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ABSTRACT 

 

The recent advancements in virtual reality have allowed for the creation of 

autonomous agents to aid humans in the retrieval and processing of useful digital 

information or to aid humans in requesting tasks to be completed by these 

autonomous agents. Known as embodied conversational agents (ECA), these 

intelligent agents bridge the physical and virtual worlds by providing natural 

verbal and non-verbal forms of communication with the user.  To provide a 

positive user experience, it is essential for an ECA not only to appear human-like 

but also correctly identify the user’s intention so the ECA can correctly assist the 

user.  This thesis continues the research done by our research group investigating 

the further improvement of POMDP-based dialogue management using machine 

learning on POMDP’s belief state history.  This thesis integrates a technique to 

match lip movements with the rendered ECA audio alongside the automatically 

selected emotion.  Finally, this research conducts experiments using machine 

learning techniques to adjust POMDP policies and compare its effectiveness in 

terms of dialogue lengths and successful intention discovery rates. 
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1. Introduction 

Human computer interaction is typically quite different from human to human 

interaction.  This gap is partly due to the increased number and variance of channels 

humans use to communicate with each other.  In a typical conversation, a human will use 

voice inflections and body language in addition to the spoken words to convey their 

meaning.   Whereas when communicating with a computer, these components have 

traditionally been lacking.  Computers typically use graphics and written words to 

indicate their current state to the user.  However, these indications can be foreign to many 

users who typically communicate primarily with humans and not with digital systems.  

Missing these additional communication features increases the chance of 

miscommunication due to the lack of additional signals. 

Computers are also taking on roles that are traditionally done by humans as this 

automation increases the need for reliable communication between humans and 

computers. 

For these reasons, embodied conversational agents (ECA) have been a subject of 

research.  ECAs are intelligent, exhibit some human behaviours and use a “visual 

representation to reinforce the belief that it is a social entity” [1].  One such behaviour is 

using a spoken dialogue system (SDS) to maintain a realistic spoken conversation.  An 

SDS uses speech for input and output while understanding the user and acting 

accordingly [2].  At the heart of an SDS system is a Dialog Manager (DM), which 

essentially decides what the next action to take based on the current state of the 

conversation [2].   
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One of the critical parts of ECAs is that they exhibit human and social characteristics.  

While this may seem to be unnecessary, it is essential because it changes how humans 

interpret and understand the information coming from the ECA.  The field of 

Organizational Behavior (OB) grades communication channels based on their capacity to 

convey information using the richness scale which considers three factors: the number of 

cues provided (such as emotions, expressions, and actions), the immediacy of the 

conversation, and the amount of presence the channel provides [3].  Figure 1, which uses 

example channels from [3], shows that email, a text-only channel, is not as rich as a 

phone call, and likewise, a phone call is not as rich as face to face.  Therefore, if the ECA 

moves towards the high end of the scale, it will appear to be a richer channel to the user 

being able to provide more information in a more timely manner than it would otherwise. 

 

Figure 1 OB communication channel richness 

It can be beneficial for an ECA to display emotional qualities as one of its features, as 

shown in [4], who attempted to use an emotional display to shorten conversation time 

while still obtaining the needed information from the user.  By altering facial expressions, 

an ECA may demonstrate emotions [4]; however, the ECA’s facial features do not 

attempt to lip-sync with the prescribed audio.  Current literature has indicated that it is 
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vital for ECAs to appear natural and use non-verbal cues as aids to create improved 

outcomes [5]. 

Text to speech applications are becoming more common in our society with multiple 

offerings commercially available including “Amazon Polly” and “Google Cloud Text-to-

Speech”.  Text to speech is the technology used to produce the audio of the ECA in [4], 

but it does not use a lip-syncing technique to match the expression to the speech.  As 

claimed in [6], the “audience lose their concentration because the line of character and 

mouth shape does not match, and sometimes it interrupted empathy or absorption to the 

character”.  By not breaking this rule, the proposed ECA will be more relatable. 

The thesis will continue as follows: Section 2 will go over background knowledge of 

ECAs and related topics this thesis uses.  Section 3 will go over the prior work that this 

thesis is built upon or were significant contributors to the topics needed for this thesis.  

Section 4 will explain the problem this thesis solves and the contributions this thesis has 

in solving this problem.  Section 5 will explain the architecture and related algorithm this 

thesis proposes before Section 6 explains the experiment and related implementation used 

to demonstrate the proposed architecture and algorithm.  This thesis outlines the created 

results and discusses them in Section 7, before making the final concluding remarks and 

discussing multiple future avenues for research in Section 8. 
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2. Literature Review 

This chapter focuses on the previous work done in creating an emotional virtual avatar 

that can communicate conversationally and understand the user’s intention while 

responding effectively to the user.  Additionally, it will also analyze existing research 

regarding creating avatars that communicate with lip-syncing and realistic emotional 

voice generation. 

2.1 Embodied Conversational Agents (ECA) 

Embodied  Conversational Agents (ECA) have been around for quite some time and is 

not strictly a computer science related ambition but can involve fields such as 

psychology, emotional theory, and human computer interaction (HCI) [7].  This section 

will review several of these components and areas that make up the methodology. 

2.1.1 Sentiment Analysis of Inputs 

When a user sends input to the system, they type in or say some arbitrary text.  When the 

user does this, they may, intentionally or inadvertently, write their text in a way that 

indicates their opinion.  While understanding the opinion behind the text is simple for 

humans, it is more complicated for a computer to do so.  Sentiment analysis, also known 

as opinion mining, is the field of research that analyzes the opinion indicated through 

written text [8]. 

In [4], sentiment analysis detects the negative, neutral, or positive opinion the user is 

expressing in their text.  The result is three floating-point numbers between zero and one, 

representing negative, neutral, and positive opinions present in the text.  This sentiment 

analysis is a function returning a tuple of information, as shown in Eq. (1). 
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(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 𝑆𝐴(𝑖𝑛𝑝𝑢𝑡)                              (1) 

Table 1 contains a series of sentiment analyses examples.  Looking at Table 1, it appears 

that the sentiment cannot be a fact like ‘smelly’ but rather something like ‘bad’.  One can 

also see that none of the examples are both negative and positive. 

Sentence Negative Neutral Positive 

I am good today 0.0 0.408 0.592 

I am sick today 0.623 0.377 0.0 

I am going to the dentist today 0.0 1.0 0.0 

I hate you 0.787 0.213 0.0 

I love you 0.0 0.192 0.808 

I work with you 0.0 1.0 0.0 

The garden is pretty 0.0 0.484 0.516 

The garden is smelly 0.0 1.0 0.0 

The garden is outside 0.0 1.0 0.0 

The garden is ugly 0.524 0.476 0.0 

The garden is bad for the environment 0.368 0.632 0.0 

The garden is dangerous 0.508 0.492 0.0 

Which is better? 0.0 0.408 0.592 
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Which is worse? 0.608 0.392 0.0 

It is sunny outside 0.0 0.517 0.483 

It is gloomy outside 0.348 0.652 0.0 

Table 1 Sentiment analysis examples 

2.1.2 Decision Making with Dialogue Management 

Researchers have been working on creating ECAs which communicate in conversational 

styles with humans for quite some time.  These ECAs have a DM controlling their 

dialogue. 

As noted in [2], a DM uses the current state to predict the best action to achieve the best 

end reward.  There are multiple ways to perform this task, each with benefits and 

weaknesses.  In [4], the DM used is the Partially Observable Markov Decision Processes 

(POMDP), which forms the DM for this thesis as well.  This section will first provide a 

brief overview of these other methodologies before going a more in-depth overview of 

POMDP. 

Other DM Systems 

The most straightforward DM system is the finite state approach; this system uses a finite 

state machine to model the entire conversational state, including transitions [9].  Before 

the system can communicate, it requires modelling of every step of the conversation.  

Due to this limitation, it only works for short specific conversations that can be modelled.  

An example of this system is a bank call-in system; it expects precise answers and has the 

entire conversation laid out. 



 

7 

 

A more advanced approach is the frame based approach where the system uses a frame, 

which contains each data point similar to a form, and asks questions from the user to 

elicit all the information it needs from the user [2].  There are still disadvantages to this 

approach, notably that it can require a complex grammar to parse the needed information 

out of the user's response, and the frame itself can typically only handle fairly simple data 

points [2]. 

Building on top of the frame based approach is the information state approach.  The 

information state approach is similar to the frame based approach. However, the system 

also keeps track of additional information that is not directly related to the frame, such as 

the user's mental state or intention [2].  However, each piece of data is still just a data 

point that can not be changed and is not probabilistic. 

A different approach is a plan based approach in which the user and system have a shared 

goal, and both use their actions (speech) to progress towards the end state that they both 

desire [2].  However, it can be difficult to predict what a system using this approach will 

do [9]. 

Finally, there is the agent-based approach.  In this approach, the system views the 

conversation as a collaborative process and has the added ability to revise previously 

captured information.  However, it still relies on having the correct user intention [9]. 

POMDP 

This section is an overview of how POMDP functions, the concepts described herein 

primarily come from [10]. 
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Markov’s decision process (MDP), forms the basis of POMDP, which consists of states 

and actions.  States describe the current state that the system is in, and actions are the 

various things that the system can do – such as to say, “Would you like X”.  Each action 

then has effects that it may cause, and the immediate reward POMDP receives for 

performing the action.  The reward determines if it was worth doing the action or not and 

is based upon what happened when the system performed the action. 

However, unlike typical MDPs, the current state of POMDP is not fully known, and the 

system relies on observations to determine what the current state is.  These observations 

do not specify an exact state but instead give us a probabilistic estimate on what the state 

is, from which the system can build a probability distribution over all the states using the 

available transitions and these observations.  This probability is known as the belief state, 

and the history of the belief state is known as Belief State History (BSH). 

The belief state is made up of probability state pairs where the system needs to identify 

which state the conversation is in currently.  For example, based on the observations 

obtained from the user, the system may believe there is a 75% chance the user is in state 

A, and 30% in state B.  These probability values and states together make up the belief 

state.  When the system receives a new observation from the user, typically the input, the 

system will analyze the input to determine how it should adjust the belief states 

probabilities.  For example, it might adjust the belief state to A:80% and B:40% if the 

input would increase both state probabilities. 

To be precise, POMDP is a 7-tuple consisting of states, actions, transitions, rewards, 

observations, conditional observational probabilities, and a reward discount [4].  The 
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states are the various states the POMDP could believe it is in at any moment.  Actions are 

the available actions the POMDP has available to take while the transitions represent 

ways in which the states can transition from one state to the next.  Rewards are the 

immediate reward given for the taken transition.  Likewise, the observations are the 

observations the POMDP can observe to decide its belief state.  Conditional 

observational probabilities represent how each observation affects the belief state.  

Finally, the reward discount determines if the POMDP system prioritizes immediate or 

future rewards.   

Traditional POMDP systems do not maintain a BSH because by keeping the full belief 

state, one can use the transitions and conditional probability to move from one state to 

another without the BSH [10].   However, ECA research has shown that using BSH can 

be useful for other reasons [4].  

When used in the context of dialogue management, Figure 2 shows how the POMDP 

works, emphasizing the dialogue loop.  After the system performs an action by speaking, 

the user provides an input, which is the observation from the perspective of the system.  

Inside the system, it uses the input to update the belief state.  Likewise, pass the last 

action back to the belief state calculator as it allows for the observations to be taken in 

context as they are a reply to the last action the system used.  This belief state determines 

the next action taken. 
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Figure 2 Simplified POMDP loop 

Outside of ECAs, POMDP systems have a variety of uses, including optimizing the 

maintenance of offshore wind substructures [11] or improving pedestrian safety in self-

driving cars [12]. 

One can illustrate how the reward discount can affect the decisions taken using the 

example of maintenance costs.  For example, if the reward discount is low, future 

rewards, as in future cost savings, are barely taken into consideration.  Thus since the 

immediate reward is high, it may ignore maintenance and take the higher hit later.  

Conversely, if the reward discount is high, then it will perform the maintenance now if it 

means a greater reward, or more significant cost savings, later.  Finding a balance 

between these two opposing lines of thought is required to find an optimal way forward. 

The system must use a policy to take the belief state and determine which action to 

perform next. 

POMDP is related to other Markov models; Table 2 is based on [13] [14] and describes 

the relationship to other models. 
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 No Actions Yes Actions 

Known State Markov Chain MDP 

Estimate State Hidden Markov Model POMDP 

Table 2 Markov models compared 

2.1.3 Wavelet Transform for Trend Analysis 

While POMDB can be used to facilitate communication, it does not consider the history 

of the conversation using only the current state to predict and influence the next best 

action.  Separate research has enabled these POMDB systems to look back and use trends 

in the conversation to influence the next action. 

As “Sampling, Histogram, and Sketches are statistical-based approaches and are 

inadequate to predict the hidden patterns when applied to time-series data” [15] those 

techniques cannot be used on the BSH.  Instead prior work has turned to wavelets which 

are a subset of wave transformation which uses “short windows at high frequencies and 

long windows at low frequencies” [15].  For this thesis, Discrete Wavelet Transformation 

(DWT) is of importance.  DWT also removes the possibility noise in the trends meaning 

it will become more accurate then trend analysis techniques which do not remove this 

noise [4].  When used on a wave, DWT will result in the number of sharp variation 

points, which is the number of change points (NCP) [4].  DWT transforms the BSH wave 

to find the number of variation points [4].  

Figure 3 shows examples of how DWT transforms a wave and acquires its variation 

points.  The asterisk on the top graphs indicates where the trend changes based on the 
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windows used.  The lower graph then has an asterisk where the new wave crosses zero, 

showing how these zero-crossing points represent the change in trend.  The left window 

has a larger window and so finds fewer variation points.  While for this thesis, this figure 

is just an example of finding the sharp variation points on a larger graph, the data 

represents the vehicle count at an intersection over ten days at a 10-minute interval [16]. 

 

Figure 3 DWT wavelet example [16] 

In order to apply DWT to the BSH, the system analyzes each intent individually. Each 

intent has a history of its probability, which forms a wave.  Applying DWT to this wave 

will result in the number of variation points for this intent [17].  The summation of these 

numbers is the final number of NCPs.  

For example, suppose the ECA is inquiring about the size of pizza requested.  It has three 

intents i.e., small, medium, and large.  Table 3 shows a fictitious conversation between 

this ECA and a human user.  The user is not deeply knowledgeable on the sizes and gives 

contradictory indicators; this is where the NCPs will show up. 
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ECA Action User Response Belief after observation 

“Hello, what size of pizza 

would you want?” 

“I would like a king size 

pizza” 

Small:0 

Medium:0 

Large:0.6 

“That is not an option, 

please choose from small, 

medium, and large” 

“I would like a medium 

pizza please” 

Small:0 

Medium:0.8 

Large:0.2 

“You would like an 8 inch 

medium pizza.” 

“No, that is not big enough, 

I would like a large” 

Small:0 

Medium:0.4 

Large:0.8 

Are you sure you would 

like a large pizza? 

“Yes, I would like a large 

pizza” 

Small:0 

Medium:0 

Large:1.0 

Table 3 DWT conversation example 

The easiest intent to analyze is the small intent, never being indicated to the ECA as 

being wanted; thus, there will not be any NCP points.  Therefore, this example will focus 

on medium and large.  Figure 4 shows the values of their belief.  The top charts are the 

belief values for medium and large, and the bottom two are their respective Harr wavelet 

transformations using the code provided in [18].  Note that the high and low points are 

not the same as the variation points; in fact, the zero-crossing points are not one of the 

discrete values entered.  Instead, the variation points occur in places where the trend 
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would be changing had these been complete waves.  From the figure, there are two 

crossing points in each, making the total NCP value for this conversation four. 

  

  

Figure 4 DWT conversation example waves 

This analysis repeats at each step of the conversation, with the initial value being 0 as no 

waves exist. 

2.1.4 Contextual Control Model (COCOM) 

As described in [19], the COCOM consists of a series of modes that determine which 

action to take based on the belief state.  COCOM prescribes four modes, strategic, 

tactical, opportunistic, and scrambled.  These modes are chosen using the current state of 

the system and represent the level of control and predictability the system has.  From 

most control to least the modes can be described as follows: 
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1. Strategic mode – strategic mode has the most level of control as the user and 

system are communicating well, which allows the system to plan the 

conversation’s long-term direction. 

2. Tactical mode – in tactical mode, the system has some additional information to 

use, but it is not enough to plan beyond the current topic. 

3. Opportunistic mode – in opportunistic mode, the system only has enough 

information to predict the next action as the system does not have enough 

information to plan further. 

4. Scrambled mode – in scrambled mode, there is not even enough information to 

predict the next action well, and so the system's action is entirely random. 

These modes are not permanent, and the system chooses every iteration which mode it 

should use.  It can jump from one mode to another, and if the state suggests it is 

necessary can jump over the opportunistic mode when it is moving from one end of the 

control spectrum to the other.  Figure 5 shows the available transitions for each mode. 

 

Figure 5 The available transitions in COCOM 
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2.1.5 Text-to-Speech 

Text to speech systems or applications are applications which take in text and produce an 

audio version that sounds like someone is speaking.  Commercial applications providing 

this technology include Amazon Polly and Google Cloud Text-to-speech.  Some 

applications, such as Voicery, can do accents, sound like a variety of people, and even 

emulate multiple speech styles [20].   

Being able to emulate multiple speech styles is vital for this application as having the 

speech style match the emotion displayed allows the user to be more immersed in the 

conversation instead of having a jarring experience.  This capability increases the 

richness of the communication channel, a concept discussed in the introduction.  

2.1.6 Facial Action Coding System 

In the implementation of [4], facial expressions changed by swapping out 3-D models; 

but combining every facial expression with every lip shape will result in an untenable 

number of faces.  Instead, this thesis uses the Facial Action Coding System, which 

describes the movement of various locations on the face [21].  There are well-known face 

movements which are known as Action Units (AU).  These AUs are enumerated and 

represent various changes the face may go through, such as “Inner Brow Raiser” [22].   

Additionally, AUs have an intensity value, as demonstrated in the implementation 

provided by [23].  To demonstrate changing intensity values, a series of images shown in 

Figure 6 contains increasing intensities. The starting face contains no action units, 

whereas the next has an intensity of 0.2 and the last 1.0 for the ‘ee’ phenome.  Looking at 

the images, the middle image with an intensity of 0.2 is starting to show some teeth, but it 
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is harder to see.  The final image has the most teeth showing, as the mouth is the most in 

the ‘ee’ phenome. 

 

Figure 6 From left to right: normal, 0.2 ee, 1.0 ee 

A list of AUs are in [24], but it also shows how combining some action units results in a 

range of emotions, demonstrating how the AUs can be combined to show emotions.  

These combinations are how this thesis combines AUs to make the various emotions; see 

Figure 7 for a demonstration of how AUs can be used to create a happy face.  In the first 

image, the avatar only has its cheeks raised, in the second, only the smile is visible, and 

finally, the right image is the combination that looks like a realistic happy face.  See 

Appendix A for photos of all six emotions this thesis’ avatar can simulate. 

 

Figure 7 Left to right, cheek raiser (6), lip corner puller (12), happy (6+12) 

A happy face is additionally an excellent example of a face that is a combination of two 

areas; the smile with the mouth, and the raised cheeks.  The raised cheeks are typically a 

necessary part of a genuine smile [3], and so adding the raised cheeks is quite essential. 
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2.2 Related Topics 

The architecture supporting the ECA relies on several topics that are not causally related 

to the ECA itself.  This section will outline their functionality. 

2.2.1 Q-Learning for Self-Learning of Policy 

Reinforcement Learning (RL) is a form of Machine Learning (ML) where the system 

learns based on performing actions in an unknown space, observing a reward, and then 

use the observed reward to inform future action choices [25]. As claimed by [4], previous 

research using RL to improve dialogue managers has shown its potential.  

Q-Learning is a specific RL algorithm that does not require a map of the domain in which 

it is learning [26].  In [4], Ruturaj suggests using Q-Learning as the RL method citing 

multiple benefits including its ability to start from a random policy to find the optimal 

policy, and that it can optimize over all steps conducted not just each single step.  The 

following is a summary of how Q-Learning works, as defined in [26].   

Q-Learning consists of states and actions.  A state is the current state of the system.  In 

contrast, an action is the various actions the system can take – note that each state does 

not correspond to an action – meaning that each action is not a simple transition.  An 

action results in an unknown state and not a specified state.  The matrix Q consists of 

each possible current state and action combination.  The values contained in Q represent 

the potential reward by taking this action and are called q-values. 

Immediately after taking an action, the system receives a reward value r – the immediate 

reward.  This reward, along with the next best q-value, is used to adjust the previously 

used q-value.  Only adjust the q-value used to choose an action immediately after the 
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action has taken place.  Equation (2) shows how to adjust said q-value.  This equation is a 

simplified equation from [26]. 

𝑄(𝑥, 𝑎) = (1 − 𝛼)𝑄(𝑥, 𝑎) + 𝛼( 𝑟 +  𝛶 max
𝑏

( 𝑄 (𝑦, 𝑏)  )  )                     (2) 

In Eq. (2), α is the learning rate, a concept found in machine learning.  X is the current 

state, and a is the last taken action.  Y is the new state, and b is all actions.  Finally, 𝛶is 

the reward discount and is a constant on how much to consider a future reward. 

The first half of the equation, which is the left-hand side of the main addition, refers to 

the amount of the new value given to the historical value.  For example, if the learning 

rate is 0.8, then 20 percent of the old value is retained – this way, it does not learn solely 

from the new action but considers previous actions.  The second half calculates the value 

learned due to the last action and represents the remaining  80% of the new value.  The 

new part takes the reward immediately returned by the last action and adds a value to 

represent the future reward based on the new state observed after the action.  This future 

reward is the best q-value in the newly observed state 𝑏.  This future reward is tempered 

by the reward discount 𝛶, which determines the priority of immediate reward versus 

future reward. 

Note that Eq. (2) is equivalent to the equation provided in [4] for this purpose. 

In summary, the algorithm performs as follows:  

1. Based on the current state’s q-values, the system performs the action with the 

highest q-value. 
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2. The system now is in another, or possibly the same, state and receives a reward 

value r. 

3. Adjust the previously used q-value based on the new state, best next action, and 

the reward received.  

Figure 8 shows this cycle. 

 

Figure 8 Q-learning cycle 

For example, suppose a system has five states and three actions, and Table 4 contains 

related q-values.  This example will use a reward discount of 0.5 and a learning rate of 

0.8. 
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 Action 1 Action 2 Action 3 

State 1 1 5 3 

State 2 2 7 2 

State 3 0 1 5 

State 4 4 3 3 

State 5 6 2 1 

Table 4 Q-learning starting example 

Suppose the system is in state 4.  Looking at the table, the best action is action 1 as it has 

a q-value of 4, which is greater than actions 2 and 3.  Therefore the system proceeds with 

action 1. 

After doing action 1, the system receives a reward of 3 and upon introspection discovers 

it is now in state 3.  Based on this information, the system uses Eq. (2) to update the q-

value for state 4 action 1.  

𝑄(4,1) = (1 − 0.8)𝑄(4,1) + 0.8( 3 +  0.5 max
𝑏

( 𝑄 (3, 𝑏)  )  ) 

The best action for state 3 is action 3, which has a q-value of 5.   

𝑄(4,1) = (0.2)(4) + 0.8( 3 +  0.5 (5)  ) 

𝑄(4,1) = 5.2 

Table 5 is the new Q-Value table note how state 4 action 1 is updated: 
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 Action 1 Action 2 Action 3 

State 1 1 5 3 

State 2 2 7 2 

State 3 0 1 5 

State 4 5.2 3 3 

State 5 6 2 1 

Table 5 Updated q-values example 

This process repeats until the system reaches an end state and closes.  The end state is not 

specified in q-learning but is determined externally. 

2.2.2 Fuzzy Logic for Emotion Generation 

According to [27], the term fuzzy logic was introduced in the late 1960s, referring to the 

processing of three or more truth values.  Its definition expanded, and now it generally 

means logic where there is some uncertainty in regards to the truth of the values [27]. 

Ruturaj uses fuzzy logic to determine the emotion the ECA should express using a set of 

rules that use the current sentiment analysis and COCOM to determine the emotion to 

express [4]. 

As described in [4], fuzzy logic has three primary steps; first, the inputs pass through a 

fuzzifier, which creates fuzzy inputs.  These fuzzy inputs pass through an inference 

engine; the inference engine uses a set of rules to transform the fuzzy inputs into fuzzy 

outputs again.  Finally, the fuzzy outputs are passed through a defuzzifier to get crisp 
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outputs; these are outputs that are output as the result of the fuzzy logic.  Figure 9 shows 

the flow of information and terms. 

 

Figure 9 Fuzzy logic overview 

2.2.3 Forced Phonetic Alignment for Lip Synchronization 

The problem of mapping phonetic sounds to an audio file is not a new problem and is an 

issue studied in speech science known as the forced alignment problem [28].  Forced 

alignment aligns the given audio to its transcription typically with a Hidden Markov 

Model, finding the most likely set of states that are passed through at each point to align 

the two inputs [28].   

As shown in [23], FAC AU can be used to change the avatar face to match each mouth 

shape needed for each phonetic sound correctly.  This thesis uses the same system as 

[23], which uses a forced phonetic alignment system to acquire the lip-sync schedule.  
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3. Prior Work 

Several primary components build largely upon research previously conducted at the 

University of Windsor and other research centers.  This section analyzes previous 

research to identify their contributions and describes the inspirations taken. 

3.1 POMDP-Based Dialogue Management 

While many people have studied using POMDP to manage dialogue, this research is 

conducted to improve the intention discovery so that POMDP can decipher what the user 

wants quicker in order to serve the user better and provide an improved customer 

experience. 

COCOM is not present in traditional POMDP but was added to the model by Sathulla in 

2010 as a way to overcome some limitations in using POMDP for dialogue management 

[9].  In particular, as claimed in [9], COCOM overcomes limitations regarding 

dynamically solving the POMDP.  Having multiple policies to solve based on the 

situation makes sense intuitively. 

Additionally, in 2010, Bian proposed adding BSH to dialogue management POMDP [29].  

Their research involved using the BSH to aid in determining the next action.  It used the 

previous and current state to determine the next action, including using specific domain 

knowledge to determine if the change made sense and using a corrector action if it did 

not.  As mentioned in Section 1, traditional POMDP does not use the BSH at all to 

improve its ability to conduct the conversation, and so this marked a change for POMDP 

dialogue systems.  Using the BSH in this way would require domain-specific knowledge 
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to be set up ahead of time, which may limit its applicability.  It also does not look back 

very far to analyze the full history. 

The COCOM proposed in [9] changed the mode based on the conversation, but Mulpur 

improved this using BSH [30] sort of combining Sathulla [9] and Bian’s [29] works.  In 

2016, Mulpuri proposed the idea of using the BSH to calculate the NCP, which further 

identifies the type of user [30] interacting with the ECA.  This user type then maps to a 

COCOM mode.  Unlike Bian’s work [29], the system does not look back to make the 

action but instead analyzes trends in the BSH to see long-term changes. This 

improvement enables their proposed POMDP method to take advantage of the full BSH. 

To demonstrate their work, Mulpuri used the example of requirements engineering to 

show improvement. 

Ruturaj’s 2019 thesis [4] supersedes Mulpuiri’s work, where Ruturaj proposed using the 

same knowledge level, along with the sentiment analysis, to choose an emotion to 

display.  Of importance to POMDP, however, he floated the idea of using q-learning to 

create self-adjusting policies.  Despite this, his thesis does not contain implementation 

details or show weather or not these self-adjusting policies improve intention discovery 

or shorten dialogue length.  The rest of Ruturaj’s architecture serves as the basis of the 

proposed architecture, minus the contributions of this thesis. 

Other research groups have investigated using self-refining policies, albeit in ways that 

are different from this thesis.  In 2014 a group published evidence that using Gaussian 

processes can automate the creation of policies instead of using hand-crafted policies, 

which can take significant amounts of time [31].  Their policies could learn from human 
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users and learned faster than previous dialogue system training.  Their approach, 

however, does not use COCOM to aid in policy selection.  It does, however, show that 

self-adjusting policies are worthwhile direction and have previously been investigated, 

albeit without other functionality, such as trend analysis or COCOM, which may have 

further helped the policies move the conversation forward.  These additional 

functionalities distinguish this thesis from this work in a significant way, while still 

allowing this prior work to indicate the feasibility of this thesis contribution. 

Additionally a group of researchers proposed in 2019 to add additional information to 

POMDP concerning the user [32].  This paper, while not heavily influencing the 

proposed architecture or method, does add weight to the feasibility of using 

reinforcement learning to enhance POMDP.  The approach used in this paper is different 

from the one they used.  Primarily, their approach adds the user information to the 

POMDP space instead of altering COCOM policies.  However, their system did use 

reinforcement learning and a user emulator script to demonstrate that the conversation 

context matters, and that the system’s learning improves other people’s conversations as 

well, not just the ongoing conversation.  Not only did they use a script, but it was tested 

with people, showing that their system was capable of communicating with both. While 

the contribution is different, many of the goals of this thesis are similar to the goals 

presented by [32]. 

The works that primarily contribute to this thesis are summarized in Table 6. 
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Author(s) Title Contribution / Key Points 

Vijaya Krishna 

Mulpuri (2016) [30] 

Trend Analysis of 

Belief-State History 

with Discrete 

Wavelet Transform for 

Improved Intention 

Discovery 

Modelled how to use collect and use 

the BSH of POMDP. 

Showed how to use DWT on BSH to 

get the NCP of BSH. 

Created multiple POMDP policies for 

different knowledge levels based on 

COCOM. 

Ruturaj 

Rajendrakumar 

RAVAL (2019) [4] 

An Improved Approach 

of Intention Discovery 

with Machine Learning 

for POMDP-based 

Dialogue Management 

Suggested using RL policies to create 

self-adjusting policies to replace 

handcrafted policies, did not propose 

an improved implementation. 

Floris den Hengst, 

Mark Hoogendoorn, 

Frank van Harmelen, 

Joost Bosman (2019) 

[32] 

Reinforcement 

Learning for 

Personalized Dialogue 

Management 

Demonstrated a method of adding 

additional contextual information by 

extending the POMDP state space to 

include information about the users, 

which works without prior interactions 

with the user.  This technique involved 

using RL to lead to more complex 

behaviours. 
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Tested with a variety of people, 

Showed that RL could aid in positively 

altering the dialogue. 

Used a user simulator to simulate 

initial users 

Table 6 Previously completed work on POMDP dialogue management 

3.2 Facial Rendering with Emotions 

It is not a new idea for ECAs to express emotions; there are multiple works in the past 

that work towards adding emotions to ECAs.  This thesis draws from many of these 

works to create the proposed architecture and methodology. 

Initially published in 1978, the facial action coding system is an important work that 

describes all the motions the face can make [33].  This work describes the various 

motions that will be needed to create emotions.  As described in Subsection 2.1.6, the 

motions are specific and relatively simple. However, the system itself is quite powerful, 

being able to build complex expressions with ease and providing stable and precise 

definitions. 

Multiple approaches to giving avatars emotions or expressive facial expressions have 

been proposed.  One of the approaches suggested mapping “pleasure-displeasure, 

arousal-nonarousal and dominance-submissiveness” [34] to a facial expression.  This 

approach uses multiple steps to create its faces and additionally controls head motions.  
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This approach does, however, need a head and facial motion database to build this 

mapping from, and, as it uses neural networks, will require a level of training.  While this 

additional work creates improvements, the additional work and data required is a barrier 

to use. 

Relating to ECAs, in 2016, Kaur [35] conducted a usability study to determine whether 

facial expressions representing emotions improve the user experience.  This study indeed 

showed that this is the case; that changing the facial expression displayed on the ECA 

enhances the user experience.  

This concept of emotions influencing behaviour has additional backing.  A study done 

enhancing the smiles on virtual avatars in 2017 found that the enhanced smiles created an 

even more positive reaction than ordinary smiles [36].  More recently, a study conducted 

on humans indicates that avatar facial expressions do evoke a response in the end-user. 

However, they are not the same reactions as human facial expressions [37].  This result 

may mean that there are limits to virtual avatar facial expressions, but the article does 

state that the author does not believe that this means that emotions are useless.  

Combining the results from these studies, it is clear that emotions and their appearance do 

make an effect on the end-user, even if it is not the same as those caused by human facial 

expressions. 

Ruturaj’s work [4] also contributed to the generation of ECA emotions.  He proposed 

using fuzzy logic on the sentiment analysis from the user's input and the knowledge level 

to decide which emotion to display.  This contribution would automate the process of 

selecting an emotion for the ECA to display.   



 

30 

 

Separately in 2019, a research group proposed [23] a paper describing how to create an 

avatar with fundamental emotions and lip-syncing.  Their avatar was not only proposed, 

but the author’s open-sourced some essential components, including code to lip-sync 

audio files to FAC’s AUs using forced phonetic alignment.  Their open-source repository 

does not, however, include code to combine emotion FACs with lip-syncing, which is 

something added by this thesis.  This avatar is the basis of the avatar used in this thesis, 

and the use of forced phonetic alignment is also consistent.  Their lip-syncing uses the 

last phonetic mouth shape to alter the current shape, which this thesis also uses.  While 

not mentioned in their paper, this thesis included this implementation detail as the author 

believes that it will reduce the repetitiveness of the lip-syncing.  This thesis uses a 

simplified implementation as [23] used a webcam to create their AUs and facial 

expressions, while this thesis uses only the standard FAC AUs. 

Table 7 summarizes the most critical papers from this section, which contribute to this 

thesis. 
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Author(s) Title Contribution 

Karamjeet Kaur 

(2016) [35] 

An Approach of Facial 

Expression Modeling with 

Changing Trend in the 

History of Belief States 

Showed using emotional facial 

expressions based on user input 

to have and show emotions on 

the ECA 

Conducted a usability study 

demonstrating how facial 

expressions enhance the user 

experience. 

Ruturaj 

Rajendrakumar 

RAVAL (2019) [4] 

An Improved Approach of 

Intention Discovery with 

Machine Learning for 

POMDP-based Dialogue 

Management 

Use fuzzy logic to select a facial 

expression to have on the ECA 

automatically. 

The architecture, including 

POMDP and BSH components, 

forms the basis of this thesis’ 

proposed architecture 

Deepali Aneja, 

Daniel McDuff, 

Shital Shah (2019) 

[23] 

A High-Fidelity Open 

Embodied Avatar with Lip 

Syncing and Expression 

Capabilities 

Showed how their ECA was 

capable of basic actions and lip-

syncing based on phenome 

control. 

Created an open-source avatar in 
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Airsim 

The proposed avatar, including 

some components, form their 

open-source avatar, is the basis 

of the avatar used in this thesis.   

Table 7 Previous work done on ECAs with emotionally expressive faces 

3.3 Audio Rendering for Speech Generation 

As noted, there exists multiple text to speech systems; however, there is ongoing 

research, with more modern systems using neural networks to convert their input and 

transform it into an audio output.  Typically research in this field is moving towards 

improving how the synthesized audio sounds in particular situations such as towards 

creating an emotional version of the speech [38]. 

Expressive text-to-speech is not an area in which this thesis contributes; however, it is 

essential to take an overview of the current research in this area as it needs to co-operate 

with the other components.  Text-to-speech has seen significant improvements in the last 

few years. 

Recent advancements in this field use ML, such as Tacotron [39], which uses a neural 

network (NN) in an end to end manner which outperformed parametric models, but not 

concatenative, according to a mean opinion score (MOS).  The MOS is a rating based on 

human subjects that provide their opinion on how realistic the synthesized voice is and is 

an effective way to compare different text-to-speech generators within the same 
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experiment.  Tacotron was succeeded in 2017 by Tacotron2 [40].  The results from these 

systems are awe-inspiring being difficult to distinguish from real speech, including ways 

to emphasize specific words.  It does not, however, create expressive speech, creating 

only neutral speech and so would not be able to be used for this thesis. 

Deep Voice 3 [41] in 2018 made a further advancement by introducing convolutional 

NN, which they claim allows for faster training than previous NN models. 

In 2019 a separate group extended Tacotron2 by adding emotions to the voice [38] using 

what they call a global style token.  This work would fit into what this thesis needs; 

however, it could not merely be used as the system was created for the Korean language. 

Perhaps one of the more obvious comparisons to this thesis is ObamaNet [41], an end to 

end neural network which takes the provided text and creates a video of Obama speaking, 

including lip-syncing.  The results are quite impressive, creating a video that is difficult 

to distinguish between the synthesized and real video.  While this may appear to be a 

better way to perform an ECAs emotion, porting it over is not as simple as it may first 

appear.  The problem is two-fold.  First, ObamaNet does not convey emotions; all 

synthesized speech is neutral.  Secondly, ECAs cannot start and stop; in between each 

phrase spoken, they must still appear to the user since ObamaNet makes a video the 

transition between videos would need to flow well and not be disconcerting.  These two 

factors are non-trivial to overcome. 

Additionally, there are multiple commercial expressive text-to-speech voice synthesizers, 

including Voicery [20], Amazon Polly, and Google Cloud text-to-speech.  All of these 

works use similar input and outputs.  The input is the text, and if applicable, some sort of 



 

34 

 

expression or emotion identifier.  The output is the synthesized audio in the form of an 

audio file.  Therefore swapping out the various works would not be a significant hurdle.   

This consistency in prior works allows this thesis to use a commercial system that could 

later be easily replaced by another improved system in the future without changes to the 

proposed architecture. 

The most critical works looked at in making this decision are summarized in Table 8. 

Author(s) Title Contribution / Key 

Points 

Yuxuan Wang, RJ Skerry-Ryan, Daisy 

Stanton, Yonghui Wu, Ron J. Weiss, 

Navdeep Jaitly, Zongheng Yang, Ying 

Xiao, Zhifeng Chen, Samy Bengio, Quoc 

Le, Yannis Agiomyrgiannakis, Rob 

Clark, Rif A. Saurous (2017) [39] 

Tacotron: 

Towards End-To-

End Speech 

Synthesis 

Proposed an end to end 

neural network text to 

speech architecture. 

Outperformed 

parametric models but 

not concatenative. 

Rithesh Kumar, Jose Sotelo, Kundan 

Kumar, Alexandre de Brébisson, Yoshua 

Bengio (2017) [41] 

 

ObamaNet: Photo-

Realistic Lip-Sync 

from Text 

Proposed and 

demonstrated a ML 

model that can take text 

and produce a video of 

Obama saying the text. 

Does not directly fit 
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into an ECA as an ECA 

has gaps in speaking 

and does not have all 

text upfront. 

The system does not 

produce emotional 

speech or video. 

Uses a module that 

predicts the mouth 

shape based on the 

audio as input. 

Ohsung Kwon, Inseon Jang, Chung, 

Hyun Ahn, Hong-Goo Kang (2019) [38] 

Emotional Speech 

Synthesis Based 

on Style 

Embedded 

Tacotron2 

Framework 

Showed how to use 

global style tokens with 

Tacotron to express 

emotions. 

Table 8 Previous work done to render or create audio based on text  
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4. Problem Statement and Proposed Method 

This section will first introduce the problems this thesis aims to solve.  To highlight, 

these are: how to use self-adjusting policies, and how to add expressive voice with lip-

syncing to the ECA. 

To solve these problems, changes must occur to existing architectures and the 

conversational algorithm to accommodate these additional components.  Once the 

problems to be solved are fully identified, this section will go over the proposed solution, 

including the required components previously proposed by [4], that will form the method 

proposed by this thesis. 

4.1 Problem Statement and Contributions 

This thesis aims to solve two problems currently existing in the current literature.   

How the policies within COCOM are designed has been an issue under research.  The 

issue is under research due to the length of time it may take to hand-craft optimal 

policies.  As a solution, Ruturaj [4] proposed using RL in order to optimize policies to 

reduce dialogue length and increase accuracy.   This improvement would mean that the 

time spent creating and optimizing policies by hand can instead be done autonomously as 

the system is used. However, Ruturaj [4] did not provide specifics on the implementation 

nor show its improvement.  This thesis aims to solve this insufficiency by providing an 

architecture that uses RL to enhance policy selection and, through a larger experiment, 

shows its practicality. 

Additionally, the most recent architecture proposed as part of [4] did not contain 

components for lip-syncing while maintaining the desired facial expression emotion or 
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for additional action as desired by POMDP, such as nodding or shaking the ECA’s head 

to further.  This thesis will address this problem by adding to the architecture previously 

proposed in [4] to add-in components to add these missing interactive behaviour features.  

During the experiment phase, screen capture software records the ECA to ensure the 

system can provide these synchronizations correctly. 

4.2 Overall Architecture 

Below in Figure 10 is the overall architecture diagram for this methodology.  In it, one 

can see the flow of information from one component to another.  The architecture and 

figure are modified versions from [4]. 

 

Figure 10 Architecture  
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In Figure 10, the observation the user provides is the text they input.  This is passed into 

both the POMDP and the sentiment analysis systems.   

Within the POMDP one can see how the observation goes into the state estimator, which 

produces both the reward used for q-learning and the new belief state.  The belief state is 

passed into storage to maintain the history.  The history is pulled from the storage system 

to perform the DWT trend analysis on.  The number of sharp points becomes the NCP 

which is used to select the knowledge level.  Within the policy selector the system will 

select the new policy to use based on the knowledge level.  It also receives the reward 

from the state estimator which trains the last used policy.  Finally this module outputs the 

mode and the best actions text to be used outside of the POMDP system. 

The mode is combined in the bottom right portion of the diagram, where fuzzy logic is 

used to determine the emotion the ECA should display. 

In the upper right the steps used to prepare to simulate the emotion and action on the 

ECA are performed.  The emotion and text are combined in the text-to-speech system to 

create the audio.  The audio is combined with the text to get the lip sync schedule.   

The lip sync schedule, the audio, and the text are then all used to create the simulation of 

the ECA.  The user than watches the ECA and based on it provides its next input, 

completing the conversational loop. 

4.3 Algorithm 

Table 9 outlines the algorithm related to the architecture of Figure 10.  Sections of the 

table highlighted in red represent areas of contribution or improvement. 
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Algorithm 

Initialization 

1 BSH = [] 

2 endState = false; last_belief = 1; last_action = null; 

last_mode = null; 

Get Input 

3 While true 

4       Text = INPUT() 

5       If (Text == ‘exit’) break 

Estimate Belief and 

get reward 

6       b, reward = AvatarStateEstimator().process(Text, 

last_belief, last_action) 

7                       Words = tokenize(Text) 

8                       S = services_match(words) #compares to 

ontology services 

9                       Bel = processBelief(S) 

10                       Reward = calculateReward(last_belief, Bel) 

#based on the amount learned 

11                       Return Bel, reward 

NCP 

12       Bsh.addHistory(b) 

13       Ncp = DWT (bsh) 

Get Knowledge Level 

14       knowl = AvatarKnowledgeLevelSelector(ncp) 

15             if(ncp < expert_max) 

16                    return ‘expert’ 

17             if(ncp < professional_max) 
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18                    return ‘professional’ 

19             if(ncp < amateur_max) 

20                    return ‘amateur’ 

21             return ‘novice 

Get COCOM Mode 

22        mode = modeSelector(knowl) #need to know the 

policy being used 

23             if(knowl == ‘expert’) 

24                    return strategicpolicy() 

25             if(mode == ‘professional’) 

26                    return tacticalPolicy() 

27             if(mode == ‘amateur’) 

28                    return oppertounisticPolicy() 

29             return scrambledPolicy() 

Teach the last mode 31       if(last_mode != null) last_mode.learn(reward, mode) 

Get Action 
31 action = mode.getAction(b) #This implementation is q-

learning / hand crafted 

Use sentiment and mode 

to get emotion 

32        sentiment = getSentiment(text) 

33        emotion = avatarEmotionFuzzy(mode, Sentiment) 

#basically use the rules 

34                      f_input = fuzzify(mode, Sentiment) 

35                      f_output = apply_rules(f_input) 



 

41 

 

36                      return crisp(f_output) 

Set Face 

37        au = getActionUnit(emotion) #could be a 

combination 

38        eca.setFace(au) 

Audio 

39        voice_style = getStyleEmotion(emotion)  #table 

lookup 

40        audio = textToSpeech(action.text, voice_style)  

#contact Voicery API service 

ECA Speak / Lip Sync 

41        eca.say(audio, action.text) 

42                phones = ps.decode(audio) 

43                foreach(frame in audio) 

44                       au = getAU(frame.time, phones) 

45                                   return getAU ( 

getPrevAU(frame.time, phones) * 0.1 

                                            + 

46                                          getCurAU(frame.time, phones) ) 

47                       eca.mouthAction(au)   # add the mouth 

shape to the emotion 

48                       play(frame) #the audio 

49                       wait(frame.length) #wait for this segment to 

play 

50        eca.setFace(emotion) 

Carry Over 51        Last_belief = b; Last_mode = mode; 

Table 9 Algorithm 
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4.4 Algorithm Details 

The proposed method has a variety of steps and uses a variety of algorithms to 

accomplish its goal.  This section will outline how they function in approximately the 

order that the systems perform them once implemented.  This section will also flesh out 

some of the implementation details specific to the experiments. 

4.4.1 Initialization 

When starting, the system will begin at the empty belief state, the simulator will open, 

and the python code will connect to the simulator.   

Once initialization is complete, the first conversation iteration will begin.  To start the 

first iteration the user will type in their first piece of dialogue. 

4.4.2 POMDP State Estimation 

Upon receiving the dialogue, the POMDP will estimate the new belief state.  To do so, it 

will parse out all the words entered and match them to the available services, then 

produce the belief state based on the matches and previous belief state.  This state will 

add to the BSH. 

4.4.3 Mode Selection with Trend Analysis 

The system will perform DWT on the BSH to retrieve the NCP. 

The knowledge level is selected based on the NCP based upon the limits provided for that 

experiment.  An example set of limits is in Table 10. 
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NCP Knowledge Level 

NCP < 4 Expert 

NCP < 7 Professional 

NCP < 10 Amateur 

Otherwise Novice 

Table 10 Example knowledge level thresholds 

4.4.4 Self Adjustment of POMDP Policy 

Based on the new state, the system receives a reward for moving into it.  This reward is 

passed to the q-learning module so the system can perform RL to learn from this action.  

The new mode is also passed in so that the future reward comes from the new mode.  The 

reward and the mode transition that occurred influences the next action selection using 

that mode.  The addition of mode means that the system uses the following modified Q-

Learning equation.  

𝑄(𝑥, 𝑎) = (1 − 𝛼)𝑄(𝑥, 𝑎) + 𝛼( 𝑟 +  𝛶 max
𝑏

( 𝑄′ (𝑦, 𝑏)  )  )                    (3) 

In Eq. (3), Q’ is the new mode – so that it considers the new mode’s future reward. 

4.4.5 Emotion Selection with Sentiment Analysis 

Based on the NCP, knowledge level, the Q-Learning module will choose the policy by 

which to choose the action. 
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4.4.6 ECA Rendering with Speech and Force Phonetic Alignment 

Based upon the NCP, reward, and available rules, the system will use Fuzzy logic to 

determine the emotion the ECA should be expressing for this iteration.  Table 11 displays 

the fuzzy rules which [4] provides. 

 Policy 

Sentiment Strategic Tactical Opportunistic Scrambled 

Negative Disgust Anger Fear 

Neutral Fear Sad Surprise Sad 

Positive Happy Surprise 

Table 11 Fuzzy rules for emotion selection 

The text to speech module uses the emotion and the action along with a text-to-speech 

module to create the required speech for the ECA to output.  This module will use an 

expressive voice that matches the requested emotion. 

Note that Voicey does not provide the exact emotions prescribed in Table 11, and so the 

system must translate to a Voicery emotion.  Table 12 provides the translation this thesis 

uses. 

 

 



 

45 

 

Emotion Expressive  

Disgust Flustered 

Anger Angry 

Fear Scared 

Sad Sad 

Surprise Flustered 

Happy Happy 

Table 12 Translation to Voicery expressive voices 

The forced phonetic alignment module receives the text from the action prescribed and 

the voice from Voicery.  It returns a schedule of which phonetic syllable the ECA should 

simulate at what time in relation to the audio file provided. 

Finally, the ECA uses the audio file, emotion, and lip schedule to simulate an avatar.  The 

ECA will change its face based on the emotion.  It will then simultaneously play the 

audio and alter the mouth to match the shapes specified by the lip schedule – this will 

mean the mouth syncs with the audio while the rest of the face is still appearing like the 

the specified emotion. 

The ECA uses AUs to make up each facial expression, taking reference from [24] on how 

to create each emotion from the AUs. 
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Once complete, the system will return to the first step awaiting a response from the user.  

Looping in this way means the system continues until the system enters a belief state that 

terminates the system.  If terminated, the system will print to the console information 

regarding the conversation needed for the experiment. 

4.5 Running Examples 

This algorithm has many components and can seem quite abstract.  This thesis provides 

two examples to aid in the reader’s understanding.  One example is provided to aid in 

understanding how POMDP functions, and another which takes an emotion and text pair 

to describe how the ECA will simulate the combination.  As these steps occur on a larger 

scale, such as for all intents or multiple audio frames within the same second, these 

examples will only consider a smaller subset of them. 

4.5.1 POMDP Dialogue 

These examples will cover the POMDP deciding which action to take, starting from input 

from the user up to deciding the emotion and action text.  Thus this example represents 

lines 3 – 36, as shown in Table 9. The first of the two given examples assume that this is 

the first input from the user and will use the hand-crafted policies.  The second will start 

in the middle of a conversation and use a q-learning policy.  Note that they both will use 

fake information for the q-values and use a smaller set of intents. 

Example 1 conversation start 

This example starts at the start of the conversation and will use hand-crafted policies, 

which are in Appendix D: Hand Crafted Policies. 
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Suppose the user says, “I want security”.  That text passes into the belief state calculator.  

The calculator will compare each word to the tags of the intents; in this case, only the low 

and high security intents are relevant.  They both contain the tag ‘security’ within the user 

input, which significantly increases their belief.  High contains the tag ‘secure’ and low 

‘insecure’ as these words are like the word security but not exact.  Secure being closer 

than insecure; these comparisons also influence the belief state.  The high security value 

is 0.770, and the low security value being 0.700.  These values represent the belief state 

which the system adds to the BSH.  The reward, being based on the change in belief state, 

which started at all 0.5 to start, is 0.117. 

Since this example is using handcrafted policies, no learning takes place. 

As there is only one data point, the DWT analysis cannot detect any trends, and as such, 

the NCP value is zero.  The zero is consistent with the idea of NCP as the user needs to 

change their mind, and they cannot do that in one input. 

As the NCP value is zero, this is lower than the max for the expert user type; as such, at 

this point, the system decides they are an expert.  Therefore, the system uses the strategic 

COCOM policy. 

The simplified belief state is (0.770 + 0.700)/2 = 0.735.  With the handcrafted strategic 

policy, this will be the guess action.  As ‘high security’ is the highest belief, the action’s 

text will be ‘Do you mean With High Security?’.   

Separately, the sentiment of the user's input was 0.0 negative, 0.0 neutral, 1.0 positive.  

The knowledge level of expert and the sentiment pass through the fuzzifier, which leaves 

expert and positive as the fuzzy inputs.  Using Table 11 as inference rules, the system 
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gets happy as the fuzzy output.  In this application, the defuzzifier does not perform any 

functions, and happy becomes the final output. 

Therefore, the ECA will simulate saying, ‘Do you mean With High Security?’ with 

happy emotion.  The system will then wait until the next user input. 

Example 2 mid-conversation q-learning 

For this example, the system will start partway in the conversation after there have been 

three user inputs, and this is the fourth.  This assumption means there are already three 

data points in the BSH.  To keep this example simple, the user will be asking for the low 

security intent, and this example will only cover the low and high security intents. 

Input High 

Security 

Low 

Security 

NCP Level Reply 

“I want 

security” 

0.770 0.696 0 Expert “Do you mean with high 

security” 

“I just want it 

to be secure” 

0.792 0 1 Expert “Do you mean with high 

security” 

“the min 

security” 

0.202 0.732 5 Professional “Please choose from the 

following: With High 

Security, With Low 

Security” 

Table 13 Example conversation history 
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The last action used the tactical policy, and the action was action four.  After the action, 

the system is in state five.  Suppose the q-values at that point looked like: 

State Action 1 Action 2 Action 3 Action 4 

1 = 0.0-0.1 1 8 7 8 

2 = 0.1-0.2 2 5 25 6 

3 = 0.2-0.3 5 5 8 8 

4 = 0.3-0.4 3 6 5 1 

5 = 0.4-0.5 4 4 6 8 

6 = 0.5-0.6 8 2 4 5 

7 = 0.6-0.7 5 2 1 3 

8 = 0.7-0.8 1 1 5 9 

9 = 0.8-0.9 8 4 2 6 

10 = 0.9-1.0 3 1 2 5 

Table 14 Example 2 initial q-values 

Given that history suppose the user says, “I want low security”, a perfectly valid 

response.  This observation will move the belief state to 0.708 for low security and 0 for 

high security, creating a reward of 0.242.  The new simplified belief state is 0.708, as it is 

the only belief greater than zero.   
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The system will now calculate the NCPs.  To do so, pass the BSH, including from this 

input, into the DWT to get the transformed wave.  Then count each zero-crossing point to 

get the total NCPs.  Figure 11 shows the waves made by the BSH, while Figure 12 is the 

resultant DWT wave. 

 

Figure 11 Belief state history example 

 

Figure 12 Transformed DWT example 

The total number of zero-crossing points is four, which corresponds to the professional 

user.  This user type corresponds to the tactical policy, and so the system will use the 

same q-values.  Looking at Table 14, the best action for state 8 is again action 4 – the 
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selection action.  Therefore, the system will say, “Please choose from the following: With 

High Security”.  While this response does not make much sense based on the belief 

states, as q-learning keeps going, this would ideally improve. 

Now that the system has a reward and its new mode, it will update the tactical policies 

state five action four.  This example will use a 0.5 learning rate and a 0.5 discount factor.  

Note that in this case, the mode did not change, and so Q = Q’ and only the one table is 

referenced. 

𝑄(5,4) = (1 − 𝛼)𝑄(5,4) + 𝛼( 𝑟 +  𝛶 max
𝑏

( 𝑄′ (𝑦, 𝑏)  )  ) 

𝑄(5,4) = (1 − 0.5)8 + 0.5( 0.242 +  0.5 max
𝑏

( 𝑄′ (8, 𝑏)  )  ) 

Using state eight’s q-values, the best q-value, representing future reward, is nine. 

𝑄(5,4) = (1 − 0.5)8 + 0.5( 0.242 +  0.5 (9)  ) 

𝑄(5,4) = 4 + 0.5( 4.742 ) 

𝑄(5,4) = 6.371 

Therefore, the new state five q-values will look like: 

State Action 1 Action 2 Action 3 Action 4 

5 = 0.4-0.5 4 4 6 6.371 

Table 15 State five’s new q-values 
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The sentiment analysis on the user shows that their input of “I want low security” had a 

sentiment of negative 0.362, neutral: 0, and positive 0.638.  This sentiment, in 

combination with the tactical policy, is passed through the fuzzifier of the fuzzy logic 

module.  The fuzzifier transforms these into positive and tactical for the fuzzy inputs.  

The inference engine will use the inference rules presented in Table 11, creating a fuzzy 

output of happy.  Happy is, therefore, the selected emotion. 

Thus, the system will render “Please choose from the following: With High Security”, in 

a happy emotion.  The system will then wait for input and repeat this process.  The 

system will then train state eight action four based on the next reward. 

4.5.2 ECA Simulation 

The ECA simulation example covers lines 37 – 50 of the algorithms, as shown in Table 9.  

The example will start with the two inputs, the emotion and text the ECA will render.  

Let us assume it is saying, “can you please rephrase your request?” happily. 

First, the system will get the AU for a happy face – which is a combination of cheek 

raiser, which does the eyes, and lip corner puller, which does the smile.  Both are set to 

an intensity of 1.0 and sent to the ECA to render. 

Next, the system chooses a Voicery style to use, in this case, happy.  The module pulls 

from Table 12.  The Voicery style, and the text, is sent to Voicery using their API, the 

result is the wave audio file of the voice. 

The audio file and transcript pass through the forced phonetic alignment module, which 

will produce the alignment between the phonetics and the audio file.  In this case, the 

alignment provided by PocketSphinx is in Figure 13. 
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[('SIL', 0, 0, 66), ('T', 0, 67, 72), ('F', 0, 73, 80), ('DH', 0, 81, 84), ('UH', 0, 

85, 91), ('R', 0, 92, 101), ('UW', 0, 102, 113), ('ER', 0, 114, 117), ('B', 0, 

118, 130), ('IH', 0, 131, 133), ('F', 0, 134, 137), ('W', 0, 138, 146), ('ER', 

0, 147, 151), ('UW', 0, 152, 169), ('S', 0, 170, 184), ('G', 0, 185, 191), 

('W', 0, 192, 200), ('AA', 0, 201, 207), ('F', 0, 208, 231), ('AA', 0, 232, 

243), ('UW', 0, 244, 252), ('UW', 0, 253, 260), ('S', 0, 261, 274), ('HH', 0, 

275, 278), ('UW', 0, 279, 287), ('AO', 0, 288, 307), ('AA', 0, 308, 312), 

('B', 0, 313, 322), ('OW', 0, 323, 326), ('TH', 0, 327, 334), ('N', 0, 335, 

338), ('AW', 0, 339, 345), ('ER', 0, 346, 362), ('OW', 0, 363, 367), ('AH', 

0, 368, 370), ('S', 0, 371, 396), ('P', 0, 397, 401), ('S', 0, 402, 410), ('P', 0, 

411, 418), ('SIL', 0, 419, 466), ('TH', 0, 467, 477)] 

Figure 13 Forced phonetic alignment example 

The audio splits into a series of small segments, which can also be called frames.  Each 

segment is then outputted one at a time to an audio renderer.  At the start of each segment 

rendering, the system computes a new face rendering using AUs and renders it.  To 

calculate the face: first, zero out all mouth related AU; this will leave the cheeks raised 

but remove the smile.  Now suppose it is at the related point of 195; the current phenome 

is the ‘w’ phenome, which relates to the phenome f AU.  Therefore, set the f AU to an 

intensity of 0.5.  The preceding phenome in the alignment is the g sound, which is the 

phenome g AU, and therefore is an intensity of 0.1.   These two are combined with the 

raised cheeks and sent to the ECA and rendered.  The audio will play, and the system will 

loop back to the start. 

Note, if there were no previous phenome, there is only the one mouth shape with an 

intensity of 0.5. 

Finally, now that the end of the audio file, the system takes the initial happy action units, 

that is, both the cheeks raised and the smile and sends them to the ECA again to render. 
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5. Implementation and Experiments 

5.1 Software Customization: An Example 

To demonstrate the abilities of ECA and intention discovery, this thesis has used software 

customization as the user’s overall intention.  The intent the system must discover is 

determining which feature they want.  Software customization is a growing research area 

as software offerings include many features that users never use in with [42].  This issue 

is referenced by [42], which claims, “According to a survey, on average, more than 45% 

functions of a software product are never used by most users” [42].  It is further claimed 

by [42] that adding these unneeded and additional features can be harmful as it creates a 

more extensive application and can reduce reliability and security.   

This thesis uses the same bookstore system used in [4] and [30] to provide its user 

intents. 

The implementation can be used in three modes.  One where the user emulator is used to 

where multiple conversations occur and summaries are outputted to the terminal.  This 

first mode is useful for experiments and training the self-adjusting policies. Secondly, the 

user types in the terminal and the system returns the text of the action and emotion.  

Lastly, the user enters their text to the terminal, and the system renders the avatar to the 

user. 

5.1.1 Interactive Feature Selection 

Likely motivated at least in part by the above, software production lines (SPL) is an 

ideology towards software development that focuses on re-using parts of the software to 

create customized versions of the software [43].  Additionally, there is an approach to this 
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problem using automated software, such as an ECA to elicit software requirements from 

users, so that developers can quickly use their SPL to create the customized software 

[43].  This methodology has the users pick from a variety of pre-defined features that 

make up the model of the entire software system. 

Figure 14 contains the full ontology for this example.  Figure 15 shows only the 

implemented portions. 

 

Figure 14 Bookstore ontology [43] 



 

56 

 

 

Figure 15 Planned ontology implementation [43] 

5.1.2 Policy Selection and Dialogue Length 

The system can respond to the user to determine what the user would like using both 

types of policies, the handcrafted policies, and the self-adjusting q-learning policies.    

Because testing manually would take an excessive amount of time to perform both 

training and testing, a test script emulates users, including the intents and user types.  It 

emulates the users so they will decide what to say based on what the system last 

outputted according to the user type and intent combination.  It will then quit after 

speaking 100 times or when the user has a level of confidence that the system correctly 

knows what it wants, basing this confidence upon the system's past actions.   All 

automated experiments use the same script to provide a level of consistency.  When 

finished with a conversation, the user script will compare the intent the system believed it 

was, and the user script will output if it was correct or not, the dialogue length, and other 

pertinent information. 
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The experiments use four hand-crafted (HC) policies, one for novice, amateur, 

professional, and expert, which choose from 4 actions; these policies serve as the 

COCOM policies when using the HC policies.  For machine learning, these policies 

consist of a q-learning system that has ten states and four actions.   The four actions 

available are the same for both HC policies and reinforcement learning policies, and the 

user emulator cannot tell them apart. 

The first experiment will be to run the user script against the system, where the system 

uses only one of the HC policies for each policy.  Next, perform the same experiment 

using a single RL policy – since all four machine learning policies are equivalent, there is 

no need to use all four.  As q-learning tends towards the optimal policy [26], and the 

reward is based in part on dialogue length, it is expected that the single RL policy will be 

superior to the single HC policies showing an improvement. 

As the NCP limits provided in [4] were from a conversational database, a slightly altered 

version of the tests to do a grid search on these limits, the best of which the more 

extensive test uses.  The more extensive test increases the sample size, as the sample size 

for grid searches is less than the sample size used for the other experiments for the grid 

search to complete in a reasonable timeframe.  Similar grid searches find the best results 

for both the HC and RL version of the policies.  Similarly to the single policy 

experiments, as q-learning should bring us to the optimal policy for each COCOM mode, 

COCOM experiments are superior to using a single policy [9] it is expected that the RL 

COCOM experiment will show additional improvement. 
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5.1.3 Improvement of Interactivity 

To demonstrate the lip-syncing and maintaining facial expression capabilities, screen 

recording technology will record several interactions with a live user.  Over time varying 

emotions will be recorded in addition to the ECA’s lip-syncing capabilities.  The avatar 

will also be recorded going through all possible emotions to ensure there is an example 

for each. 

It is expected that this thesis will create an improvement of interactivity over [4] as it did 

not contain any level of lip-syncing, this lack of lip-syncing can cause audiences to lose 

interest [6].  Additionally, not only will the expressive voice enhance emotions, which 

enhances the user experience [35], but it will make the communication channel richer as 

it has additional social cues.  For these reasons, this thesis expects that the proposed 

system will have an improvement of interactivity when compared to previous systems. 

5.2 Evidence of Contributions 

This section will outline the outcomes that this thesis expects to occur based on other 

literature and the correct usage of the proposed method.   

5.2.1 Shortened Dialogue Length 

Based on the experiment in 5.5.2, this thesis expects to see that the average dialogue 

length is shorter using the new methodology for choosing the policy to be used.  This 

result will demonstrate that using the self-adjusting policies results in shorter 

conversations and, as such, has an improved user experience.  Furthermore, the rate at 

which the system discovers the user’s intent has increased, thus an increase in the 

intention discovery rate. 
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5.2.2 Improved Success Rate (Intention Discovery) 

Likewise, the results from the experiment in 5.5.2 should show that the intention 

discovery has improved, as more of the conversations should perceive the correct intent.   

This change means that the intention discovery is more correct using the self-adjusting 

policies than the HC policies. 

5.2.3 Improved ECA Interactivity 

Unfortunately, without doing a study with human subjects to obtain a mean opinion score 

(MOS), one cannot quantitatively state the change in interactivity from a voice and facial 

expressions perspective.  Therefore, the author alone will pass judgement on the change 

of interactivity, which will form the basis of the results of this improvement.   

This thesis expects that this implementation will improve the interactivity as the voice is 

emotional, the face is emotional, and the lip-syncing will match the speech.  All of these 

features were not present in the implementation in [4], which forms the basis of the 

proposed architecture.  Therefore, adding these features should improve the interactivity 

of the ECA. 

5.3 Software Tools and Datasets 

A software of this size uses multiple existing software systems so that not everything, 

including graphics, must be built from scratch.  Table 16 contains the list of software and 

tools used to create the implementation and experiments.   

Note that for text-to-speech, this thesis uses Voicery rather than a different published 

prior work.  This thesis uses Voicery primarily for convenience, as it had a speaker that 

closely matched existing works in terms of emotions, and it means that the training of an 
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ML model is not required.  Since text to speech methods are relatively similar to each 

other in terms of input and output, it would be simple to swap them out, might just need 

to change audio formats. 

Function Software 

Programming Language Python 

Simulation (for avatar) AirSim (Talking Heads) 

Phonetic Alignment PocketSphinx 

For analyzing previous android application Android Studio 

Text to Speech Voicery 

Code Editor (Python) Notepad++ 

Code Editor (Android) Android Studio 

Data analysis and Graph Creation Microsoft Excel 

Table 16 List of software tools and datasets used 

5.4 Implementation Details 

This section will outline how the proposed experiment was implemented, on a simplified 

level, taking care to describe the steps taken to ensure the created quantitative results are 

defensible.  This section will skip some components of the algorithm when the algorithm 

is trivial such as an if-else clause. 
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5.4.1 POMDP 

Some of the components in the Android application in [4] are related to this 

implementation.  The author converted these related components into Python.  This thesis 

chooses to use Python to implement its application, as it is a simple language to use, and 

the Android application had stability issues, randomly crashing.  In contrast, the Python 

system encountered less fatal errors.  As the overall system was present, but not all, the 

author also made many changes and added additional features to create the new 

implementation.  

The POMDP component is central to this system, and so how it works is especially vital 

to defending the results.  POMDP is aware of the series off intents created; each intent 

has a current belief value and a series of good tags and negative tags.  Each good tag is a 

word related to the intent.  For example, for the ‘add to cart’ intent ‘cart’ and ‘add’ are 

both good tags.  The bad tags then are words that, when provided, mean that the intent is 

less likely to be the user's intent.  For example, saying ‘high’ when asking for low 

security.  Using the ‘add to cart’ example, ‘remove’ would be a negative tag.  Each 

inputted word is compared to each tag, considering some variation of spelling and alters 

the belief for that intent.  The belief state changes by considering multiple attributes, 

including negative and positive tags, the textual difference to the tags, and the parent 

intent's tags if applicable.  This section omits the details from here as they are not needed 

to understand the overall POMDP.  Right after calculating the new belief, it adds to that 

intent’s belief history. 

The reward returned by the change in belief state is based on the increase of the average 

non-zero belief divided by the number of non-zero intents.  This reward formula, 
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presented in Eq. (4), is inspired by the idea that the system wants to head towards having 

a single intent with a high belief.  This reward trains the q-values for q-learning. 

 

𝑟𝑒𝑤𝑎𝑟𝑑 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐵)−𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐵′)

|𝐵|
                                             (4) 

𝑤ℎ𝑒𝑟𝑒  

𝐵 = {𝑏 | 𝑏 ≠ 0 𝑎𝑛𝑑 𝑏 𝜖 𝐼  }  𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑎𝑙𝑙  𝑖𝑛𝑡𝑒𝑛𝑡′𝑠 𝑏𝑒𝑙𝑖𝑒𝑓𝑠 

 𝐵′ = {𝑏 | 𝑏 ≠ 0 𝑎𝑛𝑑 𝑏 𝜖 𝐼′  } 𝑎𝑛𝑑 𝐼′ 𝑖𝑠 𝑎𝑙𝑙  𝑖𝑛𝑡𝑒𝑛𝑡′𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑏𝑒𝑙𝑖𝑒𝑓𝑠   

5.4.2 BSH and DWT 

To perform a BSH analysis, the Harr wavelet [18] is used on each intent's history to gain 

the transformed wave.  However, as also noted in [4], the Harr wavelet transformation 

expects an input of length 2n where n is an integer.  As such, to gain more data points 

when needed, the system randomly chooses two points and adds a point that is the 

average of the two between the two.  This sub-sampling allows for transforming any 

length of wave.  Once capturing the new wave, each point is compared to the next to 

determine the number of zero-crossing points.  This process repeats for each intent and 

sum the number of zero-crossing points to get the total. 

5.4.3 Policies 

Based on the mode the main script is in, the system will either select the policy from the 

selection of q-learning self-adjusting policies, or one of the handcrafted ones based on the 

knowledge level. 
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Both policies receive the same information, which is a simplified version of the belief 

state.  This simplified version is the average of all belief states that do not have a non-

zero belief. 

While the primary system passes in a zero or a one to change the type of policy provided, 

this value not otherwise used.  As such, the action, user emulator, and other components 

work the same regardless of the policy type. 

HC Policies 

The HC policies use the simplified belief state to choose the action based upon pre-

chosen boundaries.  The boundaries were created by thinking about what state the 

conversation is at if it is that belief state and what the system should say based on the 

user’s knowledge level.  For example, one of the actions confirms the maximum believed 

intent; the boundary where it will ask an expert user to do this is lower than a novice user. 

After creating the HC policies, the author did not make further changes.  By not changing 

these further, the author could not sabotage the HC policies had the expected results not 

came to fruition on their own. 

Self-Adjusting Policies 

The q-learning policies are similar but use q-learning to choose the action rather than 

using pre-selected boundaries.  As the simplified state is between zero and one, it can 

evenly divide into ten sub-spaces, each of which correlates with a state.  As there are four 

actions, this results in a ten state four action q-value matrix.  All values are initialized to 0 

and saved after each conversation. 



 

64 

 

All four policies are identical at the start but will diverge as training occurs.  If the policy 

uses changes – the system will look ahead into the new policy to get the future reward 

value. 

5.4.4 Actions 

As mentioned, the system has four possible actions, each of which is a text template 

which may include details regarding the belief that needs to be passed to the user for it to 

determine its response.  These actions are not changed between the two policy types or 

based on the belief state value, and so the other components of the system cannot tell if 

an HC policy or RL policy created the action.  These actions are confirming the max 

belief, guessing the belief state, asking if the user means all the believed intents, and 

asking the user to rephrase.  The exact templates are in Appendix C: Action Templates. 

5.4.5 User Emulator 

While this thesis refers to the user emulator as a script, it is one of the portions of the 

system.  To allow for this, the implementation abstracts the input and output into 

interaction classes based on a value set in the main script.  One is for text-only 

communication using the keyboard for testing; one enables the ECA; and one is the user 

emulator.  In all three cases, the main script calls an input and output function to do the 

needed steps.  The output function only receives the text and the emotion; the object 

interprets it and responds to the next request for input accordingly.  In this way, the object 

is insulated and does not receive any additional information that the user would not 

know. 
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When initiation the user emulator object, the main method passes in whether it is training 

or not.  If it is training, then the first input call returns the user type rather then standard 

input, and the main script sets the NCP value for the remainder of the conversation, thus 

training for this user type only.  When training, the user output is not produced and thus 

cannot be a part of the results. 

As the purpose of this thesis is to determine the q-learning improvements, and the 

emulator cannot consider the interactivity of the ECA, the user emulator does not 

consider the emotion when formulating a response.  For performance reasons, the ECA 

does not run while using the user emulator. 

When receiving output, the emulator looks for keywords to determine both its response 

and its belief in the system.  For example, if the system confirms the correct intent, it is 

increasing its belief more than if it mentions the intent in the selected template. 

Based on the user type, intent, and last template used, the emulator uses a hand-crafted 

dataset of options to reply.  The dataset was tweaked based on success rates and NCP 

values to try and create a realistic dataset. 

Note that while the template determines the response to the interaction object, the 

emulator parses which template it is using the last received output. 

Once the user has spoken 100 times, or once the belief that the system is correct has 

reached a threshold, the user quits, ending the conversation.  When exiting, the system 

returns the estimated intent to the user emulator.  This is compared to the true intent 

which the emulator uses to output a conversation summary for analysis and returns a 

reward to the system to learn from using (5). 
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𝑟𝑒𝑤𝑎𝑟𝑑 =  {
−1, 𝑖𝑓 𝑓𝑎𝑖𝑙𝑒𝑑

  
0.7

𝑙𝑒𝑛𝑔𝑡ℎ
, 𝑖𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

                                            (5) 

5.4.6 Avatar 

The implemented avatar uses the implementation of [23], where the avatar uses Airsim’s 

Talking Head software.  This is a change from [4], which provided the base of the 

proposed architecture.  In [4], the avatar consisted of a 3-d model viewer, which would 

swap out the 3-d model to change the emotion.  This method, however, has some 

shortcomings, primarily that the 3-d models did not have an easy way to alter them to 

change the expression besides swapping them out.  This shortcoming means the system 

needs a 3-d model for every complete facial expression.  As the proposed method 

combines not only every eye emotion with every phonetic sound combination but, in 

many cases, combines phonetic sound mouth shapes creating an infeasible number of 

possibilities to pre-draw and render. In contrast, basing the system on [23] provided a 

large amount of flexibility, allowing the system to render combinations of AUs without 

pre-created 3-d models.  

5.5 Experiment Details 

After implementing this system, it ran multiple experiments to get the results that could 

prove the desired contributions. 

5.5.1 Single Policies 

This thesis ran a set of single policy experiments; these ignore NCP and knowledge levels 

and always use the same policy.  For HC policies, this needs to be done for all four 

policies as they are different.  For the RL policies, only one policy needs to be analyzed, 
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as all four policies would come to the same result.  For each HC policy, 8000 

conversations occurred.  For the single RL policy, 2000 conversations were used for 

training, followed by 4000 conversations for testing. 

5.5.2 NCP Grid Searches 

As NCPs in a conversation would likely change based upon the NCP values and actions 

of the system, it was felt that a better approach would be to use grid searches to find 

optimal knowledge level boundaries. While grid searches take a significant amount of 

computing time, this method would result in the best overall result. 

For HC, the final grid search ran with 4000 conversations at each combination.  As 4000 

conversations is a substantial number, a more extensive test is not required.  The best 

result came from using a max expert NCP of 5, max professional of 8, and a max amateur 

of 10. 

For machine learning, a variety of searches were undertaken due to the increased number 

of hyperparameters.  The last search used 4000 training samples where the system knew 

the user type, followed by 2000 samples where the system did not know the user type.  

4000 test samples follow the training samples – enough to compare the result to the other 

experiments.  The idea of the two-stage training is to bootstrap the training of each 

policy, then run some samples to fine-tune them.  The increase in training samples is 

justified as the system is training four times as many q-values.  During training, the 

learning rate was 0.8 and during test 0.4, with all q-learning reward discounts being set to 

0.5.  The final boundaries were a max expert NCP of 4, max professional of 8, and a max 

amateur of 10. 
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In order to determine the q-learning learning rate (𝛼) and reward discount (𝛶) other 

experiments were conducted using different values.  For the learning rate, it was found 

that lowering the learning rate during testing had better results.  For the discount rate, 

similar adjustments were made, including using different learning rates for each policy. 

However, the best result came from using the reward discount of 0.5.    
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6. Results and Discussions 

Each conversation results in a status of success and a value of length.  Success means 

whether at the end of the conversation the system had the highest belief matching the user 

intent of the test script.  The length is how many times the user has to say something.  It 

is also important to note that at a length of 101, the user effectively ‘gives up’ and ends 

the conversation.  It is possible for the user to both ‘give up’ and for the conversation to 

be deemed a success, so long as the intent at the end is still correct. 

6.1 Success Rates 

The primary metric used to determine the success of the system is the success rate, which 

is the percentage of times the system correctly acquired the user’s intent.  This metric 

includes times where the user gave up, hitting the maximum length of 101 statements, but 

at the end of the conversation, the system had the correct intent.  To determine success, it 

does not matter if the intent was similar.  If it was not the exact intent, the system failed 

to acquire it.  For example, if the user wants to ‘search by author’ and the system believes 

they meant ‘search by title’ it is a fail that has the same weight as if the system thought 

the user wanted ‘low security’.  Therefore, an improvement in the success rates indicates 

an improvement in the system. 

Figure 16 shows the success rates of the experiments conducted.  The ones beginning 

with HC are the hand-crafted single policies, the RL uses the self-adjusting polices, and 

COCOM experiments are the best grid search result.  This graph shows the novice being 

the lowest HC policy, followed by amateur.  The next four are very close in success rates, 

from professional being 57.36% and expert being 59.31%, a difference of less than two 
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percent.  Finally, the RL COCOM has the highest accuracy, with a 63.13 % accuracy 

rate.  The full underlying data for this figure can is in Appendix B: Aggregated Results. 

 

Figure 16 Success rate results 

There are some additional points to note with these results.  Primarily, that the RL Single 

experiment is below the HC Expert level, though the two are close.  This discrepancy 

indicates that the HC expert policy is close to the optimal HC policy, and the RL single 

experiment brings us close to that single optimal policy.  Additionally, the HC COCOM 

is below both – this is likely the novice or amateur policies bringing the overall score 

down.  As proving COCOM is not a subject of this thesis, this thesis conducts no further 

investigation into this discrepancy.  Regardless, these results show that a single self-

adjusting policy comes close to optimal and that COCOM aids in creating a better overall 

experience and success rate for RL policies.  This result is in line with what this thesis 

expected to happen. 
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6.2 Dialogue Length 

A secondary metric used to determine the success of the new system is the length of 

successful conversations.  A shorter conversation where the user does not have to interact 

as much with the system is an ideal system, as it provides a more positive user 

experience.  However, it is more important for the conversation to be successful; 

therefore, this section will focus on these successful conversations.  There are two 

categories of successful conversations – those where the user gives up and those where 

the user also feels confident that the system has the correct intent.  

Figure 17 indicates the mean dialogue length for these experiments.  A lower average is 

better than a higher one.  This data shows that a single self-adjusting policy did the best, 

followed by the expert HC policy, then the HC COCOM, and finally, the self-adjusting 

COCOM.  This discrepancy is not what this thesis expected to see; what was expected to 

be ideal is mediocre.  

 

Figure 17 Mean dialogue length 
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The fact that the single self-adjusting policy performed better than the COCOM version 

is highly irregular – if the single policy was the better, all four should have gravitated 

towards it, and the results would have been similar.  The fact that the single RL policy 

beat all others reinforces its place as the single optimal policy. 

 

Figure 18 Median dialogue length 

Looking at Figure 18, which shows the median dialogue lengths, the results are quite 

different.  The RL Single, RL COCOM, HC COCOM, and HC Expert all have the same 

median dialogue length.  Due to this similarity, it is possible that the RL COCOM’s 

longer dialogues are longer, which may even be caused by additional success 

conversations.  The result is ok because it is better for a conversation to be longer but 

right than to be wrong.  It is also not difficult to see how some long conversations, which 

may go up to 100, would pull away from a median of 3 and skew the mean.   
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Looking at Figure 19, the percentage of dialogues ending under three increases for both 

the self-adjusting experiments.  This increase lends further proof to the idea that it is 

lower with self-adjusting policies. 

 

Figure 19 Percent under three 

Together, this data shows an improvement in the dialogue length, while it was not an 

improvement in the mean dialogue length, there is evidence that improvement occurred. 

6.3 Recordings 

As it is difficult to rank the lip-syncing and overall user experience of the ECA 

quantitatively, instead several recordings were made to demonstrate the system’s 

capabilities.  These recordings have been made available through Google Drive at 

https://drive.google.com/drive/folders/1vlZXGNK_AY955obj5jN_VKXGA87ZEeZm?us

p=sharing .  In the author’s opinion, the lip-syncing capabilities are excellent overall.  

While mixing the upper facial expression with the lips for each syllable works well, 

sometimes the switch back to the emotion on the lips can be jarring to see.  This jarring 

https://drive.google.com/drive/folders/1vlZXGNK_AY955obj5jN_VKXGA87ZEeZm?usp=sharing
https://drive.google.com/drive/folders/1vlZXGNK_AY955obj5jN_VKXGA87ZEeZm?usp=sharing
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feeling is likely because the change is sudden from having a reasonably neutral mouth 

throughout the sentence, it looks like the change is more sudden then having the emotion 

displayed on them throughout as a human would. 

Some of the emotions also appear quite intense, which may lead to a more jarring user 

experience.   

6.4 Limitations 

While these results do show an improvement, this thesis needs to address some caveats.  

Primarily, these results came from using a user emulator script and not from using a 

human usability study.  This limitation means that these improvements may not be the 

same as when applied to humans.  The author believes that any system that would do this 

in a commercial context would likely need both more actions and a higher level grasp of 

the belief state, not to mention a more detailed POMDP, these are future research 

directions mentioned in 7.1.  Secondly, the grid searches on additional hyper-parameters 

were limited in scope; they could have missed a result that would have shown an 

increased improvement. 

The avatar itself was not tested on additional test subjects to create a MOS on its 

interactivity.  Therefore, the objective analysis of concepts such as naturalness or realism 

are the opinions of the author and may not be the same when introduced to a broader 

audience.  
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7. Conclusion 

In conclusion, this paper furthers the current research into ECAs by providing two 

contributions.  First, this paper demonstrates using a quantitative experiment on how 

using RL, in the form of Q-Learning, to select the next action in place of each COCOM 

policy increases intention discovery and decreases dialogue length.  The experiments 

used showed an increase in success rates along with an improvement in dialogue length 

and an increase in the user’s ability to determine the intent of the ECA.  All these results 

show an increase in the usability of the system.  Secondly, this paper proposed an 

improved architecture so the ECA can provide expressive text to speech and lip 

synchronization.  This thesis prototyped the proposed architecture to show its viability 

producing multiple videos to show others.  These contributions improve the current 

literature surrounding ECAs and their respective capabilities in integrating these various 

components. 

7.1 Future Research 

One future work may be allowing for simple actions, such as head nodding or blinking, to 

be included in this architecture and controlled by the emotions or POMDP.  The avatar 

can likely do this reasonably easily as the basis of the avatar [23], could blink or make 

other simple motions.  As noted in [5], these non-verbal cues, such as gaze or actions, are 

essential in ECAs.  Therefore, improvements in how the ECA acts, in addition to its 

emotional communication, would be a beneficial research route. 
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This thesis did not address many of the limitations in the architecture proposed by [4].  

These limitations include the system not handling slang words well, and the sentiment 

analysis not handling some situations such as sarcasm. 

This thesis’ implementation of POMDP did not cover all features of POMDP; for 

example, our POMDP system ignores information based on the last action taken when 

analyzing the observations.  Additionally, the system only has four available actions; an 

increase in the available actions would allow for more finely tuned policies.  These steps 

would be necessary to deploy this system in a commercial environment. 

While the Q-Learning policies introduced showed an improvement to the system, the q-

learning state uses a simplified belief state, an increase in the available information may 

result in further improvement.  Deep Q-Learning may be the answer as it is a type of Q-

Learning that is capable of handling more complex tasks such as playing games [44].  

Other reinforcement learning techniques may also provide further improvement. 

In the research and discussion section, the author notes that some emotions are quite 

intense.  A future direction may be to reduce this and make it appear more natural.  As 

previously noted, AUs can vary in intensity, which is also a part of [23], which is the 

basis of this thesis’ lip-syncing technique.  Changing the intensity of some AUs or having 

it occur in a randomized range may result in a more natural set off facial expressions. 

While the user emulator script shows a significant improvement indicating the utility of 

the system, it would be interesting to test on real-world users to see how well it fares with 

real users.  Following this topic, the naturalness of the lip-syncing, or facial expressions 

was untested by others outside of the author.  A further study focusing on usability may 
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also determine if users find that it appears natural or very robotic to determine if further 

research is required. 

The emotions fuzzy logic used herein was taken from [4], where the author arbitrarily 

decided which rules to use.  While the oral defence related to [4] indicated these rules 

might depend on the domain, an exciting research direction could be on using additional 

RL to decide the emotion.  Using RL in this way would be a difficult challenge as 

creating a user emulator would have more challenges involved, and so it is likely that real 

users would be required.   
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APPENDICES  

Appendix A: Avatar Emotions 

This appendix contains all of the emotions that the avatar can display; the avatar is 

housed in Airsim’s Talking Heads [45].  [23] is the basis upon which many of the 

techniques used to create the avatar’s interactivity.  The AU combinations to create 

emotions are from [24]. 

The all_emotion video available on 

https://drive.google.com/drive/folders/1vlZXGNK_AY955obj5jN_VKXGA87ZEeZm?us

p=sharing  contains all emotions speaking. 

Anger      Disgust    

     

Fear      Happy 

  

 

 

https://drive.google.com/drive/folders/1vlZXGNK_AY955obj5jN_VKXGA87ZEeZm?usp=sharing
https://drive.google.com/drive/folders/1vlZXGNK_AY955obj5jN_VKXGA87ZEeZm?usp=sharing
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Sad      Surprise 
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Appendix B: Aggregated Results 

 

E
x
p

er
im

en
t 

H
C

 N
o
v
ic

e 

H
C

 

A
m

a
te

u
r 

H
C

 

P
ro

fe
ss

io
n

a
l 

H
C

 E
x
p

er
t 

H
C

 

C
O

C
O

M
 

M
L

 S
in

g
le

 

M
L

 

C
O

C
O

M
 

S
u

cc
es

s 

4
1
.2

1
 

5
4
.4

1
 

5
7
.3

6
 

5
9
.3

1
 

5
8
.2

 

5
8
.8

 

6
3
.1

3
 

S
u

cc
es

s 

M
ea

n
 

L
en

g
th

 

1
8
.9

9
 

8
.6

3
 

8
 

4
.9

3
 

5
.2

4
 

4
.1

2
 

6
.9

7
 

S
u

cc
es

s 

M
ed

ia
n

 

L
en

g
th

 

8
 

4
 

4
 

3
 

3
 

3
 

3
 

S
u

cc
es

s 

U
se

r 

B
ro

k
e 

M
ea

n
 

L
en

g
th

 

9
.4

6
 

8
.4

6
 

7
.3

5
 

4
.8

1
 

4
.5

6
 

4
.6

4
 

6
 

S
u

cc
es

s 

U
se

r 

B
ro

k
e 

M
ed

ia
n

 

L
en

g
th

  

8
 

4
 

4
 

3
 

3
 

3
 

3
 

T
o
ta

l 

8
0
0
0

 

8
0
0
0

 

8
0
0
0

 

8
0
0
0

 

4
0
0
0

 

4
0
0
0

 

4
0
0
0

 

T
o
ta

l 

S
u

cc
es

s 

3
2
9
7

 

4
3
5
3

 

4
5
8
9

 

4
7
4
5

 

2
3
2
8

 

2
3
5
2

 

2
5
2
5

 

3
 a

n
d

 

U
n

d
er

 

5
6
3
 

1
9
8
6
 

2
2
3
8
 

3
3
7
6
 

1
6
6
1
 

1
8
1
1
 

1
9
4
3
 

3
 a

n
d

 

U
n

d
e

r 
(%

) 

1
7
.0

8
 

4
5
.6

2
 

4
8
.7

7
 

7
1
.1

5
 

7
1
.3

5
 

7
7
.0

0
 

7
6
.9

5
 

Table 17 Aggregated results  
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Appendix C: Action Templates 

The system has four available actions to choose from.  Note the following placeholders: 

[MAX BELIEF] is the name of the belief with the maximum belief value. 

[ALL BELIEFS] a list of the names of all intents that have a non-zero belief 

value. 

Confirmation message template 

 “Sure, added the service [MAX BELIF]” 

Example: “Sure, added the service high security” 

Guess message template 

 “Do you mean [MAX BELIF]” 

Example: “Do you mean high security” 

Selection 

 “Please choose from the following: [ALL BELIEFS]” 

Example: “Please choose from the following: high security, low security” 

Rephrase 

 “Can you please rephrase your request?” 
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Appendix D: Hand Crafted Policies 

Each of the hand-crafted policies was created by thinking of the user type in mind and 

when the simplified belief state should be for each action.   Each action has a minimum 

simplified belief state value.  The higher policies are preferred, with strategic being 

highest.  Note that when none of the three higher actions are available, the system uses 

the selection action.  If the belief state is 0, meaning it has no idea, it will always ask to 

rephrase. 

Policy Confirm Guess Rephrase 

Scrambled 0.95 0.85 0.70 

Opportunistic 0.90 0.75 0.6 

Tactical 0.85 0.75 0.50 

Strategic 0.80 0.60 0.35 

Table 18 Hand-crafted policies 
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