (40 samples/user). The evaluation was

performed on the remaining one-third positive (33.33 %) samples (20 samples/user)

and two negative samples selected from each of the other users (106 samples); The

previous step is repeated thrice (threefold cross-validation), and the mean EER and

its standard deviation is computed.

A similar kind of methodology as [4] is followed by Antal et al. in [5] to experiment

on an android dataset. They also used the R scripts provided by Killourhy and Maxion

[19] to perform verification using the anomaly detectors. The data was divided into

three parts, each part having 17 samples/user. So, in total, each part had (3 x 42

= 126 samples). Two thirds (66.67%) of the data was used for building the user’s

profile (training the anomaly detectors) and the remaining one third (33.33 %) of the

data was utilized for testing FRR. The first five samples from each user excluding the

current user (41 x 5 = 205 samples) were used to test the imposter rate (FAR).

53

5. METHODOLOGY

5.2.2 Data Preprocessing

As a part of data preprocessing, we verified our data for missing values, class imbal-

ances and duplicates. In the end, we balanced the classes in one of the dataset where

required. Additionally, we removed some features from the dataset, which are quali-

tative and not important for the anomaly detection. We have also performed feature

selection and normalization which is described in detail in the following sections.

5.2.3 Anomaly Detection With 70 - 30 Train/Test Ratio

Fig. 5.2.1: Flowchart for Anomaly Detection with 70 - 30 ratio

Unlike the machine learning experiments’ methodology, here, we divide the data into

three parts. There are 2 test sets; one is to get the false rejection rate (FRR) and

another one is to get the false acceptance rate (FAR). As the flow chart demonstrates,

the anomaly detector is trained using 70% samples from one user. To get the false

54

5. METHODOLOGY

rejection rate, 30% test data are considered from the same user and 30% of samples

randomly from other users (except the current user) are used to get the false accep-

tance rate. The same process is repeated for all subjects’ samples. We have followed

this methodology to be consistent with our machine learning experiments and also to

match with the literature based approaches. The approach will help us to compare

our outcomes with the ones in the literature.

5.2.4 Effects Of Feature Selection And Normalization

To compare the effects of feature selection and normalization on anomaly detection’s

performance, previously we applied the anomaly detection without using the feature

selection and normalization methods. To test the impact of feature selection and

normalization on anomaly detector’s performance, we have implemented six types of

feature selection methods on the feature set: Pearson Correlation, Chi-Square, Re-

cursive Feature Elimination, Lasso: SelectFromModel, Tree-based: SelectFromModel,

LGB: SelectFromModel. The features which are not marked important (‘True’) by

any of the feature selectors are removed from the feature set. Once the selected feature

set is ready, normalization is applied using the ‘PowerTransformer’ using method ‘yeo-

johnson’ of the sklearn’s ‘preprocessing’ library. The same experiment for anomaly

detection (70-30 train/test ratio) is performed again, but with the selected feature

set and the observations are derived from the comparison of the anomaly detectors’

performances in both the scenarios.

• Pearson Correlation

We provide the feature vector with the correct feature label vector (target vari-

ables) and the number of features to select from the entire feature set as an

input to the feature selector [34]. The method finds the correlation between

each feature and the target variable and provides its results as select (‘True’)

or not select (‘False’)

• Chi-Square

We provide the scaled feature vector with the correct feature label vector (target

55

5. METHODOLOGY

variables) and the number of features to select from the entire feature set as an

input to the feature selector [34]. This method calculates the chi-square metric

between the target and the feature variables and only select the variables with

the maximum chi-squared values. The result is provided as select (‘True’) or

not select (‘False’).

• Recursive Feature Elimination

The recursive feature elimination (RFE) selects features by recursively consider-

ing smaller and smaller sets of features [34]. It first trains the initial feature set

and obtains the importance of each feature through a coefficient attribute. For

our experiment, we have used ‘Logistic Regression’, and the Recursive Feature

Elimination observes the coefficient attribute of the ‘Logistic Regression’ object.

The recursion continues until the method finds the best possible features for the

dataset and outputs the result as either select (‘True’) or not select (‘False’) for

a particular feature.

• Lasso: SelectFromModel

Lasso is an embedded method that uses algorithms that have built-in feature

selection methods [34]. To implement Lasso, we have used the ‘Logistic Regres-

sion’ as the selected model and L1 as the regularizer. The result is provided as

select (‘True’) or not select (‘False’).

• Tree-based: SelectFromModel

Like Lasso, this is also an embedded method that uses tree-based algorithms

that have built-in feature selection methods [34]. To implement it, we have used

‘Random Forest’ as the selected model. The result is provided as select (‘True’)

or not select (‘False’).

• LGB: SelectFromModel

To apply boosting algorithms like Light GBM(LGB) as a feature selector, we

have used ‘LGB’ as the selected model [34]. The result is provided as select

(‘True’) or not select (‘False’).

56

5. METHODOLOGY

5.2.5 Differences In Production Based And Research-based

Approaches

As seen in the sections 5.1.1 and 5.2.1 “Methodologies used in the literature”, it is

evident that all the experiments and works in the literature are performed using a

large amount of data which is not feasible in real world. One may not ask the user to

enter the password say 200 times or 300 times. It will take long time and meanwhile,

the typing behavior of the user may change, or the user might get frustrated.. In

other kinds of literature, as in the Machine Learning based biometric systems, they

are using various classification techniques, which is fine, but again majority of these

researches are using a huge quantities of data for training.

It is impractical to obtain more than some 10 to 15 password samples from the

users. Additionally, while we have limited samples (let’s say 10 samples) for the user,

then it is not feasible to apply any feature selection. Because, we think that, the

feature selection results may vary when we do it on the entire dataset and on the

small subset of the dataset.

5.2.6 Feature Selection With Less Data

To review the hypothesis that the feature selection will not be much effective in the

case of fewer amount of data we derive a methodology which does the feature selection

with the small subset of the dataset. In this method, we select 10 samples from each

class (i.e, user/subject) of the dataset and create a subset to perform feature selection.

For example, we have 10,000 samples and there are 20 classes in total then we take 20

X 10 = 200 samples and create a subset to perform feature selection on it. Next, we

apply all six feature selectors on the derived subset and record the result to compare

it with the results of feature selection when we considered the entire dataset. If the

outcomes of the experiment demonstrate that there is a difference in the results of

feature selection on entire dataset and the smaller subset then our hypothesis will be

proved correct. Otherwise, if there is no effect on the results, in other words if the

results of both the feature selections gives same feature set then our hypothesis will

57

5. METHODOLOGY

be proved wrong. By following this methodology, we will be able to finalize whether

one should prefer to use feature selection for smaller subsets of data or not.

5.2.7 Without Updating The User Profile

We believe that the user’s keystroke patterns changes over time and hence, the profiles

should be updated periodically. To test this hypothesis we followed the approach

described in this section. Also, from this section we are considering the practical

approach described in the previous section. We are going to consider a batch of 10

samples for training as well as testing purposes.

Fig. 5.2.2: Flowchart illustrating the methodology for user profile without update

We kept the training sample the same for all the user iterations (All the logins).

58

5. METHODOLOGY

We trained the anomaly detectors with the first 10 samples fixed and tested using

the next 10, 20, 30, . . . , N-10 samples for the same user to get the false rejection

rate. To get the false acceptance rate random 10 samples from other users (except

the current user) are used. The same process is repeated for the particular user until

the last sample of the user. The process is repeated for all the users of the dataset.

If the output of the experiment suggest that the update is required and without the

update the system will perform poorly in terms of rejection rates. We will be able to

claim that the typing pattern do change over time. Otherwise, it doesn’t change and

hence we don’t need any techniques to update the users’ profiles.

5.2.8 Methods To Update User Profile

On the basis of our belief that the user profiles do need some kind of update regularly.

We propose two adaptive methods to update the user profile systematically namely

batch mode and sliding window approaches. Both the approaches are novel to the

best of our knowledge.

5.2.8.1 Batch Mode Approach

Experiments are performed with the same anomaly detectors but by using a different

approach. For any user, the first 10 samples are used for training and the next 10

samples are considered for testing (to get FRR). Likewise, for the second iteration,

the second 10 samples (which were used for testing (to get FRR) in 1st iteration) is

used for training and the next 10 samples from the current 10 samples are considered

for testing (to get FRR). At the same time, 10 samples from random users (except

the current user) are used to find false acceptance rate (FAR). The same process

is repeated for the particular user until the last sample of the user. The process is

repeated for all the users of the dataset.

59

5. METHODOLOGY

5.2.8.2 Sliding Window Approach

In this approach we have a window that we move 1 sample per user’s successful

login. We consider the first 10 samples (1,2,....,10) for anomaly detector’s training

for a particular user. To test the detector for the false rejections we fed it the next

sample (11) of the same user. Also at the same time to check for the false accepts

we select random 10 samples from the other users except the current user. For the

second iteration we remove the oldest sample (1) from the training set and append

the training set with the next successful sample (11). Also we update the test set by

moving the test window to the next sample i.e, 12. All these steps are repeated until

N-10 number of samples of the current user. The entire process in repeated for all

the users of the system.

Fig. 5.2.3: Working of the Sliding Window

We believe that this approach will be able to capture users’ behavior better than

the batch mode approach as we are moving one sample at a time. So, it helps train the

60

5. METHODOLOGY

system with the user’s most recent behaviors which in turn helps system to recognize

the user in a consistent manner.

5.3 Summary

To summarize, we established the methodologies to use different multi-class classifica-

tion and anomaly detection methods to build a keystroke-based access control system.

Firstly, we showed how multi-class machine learning algorithms can be implemented

as a keystroke based access control system and how it is evaluated using the widely

known biometric menagerie concepts. Secondly, the procedure to use the anomaly

detection technique in the keystroke based authentication system is introduced. The

chapter also talked about the process of doing the feature selection and normalization

on the given dataset. Additionally, it demonstrated the procedure to perform feature

selection on the small subset of the data. The approaches used by the literature

works for the multi-class as well as anomaly detection is discussed. Furthermore, the

differences between the literature and the practical approaches are reviewed. In the

end, two approaches of how a keystroke biometrics-based authentication system can

be updated with the time are provided.

61

CHAPTER 6

Experiments and Results

In this chapter, firstly, we give brief introduction of the experimental environment

and toolkits. We also discuss about the datasets we have used for the experiments.

We perform analysis of the machine learning based access control system with the

Doddington’s biometric zoo. Additionally, we investigate the anomaly detection based

approaches to know how it behaves in a literature based setting. We also demonstrate

the effects of the feature selection and normalization by experimenting on the anomaly

detection techniques. This analysis will give us an idea about how effective and

efficient are the existing state-of-the art literature based access control systems. In

addition, we show the implementation and evaluate the performance and efficiency

of our proposed practical approaches.

6.1 Environment and Toolkits

We have used a machine having windows 10 installed in it. To perform our machine

learning related experiments in python we installed the anaconda platform for python

on our machine. From various environments offered by anaconda we selected jupyter

notebook as our IDE. Several anomaly detection experiments are also performed on

pycharm IDE for python. The machine learning experiments are executed using var-

ious Scikit-learn methods and anomaly detection is performed using PyOD anomaly

detection techniques.

• Scikit is a free software machine learning library for the Python programming

language [34]. Scikit-Learn offers a wide variety of methods for data mining

62

6. EXPERIMENTS AND RESULTS

and analysis. It includes various classification, regression and clustering algo-

rithms like Random Forest, K-nearest Neighbors, Support Vector Machine, K

Means, Gradient Boosting algorithms which works with the Python numerical

and scientific libraries NumPy and SciPy.

• PyOD is a scalable Python toolkit for detecting outliers in multivariate data. It

provides access to around 20 outlier detection (Anomaly Detection) algorithms

under a single well-documented API [24]. It supports advance models like neural

networks, deep learning and outlier ensembles.

6.2 Dataset Description

This section discusses about the three benchmark keystroke datasets that we have

considered for our research experiments. The sections mention about the various fea-

tures and number of samples available for each class of the dataset. We are considering

datasets which have been collected from different platforms by typing the same pass-

word ‘.tie5Roanl’. We are using the normal personal computer based dataset for our

machine learning experiments and for anomaly detection we have considered all the

three datasets.

6.2.1 Personal Computer Keyboard Based Keystroke Dataset

The dataset is a benchmark data set for keystroke dynamics proposed by Kevin

Killourhy and Roy Maxion [19]. 51 subjects (typists) typed the password (.tie5Roanl)

400 times over 8 sessions (50 repetitions per session). They waited at least one day

between sessions, to capture some of the day-to-day variation of each subject’s typing.

The data are arranged as a table with 34 columns. Each row of data corresponds to

the timing information for a single repetition of the password by a single subject.The

first column, subject, is a unique identifier for each subject (e.g., s002 or s057). The

second column, sessionIndex, is the session in which the password was typed (ranging

from 1 to 8). The third column, rep, is the repetition of the password within the

63

6. EXPERIMENTS AND RESULTS

session (ranging from 1 to 50).

The remaining 31 columns present the timing information for the password. The

name of the column encodes the type of timing information. Column names of the

form H.key designate a hold time for the named key (i.e., the time from when key

was pressed to when it was released). Column names of the form DD.key1.key2

designate a keydown-keydown time for the named digraph (i.e., the time from when

key1 was pressed to when key2 was pressed). Column names of the form UD.key1.key2

designate a keyup-keydown time for the named digraph (i.e., the time from when key1

was released to when key2 was pressed).

Fig. 6.2.1: Benchmark dataset snapshot

Fig. 6.2.1 presents typing data for subject 2, session 1, repetition 1. The period

key was held down for 0.1491 seconds (149.1 milliseconds); the time between pressing

the period key and the t key (keydown-keydown time) was 0.3979 seconds; the time

between releasing the period and pressing the t key (keyup-keydown time) was 0.2488

seconds; and so on.

6.2.2 Android Keystroke Dataset - I

This benchmark keystroke dataset is proposed by Margit Antal and Lehel Nemes in

[5]. The data is collected from 54 volunteers through an android application. 13

identical Nexus 7 tablets were used to collect the data. The password used to record

the data was ‘.tie5Roanl’. The data were collected in 3 sessions which were one week

apart. In each session users entered 20 entries of the password which summed up to

total of 60 entries per user in the dataset.

The application implemented a custom keyboard to store the timing , touch screen

and other related raw data from the user’s typing. Typing of the password required

typing 13 keys: 8 letters, a digit, a period character, a shift key to type the capital

64

6. EXPERIMENTS AND RESULTS

letter and two times the numerical key to switch to and from numerical keypad. The

features in the dataset are summarized in the table 6.2.1 [5]:

Table 6.2.1: Feature Set - Android Keystroke Dataset-I

Feature Feature Explanation No. of Features

Hold time (HT) Time between key press and release 13

Down Down Time (DD) Time between consecutive key presses 12

Up-down time (UD) The time between key release and next key press 12

Pressure (P) Pressure at the moment of key press 13

Finger area (FA) Finger area at the moment of key press 13

Mean Hold Time (MHT) Average of key hold time values 1

Mean Pressure (MP) Average of key pressure values 1

Mean finger area (MFA) Average of finger areas 1

Mean X acceleration (MAX) Mean X acceleration 1

Mean Y acceleration (MAY) Mean Y acceleration 1

Mean Z acceleration (MAZ) Mean Z acceleration 1

Total distance (TD) Sum of the distances (in pixels) between two consecutive buttons 1

Total time (TT) Time needed to type in the password 1

Velocity (V) Quotient of the distance and the total time 1

Total 72

6.2.3 Android Keystroke Dataset - II

An android application was developed to collect the user’s typing data by Antal et

al. [4]. The data were collected in two sessions in which each participant entered the

password ‘.tie5Roanl’ for 30 times per session. All an all 42 people participated in

the study. Though the passwords were entered 60 times by the users, some samples

having deletions were dropped from the final dataset. The final dataset has minimum

51 entries per user.

For data collection Nexus 7 tablet and LG Optimus L7 II P710. In total 37

tablet users and 5 mobile phone users supplied the data. Typing the chosen password

required to press 8 letter keys, a digit, a period character, twice the shift key in

order to type capital letter and twice the numerical keyboard switch key. The feature

65

6. EXPERIMENTS AND RESULTS

vectors are summarized in the table 6.2.2 [4]:

Table 6.2.2: Feature Set - Android Keystroke Dataset-II

Feature Feature Explanation No. of Features

Key Hold Time (H) Time between key press and release 14

Down-down time (DD) Time between consecutive key presses 13

Up-down time (UD) The time between key release and next key press 13

Key Hold Pressure (P) Pressure at the moment of key press 14

Finger area (FA) Finger area at the moment of key press 14

AH (Average Hold Time) Average of key hold times 1

AP Average of key pressures 1

Total 71

6.3 Multi-class Machine Learning Methods

In this section, we demonstrate the experiments for the multi-class machine learning

methods and how it performs in a keystroke-based access control systems. A bench-

mark keystroke dataset [19] for the normal personal computer keyboard is used to

run the experiments.

6.3.1 Data Preprocessing

As a part of data preprocessing we removed qualitative features like ‘subject’, ‘ses-

sionIndex’, ‘rep’ from the dataset. In classification there are always two vectors:

Feature vector (X) and Target vector (Y). Here, ‘subject’ is the target vector (y) and

other features are considered in the feature vector (X).

6.3.1.1 Grid Search Method

To improve the performance of classification various model parameters are tuned

using the ‘Grid Search’ method. The detail of how the grid search is performed and

66

6. EXPERIMENTS AND RESULTS

as a result best parameters for a particular model are described in this section.

• Support Vector Machine:

To perform grid search on support vector machine we provided three parameters

to it:

1. ‘SVC (Support Vector Classification)’ function from sklearn library ‘svm’

2. tuned parameters = [‘Kernel’: [‘linear’, ‘rbf’, ‘poly’], ‘c’: [0.1, 1, 10, 100,

1000], ‘degrees’: [0, 1, 2, 3, 4, 5, 6]] where, the kernel parameters choose

the type of hyperplane used to isolate the data. ‘linear’ is used for a linear

hyperplane. ‘rbf’ and ‘poly’ is used for a non-linear hyper-plane, C is a

regularizer which controls the trade off between the decision boundary and

the correct classification of training points, degree parameter is considered

when the kernel is set to ‘poly’. It is the degree of the polynomial to find

the hyperplane to split the data.

3. scores = [’precision’, ’recall’]

for the support vector machine the best parameter set returned by the grid

search method is: kernel = ‘linear’, C = 100.

• Decision Tree:

The parameters provided to tune for decision tree classifier are:

1. ‘DecisionTreeClassifier’ method from sklearn library ‘tree’

2. tuned parameters = [‘criterion’: [‘gini’,‘entropy’],‘max depth’: np.arange(3,

100)] Where, max depth denotes how deep the tree is. The more deeper

the tree the more splits it has and it can capture more information from the

data. ‘criterion’ is the function to measure the quality of a split. Supported

criteria are “gini” for the Gini impurity and “entropy” for the information

gain.

3. scores = [‘precision’, ‘recall’]

67

6. EXPERIMENTS AND RESULTS

The best parameter set found for decision tree classifier is criterion= ‘entropy’,

max depth = 78

• KNN:

To perform grid search on KNN we provided three parameters to it:

1. ‘KNeighborsClassifier’ method from sklearn library ‘neighbors’.

2. tuned parameters = [‘n neighbors’: np.arange(1, 143), ‘weights’: [‘uni-

form’,‘distance’], ‘metric’: [‘euclidean’,‘manhattan’]] Where, n neighbors

represents the number of neighbors to use. It require to get the best value

of K (number of neighbors) which gives the best performance, ‘weight’

is the weight function used in prediction. ‘uniform’ : uniform weights.

All points in each neighborhood are weighted equally. ‘distance’ : weight

points by the inverse of their distance. in this case, closer neighbors of a

query point will have a greater influence than neighbors which are further

away. metrics is the distance metric to use for the tree.

3. scores = [‘precision’, ‘recall’]

The best parameter set found for KNN classifier is n neighbors = 3, weights=‘distance’,

metric=‘manhattan’

• Logistic Regression:

The parameters provided to tune for naive bayes classifier are:

1. skleran’s linear model library’s LogisticRegression method

2. tuned parameters = [‘solver’: [‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’],

‘max iter’: np.arange(100, 2000) , ‘multi class’ : [‘ovr’, ‘multinomial’]]

Where, solver is the algorithm to use in the optimization problem, ‘max iteration’

is the maximum number of iterations taken for the solvers to converge and

In the multi class parameter, if the option chosen is ‘ovr’, then a binary

problem is fit for each label. For ‘multinomial’ the loss minimised is the

multinomial loss fit across the entire probability distribution, even when

the data is binary.

68

6. EXPERIMENTS AND RESULTS

3. scores = [‘precision’, ‘recall’]

The best parameter set found for logistic regression classification is max iter=2000,

solver=‘saga’, multi class=‘multinomial’

• Random Forest:

To perform grid search on Random Forest we provided three parameters to it:

1. ‘RandomForestClassifier’ method from sklearn library ‘ensemble’

2. tuned parameters = [‘n estimators’: np.arange(50, 1050) , ‘max depth’:

np.arange(3, 100)] Where, ‘n estimators’ represents the number of trees in

the forest, ‘max depth’ denotes the maximum depth of the individual tree

in the forest.

3. scores = [‘precision’, ‘recall’]

The best parameter set found for Random Forest classifier is n estimators=1000,

max depth=10

• Multi Layer Perceptron:

To perform grid search on MLP we provided following parameters to it:

1. ‘MLPClassifier’ method from sklearn library ‘neural network’ is used.

2. tuned parameters = [‘solver’: [‘lbfgs’, ‘sgd’, ‘adam’], ‘alpha’: uniform(0.0001,

0.9), ‘hidden layer sizes’: [(sp randint.rvs(100,300), sp randint.rvs(100,300)],

‘max iter’: np.arange(100, 1000)] Where, ‘solver’ is for weight optimiza-

tion, Alpha is L2 penalty (regularization term) parameter. In the ‘hid-

den layer sizes’ the ith element represents the number of neurons in the

ith hidden layer. ‘max iter’ is the maximum number of iterations. The

solver iterates until convergence or this number of iterations.

3. scores = [‘precision’, ‘recall’]

The best parameter set found for MLP classifier is solver=‘adam’, alpha=0.001,

hidden layer sizes=(150, 100), max iter=1000

69

6. EXPERIMENTS AND RESULTS

• Light GBM:

To perform grid search on LGB we provided following parameters to it:

1. ‘lgb’ method from the library ‘lightgbm’

2. tuned parameters = [‘num leaves’: np.arange(0, 25), ‘colsample bytree’:

uniform(0, 0.9), ‘learning rate’: uniform(0, 0.9), ‘min child samples’: np.arange(100,

500), ‘min child weight’: uniform(0, 0.1), ‘reg alpha’: np.arange(0,1), ‘reg lambda’:

np.arange(0,1), ‘subsample’: np.arange(0,1)] Where, ‘num leaves’ is max-

imum tree leaves for base learners, colsample bytree is subsample ratio of

columns when constructing each tree, learning rate is the boosting learn-

ing rate, ‘min child samples’ denotes minimum number of data needed

in a child(leaf), ‘min child weight’ is the minimum sum of instance weight

needed in a child (leaf), ‘reg alpha’ is the L1 regularization term on weights,

‘reg lambda’ is the L2 regularization term on weights, ‘subsample’ is the

subsample ratio of the training instance.

3. scores = [‘precision’, ‘recall’]

The best parameter set found for LGB classifier is ‘num leaves’: 22, ‘colsam-

ple bytree’: 0.87, ‘learning rate’: 0.05, ‘min child samples’: 475, ‘min child weight’:

1e-05, ‘reg alpha’: 0.1, ‘reg lambda’: 1, ‘subsample’: 0.587

6.3.2 Part-I: Find Sheep, Goat, Lamb

In this section we perform experiments to get the sheep, goat and lamb type of users

from the given dataset. Firstly, we performed classification on the given dataset by

keeping the train/test ratio of 70-30 %. From the classification predictions we plotted

a multiclass confusion matrix and calculated the metrics: False Negative Rate, False

Positive Rate and True Positive Rate. To get the sheep, goat and lamb we formulated

the criterion by taking the reference from the doddington’s zoo.

70

6. EXPERIMENTS AND RESULTS

6.3.2.1 Classification

From the grid search method we could get the best possible parameters for the clas-

sifiers. We took 280 samples out of 400 samples per user to train the classification

model and tested the model with remaining 120 samples per user. Classification is

performed by first training the classification model by training data and to get the

predictions for the new samples testing set is used. Output of the classification is

shown in terms of classification accuracy in Table 6.3.1.

Table 6.3.1: Classification results

No. Classifiers Used Accuracy

1 Support Vector Machine (SVM) 85.9 %

2 Decision Tree 73.0 %

3 K Nearest Neighbor (KNN) 82.5 %

4 Näıve Bayes 66.7 %

5 Logistic Regression 71.2 %

6 Random Forest 87.3 %

7 Multi Layer Perceptron (MLP) 91.7 %

8 Light GBM 94.7 %

We can see from the table 6.3.1 that, some of the classifiers are working quite well

with the dataset like light GBM (94.7%), multi layer perceptron(91.7%), random

forest (87.3%), support vector machine (85.9%) and k nearest neighbors (82.5%).

6.3.2.2 Problem In Finding The Lamb

As per the lamb’s definition, lambs are responsible for the majority of false acceptance

rate, which means any other user is accepted by a system as a lamb. So, false

acceptance rate is nothing but False Positive Rate. FPR is defined by proportion of

negative cases classified as positive cases.

71

6. EXPERIMENTS AND RESULTS

Fig. 6.3.1: Two Class Confusion Matrix [38]

Fig. 6.3.2: Illustrating FN, FP, TP, TN in resultant multiclass confusion matrix

In the case of multiclass classification, the False Positives (False Accepts) of one

user appears in the entries of the False Negatives (False Rejects) of other users.

Which is not the case with the two class classification confusion matrix. Fig. 6.3.2

demonstrates the resultant multiclass classification matrix. The column highlighted

with red color denotes the false positives for user ‘s002’, The row marked in violet

is the false negatives for the user ‘s002’, The square at the top left corner in the

72

6. EXPERIMENTS AND RESULTS

blue color is the truly predicted samples (i.e, True Positives) of the user ‘s002’ and

everything else except TP, FP and FN is TN. Consider the row of the user ‘s004’, the

very first 4 samples belongs to the false positives of the user ‘s002’ and the same 4

samples are counted as one of the false negatives while calculating the false negatives

of the user ‘s004’ !

Also, for multiclass confusion matrix true negative (true rejects) is everything else

from the confusion matrix that is not true positive (true accepts), false positive (false

accepts) or false negative (false rejects). So, the value of true negative (true rejects)

will be huge in this case, which will not give equivalent value for false positive rate

(false acceptance rate) as compared to false negative rate (false rejection rate).

Based on above two findings, it can be said that the concept of lamb becomes

fuzzy when we talk about calculating the false acceptance rate from the multiclass

confusion matrix. The same applies to the wolf because if there is no lamb, then there

is no wolf. The sheep and the goat can be easily found.

The findings show that when there are more than two classes, the multi-class

classification techniques are useful only to get the False Rejection Rate (FRR) and

also the True Acceptance Rate (TAR). Which alone is not sufficient to understand

the system’s behavior. Consequently, by using multi-class classifiers we are unable to

debug the biometric zoo model entirely.

6.3.2.3 Find Sheep And Goat

• What can be a Goat?

Goat users have highest chances of rejections when one tries to login with his

own true identity. In Doddington’s zoo goats are defined as below the 2.5 per-

centile of average match score. So, we considered TPR as the match score and

calculated the 2.5th percentile of TPR. To calculate ‘Goat’ following constraint

is considered:

TPR < 2.5th percentile of average TPR

• What can be a Sheep?

73

6. EXPERIMENTS AND RESULTS

System performs nominally well for them and it is easily detected as a true

user. Sheep is any user which is not a goat. Goats are calculated with TPR less

than 2.5th percentile of TPR then sheep should be somebody at and over 2.5th

percentile of TPR. To calculate ‘Sheep’ following constraint is considered:

TPR >= 2.5th percentile of average TPR

6.3.2.4 Sheep And Goat Results

In this section we demonstrate the results of applying sheep and goat constraints on

the classification metrics (TPR) for each user to categorize them in one of the animal

classes (sheep/goat). The results demonstrates that according to different classifiers

users in goat and sheep category varies. In the resultant tables there are few goat

users marked in red for all the classifiers like users- 2, 7, 8, 20, 32, 34, 37, 50, 51, 56

and 57. They are frequently(commonly) categorized into the goat category by the

classifiers.

Table 6.3.2: Sheep and Goat Results for Support Vector Machine

Support Vector Machine (SVM) (Accuracy: 85.9%)

User Type Number of
Users

Users

Sheep 31 3, 5, 10, 12, 16, 17, 18, 19, 22, 24, 25,
26, 27, 28, 29, 30, 33, 35, 36, 38, 39, 40,
41, 42, 43, 44, 48, 49, 52, 53, 55

Goat 20 2, 4, 7, 8, 11, 13, 15, 20, 21, 31, 32, 34,
37, 46, 47, 50, 51, 54, 56, 57

74

6. EXPERIMENTS AND RESULTS

Table 6.3.3: Sheep and Goat Results for Decision Tree

Decision Tree (DT) (Accuracy: 73.0 %)

User Type Number of
Users

Users

Sheep 29 3, 5, 10, 11, 12, 15, 16, 17, 18, 19, 22,
24, 25, 27, 28, 30, 33, 35, 36, 38, 39, 40,
42, 43, 44, 49, 52, 53, 55

Goat 22 2, 4, 7, 8, 13, 20, 21, 26, 29, 31, 32, 34,
37, 41, 46, 47, 48, 50, 51, 54, 56, 57

Table 6.3.4: Sheep and Goat Results for K - Nearest Neighbors

K- Nearest Neighbors (KNN) (Accuracy: 82.5 %)

User Type Number of
Users

Users

Sheep 32 5, 10, 11, 12, 13, 16, 17, 19, 21, 22, 24,
25, 26, 27, 28, 29, 30, 33, 36, 38, 39, 41,
42, 43, 44, 47, 48, 49, 52, 53, 54, 55

Goat 19 2, 3, 4, 7, 8, 15, 18, 20, 31, 32, 34, 35,
37, 40, 46, 50, 51, 56, 57

Table 6.3.5: Sheep and Goat Results for Naive Bayes

Naive Bayes (NB) (Accuracy: 66.7%)

User Type Number of
Users

Users

Sheep 31 3, 4, 5, 7, 8, 10, 11, 12, 13, 16, 17, 19,
22, 24, 25, 26, 27, 28, 29, 30, 33, 36, 40,
42, 43, 44, 48, 51, 52, 53, 55

Goat 20 2, 15, 18, 20, 21, 31, 32, 34, 35, 37, 38,
39, 41, 46, 47, 49, 50, 54, 56, 57

75

6. EXPERIMENTS AND RESULTS

Table 6.3.6: Sheep and Goat Results for Logistic Regression

Logistic Regression (LR) (Accuracy: 71.2 %)

User Type Number of
Users

Users

Sheep 30 3, 5, 10, 11, 12, 16, 17, 18, 19, 22, 24,
25, 27, 28, 30, 33, 35, 36, 38, 39, 40, 41,
42, 43, 44, 46, 48, 52, 53, 55

Goat 21 2, 4, 7, 8, 13, 15, 20, 21, 26, 29, 31, 32,
34, 37, 47, 49, 50, 51, 54, 56, 57

Table 6.3.7: Sheep and Goat Results for Random Forest

Random Forest (RF) (Accuracy: 87.3%)

User Type Number of
Users

Users

Sheep 35 3, 4, 5, 10, 11, 12, 13, 16, 17, 18, 19,
21, 22, 24, 25, 27, 28, 29, 30, 33, 35, 36,
38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 52,
53, 55

Goat 16 2, 7, 8, 15, 20, 26, 31, 32, 34, 37, 46,
50, 51, 54, 56, 57

76

6. EXPERIMENTS AND RESULTS

Table 6.3.8: Sheep and Goat Results for Multi-layer Perceptron

Multi-layer Perceptron (MLP) (Accuracy: 91.7 %)

User Type Number of
Users

Users

Sheep 37 3, 5, 10, 11, 12, 13, 15, 16, 17, 18, 19,
22, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35,
36, 38, 39, 40, 41, 42, 43, 44, 48, 49, 50,
52, 53, 54, 55

Goat 14 2, 4, 7, 8, 20, 21, 31, 32, 37, 46, 47, 51,
56, 57

Table 6.3.9: Sheep and Goat Results for LightGBM

LightGBM (LGB) (Accuracy: 94.7%)

User Type Number of
Users

Users

Sheep 35 3, 5, 10, 11, 13, 15, 16, 17, 19, 20, 22,
24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 38,
39, 40, 41, 42, 43, 44, 46, 47, 49, 52, 53,
54, 55

Goat 16 2, 4, 7, 8, 12, 18, 21, 29, 32, 34, 37, 48,
50, 51, 56, 57

6.3.2.5 How Close Are Some Goats From Being A Sheep?

The analysis is done on the goat users which are not frequently (i.e, commonly)

classified as a goat by the classifiers. The goat users from all the classifiers are plotted

with their match rate (TPR) and the threshold for being a sheep. The purpose

of this experiment is to know whether there is any classifier specific effects on the

categorization of sheep and goat users.

From the plots, it can be seen that some goats are actually sheeps but due to

category constraint and also due to different classifier behavior variances they are

77

6. EXPERIMENTS AND RESULTS

classified in the goat category in one classifier while in others they are a sheep. For

instance, Fig. 6.3.6 shows two plots for MLP and LGB, we can see that there are

some goat users in MLP like users - 20, 31, 46 and 47 which are not goats according to

LGB, they are the sheep users. Likewise, users like 12, 18, 29, 34, 48, 50 are goats in

LGB’s results but, they are sheep users in MLP’s results. We can claim that there are

classifier specific effects on users’ categorization. So, the users getting rejections from

one classifier may get accepted when we deploy another classifier to do the matching

process for the templates.

Fig. 6.3.3: Goat users’ plotting with TPR and sheep threshold for SVM

78

6. EXPERIMENTS AND RESULTS

Fig. 6.3.4: Goat users’ plotting with TPR and sheep threshold for Decision Tree

Fig. 6.3.5: Goat users’ plotting with TPR and sheep threshold for KNN

79

6. EXPERIMENTS AND RESULTS

Fig. 6.3.6: Goat users’ plotting with TPR and sheep threshold for Naive Bayes

Fig. 6.3.7: Goat users’ plotting with TPR and sheep threshold for Logistic
Regression

80

6. EXPERIMENTS AND RESULTS

Fig. 6.3.8: Goat users’ plotting with TPR and sheep threshold for Random Forest

Fig. 6.3.9: Goat users’ plotting with TPR and sheep threshold for MLP

81

6. EXPERIMENTS AND RESULTS

Fig. 6.3.10: Goat users’ plotting with TPR and sheep threshold for LGB

6.3.2.6 Analysis Of Goatish Behavior

To analyze the goatish behavior of a user, we plotted the users with minimum false

rejection rate (sheep) and Maximum false rejection rate (goat) for each classifier with

their hold times for typing password ‘.tie5Roanl’ to interpret the typing pattern for

Goat users. Also, just to visualize more clearly, we plotted with only four characters

‘.tie’.

From the plots it is observed that the goat users have randomness in their typing

behavior. It also demonstrates that the sheep users have very uniform typing patterns

comparatively. For example, according to SVM’s results the user with the maximum

false rejection rate (i.e, goat) is s032 and the user with minimum false rejection rate

(i.e, sheep) is s036. It can be seen from the user s032’s results that there are major

variances in their typing behavior. The spikes in the plot shows the inconsistency in

the typing behavior. If we compare it with the user s036’s typing behavior we can see

that it fluctuates in a small range which is fine, it still exhibits consistent behavior.

So, from our analysis, it can be said that the goat users are goats because of their

82

6. EXPERIMENTS AND RESULTS

inconsistent typing behaviors.

Fig. 6.3.11: SVM plot for Goat and Sheep user hold times for typing password
‘.tie5Roanl’ and ‘.tie’

83

6. EXPERIMENTS AND RESULTS

Fig. 6.3.12: Decision Tree plot for Goat and Sheep user hold times for typing password
‘.tie5Roanl’ and ‘.tie’

84

6. EXPERIMENTS AND RESULTS

Fig. 6.3.13: KNN plot for Goat and Sheep user hold times for typing password
‘.tie5Roanl’ and ‘.tie’

85

6. EXPERIMENTS AND RESULTS

Fig. 6.3.14: Naive Bayes plot for Goat and Sheep user hold times for typing password
‘.tie5Roanl’ and ‘.tie’

86

6. EXPERIMENTS AND RESULTS

Fig. 6.3.15: Logistic Regression plot for Goat and Sheep user hold times for typing
password ‘.tie5Roanl’ and ‘.tie’

87

6. EXPERIMENTS AND RESULTS

Fig. 6.3.16: Random Forest plot for Goat and Sheep user hold times for typing
password ‘.tie5Roanl’ and ‘.tie’

88

6. EXPERIMENTS AND RESULTS

Fig. 6.3.17: MLP plot for Goat and Sheep user hold times for typing password
‘.tie5Roanl’ and ‘.tie’

89

6. EXPERIMENTS AND RESULTS

Fig. 6.3.18: LGB plot for Goat and Sheep user hold times for typing password
‘.tie5Roanl’ and ‘.tie’

6.3.3 Part – II : System Generated Errors

In this section we perform experiments to find the errors generated by the system

itself. The results show us that the system tries to predict unseen users as one of

the other available user classes. We call this the system’s tendency to generate errors

90

6. EXPERIMENTS AND RESULTS

by itself. We call it a system generated artificial Wolf. Firstly, the system generates

lambs and predicts unseen user (wolf) as one of those lambs. The results in the next

section demonstrate the same.

6.3.3.1 Artificial Wolf Results

The wolves derived from the experiments are shown in the following tables. The

users in the wolf category are either goat (G) or a sheep (S) from our Part-I’s results.

So, in the regular functioning of the system they are actually not a wolf but, in

this experiment while we keep these goat and sheep users as held out users they are

converted into the wolf by the same system. The system by itself convert some of

the internal users into the lambs and categorize the held out user as one of those

lambs. So, we call it the system’s error which tries to falsely classify the unknown

user into one of the available categories. For example, table 6.3.10 shows the system

error results for the support vector machine in the results 2, 4, 7, 8, 15, 20, 21, 31,

32, 34, 37, 46, 47 and, 51 are goats, while, users 5, 26 and 35 are sheeps from the

part-I’s results. Additionally, the resultant tables shows that there are variation in

number of the wolf users for each classifiers. For example in table 6.3.10 the number of

wolves are 17, while, for KNN it reduces to 12 wolf users. So, this shows that for wolf

results as well there are classification specific effects. By looking at the experiment

and its results, we can claim that the machine learning based keystroke access control

systems will not be able to provide correct predictions when it sees unknown samples.

It will try to categorize the given unknown sample as one of the available categories.

Which shows the algorithm’s capacity to create errors in the system by itself. This

shows that the systems is not reliable.

91

6. EXPERIMENTS AND RESULTS

Table 6.3.10: Artificial Wolf Results for Support Vector Machine

Support Vector Machine (SVM) (Accuracy: 85.9%)

User Type Number of
Users

Users

Wolf 17 31 (G), 32 (G), 8 (G), 15 (G), 37 (G),
51 (G), 21 (G), 35 (S), 47 (G), 2 (G),
4 (G), 5 (S), 7 (G), 20 (G), 26 (S), 34
(G), 46 (G)

Table 6.3.11: Artificial Wolf Results for Decision Tree

Decision Tree (DT) (Accuracy: 73.0 %)

User Type Number of
Users

Users

Wolf 26 2 (G), 4 (G), 7 (G), 20 (G), 26 (G), 31
(G), 32 (G), 34 (G), 37 (G), 47 (G),
48 (G), 51 (G), 56(G), 8 (G), 15 (S),
25 (S), 29 (G), 30 (S) 46 (G) , 3 (S),
41 (G), 50 (G), 21 (G), 18 (S), 54 (G),
57(G)

Table 6.3.12: Artificial Wolf Results for K - Nearest Neighbors

K- Nearest Neighbors (KNN) (Accuracy: 82.5 %)

User Type Number of
Users

Users

Wolf 12 2 (G), 4 (G), 31 (G), 32 (G), 25 (S),
48 (S), 47 (G), 7 (G), 8 (G), 29 (S), 30
(S), 34 (G), 35(G)

92

6. EXPERIMENTS AND RESULTS

Table 6.3.13: Artificial Wolf Results for Naive Bayes

Naive Bayes (NB) (Accuracy: 66.7%)

User Type Number of
Users

Users

Wolf 26 2 (G), 4 (S), 7 (S), 20 (G), 26 (S), 31
(G), 32 (G), 34 (G), 37 (G), 47 (G), 48
(S), 51 (S), 56(G), 8 (S), 15 (G), 25 (S),
29 (S), 30 (S) 46 (G) , 3 (S), 41 (G), 50
(G), 21 (G), 18 (G), 54 (G), 57(G)

Table 6.3.14: Artificial Wolf Results for Logistic Regression

Logistic Regression (LR) (Accuracy: 71.2 %)

User Type Number of
Users

Users

Wolf 19 2 (G), 31 (G), 32 (G), 8 (G), 15 (G),
57 (G), 11 (S), 18 (S), 13 (G), 16 (S),
47 (G), 51 (G), 54 (G), 39 (S), 53 (S),
4 (G), 7 (G), 20 (G), 26 (G)

Table 6.3.15: Artificial Wolf Results for Random Forest

Random Forest (RF) (Accuracy: 87.3%)

User Type Number of
Users

Users

Wolf 13 31 (G), 32 (G), 37 (G), 35 (S), 15(G),
18 (S), 2 (G), 4 (S), 16 (S), 26 (G), 46
(G), 50 (G), 21 (S)

93

6. EXPERIMENTS AND RESULTS

Table 6.3.16: Artificial Wolf Results for Multi-layer Perceptron

Multi-layer Perceptron (MLP) (Accuracy: 91.7 %)

User Type Number of
Users

Users

Wolf 10 31 (G), 32 (G), 2 (G), 3 (S), 15 (S), 21
(G), 26 (S), 37 (G), 54 (S), 56 (G)

Table 6.3.17: Artificial Wolf Results for LightGBM

LightGBM (LGB) (Accuracy: 94.7%)

User Type Number of
Users

Users

Wolf 9 32 (G), 48 (G), 7 (G), 31 (S), 34 (G),
37 (G), 41 (S), 50 (G), 57 (G)

6.3.4 Summary Of The Experiments’ Findings

• Through the common classification metrics we are easily able to find the sheep

and the goat but not the lamb and the Wolf.

• Goats are goats because of their inconsistent typing behavior.

• Some goats are sheep, but due to category constraint and also due to different

classifier behavior variances, they are classified in the goat category in one

classifier while in others, they are a sheep. In general terms, it can be said that

there are classifier effects on the results.

• Second experiment shows that there are system generated wolves which exist

in each system so if there can be a system generated wolf then there can also

be an artificial lamb in the system. In general terms, we can say that the

machine learning based keystroke access control systems will not be able to

94

6. EXPERIMENTS AND RESULTS

provide correct predictions when it sees unknown samples. It will categorize

the given unknown sample as one of the available categories. Which shows the

algorithm’s capacity to create errors in the system by itself.

• Thus, by looking at the findings, it can be said that the multi-class machine

learning methods are not enough unless you come up with the threshold tech-

nique to categorize the user as genuine or an imposter or in the classification you

must have a way to distinguish between the legitimate and illegitimate users.

6.4 Anomaly Detection

The multi-class classification methods doesn’t seem promising while we think of using

it for the keystroke based access control systems. Some current state of the art meth-

ods suggest use of anomaly detection based approaches to verify the user profiles for

the keystroke based biometrics system. This motivated us to use anomaly detection

next for our research.

In this section we show experiments and results for the anomaly detection tech-

niques and demonstrate how they work when used for keystroke based access control

system. As mentioned in previous sections all three benchmark datasets are used

for these experiments. Additionally, the section investigates the effects of feature

selection and normalization on the detectors’ performance. A test is presented to

show the need for continuous update of the users’ profiles in keystroke based access

control system. Also, the experiments and results for the two proposed approaches

to periodically update the user profiles are illustrated.

6.4.1 Data Preprocessing

As a part of data preprocessing we removed qualitative features like ‘id’, ‘user id’

from both the android keystroke datasets. Also for the andorid keystroke dataset - II

we performed class balancing. In the dataset majority of the classes have 51 sample

entries, while there are some classes containing more than 51 samples. So, we reduced

95

6. EXPERIMENTS AND RESULTS

the samples for those classes to 51 to keep the balance between the classes. We also

re-labelled the features in both the datasets like the normal personal computer based

keystroke dataset to maintain the consistency.

6.4.2 Experiments Of Anomaly Detection With 70 - 30 Train/Test

Ratio

In this section we present experiments for anomaly detection using 70% data as

training set and 30% data as a test set. The experiments and results are divided

into three subsections for each dataset. The results for all three dataset demonstrate

that the FAR is very high compared to the FRR. Generally, the false rejection rate

is something which is related to the system’s accuracy. The higher the rejections the

lower the accuracy of the system. False acceptance rate demonstrates the successful

attacks against a particular user. That is the part of the performance evaluation but

not the system’s accuracy. experiments are performed in the section 6.4.3 to see if

we can reduce the false acceptance rates.

6.4.2.1 Personal Computer Keyboard Based Keystroke Dataset

To obtain the false rejection rate, 280 samples for individual user is used for training

and 120 samples from the same user is considered for testing. On the trained model,

total of 120 samples randomly from other users are used to get the false acceptance

rate. The same procedure is repeated for all 51 users of the dataset.

96

6. EXPERIMENTS AND RESULTS

Table 6.4.1: Anomaly Detection with 70-30 ratio results for Personal Computer Key-
board based Keystroke Dataset

Anomaly De-
tector

FRR FAR Accuracy

KNN 9.96% 61.5% 90.04%

AVG-KNN 10.4% 59.8% 89.6%

IForest 11.1% 29.1% 88.9%

One-Class SVM 10.1% 68.1% 89.9%

6.4.2.2 Android Keystroke Dataset - I

To obtain the false rejection rate, 42 samples for individual user is used for training

and 18 samples from the same user is considered for testing. On the trained model,

total of 18 samples randomly from other users are used to get the false acceptance

rate. The same process is repeated for all 54 users of the dataset.

Table 6.4.2: Anomaly Detection with 70-30 ratio results for Android Keystroke
Dataset - I

Anomaly De-
tector

FRR FAR Accuracy

KNN 10% 73.5% 90%

AVG-KNN 9.4% 71.8% 90.6%

IForest 13% 23% 87%

One-Class SVM 12% 71% 88%

6.4.2.3 Android Keystroke Dataset - II

To obtain the false rejection rate, 36 samples for individual user is used for training

and 15 samples from the same user is considered for testing. On the trained model,

total of 15 samples randomly from other users are used to get the false acceptance

97

6. EXPERIMENTS AND RESULTS

rate. The same process is repeated for all 42 users of the dataset.

Table 6.4.3: Anomaly Detection with 70-30 ratio results for Android Keystroke
Dataset - II

Anomaly De-
tector

FRR FAR Accuracy

KNN 12.5% 78.5% 87.5%

AVG-KNN 11.6% 76.6% 88.4%

IForest 11.7% 20.7% 88.3%

One-Class SVM 14% 70% 86%

6.4.3 Effects Of Feature Selection And Normalization

In this section we apply six feature selection techniques on the three datasets and

get the best feature set by removing inessential features from the individual dataset.

Following the feature selection we perform feature normalization. Once the feature

set is ready we again perform the anomaly detection using 70-30 train/test ratio on

the new feature sets and record the differences in the outcomes.

6.4.3.1 Feature selection results

• Personal Computer Keyboard Based Keystroke Dataset

The results are displayed in table 6.4.4 the features marked as “True” are the

important features according to particular feature selection technique. For ex-

ample; the first four features are marked important by all the feature selec-

tion techniques. 6th feature is marked important by “Pearson Correlation”,

“Chi-Squared”, “Recursive Feature Elimination (RFE)”, “Logistics”, “Random

Forest” but according to LightGBM it is not important (“False”). We have

removed those features which are not marked “True” by any of the feature se-

lectors (Total = 0). Those are the features from 25 to 32. The total column

shows the total “True” count the greater the number, the important the feature.

98

6. EXPERIMENTS AND RESULTS

So, first 4 features are most important features because they have total “True”

count = 6 that is every feature selector marks them as important features.

• Android Keystroke Dataset-I

Same as the table 6.4.4 we derived the important features from the android

dataset. We removed those features which have total “true” count = 0. So, there

are total 7 features marked unimportant by all the feature selectors: UD.e.123,

UD.abc.Shift, DD.period.t, DD.n.l, DD.e.123, DD.abc.Shift and DD.123.5.

• Android Keystroke Dataset-II

We applied all six feature selection techniques on the second android keystroke

dataset and the results suggested to remove 9 features from the feature set.

The features eliminated from the final feature set are: UD.period.t, UD.e.123,

UD.abc.Shift, UD.R.Shift, DD.period.t, DD.e.123, DD.abc.Shift, DD.R.Shift

and DD.123.5.

6.4.3.2 Feature Selection Effects On The Performance Of Anomaly De-

tectors

It is evident from the resultant tables that the false acceptance rate is decreased

significantly while we applied the feature selection and normalization techniques. To

show the improvements in FAR from the previous results we have mentioned the old

values in the red color. For example, refer the table 6.4.5 for the PC based keystroke

dataset the false rejection rate for KNN reduced from 61.5% to 10.4%, for the AVG-

KNN it is 10.6% which was at 59.8% previously. Similarly, for IForest and one class

SVM it reduced to 10.81% and 11.5% from 29.1% and 68.1%, respectively. From the

experiments outcome, it is evident that the feature selection and normalization helps

in reducing the FAR and improves the overall performance of the system.

• Personal Computer Keyboard Based Keystroke Dataset

99

6. EXPERIMENTS AND RESULTS

Table 6.4.4: Feature selection results for Personal Computer Keyboard based
Keystroke Dataset

Feature Pearson Chi2 RFE Logistics Random
Forest

Light
GBM

Total

1 H.t True True True True True True 6

2 H.period True True True True True True 6

3 H.i True True True True True True 6

4 H.Shift.r True True True True True True 6

5 UD.Shift.r.o True True True True True False 5

6 H.n True True True True False True 5

7 H.l False True True True True True 5

8 H.five True True True True False True 5

9 H.e False True True True True True 5

10 H.o True False True True False True 4

11 H.a True False False True True True 4

12 DD.n.l False True False True True True 4

13 UD.n.l False False False True True True 3

14 UD.a.n True False True True False False 3

15 DD.Shift.r.o True True True False False False 3

16 UD.t.i False False False False True True 2

17 UD.l.Return False True False False True False 2

18 UD.e.five False False True False False True 2

19 DD.l.Return False True False False True False 2

20 DD.e.five True True False False False False 2

21 UD.period.t True False False False False False 1

22 UD.o.a True False False False False False 1

23 DD.t.i False False False False True False 1

24 DD.period.t True False False False False False 1

25 sessionIndex False False False False False False 0

26 rep False False False False False False 0

27 UD.i.e False False False False False False 0

28 UD.five.Shift.r False False False False False False 0

29 DD.o.a False False False False False False 0

30 DD.i.e False False False False False False 0

31 DD.five.Shift.r False False False False False False 0

32 DD.a.n False False False False False False 0

100

6. EXPERIMENTS AND RESULTS

Table 6.4.5: Feature selection effects on the performance of Personal Computer Based
Keystroke Dataset

Anomaly De-
tector

FRR FAR Accuracy

KNN 10.37% (9.96%) 10.4% (61.5%) 89.63%

AVG-KNN 10.08% (10.4%) 10.06% (59.8%) 89.9%

IForest 11.06% (11.1%) 10.81% (29.1%) 88.9%

One-Class SVM 10.86% (10.1%) 11.5% (68.1%) 89.14%

• Feature Selection Effects On The Android Keystroke Dataset-I

Table 6.4.6: Feature selection effects on the Android Keystroke Dataset-I

Anomaly De-
tector

FRR FAR Accuracy

KNN 12.2% (10%) 16.25% (73.5%) 87.7%

AVG-KNN 11.9% (9.4%) 14.9% (71.8%) 88%

IForest 13.7% (13%) 14.4% (23%) 86.2%

One-Class SVM 15.2% (12%) 6.79% (71%) 84.8%

• Feature Selection Effects On The Android Keystroke Dataset-II

101

6. EXPERIMENTS AND RESULTS

Table 6.4.7: Feature selection effects on the Android Keystroke Dataset-II

Anomaly De-
tector

FRR FAR Accuracy

KNN 14.1% (12.5%) 6.19% (78.5%) 85.86%

AVG-KNN 11.3% (11.6%) 7.14% (76.6%) 88.69%

IForest 13.09% (11.7%) 9.84% (20.7%) 86.9%

One-Class SVM 17.1% (14%) 9.52% (70%) 82.9%

6.4.4 Feature Selection With Less Data

In this section we present the experiments and results for the feature selection on the

subset containing only 10 samples per user. According to the results’ analysis, for

different feature set sizes the results of feature selection techniques vary. The features

once marked important may become unimportant while the data size provided to the

feature selectors is small. The results demonstrates that the feature selection results

are varying when we change the size of the data. So it is suggested not to use feature

selection with less amount of samples.

6.4.4.1 Personal Computer Keyboard Based Keystroke Dataset

In the result of previous feature selection on the entire keystroke dataset (table 6.4.4)

there are total 7 features which are marked unimportant by all the feature selectors:

sessionIndex, rep, UD.i.e, UD.five.Shift.r, DD.o.a, DD.i.e, DD.five.Shift.r and DD.a.n.

The entire dataset has total 20,400 samples.

On the other hand, when we performed the same 6 feature selections on the

subset containing 51 (total no. of users) X 10 = 510 samples the features marked

unimportant by all the feature selectors reduces to 4 features which are: UD.o.a,

UD.n.l, DD.n.l and DD.a.n. Additionally, the features marked unimportant in both

the categories are not the same.

102

6. EXPERIMENTS AND RESULTS

6.4.4.2 Android Keystroke Dataset - I

In the previous feature selection results, there are total 7 features marked unimportant

by all the feature selectors: UD.e.123, UD.abc.Shift, DD.period.t, DD.n.l, DD.e.123,

DD.abc.Shift and DD.123.5. The dataset contains 3,240 samples in total.

We performed the same feature selection on the subset containing 54 (total no.

of users) X 10 = 540 samples. Consequently, no features are marked as unimportant

by all the feature selectors. This means all features are important for that particular

subset.

6.4.4.3 Android Keystroke Dataset - II

The previous feature selection result suggested to remove 9 unimportant features

from the dataset. The features eliminated from the final feature set are: UD.period.t,

UD.e.123, UD.abc.Shift, UD.R.Shift, DD.period.t, DD.e.123, DD.abc.Shift, DD.R.Shift

and DD.123.5. The dataset contains total 2,142 samples.

After feature selection on the subset of 42 (total no. of users) X 10 = 420 samples,

the results marked only 3 features as unimportant which are FA.a, FA.shift and

FA.123 which were marked important while we performed feature selections on the

entire dataset.

6.4.5 Experiment Without Updating The User Profile

We performed and presented the results for the normal personal computer keyboard

based keystroke dataset where in we have 400 samples per user. So, we update the

test set with 10-10 samples per iteration, starting with 10, 20, 30, . . . ,390 samples

from the same user to test for the FRR. To get the FAR we considered random 10

samples from the other users (except the current user). The following are the results

for the user ‘s002’ by applying the anomaly detection with the said method.

As we can see except a few iterations in the beginning, the detectors are giving

very high or almost 100% false rejection rate (FRR). It gives us an insight into the

system that if we don’t update the user’s profile, the user has higher chances of facing

103

6. EXPERIMENTS AND RESULTS

Fig. 6.4.1: Impact of No Profile Update on FRR for user ‘s002’

rejections from the system after sometime of user’s enrollment. Thus, to maintain the

system’s reliability, it should get updated in some way. Following sections discuss the

experiments and results for the two proposed approaches to update the user profiles.

6.4.6 Methods To Update User Profile

The section demonstrates the experiments and results for both the proposed method-

ology to update the user’s profile. The results suggest that the sliding window ap-

proach catches more user behavior variations and is able to perform better than the

batch mode approach that we experimented. Thus, we suggest using sliding window

approach to update the user’s profile time to time when using keystroke biometrics

based access control systems.

The batch mode and sliding window results in terms of anomaly detectors’ perfor-

mance suggests that both the KNN anomaly detectors i.e, KNN as well as AVG-KNN

are giving best results with least false rejection, false acceptance and equal error rates

in the overall results.

104

6. EXPERIMENTS AND RESULTS

6.4.6.1 Batch Mode Experiments And Results

In this section we present the experiments for the batch mode approach on the three

data sets. The results are shown in terms of tables containing the average FRR, FAR

and the accuracy of the anomaly detectors.

• Personal Computer Based Keystroke Dataset

The dataset contains 400 samples per user. We divide the 400 samples into 40

subsets of 10 samples each. Next, we perform batch mode using the method-

ology from the section 5.2.8.1. All the steps described in the methodology are

repeated until the 40 subsets are used for training for the particular user and

the whole process is repeated for all 51 users of the dataset.

The overall results for each anomaly detector is shown in the table 6.4.8. To

give insight for user vise performance of the anomaly detector, results for first

two users’ of the dataset is also provided in the table 6.4.9.

Table 6.4.8: Batch mode overall results of anomaly detectors for PC keystroke dataset

Anomaly De-
tector

FRR FAR ERR Accuracy

KNN 22.89% 5.97% 16.92% 77.10%

AVG-KNN 23.10% 5.50% 17.6% 76.89%

IForest 24.93% 10.44% 14.49% 75.06%

One-Class SVM 43.20% 3.20% 40% 56.79%

105

6. EXPERIMENTS AND RESULTS

Table 6.4.9: Batch mode results for subjects ‘S002’ and ‘S003’ from PC keystroke
dataset

Subject Anomaly De-
tector

FRR FAR Accuracy

S002

KNN 21% 4.87% 78.9%

AVG-KNN 20.51% 8.97% 79.48%

IForest 25.6% 13.8% 74.3%

One-Class SVM 48.4% 7.43% 51.5%

S003

KNN 20.25% 9.74% 79.7%

AVG-KNN 21.5% 12.56% 78.4%

IForest 23.58% 9.23% 76.4%

One-Class SVM 35.38% 2% 64.6%

• Android Keystroke Dataset-I

The dataset contains 60 samples per user. We divide the 60 samples into 6

subsets of 10 samples each. Next, we perform batch mode using the method-

ology from the section 5.2.8.1. All the steps described in the methodology are

repeated are until the 6 subsets are used for training for the particular user and

the whole process is repeated for all 54 users of the dataset.

The overall results for each anomaly detector is shown in the table 6.4.10. To

give insight for user vise performance of the anomaly detector, results for first

two users’ of the dataset is also provided in the table 6.4.11.

106

6. EXPERIMENTS AND RESULTS

Table 6.4.10: Batch mode overall results of anomaly detectors for android keystroke
dataset-I

Anomaly De-
tector

FRR FAR ERR Accuracy

KNN 26.89% 10.70% 16.19% 73.11%

AVG-KNN 27.18% 7.55% 19.63% 72.81%

IForest 38.29% 9.70% 28.59% 61.70%

One-Class SVM 56.55% 2.48% 54.07% 43.44%

Table 6.4.11: Batch mode results for users ‘600’ and ‘601’ from android keystroke
dataset-I

user id Anomaly De-
tector

FRR FAR Accuracy

600

KNN 20% 8% 80%

AVG-KNN 40% 2% 60%

IForest 43.99% 10% 55.9%

One-Class SVM 26% 4% 74%

601

KNN 18% 16% 82%

AVG-KNN 13.99% 2% 86%

IForest 30% 15.99% 70%

One-Class SVM 34% 2% 66%

• Android Keystroke Dataset-II

The dataset contains 51 samples per user. We divide the 51 samples into four

subsets of 10 samples and one subset containing 11 samples. Next, we perform

batch mode using the methodology from the section 5.2.8.1. All the steps

described in the methodology are repeated until all the 5 subsets are used for

training for the particular user and the whole process is repeated for all 42 users

of the dataset.

The overall results for each anomaly detector is shown in the table 6.4.12. To

107

6. EXPERIMENTS AND RESULTS

give insight for user vise performance of the anomaly detector, results for first

two users’ of the dataset is also provided in the table 6.4.13.

Table 6.4.12: Batch mode overall results of each anomaly detectors for android
keystroke dataset-II

Anomaly De-
tector

FRR FAR ERR Accuracy

KNN 16.67% 9.52% 7.15% 83.33%

AVG-KNN 16.33% 8.76% 7.57% 83.67%

IForest 25.95% 8.61% 17.34% 74.04%

One-Class SVM 63.9% 5.71% 58.19% 36.09%

Table 6.4.13: Batch mode results for users ‘1’ and ‘2’ from android keystroke dataset-
II

user id Anomaly De-
tector

FRR FAR Accuracy

1

KNN 8% 0% 91.9%

AVG-KNN 8% 0% 91.9%

IForest 22% 0% 78%

One-Class SVM 22% 20% 78%

2

KNN 8% 4% 91.9%

AVG-KNN 6% 6% 94%

IForest 4% 4% 96%

One-Class SVM 40% 6% 60%

6.4.6.2 Sliding Window Experiments And Results

The experiments are performed following the methodology discussed in the section

5.2.8.2. The results are shown in terms of tables containing the average FRR, FAR

and the accuracy of the anomaly detectors.

108

6. EXPERIMENTS AND RESULTS

• Personal Computer Based Keystroke Dataset

The training and testing process is the same as mentioned in the methodology,

the process is repeated until all the 400 samples are used for training for the

particular user and the whole process is repeated for all 51 users of the dataset.

The overall results for each anomaly detector is shown in the table 6.4.14. To

give insight for user vise performance of the anomaly detector, results for first

two users’ of the dataset is also provided in the table 6.4.15.

Table 6.4.14: Sliding window overall results of anomaly detectors for PC keystroke
dataset

Anomaly De-
tector

FRR FAR ERR Accuracy

KNN 17.69% 7.86% 9.83% 82.30%

AVG-KNN 17.65% 6.54% 11.11% 82.34%

IForest 17.85% 10.65% 7.2% 82.14%

One-Class SVM 34.32% 3.46% 30.86% 65.67%

Table 6.4.15: Sliding window results for subjects ‘S002’ and ‘S003’ from PC keystroke
dataset

Subject Anomaly De-
tector

FRR FAR Accuracy

S002

KNN 17.4% 6.38% 82.56%

AVG-KNN 18.7% 5.66% 81.28%

IForest 19.2% 11.7% 80.7%

One-Class SVM 38.9% 7.1% 61%

S003

KNN 17.1% 6.46% 82.8%

AVG-KNN 17.4% 7.92% 82.56%

IForest 13% 11.20% 86.9%

One-Class SVM 28.9% 4.25% 71%

109

6. EXPERIMENTS AND RESULTS

• Android Keystroke Dataset-I

The training and testing process is the same as mentioned in the methodology,

all the steps are repeated until all the 60 samples are used for training for the

particular user and the whole process is repeated for all 54 users of the dataset.

The overall results for each anomaly detector is shown in the table 6.4.16. To

give insight for user vise performance of the anomaly detector, results for first

two users’ of the dataset is also provided in the table 6.4.17.

Table 6.4.16: Sliding window overall results of anomaly detectors android keystroke
dataset-I

Anomaly De-
tector

FRR FAR ERR Accuracy

KNN 18.44% 10.22% 8.22% 81.56%

AVG-KNN 24.18% 15.31% 8.87% 75.81%

IForest 24.18% 15.31% 8.87% 75.81%

One-Class SVM 47.56% 1.84% 45.72% 52.44%

Table 6.4.17: Sliding window results for subjects ‘600’ and ‘601’ from android
keystroke dataset-I

user id Anomaly De-
tector

FRR FAR Accuracy

600

KNN 24% 6.8% 76%

AVG-KNN 32% 0.8% 68%

IForest 28% 4.2% 72%

One-Class SVM 32% 8% 68%

601

KNN 16% 3.4% 84%

AVG-KNN 14% 0.8% 86%

IForest 24% 17.3% 76%

One-Class SVM 36% 1% 64%

110

6. EXPERIMENTS AND RESULTS

• Android Keystroke Dataset-II

The training and testing process is the same as mentioned in the methodology,

all the steps are repeated until the 50 samples are used for training for the

particular user and the whole process is repeated for all 42 users of the dataset.

The overall results for each anomaly detector is shown in the table 6.4.18. To

give insight for user vise performance of the anomaly detector, results for first

two users’ of the dataset is also provided in the table 6.4.19.

Table 6.4.18: Sliding window overall results of anomaly detectors android keystroke
dataset-II

Anomaly De-
tector

FRR FAR ERR Accuracy

KNN 17.02% 8.49% 8.53% 82.97%

AVG-KNN 16.42% 8.55% 7.87% 83.57%

IForest 26.9% 8.54% 18.36% 73.09%

One-Class SVM 45.65% 4.12% 41.53% 54.34%

Table 6.4.19: Sliding window results for users ‘1’ and ‘2’ from android keystroke
dataset-II

user id Anomaly De-
tector

FRR FAR Accuracy

1

KNN 12.5% 0.5% 87.5%

AVG-KNN 20% 0.25% 80%

IForest 30% 0.75% 70%

One-Class SVM 25% 8.25% 75%

2

KNN 10% 6% 90%

AVG-KNN 7.5% 4.7% 92.5%

IForest 20% 5.25% 80%

One-Class SVM 52.5% 9.25% 47.5%

111

6. EXPERIMENTS AND RESULTS

6.5 Comparisons And Discussions

In this section we present the comparison between the batch mode and the sliding

window approach and deduce which one should be used in practice. We also discuss

the differences or similarities in our 70-30 approach and the database literature ap-

proaches. Finally, the comparison is presented for the same dataset literature works

and the proposed approaches for the user profile update.

6.5.1 Comparison Of Batch Mode And Sliding Window Ap-

proach

The comparison of both the approaches is shown through the plots of the EER and

accuracy of the overall results mentioned in tables 6.4.14, 6.4.16 and 6.4.18. The plots

shows that almost in all the scenarios the sliding window approach is performing

better than the batch mode approach. The application of both the approaches is

discussed in the end.

6.5.1.1 Personal Computer Based Keystroke Dataset

Fig. 6.5.1: PC keystroke dataset EER plot for batch mode vs. sliding window

112

6. EXPERIMENTS AND RESULTS

Fig. 6.5.2: PC keystroke dataset Accuracy plot for batch mode vs. sliding window

6.5.1.2 Android Keystroke Dataset-I

Fig. 6.5.3: Android keystroke dataset-I EER plot for batch mode vs. sliding window

113

6. EXPERIMENTS AND RESULTS

Fig. 6.5.4: Android keystroke dataset-I accuracy plot for batch mode vs. sliding
window

6.5.1.3 Android Keystroke Dataset-II

Fig. 6.5.5: Android keystroke dataset-II EER plot for batch mode vs. sliding window

114

6. EXPERIMENTS AND RESULTS

Fig. 6.5.6: Android keystroke dataset-II accuracy plot for batch mode vs. sliding
window

• Batch mode update is useful only when the user is using the particular account

regularly. If the user is using the account for say 2 times a month then to use

batch mode, system has to wait for at least 6 months to update the user’s profile.

Because as per the given methodology the system should have new successfully

logged in 10 samples to update the previous batch of 10 samples. In this case,

the user’s pattern of typing is likely to change before update and for that reason

the knowledge of context affects the behavior of update strategy.

• Consider the same scenario for the sliding window approach, we are updating

the user profile each time the user successfully logins. But, we are not entirely

replacing the previously entered user’s samples, we are just adding newly intro-

duced sample at the end and remove the oldest sample present in the training

set which enhances the system’s behavior. Also, in this approach system is not

required to wait for the 10 new successful samples. The approach is versatile in

a sense that one can use it in any context no matter what it will keep updating

the users’ profiles.

• The batch mode simply replaces the previously entered 10 samples with the

115

6. EXPERIMENTS AND RESULTS

newer 10 samples which may fail to catch the typing patterns correctly. For

example; A user tries to login and the system trained on batch mode rejects the

user, but there was a chance that the sample had a match with the previously

entered samples which are replaced by the new batch.

• The sliding window moves one sample at a time which helps it to capture

behaviour differences in a better way.

Based on results and the comparison we suggest the use of sliding window approach

in practice to update the user profiles continuously.

6.5.2 Comparison Of Literature And 70-30 Train/Test Ap-

proach

In this section we demonstrate the comparisons of the three data set literature results

and our 70-30 train/test approach’s result for the three dataset.

6.5.2.1 Personal Computer Based Keystroke Dataset

Through our 70/30 approach we achieved lowest equal error rate of 0.02% and 0.03%

from AVG-KNN and KNN respectively. The lowest EER mentioned in the data set

literature [19] was 9.62% from Manhattan (scaled) anomaly detector.

Table 6.5.1: PC based keystroke dataset EER 70/30 train/test ratio

Anomaly De-
tector

EER 70/30
Approach

KNN 0.03%

AVG-KNN 0.02%

IForest 0.25%

One-class SVM 0.64%

116

6. EXPERIMENTS AND RESULTS

6.5.2.2 Android Keystroke Dataset - I

We attained 0.7% EER through Isolation Forest anomaly detector. While, in the

dataset literature [5] the lowest EER recorded was 1.31% from the Kmeans anomaly

detector.

Table 6.5.2: Android Keystroke Dataset - I EER 70/30 train/test ratio

Anomaly De-
tector

EER 70/30
Approach

KNN 4.05%

AVG-KNN 3%

IForest 0.7%

One-class SVM 8.41%

6.5.2.3 Android Keystroke Dataset - II

We obtained lowest equal error rate of 3.25% from IForest anomaly detector. The

lowest EER mentioned in the data set literature [4] was 12.9% from the Manhattan

anomaly detector.

Table 6.5.3: Android Keystroke Dataset - II EER 70/30 train/test ratio

Anomaly De-
tector

EER 70/30
Approach

KNN 7.91%

AVG-KNN 4.16%

IForest 3.25%

One-class SVM 7.58%

117

6. EXPERIMENTS AND RESULTS

6.5.3 Comparison Of Literature And Proposed Approach

The section shows the comparison of the three data set literature results with the

proposed batch mode and sliding window approaches. The results as shown in the

plot 6.5.10 and table 6.5.4 demonstrate that, even with the user profile update the

sliding window approach is giving quite comparable results with the literature works

done. For the PC based and android keystroke datset-II it outperform the literature

results. The batch mode is also giving good results in case of the android keystroke

dataset -II.

Fig. 6.5.7: Minimum EER comparison plot for each dataset

Table 6.5.4: Comparison of literature and proposed approach

Dataset Literature average EER Sliding window average
EER

Batch mode average
EER

PC based
keystroke
dataset

9.62% 7.2% 14.49%

Android
keystroke
dataset-I

1.31% 8.22% 16.19%

Android
keystroke
dataset-II

12.9% 7.87% 7.15%

118

CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented a systematic approach to design and build a reliable

keystroke biometrics system. After debugging the performance of eight different

multi-class classifiers using the biometrics zoos theory, we show that the conven-

tional multi-class classifiers are not suitable for building a keystroke based access

control system. Furthermore, we investigated the anomaly detection techniques in

our work. The effects of feature selection and normalization on the anomaly detection

performance are evaluated, demonstrating that it is beneficial to apply both feature

selection and normalization to reduce the overall false acceptance rates. On the other

hand, we prove that the feature selection is ineffective for the small subset of the data

because the feature set and the feature importance vary when we change the size of

the data. Additionally, we discuss the differences between production and research-

based settings. Although there are several effective keystroke detection techniques

proposed in literature works, which are said to be effective but they are not perfect

for production-based settings. We have introduced two practical approaches that re-

quire only a few user samples to train the anomaly detectors. We also claim that

the keystroke dynamics of a user changes over time, so there is a need for continuous

update of the user profile to maintain the system’s reliability. This thesis implements

two approaches, namely, batch mode and sliding window, to continuously update the

user’s profile. Both approaches use a few samples from the user to process. From

the two proposed methods sliding window is the most effective method because of its

119

7. CONCLUSION AND FUTURE WORK

dynamic update strategy. The batch mode replaces the previously entered batch of

samples with the newer batch of samples, which may fail to catch the typing pattern

differences correctly. The sliding window moves one sample at a time, which helps it

capture behaviour differences better.

7.2 Future Work

Keystroke dynamics is a type of behavioral biometrics. As the keystroke changes

over time other behavioral biometrics also evolve and change with time. In the

future, we plan to carry on investigating other behavioral biometrics for their pattern

changes and would like to apply our proposed methods to see if it is effective for

other behavioral biometrics as well. During our experiments for anomaly detectors

we have only considered four anomaly detectors. In future, it would be interesting

to experiment with other types of anomaly detection techniques. Another interesting

future work could be to develop a real time application which follows our suggested

methodology. We also want to test our approaches against various malicious attacks

to check for any kind of vulnerabilities. This may help us to enhance the quality of

the system. Mhenni et al in [25] supports similar kind of thought as we do that we

can not ask the user to enter the password 100 times to build his profile. They ask

the user to enter a few samples like 10 and then use a genetic algorithm to reproduce

synthetic data (90 samples) that looks similar to the 10 real samples they collected

from the users to build the user’s profile. We also aim to verify this methodology’s

effectiveness on our proposed approaches for keystroke dynamics as well as other

behavioral biometrics.

120

REFERENCES

[1] Abilash R (Accessed: 2018-07-31). Applying random forest (classification)

— machine learning algorithm from scratch with real datasets. https:

//medium.com/@ar.ingenious/applying-random-forest-classification-

machine-learning-algorithm-from-scratch-with-real-24ff198a1c57.

[2] Al-Jarrah, M. M. (2012). An anomaly detector for keystroke dynamics based on

medians vector proximity.

[3] Alghamdi, S. J. and Elrefaei, L. A. (2018). Dynamic authentication of smartphone

users based on touchscreen gestures. Arabian Journal for Science and Engineering,

43:789–810.

[4] Antal, M. and Nemes, L. (2016). The mobikey keystroke dynamics password

database: Benchmark results. In Software Engineering Perspectives and Applica-

tion in Intelligent Systems, pages 35–46, Cham. Springer International Publishing.

[5] Antal, M., Szabo, L., and László, I. (2014). Keystroke dynamics on android

platform.

[6] Ayush Pant (Accessed: 2019-01-22). Introduction to logistic regression.

https://towardsdatascience.com/introduction-to-logistic-regression-

66248243c148.

[7] Bashar, M. K., Chiaki, I., and Yoshida, H. (2016). Human identification from

brain eeg signals using advanced machine learning method eeg-based biometrics. In

121

REFERENCES

2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES),

pages 475–479.

[8] Bo, C., Zhang, L., Jung, T., Han, J., Li, X., and Wang, Y. (2014). Continuous user

identification via touch and movement behavioral biometrics. In 2014 IEEE 33rd

International Performance Computing and Communications Conference (IPCCC),

pages 1–8.

[9] Boles, A. and Rad, P. (2017). Voice biometrics: Deep learning-based voiceprint

authentication system. In 2017 12th System of Systems Engineering Conference

(SoSE), pages 1–6.

[10] Clear IT Security (2020). Access control systems near me. https://

clearitsecurity.com/access-control-systems-near-me.

[11] De Marsico, M., Petrosino, A., and Ricciardi, S. (2016). Iris recognition through

machine learning techniques: A survey. Pattern Recognition Letters, 82:106 – 115.

An insight on eye biometrics.

[12] DeCann, B. and Ross, A. (2013). Relating roc and cmc curves via the biometric

menagerie. In 2013 IEEE Sixth International Conference on Biometrics: Theory,

Applications and Systems (BTAS), pages 1–8.

[13] Doddington, G. R., Liggett, W., Martin, A. F., Przybocki, M. A., and Reynolds,

D. A. (1998). Sheep, goats, lambs and wolves: a statistical analysis of speaker

performance in the nist 1998 speaker recognition evaluation. In ICSLP.

[14] Expert System Team (Accessed: 2020-5-30). What is machine learning? a defi-

nition. https://expertsystem.com/machine-learning-definition/.

[15] Gowthamy Vaseekaran (Accessed: 2018-9-28). Machine learning: Supervised

learning vs unsupervised learning. https://medium.com/@gowthamy/machine-

learning-supervised-learning-vs-unsupervised-learning-f1658e12a780.

122

REFERENCES

[16] He Zheng, Liao Ni, Ran Xian, Shilei Liu, and Wenxin Li (2015). Bmdt: An opti-

mized method for biometric menagerie detection. In 2015 IEEE 7th International

Conference on Biometrics Theory, Applications and Systems (BTAS), pages 1–8.

[17] Howard, J. J. and Etter, D. (2013). The effect of ethnicity, gender, eye color and

wavelength on the biometric menagerie. In 2013 IEEE International Conference

on Technologies for Homeland Security (HST), pages 627–632.

[18] Ivannikova, E., David, G., and Hämäläinen, T. (2017). Anomaly detection ap-

proach to keystroke dynamics based user authentication. In 2017 IEEE Symposium

on Computers and Communications (ISCC), pages 885–889.

[19] Killourhy, K. and Maxion, R. (2009). Comparing anomaly-detection algorithms

for keystroke dynamics. pages 125 – 134.

[20] Killourhy, K. and Maxion, R. (2010). Why did my detector do that?! In Jha,

S., Sommer, R., and Kreibich, C., editors, Recent Advances in Intrusion Detection,

pages 256–276, Berlin, Heidelberg. Springer Berlin Heidelberg.

[21] Kirchgasser, S. and Uhl, A. (2016). Biometric menagerie in time-span separated

fingerprint data. 2016 International Conference of the Biometrics Special Interest

Group (BIOSIG), pages 1–7.

[22] Krishnamoorthy, S., Rueda, L., Saad, S., and Elmiligi, H. (2018). Identifica-

tion of user behavioral biometrics for authentication using keystroke dynamics and

machine learning. In ICBEA ’18.

[23] Krüger, F. (2016). Activity, Context, and Plan Recognition with Computational

Causal Behaviour Models. PhD thesis.

[24] LAKSHAY ARORA (Accessed: 2019-02-14). An awesome tutorial to learn out-

lier detection in python usig pyod library. https://www.analyticsvidhya.com/

blog/2019/02/outlier-detection-python-pyod/.

123

REFERENCES

[25] Mhenni, A., Cherrier, E., Rosenberger, C., and ESSOUKRI BEN AMARA, N.

(2018a). Adaptive biometric strategy using doddington zoo classification of user’s

keystroke dynamics.

[26] Mhenni, A., Cherrier, E., Rosenberger, C., and ESSOUKRI BEN AMARA, N.

(2018b). User dependent template update for keystroke dynamics recognition.

[27] Mike Chapple, J. M. and Gibson, D. (2018). CISSP: Certified Information Sys-

tems Security Professional. Sybex, A Wiley Brand, United states of America.

[28] Miluzzo, E., Varshavsky, A., Balakrishnan, S., and Choudhury, R. R. (2012).

Tapprints: your finger taps have fingerprints. In MobiSys ’12.

[29] mlxtend (2014). Neural network - multilayer perceptron. http://

rasbt.github.io/mlxtend/user guide/classifier/MultiLayerPerceptron/.

[30] Monaco, J. V. (2016). Robust keystroke biometric anomaly detection. CoRR,

abs/1606.09075.

[31] Neal, T. J. and Woodard, D. L. (2019). You are not acting like yourself: A study

on soft biometric classification, person identification, and mobile device use. IEEE

Transactions on Biometrics, Behavior, and Identity Science, 1(2):109–122.

[32] Nicholas M. Orlans John D. Woodward Jr., P. (2002). Biometrics. Osborne

Networking Series. Mcgraw-hill.

[33] Paone, J. and Flynn, P. J. (2011). On the consistency of the biometric menagerie

for irises and iris matchers. In Proceedings of the 2011 IEEE International Work-

shop on Information Forensics and Security, WIFS ’11, page 1–6, USA. IEEE

Computer Society.

[34] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

124

REFERENCES

[35] plurilock (2019). Behavioral biometrics. https://www.plurilock.com/

behavioral-biometrics-guide/1-what-is-behavioral-biometrics/.

[36] Poh, N., Bengio, S., and Ross, A. (2006). Revisiting doddington’s zoo: A sys-

tematic method to assess user-dependent variabilities.

[37] Popescu-Bodorin, N., Balas, V., and Motoc, I. (2012). The biometric menagerie

- a fuzzy and inconsistent concept. 5 th Int. Conf. on Soft Computing and Appli-

cations (Szeged, HU), 22-24 Aug 2012.

[38] Prateek Sharma (Accessed: 2019-07-21). Decoding the confusion matrix. https:

//towardsdatascience.com/decoding-the-confusion-matrix-bb4801decbb.

[39] Pushkar Mandot (Accessed: 2017-08-17). What is lightgbm, how to implement

it? how to fine tune the parameters? https://medium.com/@pushkarmandot/

https-medium-com-pushkarmandot-what-is-lightgbm-how-to-implement-

it-how-to-fine-tune-the-parameters-60347819b7fc.

[40] Ramu, T., Suthendran, K., and Arivoli, T. (2019). Machine learning based

soft biometrics for enhanced keystroke recognition system. Multimedia Tools and

Applications, pages 1–17.

[41] Rohith Gandhi (Accessed: 2018-06-18). Support vector machine — intro-

duction to machine learning algorithms. https://towardsdatascience.com/

support-vector-machine-introduction-to-machine-learning-algorithms-

934a444fca47.

[42] Ross, A., Rattani, A., and Tistarelli, M. (2009). Exploiting the doddington zoo

effect in biometric fusion. pages 1 – 7.

[43] Schnitzer, D., Flexer, A., and Schlüter, J. (2013). The relation of hubs to the

doddington zoo in speaker verification. In 21st European Signal Processing Con-

ference (EUSIPCO 2013), pages 1–5.

125

REFERENCES

[44] scikit-learn (2011). Decision trees. https://scikit-learn.org/stable/

modules/tree.html.

[45] Sharifah, M., Asma, S., Admad Faudzi, M., and Md. Anwar, R. (2010). Analysis

of ’goat’ within user population of an offline signature biometrics. In 10th In-

ternational Conference on Information Sciences, Signal Processing and their Ap-

plications, ISSPA 2010, 10th International Conference on Information Sciences,

Signal Processing and their Applications, ISSPA 2010, pages 765–769. 10th Inter-

national Conference on Information Sciences, Signal Processing and their Applica-

tions, ISSPA 2010 ; Conference date: 10-05-2010 Through 13-05-2010.

[46] Spotfire Blogging Team (Accessed: 2020-03-16). Top 10 methods for out-

lier detection. https://www.tibco.com/blog/2020/03/16/top-10-methods-for-

outlier-detection-in-spotfire/.

[47] Sundararajan, K., Neal, T. J., and Woodard, D. L. (2018). Style signatures

to combat biometric menagerie in stylometry. 2018 International Conference on

Biometrics (ICB), pages 263–269.

[48] Sundararajan, K. and Woodard, D. L. (2018). Deep learning for biometrics: A

survey. ACM Comput. Surv., 51:65:1–65:34.

[49] Teli, M., Givens, G. H., Phillips, P., Draper, B. A., Beveridge, J., and Bolme,

D. S. (2011). Biometric zoos: Theory and experimental evidence. In Biomet-

rics, International Joint Conference on, pages 1–8, Los Alamitos, CA, USA. IEEE

Computer Society.

[50] tutorialspoint (2019). Knn algorithm - finding nearest neigh-

bors. https://www.tutorialspoint.com/machine learning with python/

machine learning with python knn algorithm finding nearest neighbors.htm.

[51] Wang, Z., Serwadda, A., Balagani, K. S., and Phoha, V. V. (2012). Transforming

animals in a cyber-behavioral biometric menagerie with frog-boiling attacks. In

126

REFERENCES

2012 IEEE Fifth International Conference on Biometrics: Theory, Applications

and Systems (BTAS), pages 289–296.

[52] Will Koehrsen (Accessed: 2018-03-18). Beyond accuracy: Precision and

recall. https://towardsdatascience.com/beyond-accuracy-precision-and-

recall-3da06bea9f6c.

[53] Yager, N. and Dunstone, T. (2007). Worms, chameleons, phantoms and doves:

New additions to the biometric menagerie. In 2007 IEEE Workshop on Automatic

Identification Advanced Technologies, pages 1–6.

[54] Yager, N. and Dunstone, T. (2010). The biometric menagerie. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 32(2):220–230.

[55] Yang, W., Wang, S., Hu, J., Zheng, G., Chaudhry, J., Adi, E., and Valli, C.

(2018). Securing mobile healthcare data: A smart card based cancelable finger-

vein bio-cryptosystem. IEEE Access, 6:36939–36947.

[56] Yaser Sakkaf (Accessed: 2020-03-31). Decision trees: Id3 algo-

rithm explained. https://towardsdatascience.com/decision-trees-for-

classification-id3-algorithm-explained-89df76e72df1.

127

VITA AUCTORIS

NAME: Anjali Shah

PLACE OF BIRTH: Ahmedabad, Gujarat, India

YEAR OF BIRTH: 1994

EDUCATION: Gujarat Technological University, Bachelor’s of Engi-
neering in Computer Engineering, Gandhinagar, Gu-
jarat, 2015

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2020

128

	Towards Engineering Reliable Keystroke Biometrics Systems
	Recommended Citation

	tmp.1596052809.pdf.ogpEJ

