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ABSTRACT 

 The perception of one sound can be influenced by another sound in the environment, with 

the effect dependent on the spectrotemporal and spatial relationship between the sounds. 

Mechanisms responsible for this perceptual phenomenon is dependent on the integration of 

neural signals driven by the two ears in brain centers responsible for hearing. The inferior 

colliculus (IC) as a midbrain structure is important for the processing of acoustic information. To 

understand why/how the perception of one sound is influenced by another sound, it is important 

to study how the two sounds interact with each other in generating responses in the IC. 

 In this study, I examined the effect of a leading sound on the responses elicited by a 

trailing sound in an ensemble of neurons in the IC. Local-field potentials (LFPs) were recorded 

to reflect responses of neural ensembles. The two sounds were first colocalized at the ear that 

was contralateral to the recording site. Then the two sounds were then spatially separated. I 

evaluated whether the influence generated by a leading sound was dependent on the spatial 

relationship as well as the time gap between the leading and trailing sounds. 

Results indicated that the LFPs elicited by a trailing sound were suppressed by a leading 

sound no matter whether the leading sound was at the contralateral or ipsilateral ear. The 

suppressive effect was larger when a leading sound was presented at the contralateral than the 

ipsilateral ear. Furthermore, the effect was larger when the two sounds were separated by a short 

time gap. Inhibitory neurotransmitter antagonists, gabazine and strychnine significantly 

decreased the suppression produced by the leading sound but did not eliminate it. These results 

suggest that local inhibitory interaction in the inferior colliculus may not be the only factor that is 

responsible for the suppressive effect produced by the leading sound. Results from this study are 

important for understanding neural mechanisms responsible for hearing in a real-world situation.  
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CHAPTER I. INTRODUCTION 

1.1 Hearing in an acoustic environment with multiple sounds 

Animals including humans normally live in a complex acoustic environment that contains 

multiple sounds with different qualities, intensities, timing, and locations. It is of critical 

importance for survival, communication, and many other behavioral needs of animals to analyze 

information from the acoustic environment and find “what” and “where” each sound is. The 

perception of one sound can be affected by another sound in the environment. For instance, the 

sound of one's speech can be difficult to interpret when there are other sounds in the 

environment, a phenomenon termed masking (Bronkhorst 2000). Although the perception of one 

sound being affected by another sound has been examined in human behavioural studies 

(Crocker 1997; Fastl and Zwicker 2007; Litovsky 2005), neurophysiological studies on animal 

models serve to bridge the gap between the observed behaviour and their potential neural 

correlates (Chot et al. 2019; Flammino and Clopton 1975; Palmer and Kuwada 2005; Zhang and 

Kelly 2009). This study seeks to examine how the responses to one sound are affected by another 

sound in the auditory midbrain by varying the frequency, timing, and location of the sounds.   

1.2 Human psychoacoustics 

Psychoacoustics describes the relationship between the physical stimuli of the sound and the 

sensory perception of a sound (Fastl and Zwicker 2007). An example of a psychoacoustic 

procedure in humans is the method of adjustment where subjects may be asked to vary the 

stimulus frequency until they perceive it matches a reference tone (Crocker 1997; Fastl and 

Zwicker 2007; Pulkki and Karjalainen 2015).  



2 

 

 

1.2.1 Perception of spectral, temporal, and directional cues generated by a single sound 

The frequency range of human hearing is between 20 Hz and 20 kHz (Fastl and Zwicker 

2007). The sound pressure level for detecting low-frequency sounds is high and reaches about 40 

dB at 50 Hz (Fastl and Zwicker 2007). Human hearing is most sensitive to sounds between 2 and 

5 kHz reaching threshold levels below 0 dB (Fastl and Zwicker 2007). Sound pressure levels stay 

between 0 and 15 dB for frequencies below 12 kHz and rise rapidly for frequencies beyond this 

point (Fastl and Zwicker 2007).  

Studies have indicated that humans are unable to perceive differences in sound durations 

which are below 200 ms (Fastl and Zwicker 2007). The subjective duration of the sound is 

longer than the physical duration of the sound for sounds shorter than 200 ms long (Fastl and 

Zwicker 2007). In sound paradigms, where tones are presented separated by a pause, subjects are 

unable to distinguish the physical durations of the tone and pauses when the duration of either 

one varies by less than a 100 ms (Burghardt 1973).  

There are three planes of symmetry that can be used to describe the location of the sound: 

the frontal plane, the horizontal plane, and the median plane (Figure 1) (Fastl and Zwicker 2007). 

In the horizontal plane, any non-zero value of φ will result in differences in the time and intensity 

of the sound between the two ears which helps subjects localize the direction of a sound (also 

referred to as interaural time and interaural level differences) (Fastl and Zwicker 2007).  
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Figure 1. The coordinate system used to describe the spatial location of a sound. Adapted from 

Pulkki and Karjalainen 2015.  The φ symbol is showing the angle between the sound in the 

horizontal plane while the δ is showing the angle of the sound in the median plane. 

1.2.2 Masking 

The most important perceptual phenomenon related to this study is masking. This is a 

perceptual phenomenon in which the perception of one sound (test) is affected by the presence of 

another sound (masker) (Crocker 1997). A masker may make the test sound inaudible, decrease 

its loudness, or make it hard to discern (Crocker 1997). For instance, a listener may find it 

difficult to hear a person’s speech (signal) if there is also the sound of an ambulance siren (mask) 

nearby. Masking can be influenced by the temporal, spectral, and spatial aspects (Pulkki and 

Karjalainen 2015).  
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1.2.2.1 Temporal masking 

The three types of temporal masking are forward, simultaneous, and backward masking 

(Fastl and Zwicker 2007). In forward masking, the masker is presented before the test sound and 

its’ effect decreases 5-10 ms after its offset and can last between 100-200 ms (Fastl and Zwicker 

2007). Moreover, the forward masking effect is also dependent on the level and duration of the 

masker (Figure 2) (Pulkki and Karjalainen 2015). As the level of the masker increases, the 

masked threshold (level of the test sound to become audible) of the test sound increases and it 

needs to be presented at higher levels or increase time delays to be perceived (Figure 2A) (Fastl 

and Zwicker 2007). If the duration of the masker is increased from 5 ms to 200 ms, the masked 

threshold of the test tone also increases (Figure 2B) (Fastl and Zwicker 2007).  

 

Figure 2. A conceptual illustration of the forward masking effect. A. A 0.5s long white noise 

(WN) masker was presented at 80, 60, and 40 dB before a test sound at various delays between 

the two sounds, td. The peak level of the test tone is associated with its detection threshold. B. A 
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200 ms and 5 ms masker was presented before a test sound. Adapted from Pulkki and 

Karjalainen (2015). 

 Another temporal condition of masking is simultaneous masking in which the test sound 

is overlapped with the masker sound presentation (Figure 3) (Fastl and Zwicker 2007). The 

effect of masking is dependent on the duration of the test sound, the delay between the onset of 

the masker and test sound, and frequencies of the two sounds (Fastl and Zwicker 2007). At 

shorter delays, Δt, the masked threshold is more elevated than at longer delays. 

 

Figure 3. A conceptual illustration of simultaneous masking. Test sound with a duration of TT is 

presented simultaneously with a masker after a delay of 2 ms and 200 ms from the onset of the 

masker sound. Modified from Fastl and Zwicker (2007).  

  Backward masking is when the masker affects the perception of test sounds presented 

before it. This type of masking is shown to affect sounds only 5-10 ms before the onset of the 

masker and effects low-level sounds (Pulkki and Karjalainen 2015). All three types of temporal 

masking are dependent on spectral characteristics of the sounds involved (Fastl and Zwicker 

2007). 
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1.2.2.2 Spectral masking 

 Spectral masking is when a sound with a certain spectral content makes the detection of 

another sound with a different spectral content difficult (Pulkki and Karjalainen 2015). In 

spectral masking, the masker can be a noise (broadband or narrowband) or pure tone. Broadband 

noise masker is composed of a large number of frequencies and the level of the noise can affect 

the detection threshold of the test sound (Pulkki and Karjalainen 2015). In contrast, pure tone 

masker is composed of a single frequency (Pulkki and Karjalainen 2015). For a narrowband 

noise masker, the threshold of test tone detection increases for tones within the noise band and is 

the highest for the test tone corresponding to the central frequency of the masker  (Figure 4) 

(Pulkki and Karjalainen 2015). Similarly, the masking threshold is the highest for pure tone 

maskers with a frequency closest to that of the test sound (Small 1959). 

 

Figure 4. The masking threshold curve resulting from a narrowband noise masker centered at 

1kHz with different levels (L). Modified from Pulkki & Karjalainen (2015).  
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1.2.2.3 Spatial masking 

A change in direction of a masker source can change the effect it has on the test sound. 

For instance, studies examining the perception of speech in noise first present both the masker 

and test sound from a colocalized position (Figure 5A). Next, the masker is separated from the 

test sound (Figure 5B). The results reported from multiple studies indicate that subjects showed 

an improvement in word identification in the separated condition with monaural or binaural 

masker cues (Figure 5C) (Freyman et al., 1999; Litovsky, 2005; Plomp & Mimpen, 1981).  

 

Figure 5. An experimental setup of a study examining the role of spatial cues in speech 

perception. A. The masker and the test sound are presented from a colocalized position in front 

of the subject. B. The masker is moved to the right ear while the test sound is presented from the 

front. C. A masker is placed in front of both ears while the test is presented from the front of the 

subject. Modified from Litovsky (2012).  
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1.3 Human neurophysiological studies 

To find the neural correlates of psychoacoustic phenomena such as masking, 

neurophysiological studies serve as a gateway. Some studies have examined neural responses in 

human subjects to different sound in the environment (Ahveninen et al. 2014; Bernstein 1999). 

However, the neurophysiological studies conducted in humans have been limited to non-invasive 

procedures such as using electroencephalographic equipment to record event-related potentials 

(ERP) (Alho et al., 1990; Frey et al., 2015; Leppänen et al., 1997). ERP is scalp recording 

electrical potentials that reflect the summed activity of groups of neurons in the brain (Regan 

1972). Some ERP studies in humans have focused on the mismatch negativity component of the 

ERP recording. Mismatch negativity is referred to a negative peak on an ERP recording which 

has shown to be elicited during stimulus irregularities such as changes in loudness (Näätänen et 

al., 1987), pitch (Näätänen et al. 1978; Sams et al. 1985), duration (Jacobsen & Schröger, 2003; 

Kaukoranta et al., 1989), and sound location (Paavilainen et al., 1989; Schröger & Wolff, 1996). 

However, the EEG studies are limited in scope because they lack spatial resolution and it 

becomes difficult to evaluate the contribution by different areas of the brain  (Pulkki and 

Karjalainen 2015).  

1.4 Animal behavioural studies  

Since hearing is considered a behaviour, many behavioural studies have been conducted to 

validate animal models for hearing research (Fay and Popper 1994). Psychoacoustic studies in 

animals serve as a bridge between animal neurophysiology and human hearing (see Fay & 

Popper, 1994 for a review). With the use of classical and operant conditioning, animals can be 

trained to recognize certain tones and elicit a specific behaviour (Cowles and Pennington 1943; 

Gourevitch et al. 1960; Gourevitch and Cole 1963; Hack 1971; Kelly and Masterton 1977; 
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Talwar and Gerstein 1998).  Studies have shown that difference acoustic measures such as 

audiograms, intensity and frequency discrimination thresholds, temporal discriminations, 

auditory filters, gap detections thresholds critical bandwidths, and psychophysical tuning curves 

show a similarity between humans and nonhuman mammals such as chinchilla, cat, various 

primates, mouse and rats (Fay and Popper 1994; Hack 1971; Kelly and Masterton 1977).  

1.4.1 Animal behavioural tests show that the perception of a sound can be affected by another 

sound 

Using operant conditioning, auditory masking has been demonstrated in rats (Gourevitch 

1965). Rats were trained to press a bar for water after a tone (which they had been previously 

trained to recognize) had ended. The tone was then presented simultaneously with different noise 

levels and the rat would press the bar after it could no longer hear the tone due to masking 

(Gourevitch 1965). The major finding of this study was that the masked threshold in rats 

increased linearly with the level of the noise, a finding which reflected in human studies 

(Gourevitch 1965). However, it is unclear whether the rat perceived a qualitatively different 

sound when the noise and test tone were simultaneously played. 

Another study examined the influence of one sound on the perception of another sound in 

rats (Hoeffding and Harrison 1979). The study focused on precedence effect, an acoustic 

phenomenon which aids in the localization of the sound source by suppressing the perception of 

echoes in a reverberant acoustic environment (Pulkki and Karjalainen 2015). The rat was trained 

to press a lever in response to a click emitted by a sound source in the presence of a second click, 

which served as an artificial echo, from a sound source located opposite of the first sound source 

(Hoeffding and Harrison 1979). The time between the first click and the artificial click was 

varied, and the results showed that the majority of the correct responses (rat pressing the lever 
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corresponding to the first sound) were at a higher time delay between the two clicks (Hoeffding 

and Harrison 1979). This study shows that one sound can affect the perception of another sound 

in a time-dependent manner. However, it is unclear whether the rat was responding to the second 

sound rather than the first sound. 

1.4.2 Sound localization in rats 

Rat’s have demonstration spatial acuity in discrimination sound location (Beecher and 

Harrison 1971; Harrison and Beecher 1969). In one study, rats were reinforced if they pressed a 

lever closest to the speaker delivering a 4kHz tone burst (Beecher and Harrison 1971). The 

results showed that the rats rapidly acquired the ability to discriminate between the two speakers 

and press the lever closest to the speaker delivering the sound stimulus within the first session 

(Beecher and Harrison 1971).  

1.4.3 Binaural cues and sound localization in rats 

Binaural cues such as interaural time (difference in the time of sound arrival at the two 

ears) and interaural level differences (difference in the level of sound arriving at the two ears) are 

reflected in the anatomy and physiology of the mammalian auditory pathway (Fay and Popper 

1994). Rat and many other small rodents predominantly use interaural level difference (ILD) in 

sound localization (Inbody and Feng 1981; Kelly et al. 1991; Potash and Kelly 1980). 

Binaural cues, or differences in sound arriving at two ears, play an important role in 

sound localization (Kelly et al. 1987; Potash and Kelly 1980). A study tested the tendency of 

three groups of rat infants to approach a target sound. Group 1 had one ear blocked with an 

earplug, group 2 had both ears blocked, and group 3 had no ear blocked (Potash and Kelly 1980). 

The purpose of the plug was to attenuate the sound by approximately 10dB. The results showed 

that only group 2 and group 3 approached the target sound with above chance levels (Potash and 
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Kelly 1980). The failure of the monoaural group 1 infant was probably due to a disruption in 

binaural cues (Potash and Kelly 1980).  

1.5 Overview of the auditory system  

1.5.1 Peripheral auditory system and transduction of sound to neural signals in the inner ear 

In mammals, hearing is dependent on the peripheral auditory system and the central auditory 

pathway (Pulkki and Karjalainen 2015). The ear, or the peripheral auditory system, consists of an 

external ear which receives sound waves, middle which mechanically conducts sound waves 

through vibrations of the tiny bones called ossicles, and the inner ear which transduces 

mechanical stimuli to neuronal signals (Figure 6) (Pulkki and Karjalainen 2015). Signals are then 

carried up via various nuclei to the auditory cortex for higher-level processing (Pulkki and 

Karjalainen 2015).  

 

Figure 6. A cross-section of an ear showing the external ear (blue), the middle ear (green), and 

inner ear (yellow) (modified from Pulkki and Karjalainen, 2015).  

Transduction of sound occurs in the cochlea, a spiral-shaped structure in the inner ear that 

contains the basilar membrane. The organ of Corti resides on the basilar membrane and it 
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contains sensitive hair cells known as inner hair cells which converts mechanical vibration of 

sound to neural impulses in the auditory nerve fibers (Pulkki and Karjalainen 2015). Different 

parts of the basilar membrane vibrate maximally to certain frequencies of sound. The basel part 

of the basilar membrane is stiffer and responds optimally to high-frequency sounds, while while 

the apical part of basilar membrane is floppy and responds optimally to low-frequency sounds 

(Pulkki and Karjalainen 2015). This positioning of frequencies along the basilar membrane is 

referred to as the tonotopic organization and it is preserved throughout neural processing stages 

(Pulkki and Karjalainen 2015). Generally, the anatomy and physiology in the inner ear is 

generally the same between the human and rat. However, there are key differences in the length 

and width of the basilar membrane, the length of the inner and outer hair cells, and the number of 

inner and outer hair cells between the two species (Nadol 1988). 

1.5.2 The overall organization of the central auditory system 

1.5.2.1 Major central auditory structures 

The auditory system is composed of six major structures as shown in the top schematic 

diagram of Figure 7: the cochlear nucleus (CN), superior olivary complex (SO/SOC), the nucleus 

of the lateral lemniscus (NLL), inferior colliculus (IC), medial geniculate nucleus (MGN), and 

the auditory cortex (AC). The detailed descriptions of all these structures are provided below. 

The ascending auditory pathway starts with at the CN and converges towards the IC which then 

sends signals to the AC (Figure 7). The descending auditory pathway starts at the AC and ends at 

the Organ of Corti.   



13 

 

 

 

 

 

Figure 7. Schematic representation of the auditory pathways in a rodent. The top figure shows 

the major structures within the auditory pathways (modified from Asaba et al., 2014). The 
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bottom figure shows the connections between the major auditory structures (adapted from 

(Malmierca 2015). Please see the list of abbreviations for the full form of the words in the 

figures.  

1.5.2.2 Ascending Auditory pathway 

1.5.2.2.1 The cochlear nucleus (CN) 

The first relay station for signals carried by the auditory nerve fibers is the cochlear 

nuclear complex (CNC/CN) (Figure 7). The CN is composed of a dorsal cochlear nucleus (DCN) 

ventral cochlear nucleus (VCN). The ventral nucleus is further composed of anteroventral 

(AVCN) and posteroventral (PVCN) nucleus. Cochlear nerve fibers terminate tonotopically in 

the CN where fibers carrying low-frequency sound signals terminate ventrally and fibers 

carrying high-frequency sounds terminate progressively dorsally. There is also a topographic 

projection from the VCN to the DCN where low frequency projections are relatively more 

ventral in the DCN compared to high frequency signals which are more dorsal (Doucet and 

Ryugo 1997). As shown by Figure 7 (bottom diagram), the CN receives projections from the 

ipsilateral cochlea and is thus considered a monoaural structure.   

The cell types that comprise the VCN include bushy cells. There are two kinds of bushy 

cells, spherical and globular, which differ based on cell morphology and physiology (Young et 

al. 1988). These cells have a primary like firing pattern, which means they have a strong 

response to the onset of a sound and then reduced sustained firing (Blackburn and Sachs 1989; 

Young et al. 1988). Moreover, they are key in transmitting temporal information for sound 

localization (Young et al. 1988). Spherical bushy cells project bilaterally to medial superior olive 

(MSO) and ipsilaterally to the lateral superior olive (LSO) (Friauf and Ostwald 1988; Harrison 
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and Warr 1962). The globular bushy cells project to the medial nucleus of the trapezoid body 

(MNTB).  

Other notable cell types of the VCN include the octopus cells which have been suggested 

to encode pitch period and they project bilaterally to the superior paraolivary nucleus (SPON) 

and contralaterally to ventral nucleus of the lateral lemniscus (VLL) (Thompson and Schofield 

2000). The multipolar cells may convey frequency-specific excitatory information about the 

stimulus level and innervate the central nucleus of the inferior colliculus (CIC) (Doucet and 

Ryugo 1997). The radiate cells are the sole source of inhibitory projections in the CN (Alibardi 

1998; Doucet et al. 1999). 

The main projection fibers of the DCN are from the pyramidal cells which innervate the 

IC and MNTB. These projections may serve a role in sound localization and head orientation to 

sound (May, 2000; Young et al., 1992).  

1.5.2.2.2 Superior olivary complex (SOC)  

The superior olivary complex is subdivided into LSO, MNTB, MSO, SPON, and 

periolivary nuclei (PO) (Malmierca 2015; Osen et al. 1984). SOC lesions have shown to disrupt 

sound localization in the albino rat (Van Adel and Kelly 1998). In cats, MSO has shown to 

respond mainly to low-frequency sounds while LSO responds to all frequencies with an 

emphasis on high-frequency tones (Heffner and Masterton 1990).  

1.5.2.2.2.1 Lateral superior olive (LSO) 

The LSO is the lateral most part of the SOC. The major cell types found in the LSO 

are bipolar and multipolar cells (Rietzel and Friauf 1998). The inputs to the LSO are from 

AVCNs from both sides. The excitatory ipsilateral inputs are from the spherical bushy cells and 
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multipolar planar cells (Doucet and Ryugo 2003; Warr 1966). Indirect inhibitory inputs are from 

the globular bushy cells of the contralateral AVCN (Henkel and Gabriele 1999; Moore and 

Caspary 1983). These inputs first innervate the MNTB which then project glycinergic inputs to 

the LSO on the same side (Henkel and Gabriele 1999; Moore and Caspary 1983). LSO neurons 

are binaural because they are excited by ipsilateral inputs and inhibited by contralateral inputs. 

Their binaural property helps them encode interaural intensity differences (Shu Hui Wu and 

Kelly 1992). 

LSO projections are to the central nucleus of the inferior colliculus where ipsilateral 

inputs have been suggested to be glycinergic and inhibitory while the contralateral inputs are 

excitatory (Glendenning and Baker 1988; Saint Marie and Baker 1990; Shneiderman and Henkel 

1987). Additionally, the LSO also sends projections to the dorsal nucleus of the lateral lemniscus 

(DNLL) bilaterally (Brodal A 1981).  

1.5.2.2.2.2 Medial superior olive (MSO) 

The MSO is located in between MNTB and LSO. MSO processes low frequency sounds 

(Goldberg and Brown 1969). In rats, the MSO is unusually small because they are more 

receptive to high frequency sounds relative to larger mammals such as humans and cats (Moore 

and Moore 1971). MSO is comprised largely of principal cells and fewer non-principal cells 

(marginal and multipolar) (Lindsey 1975; Smith 1995). The MSO receives excitatory inputs 

bilaterally from both VCN and inhibitory inputs from ipsilateral MNTB (Banks and Smith 1992). 

The MSO projects excitatory inputs to the CIC and DNLL (Kelly et al. 2009; Oliver and 

Shneiderman 1989). Moreover, MSO is involved in sound localization and is sensitive to 

interaural time differences (ITD) (difference in the timing of the sounds arriving at the two ears) 

(Malmierca 2015). However, some studies have suggested MSO responses are too crude for 



17 

 

 

sound localization and may play a role in suppressing echoes and reverberations from the 

environment (Grothe and Neuweiler 2000).  

1.5.2.2.2.3 Superior paraolivary nucleus (SPON) 

The SPON is a conspicuous nucleus in rodents as compared to humans (Malmierca and 

Ryugo 2011). It contains the largest multipolar GABAergic neurons in the SOC (Kulesza  Jr. and 

Berrebi 2000). It receives excitatory inputs from the globular bushy, octopus, and multipolar 

cells of the contralateral VCN and the from the multipolar and globular bushy cells of the 

ipsilateral VCN (Saldaña et al., 2009). It receives major glycinergic inputs from the ipsilateral 

MNTB (Banks and Smith 1992; Sommer et al. 1993). SPON projects to the ipsilateral inferior 

colliculus in a topographic manner which may indicate its tonotopic organization (Saldaña et al. 

2009).  

Even though the circuitry exists for SPON to respond to binaural cues, it is only shown to 

be excited by contralateral stimulation (except in a gerbil) (Behrend et al., 2002; Saldaña et al., 

2009). Neurons in the SPON respond to the offset of pure tones (Kadner and Berrebi 2008) 

1.5.2.2.2.4 Periolivary nuclei (PO) 

PO nuclei are composed of neurons with different projection patterns (Adams 1983; 

Faye-Lund 1986; Osen et al. 1984). The most prominent nucleus within the rat’s PO is the 

ventral nucleus of the trapezoid body (VTz) (Osen et al. 1984). The VTz projects to the to the 

cochlear nucleus, the contralateral SOC, and the ipsilateral IC (Faye-Lund 1986). The PO nuclei, 

as a group, receive inputs from many auditory and non-auditory regions and they may function in 

multiple aspects of hearing (Kulesza 2008). 
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The periolivary nuclei include the medial nucleus of the trapezoid body (MNTB). The 

MNTB is the most medial nuclei in the SOC and it is comprised of principal and non-principal 

cells (Banks & Smith, 1992; Sommer et al., 1993). The principal cells resemble globular cells 

from the VCN and project within the ipsilateral SOC to LSO, MSO, and SPON (Banks and 

Smith 1992; Sommer et al. 1993). The responses from the primary cells show that they may play 

a role in encoding sound duration (Tolnai el al., 2008). The strong excitatory inputs received by 

the principal cells from the contralateral VCN are relayed as strong inhibitory inputs to the 

ipsilateral LSO with minimal synaptic delay (Banks and Smith 1992; Kopp-Scheinpflug et al. 

2008; Sommer et al. 1993). The non-principal cells may project to the VNLL (Banks and Smith 

1992).  

1.5.2.2.3 Nuclei of the lateral lemniscus (NLL) 

The NLL is subdivided into dorsally and ventrally into DNLL and VNLL respectively 

(Brodal A 1981). Based on cat studies, DNLL neurons have shown to respond to binaural cues 

while VNLL neurons have only shown to respond to monoaural cues (Aitkin et al. 1970; Brugge 

et al. 1970). However, some rat VNLL studies have supported its role in binaural processing 

(Nayagam et al. 2005; Zhang and Kelly 2006a).  

1.5.2.2.3.1 The ventral nucleus of the lateral lemniscus (VNLL) 

The cells that comprise the VNLL include bushy and stellate cells (Zhao and Wu 2001). 

The bushy cells exhibit an onset firing pattern while the stellate cell types exhibit various firing 

patterns including onset-pause, adaptive firing, and burst to fire (Zhang and Kelly 2006a, 2006b). 

The VNLL receives excitatory inputs from the contralateral VCN and inhibitory inputs from the 

ipsilateral MNTB and SPON (Kelly et al. 2009; Saldaña et al. 2009). The VNLL functions to 

rapidly relay information from lower brainstem structures to the ipsilateral IC and also integrates 
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binaural inputs (Irfan et al. 2005; Whitley and Henkel 1984). The majority of the cells in the 

VNLL are glycine or GABA immunoreactive (González-Hernández et al. 1996; Riquelme et al. 

2001). 

1.5.2.2.3.2 Dorsal nucleus of the lateral lemniscus (DNLL) 

DNLL sends bilateral projections to the IC with most of the inputs being sent to the 

contralateral IC (Bajo et al. 1993; Chen et al. 1999; Merchán et al. 1994; Zhang et al. 1998). 

There are 4 cell types in the DNLL including large and multipolar, large and bipolar, and 

medium-sized with round cell bodies, and small round neurons (Bajo et al. 1993). These cells are 

GABAergic and inhibit responses in the IC and the contralateral DNLL (Chen et al., 1999; 

Riquelme et al., 2001; Zhang et al., 1998). Excitation of the DNLL neurons can be quick via 

AMPA receptors or slow and long-lasting due to NMDA receptors (Kelly & Kidd, 2000). 

Moreover, stimulation of the ipsilateral ear produces long-lasting inhibition of the DNLL cells 

which suggests it may function in the localization of multiple sound sources (Kelly & Kidd, 

2000).  

Unlike VNLL, DNLL neurons receive binaural inputs from the contralateral DNLL 

through the commissure of the lateral lemniscus, ipsilaterally from MSO, SPON, and VNLL, and 

bilaterally from the LSO (Van Adel and Kelly 1998; Bajo et al. 1993; Chen et al. 1999; Zhang et 

al. 1998). Thus, DNLL may play a crucial role in the localization of sound with the help of 

binaural cues (Bajo et al., 1998; Kelly et al., 1998). Studies that lesioned the commissure of 

Probst in rats observed behavioural deficits in their ability for sound localization (Ito et al., 1996; 

Kelly et al., 1996). This could be because DNLL may play a role in relaying information about 

interaural time (ITD) and ILD to its target structure, the IC (Li and Kelly 1992).  
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1.5.2.2.4 Inferior colliculus (IC) 

The rat IC has an ellipsoid shape with diameters of 3.5 and 2 mm and considered a major 

relay station for auditory signals (Faye-Lund and Osen 1985). It is subdivided into the central 

nucleus (CIC), the dorsal cortex (DCIC), the lateral cortex (LCIC), and the rostral cortex (RCIC) 

(Bartlett and Smith 1999a; Loftus et al. 2008; Malmierca et al. 1993). Figure 8 shows the 

inhibitory and excitatory connections to the CIC.   

 

 

Figure 8. Schematic representation of the ascending and descending projections to and from the 

left inferior colliculus. Red lines represent excitatory inputs and blue lines represent inhibitory 

inputs. The thickness of the lines represents the strength of innervation. (Adapted from 
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(Malmierca 2015). The there main areas within the IC are shown in the small figure next to the 

left IC (Modified from Loftus et al. 2008).  

1.5.2.2.4.1 The central nucleus of the inferior colliculus (CIC) 

The CIC is made up of discontinuous laminae (fibrodendritic laminae) which are 

comprised of neurons with flattened dendritic arbors (Faye-Lund and Osen 1985; Loftus et al. 

2008; Malmierca and Merchán 1991). These laminae are organized in a tonotopic manner where 

laminae responding best to low frequencies are dorsal while laminae responding best to high 

frequencies are ventral (Friauf 1992; Loftus et al. 2008). The two types of cells that characterize 

the CIC are flat and less flat neurons (Malmierca et al. 1993, 1995). These two types of cells 

differ in dentric branching, dendritic thickness, and their location and orientation about the 

laminae. The flat cells make up the laminae around 1 cell layer thick while the less flat cells are 

found in compartments in between the laminae (Faye-Lund and Osen 1985; Malmierca et al. 

1993). The dendritic arbors of most cells are oriented parallel to the laminae along the 

ventrolateral to the dorsomedial axis, however, the dendritic arbors of a few flat cells are 

oriented more rostrocaudally (Malmierca et al. 1993). Although firing patterns observed with 

extracellular recordings differ from firing patterns observed with patch clamp recordings, patch 

clamp studies have categorized the firing patterns of the CIC neurons into six groups: sustained-

regular, onset, pause/build, rebound-regular, rebound-adapting, and rebound transient (Peruzzi et 

al. 2000; Tan et al. 2007). This diversity in firing patterns could mean that the neurons not only 

have the potential to merely relay signals but also process temporal and intensity differences 

between sound signals (Peruzzi et al. 2000; Tan et al. 2007).  

The bilateral ascending inputs to the CIC are from DNLL and LSO, ipsilateral inputs are 

from VLL and MSO, and contralateral inputs are from AVCN, PVCN, and DCN  (Bajo et al. 
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1993; Beyerl 1978; Coleman and Clerici 1987; González-Hernández et al. 1996; Loftus et al. 

2008; Malmierca et al. 2005b; Merchán et al. 1994; Merchán and Berbel 1996; Oliver et al. 

1999). Axons from the DCN and LSO have been shown to overlap in the contralateral CIC, 

however, the axons from the DCN projected more dorsally compared to the projections from 

LSO (Malmierca et al., 2005; Oliver et al., 1997). Moreover, projections from the VCN and DCN 

remain segregated and innervate separate regions in the CIC (Malmierca et al., 2005). 

Furthermore, the CN projections to the IC can either terminate in large or small axonal boutons 

which may be confined to specific functional zones in the CIC and play a role in processing 

different acoustic information (i.e. temporal, spectral, or intensity related) (Malmierca et al. 

2005b).  

The CIC projects mainly to the ipsilateral ventral MGB with fewer projections to the 

medial and dorsal subdivisions (Peruzzi et al. 1997). The projections are mainly glutamatergic 

with a few GABAergic projections (Peruzzi et al. 1997; Winer et al. 1996).  

1.5.2.2.4.2 The lateral cortex of the inferior colliculus (LCIC) 

The LCIC is subdivided into three layers. Layer 1 is a continuation of the DCIC’s 

fibrodentritic laminae (discussed below), layer 2 is an aggregate of small to medium-sized 

neurons, and layer 3 is the largest and has a topographical relationship with the commissural 

fibers (Faye-Lund and Osen 1985; Loftus et al. 2008). Layer 3 contains flat neuron cell types 

however they differ structurally from their counterpart in the CIC with respect to dendritic arbor 

thickness and orientation (Faye-Lund and Osen 1985; Loftus et al. 2008).  

LCIC receives projections from lower brainstem structures such as the CN (Faye-Lund 

and Osen 1985). It also receives inputs from other regions near the ipsilateral primary auditory 

cortex (Faye-Lund and Osen 1985). LCIC also receives inputs from non-auditory structures such 
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as cuneate and substantia niagra which are involved in processing somatosensory information 

(Coleman and Clerici 1987). LCIC sends projections to the medial and dorsal regions of the 

MGB (Brodal A 1981). 

1.5.2.2.4.3 The rostral cortex of the inferior colliculus (RCIC) 

RCIC is comprised of multipolar cells of different sizes and without orientation. Thus, 

there is no indication of layering in the RCIC (Malmierca & Ryugo, 2011). The arborization of 

the neurons differs substantially from the neurons found in CIC and LCIC (Malmierca & Ryugo, 

2011). 

1.5.2.2.4.4 The dorsal cortex of the inferior colliculus (DCIC) 

The DCIC is made up of three layers. Layer 1 is a thin fibrocellular capsule composed of 

flattened neurons and covers part of the LCIC layer 1 (Faye-Lund and Osen 1985; Malmierca 

and Ryugo 2011). Layer 2 is composed of multipolar neurons and layer 3 (largest layer) is 

composed of small and medium-sized cells. The DCIC receives bilateral topographic inputs from 

the primary auditory cortex as well as inputs from lower brainstem structures (Faye-Lund and 

Osen 1985; Malmierca et al. 2005b). Cells in this region fire phasic firing to the stimulus of 

increasing intensity and then tonic firing as the level is increased more (Banks and Smith 1992; 

Li et al. 1998). 

1.5.2.2.4.5 Commissural and intrinsic fibers of the inferior colliculus 

Commissural fibers connect the IC on both sides of the midline while intrinsic fibers 

connect the subdivisions within each IC (González-Hernández et al. 1991; Malmierca et al. 

2009; Okoyama et al. 2006; Saldaña and Merchán 2005). Neurons contributing to the 

commissural inputs are mainly glutamatergic and about 20% are GABAergic (Hernández et al. 

2006). Due to this, commissural projections can have both an excitatory or inhibitory effect on 
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the contralateral IC and may play a role in the binaural processing of sound (Malmierca et al. 

2005a). 

1.5.2.2.5 Medial geniculate body (MGB) 

The MGB is located on the posterolateral part of the thalamus (Winer et al. 1999b). 

Within the MGB, there are three subdivisions: ventral (MGBV), medial (MGBM), and dorsal 

(MGBD) (LeDoux et al. 1985a).   

1.5.2.2.5.1 Ventral medial geniculate body (MGBV) 

The MGBV has a tonotopic and laminar arrangement of fibers belonging to the principal 

neurons which project tufted dendritic arbors (Bordi and LeDoux 1994a, 1994b). High 

frequencies are found more ventrally while low frequencies are found more dorsally (Bordi and 

LeDoux 1994a). Moreover, there are three subdivisions within the MGBV with a different 

laminar organization: ventral nucleus, ovoid nucleus, and the marginal zone (Clerici et al. 1990; 

Winer et al. 1999a). The major input to the MGBV is from the ipsilateral CIC (González-

Hernández et al. 1991) and to a weaker extent from the contralateral CIC (Chernock and Winer 

2001). The IC projects both glutamatergic and GABAergic inputs to the MGBV tufted neuronal 

dendrites (Bartlett and Smith 1999b). Additionally, the primary auditory cortex is reciprocally 

connected with the MGBV and only projects glutamatergic inputs onto the tufted neurons 

(Bartlett and Smith 1999a). MGBV also received GABAergic inputs from the thalamic reticular 

nucleus, which envelops the lateral MGBV may play a role in modulating auditory signals 

(Arcelli et al. 1997). The role of MGBV is only limited to the processing of acoustic signals 

(Ledoux et al. 1987). Although neurons in the MGBV respond to binaural stimuli, there were no 

differences found in sound localization in rats after MGBV was lesioned (Kelly and Judge 1985).  
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1.5.2.2.5.2 Dorsal medial geniculate body (MGBD) 

Five subnuclei within the MGBD do not have a tonotopic organization: the dorsal 

superficial, dorsal, deep dorsal, suprageniculate, and ventrolateral subdivisions (Clerici and 

Coleman 1990). The major inputs are from cortical regions of the IC (DCIC, RCIC, and LCIC), 

excitatory inputs from the cortex, and inhibitory inputs from the thalamic reticular nuclei 

(Bartlett et al. 2000; Bartlett and Smith 1999a). It mainly projects to secondary auditory cortical 

areas, the insular cortex, and the lateral nucleus of the amygdala (Doron and Ledoux 1999).  The 

two main neurons found in MGBD are stellate and tufted neurons which differ slightly from the 

MGBV tufted neurons (Clerici et al. 1990). 

1.5.2.2.5.3 Medial division of the medial geniculate body (MGBM) 

Relative to the other subdivisions of the MGB, MGBM is the smallest and contains 

diverse cell types (Clerici et al. 1990). It receives diverse ascending inputs including from the 

RCIC, LCIC, VNLL, SOC, CN, and the spinal cord (Ledoux et al. 1987; Malmierca et al. 2002). 

It projects to the IC and the auditory cortex and also to nonauditory regions such as the caudate-

putamen and the amygdala (LeDoux et al. 1985b; Malmierca 2015; Ottersen and Ben‐Ari 1979; 

Senatorov and Hu 2002). Due to a convergence of input from diverse sources, MGBM may be 

involved in multisensory arousal and emotional auditory learning (Bordi and LeDoux 1994b, 

1994a). 

1.5.2.2.6 Auditory Cortex  

The auditory cortex is the highest sound processing center in the ascending auditory 

pathway. The auditory cortex is comprised of three temporal areas: Te1, Te2, and Te3 (Zilles et 

al. 1980). Based on physiological responses, five cortical auditory fields have been mapped 

within the three temporal areas: primary auditory cortex (A1), the posterior auditory field (PAF), 
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the anterior auditory field (AAF), the ventral auditory field (VAF), and the suprarhinal auditory 

field (SRAF) (Polley et al. 2007). Te1 corresponds to A1, AAF, and VAF (Polley et al. 2007; 

Smith et al. 2012; Storace et al. 2010). Te2 corresponds to PAF and Te3 corresponds to SRAF 

(Polley et al. 2007; Smith et al. 2012; Storace et al. 2010).  

So far studies have examined the neuroal architecture of A1. The A1 is comprised of six 

distinct layers. Layer 1 occupies 13% of the cortical thickness and has the fewest neurons 

(Games and Winer 1988). Layer II occupies 11% of the cortical thickness and densely packed 

with neurons (Games and Winer 1988). Layer III occupies 17% of the cortical thickness and is 

comprised of pyramidal and non-pyramidal neurons whose dendritic arbors have a random 

orientation (Games and Winer 1988). Layer IV occupies a bit more than 10% of the cortical 

thickness and contains mostly small stellate neurons which are smaller and more densely packed 

than neurons in layer III (Games and Winer 1988). Layer V is the thickest by occupying 26% of 

the cortical thickness and it contains large pyramidal cells (Games and Winer 1988). Layer VI 

occupies 22% of the cortical thickness and comprised of pyramidal and non-pyramidal cells 

(Games and Winer 1988).  

There are two types of pyramidal cells within the cortices, intrinsically bursting and 

regular spiking (McCormick et al., 1985; Kawaguchi, 1993; Kasper et al., 1994). Intrinsically 

bursting neurons receive less GABAergic inputs and fire more readily while the regular spiking 

neurons receive more inhibition and show variable degree of adaptation (Hefti and Smith 2000). 

The layer V is predominantly comprised of the intrinsically firing neurons and send projections 

to the thalamus, subthalamic nuclei (including IC), and contralateral cortex (Feliciano et al. 

1995; Games and Winer 1988; Hefti and Smith 2000; Moriizumi and Hattori 1991; Weedman 

and Ryugo 1996; Winer 1992). The neurons in the A1 and AAF are sharply tuned to specific 



27 

 

 

frequencies and intensities and responses have a shorter latency (Polley et al. 2007; Wu et al. 

2006). The neurons in the SRAF and PAF are broadly tuned and responses have a longer latency 

(Polley et al. 2007; Wu et al. 2006). Neurons in the VAF respond to nonmonotonic intensity-

tuned responses (Polley et al. 2007; Wu et al. 2006). Behavioural studies involving rats have 

shown that the auditory cortex is not necessary for sound localization (Kelly 1980; Kelly and 

Glazier 1978).  

1.5.2.3 Descending auditory pathway 

The descending auditory pathway starts at the auditory cortex and ends at the organ of 

Corti (Brodal A 1981; Herbert et al. 1991). Three tracts that orginate at the AC are: 

corticogeniculate, corticocollicular, and corticopontine projections (Faye-Lund 1985; Herbert et 

al. 1991; Saldaña et al. 1996; Winer and Larue 1987). The three pathways may have feedback 

loops or be comprised of a descending chain (Spangler and Warr 1991). Projections in the 

feedback loop would start at the cortex and innervate subcortical structures (such as the 

thalamus) which would then send projections back to the cortex either directly or indirectly 

(Spangler and Warr 1991). In the descending pathway, the cortical projections will innervate 

subcortical structures which will only send projections to other lower structures (Spangler and 

Warr 1991).  

The corticogeniculate pathway is a reciprocal loop between the auditory cortex and the 

MGB (Winer and Larue 1987). The corticocollicular projection innervates the IC and has both 

excitatory and inhibitory effects on the IC neurons (Faye-Lund 1985; Herbert et al. 1991; 

Saldaña et al. 1996). Moreover, this pathway may play a role in plasticity in the IC in response to 

sensory experiences (Clarkson et al. 2010b, 2010a, 2012; Yan and Suga 1998). The 

corticopontine projection innervates the nuclei below the IC (Faye-Lund 1985; Herbert et al. 
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1991; Saldaña et al. 1996). This pathway sends input to areas around the NLL, ipsilateral, and 

bilateral inputs to the CNC and SOC, DCN, and VCN (Doucet and Ryugo 2003; Saldaña et al. 

1996).  

In the descending pathway, there are also two projections originating in the IC and 

innervating lower auditory structures: colliculoolivary and colliculocochleonuclear projections 

(Malmierca 2015). Colliculoolivary projections originate specifically from the ventral part of 

CIC, LCIC, and RCIC and indirectly supply the outer hair cells of the cochlea (Caicedo and 

Herbert 1993; Faye-Lund 1986; Saldaña 1993). The colliculocochleonuclear projections 

originate in the LCIC and CIC and terminate at the DCN and VCN (Caicedo and Herbert 1993; 

Faye-Lund 1986; Saldaña 1993).   

1.6 CIC is a major auditory integration center  

The CIC is a hub of auditory processing because it receives multiple ascending and 

descending inputs (Figure 8). This study is related to neural processing of acoustic information in 

the CIC. The CIC plays a major role in converging binaural inputs which enables it to process 

temporal, spectral, and directional information of sounds (Malmierca 2015). 

1.6.1 Spectral processing in the CIC 

Neurons in the CIC can be characterized based on their curves (FTC). These curves are 

plotted by varying the frequency and intensity of a tone systematically and recording the firing 

pattern (Ehret and Schreiner 2005). These curves convey several key pieces of information about 

a neuron such as the characteristic frequency (CF) (frequency resulting in a response at the 

lowest sound pressure level (SPL)), best frequency (BF) (frequency resulting in the highest 

number of spikes from the neuron at a certain SPL), and minimum threshold (MT) (the SPL at 

CF) (Ehret and Schreiner 2005). The CIC neurons can be highly specific to detect sounds of 
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specific frequencies (Kelly et al. 1991). A tone that lies outside the FTC of a neuron can have an 

inhibitory effect on its firing. Studies using a two-tone sound paradigm first examine the 

responses in the CIC to a single-tone played at the CF of the recording site. Next, the single-tone 

at CF is played with another tone of variable frequency simultaneously which can inhibit the 

response from the first tone (Egorova et al. 2001; LeBeau et al. 2001). Moreover, 

pharmacological experiments have shown that iontophoretic application of bicuculine and 

strychnine (antagonists for GABAA and glycinergic receptors respectively) have changed the 

FTCs of certain neurons by eliminating their inhibitory sidebands (LeBeau et al. 2001). It is 

suspected that the glycinergic projections are from the SOC and the VNLL (LeBeau et al. 2001).  

1.6.2 Temporal processing in the CIC 

Approximately half of the neurons in the IC show duration sensitivity to sound, however, 

most of these neurons are found outside the central nucleus (Pérez-González et al. 2006). Some 

of these neurons responded to sound exceeded a certain duration threshold while others were 

only sensitive to restricted sound durations (Pérez-González et al. 2006). It is suggested that 

convergence of inhibitory and excitatory inputs may play a role in shaping response properties to 

temporal characteristics of sound (Brand et al. 2000). Pharmacological studies have shown that 

inhibition is essential for temporal encoding in the CIC. For instance, the application of GABAA 

or glycine antagonists eliminated duration timing in bats (Casseday et al. 1994).  

1.6.3 Directional dependence of CIC neurons 

Most neurons in the CIC are excited by a sound when it is presented in the hemifield 

contralateral to the neurons and inhibited by the sound when it is presented in the hemified 

ipsilateral to the neurons (Cant 2005; Finlayson and Adam 1997; Flammino and Clopton 1975; 

Kelly et al. 1991). Moreover, the firing latency of most neurons is the shortest when the sound is 
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presented at the contralateral ear relative to the ipsilateral ear (Flammino and Clopton 1975). An 

interesting phenomenon was found in bats where 85% of the CIC neurons were excited 

following a contralateral stimulation, however, there was a persistent inhibition that outlasted the 

initial tone by tens of milliseconds. Moreover, this inhibition acted through GABAA because 

application of bicuculine reduced or eliminated the inhibition. The duration of the persistent 

inhibition increased as the sound level increased as well as when the stimulus duration was 

increased (Bauer et al. 2000). 

1.6.4  Binaural convergence in the CIC 

Binaural hearing is an underpinning of spatial localization of sounds in the CIC. The 

convergence of multiple inputs from bilateral sound processing structures such as LSO and 

MSO, both cochlear nuclei, and NLL in the CIC makes it a suitable structure to process binaural 

cues (Palmer and Kuwada 2005).  

Studies have used dichotic stimulation to identify neurons in the CIC which are excited 

by contralateral stimuli and inhibited by ipsilateral stimuli (Irvine and Gago 1990). Moreover 

these studies have shown that the neurons in the CIC respond to ILD (Irvine et al. 1995; 

Wenstrup et al. 1988a, 1988b; Zhang and Kelly 2009).  

1.6.5 Forward masking in the CIC 

A study by Finlayson and Adam (1997) used forward masking paradigms to compare 

monaural and binaural processing in the CIC. The results showed that in the monaural 

contralateral condition, the responses to the test tone (30 ms in duration) were suppressed by 

25% or more in 85% (n  = 28) of the neurons examined following a masking tone (200 ms in 

duration). The maximum suppression occurred when the test sound was delayed by 8 ms 

(Finlayson and Adam 1997). The recovery time of the responses was approximately 226.9 ms 
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(Finlayson and Adam 1997). However, four neurons did not show any significant changes in 

response (Finlayson and Adam 1997). In neurons which exhibited a bimodal response pattern 

which fires 12-20 ms after the stimulus onset, pause firing for 20-30 ms, and then resume firing 

to a sustained level, test tone response was maximal in the 2 ms delay condition and 

progressively decreased as the delay between the masker and test increased (Finlayson and 

Adam 1997).  

In binaural conditions, neurons sensitive to binaural cues were examined. A test tone was 

presented at the contralateral ear following a leading masker at the ipsilateral ear. 4/10 of the 

neurons showed immediate facilitation because they fired more, 1 neuron was excited at a short 

delay, while the other 5 neurons did not show significant changes.  

1.6.6 Time-dependence of ipsilateral inhibition 

A study by Zhang and Kelly (2009) examined the time course of ipsilateral inhibition on 

contralaterally elicited responses. They compared CIC neuronal responses to a contralateral tone 

presented either simultaneous with an ipsilateral tone or after various delays. Both tones were 

200 ms in duration and presented simultaneously. The interaural level differences between the 

two tones were also varied. The results showed that 20 out of the 24 neurons showed an 

excitatory/inhibitory (EI) interaction which means that they were excited by the contralateral test 

tone but suppressed by the ipsilateral tone (Zhang and Kelly 2009).  

Next, the onset of the ipsilateral and contralateral tone bursts were changed to 100 ms and 

the aftereffects of the leading ipsilateral tone burst were studied. Results showed that when the 

trailing contralateral tone burst was delayed by 100 ms and there was no overlap with the 

ipsilateral tone, 8 out of the fourteen neurons displayed inhibitory aftereffects, 2 displayed 

excitatory aftereffects, and 4 neurons showed no aftereffects (Zhang and Kelly 2009).  
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The study also found that excitatory/inhibitory aftereffects can influence responses within 

a short time window. For instance, the responses from one neuron were suppressed when a 

contralateral tone was presented simultaneously with an ipsilateral tone, however, the degree of 

suppression was the largest when the tone was delayed by 50 ms (Zhang and Kelly 2009). The 

study indicated that ipsilateral stimulus could generate an aftereffect to enhance or suppress the 

response elicited by a subsequent contralateral stimulus. 

1.7 A study: response of one sound can be influenced by another sound in a space-

dependent manner 

This study address some of the major questions raised by a study from Chot et al. (2019) 

which examined the interaction between two independently recurring sounds in the generation of 

responses in the CIC. One of the major questions we focus on is whether the effect of spatial 

separation is dependent on change in the level of adaptation or the level of inhibition. The study 

compared the responses of an equal probability two-tone sequence, TL and TH, when both sounds 

were colocalized at the contralateral ear (c90°) versus when one sound (either TL or TH) was at 

c90° (also called the location-fixed sound) and when one sound was at a non-c90° azimuth (also 

called the location changeable sound) (Chot et al. 2019).  

The results showed that the responses to the location fixed sound at c90° (whether TL or TH) 

was enhanced when the location-changeable sound was at a non-c90° azimuth (Figure 9) (Chot 

et al. 2019). Specifically, there was an increase in the strength of the response when the location-

changeable sound was at 0°, i45°, and i90°.  
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Figure 9. An individual neuron’s responses to a two-tone equal probability sequence with 

various spatial conditions. The bar chart at the top shows the responses to the location-fixed TL 

sound at c90° while the bottom bar chart shows the responses to a location-changeable TH sound 

at various azimuths. The shaded areas show the duration of the two sounds. Modified from Chot 

et al. (2019).  

The study also examined how the response to the sound at c90° was affected by a second 

colocalized sound. The responses of the first sound were compared in the presence and absence 

of the second (Chot et al. 2019). The results showed an increase in responses when the second 

sound was omitted (Chot et al. 2019). Moreover, neurons that were irresponsive to the ipsilateral 

i90° sound showed a response enhancement to the sound at c90° condition when the i90° sound 

was omitted (Chot et al. 2019).   

The increase in the strength of responses to the location-fixed sound upon spatial separation 

of the second sound may indicate spatial release from masking (Chot et al. 2019). It is not fully 

understood as to why the location-fixed sound showed a response enhancement when the other 

sound was spatially separated, however, one explanation could be changes in the level of 

inhibition by the neurons in the SPON in response to the first sound (Chot et al. 2019). SPON is 

excited by contralateral stimulation and sends offset inhibitory signals to the ipsilateral CIC 
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(Behrend et al. 2002; Chot et al. 2019; Kulesza et al. 2003). Consequently, these offset inhibitory 

inputs to the CIC may be generated after the first contralateral tone and inhibit the responses to 

the second colocalized tone (Chot et al. 2019). When the second sound was spatially separated to 

the ipsilateral side, SPON inhibition would have been prevented (Chot et al. 2019).  

Another finding of this study was that the responses were more enhanced following the 

location-fixed sound at c90° when the second sound was omitted compared to when there was an 

ipsilateral i90° sound even in neurons irresponsive to i90° stimulation (Chot et al. 2019). This 

suggests that ipsilateral inhibitions may have shaped the responses to the c90° sound when the 

second sound was presented at i90° (Chot et al. 2019).  

To evaluate the role of inhibition in shaping the separation-dependent enhancement of 

response to the location-fixed sound at c90° and inhibition by ipsilateral sound, our study 

incorporates pharmacological manipulations to study some potential inhibitory mechanisms 

which shape responses in the CIC. Using inhibitory neurotransmitter antagonists, inhibitory 

effects can be eliminated and the interaction between the responses to a location-fixed and 

location-changeable sound can be observed.  

1.8 Neurotransmission in the IC 

The main excitatory neurotransmitter of the IC is glutamate while the two inhibitory 

neurotransmitters are γ-aminobutyric acid (GABA) (main inhibitory neurotransmitter) and 

glycine (Kelly and Caspary 2005).  

1.8.1 Glutamatergic inputs into the IC 

Glutamate acts on N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors (Kelly and Caspary 2005). AMPA receptors are 
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responsible for the initial early response component while NMDA receptors have been 

responsible for the slow-developing late response (Kelly and Caspary 2005).  

The main glutamatergic inputs to the IC is from the VCN (Kelly and Caspary 2005). 

There are direct excitatory inputs sent by the contralateral DCN to the CIC (Davis 2002). LSO is 

a binaural processor which also send contralateral glutamatergic inputs to the IC neurons shaping 

responses to ILD typically for high-frequency sound (Kelly and Caspary 2005; Sally and Kelly 

1992). Another binaural processor, MSO, sends ipsilateral glutamatergic inputs to the IC neurons 

conveying information about ITD related to low-frequency sounds (Kelly and Caspary 2005; 

Sally and Kelly 1992). Descending excitatory inputs from the auditory cortex to the DIC and 

CIC may also be excitatory, however, the physiological significance of these inputs is not yet 

certain (Kelly and Caspary 2005). In vivo pharmacology studies have shown that glutamate 

antagonist (±)-2-amino-5-phosphonovaleric acid (APV) reduces firing rates of most neurons in 

the IC (Kelly and Caspary 2005). Injection of glutamate agonist increases spontaneous firing of 

CIC neurons (Faingold et al. 1989).     

1.8.2 GABAergic and glycinergic inputs into the IC 

GABA can act on GABAA as well as GABAB receptors. Both GABAA and glycine receptors 

have been shown to play a role in influencing the frequency tuning curves of IC neurons and the 

duration sensitivity of neurons to tones (Casseday et al. 1994; Faingold et al. 1991; LeBeau et al. 

2001). GABAA receptor seems to play a more dominant inhibitory role in the IC (Milbrandt et al. 

1996; Moore et al. 1998). GABAB receptors may influence inhibition by controlling the amount 

of transmitter acting on the GABAA receptors sites through presynaptic modulation (Ma et al., 

2002). They may also facilitate the release of glutamate (Zhang and Wu 2000).  
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GABAA, GABAB, and glycine terminals are differentially distributed in the IC (Choy 

Buentello et al. 2015). Immunohistochemistry sections of the rat’s IC targeting GAD67 (an 

enzyme that decarboxylates glutamate to GABA) and GLYT2 (glycine reuptake transporter) 

have shown that GAD67 was found throughout the IC, however, GLYT2 was only found in the 

CIC (Choy Buentello et al. 2015). Within the CIC, the GAD67 signals were relatively higher in 

the dorsomedial regions while GLYT2 signals were relatively higher in the ventrolateral region 

(Choy Buentello et al. 2015). Similarly, other studies using western blotting and 

immunohistochemical procedures have indicated that GABAB receptors are more abundant in the 

dorsomedial regions than the ventral regions (Fubara et al. 1996; Jamal et al. 2012; Milbrandt et 

al. 1994).  

The IC receives extrinsic, intrinsic, and commissural GABAergic inputs (Helfert et al. 1989; 

Huffman and Henson 1990; Peruzzi et al. 1997; Shneiderman et al. 1988). Around 20-40% of the 

neurons in the rat’s IC produce GABA (Kelly and Caspary 2005). Extrinsic sources of the 

GABAergic inputs include small ipsilateral DNLL projection and a large contralateral DNLL 

projection to mainly the dorsal CIC (Kelly and Caspary 2005; Shneiderman et al. 1988). The 

SPON also sends direct ipsilateral GABAergic inputs to the CIC and these projections may be 

more diffuse (Choy Buentello et al. 2015; Kulesza et al. 2003). Half of the inputs from the LSO 

to the ipsilateral CIC are glycinergic (Glendenning et al. 1992; Helfert et al. 1989; Marie et al. 

1989; Vater et al. 1992b). These projections may be concentrated in the ventral CIC (Cant and 

Benson 2006). VNLL also projects glycinergic inputs into the CIC and these inputs may be more 

diffuse (Choy Buentello et al. 2015; Riquelme et al. 2001; Vater et al. 1997). Application of 

GABAA antagonists, bicuculline, and gabazine, increase the firing rate of most neurons in the IC 

(Kelly and Caspary 2005; Pérez-González et al. 2012). Similarly, the application of glycine 
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antagonists, strychnine, reduces postsynaptic inhibition in most IC neurons (Kelly and Caspary 

2005). The application of GABAB antagonist, phaclofen, slightly increases postsynaptic firing 

(Ma et al. 2002). GABAA receptors also seem to process excitatory-inhibitory binaural 

interactions since blocking both GABAA and glycinergic receptors by bicuculline and strychnine, 

respectively, reduced ipsilateral inhibition in the IC neurons (Klug et al. 1995).  

The three antagonists used in this study are gabazine (to block GABAA receptors), CGP 

35348 (to block GABAB receptors), and strychnine (to black glycine receptors). Gabazine can 

bind to GABAA sites with relatively high affinity (McCabe et al. 1988). Saturation of binding to 

tissue showed that gabazine had a dissociation constant of 42.4 nM. Similarly, CGP 35348 has 

similar affinities of binding to GABAB sites only shown in studies where it was tested on a 

variety of receptor binding essays (Olpe et al. 1990). Strychnine is also a highly specific 

antagonist for glycine receptors (Faingold et al. 1989). 

1.9 Influence of anesthetics on the neuronal responses of the IC 

This study uses a ketamine-xylazine combination to keep the rat under anesthesia. Ketamine 

acts as a non-competitive antagonist of one of the glutamate receptors, N-methyl-D-aspartate 

(NMDA) (Lima et al. 2012). Xylazine is an agonist for alpha 2 adrenergic receptors which 

reduce noradrenaline release (Lima et al. 2012). Physiologically, a ketamine-xylazine combo 

increases the latency of IC neurons relative to the other anesthetics such as pentobarbital (Astl et 

al. 1996). However, the number of spontaneously firing neurons is higher with the ketamine-

xylazine combo than with other drugs (Lima et al. 2012). Moreover, the threshold of sustained 

neurons was significantly lower compared to the threshold of onset neurons with ketamine-

xylazine combo relative to other drugs (Lima et al. 2012).  
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1.10 Objectives  

The main objective of the present study is to examine how a location-changeable leading 

sound affects the LFPs elicited by a location-fixed trailing sound. Specifically, I examined how 

the effect produced by a leading sound was dependent on: 

I. The interstimulus interval (ISI) between the leading and trailing sound. 

II. The spatial location of the leading sound. 

III. Neurotransmission mediated by the GABAA, GABAB, and glycine receptors. 

I hypothesized that the response to a trailing sound would be more suppressed at shorter ISIs 

and less suppressed at longer ISIs. The response to the trailing sound would be more suppressed 

when the leading-trailing sounds were colocalized and less suppressed when the leading sound 

was spatially separated from the trailing sound. The suppression of the response to a trailing 

sound was partly due to inhibition.  
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CHAPTER II. MATERIALS AND METHODOLOGY 

2.1 Subject and anesthetics 

 Experiments were conducted using fifteen 2-4 months old male albino Wistar rats (Rattus 

novgicus)) obtained from Charles River Canada Inc. The rat was chosen as the model organism 

as their auditory system has been studied extensively in previous studies (King et al., 2015; 

Zhang & Kelly, 2009).  

Anesthesia was induced with a combination of ketamine hydrochloride (60mg/kg, i.m.) 

and xylazine hydrochloride (10mg/kg, i.m.). Anesthesia was maintained using supplementary 

injections of ketamine hydrochloride (20 mg/kg, i.m.) and xylazine hydrochloride (3.3 mg/kg, 

i.m.) at 45-min intervals for the duration of the experiment (see Appendix for calculations). 

During surgical procedures, feet and tail pinch reflexes were tested regularly using a pair of 

forceps to ensure that an animal was deeply anesthetized. 

Upon completion of a recording session, the rat was euthanized using pentobarbital (300 

mg/kg, i.p.) and transcardially perfused for histological processing of the brain (See Appendix 

for calculations). 

2.2 Acoustic stimulation 

 Two free-field magnetic speakers (Tucker-Davis Technologies Model FF1 free-field 

speakers, Alachua, FL) were used to elicit neural responses. The speakers were calibrated at five 

azimuths (Fig. 1) over a frequency range between 1kHz and 40kHz using a condenser model 

4134 microphone and model 2608 measuring amplifier (Brüel & Kjær, Dorval, QC). These five 

azimuths included the midline of the frontal field (denoted by 0° in Fig. 1) and 90° and 45° on 

the contra- and ipsilateral side of the recording site (denoted by c90°, c45°, i45°, and i90° in Fig. 

1). The speakers were 50 cm away from the midpoint of a rat’s interaural line. Sound waveforms 
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were generated digitally using a System 3 real-time signal processing system controlled by a 

personal computer running OpenEx software (Tucker-Davis Technologies, Alachua, FL). 

2.3 Surgical procedures 

When a rat was deeply anesthetized, the hair at the top of the head was removed using an 

electric trimmer. The rat was placed onto a thermal heating pad throughout the surgery.  

The surgical procedure was similar to that described in a previous publication by Zhang 

and Kelly (2009). Briefly, a midline incision was made on the scalp and the skin was retracted 

laterally using a spatula. The retracted muscles were held in place using hemostats. Small bone 

screws were placed in the skull. The head along with the bone screws was fixed to a stainless-

steel rod with dental acrylic (Dentsply Repair Material Power and Repair material liquid, York, 

PA). The stainless-steel rod served as a head bar to hold the head stationary during the 

procedures when a craniotomy was made and when neurophysiological signals were recorded. 

The craniotomy was a small hole (approximately 3 mm in diameter) which allowed for the 

insertion of the recording/drug injection electrode assembly into the inferior colliculus. The 

centre of the craniotomy was about 4 mm to the right of the lambda point (Fig. 1).  
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Figure 10. Location of craniotomy. The diagram shows the bregma, lambda, midline sutures 

(dotted lines), and the hole (circle with dots). The centre of the craniotomy was about 4 mm 

lateral to the lambda point. 

 All procedures were approved by the University of Windsor Animal Care Committee and 

were in accordance with the guidelines of the Canadian Council on Animal Care.  

2.4 Setup of the rat in a recording chamber 

Upon completion of the surgery, the rats was transferred into a recording chamber (Eckel 

Industries Model CL-15A LP, Morrisburg, ON) for a neurophysiological recording/ 

pharmacological manipulation experiment. The recording chamber was a single-wall sound-

attenuated booth (Eckel Industries, Inc. Morrisburg, ON). Over the entire duration of 

neurophysiological recording/pharmacological manipulation, the body temperature of the animal 

was maintained at 37C using a homeothermic system (Harvard Apparatus Model 50-7061-F 

Unit, Montreal, QC) with an anal temperature probe. A 3-dimensional small animal stereotaxic 

Bregma 

Lambda point 

Hole 

4mm 
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instrument (David Kopf Model 902, Tujunga, CA) and a dissection microscope (Olympus Model 

SZM-45T-STL2 7X-45X, Cleveland, OH) was used to align the head of a rat and guide the 

placement of a recording probe into the rat’s IC. For aligning the rat’s head, a glass pipette was 

attached to the micromanipulator of the stereotaxic instrument and the tip of the pipette was 

placed at the bregma and the lambda to measure the coordinates of points. The head was 

considered aligned if the differences in coordinates between the bregma and the lambda point 

were within 20 m in both medial-lateral and dorsal-ventral dimensions. 

After the rat’s head was aligned, a piggy-back microelectrode assembly was positioned 

stereotaxically into the brain to record LFP signals from the IC. The electrode was in the coronal 

plane and tilted by 30° relative to the sagittal plane. The electrode was lowered into the CIC from 

a dorsolateral to ventromedial location. The orientation of the electrode was perpendicular to the 

fibrodendritic laminae of the CIC and along the tonotopic axis of the structure (Kelly et al., 1991; 

Zhang & Kelly, 2009). The electrode was moved to a coordinate that was 3.8-4.2 mm lateral and 

0.3-0.5 mm rostral in reference to the Lambda point. The tip of the electrode assembly was 

advanced into the CIC at a depth between 2500 and 4500 m in reference to the surface of the 

brain using a micropositioner (David-Kopf Instruments Model 650, Tujunga, CA). A reference 

electrode was placed in the muscle surrounding the cranium. 

2.5 Neurophysiological recording and pharmacological manipulation 

A “piggy-back” multi-barrel electrode assembly was used to record LFPs from an ensemble 

of neurons and to release neuropharmacological agents onto the neuron ensemble from which 

neural signals were recorded. The electrode assembly consisted of a single-barrel glass pipette 

(tip diameter ~15-20 μm) and a multi-barrel glass pipette (tip diameter ~15 μm – 20 μm). The tip 

of the single-barrel pipette protruded the tip of the multi-barrel pipette by about 20-25 μm. The 
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single-barrel pipette was used to record LFP signals. It will was filled with 0.5 M sodium acetate 

with 3% Chicago sky blue. The dye was released upon completion of recording to label the site 

of recording. The electrode had an impedance in the range between 100 kΩ – 300 kΩ. Signals 

registered by the electrode were amplified by 1,000 times by an amplifier (2400A preamplifier, 

Minneapolis, MN). The bandpass filter of the amplifier was set at 0.3 – 300 Hz. These signals 

were registered using a System 3 real-time signal processing system controlled by a personal 

computer running OpenEx software (Tucker-Davis Technologies, Alachua, FL). They were 

sampled at a rate of 3.1 kHz. Such a sampling rate ensured that enough temporal details of an 

LFP waveform were revealed. Under each condition of stimulation, LFP signals elicited by 61 

presentations of a stimulus (either a single sound or paired sounds) were registered and an 

averaged waveform was obtained.  

The multi-barrel pipette consisted of 5 barrels that form an “H” configuration. The four side 

barrels were filled with gabazine (an antagonist of the GABAA receptor), CGP 35348 (an 

antagonist of the GABAB receptor), and/or strychnine (an antagonist of the glycine receptor). 

These pharmacological agents had a concentration of 5 mM in a vehicle of 0.9% saline (pH 3.5). 

The central barrel was filled with 0.9% saline to balance the electrical current. The five barrels 

were connected with a microiontophoretic system (Neurophore BH-2, Harvard Apparatus, 

Holliston, MA). A retention current at between -20 to -50 nA was applied to each of the four side 

barrels to prevent drug leakage when the electrode assembly was in the brain before 

pharmacological manipulation was conducted. 
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2.6 Recording procedures 

2.6.1 Finding and characterizing a site of recording 

Bursts of Gaussian noises with a 8-ms duration were presented from a single speaker at 

c90° to search for a recording area in the CIC. These noises were presented at 60 dB SPL at a 

rate of 4/sec. While the noise bursts were presented, a recording electrode was driven into the 

CIC. Neural activity collected by the electrode were monitored audio-visually using a four-

channel digital storage oscilloscope (Tektronix TDS2014B, Beaverton, OR) and audio monitor 

(Grass AM8, West Warwick, RI). 

A site of recording was selected primarily based on the amplitude of an LFP signal 

registered by the electrode. Such a signal had a large negative trough that follows a noise burst 

(See Fig. 13 for a typically averaged waveform recorded in the CIC). Neural responses were 

recorded only if recording traces displayed a larger signal-to-noise ratio and a stable baseline. 

Once the recording site was selected, tone-bursts were used to obtain basic characteristics 

of the ensemble of neurons at the recording site. The tones-burst had a 8-ms duration (4 ms 

rise/fall time and 4 ms plateau) and was presented at 4 /sec. The frequency tuning curve (FTC) 

along with the characteristic frequency (CF, the frequency at which the lowest threshold of 

response is observed) were obtained for the neural ensemble at the recording site.  

Two tone bursts with different frequencies, named as TL and TH, with frequencies at fL 

and fH, respectively, were chosen based on the CF of the recording site. One of the tone bursts 

will be used as a leading sound and paired with a tone burst at CF (as a trailing sound) to study 

how a leading sound affected the response to a trailing sound. While fL was below the CF, fH was 

above the CF. The centre frequency of fL and fH (i.e., (fL * fH)1/2 was at CF. The difference 

between fL and fH (i.e., (fL - fH)/(fL * fH)1/2) was 0.10 octave (see appendix for frequency 
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calculations). Both TL and TH will have an 8 ms duration (with 4 ms rise/fall phases). The sound 

pressure levels of both sounds will be at 30 dB above the threshold of the site of recording. A 

leading sound alternated between TL and TH in consecutive experiments (i.e., TL in recordings 

from one rat and TH in recordings from the following rat). 

An amplitude-stimulus intensity function (AIF), i.e., the relationship between the 

amplitude of LFP and the level of stimulation, was obtained at the CF and the fL and fH of the 

recording site. At each frequency, a tone burst was played at multiple (typically 7) levels from 

below the threshold to well above (typically 30 dB above) the threshold at CF. At each level, a 

tone burst was presented 20 times. All the tone burst presentations at various intensities (e.g., 

140 presentations if a tone burst is presented at 7 intensities) was presented in a random order.  

The dependence of the response of the neural ensemble at the recording site on the 

direction of stimulation was examined using a leading sound (either fL or fH). The LFP elicited 

by this sound was recorded when the sound was presented at each of the 5 azimuths used in the 

present study (i.e., c90°, c45°, 0°, i45°, and i90°). The tone was first presented at the c90° and 

gradually moved ipsilaterally in increments of 45°. At each azimuth, the tone was presented a 

total of 61 times.  

 

Figure 11. Experimental setup showing the different speaker locations.  
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2.6.2 Responses to a pair of leading-trailing sounds 

Responses to a pair of leading-trailing sounds were recorded under a pre-drug condition 

when the trailing sound was at c90° while the leading sound was at various locations and led the 

trailing sound by various amounts of time. For each animal, either TL or TH was chosen as a 

leading sound. A tone burst with a frequency at the CF of the recording site served as a trailing 

sound. The frequency relationship between the leading and trailing sounds were maintained 

throughout the entire experiment, including all recordings conducted under pre-drug, 

pharmacological manipulation, and recovery conditions.  

Responses to the leading and the trailing sound alone were collected to provide 

references for evaluating how the two sounds interact with each other to shape responses to the 

two sounds in a pair (Figure 12).  

Responses to a pair of leading-trailing sounds were first recorded when the leading sound 

was at c90° (i.e., when leading and trailing sounds were colocalized at c90°, see Figure 11). The 

inter-stimulus interval (ISI, the time gap between the onset of a leading sound and the onset of a 

trailing sound) was systematically varied (Table 1) to evaluate the effect of a leading sound on 

the response to a trailing sound. Logarithmic increments was used to change the ISI. A pair of 

leading-trailing sounds was presented 61 times to elicit responses. To ensure that the trailing 

sound of one pair did not affect the response elicited by the leading sound of the following pair, 

the time gap between the onset of a trailing sound and the onset of the next leading sound was 

1500 ms.  
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Figure 12. Diagram showing acoustic paradigms. A. Two presentations of a pair of leading-

trailing sounds. The leading sound is white while the trailing sound is black. The inter-stimulus 

interval shown in the figure is 12 ms. However, in an experiment is was systematically varied. 

The time gap between the offset of the trailing sound of one presentation and the onset of the 

leading sound of the next presentation was 1500 ms. Leading and trailing sounds was both 8 ms 

long (4 ms rise/fall phases). B. The bottom panel shows the leading and trailing sound presented 

alone. The frequency of the leading sound was at either fH or fL, while the frequency of the 

trailing sound was at CF. 

Table 1 ISIs and the Corresponding Acquisition Durations 

ISIs Signal Acquisition Duration for 1 Cycle (ms) 

12 1520 

16 1524 



48 

 

 

24 1532 

40 1548 

72 1580 

136 1644 

264 1772 

520 2028 

900 2408 

 

 After the effect of a leading sound on the response to a trailing sound is evaluated when 

the two sounds are colocalized at c90°, the effect was examined when the two sounds were 

spatially separated. For this, the trailing sound was retained at c90°, while the leading sound was 

relocated to another azimuth (i.e., i90°, c45°, i45°, or 0°). At each angle of separation, the ISI 

was systematically varied (see Table 1 for a list of ISIs). 

2.6.3 Pharmacological manipulations 

 After the effect of a leading sound on the neural response to a trailing sound was 

evaluated under a control condition, it was evaluated under pharmacological manipulations. 

Gabazine (5mM, antagonist of the GABAA receptor), CGP35348 (5 mM, antagonist of the 

GABAB receptor), or strychnine (5 mM, antagonist of the glycine receptor) was released 

microiontophoretically at the recording site. A current ranging between 5 and 90 nA was used for 

drug release. An AIF of the response to the trailing sound at c90° was used to monitor the effect 

of the drug. When the effect of the drug reaches a plateau, responses to a pair of leading-trailing 
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sounds will be collected using the same spatial and temporal relationships as those used under a 

pre-drug condition. Responses to a leading and a trailing sound alone were also obtained. 

 After a complete set of neural responses were recorded under a pharmacological 

manipulation, ejection of the drug was stopped and neurons at the site of the recording were 

allowed to recover. An AIF of the response to the trailing sound at c90° was used to monitor the 

process of recovery. Upon recovery, responses to a pair of leading-trailing sounds and to leading 

and trailing sounds presented alone were collected using the same spatial and temporal 

relationships as those used under a pre-drug condition. 

 In a few cases, effects of more than one pharmacological agents were evaluated in a 

single animal. An effort was made to ensure that neurons at the recording site completely 

recovered from the effect of the first drug before pharmacological manipulation using the second 

drug was initiated.   

2.7 Labeling of a recording site 

Upon completion of neurophysiological recordings and pharmacological manipulations, 

the site of the recording was labeled. Chicago sky blue was released microiontophoretically 

using a build-in current pump of the Dagan 2400A preamplifier (Dagan, Minneapolis, MN). A 

continuous current of 200nA was used to deliver the dye. In addition to the site of recording, the 

dye was also released at two other sites, with one being 1000 m shallower than the recording 

site and the other being 1000 m deeper than the recording site. These 2 sites were labeled to 

assess possible shrinkage of the brain during transcardial perfusion and subsequent histological 

processing. 
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2.8 Fixation and histological processing of brain tissue 

Upon completion of labeling of a recording site, a rat was euthanized by sodium 

pentobarbital (300 mg/kg, i.p.). After a rat was deeply anesthetized before the animal’s heart 

stopped beating, a horizontal cut was made below the sternum to expose the diaphragm. A pair 

of iris scissors was used to cut the diaphragm and expose the lungs and the heart. A 23-gauge 

butterfly needle was inserted into the left ventricle of the heart and pointed towards the aorta; and 

the right atrium of the heart was cut. One hundred fifty to two hundred milliliters of 0.04 M 

phosphate buffer solution (PBS) was pumped into the left ventricle through the needle. Such an 

isotonic solution was used to clear the blood out of the circulation system. Paraformaldehyde 

(PFA) was then be pumped through the needle to fix the animal including the brain. The rat was 

then be decapitated with a guillotine and the head was submerged into PFA jar for postfixation. 

The brain was extracted from the skull. The muscles around the cranium were removed 

and the skull was chipped away using a pair of rongeurs. When the brain was fully exposed, all 

the cranial nerves were cut and the brain was removed from the cranium using a spatula. The 

brain was kept in 30% sucrose in 0.04 M PBS for overnight. Once the brain is sunk to the bottom 

of a jar with a sucrose solution, it was ready for slicing. A midsagittal cut was made to separate 

the left and right sides of the brain. Coronal cuts were made to separate the part containing the 

right IC from the rest of the brain. The part containing the right IC was put into a vacuum 

chamber to remove the excess of sucrose. It was then covered with brain matrix and frozen. 

Starting from the caudal side of the block, the brain tissue was cut into 30 μm sections using a 

CM1050 S cryostat (Leica Microsystems, Heidelberg, Germany). The site of labeling was 

identified using a brightfield microscope.  
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2.9 Data analysis 

2.9.1 Analysis of the response to a leading sound 

To determine whether the trailing sound in one leading-trailing sound presentation 

affected the response to a leading sound of the subsequent presentation, the trough amplitude and 

latency of the response to a leading sound were compared with those of the response to a leading 

sound presented alone. A normalized amplidute of response (NR) was calculated: 

𝑁𝑅 =
𝐴1

𝐴0
 𝑥 100 

Where A1 is the trough amplitude of the response to a leading sound in a leading-trailing pair 

while A0 is the trough amplitude of the response to a leading sound presented alone. A value of 

100% indicates that the amplitude of the response to a leading sound in a leading-trailing pair 

was the same as that of the response to the leading sound presented alone (see Appendix for a 

sample calculation). 

The latency of the responses was measured from the onset of a sound to the trough 

amplitude of an LFP. The calculated was calculated using a macro in Excel (see Appendix for a 

sample calculation). 

2.9.2 Analysis of the trailing sound 

To determine if the response to a trailing sound was influenced by a leading sound, the 

response was compared with the response to a trailing sound presented alone. An NR value was 

calculated: 

𝑁𝑅 =
𝐴1

𝐴0
 𝑥 100 



52 

 

 

Where A1 is the trough amplitude of the response to a trailing sound in a leading-trailing 

pair while A0 is the trough amplitude of the response to a trailing sound presented alone. NR 

values were calculated at all ISIs and angles of separation between the two sounds. The latency 

of the response to a trailing sound was calculated using the same method as that outlined in the 

Section 2.9.1. 

An ISI70 value was calculated using the responses obtained at various ISIs at a specific 

angle of separation between a leading and a trailing sound. At ISI70, the amplitude of the 

response to a trailing sound was 70% of that of the response to a trailing sound presented alone. 

The ISI70 value was obtained through interpolation using two data points immediately next to the 

one associated with ISI70 (with one above while the other one below the point associated with 

ISI70) (see appendix for calculations).  

2.9.3 Statistics analysis  

As the data collected was not normally distributed, non-parametric tests were used. The 

Friedman’s test was used as a non-parametric equivalent of a two-way ANOVA for dependent 

measurements. Wilcoxon singed-rank test was used as a post-hoc test. All figures based on 

groups results show median values with error bars showing standard error of mean. 
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CHAPTER III. FINDINGS 

 LFP responses were recorded from 23 animals (referred to as cases in the rest of the 

document). All the 23 cases were used to evaluate the frequency differences in responses elicited 

by TL and TH when they were presented from the c90° azimuth versus the i90° azimuth. Eleven 

cases were used to evaluate the directional dependence of the recording site using a single tone. 

Fifteen cases were used to evaluate the responses to a leading-trailing sound pair colocalized at 

c90. Ten cases were used to evaluate the dependences of responses to the leading-trailing sound 

pair on the angle of separation between the sounds. Seventeen cases were used to evaluate the 

time course of the effect of leading sound on the response elicited by the trailing sound. The 

effect of gabazine on neural responses to two sounds was evaluated in six cases. The effects of 

CGP and strychnine were evaluated in five and seven cases, respectively. 

3.1 Typical waveforms of LFPs 

 Ten cases were used to evaluate the dependences of responses to the leading-trailing 

sound pair on the angle of separation between the sounds. Seventeen cases were used to evaluate 

the time course of the effect of leading sound on the response elicited by the trailing sound. The 

effect of gabazine on neural responses to two sounds was evaluated in six cases. The effects of 

CGP and strychnine were evaluated in five and seven cases, respectively.  
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Figure 13. A typical LFP waveform. The baseline (red horizontal line) and the latency and the 

amplitude of the negative peak are indicated by the double arrows. 

3.2 Characteristics of responses to single sounds 

3.2.1 Frequency-tuning curve (FTC) and amplitude-stimulus intensity functions (AIFs) 

A tone pip was presented at the contralateral ear to elicit a sound-drive response at a 

recording site in the IC. At a specific frequency, the sound-pressure level were varied to 

determine the threshold level at which a sound-drive response could be elicited. A frequency-

tuning curve was obtained by evaluating thresholds at various frequencies. The frequency at 

which the lowest sound-pressure level was observed was the characteristic frequency of the 

recording site. Figure 14 shows the FTC of a sample recording site. The characteristic frequency 

of the recording site was 14kHz. Generally, most recording sites had FTCs similar to that shown 

in Figure 14, however, few sites were more broadly tuned. Once the CF of the recording site was 

determined, the fH and fL were calculated at 0.1-octave difference relative to CF (see appendix 

for calculations).   
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Figure 14. The frequency-tuning curve of a recording site. The depth of the recording site was 

3437.5 μm and the CF was 10 kHz with a threshold of 15 dB.   

The amplitude of an LFP recorded in the IC was dependent on the sound pressure level of 

a sound. An amplitude-stimulus intensity function (AIF) was used to evaluate this dependence. 

AIFs were acquired at CF and either fL or fH at seven different intensities. In each experiment, 

the trailing sound was always presented at CF while the leading sound was presented at fL in one 

case and switched to fH in the subsequent case. If the two frequencies used in one case were CF 

and fL then the two frequencies used in the next case were CF and fH. In the case shown in Figure 

15, the two frequencies used were CF and fH.  
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Figure 15. An example showing ALFs in response to a tone burst presented at CF and fH at the 

c90° azimuth and a tone burst presented at fH at i90° azimuth. The CF of the recording site was 

10 kHz and the threshold was 35 dB. The fH of the recording site was 10,352.649 Hz.   

 To determine if a low-frequency tone (TL) elicited a different response than a high-

frequency tone (TH), the effect of the frequency of a single-tone on the responses from c90° and 

i90° azimuth were compared across cases. The amplitudes of the LFPs elicited by TL and TH at 

10, 20, and 30 dB (Figure 16A, B, and C respectively) above the minimum threshold were 

compared at c90° and i90° azimuths. Based on 23 cases (12 cases of TL and 11 cases of TH  

responses), there were no significant differences between responses to TL and TH whether they 

were presented at c90° or the i90° azimuth at all three sound pressure levels. In most cases, the 

tone intensity used to collect responses from other conditions where leading-trailing sound pairs 

were used was 30 dB above threshold. Based on Mann-Whitney test, there were no significant 

differences between the responses to TL and TH at c90° (U = 0.985, p = 0.347, n = 23) or at i90° 
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(U = 0.246, p = 0.833, n = 23) when tones were played 30 dB above threshold. Thus, in the rest 

of the results section, the data obtained from TL and TH at each azimuth is combined.  

 

Figure 16. Distribution of absolute amplitudes resulting form TL and TH at c90° and i90° 

azimuths. A. Responses elicited by TL and TH when they were presented 10 dB above threshold. 

B. Responses elicited by TL and TH when they were presented 20 dB above threshold. C. 

Responses elicited by TL and TH when they were presented 30 dB above threshold.      

3.2.2 Directional dependence of responses to a single tone 

A single tone burst was presented at the five azimuths c90°, c45°, 0°, i45°, and i90° to 

determine how the spatial location of a single-tone affects the LFP. In the example shown in 
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Figure 17, a tone burst at fL (4,829.68 Hz) and 70 dB was used to elicit a response at five 

azimuths c90°, c45°, 0°, i45°, and i90° (Figure 17A). The normalized ratio (NR) and latencies of 

those responses are shown in  

 

Figure 17B and C, respectively. The normalized ratio was calculated by dividing the 

amplitude of the negative peaks of waveforms at each azimuth by the amplitude of the negative 

peak of the waveform at the c90° azimuth. There was a gradual decrease in response NRs as the 

tone was moved from the c90° azimuth to the i90° azimuth. In contrast, the latencies of the 

negative peak increased gradually as the tone was moved from the c90° azimuth to the i90° 

azimuth.   
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Figure 17. An example showing LFP signals elicited by a tone burst presented at 5 different 

azimuths. The tone burst was at the fL of a recording site (4,830 Hz) at 70 dB SPL (50 dB above 

the threshold at CF at c90°). A. Waveforms of LFPs elicited by the tone burst presented at 5 

azimuths. B. Line chart showing a dependence of the amplitude of the negative peak on the 
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azimuth of the tone burst. C. Line chart showing a dependence of the latency of the negative 

peak on the azimuth of the tone burst. 

 Within each case, the amplitude of the negative peak of an LFP obtained at each azimuth 

was normalized against the amplitude of the response obtained at c90° to reflect the azimuth 

dependence of the LFP. Such an azimuth dependence was examined in 11 cases. The results are 

summarized in Figure 18. It is clear that the amplitude of an LFP obtained when the sound was at 

an ipsilateral azimuth was reduced in comparison to that obtained when the sound was at c90°. 

The median NR of the responses at c45°, 0°, i45°, and i90° were 95.75% (SEM = 4.16%), 

82.47% (SEM = 4.87%), 48.21% (SD = 7.62%), and 40.71% (SD = 5.29%). The azimuth-

dependent reduction in the amplitude of the response was significant (Friedman test, χ2 (4) = 

31.273, p < 0.001). Wilcoxon-signed rank post-hoc test revealed a significant difference between 

results obtained at c90° and i45° (Z = 2.091, p = 0.002) and between results obtained at c90° and 

i90° (Z = 3.273, p < 0.001). 
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Figure 18. Group results (n=11) showing normalized amplitudes of the negative peak of an LFP 

(left) and latencies of the negative peak of an LFP (right) elicited by a single tone burst presented 

at various azimuths. Error bars show SEM. 

The latency of the negative peak of an LFP was increased when the tone was relocated 

from c90° to another azimuth. The median latency at c90°, c45°, 0°, i45°, and i90° was 12.78 ms 

(SEM = 0.58 ms), 12.78 ms (SEM = 0.42 ms), 13.11 ms (SEM = 0.5 ms), 13.11 ms (SEM = 0.51 

ms), and 13.76 ms (SEM = 0.66 ms). The increase was statistically significant (Friedman’s test, 

χ2 (4) = 12.354, p = 0.015). The Wilcoxon-signed rank post-hoc test revealed a significant 

difference between the latencies at c90° and i90° (Z = -1.955, p = 0.004).  

3.3 Responses to a pair of leading-trailing sounds 

3.3.1 Leading-trailing sounds colocalized at c90° 

 To determine how a leading sound in a leading-trailing sound pair affected the response 

to a trailing sound, the pair of sounds was presented when both sounds were colocalized at c90° 

and separated by various ISIs. Responses were collected from 15 cases.  

As shown by an example in Figure 19, the negative peak of an LFP elicited by a leading 

sound in a leading-trailing sound pair was the same as that elicited by the sound presented alone 

(Figure 19A upper row). Furthermore, a leading sound in a leading-trailing sound pair elicited 

the same response when the two sounds were separated by nine different ISIs (Figure 19A upper 

row and Figure 19B top left panel). The latency of the negative peak of the LFP elicited by a 

leading sound in a sound pair is the same as that of the LFP elicited by a leading sound alone 

(Figure 19B bottom left panel). Thus, over multiple sound presentations of a sound pair the 

response to a leading sound of a pair was not affected by a trailing sound of a preceding pair.  
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Figure 19. An example showing responses to a pair of leading and trailing sounds that were 

colocalized at c90°. A. Top and bottom rows show responses to the leading and trailing sounds, 

respectively. A leading sound and responses to a leading sound in a leading-trailing sound pair 

are indicated by thin lines while a trailing sound and responses to a trailing sound in a leading-

trailing sound pair are indicated by the thick lines. Responses to leading and trailing sounds that 

were presented alone are shown by the dotted lines. B. Line charts that summarize responses to 
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leading and trailing sounds obtained at various ISIs. The left column is based on responses to a 

leading sound while the right column is based on responses to a trailing sound. Within each 

column, the top panel shows amplitudes of the negative peak of an LFP while the bottom panel 

shows latencies of the negative peak of an LFP. In the top panels, the horizontal dashed line 

shows NR of 100%. The ISI70 shows the the time point at which the trailing sound NR recovered 

to 70%. The horizontal dashed line in the bottom panels shows the latency of leading sound 

alone (left panel) and trailing sound alone (right panel).  

 The response to a trailing sound was suppressed by a leading sound when the leading-

trailing sounds were separated by a small ISI. When the ISI was 12 ms, the amplitude of the 

negative peak of an LFP elicited by a trailing sound was 49.03% of that of the LFP elicited by 

the same sounds presented alone (Figure 19A left panel of the bottom row). The suppressive 

effect was reduced at larger ISIs (Figure 19A bottom row and Figure 19B right panel). The ISI at 

which the amplitude of the response elicited by a trailing sound in a sound pair was 70% of that 

of the response elicited by the sound presented alone was calculated using the curve shown in 

Figure 19B right panel. Such an ISI70 value was obtained through interpolation using two data 

points immediately next to the one associated with ISI70 (with one above while the other one 

below the point associated with ISI70) (see appendix for a sample calculation). For the example 

shown in Figure 19, the ISI70 is 38.92 ms. A further analysis was made on the latency of the 

negative peak of the LFP elicited by a trailing sound in a leading-trailing sound pair. The latency 

was unchanged over the entire range of the ISIs. 

Figure 20 shows group results from a total of 15 cases in which the responses to a pair of 

leading-trailing sounds colocalized at c90° were examined for ISIs up to 520 ms. The amplitude 

of the response to a leading sound was not different across the entire range of ISIs (Friedman’s 
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test, χ2 (7) = 1.822, p = 0.969) (Figure 20 left panel). In contrast, the amplitude of the response to 

a trailing sound was lowest at short ISIs and gradually increased to 100% NR. The response to a 

trailing sound was significantly different across the different ISIs (Friedman’s test, χ2 (7) = 

73.444, p < 0.001). Wilcoxon-signed rank post-hoc analysis showed that there was a significant 

reduction in NRs between the shorter ISIs (12 ms to 72 ms) and ISI 520 ms. For each of the 15 

cases, an ISI70 value was calculated using the amplitude-ISI curve based on the LFP elicited by a 

trailing sound. The median ISI70 was 38.93 ms (SEM = 24.66 ms).  

 

Figure 20. Group results showing the dependence of responses to a leading and a trailing sound 

on the ISIs between the two sounds. The left figure is based on the normalized amplitude of the 

negative peak of an LFP while the right figure is based on the latency of the negative peak of an 

LFP. The dashed line shows NR values of 100% . The ISI70 shows the the time point at which 

the trailing sound NR recovered to 70%.  Error bars show the SEM.  

Group results did not reveal a significant difference in the latency of the negative peak of 

the LFP elicited by a leading sound across different ISIs (Friedman’s test, χ2 (7) = 7.845, p = 

0.346) (Figure 20 right panel). There was a significant difference in the latency of the negative 

peak of the LFP elicited by a trailing sound  across different ISIs (χ2 (7) = 49.556, p < 0.001). 
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Wilcoxon-signed rank post-hoc analysis showed that the latencies at ISIs 12 ms to 136 ms were 

significantly higher than the latency at ISI 520 ms.  

3.3.2 Leading-trailing sounds spatially separated 

The effect of relocating a leading sound from c90° to another azimuth on the response to 

a trailing sound that remained at c90° was examined in ten cases. Shown in Figure 21 is an 

example. Responses to a pair of leading-trailing sounds were obtained when the two sounds were 

temporally separated by an ISI of 24 ms. Relocating a leading sound from c90° to another 

azimuth reduced the amplitude and increased the latency of the negative peak of the LFP elicited 

by the sound. This is apparent when comparing the responses to the leading sounds (thin black 

lines) in each panel to the reference waveform of the leading sound alone (dotted line) at c90°. In 

Figure 21, the amplitude of the leading sound was 0.0394 mV at c90° and was reduced to 0.0146 

mV at i90°. In contrast, the latency of the leading sound was increased when the sound moved 

away from the c90° azimuth from 13.11 ms to 14.09 ms at the i90° azimuth. This increase in 

latency is reflected by the increase in the duration of the leading sound LFP trough as the sound 

is moved towards the i90° azimuth. Such relocation of a leading sound also changed the response 

to a trailing sound (thick black lines) (Figure 21). The amplitude of the negative peak of the LFP 

elicited by the trailing sound was increased from 0.0197 mV when the leading sound was at c90° 

to 0.0223mV when the leading sound was at i90°. The latency of the response to a trailing sound 

was reduced from 13.03 ms when a leading sound was at c90° to 12.70 ms when the leading 

sound was at i90°.  
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Figure 21. An example showing that relocation of a leading sound from c90 to another azimuth 

changed responses to both leading and trailing sounds. Responses shown in this figure were 

obtained when a leading and a trailing sound were separated by an ISI of 24 ms. The leading 

sound was presented at various azimuths, while the trailing sound was always presented at c90°. 

A. This panel shows waveforms of LFPs elicited by a leading sound and a trailing sound. The 

response to the leading sound is shown in the thin black line while the response to the trailing 

sound is shown by the thick black line. A reference response (dotted line) to a leading sound 

alone at c90° is shown in all panels. B. A line chart showing the dependence of the amplitude of 

the negative peak of an LFP elicited by the trailing sound on the location of the leading sound. C. 
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A line chart showing the dependence of the latency of the negative peak of an LFP elicited by the 

trailing sound on the location of the leading sound. 

 Figure 22 shows the group results of responses to a trailing sound obtained at ISIs 12, 16 

ms, and 24 ms. At each ISI, there was a general increase in the NRs based on responses to a 

trailing sound when the leading sound was relocated away from the c90° azimuth. The latency of 

response was also increased when the leading sound was relocated. The NR values were 

significant different across angles of separation at ISIs 16 ms (Friedman’s test, χ2 (4) = 13.600, p 

= 0.009) and 24 ms (Friedman’s test, χ2 (4) = 10.640, p = 0.031) (Figure 22). No statistical 

significance was obtained at 12 ms (Friedman’s test, χ2 (4) = 5.067, p = 0.281). Wilcoxon-signed 

rank post hoc test showed that at 16 ms ISI there was a significant increase in NR (based on 

responses to a trailing sound) when the leading sound was moved from c90° to i45° (Z = -1.667, 

p = 0.025) and i90° (Z = -1.778, p = 0.017). At 24 ms ISI, there was a significant increase in NR 

when a leading sound was moved from c90° to i45° (Z = -1.500, p = 0.034) and i90° (Z = -2.100, 

p = 0.003). There were no significant differences in the latency of the trailing sound responses 

under any condition of spatial change. 
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Figure 22. Group results showing dependences of the amplitude (left panels) and latency (right 

panels) of the LFP elicited by a c90° trailing sound on the location of a leading sound at 12, 16, 

and 24 ms ISIs. The error bars show SEM.  

3.4 The time course of the effect of a leading sound on the response to a trailing sound 

 In 17 cases, we compared the time courses of the effect of a leading sound on the 

response to a trailing sound obtained when the leading sound was at c90° and i90°. For the 

example shown in Figure 23, the response to a trailing sound was suppressed by a leading sound 

at short ISIs relative to the trailing sound alone condition. The relocation of the leading sound 

from the c90° azimuth to the i90° azimuth made the response to the trailing sound slightly less 

suppressed. The effect of the relocation of a sound from c90° to i90° on the amplitude of the 

response to a trailing sound was observed at nine other ISIs (Figure 23A left panel and Figure 

23B). The ISI70 value of the trailing sounds NRs was 23.63 ms when the leading sound was at 

c90° and it was 13.28 ms when the leading sound was at i90°. In contrast to the effect on the 

amplitude of the response, the relocation of a leading sound did not change the latency of the 

response elicited by a trailing sound (Figure 23A right panel).  
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Figure 23. An example showing the effect of the relocation of a leading sound from c90° (blue 

lines) to i90° (red lines) on the suppressive effect on the response to a trailing sound. A. The ISI 

dependence of the absolute amplitude (left panel) and the latency (right panel) of the negative 

peak of an LFP elicited by a trailing sound. The blue dashed line in the left panel shows the 

amplitude of the trailing sound alone. B. The ISI dependence of the normalized amplitude of the 

response elicited by a trailing sound. The red and blue arrows indicate the ISI70 time points of the 

trailing sound response NRs when the leading sound was at i90° versus c90° respectively. 

 Group results indicate that relocating a leading sound from c90° to i90° significantly 

changed the amplitude of response to a trailing sound (Figure 24, Friedman’s test, χ2 (15) = 

185.694, p < 0.001). Wilcoxon-signed rank post hoc test showed that there was a significantly 
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stronger suppression of the response to a trailing sound when a leading sound was at c90° than 

when it was at i90° at a few ISIs. These ISIs included 16 ms (Z = -3.412, p = 0.037),  24 ms (Z = 

-4.824, p = 0.003), and 40 ms (Z = -3.882, p = 0.017). Relocating a leading sound from c90° to 

i90° did not significantly changed the latency of the negative peak of the LFP elicited by a 

trailing sound based on Wilcoxon-signed rank post hoc test at specific ISIs between the two 

curves. However, the initial Friedman’s test showed that there was a significant difference (χ2 

(15) = 63.909, p < 0.001) but this difference was at different ISIs between the two curves or 

within the same curve. 

 

Figure 24. Group results showing responses to a trailing sound when a leading sound was at 

c90° (blue lines) and i90° (red lines) azimuths. The left and right panels show the amplitude and 

the latency of the negative peak of the LFP elicited by a trailing sound respectively. The dashed 

line in the left panel shows NR of 100. The error bars show SEM. The ISIs at which the data 

points significantly differ between the two curves are shown by “*”.  

 Two ISI70 values, based on the response to a trailing sound that was preceded by a 

leading sound at c90° and i90°, were obtained from the same 17 cases (Figure 25). The median 

ISI70 value was 32.21 ms (SEM = 6.73 ms) when a leading sound was at c90° and 18.27 ms 

(SEM = 3.54 ms) when a leading sound was at i90°. The Wilcoxon-signed rank test showed a 
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significant difference between the ISI70 values obtained when a leading sound was at c90° vs. 

i90° ( Z = -3.527, p < 0.001).  

 

Figure 25. ISI70 values of the c90° and i90° trailing sound response curves. The error bars show 

SEM. 

3.5 Effects of gabazine 

3.5.1 Effects of gabazine on a response elicited by a single tone 

 The specific antagonist of the GABAA receptor, gabazine, was used to block the 

inhibitory neurotransmission mediated by the receptor. The effect of the drug was revealed by 

LFP elicited by a single tone burst that was presented at c90° and i90°. As shown by an example 

in Figure 26, Gabazine enhanced the LFP regardless of the location where the sound was 

presented (Figure 26). It was noted that the enhancement occurred only after the initial falling 

phase of the trough of the LFP, which resulted in the widening of the waveform and a minor 

increase in the latency of the negative peak. The effect of gabazine was reversible. The 
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waveform of an LFP including its amplitude typically returned to its pre-drug levels 60 mins 

after the cessation of the drug injection.  

 

Figure 26. Effect of gabazine on an LFP elicited by a single tone presented at c90° and i90°.The 

CF of the recording site: 12 kHz; the frequency of the tone burst: 11,591.236 Hz. 

 The enhancement of the amplitude was observed over a wide range of supra-threshold 

stimulus intensities. Shown in Figure 27 is the AIF curves obtained before, during, and after 

injection of gabazine. The drug produced a proportional increase in the amplitude of the negative 

peak of an LFP over the entire range of intensities at which a tone burst was presented. 

Furthermore, the recovery of the response is observed. 
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Figure 27. Gabazine changed the amplitude-intensity function of the negative peak of an LFP. In 

this case, LFPs were elicited by a tone burst at the CF of the recording site (12 kHz) presented at 

c90° before, during, and after injection of gabazine. 

 The effect of gabazine on the LFP elicited by a single tone burst was examined in 8 cases. 

Changes similar to those shown in Figure 27 were observed in all the 8 cases. These cases 

displayed increases in the amplitude of the negative peak of the LFP at all supra-threshold 

intensities. Based on trailing sound alone (presented at 30 dB above threshold) responses at c90°, 

the percentage increase in the amplitude ranged between 54.02% and 195.19% after drug 

injection. The median increase was 97.87% (SEM = 17.19%). The current used ranged from 10 

to 91 nA (median 15 nA ± 16.13 nA (SEM). 

3.5.2 Effects of gabazine on responses elicited by a pair of leading-trailing sounds 

 The effects of gabazine on responses to a pair of leading-trailing sounds were evaluated 

in 6 cases. As shown by an example in Figure 28, gabazine enhanced responses to both a leading 

and a trailing sound (Figure 28A and B). The drug also caused an increase in the latency of 
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response (Figure 28A and B). The drug changed the time course of the suppressive effect 

produced by a leading sound. During the drug injection, the response to a trailing sound was less 

suppressed at short ISIs when a leading sound was presented at c90° (Figure 28C). The 

suppressive effect produced by a leading sound was not affected at large ISIs. Furthermore, the 

drug didn’t substantially change the suppressive effect produced by a leading sound at any ISI 

when the leading sound was presented at i90° (Figure 28C). The ISI70 value obtained based on 

responses recorded before and during injection of gabazine was 26.63 ms and 13.27 ms when a 

leading sound was presented at c90°. It was 13.28 ms and 14.41 ms, respectively, when a leading 

sound was presented at i90°.   

 

 



76 

 

 

 

 

Figure 28. An example showing the effects of gabazine on responses to a pair of leading-trailing 

sounds. A. The top panel shows results obtained when the leading sound was at c90° while the 

bottom panel shows results obtained when the leading sound was at i90°. The ISI between the 
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leading and trailing sounds was 12 ms. B. Line charts showing the amplitude (top panels) and 

latency (bottom panels) of the negative peaks of LFPs elicited by a leading and a trailing sound 

over a wide range of ISIs. The two left column panels show responses to a leading sound and 

trailing sound when they were colocalized at c90°. The right panels show responses to a trailing 

sound when the leading sound was at i90°. C. Line charts showing normalized response to a 

leading sound at c90° (left panel), a trailing sound at c90° that was colocalized by a leading 

sound (middle panel), and a trailing sound at c90° when a leading sound was at i90° (right 

panel), respectively. In all panels, the horizontal dashed line indicates an NR of 100%.  The 

horizontal solid line indicates an NR of 70%. 

Group results based on six cases supported results from the example shown in Figure 29. 

Only responses at ISIs 12, 16, 24, 40, 72, and 520 ms were used in the evaluation since some 

cases were missing data points at other ISIs. These results indicate that when leading and trailing 

sounds were colocalized at c90° the normalized amplitude of the negative peak of an LFP 

elicited by a leading sound was constant across the entire range of ISIs both before and during 

the application of gabazine (Figure 29A top left panel). The normalized amplitudes and latencies 

of the response to a leading sound obtained before and during drug application were similar to 

each other (Friedman’s test, χ2 (11) = 9.667, p = 0.561 and χ2 (11) = 7.713, p = 0.739 

respectively).   
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Figure 29. Group results showing the effects of gabazine on responses to leading and trailing 

sounds in a sound pair. A. Line charts showing normalized amplitude (top panels) and latency 

(bottom panels) of the negative peak of an LFP elicited by a leading sound (first column) or a 

trailing sound (second and third columns). The first two columns show responses to a leading 

sound (first column) and a trailing sound (second column) when the two sounds were colocalized 

at the c90°. The third column shows the response to a trailing sound (located at i90°) when a 

leading sound was at i90°. B. ISI70 values based on responses to a trailing sound obtained before 
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and during the application of gabazine. Results were obtained when a leading sound was at c90° 

and i90°, respectively. The error bars show SEM.  

When a leading sound was at c90°, the median normalized amplitude of the negative 

peak of an LFP elicited by a trailing sound was increased by gabazine at short ISIs (Figure 29A 

top middle panel) (Friedman’s test, χ2 (11) = 40.282, p < 0.001). A Wilcoxon-signed rank post-

hoc test showed that there was a significant difference between the pre-drug and gabazine curve 

at ISI 40 ms (Z = -4.167, p = 0.045). The ISI70 value was significantly reduced (Wilcoxon-signed 

rank test, Z = -2.028, p = 0.043) (Figure 29B left panel). The ISI70 value was 31.83 ms (SEM = 

3.80 ms) obtained before gabazine injection and it was 15.20 ms (SEM = 3.48 ms) during the 

application of gabazine. When comparing the latency of trailing sound colocalized with the 

leading sound at c90°, there were no significant difference of latencies between pre-drug and 

gabazine curves at specific ISIs based on Wilcoxon-signed rank post hoc tests. However, the 

initial Friedman’s test showed that there was a significant difference (χ2 (11) = 19.965, p = 

0.046) but this difference was at different ISIs between the two curves or within the same curve 

based on the post hoc test. When the leading sound was at i90°, there were no differences at the 

same ISIs between the normalized amplitudes of the negative peak of an LFP elicited by a 

trailing sound. Concomitantly, the ISI70 value was not affected by the drug when a leading sound 

was at i90° (Z = -2.280, p = 0.866) (Figure 29B right panel). When comparing the trailing sound 

latencies between pre-drug and gabazine curves, there were no significant differences of 

normalized amplitudes at specific ISIs.  
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3.6 Effects of CGP35348  

3.6.1 The effect of CGP35348 on response elicited by a single tone 

The effect of CGP35348 on an LFP elicited by a single tone burst was evaluated in five 

cases. As shown by the example in Figure 30, the drug minimally affected the responses. The 

waveforms obtained before, during, and after application of the drug overlapped with each other 

substantially.  

 

Figure 30. An example showing the effect of CGP35348 on the response to a single tone burst 

(serving as a leading sound in a leading-trailing sound pair) at c90° and i90°. The CF of the 

recording site: 10 kHz; the frequency of the tone burst: 10.352 kHz. 

 For the same case, as shown in Figure 30, CGP35348 minimally affected responses to a 

single tone burst over a wide range of stimulus intensity. Thus, an AIF curve based on these 

responses was not affected by the drug (Figure 31). 
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Figure 31. An example showing the effect of CGP35348 on an amplitude-intensity function 

based on the negative peak of an LFP. LFP responses were elicited by a tone burst at the CF of 

the recording site (10 kHz). 

Group results from the 5 cases supported that CGP35348 minimally affected LFP 

responses elicited by a single tone burst. 

3.6.2 Effects of CGP35348 on responses elicited by a pair of leading-trailing sound 

CGP35348 minimally affected LFPs elicited by a leading and a trailing sound in a sound 

pair regardless of the location of the leading sound. There were no significant differences of the 

normalized amplitudes between the pre-drug and CGP conditions both when the leading sound 

was presented at c90° and i90° at specific ISIs. There were no significant differences between 

the latencies of the trailing sound responses obtained before and during application of CGP35348 

regardless of whether the leading sound was at c90° (Friedman’s test, χ2 (17) = 18.848, p = 

0.337) or when it was at i90° (Friedman’s test, χ2 (13) = 14.120, p = 0.365). Thus, the normalized 

amplitude-ISI and latency-ISI curves based on the negative peak of the LFP elicited by a trailing 
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sound were not affected by the drug no matter whether a leading sound was presented at c90° or 

i90° (Figure 32A). Although the ISI70 value was reduced during the CGP when the leading sound 

was at c90° (Median = 28.71 ms, SD = 9.24 ms) compared to the pre-drug condition (Median = 

43.96 ms, SD = 16.58 ms), this reduction was not statistically significant (Wilcoxon-signed rank 

test, Z = 0.000, p = 0.068). Similarly, there were no significant differences between the ISI70 

values obtained during (median = 18.58 ms, SD = 4.25 ms) and before (median = 18.27 ms, SD 

= 9.07) application of CGP35348 when the leading sound was at i90° (Wilcoxon-signed rank 

test, Z = 6.000, p = 0.686).  
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Figure 32. Group results showing a lack of effect of CGP35348 on the suppression produced by 

a leading sound. The suppression was revealed by the response to a trailing sound at a wide 

range of ISIs. A. Line chart showing normalized amplitude (top panels) and latency (bottom 

panels) of the negative peak of an LFP elicited by a trailing sound when a leading sound was at 

c90° (left column) and i90° (right column). The trailing sound was always presented at c90°. B. 

ISI70 values based on responses to a trailing sound obtained before and during the application of 

CGP35348. Results were obtained when a leading sound was at c90° and i90°, respectively. The 

error bars show SEM. 

3.7 Effects of strychnine. 

3.7.1 The effect of strychnine on a response elicited by a single tone 

The effect of strychnine was examined in 7 cases. As shown by the example in Figure 33, 

the drug-enhanced the response to a single tone. 
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Figure 33. An example showing the effect of strychnine on a response to a single tone burst at 

c90° and i90°. The CF of the recording site: 13 kHz; the frequency of the tone burst: 13,458.44 

Hz. 

 Strychnine produced an effect on the amplitude of the negative peak of an LFP over a 

wide rate of stimulus intensities. Thus, an AIF curve was proportionally elevated during drug 

injection (Figure 34). Group results from 7 cases indicated that the increase of response caused 

by strychnine ranged from 25.99% and 99.03% (Median 40.76%  31.46% (SD)).   
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Figure 34. An example showing the effect of strychnine on an amplitude-intensity function 

based on the negative peak of an LFP. LFP responses were elicited by a tone burst at the CF of 

the recording site (13 kHz) presented at c90°. 

3.7.2 Effects of strychnine on responses elicited by a pair of leading-trailing sound 

 As shown by an example in Figure 35, strychnine increased responses to both leading and 

trailing sounds in a pair of sound no matter whether the leading sound was presented from c90° 

or i90° (Figure 35A). The amplitudes of the LFPs elicited by the two sounds were substantially 

increased during the drug injection (Figure 35B top panels). The latencies were slightly increased 

during the strychnine condition (Figure 35B bottom panels). A comparison of the leading sound 

normalized responses shows that there was no increase during the shorter ISIs, however, there 

was an increase during the longer ISIs. The ISI70 value obtained based on responses recorded 

before and during injection of gabazine was 38.93 ms and 19.92 ms when a leading sound was 

presented at c90°. It was 21.60 ms and 17.88 ms, respectively, when a leading sound was 

presented at i90° (Figure 35C). The normalized post-drug response to the leading sound are not 

shown because a baseline response to a leading sound alone at c90 was not collected during the 

post-drug condition. Moreover, the animals condition declined drastically during the i90° post-

drug condition and responses were excluded from the presentation below.  
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Figure 35. An example showing the effects of strychnine on responses to a pair of leading-

trailing sounds. A. Effects of strychnine on waveforms of responses to a pair of leading-trailing 

sounds when a leading sound was presented at c90° and i90°. A trailing sound was at a fixed 

location at c90°. B. Line charts showing the absolute amplitude (top panels) and latency (bottom 

panels) of the negative peak of an LFP elicited by a trailing sound obtained before, during, and 

after application of strychnine. The first two columns show the response to the leading sound 

(left panels) and trailing sound (middle panels) when the sound was colocalized at c90°. The 

third column panels show the response to the trailing sound (located at c90°) when the leading 

sound was at i90°. C. Line charts showing the normalized amplitude of the leading and trailing 

sound responses. The extreme left panel shows the NR of the leading sound responses when it 

was at c90°. The middle panel shows the normalized amplitudes of the trailing sound resposnes 

when the leading sound was at c90°. The extreme left panels shows the normalized amplitudes of 

the trailing sound responses when the leading sound was at i90°. Horizontal dashed lines indicate 

NR value of 100%. The solid lines indicate the NR value of of 70%.  



88 

 

 

 Group results indicated that strychnine did not change NR-ISI and latency-ISI curves that 

were based on responses to a leading sound that was presented at c90° (Friedman’s test, χ2 (17) 

= 19.961, p = 0.276) and (Friedman’s test, χ2 (17) = 15.162, p = 0.584) respectively (Figure 

36A). In contrast, the normalized amplitudes of the trailing sound responses during the 

strychnine condition were significantly different when a leading sound was at the c90° 

(Friedman’s test, χ2 (17) = 105.336, p < 0.001) and when it was at the i90° azimuth (Friedman 

test, χ2 (17) = 70.347, p < 0.001). Wilcoxon-signed rank post-hoc  that when the leading sound 

was at c90°, strychnine significantly increased the NR at ISIs of 16 ms (Z = -2.197, p = 0.028), 

24 ms (Z = -2.366, p = 0.018), 40 ms (Z = -2.197, p = 0.028) and 264 ms (Z = -2.028, p = 0.043). 

When the leading sound was at i90°, strychnine increased the NR at ISIs of 24 ms (Z = -2.201, p 

= 0.028), and 40 ms (Z = -2.366, p = 0.018). Strychnine did not increase the latency of the 

negative peak of an LFP elicited by a trailing sound at specific ISIs when a leading sound was at 

c90° or i90°. The Friedman’s test showed a significant difference in the trailing sound latencies 

when the leading sound was at c90° (χ2 (17) = 33.424, p = 0.010) and i90° (Friedman’s test, χ2 

(17) = 35.837, p = 0.005), however, these differences were across different ISIs between the pre-

drug and strychnine curves or within the same curve but different ISIs based on the post hoc 

analysis. Due to an increase of the median NR values at short ISIs, the ISI70 value was 

significantly decreased from 41.86 ms (SD = 16.90 ms) to 20.46 ms (SD = 2.61 ms) during the 

application of strychnine when a leading sound was at c90° (Wilcoxon signed-rank test, Z  = -

2.366, p = 0.018) (Figure 36B). When a leading sound was at i90°, the value decreased from 

27.34 (SD = 10.27) to 17.02 (SD = 3.76)  (Wilcoxon signed-rank test, Z = -2.197, p = 0.028) 

(Figure 36B). 



89 

 

 

 

 

Figure 36. Group results showing the effects of strychnine on responses to leading and trailing 

sounds in a sound pair. A. Line charts showing normalized amplitude (top panels) and latency 

(bottom panels) of the negative peak of an LFP elicited by a leading sound (first column) and a 

trailing sound (second and third columns). The first two columns show responses to a leading 

sound (first column) and a trailing sound (second column) when the two sounds were colocalized 

at the c90°. The third column shows the response to a trailing sound (located at i90°) when a 
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leading sound was at i90°. B. ISI70 values based on responses to a trailing sound obtained before 

and during the application of strychnine. Results were obtained when a leading sound was at 

c90° and i90°, respectively. The error bars show SEM. 
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CHAPTER IV. DISCUSSION 

4.1 Directional dependence of a response in the CIC to a single-tone 

This study showed that an LFP response elicited by a single tone burst in the CIC was 

directionally dependent. Such a response had a reduced amplitude and an increased latency when 

the tone was relocated from the contralateral ear to the ipsilateral ear. This finding is in 

agreement with results from single neurons in the same structure showing that firing of an action 

potential elicited by a single tone burst was stronger when the tone burst was at the contralateral 

rather than the ipsilateral ear (Cant 2005; Flammino and Clopton 1975; Kelly et al. 1991). 

Moreover, studies have shown that the response latencies are shorter for contralateral sound in 

comparison to ipsilateral sound (Flammino and Clopton 1975). The major difference between 

these previous studies and our study is that our study used free-field sound stimulation (sound 

delivered through location changeable speakers) instead of dichotic stimulation (sound delivered 

through earphones). Therefore, our acoustic stimulation better reflects the natural acoustic 

environment. Other studies that have used free-field stimulation to study the directional 

dependence of IC neurons used other animal models instead of the rat such as bats (Fuzessery et 

al. 1990; Fuzessery and Pollak 1985), frogs (Gooler et al. 1996; Xu et al. 1996) and cats (Semple 

et al. 1983).  

The directional dependence of the responses in the CIC could be related to the integration of 

contralateral excitatory inputs and the inhibitory ipsilateral inputs. A large amplitude and a short 

latency of responses to the single sound at the contralateral ear maybe because the CIC receives 

direct excitatory inputs from the contralateral cochlear nucleus, a major source of the excitatory 

inputs to the CIC (Malmierca 2015). The contralateral cochlear nucleus sends frequency-specific 

excitatory signals to the CIC (Coleman and Clerici 1987; Malmierca 2003, 2015). In contrast, a 
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decrease in response amplitudes and a long latency of responses to the single sound at the 

ipsilateral ear maybe be explained by the inhibitory inputs into the CIC by LSO (Glendenning et 

al. 1992; Helfert et al. 1989; Marie et al. 1989; Vater et al. 1992b). LSO receives excitatory 

inputs from the ipsilateral CN and sends inhibitory inputs to the ipsilateral CIC (Cant and 

Benson 2006). Another explanation could be a reduction in the excitatory inputs when the sound 

was presented from the i90° azimuth.  

4.2 The suppressive effect produced by a leading sound in a leading-trailing sound pair 

The amplitude and latency of response to leading sound in a pair of leading-trailing sounds 

that were colocalized at c90° were the same as the response elicited by the leading sound 

presented alone. This indicates that between multiple presentations of leading-trailing sound 

pairs, the trailing sound of one pair did not affect the response to a leading sound of the 

subsequent pair. This ensured that only a leading sound could affect the response to a trailing 

sound over multiple presentations of leading-trailing sound pairs.  

When the trailing sound was colocalized with the leading sound, group results showed that 

the strongest suppression of the trailing sound response was at the lowest ISI of 12 ms. The 

responses recovered by at least 70% at an ISI value of 38.93 ms. A previous study used a 

forward masking paradigm to examine responses to a probe-test (or leading-trailing) sound pair 

under a monaural contralateral condition (Finlayson and Adam 1997). They observed that CIC 

neurons were suppressed by 83.1%  in response to a trailing sound delayed by 8 ms after the 

offset of the leading sound (Finlayson and Adam 1997). Moreover, the trailing sound responses 

recovered by at least 75% when the trailing sound was delayed by 226.9 ms (Finlayson and 

Adam 1997). The general finding of this study agrees with our study because the trailing sound 

was strongly suppressed at shorter delays and gradually recovered at higher delays. However, the 
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recovery time points differ substantially. This is because the previous study used a modified 

form of forward masking paradigm and the sound stimuli used in this study were different from 

our study. For instance, the probe tone (or the leading sound) was 200 ms in duration and the test 

tone (or the trailing sound) was 30 ms in duration and both were delivered through dichotic 

stimulation at the best frequency of the neuron (Finlayson and Adam 1997). In contrast, we 

evaluated LFPs elicited by leading and trailing sounds that were 8 ms long and had frequency 

differences.  

The results showed that the suppressive effect generated by a leading sound on the response 

to a trailing sound at c90° is dependent on the location of the leading sound. This dependence 

was significant when the ISI between two sounds was 16 ms and 24 ms. There was a significant 

increase in the trailing sound response NR when the leading sound was relocated to i45° and i90° 

from the c90° azimuth. There was also a gradual increase in the latency of the trailing sound 

responses as the leading sound was moved away from the c90° azimuth and towards the 

ipsilateral side. However, no significant differences were found. Our findings are in general 

agreement with a previous finding showing that relocation of one of the two sounds that were 

colocalized at c90° to another angle increased the response to the second sound (Chot et al. 

2019). However, the study by Chot et al. 2019 used tones that were 100 ms in duration in 

comparison to the 8 ms duration tones in our study. This study also studied single neuron 

response rather than LFPs.  

The time course of the suppressive effect produced by a leading sound was evaluated when 

the leading sound was at c90° and when it was at i90°. The ISI70 value of the trailing sound 

responses was significantly lower when the leading sound was at i90° compared to c90°. This 

indicates that the suppressive effect of the leading sound on the trailing sound responses lasted 
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longer when both sounds were colocalized at the c90° azimuth compared to when the leading 

sound was separated to the i90° azimuth.  

The suppressive effect of the leading sound on the responses to a trailing sound can be due to 

three mechanisms. One of the mechanisms could be the local adaption of the excitatory response. 

The excitation resulting from the leading sound response may deplete glutamate in CIC neurons 

which prevents the trailing sound from eliciting an equally strong response. Another possible 

mechanism of suppression could be the interaction between the local excitatory/inhibitory 

projections received by the CIC from other structures. Most of the previous studies related to 

binaural inhibition were conducted with the contralateral and ipsilateral stimulation presented 

simultaneously. Zhang and Kelly 2010 indicated that the degree of binaural interaction changes 

throughout the dichotic stimulation. Zhang and Kelly 2009 indicated that an ipsilateral 

stimulation could generate a long lasting inhibitory aftereffect even after the offset of the 

ipsilateral stimulation. These results suggest that a leading sound can generate different effects 

on the response to a trailing sound when the leading sound is presented at different locations. 

Another mechanism responsible for the suppressive effect could be that the inheritance of 

response characteristics by the CIC neurons. Through this mechanism, the binaural responses are 

integrated in lower brainstem nuclei which process binaural inputs such as the SOC or DNLL 

and are then sent through projections to converge on the CIC neurons. The pharmacological 

manipulations in our study asesssed the degree of suppression that was dependent on the 

excitatory/inhibitory projections received by the CIC.  
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4.3 Contributions of local inhibitory interaction in shaping responses to a pair of leading-

trailing sounds  

Gabazine substantially increased the amplitude of the LFP elicited by a single tone burst. The 

median of the increase was 97.87%. Similarly, strychnine increased the amplitude of the LFP 

elicited by a single tone burst by a median of 40.76%. This finding is in agreement with previous 

studies showing that both GABAA receptors and glycine receptors play an inhibitory role in the 

CIC (Brandão et al. 1988; Kelly and Caspary 2005; Milbrandt et al. 1996; Moore et al. 1998; Xu 

et al. 2004).   

CGP35348 minimally affected the response amplitudes. This lack of effect supports results 

from previous studies (Vaughn et al. 1996). This lack of effect could be explained by the low 

abundance of GABAB receptors in the CIC (Jamal et al. 2012). However, within the CIC, the 

GABAB receptors are more abundant in the dorsal regions (Jamal et al. 2012).  The responses to 

trailing sound alone showed a median decrease in absolute amplitudes by 35.03%. Moreover, the 

raw amplitudes failed to recover to pre-drug levels during the post-drug conditions and decreased 

even further. The CGP results were mainly collected at the very end of the long experiments 

(more than 8 hours after the start of the experiment) and they may have been influenced by the 

decline in animals condition. 

4.3.1 Involvement of the GABAA receptor 

The main GABAergic inputs to the CIC are from the ipsilateral SPON and contralateral 

DNLL (Malmierca 2015). The ipsilateral SPON is excited by contralateral sound stimulus and 

sends inhibitory inputs to the ipsilateral CIC neurons (Choy Buentello et al. 2015; Kulesza et al. 

2003). DNLL receives major excitatory inputs from the contralateral dorsal cochlear nucleus and 

sends inhibitory projections to the contralateral CIC (Kelly et al. 2009). Our results indicated that 
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gabazine did not completely eliminate the long-lasting inhibitory effect produced by a leading 

sound. This result seemingly contradicts previous findings because previous studies have 

indicated that SPON is contralaterally driven and neurons in this structure show offset firing (i.e 

they fire after a sound stops) (Behrend et al. 2002; Choy Buentello et al. 2015; Kulesza et al. 

2003; Saldaña et al. 2009). The finding that the trailing sound responses are still suppressed 

when the leading sound is at the i90° suggests there may be other inhibitory inputs responsible 

for the suppression. There was, however, a significant decrease in the ISI70 value of the trailing 

sound responses when the leading-trailing sound pair was colocalized at c90° during the 

gabazine condition. In contrast, there were no significant differences between trailing sound ISI70 

values between the pre-drug and gabazine conditions when the leading sound was presented at 

i90°. This finding suggests that the suppression of the responses when the leading sound was at 

c90° may have been predominantly driven by GABAA receptors.  

4.3.2 Involvement of the GABAB receptor 

Postsynaptic GABAB receptors activate the G protein-coupled inwardly-rectifying potassium 

channel (GIRK) ion channels which leads to the efflux of potassium (Lüscher et al. 1997). 

Antagonizing these channels would result in the excitatory effect (Lüscher et al. 1997). 

Presynaptic GABAB receptors regulate the release of GABA and glutamate neurotransmitters 

(Ma et al. 2002). If the presynaptic terminal releases GABA, the GABAB receptors will act to 

decrease the further release of GABA (Ma et al. 2002). If the presynaptic terminal releases 

glutamate, the GABAB receptors will act to decrease further glutamate release (Ma et al. 2002). 

Antagonizing these receptors will release more GABA or glutamate depending on the 

neurotransmitter released at the presynaptic terminal (Ma et al. 2002). 
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Our results showed that there were no apparent changes in the LFP waveforms after the 

application of CGP 35348. In most cases, the responses were weaker during the CGP condition 

compared to the pre-drug condition. However, the evaluation of the NR curve when the leading 

sound was at c90° showed that the median NRs at ISI 24 ms and 40 ms were higher than the pre-

drug condition, however, there was no statistical significance between the median NRs and 

latencies between the same ISIs of the pre-drug and CGP curve in any condition. Similarly, a 

previous single-unit study which examined the role of GABAB receptors on paired-pulse 

stimulation comprised of two tones, showed that CGP did not significantly reduce the inhibition 

of the second sound separated by an interpulse interval of 200 ms (Vaughn et al. 1996).  

In those cases where CGP results were collected relatively early during the experiment, the 

general lack of effect of CGP can be explained by the lack of relative abundance of these 

receptors in the CIC compared to other inhibitory neurotransmitter receptors (Jamal et al. 2012). 

The antagonizing effect of CGP on presynaptic receptors may have resulted in the increase in 

both glutamate and GABA from presynaptic terminals of the CIC neurons which may have led to 

no net change in the responses.     

4.3.3 Involvement of the glycine receptor 

The CIC receives glycinergic inputs from the ipsilateral ventral nucleus of the lateral 

lemniscus (VNLL) (Choy Buentello et al. 2015; Riquelme et al. 2001; Vater et al. 1997) and the 

ipsilateral LSO (Glendenning et al. 1992; Helfert et al. 1989; Marie et al. 1989; Vater et al. 

1992b). The ipsilateral VNLL is excited by contralateral stimulation (Kelly et al. 2009; Saldaña 

et al. 2009). LSO is excited by ipsilateral stimulation (Shu Hui Wu and Kelly 1992).    

Our results show that there was a significant increase in the trailing sound median NRs 

during the strychnine condition when the leading sound was colocalized at c90°. There was a 
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significant difference at ISIs: 16 ms, 24 ms, 40 ms, and 264 ms between the pre-drug and 

strychnine NRs of the trailing sound response. There was also a significant increase in the 

median NRs of the trailing sound response during the strychnine condition when the leading 

sound was at the i90° azimuth. The ISIs with a significant difference were 24 ms and 40 ms. The 

ISI70 values were significantly lower during the strychnine condition whether the leading sound 

was at c90° and i90°. Thus, it is a possibility that leading sound at c90° may have excited VNLL 

neurons which may have inhibited CIC responses to the subsequent trailing sound through 

glycinergic inhibition. This inhibition may have been antagonized by the strychnine thus 

increasing the NR values of the trailing sound response significantly at lower ISIs and the ISI70 

value when the leading sound was at c90°. When the leading sound was at i90°, it may have 

excited ipsilateral LSO neurons which may then have inhibited CIC responses to the subsequent 

trailing sound. The application of strychnine may have antagonized glycinergic innervations to 

the CIC which may have increased the NR values and the ISI70 value when the leading sound 

was at i90. It should be noted that it is not yet evident whether VNLL and LSO produce long-

lasting inhibitory effects.  

4.4  Technical limitations  

The interpretation of the LFP signals can be difficult due to technical limitations. For 

instance, activity from distant sources may be picked up if the activity of the local source is weak 

(Herreras 2016). Our LFP responses may have been contaminated with activity from the lateral 

nucleus, dorsal nucleus, and the rostral cortex of the inferior colliculus.  

The microiontophoresis method has several pitfalls. For instance, the exact concentration of 

the drugs at the recordings site is indirectly controlled by the ejections current, however, the 

exact concentration cannot be determined (Vater et al. 1992a). Moreover, previous studies have 
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shown that the drug spread can be hundreds of micrometers from the electrode tip which is 

between 10-15 µm in diameter. 

4.5 Implications and future directions 

Future studies should examine single neuron responses in the CIC using dichotic stimulation 

and pharmacological manipulation to evaluate the excitatory-inhibitory binaural interaction in 

the CIC. Studying single neurons will give the temporal resolution of the binaural 

excitatory/inhibitory interactions at an individual neuron level. Pharmacological manipulations 

using the same inhibitory neurotransmitter antagonists as our study should also be done to 

evaluate the changes in excitation and inhibition over different ISI conditions. Additionally, 

using a glutamate agonist can provide insight as to whether local adaptation within the CIC 

neurons contributes to the suppression of the trailing sound in a leading-trailing pair.  

To test whether response characteristics in the CIC neurons are inherited from lower 

brainstem nuclei, pharmacological agents can be applied to these nuclei to see how CIC 

responses are affected. For instance, directly antagonizing SPON and LSO neurons while 

observing CIC responses can give insight as to how much these nuclei contribute to the trailing 

sound response suppression.  
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CHAPTER V. CONCLUSIONS 

Results from the present study indicate that the responses of a population of neurons in the 

CIC to a sound is suppressed by a preceding sound. The suppressive effect is strong when the 

two sounds are colocalized at the ear contralateral to the neurons being studied and separated by 

a small temporal gap. The suppressive effect is reduced when the two sounds are temporally and 

spatially separated. Two inhibitory neurotransmitter receptors, the GABAA receptor, and the 

glycine receptor are partially involved in the generation of the suppressive effect of a leading 

sound. Other mechanisms such as the adaptation of excitatory response or inheritance of 

response characteristics likely play a major role in generating the suppressive effect of the 

leading sound. 
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APPENDIX 

Calculation of drug dosages:  

Weight of the rat: 0.3 kg 

Ketamine dosage calculation for 

the initial injection: 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) =
60𝑚𝑔

𝑘𝑔
𝑥

10−3𝑚𝐿

1𝑚𝑔
𝑥 (𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑡 𝑖𝑛 𝑘𝑔) 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) =
60𝑚𝑔

𝑘𝑔
𝑥

10−3𝑚𝐿

1𝑚𝑔
𝑥 (0.3 𝑘𝑔) 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) = 0.018 𝑚𝐿 

 

Ketamine dosage calculation for 

supplementary injection: 

Supplementary dosage =
intial dosage

3
 

Supplementary dosage =
0.018 𝑚𝐿

3
 

Supplementary dosage = 0.006 mL 

 

Xylazine dosage calculation for 

the initial injection: 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) =
10 𝑚𝑔

𝑘𝑔
𝑥

10−3𝑚𝐿

1𝑚𝑔
𝑥 (𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑡 𝑖𝑛 𝑘𝑔) 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) =
10 𝑚𝑔

𝑘𝑔
𝑥

10−3𝑚𝐿

1𝑚𝑔
𝑥 (0.3 𝑘𝑔) 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) = 0.003 𝑚𝐿 

 

Xylazine dosage calculation for 

the supplementary injection: 

Supplementary dosage =
initial dosage

3
 

Supplementary dosage =
0.003 𝑚𝐿

3
 

Supplementary dosage = 0.001 mL 
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Pentobarbital dosage 

calculation for euthanasia: 
𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) =

[
300 𝑚𝐿
540 𝑘𝑔

𝑥 (0.3 𝑘𝑔)]

3
 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) =
[
300𝑚𝐿
540𝑘𝑔

𝑥 (0.3 𝑘𝑔)]

3
 

𝑑𝑜𝑠𝑎𝑔𝑒(𝑚𝐿) = 0.167 𝑚𝐿 

 

Atropine dosage calculations: same as xylazine supplemental dosage calculation 

  

 

Calculation of fH and fL: 

CF = 2000 Hz 

Octaves between fH and fL= 0.1 

Octaves between CF and fL= 0.05 

Octaves between CF and fH = 0.05 

Sample Calculation of fH:  

 

𝑂𝑐𝑡𝑎𝑣𝑒𝑠 = log (
𝑓𝐻

𝐶𝐹
) 

 

2𝑂𝑐𝑡𝑎𝑣𝑒𝑠 =
fH

CF
 

 

2𝑂𝑐𝑡𝑎𝑣𝑒𝑠𝐶𝐹 = 𝑓𝐻 

Sample Calculation of fL:  

 

𝑂𝑐𝑡𝑎𝑣𝑒𝑠 = log (
𝐶𝐹

𝑓𝐿
) 

 

2𝑂𝑐𝑡𝑎𝑣𝑒𝑠 =
CF

fL
 

 

𝑓𝐿 =
𝐶𝐹

2𝑂𝑐𝑡𝑎𝑣𝑒𝑠
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20.05(2000𝐻𝑧) = 𝑓𝐻 

 

 

20.05(2000𝐻𝑧) = 𝑓𝐻 

 

2070.53 𝐻𝑧 = 𝑓𝐻 

 

 

 

𝑓𝐿 =
2000

20.05
 

 

 

𝑓𝐿 =
2000

20.05
 

 

𝑓𝐿 = 1931.87 𝐻𝑧 

 

 

Sample calculation of NR and trough latencies 

 

Sample calculation of NR Sample calculation of trough latencies 

A0 is the trough amplitude of the leading 

sound presented alone. 

 

A1 is the trough amplitude of the trailing 

sound presented after one leading sound with 

an ISI of 24 ms. 

 

A0 = 0.060925423 mV 

 

A1 = 0.060466577 mV 

 

T0 is the time when the trailing sound was 

presented to the rat at an ISI of 24 ms.  

 

T1 is a time when the trough of the trailing 

sound was observed.  

 

Trough latency = T1 – T0  

 

Trough latency = 37.03 ms – 24 ms 

  

Trough latency = 13.03 ms 
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𝑁𝑅 =
𝐴1

𝐴0
 𝑥 100 

 

𝑁𝑅 =
0.060466577

0.060925423
 𝑥 100 

 

𝑁𝑑𝑅 =  99% 

 

Sample calculation of the ISI70 value: 

 

 

 
 

(x1, y1) = (24, 65.03) 

 

(x2, y2) = (40, 74.12) 

 

(x, y) = (x, 70) 

 

 

𝑥 =
(𝑦 − 𝑦1)(𝑥2 − 𝑥1)

(𝑦2 − 𝑦1)
+  𝑥1 
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𝑥 =
(70 − 65.03)(40 − 24)

(74.12 − 65.03)
+  24 

 

 

𝑥 = 32.75 

 

 

Therefore, the ISI value at which NR is 70 is 32.75 ms.  
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