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ABSTRACT 

 

Many organisms coordinate behavioural and physiological processes with the Earth’s 24-

hour light/dark cycle. This cycle, the circadian rhythm, is anticipated by the circadian clock, a 

24-hour timekeeper that is comprised of a transcription-translation feedback loop. The clock 

regulates the transcription of genes, which can influence the expression of oscillating circadian 

behaviours, such as sleep/wake.  Maintaining tissue homeostasis is an important process, 

especially in tissues with high cellular turnover rates, such as the intestine.  Involved in this 

intestinal regenerative response is the Janus Kinase/Signal Transducer and Activator of 

Transcription (JAK/STAT) pathway.  Damaged cells or exposure to a stressful environment will 

activate the JAK/STAT pathway to cause increased division of intestinal stem cells and 

increased differentiation of enteroblasts.  Previous work has indicated that intestinal stem cells 

possess circadian clock activity and the clock regulates intestinal stem cell division during 

regeneration, suggesting a link between the JAK/STAT regenerative response and the circadian 

clock.  This thesis shows that the circadian clock regulates a time of day dependent damage 

response in the intestine, and under undamaged conditions, period regulates the JAK/STAT 

response in the intestine in a non-time dependent manner.  Additionally, my research shows that 

bacterial presence is required to elicit a damage response and axenically raised flies can suppress 

this response.  My research establishes the first link between the circadian clock and the 

JAK/STAT pathway.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Circadian Rhythms 

 

Many organisms coordinate behavioural and physiological processes with the Earth’s 24-

hour light/dark cycle.  This cycle, known as the circadian rhythm, is controlled internally by an 

endogenous oscillator, the circadian clock. Circadian rhythms are 24-hour cycles that can: be 

entrained by environmental cues (such as photoperiod), persist in the absence of cues and are 

temperature compensated (Panda et al., Nature, 2002).  Circadian rhythms can influence various 

health-related processes, such as sleep/wake cycles, release of hormones and eating habits (Serin 

& Acar Tek, Ann Nutr Metab, 2019; Farhud & Aryan, Iran J Public Health, 2018), and 

disruptions to the circadian rhythm could result in negative health-related outcomes.   

The circadian rhythm is an endogenous timekeeper, which allows organisms to anticipate and 

appropriately react to day and night changes in the environment (Panda et al., Nature, 2002).  An 

important feature of circadian rhythms is that they continue to persist in the absence of external 

cues, such as light (Panda et al., Nature, 2002).  Disruptions to one’s circadian rhythm, such as 

jet lag or shift work, have been shown to have negative consequences on health and increased 

risk of illnesses.  A study on sleep restricted participants was performed and after five nights of 

sleep restriction, the participants’ insulin levels were reduced by 24%, implicating glucose 

metabolism as a metabolic consequence of circadian disruption (Spiegel et al., Lancet, 1999).  

This is especially relevant for the Windsor-Essex region because many residents are scheduled 

shift work and may not be aware of the adverse effects it may have on their overall health and 

well-being.  Research over the years has implicated various diseases and attributed decreased 

fitness to organisms that disrupt their circadian rhythm.  A study subjecting mice to circadian 
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disruptions showed an increased risk of developing Type Two Diabetes Mellitus (Gale et al., J 

Biol Rhythms, 2011).  Another study performed in mice revealed a correlation between 

desynchrony of the circadian rhythm and the increased risk of cancer progression and 

tumorigenesis (Savvidis & Koutsilieris, Mol Med, 2012).  Thus, incorporation of circadian 

rhythm considerations may benefit the fitness or well-being of one’s overall health to avoid 

circadian-related diseases.   

 

1.2 The Circadian Clock 

 

The clock is a transcription-translation feedback loop consisting of a repressor and an 

activator to regulate transcription (Hardin, Adv Genet, 2011).  In Drosophila melanogaster, it is 

made up of two main components (i) CLK-CYC, which is the activator and (ii) PER-TIM, which 

is the repressor (Figure 1).  CLK and CYC circadian transcription factors will heterodimerize 

and form a CLK-CYC complex (Lee et al., Mol Cell Biol, 1999).  The CLK-CYC complex will 

attach to the enhancer box (E-box) to promote the transcription of PER and TIM (Lee et al., Mol 

Cell Biol, 1999).  During the night, PER and TIM will accumulate and form heterodimers with 

one another.  The PER-TIM complex will promote the phosphorylation of CLK-CYC by 

entering into the nucleus (Lee et al., Mol Cell Biol, 1999).  Phosphorylation of CLK-CYC will 

reduce its affinity for DNA, thereby inhibiting its activity.     

This clock mechanism continues to regulate transcription even in the absence of external 

cues, such as light (Parasram & Karpowicz, Cell Mol Life Sci, 2019), allowing the circadian 

clock to cycle in 24-hour oscillations.  This feature of the circadian clock can be easily 

manipulated when using Drosophila as a model organism.  Under normal conditions, Drosophila 

are exposed to light:dark conditions (LD) of 12 hours of light and 12 hours of darkness, known 
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as Zeitgeber Time (ZT).  For day active organisms, the time that the lights turn on is denoted as 

ZT0.  After 12 hours, the lights will turn off and this time is denoted as Z12.  At this point, after 

an additional 12 hours, the cycle will begin again at ZT0.  To test if a rhythm or process is truly 

circadian, following appropriate LD synchronization, Drosophila can be moved to complete 

darkness (DD).  The circadian nomenclature changes to Circadian Time (CT), which is used to 

denote free running conditions.  Shifting the flies to DD conditions following synchronization 

can provide insight to the circadian aspect of that rhythm, because LD conditions only provide 

information on time of day differences.  Any rhythms noted in the absence of external cues may 

be a result of previous entrainment of the endogenous time-keeper (Dubowy & Sehgal, Genetics, 

2017). 

 

FIGURE 1 

 

 

Figure 1: Schematic of the Circadian Clock Mechanism in Drosophila 

 

 

Modified from Myers et al., Science, 1995 
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Light is the strongest circadian synchronizer and it has the ability to shift the circadian 

clock so that the clock can be entrained to differently timed light/dark cues (Castillo et al., Am J 

Physiol-Reg I, 2004).  Drosophila are able to detect light with all their cells because every cell 

has a Cryptochrome (CRY) protein that is sensitive to light (Busza et al., Science, 2004).  A brief 

light pulse activates CRY, allowing it to bind to TIM (Allada & Chung, Annu Rev Physiol, 

2010).  Once bound, TIM will be rapidly degraded through ubiquitination and proteasomal 

degradation thereby permitting the release of CLK-CYC from repression (Hardin, Adv Genet, 

2011; Yoshii et al., J Neurosci, 2015).  This degradation process allows for the synchronization 

of the circadian rhythm to shift and be altered (for example, jet lag).   

 

1.3 Life Cycle of Drosophila 

 

Drosophila melanogaster have a relatively large brood size, short lifespan and short 

generation time making them an ideal model organism, especially for genetic studies.  Typically, 

Drosophila are raised at 25ᵒC, and the generation time is approximately ten days to go from 

fertilized egg to an eclosed (hatched) adult (Fernandez-Moreno et al., Methods Mol Biol, 2007).  

If raised at lower temperatures, such as 18ᵒC, the generation time will be slightly delayed.  The 

four main stages of its life cycle are embryo, larva, pupa and adult.  The first stage is 

embryogenesis and this stage usually only lasts 24-hours (Fernandez-Moreno et al., Methods 

Mol Biol, 2007).  From here, the embryo will become a first instar larva, where it will remain on 

the surface of food and will begin eating.  After one day, the first instar larva will molt into a 

second instar larva (Fernandez-Moreno et al., Methods Mol Biol, 2007) and it will begin to 

burrow into the food.  After another day, the second instar larva will molt into a third instar 

larva.  A matured late stage third instar larva will begin to crawl up along the sides of the vial 
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until the larva finds a suitable place to pupariate.  This usually takes 60 to 72 hours (Fernandez-

Moreno et al., Methods Mol Biol, 2007).  During the pupal stage, complete metamorphosis will 

occur resulting in the degradation of most larval tissues permitting adult organs to develop from 

undifferentiated cells (Fernandez-Moreno et al., Methods Mol Biol, 2007).  The pupal stage 

usually lasts three and a half to four and a half days.  Figure 2 illustrates a schematic of the 

Drosophila life cycle.  Following pupation, the fly will eclose into an adult Drosophila.  The 

intestine continues to develop and will not stabilize until approximately adult day three 

(Takashima et al., Nature, 2011).        

  

FIGURE 2 

 
 

Image Taken from: Ong et. al, Nanotoxicity, 2015 

 

Figure 2: Life Cycle of Drosophila melanogaster 

Illustration of the typical life cycle of the Drosophila melanogaster, commencing from the 

embryo stage to its adult stage. 
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1.4 Drosophila Intestinal Anatomy, Regionalization and Model for Regeneration  

 

The Drosophila intestine has functions in digestion, nutrient absorption, and protection 

against pathogens (Hung et al., PNAS, 2020).  The Drosophila intestine is a simple epithelium 

composed of four main types of cells: intestinal stem cells, enteroblasts, enterocytes and 

enteroendocrine cells.  As shown in Figure 3, self-renewing intestinal stem cells produce either 

more intestinal stem cells or enteroblast progenitors that go on to differentiate into enterocytes 

(absorptive cells) and enteroendocrine cells (secretory cells), [Micchelli & Perrimon, Nature 

(Letters), 2006; Ohlstein & Spradling, Nature (Letters), 2006].  Recent research from our lab 

(Parasram et al., Stem Cell Rep, 2018) tested the circadian activity in all four cell types at 

different times of day to determine if they exhibited clock reporter activity.  It was determined 

that three of the cell types, intestinal stem cells, enteroblasts and enterocytes, all contain clock 

reporter activity.  Surprisingly, it was determined that enteroendocrine cells do not exhibit clock 

activity suggesting clock activity is turned off during enteroendocrine cell differentiation. 

 

FIGURE 3 

 

 
 

Adapted from Parasram et al., Stem Cell Rep, 2018 

 

Figure 3: Schematic of Main Cell Types in the Drosophila Intestine 

Image shows the four main types of cells within the Drosophila intestine: intestinal stem cells, 

enteroblasts, enterocytes and enteroendocrine cells.  The intestinal stem cells, enteroblasts and 
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enterocytes have been shown to have clock activity (outlined in green) while the enteroendocrine 

cells do not have clock activity (outlined in black) (Parasram et al., Stem Cell Rep, 2018).  Note 

that the images are not illustrated to scale.   

 

 

 

 Cell morphology and function vary greatly throughout the Drosophila intestine.  In 2013, 

Buchon and colleagues (Cell Reports) identified five distinctive regions of the adult intestinal 

midgut and named them Region (R) 1, R2, R3, R4 or R5, where R1 is the most anterior portion 

and R5 is the most posterior portion of the midgut.  The R1 region is mainly composed of flat 

and long enterocytes.  The R2 region is mostly composed of enterocytes containing lipid 

vesicles.  The R3 region consists of the copper cell region and large flat cells.  The R4 region 

consists of mostly enterocytes and the anterior portion of R4 is often highly folded.  Lastly, the 

R5 region contains fewer cells with a brushed border.  Marianes & Spradling (eLife) also 

released their work on regionalization in 2013, and they further subdivided each region.  For 

simplicity, the R1 to R5 regional compartmentalization system was followed for this project.  

Figure 4 shows a schematic of the Drosophila intestinal midgut characterization.     

 

FIGURE 4 

 

 
Taken from Capo et al., Microorganisms, 2019 

 

Figure 4: Drosophila Intestinal Region Compartmentalization 

Illustration of the compartmentalization of the Drosophila midgut from regions R1 (most 

anterior) to R5 (most posterior).   
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 As previously mentioned, Drosophila is an ideal model organism to investigate intestinal 

physiology.  Through intestinal stem cells, the intestinal epithelium is renewed every one to two 

weeks (Buchon et al., Cell Reports, 2013).  Due to the frequent renewal of the intestinal 

epithelium, the adult intestine is an appropriate organ to study cellular regeneration.  

Additionally, mammalian intestinal diseases can be modelled successfully in Drosophila with 

findings that can be translatable to humans because of the high degree of conservation between 

the signaling pathways, such as pathways that control intestinal development, regeneration and 

disease, in both humans and Drosophila (Apidianakis & Rahme, Dis Model Mech, 2011). 

 

1.5 JAK/STAT Signaling Pathway and Reporter 

 

An important signaling pathway that regulates intestinal stem cells is the Janus Kinase/ 

Signal Transducer and Activator of Transcription (JAK/STAT) pathway, which is vital for their 

proliferation and maintenance (Lin et al., J Mol Cell Biol, 2010) as well as differentiation of the 

intestinal progenitor cells (Muller et al., Nature, 2005).  Damaged cells or exposure to a stressful 

environment will trigger enterocytes to produce unpaired (UPD) cytokines, which activate the 

JAK/STAT signaling pathway causing increased division of intestinal stem cells and increased 

differentiation of enteroblasts to promote enterocyte replacement (Beebe et al., Dev Bio, 2010; 

Jiang et al., Cell, 2009).  The JAK/STAT pathway is homologous to the mammalian signal 

transducer and activator of transcription 3 (STAT3) signaling pathway, where interleukin-6 

cytokine induces an inflammatory response when the intestine is under stressful conditions 

[Biteau et al., Cell Stem Cell (Review), 2011; Panayidou & Apidianakis, Pathogens, 2013].  

Along with the Drosophila intestine, the JAK/STAT signaling pathway also has regenerative 

roles in the Drosophila testes and the Drosophila wing disc (Herrera & Bach, Development, 
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2018).  Previous work in the lab has indicated that the circadian clock regulates intestinal stem 

cell division during regeneration, and that the JAK/STAT pathway may be under circadian clock 

control (Karpowicz et al., Cell Rep, 2013).  

 The mechanistic process of the JAK/STAT pathway is illustrated in Figure 5.  The UPD 

cytokines released from the enterocytes will bind to the domeless receptor, bringing the domeless 

receptors closer in proximity [Arbouzova & Zeidler, Dev (Review), 2006].  This allows for two 

JAK molecules to trans-phosphorylate one another [Arbouzova & Zeidler, Dev (Review), 2006].  

Once phosphorylated, the activated JAK molecules will phosphorylate the tyrosine kinases on 

the cytokine receptor [Arbouzova & Zeidler, Dev (Review), 2006].  The phosphorylated tyrosine 

kinases will recruit and bind SH2 (Src Homology 2) domains, which allows for the 

phosphorylation of the STAT molecules [Arbouzova & Zeidler, Dev (Review), 2006].  This 

permits the STAT molecules to dissociate from the domeless receptor and dimerize with one 

another [Arbouzova & Zeidler, Dev (Review), 2006].  The dimerized STAT molecule will 

translocate into the nucleus and bind to an E-box to promote the transcription of various target 

genes, such as SOCS36E (suppressor of cytokine signalling) [Arbouzova & Zeidler, Dev 

(Review), 2006].  The molecular aspects to this mechanism are well studied, but there is still a 

gap in the literature with respect to possible clock control of this pathway.  

 

 

 

 

 

 



10 
 

FIGURE 5 

 
Adapted from Arbouzova & Zeidler, Dev (Review), 2006 

 

Figure 5: JAK/STAT Mechanism in Drosophila Schematic 

 

 

 

 A 6XSTAT-dGFP reporter was used to investigate the JAK/STAT activity levels in vivo 

(He et al., eLife, 2019) (Figure 6).  There are two main components to this reporter (i) a 

destabilized green fluorescent protein (dGFP) and (ii) a PEST domain.  This reporter contains six 

copies of the SOCS36E promoter, in tandem, upstream of a superfolder dGFP.  dGFP 

transcription will simultaneously be driven if the STAT92E protein binds to the SOCS36E 

promoter.  The dGFP is fused to a PEST domain, which signals the protein degradation (He et 

al., eLife, 2019).  As a result, if a cell fluoresces green (GFP+), that means that cell is reporting 

STAT transcriptional activity from within the last hour (He et al., eLife, 2019).  
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FIGURE 6 

 

 
 

Taken from K. Parasram, unpublished 

 

Figure 6: 6XSTAT-dGFP Reporter 

Construction of the 6XSTAT-dGFP reporter illustrating the 6 x minimal promoter sequence 

upstream of a dGFP.  

 

 

 

To be able to visualize clock activity in vivo, a clock reporter was constructed by our lab 

group (Parasram et al, Stem Cell Rep, 2018).  It contains four copies, in tandem, of the minimal 

promoter from the clock target, per (Figure 7).  The minimal promoter contains a 123 base pair 

sequence which includes E-box and W-box binding sites for the CLK/CYC dimer.  Simultaneous 

transcription of ClockPER and a GFP molecule occur once the CLK/CYC dimer binds to the 

promoter region of per.  Clock activity could be dynamically measured over time due to the 

fusion of the PEST domain to a GFP molecule in the reporter.  This PEST domain is a peptide 

signal for protein degradation, so it causes the GFP signal to degrade shortly after it is produced 

(He et al., eLife, 2019).  Thus, the dGFP will give transcriptional information within the last 

hour before it gets degraded.   
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FIGURE 7 

 
 

Taken from Parasram et al., Stem Cell Rep, 2018 

 

Figure 7: ClockPER Reporter 

Illustration of the ClockPER reporter depicting the 4 x minimal promoter sequence upstream of a 

dGFP.  

 

 

 

1.6 JNK and Hippo Pathways in Cellular Proliferation and the Stress Response 

 

The JNK and Hippo pathways are two signaling pathways that are also both involved in 

cellular proliferation and the stress response.  The JNK pathway can respond to stressors such as 

infection, inflammation and oxidative stress (Zeke et al., Microbiol Mol Biol R, 2016).  The 

Hippo pathway has been shown to have roles in apoptosis and stem cell renewal.  The YKI gene 

is a transcriptional coactivator in Drosophila, and stress signals, such as cellular damage, can 

activate the Hippo pathway (Boopathy & Hong, Front Cell Dev Biol, 2019).  In this thesis, I 

primarily studied the JAK/STAT pathway, but reporters of these two were also initially 

examined and some data is presented for this work.  

 

1.7 Hypothesis 

 

I hypothesized that the timing of the adult Drosophila intestinal stress response is 

regulated by the circadian clock. 

This thesis project was designed to explore three main questions.  First, an acute damage 

assay needed to be created and optimized so that the possible effects from acute damage could be 
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assessed regarding cellular morphology, changes in the stress response (via the JAK/STAT 

reporter) and survival.  The acute damage assay I eventually used was x-ray irradiation.  The 

next question set out to determine if the JAK/STAT pathway, Hippo pathway or JNK pathway is 

under 24-hour circadian clock control, and if so, determine if the intestinal stress is a direct result 

of the damage caused by irradiation or an indirect effect of the irradiation on bacteria in the 

intestine, leading to an inflammatory response.  Only the JAK/STAT pathway was developed.  

Timed circadian response to damage was tested by administering the irradiation at different 

times of day.  This assay was taken one step further and repeated using flies that were raised 

axenically to be able to distinguish if the JAK/STAT response is a result of the irradiation 

damage or loss of bacterial presence. Additionally, the effects of irradiation on superoxide 

presence were also assessed using DHE dye.  A final question explored was whether the reverse 

is possible: that there is clock dependence on the JAK/STAT pathway.  This was accomplished 

by creating a Drosophila strain that overexpressed the unpaired cytokine in a clock reporter 

background.        
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CHAPTER 2:  

 

METHODS OF INVESTIGATION 

 

2.1 Drosophila Genetics 

 

 Most assays used control ( ; 
6XSTAT−dGFP

+
 ; ) female flies, and circadian clock mutant 

(per01;
6XSTAT−dGFP

Cyo
 ; ) female flies, unless otherwise noted.  These strains contain a 

heterozygous copy of the 6XSTAT-dGFP reporter.  To obtain this in the control strains, the 

STAT reporter strain ( ; 6XSTAT-dGFP ; ) was crossed with a balancer strain ( ; w1118 ; ) to 

obtain a heterozygous copy of the STAT reporter ( ; 
6XSTAT−dGFP

+
 ; ).  The clock mutant strain 

stock already contained flies with the heterozygous copy of the STAT reporter (it was not able to 

homozygose in the mutant background), and the balancers were checked to ensure the 

heterozygous ( ; 
6XSTAT−dGFP

+
 ; ) flies were selected. 

To obtain the desired amount of eggs for the axenic assay, flies were amplified in bottles 

until 200 female virgin flies were collected of each required genotype.  This ensured that the 

crosses could be set up using large embryo collection cages (FlyStuff, cat. no. 59-101).  The 

desired progeny of the crosses included a control strain with a heterozygous STAT reporter copy 

( ; 
6XSTAT−dGFP

+
 ; ) and a clock mutant strain with a heterozygous STAT reporter copy 

(per01;
6XSTAT−dGFP

Cyo
 ; ).  Apple juice agar (consisting of 61% dH2O, 29% apple juice, 4% of 95% 

ethanol, 3% sugar and 3% agar) was set in 100 x 15mm petri dishes (Thermo Scientific, cat. no. 

12600002).  The apple juice agar plates were then placed at the bottom of the embryo collection 

cage for egg collection.  To encourage egg laying, a 5% yeast paste (consisting of dry yeast and 

tap water) was spread over top of the apple juice agar.  The flies to be crossed were combined in 

the embryo collection cage for mating at 7:00a.m. and removed at 7:00p.m., for a total mating 
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period of twelve hours.  After mating, the petri dish containing the apple juice agar was removed 

and the embryos were collected using a paintbrush.   

   In order to obtain the required genotype for the clock dependence assay in Section 2.8 

Clock Dependence on the Drosophila JAK/STAT Pathway, a cross between the myo1A-GAL4 

enterocyte-specific temperature sensitive strain ( ; 
myo1A−Gal4

Cyo
 ; 

tub−Gal80ts

TM6B
 ) and the UPD 

overexpression strain, which also contain the ClockPER reporter, ( ; 
UAS−UPD

Cyo
 ; 

ClockPER

TM6B
 ) was set 

up to obtain the resulting genotype, ( ; 
myo1A−Gal4

UAS−UPD
 ; 

tub−Gal80ts

ClockPER  ).  Similarly, a cross was set-up to 

obtain a heterozygous control with a ClockPER reporter copy.  The myo1A-GAL4 temperature 

sensitive strain ( ; 
myo1A−Gal4

Cyo
 ; 

tub−Gal80ts

TM6B
 ) was crossed with the ClockPER reporter strain ( ; 

+

+
 ; 

ClockPER

ClockPER ) to obtain the heterozygous ClockPER reporter strain ( ; 
myo1A−Gal4

+
 ; 

tub−Gal80ts

ClockPER  ), which 

acted as the experimental control.   

 

2.2 Drosophila Maintenance and Circadian Assays 

 

 

 

2.2A Standard Rearing and Synchronization  

 

Flies were raised in Drosophila polypropylene vials (Fisherbrand Narrow Diameter 

Vials, 3.74 inches x 0.98 inches, cat. no. AS-507) containing 65% cornmeal, 15% dry yeast, 10% 

soy flour, 5% malt and 5% agar and were flipped onto new food every second day.  The female 

flies were raised in an LD photoperiod (12 hours light:12 hours of dark, where ZT0 = 7:00 a.m.) 

in a 25ᵒC incubator (VWR) for at least five days to allow for synchronization.  For experiments, 

the flies were aged between seven to eleven days old unless otherwise noted.  To test free 
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running conditions, the flies were shifted to DD (continuous dark) conditions, in the 25ᵒC 

incubator, 24-hours before the experiment.  To handle flies that are under DD conditions, a red 

light was used because it has a peak absorbance of 700nm (Baik et al., PNAS, 2019).  CRY, the 

protein that detects light to entrain the circadian clock, has two peak absorbances: 365nm 

(ultraviolet light) and 450nm (blue light) (Baik et al., PNAS, 2019), thus the red light will not 

activate the CRY protein and affect the circadian clock.  All other light sources were covered.  

This is critical, as a pulse of light can reset the clock.  The shift from LD to DD conditions 

results in a notation change from ZT to Circadian Time (CT).  ZT is a 24-hour notation with ZT0 

noting the beginning of the light phase and ZT12 noting the beginning of the dark phase.  In 

comparison, CT time is representative of free running conditions, so CT0 notes the beginning of 

the subjective day and CT12 notes the beginning of the subjective night.   

 

2.2B Intestinal Dissections and Staining (DAPI and DHE) 

 

All intestinal dissections were performed at room temperature under a stereoscope (Zeiss, 

Stemi 2000).  The flies were anesthetized using carbon dioxide and then sacrificed in a nine well 

Pyrex spot plate (Thermo Fisher, cat. no. 13-748B) in wells containing 70% ethanol for two 

minutes.  The flies were then transferred to wells containing cold 1 x phosphate buffer saline (1 x 

PBS at a pH of 7.4) [1mM sodium phosphate dibasic (Sigma Aldrich, cat. no. P332), 0.18mM 

potassium phosphate monobasic, (Sigma Aldrich, cat. no. P8709) and 15.5mM sodium chloride 

(Sigma Aldrich, cat. no. S271)]. Then, the flies were dissected using Dumont Inox #5 fine 

forceps (Fine Science Tools, cat. no. 11251-10). The intestines were fixed using cold 4% 

paraformaldehyde (PFA) (Electron Microscopy Sciences, cat. no. 15714-5), in PBS for forty 

minutes. The intestines were rinsed in cold PBS and then stained with 4’,6-diamidino-2-
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phenylindole (DAPI, 5mg/mL) (Thermo Fisher, cat. no. D1306) in 0.2% PBS-T [TritonX100 

(Fisher Scientific, cat. no. BP151), and 1 x PBS] with a pH of 7.4 for five minutes.  Following 

that, the intestines were then rinsed with PBS-T and subjected to two washes of PBS-T for five 

minutes per wash.  The intestines were then ready to be mounted on a glass slide using a droplet 

of Prolong Gold antifade mountant (Invitrogen, cat. no. P36935).  Once the slide had dried after 

a few days, the cover slip edges were sealed using clear nail polish.   

 The protocol for using DHE dye outlined by Owusu-Ansah & colleagues (Protec Exch, 

2008) was adapted and optimized to detect reactive oxygen species (ROS) in Drosophila 

intestines.  On the day of the experiment, the flies were exposed to irradiation set to 15Gy.  For 

dissections, flies were not anaesthetized, as this could interfere with the production of ROS.  

Instead, flies were tapped to the bottom of the fly vial and transferred to a nine well Pyrex spot 

plate containing room temperature Schneider’s Drosophila media supplemented with L-

glutamine and sodium bicarbonate (Gibco, cat. no. 21720024).  A 30mM stock solution of DHE 

(Invitrogen, cat. no. D11347) in anhydrous dimethyl sulfoxide (DMSO) > 99.9% (Sigma 

Aldrich, cat. no. 67-68-5) was prepared immediately before use.  From this stock solution, a 

30µM final dye concentration was made using the reconstituted DHE and DMSO solution along 

with room temperature Schneider’s media.  This final DHE stock solution is light sensitive, so 

from this point onwards, all incubations were done in the dark using a piece of standard 

aluminum foil to cover the Pyrex spot plate.  The intestines were then incubated with the DHE 

final stock solution, in the dark, on an orbital shaker (Fisher Scientific) for seven minutes.  The 

intestines were then subjected to three five-minute washes in room temperature Schneider’s 

media while maintaining the dark conditions.  Next, a mild fixation was performed.  Intestines 

were fixed in room temperature 4% PFA for seven minutes in the dark.  After fixation, the 
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intestines were rinsed in room temperature 1 x PBS and stained with room temperature DAPI for 

five minutes in the dark.  The intestines were then subjected to a 0.2% PBS-T rinse at room 

temperature and subsequently underwent two five-minute 0.2% PBS-T washes at room 

temperature in the dark.  The intestines were then mounted on a glass slide using Prolong Gold 

antifade mountant, taking caution to keep the intestines protected from the light. After 

approximately six hours, the cover slip edges were sealed using clear nail polish.    

 

2.3 JAK/STAT and Circadian Clock Reporters  

 To visualize STAT activity in vivo, a 6XSTAT-dGFP reporter was obtained (He et al., 

eLife, 2019).  Prior to experimentation, reporter activity was tested using three different 

treatments: 5g of Dextran Sulfate Sodium (DSS) (MP Biomedicals, cat. no. 160110) in 100mL of 

sucrose, 25µg/mL of Bleomycin and 5mg/mL of sucrose in tap water through a 48-hour 

treatment administration.  DSS and Bleomycin solutions were the positive control treatments and 

the sucrose solution was used as a negative control treatment.  The STAT reporter function was 

confirmed by cross-referencing previous work by Buchon and colleagues (Cell Reports, 2013) 

that found JAK/STAT activity is present in enteroblasts and intestinal stem cells (Parasram, 

unpublished).     

 

2.4 X-Ray Irradiation Assay 

 

 

 

2.4A Survival Assay  

  

 Irradiation was performed at four different times of day (7p.m., 1p.m., 7p.m., and 1a.m.).  

Eight groups of 25 female control flies were collected upon eclosion.  The flies were raised in a 



19 
 

25ᵒC incubator under LD conditions (7:00a.m. lights on, ZT0, and 7p.m. lights off, ZT12) from 

eclosion until their death.  For each time point, there was an undamaged group, which did not 

receive any irradiation damage.  X-ray irradiation was administered using the Faxitron X-ray 

System (Model #43855D, Option #RX-650) set at 15Gy.  Immediately following irradiation, the 

flies were flipped to a vial containing fresh food, then flipped to fresh vials every other day.  The 

number of deaths were scored daily.   

 

2.4B JAK/STAT  

 

Groups of 12 to 15 female control flies were raised in a 25ᵒC incubator oscillating in a 

LD cycle, where lights turned on at 7:00a.m. (ZT0) and lights turned off at 7:00p.m. (ZT12).  

The flies were flipped to new vials every other day.  At seven days old, the flies were irradiated 

at ZT0 (7:00a.m.) in an x-ray irradiator set to 15Gy.  Following irradiation, the flies were 

dissected at six different time points: one-hour post irradiation (ZT1), two-hours post irradiation 

(ZT2), three-hours post irradiation (ZT3), four-hours post irradiation (ZT4), five-hours post 

irradiation (ZT5) and six-hours post irradiation (ZT6).   

 

2.4C Smurf Assay 

 

A sample size of 18 control female flies were raised in a 25ᵒC incubator, where the lights 

turned on at 7:00a.m. (ZT0) and turned off at 7:00p.m. (ZT12).  They were flipped to fresh food 

every three days.  24-hours prior to x-ray irradiation exposure, the flies were fed a 2.5% 

Bromophenol blue solution [250mg Bromophenol Blue, (Fisher Scientific, cat. no. 115-39-9) and 

10mL 5% sucrose (Fisher Scientific, cat. no. 55-3)] in tap water using a moistened Whatman 

filter paper in a Drosophila vial.  The following day (when the flies were eight days old), they 
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were exposed to 15Gy of irradiation at ZT0 (7:00a.m.).  Immediately following irradiation 

treatment, the flies were flipped into new vials containing the 2.5% Bromophenol blue solution 

on a Whatman filter paper.  The flies were observed regularly throughout the day (immediately 

after irradiation, one-hour post irradiation, two-hours post irradiation, three-hours post 

irradiation, four-hours post irradiation, five-hours post irradiation, nine-hours post irradiation, 

12-hours post irradiation and 24-hours post irradiation) to classify each flies’ degree of 

‘smurfness’ over the course of 24 hours.   

 

2.4D X-Ray Irradiation and Nuclear Morphology 

 

On experiment day, control flies were transported to the irradiation room and maintained 

in dark conditions using a 50mL conical tube (Thermo Scientific, cat. no. 339653) wrapped in 

standard aluminum foil, such that no light could penetrate through the tube.  Once the irradiation 

room was reached, the lights remained off.  Experimental flies were subjected to x-ray irradiation 

of 15Gy using the Faxitron X-ray System.  Four different time points within a 24-hour period 

were chosen for irradiation: circadian time (CT) 24 (7:00a.m.), CT30 (1:00p.m.), CT36 

(7:00p.m.) or CT42 (1:00a.m).  Following irradiation, the flies were put back in the DD 

incubator, until it was time to be dissected three-hours post the time of irradiation. 

To observe the effects of acute damage on the Drosophila intestine using different 

reporters related to stress, a JNK reporter strain ( ; JNK-dGFP ; ) and a Hippo reporter strain ( ; 

YKI-dGFP:RFP ; ) were tested for reporter function in the intestine.  Flies were exposed to a 48-

hour treatment of a negative control (5% sucrose) or a treatment group consisting of a chemical 

(2% H2O2 or bleomycin) in 5% sucrose (Figure 8).  Following the corresponding treatments, the 

flies were dissected and scanned using a slide scanner.  The JNK reporter ( ; JNK:dGFP ; ) was 
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tested first.  The negative control (expected to have low JNK activity) had very little to no GFP+ 

cells present, while the treatment groups (expected to have high JNK activity) had GFP+ cells 

present, but the fluorescence intensity was low.  The negative control and treatment groups of the 

Hippo reporter strain ( ; YKI-dGFP:RFP ; ) were tested, but no signal was detected, so it was not 

used in any other assays.    

 

FIGURE 8 

 

 
 

Figure 8: JNK Reporter Verification 

Representative slide scanner images of positive and negative controls used to verify JNK 

reporter activity.  It is evident that there is little JNK reporter activity (GFP+ cells) present in the 

negative control (5% sucrose).  The positive treatment groups consist of the chemical (2% H2O2 

or bleomycin) + 5% sucrose.  In the positive controls, some JNK reporter activity present, 

particularly in the anterior region.  ‘A’ indicates the anterior portion of the intestine and ‘P’ 

indicates the posterior portion of the intestine, scale bar represents 200µm. 

 

 

 

A sample size of 55 JNK reporter flies were collected and synchronized in a 25ᵒC 

incubator on a LD cycle, where the lights turned on at 7:00a.m. (ZT0) and the lights turned off at 

7:00p.m.  The flies were flipped onto fresh food every other day.  At six to seven days old, the 

flies were irradiated at ZT0 (7:00a.m.) in an irradiator set to 15Gy and following irradiation, the 

Negative Control 
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flies were flipped into fresh vials.  The flies were dissected at various times of day post 

irradiation [8:00a.m. (ZT1), 9:00a.m. (ZT2), 10:00a.m. (ZT3), 11:00a.m. (ZT4), 12:00p.m. 

(ZT5), 1:00p.m. (ZT6), 4:00p.m. (ZT9), 7:00p.m. (ZT12), 1:00a.m. (ZT18) and 7:00a.m. the 

following day (ZT24)].   

 

2.5 Axenic Assay  

 

New Drosophila 25mm glass vials (Fisher Scientific, cat. no. AS574) and a cotton ball 

were wrapped together in standard aluminum foil.  Prior to usage, the pair was autoclaved at 

121ᵒC for 45 minutes.  The vials were filled with standard Drosophila food supplemented with 

four broad spectrum antibiotics adapted from Iatsenko and colleagues (Immunity, 2018).  This 

antibiotic cocktail consisted of: carbencillin sodium salt (Fisher Scientific, cat. no. BP2648) in 

dH2O at 50µg/mL, kanamycin sulfate (Fisher Scientific, cat. no. AC611290050) in dH2O at 

50µg/mL, tetracyclin (Sigma Aldrich, cat. no. 87128) in dH2O at 10µg/mL and erythromycin 

(Sigma Aldrich, cat. no. E5389) in dH2O at 10µg/mL.  The vials were set aside until the embryo 

collection step.    

To maintain axenic conditions, the collected embryos from the apple juice agar plates 

were put into a 100µm cell strainer (Fisher Scientific, cat. no. 352360) and subsequently 

underwent a bleaching wash using a 7% bleach solution. The embryos were rinsed with water 

and the 7% bleach wash was repeated.  Next, the embryos underwent three successive washes 

using a Drosophila embryo wash.  A paintbrush was used to transfer the bleached embryos from 

the cell strainer to the Drosophila vial containing the food supplemented with the antibiotic 

cocktail.  The embryo-containing vials were then placed in a 25ᵒC LD incubator until eclosion.   
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Upon eclosion, 15 female flies with the desired genotype and sex were identified and 

placed into new vials containing the food supplemented with the antibiotic cocktail.  The flies 

were flipped onto fresh food every second day.  The flies were raised and synchronized in a 25ᵒC 

incubator on a LD cycle, where ZT0 was at 7:00a.m.  24-hours prior to irradiation, the flies were 

shifted to DD conditions.  On the day of the experiment, the flies were aged between eight to 

eleven days old and irradiated with 15Gy at CT30 (1:00p.m.) or CT42 (1:00a.m.).  Immediately 

after irradiation, the flies were flipped into fresh vials and were stored in the 25ᵒC incubator until 

it was time for the dissection, three hours post irradiation.  

 

 

2.6 Microscopy and Slide Imaging 

 

A Zeis Axio Vert A.1 inverted fluorescence contrast microscope, with GFP and DAPI 

channels, was preliminary used to observe qualitative differences in staining.  To obtain 

representative images and to analyze the images, a Zeiss Axio Scan Z.1 slide scanner was used.  

A scanning profile that incorporated GFP and DAPI channels was selected for imaging (and the 

QD605 channel for DHE, when necessary).  For the DHE stained slides, imaging was performed 

as soon as possible to prevent DHE fluorescent signal degradation.   

 

2.7 Image Analysis and Statistics 

 

 

  

 2.7A X-Ray Irradiation Image Analysis 

 

The slide scanner images were quantified using the Zen Blue Axio Scan Z.1 software 

(Zeiss).  The fluorescence levels of GFP/DHE and DAPI staining were quantified.  All of the 

GFP/DHE positive cells within the region of interest were circled allowing the Axio Scan 
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software to provide a corresponding fluorescence intensity for each circled cell.  The total 

number of DAPI+ cells within this region were manually counted using a hand-held tally 

counter.  The levels of GFP/DHE positive cells were normalized to DAPI because each treatment 

had the same exposure time and the same concentration to the DAPI stain, so it should be 

consistent across each sample.  This data was entered into Microsoft Excel, using a threshold 

intensity of 2000 for GFP+ cells and no threshold intensity for DHE+ cells.  The number of cells 

reaching this threshold were recorded for each time point.  These values were organized into a 

spreadsheet in Microsoft Excel and an average ratio of GFP/DHE positive cells to DAPI+ cells 

was determined.  This data was then graphed into Prism 7 software (Graphpad), where the 

appropriate statistics were performed.  Statistical significance is noted as p values, where values 

less than 0.05 were considered statistically significant.   

For the clock dependence on the JAK/STAT assays, the fluorescence intensity of each 

sample was achieved by using the Zen Blue Axio Scan Z.1 software.  For each sample, the whole 

intestinal region (R1 to R5), the anterior portion of the intestinal region (R1), the mid-intestinal 

region (R2, R3 and R4) and the posterior portion of the intestinal region (R5) were examined 

separately.  Using the Spline tools in the Zen Blue Axio Scan Z.1 software program, the desired 

area of interest was outlined.  Once outlined, the program provided an overall fluorescence value 

for each of the scanned channels (GFP and DAPI).  These values were inputted into a Microsoft 

Excel spreadsheet and an average ratio of GFP fluorescence intensity to DAPI fluorescence 

intensity was determined for each treatment group and time point.  These values were graphed 

using Prism Software (Graphpad) and appropriate statistics were performed using the Prism 

software, and statistical significances are expressed as p values.    
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2.7B Nuclear Morphology Image Analysis 

 Using the Zen Blue Axio Scan Z.1 software, a preset rectangle with an area of 8730µm2 

was randomly positioned within the inner portion of the R5 intestinal region.  The GFP+ cells 

within this region were circled and the total number of DAPI+ nuclei within this region were 

counted using a tally counter.  Any positive nuclei touching the border of the preset area were 

considered.  Data output on the scanning software provided the area of each circled unit, which 

was used as a representative measure of cell size.  The data was organized into Microsoft Excel 

and using Prism software, representative graphs summarizing the total number of nuclei, the 

average nuclear size and the breakdown of larger nuclei (nuclear area ˃ 5µm2) versus smaller 

nuclei (nuclear area ≤ 5µm2) were constructed.  Appropriate statistics were performed using 

Prism software, and significance is expressed as p values.   

 

 

2.8 Clock Dependence on the Drosophila JAK/STAT Pathway  

 

16 groups of six to ten flies containing the UAS/GAL4 gene expression system were 

collected, allowing for regional and temporal control of UPD overexpression.  Upon eclosion, 

the flies were raised and synchronized in a 29ᵒC incubator on a LD cycle, where 7:00a.m. lights 

turned on (ZT0) and at 7:00p.m. the lights turned off (ZT12).  At five days old, the flies were 

dissected at eight different time points over a 24-hour period: 7:00a.m. (ZT0), 10:00a.m. (ZT3), 

1:00p.m. (ZT6), 4:00p.m. (ZT9), 7:00p.m. (ZT12), 10:00p.m. (ZT15), 1:00a.m. (ZT18) and 

4:00a.m. (ZT21).   
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CHAPTER 3 

 

RESULTS 

 

3.1 Effects of Irradiation Damage 

 

 To be able to test circadian regulation of damage timing in the Drosophila intestine, an 

acute damage assay was developed.  This was important, because the time of the damage had to 

be much shorter than 24 hours, and ideally had to be rapid so that differences between times of 

day could be tested.  Various methods of acute damage induction to the Drosophila intestine 

were explored.  One of the first methods explored was physical damage.  A ‘clam-shell’ 

approach dissection was performed to expose the intestine but keep it housed within the 

abdomen (Figure 9).  The R5 region of the abdomen was pinched using fine forceps and left in 

the PBS until it was time for the intestinal dissection.  Intestines were dissected at one-hour post 

pinching, 12-hours post pinching, 24-hours post pinching and 48-hours post pinching.  By the 

12-hours post pinching dissection, the intestine started to break down and become extremely 

brittle to handle.  To slow down the intestinal degradation, Schneider’s Insect Media (commonly 

used for insect cell cultures) could be used.  Another limitation to this method is that it is 

difficult to reproduce.  The force of pinching exerted and location chosen to pinch is all relative 

to the experimenter.  This method was not reproducible enough to proceed.         
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FIGURE 9 

 

 
 

 

Figure 9: ‘Clam Shell’ Dissection for Pinching Assay 

Example of a ‘clam shell’ dissection of the Drosophila abdomen to expose the intestine for the 

pinching assay.  Image taken from a stereoscope at 25x magnification. 

 

 

 

 Another type of damage tested was acute chemical damage.  The flies were fed 

bleomycin solutions or 5% DSS solutions for a short period of time (48-hours) prior to 

experimentation.  Bleomycin is an anti-cancer drug that has been used in experimentation as a 

DNA damaging agent (Takada et al., Cell, 2003) that specifically damages enterocytes 

(Amcheslavsky et al., Cell Stem Cell, 2009).  DSS is another damaging agent that causes 

extreme intestinal inflammation that resembles ulcerative colitis (Amcheslavsky et al., Cell Stem 

Cell, 2009).  A limitation is that it cannot be ensured that each animal will ingest these damaging 

agents so the degree of damage could vary.  To minimize this possibility, the flies are often 

starved prior to exposure to the damaging agent.  These treatments were ultimately used as the 

positive controls for JAK/STAT activity because they have been shown to promote cellular 

proliferation.  However, the timing of the bleomycin ingestion took hours and thus I did not 

continue with this method. 

 The third type of damage tested was through x-ray irradiation.  The robust survivability 

and resilience of Drosophila larvae against irradiation damage has been previously tested.  
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Verghese and Su (PLoS Biol, 2016) tested this robustness and exposed Drosophila larvae to a 

maximum of 80Gy of irradiation.  The damaging effect of irradiation killed at least half of the 

cells in the imaginal discs but despite that damage, the flies maintained normal features and a 

normal longevity (Verghese and Su, PLoS Biol, 2016).  I attempted a much lower dose.  The 

flies were exposed to a peak kilovoltage of 75 for seven and a half minutes set to 15Gy and since 

they were able to survive the exposure, this was the irradiation dosage chosen for this assay.  

Irradiation was the most acute and reproducible and reliable form of acute damage of the three 

methods attempted.   

To obtain more consistent results with the STAT reporter, various factors were tested and 

controlled when designing this assay.  These factors include: movement effects, bottle care, 

smell effects, dissection/ fly handling technique, length of dissection, age of experimental flies 

and using a homozygous reporter copy versus a heterozygous reporter copy.  As an additional 

precaution to ensure the fly stocks were not contaminated, new fly stocks were obtained and 

raised prior to performing the experiment.  The fly stock vials were also flipped onto different 

batches of fly food, preemptively, as a precaution if a batch of food was unknowingly 

contaminated.  Table #1 highlights the various troubleshooting efforts and the result of 

implementing each change. 
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Table #1 Irradiation Assay Troubleshooting 

 

Troubleshooting 

Topic 

Description Result 

Movement 

Effects 

To transport experimental flies, a Styrofoam transport 

box was placed inside a cardboard box, in attempt to 

stabilize the vials and reduce the movements associated 

with walking between the incubator room to the 

irradiator room (see set-up in Figure 10). 

No change 

Smell Effects A previous study by Brenman-Suttner and colleagues 

(Scientific Reports, 2018) suggests that odorants could 

cause a stress response in flies.  To control for this, it 

was ensured that no perfume or fragrances were worn 

while handling the flies.  This study also suggested that 

when flies are overcrowded, they can emit stress 

odorants so it was ensured that the flies being raised had 

adequate social distance to prevent the emission of stress 

odorants and no more than 20 flies (15 females and 5 

males) were raised in each vial. 

Reporter activity was 

more consistent when 

taking into account social 

distancing. 

Bottle Care To enhance bottle care handling, experimental flies were 

flipped onto fresh food every other day.  Additionally, 

no more than 20 flies were raised in each vial, as 

mentioned above. 

Reporter activity was 

more consistent 

Dissection/ Fly 

Handling 

Technique 

Prior to experimenting, approximately 200 fly 

dissections were performed to ensure consistency.  

Different intestinal dissection techniques were carried 

out to determine if dissection technique had an effect on 

reporter activity. 

No change 

Dissection 

Length 

There is a 1.5-hour maximum time limit beginning from 

the time the anesthetized flies are put in the 75% ethanol 

to the time the dissected intestines (in PBS) are fixated 

in 4% PFA.  This is to ensure that the time points do not 

overlap with one another.  Dissections were performed 

in one hour or less to ensure the time intestines spent in 

PBS was not a factor. 

No change 

Age of 

Experimental 

Flies 

When performing intestinal dissections, flies should be 

between five to 14 days old. The intestine is not fully 

developed until five days of age and any flies older than 

14 days are too old for experimentation.  

No change 

Reporter Copy The strain of flies could contain a heterozygous or 

homozygous copy of the reporter.  The homozygous 

copy had a strong signal and was not very consistent.  

Instead, the heterozygous copy was used as it yielded 

more consistent results with an appropriate reporter 

signal strength. 

Reporter activity was 

more consistent 
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FIGURE 10 

Figure 10: Transportation Set-Up to Minimize Movement Effects 

Diagram depicting the set-up when transporting flies from the incubator room to the x-ray 

irradiator room.  This set-up was designed to maintain dark conditions preventing any light from 

penetrating through to the flies.  

 

 

 

Overall, it was a combination of the various troubleshooting topics that were incorporated 

into the development of the x-ray irradiation assay to be able to yield the most consistent results. 

 

3.1A Drosophila Survival  

 

 The original plan was to start by administering a high dosage of irradiation (a peak 

kilovoltage of 75 in order to achieve a peak of 15Gy) and observe if the flies will survive or die 

from the irradiation exposure.  If the flies had died, then a lower dose of irradiation would have 

been tested.  To observe the effects of irradiation on the survivability of Drosophila, a control     

( ; 6XSTAT-dGFP ; ) group and a period mutant group (per01;
6XSTAT−dGFP

Cyo
 ; ) were raised in LD 

conditions and tested.  Additionally, to determine if the timing of damage affects survival, each 

group was irradiated at different times throughout the day, ZT0 (7:00a.m.), ZT6 (1:00p.m.), 

ZT12 (7:00p.m.) or ZT24 (1:00a.m.).   

 It was determined that the dosage and timing of 15 gray irradiation exposure did not 

affect the long-term survival of the control flies or period mutant flies as seen in Figure 10.  The 
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y-axis indicates the percent survival of flies, where a value of 100 on the y-axis implies that all 

the flies are alive.  The control flies had the longest lifespan (approximately 100 days old) and 

the period mutant flies had a shorter lifespan (approximately 70 days old).  This observation 

supports the findings by Klarsfeld & Rouyer (J Biol Rhythms, 1998) which found that period 

mutant flies have a shorter lifespan than the control strain.  Recently, Ulgherait and colleagues 

(Nat Commun, 2020) found that period mutant Drosophila strains have a longer lifespan than the 

control strain, but this is inconsistent with both my data and the previously published findings.  

Kaplan Meier survival statistics were significant across all the various times of irradiation 

(Figures 11 A - E).  When comparing each strain across each time of irradiation (Figure 11 F – 

G), it is evident that the control has differences based on the time of irradiation whereas these 

differences are not observed in the period clock mutant.  The control flies irradiated at ZT0 have 

a lower survival at day 50 (Figure 11B) in comparison to the control flies irradiated at the other 

times of day.  Surprisingly, this reduction in survival at day 50 does not affect the overall long-

term survival of the surviving flies.   
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FIGURE 11 
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Figure 11: Kaplan Meier Survival Curves for Control and Period Clock Mutant Flies Under 

Undamaged Conditions or Exposed to 15Gy Irradiation at Various Times of Day. 

The control flies irradiated at ZT0 have a decreased lifespan between days 11 to 90 in 

comparison to control flies irradiated at other times of day.  There are differences in control 

survival based on time of irradiation (Fig. 11F), which is not seen in the period clock mutant 

(Fig. 11G). 

(A) Survival curve for undamaged flies.  Data presented for undamaged n= 84 control flies and 

n= 63 clock mutant flies [Mantel-Cox Log Rank Test, Chi Square= 90.74, df= 1, p ˂ 0.0001 

(****)].   

(B) Survival curve for flies irradiated at ZT0 (7:00a.m.).  Data presented for n= 16 control flies 

and 15 clock mutant flies Mantel-Cox Log Rank Test, Chi Square= 9.05, df= 1, p= 0.0026 (**)].     

(C) Survival curve for flies irradiated at ZT6 (1:00p.m.).  Data presented for n= 19 control flies 

and 15 clock mutant flies [Mantel-Cox Log Rank Test, Chi Square= 33.34, df= 1, p ˂ 0.0001 

(****)].   

(D) Survival curve for flies irradiated at ZT12 (7:00p.m.).  Data presented for n= 21 control flies 

and n= 17 clock mutant flies [Mantel-Cox Log Rank Test, Chi Square= 29.84, df= 1, p ˂ 0.0001 

(****)]. 

(E) Survival curve for flies irradiated at ZT18 (1:00a.m.).  Data presented for n= 23 control flies 

and n= 18 clock mutant flies [Mantel-Cox Log Rank Test, Chi Square= 24.78, df= 1, p ˂ 0.0001 

(****)]. 

(F) Survival curve for control flies.  Data presented for undamaged n= 84 flies and irradiated n= 

16- 22 flies per group [Mantel-Cox Log Rank Test, Chi Square= 5.092, df= 4, p= 0.2780 (n.s.)].   

(G) Survival curve for period mutant flies.  Data presented for undamaged n= 63 flies and 

irradiated n= 14-18 flies per group [Mantel-Cox Log Rank Test, Chi Square= 12.82, df= 4, p= 

0.0122 (*)].   

 

 

 

3.1B JAK/STAT Reporter Activity Levels 

 

The activity levels of the JAK/STAT reporter were tested in order to determine whether 

JAK/STAT activity changes after exposure to acute damage.  The Drosophila with the control 

genotype (with a heterozygous copy of the STAT reporter) were raised in LD conditions and 

were all irradiated at ZT0 (7:00a.m.).  Six dissection times post irradiation were performed at one 

hour intervals, beginning at ZT1 (8:00a.m.) and continuing up until ZT6 (1:00p.m.).  The STAT 

reporter is situated upstream of a dGFP fluorescent tag.  Thus, when a cell fluoresces green under 

GFP-sensitive fluorescence, it is an indication of the presence of STAT reporter activity.   
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The first step performed was to image the reporter in the midgut, in particular, the R5 

region to determine if there were any preliminary differences in the GFP intensity levels and/or 

quantity of GFP+ cells.  The posterior intestine has the greatest levels of proliferative activity 

(Takashima et al., Nature, 2008), so the R5 region is expected to be a region with the highest 

levels of JAK/STAT activity, due to its involvement in regeneration.  The image panel depicted 

in Figure 12A shows a representative image from each time point (one-hour control, one-hour 

post irradiation, two-hours post irradiation, three-hours post irradiation, four-hours post 

irradiation, five-hours post irradiation and six-hours post irradiation), with the GFP+ cells in 

green.  DAPI was used as a nuclear counterstain to ensure background fluorescent artefacts were 

not mistaken to be part of a cell.  Both the number of GFP+ cells and the fluorescent intensity of 

the GFP+ cells were considered while observing these samples.  It was determined that the 

samples from three-hours post irradiation and four-hours post irradiation appeared to have the 

most GFP+ cells, especially when compared to the one-hour control samples that were not 

irradiated.  There are medium levels of GFP+ cells observed at one-hour post irradiation and 

five-hours post irradiation.  Mild levels of GFP+ cells are observed at two-hours post irradiation 

and six-hours post irradiation.  The lowest levels of GFP+ cells are observed in the undamaged 

one-hour control sample.   

To validate these qualitative observations, the intestinal R5 region of these images were 

subsequently quantified.  The total number of GFP+ cells (as a ratio to the total number of 

DAPI+ nuclei) was determined.  Additionally, the GFP intensity level of each GFP+ cell was 

taken into account.  This data was compiled and the graph in Figure 12B was obtained.  In 

corroboration with the observations made in Figure 12A, it was determined that intestinal STAT 

reporter activity is most active at three-hours post irradiation and four-hours post irradiation 
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despite all the samples receiving the same dosage and length of irradiation at ZT0 (7:00a.m.).  

The data distribution is fairly symmetric, in which the highest levels of the STAT reporter are 

observed at three and four-hours post-irradiation (with a ratio of approximately 0.055 GFP+ cells 

to total cells).  The lowest levels of STAT reporter activity (with a ratio of approximately 0.025 

GFP+ cells to total cells) are noted in the undamaged control sample, one-hour post irradiation, 

two-hours post irradiation and six-hours post irradiation.  A medium level of STAT reporter 

activity was observed at five-hours post irradiation (with a ratio of approximately 0.040 GFP+ 

cells to total cells).  The differences between the levels of STAT reporter activity across the 

various time points were not significant via a one-way ANOVA.  It was ultimately decided to 

observe the levels of JAK/STAT activity three-hours post irradiation because it was quantified as 

having one of the highest levels of JAK/STAT activity and it was more convenient when 

performing 24-hour time series to ensure the time of irradiation did not overlap with the 

dissection from the previous time point.   
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FIGURE 12 
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     B 
                

                                         
 

Figure 12: An Optimal Time to Observe Increased Levels of STAT Intestinal Activity is Three 

Hours, Post-Acute Damage 

(A) Representative slide scanner images of the R5 intestinal Drosophila region, where GFP+ 

cells mark STAT reporter activity.  Flies were irradiated at ZT0 (7:00a.m.) and then dissected at 

different times of day post-irradiation.  Drosophila dissected at three-hours post irradiation have 

an increased number of STAT positive cells.  Scale bar for each image represents 20µm.   

(B) Graphical representation of slide scanner images shown in Figure 12A.  Flies dissected at 

three-hours post irradiation and four-hours post irradiation have the greatest ratio of STAT 

reporter activity.  Both the quantity and intensity of GFP-positive cells is incorporated into the 
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GFP+ cells to total cells ratio.  Data presented for n = 8 – 12 intestines in each group, error bars 

represent + standard error of the mean (SEM).  One-way ANOVA, [F = 1.407, p = 0.2259 (n.s.)]. 

 

 

 

3.1C Nuclear Morphology and Nuclear Size 

 

 The effects of irradiation on the nuclear morphology of cells in the R5 region of the 

Drosophila intestine were analyzed.  The Drosophila were raised in LD conditions and then 

shifted to DD conditions 24-hours prior to the experiment to simulate free-running conditions.  

The flies were irradiated at one of the four different time points over a 24-hour period (CT24 = 

7:00a.m., CT30 = 1:00p.m., CT36 = 7:00p.m., or CT42 = 1:00a.m.) and were later dissected 

three-hours post-irradiation.  DAPI was used as a nuclear counterstain on both undamaged and 

irradiated intestines (see Figure 13).  It was determined that the nuclear morphology of the cells 

from the undamaged sample were generally larger in size and circular in shape with uniform 

edges.  In comparison, when looking at the damaged sample, there appeared to be an increase in 

the number of DAPI+ nuclei which consisted of both small and large sized DAPI+ nuclei.  

Additionally, the edges of the DAPI+ nuclei in the damaged sample were rough and irregular.         

 

FIGURE 13 

 

 

DAPI DAPI 
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Figure 13: Nuclear Morphology of the Drosophila Intestine is Altered After Irradiation 

Slide scanner images of a portion of the Drosophila R5 region taken from control flies that were 

acutely damaged via x-ray irradiation at CT42 (1:00a.m.) and subsequently dissected three hours 

after irradiation.  DAPI nuclear staining in an undamaged intestine (left panel) and a damaged 

intestine (right panel) shows that the nuclear morphology in the damaged intestine appear 

irregular in morphology and an increase in the number of nuclei present.  Representative images 

were taken on a Slide Scanner with a resolution of 20µm.  Examples of large nuclei (with an 

area greater than 5µm2) are outlined in orange and examples of small nuclei (with an area less 

than or equal to 5µm2) are outlined in yellow on the right hand side of each representative 

image.    

 

 

 

In order to investigate this relationship quantitatively, a preset area was randomly selected 

within the R5 Drosophila region to allow for image analysis.   

To determine if there was a significant difference in the average nuclear size between the 

two treatment groups, average nuclear area was used as a representative measure for average 

nuclear size.  Figure 14A depicts the average nuclear size for each treatment group.  The 

undamaged samples had a significantly larger average nuclear size than the irradiated samples.  

The average nuclear area for the undamaged samples was approximately 13µm2 and the average 

nuclear area for the irradiated group was about half that value, at approximately 7µm2.  When 

this data is broken down into the various time points of interest (CT24, CT30, CT36 and CT42), 

it is evident that the trends observed in Figure 14B are consistent with the trends observed in 

Figure 14A.  Across all the time points, Figure 14B illustrates that the undamaged samples have 

a significantly larger average nuclear size in comparison to the irradiated samples. Furthermore, 

when comparing a treatment group across each time point, the average nuclear size remained 

within a close range of values.  The average nuclear size for the undamaged treatment group 

ranged between 12µm2 and 14µm2, for CT42 and CT24, respectively.  In comparison, the 
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average nuclear size for the irradiated treatment group ranged between 5µm2 to 8µm2, for CT36 

and CT24/CT42, respectively.   

Next, the scanned images were further quantified to determine the total number of nuclei 

present within the R5 region preset area previously described.  The number of nuclei present 

was used as a representative sample for the total number of cells present.   Figure 14C illustrates 

the number of nuclei in the undamaged treatment group and the irradiated treatment group.  The 

irradiated treatment group had a significantly greater number of nuclei, with approximately 173 

nuclei, whereas the undamaged treatment group had approximately 109 nuclei.  This data was 

also broken down into four corresponding time points: CT24 (7:00a.m.), CT30 (1:00p.m.), 

CT36 (7:00p.m.) or CT42 (1:00a.m.), over a 24-hour period, to determine if there was any 

variation in the number of nuclei present at each time point.   In accordance with Figure 13C, 

the irradiated treatment group consistently had a larger number of nuclei present across each 

time point in comparison to the undamaged treatment group.  This suggests that there could be a 

difference in the number of nuclei present between the control and irradiated treatment groups.  

It is important to note that there does not appear to be any time of day irradiation differences in 

the number of nuclei present.   

To gain a better understanding of these trends, nuclear area quantifications were separated 

into two categories: percentage of cells with a nuclear area greater than 5µm2 (representative of 

larger nuclei) or percentage of cells with a nuclear area less than or equal to 5µm2 

(representative of smaller nuclei) for each treatment group.  The same R5 region preset area 

described above for quantifying the nuclear size was used.  Figure 14E shows that the 

percentage of larger cells with a nuclear area greater than 5µm2 is 84.4% for the undamaged 

group and 51.4% for the irradiated treatment group.  This indicates that the presence of larger 
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nuclei is increased in undamaged intestines in comparison to irradiated intestines.  Moreover, it 

is evident in Figure 14F that the percentage of smaller cells with a nuclear area less than or 

equal to 5µm2, have a significant difference between the undamaged and irradiated groups.  The 

undamaged group has a significantly less percentage of nuclei that are smaller in size (averaging 

approximately 15.6% of cells within the preset area), whereas the irradiated group contains a 

larger percentage of nuclei that are smaller in size (averaging approximately 48.6% of cells 

within the preset area).  By comparing Figure 14E with Figure 14F, it can be inferred that the 

average nuclear area in the undamaged treatment group mostly consists of larger nuclei and 

some smaller nuclei and the irradiated treatment group has increased numbers of smaller nuclei 

(in comparison to the undamaged sample).   
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FIGURE 14 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Irradiated Intestines Have More Nuclei That Are Smaller in Size in Comparison to 

Undamaged Intestines  

E F 
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(A) Analysis of an area within the R5 region from Slide Scanner images of Drosophila under 

free-running conditions, where DAPI staining was indicative of nuclei present.  Irradiated 

intestines have a smaller average nuclear area in comparison to undamaged intestines.  Data 

presented for a sample size of 24 - 28 intestines per treatment group, error bars show +/- SEM. 

Unpaired t-test, [t= 9.315, df= 51, p < 0.0001 (****)].  

(B) Further analysis of the Slide Scanner images used in Fig. 14A, illustrated over a 24-hour 

period.  Irradiated intestines consistently have a smaller nuclear area across all the time points 

when compared to the undamaged intestines. The data is presented for n = 6 - 8 intestines per 

treatment group and time point, error bars show +/- SEM. Two-way ANOVA [F3,45= 1.973, p= 

0.1316 (n.s.)].   Tukey’s Multiple Comparison test comparing the undamaged to the damaged 

treatment groups: CT24 adjusted p value < 0.0001 (****); CT30 adjusted p value= 0.0041 (**); 

CT36 adjusted p value < 0.0001 (****); CT42 adjusted p value = 0.0445 (*). 

(C) Quantification of the number of nuclei using Slide Scanner images of an area within the R5 

intestinal region of Drosophila under free-running conditions.  The irradiated intestines have a 

significantly larger number of nuclei present [unpaired t-test, t= 6.576, df= 51, p < 0.0001 

(****)] in comparison to the undamaged intestines.  The data is taken from a sample size of 24 - 

28 intestines per treatment group and the error bars indicate +/- SEM.     

(D) The same quantification was performed as in Fig. 14C, but presented as a 24-hour analysis.  

In accordance with Fig. 14C, the irradiated intestines consistently have a larger number of nuclei 

present across all time points in comparison to the undamaged group.  Two of these time points 

yielded a significant difference: CT24 and CT36.  Two-Way ANOVA, [F3,45 = 1.675, p= 0.1858 

(n.s.)].  Tukey’s Multiple Comparison test comparing undamaged to irradiated groups: CT24 

[adjusted p value = 0.0007 (***)]; CT30 [adjusted p value = 0.2974 (n.s.)]; CT36 [adjusted p 

value = 0.0026 (**)] and CT42 [adjusted p value = 0.5734 (n.s.)].  Data presented for a sample 

size of 6 – 8 intestines per treatment group, per time point, error bars represent +/- SEM.  

(E) and (F) Bar graphs showing data obtained from quantifying an area in the intestinal R5 

region of Slide Scanner images of Drosophila under free-running conditions.  Quantifications 

were based on nuclear area, using 5µm2 as the threshold cutoff to determine the percentage of 

total cells for each category.  Undamaged intestines have an increased percentage of cells with a 

nuclear area greater than 5µm2 in comparison to irradiated intestines [Fig. 14E, unpaired t-test t= 

9.929, df= 51, p < 0.0001 (****)].  Irradiated intestines have significantly larger percentage of 

cells with a nuclear area less than or equal to 5µm2 [Fig. 14F, unpaired t-test, t= 9.929, df= 51, p 

˂ 0.0001 (****)] in comparison to the undamaged intestines.  Sample size of intestines 

quantified for Figures 14E and 14F are 24 - 28 intestines per treatment group, error bars 

represent +/- SEM. 

 

 

 

3.1D Intestinal Permeability  

 

 The changes observed in intestinal nuclear morphology following exposure to irradiation 

prompted further investigation into the potential damage caused by irradiation at the tissue level.  
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A Smurf assay was used to assess if the cells become ‘leaky’ following irradiation.  The control 

flies were raised under LD conditions and fed a 2.5% bromophenol blue solution for 24-hours 

prior to irradiation.  Drosophila melanogaster have a pale yellow ventral abdomen, which is 

relatively transparent, allowing for in vivo visualization of the intestine after ingestion of the 

bromophenol blue solution.  Under normal circumstances in an average aged fly, it is expected 

that the dye will be localized to the intestine.  If the cells become damaged, it would be expected 

that the cellular integrity will be compromised causing increased intestinal permeability.  In this 

case, the bromophenol blue dye would be expected to diffuse from the intestine and into the 

abdomen and no longer be localized from which the ‘Smurf’ assay name originates.     

 The level of ‘smurfness’ of each fly is determined by the amount of blue hue present in 

each fly.  The categorization and naming of ‘smurfness’ was modified from a paper published by 

R. R. Martins and colleagues (Bio Protec) in 2018.  Three categories were used to distinguish the 

flies, as shown in Figure 15.  A fly characterized as a fully ‘smurfed’ fly would exhibit increased 

intestinal permeability resulting in diffusion of the bromophenol blue dye throughout the 

abdomen so that the dye is no longer localized to the intestine.  In an intermediate ‘smurfed’ fly, 

the bromophenol blue dye has begun to diffuse from the intestine and is mainly present in the 

anterior portion of the abdomen.  The last category is the low ‘smurfed’ fly in which the 

bromophenol blue dye is strictly localized to the intestine, such that the intestinal coil is clearly 

visualized.  Figure 15 provides stereoscope images that are representative of each ‘smurfness’ 

category.  Table #2 describes the ‘smurfness’ category observations at each time point post- 

irradiation for both the undamaged and damaged control flies.  The low ‘smurfed’ categorization 

of smurfness was strictly seen in the undamaged samples across each time point analyzed.  The 

majority of the intermediate ‘smurfed’ flies were observed in the Drosophila exposed to 
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irradiation.  Two Drosophila that were exposed to irradiation began by showing characteristics 

of intermediately ‘smurfed’ flies, but were observed to exhibit ‘fully’ smurfed characteristics at 

three-hours post irradiation.  Consequently, one of the fully ‘smurfed’ flies died as a result four-

hours post irradiation.         

 

FIGURE 15 

 

  
 

Figure 15: Characterization of Drosophila ‘Smurfness’ Levels 

Representative images obtained from a stereoscope to illustrate each ‘smurfness’ category: fully 

‘smurfed’, intermediate ‘smurfed’ and low ‘smurfed’ flies.  Images were originally taken at 20x 

focus (top panel) but were electronically zoomed in (bottom panel) for clarity.    
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Table #2 Observations from Smurf Assay Flies were irradiated at ZT0 (7:00a.m.) and 

observed at various times throughout the day: immediately following irradiation (zero-hours post 

damage) to twenty-four-hours post irradiation.  The table details the number of flies that fall 

under each ‘smurfness’ category at each time point observed. 
 

Table #2 Observations from Smurf Assay 

Time (Hour) 

Post-Irradiation 

‘Smurfness’ Observations 

UNDAMAGED                                  DAMAGED 

0 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

1 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

2 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 0 

Intermediately Smurfed: 18 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

3 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 0 

Intermediately Smurfed: 16 

Fully Smurfed: 2 

Fully Smurfed Death: 0 

4 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 0 

Intermediately Smurfed: 15 

Fully Smurfed: 2  

Fully Smurfed Death: 1 

5 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 0 

Intermediately Smurfed: 15 

Fully Smurfed: 2 

Fully Smurfed Death: 1 

6 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 0 

Intermediately Smurfed: 15 

Fully Smurfed: 2 

Fully Smurfed Death: 1 

12 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 0 

Intermediately Smurfed: 15 

Fully Smurfed: 2 

Fully Smurfed Death: 1 

24 Low Level Smurfed: 18 

Intermediately Smurfed: 0 

Fully Smurfed: 0 

Fully Smurfed Death: 0 

Low Level Smurfed: 0 

Intermediately Smurfed: 15 

Fully Smurfed: 2 

Fully Smurfed Death: 1 

TOTAL 

NUMBER OF 

FLIES 

 

18 

 

18 

 

 IRRADIATED 
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Damaged flies were irradiated at ZT0 (7:00a.m.) and observed at various times 

throughout the day: immediately following irradiation (zero-hours post damage), one-hour post 

irradiation, two-hours post irradiation, three-hours post irradiation, four-hours post irradiation, 

five-hours post irradiation, six-hours post irradiation, twelve-hours post irradiation and twenty-

four-hours post irradiation.  Table #2 details the number of flies that fall under each ‘smurfness’ 

category at each time point observed, for a total sample of size of 18 flies per treatment group.  

Overall, the data showed that irradiation increased gut leakiness.  Future research should explore 

irradiating the flies at different times of day and assessing their level of ‘smurfness’ accordingly.  

This would provide insight into the possible effects that time of damage may have on gut 

leakiness.     

 

3.2 Is the JAK/STAT Stress Response Under Clock Control? 

  

 Next, I set out to determine if the JAK/STAT pathway is under 24-hour clock control.  

Both control flies (containing the STAT reporter) and period mutant flies (containing a STAT 

reporter) were raised in LD conditions and switched to DD conditions 24-hours prior to the 

experiment day.  On the day of the experiment, the flies were irradiated at one of four different 

time points within a 24-hour period (CT24 = 7:00a.m., CT30 = 1:00p.m., CT36 = 7:00p.m. or 

CT42 = 1:00a.m.) to determine if the time that damage is incurred will have an effect on the 

JAK/STAT response.  All flies were dissected three-hours post irradiation treatment.  Slide 

scanner images were quantified and a GFP intensity threshold was set to be able to determine the 

ratio of GFP+ cells to DAPI+ cells.  STAT reporter activity is identified within a cell is that is 

both GFP+ (indication of STAT activity) and DAPI+ (indicating the presence of a cellular 

nucleus).  Two separate replicates, with five to seven flies per time point in each replicate, were 
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performed on this assay.  A representative slide scanner image panel taken of the R5 region of 

Drosophila that were irradiated at CT42 is shown in Figure 16A.  It is evident that there is a 

decreased number of GFP+ cells in the undamaged sample, in comparison to the damaged 

sample.  The merge panel shows that despite many DAPI+ nuclei present in the undamaged 

sample, many of these nuclei are lacking STAT reporter activity.  The merge panel also confirms 

that the GFP+ cells in the undamaged and irradiated panels are DAPI+.   

 Quantification of all the slide scanner images was performed to verify the qualitative 

observations described in Figure 16A.  A graphical representation of the undamaged control and 

period mutant groups at each time point is illustrated in Figure 16B whereas Figure 16C is a 

graphical representation of the damaged control and period mutant groups at each time point.  

For the undamaged groups, the values for the ratio of GFP+ cells to total cells remains relatively 

constant for each treatment group across the time points, such that the ratio value for the control 

groups is around 0.05 and the ratio value for the period mutant groups is around 0.01 (Figure 

16B).  Additionally, the ratio of GFP+ cells to total cells in the undamaged control are 

significantly greater than the ratio of GFP+ cells to total cells in the undamaged period clock 

mutant [two-way ANOVA, p value ˂ 0.0001 (****)].  In three of the time points (CT24 = 

7:00a.m., CT36 = 7:00p.m. and CT42 = 1:00a.m.), the ratio of GFP+ cells to total cells is 

significantly larger in the control groups in comparison to the period mutant groups.  At CT30, 

the GFP+ cells to total cells ratio is also elevated in the control group in comparison to the period 

mutant group, but this difference is not statistically significant.  This suggests JAK/STAT 

activity is positively regulated by PER, and in its absence is at a low level, but that it is not time 

dependent.  
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 The damaged treatment groups (graphed in Figure 16C), indicate that across each of the 

time points, the ratio values of GFP+ cells to total cells in the control groups are larger than the 

ratio values in the period mutant groups.  Unlike Figure 16B, the ratio values for the control 

groups in Figure 16C fluctuate across each time point and differ depending on the time of 

irradiation, whereas the ratio values for the period mutant groups remain consistently similar 

across each time point (a ratio value of approximately 0.02).  In Figure 16C, a statistically 

significant difference is noted in the irradiated control at CT30 versus the irradiated control at 

CT42 [two-way ANOVA, adjusted p value = 0.0080 (**)].  This suggests that there could be a 

time dependent difference in JAK/STAT activity levels following irradiation. 
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FIGURE 16       
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Figure 16: Following Irradiation, the Circadian Clock Regulates the JAK/STAT Pathway in a 

Time Dependent Manner 

(A) Slide scanner image panel of representative images of the Drosophila R5 Region for the 

undamaged and irradiated treatment groups at CT42.  Dissections were performed three-hours 

post-irradiation (CT45).  GFP+ cells mark STAT reporter activity and DAPI is used as a nuclear 

counterstain.  Scale bar represents 20µm. 

(B) Analysis of the slide scanner images of the undamaged control and period mutant groups to 

determine the average ratio of GFP+ cells (marked in green) to the total number of cells (marked 

in blue, DAPI).  Period regulates the JAK/STAT reporter in a non-time dependent manner.  Data 

presented for n = 8 – 12 intestines per group, per time point from two separate replicate 

experiments.  Error bars show + SEM.  Two-way ANOVA [F3,79 = 0.151, p = 0.9287 (n.s.)].  

Tukey’s Multiple Comparison Test comparing the control group to period mutant group: CT24 

adjusted p value = 0.0223 (*), CT30 adjusted p value = 0.2071 (n.s.), CT36 adjusted p value = 

0.0485 (*) and CT42 adjusted p value = 0.0231 (*). 

(C) Quantification of slide scanner images from the damaged control and period mutant groups 

to investigate the average ratio of GFP+ cells (marked in green) to the total number of cells 

(DAPI+, marked in blue).  Following irradiation damage, the circadian clock will regulate the 

JAK/STAT pathway in a time-dependent manner.  Data presented for n = 8 – 12 intestines per 

group, per time point from two separate replicate experiments.  Error bars show + SEM.  Two-

way ANOVA [F3,80 = 2.287, p = 0.0849 (n.s.)]. Tukey’s Multiple Comparison Test comparing 

the control group to the period mutant group: CT24 adjusted p value = 0.4324 (n.s.), CT30 

adjusted p value ˃ 0.9999 (n.s.), CT36 adjusted p value = 0.9925 (n.s.) and CT42 adjusted p 

value = 0.0074 (**).  

 

 

 

3.3 Is Bacterial Presence Required for JAK/STAT Activity? 

 

 It has previously been shown that the JAK/STAT pathway is activated in response to 

bacterial infection (Buchon et al., Cell Host Microbe, 2009).  I sought to determine if the 

JAK/STAT response seen in Figure 16 is a result of the irradiation or a response to the bacterial 

presence in the midgut.  It is unclear whether the intestinal stress response is a direct response 

from the damage caused by irradiation or an indirect effect due to the presence of bacteria in the 

intestine, which in turn, causes an inflammatory response.  To further investigate the cause of the 

intestinal JAK/STAT response, an axenic assay was developed.  The purpose of this assay was to 

eliminate as much bacteria as possible and then repeat the irradiation assay to be able to 
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determine the root of the response—either from irradiation or bacteria.  To accomplish axenic 

conditions, eggs laid by control flies (containing the STAT-dGFP reporter) and period mutant 

flies (with the STAT-dGFP reporter) were collected from apple juice agar.  The collected eggs 

underwent a bleaching step were placed in an autoclaved vial containing a cocktail of antibiotics 

that were supplemented into regular fly food.  The eggs were raised until eclosion.  Once the 

flies had emerged from their pupal casing, they were transferred to new vials.  These flies were 

raised in LD conditions and 24-hours prior to experimentation, they were moved to DD 

conditions, in accordance with the standard irradiation protocol.  On the day of the experiment, 

control and period mutant flies were irradiated at one of two time points within a 24-hour period: 

CT30 (1:00p.m.) or CT42 (1:00a.m.).  Three-hours post irradiation, the flies were dissected and 

mounted.  Once the slides were dry, they were scanned on a Slide Scanner for quantification.             

 Representative slide scanner images for both damaged and undamaged treatments are 

shown in Figure 17A for the control flies and Figure 17B for the period mutant flies.  In Figure 

17A, it is evident that there are no significant differences between the undamaged flies fed 

antibiotic food in comparison to the damaged flies fed antibiotic food.  This is true for both time 

points (CT30 and CT42).  Interestingly, there are very little to no GFP+ cells (which would be 

indicative of STAT reporter activity) present in the undamaged or damaged treatment groups.  A 

similar trend is seen in the period mutant image panel in Figure 17B, where very little to no 

GFP+ cells are evident in the undamaged flies fed antibiotic food nor in the damaged flies fed 

antibiotic food at either time points.   

 Analysis of the slide scanner images was performed to determine the average ratio of 

GFP+ cells to total cells for each treatment group.  Figure 17C is a graphical representation of 

the treatment groups at the CT30 time point and Figure 17D is a graphical representation of the 
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treatment groups at the CT42 time point.  It is evident that at CT30 and CT42, the axenically 

treated flies have extremely little to no GFP+ cells present (Figures 17 C – D) yielding a ratio 

value of GFP+ cells to total cells to essentially be zero across all axenically handled groups 

regardless if they were irradiated or not.  This supports the observations noted in the 

representative images featured in Figures 17 A – B.  At the CT30 time point, significant 

differences are noted between the undamaged control and axenic undamaged control as well as 

between the irradiated control and axenically irradiated control.  At the CT42 time point, the 

only significant difference is noted between the damaged control and the axenic damaged 

control.      
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FIGURE 17 
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Figure 17: Bacteria Are Required for JAK/STAT Activity. 

(A - B) Representative slide scanner images for control flies (A) or period mutant flies (B) raised 

on antibiotic (AB) supplemented food.  Image panel showcases both undamaged and damaged 

treatment groups at both time points (CT30 and CT42), where DAPI+ cells (nuclear 

counterstain) are marked in blue and GFP+ cells (STAT reporter) are in green.  Very little to no 

GFP+ cells are present in the flies raised with the antibiotic-supplemented food.  Scale bar 

represents 20µm.   

(C - D) Graphical analyses of slide scanner images described above.  Axenically raised flies have 

no JAK/STAT activity regardless if the flies are damaged or undamaged.  This suggests that 

bacteria are required to elicit a JAK/STAT response.  Data presented for n = 8 – 12 intestines per 

treatment group (Fig. 17C) and n = 6 – 10 intestines per treatment group (Fig. 17D), error bars 

show + SEM.   

Fig. 17C: One-Way ANOVA [F7,68 = 4.365, p = 0.0005 (***)].  Brown-Forsythe Test: 

undamaged control vs. axenic undamaged control p value = 0.0039 (**), irradiated control vs. 

axenic irradiated control p value = 0.0417 (*). 

Fig. 17D: One-Way ANOVA [F7, 69 = 13.93, p ˂ 0.0001 (****)]. Brown- Forsythe Test: 

irradiated control vs axenic irradiated control p value ˂ 0.0001 (****). 

 

 

To test the efficacy of the antibiotic-supplemented fly food, a sterile polyester tipped 

applicator (Fisher Scientific, cat. no. 25-806) was used to obtain a sample from the surfaces of 

antibiotic-supplemented fly food and regular fly food.  The applicator was then streaked onto a 

Tryptic Soy Agar (TSA) plate.  The inoculated plates were placed in a 37ᵒC bacterial incubator 

(Quincy Lab Inc., Model #10-140) and observed for growth 24- and 48-hours post-inoculation.                     

Images of the corresponding petri dishes are shown below in Table #3.  There is 

increased bacterial growth visible on the TSA plate streaked with the regular fly food sample at 

both 24 and 48 hours post-streaking, with 36 colonies visible at 24-hours post streaking and 31 

colonies visible at 48-hours post streaking.  The colonies observed at 48-hours post streaking 

appear to be larger in size (when compared to 24-hours post streaking) and some may have 

combined with neighbouring colonies.  No bacterial growth was present on the TSA plates 

streaked with the antibiotic-supplemented fly food sample at 24 and 48 hours post streaking. 
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Table #3 Bacterial Growth Observations of Samples Obtained from Fly Food Growth of 

bacteria from vials housing Drosophila (that eclosed from bleached eggs) raised on antibiotic-

supplemented fly food or housing Drosophila (that eclosed from bleached eggs) raised on 

regular fly food was observed on TSA plates after 24-hours post streaking and 48-hours post 

streaking.  

 

 

 

 

 

 

 

 

 

 

 Antibiotic-Supplemented Food Sample Regular Food Sample 

 
 
 
 
 

24 

Hours 

Post 
 

 

 
 

Number of Colonies = 0 
 

 

 
 

Number of Colonies = 36 

 
 
 
 
 

48 

Hours  

Post 

 

 
 

Number of Colonies = 0 
 

 

 
 

Number of Colonies = 31 
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3.4 Does Superoxide Presence Vary Throughout the Day Following Irradiation Damage? 

 

 Superoxides are produced naturally as byproducts of mitochondrial metabolism (Miwa et 

al., Free Radic Biol Med, 2003), but accumulation of high levels of superoxides can be harmful 

to an organism.  Yamaguchi and Kashiwakura previously showed that x-ray irradiation causes a 

significant increase in the levels of intracellular ROS in cell culture studies (PLoS One, 2013).  I 

therefore tested if irradiation produces a time dependent response.  The presence of superoxides 

in the Drosophila intestine was detected using DHE staining dye.   

To first ensure the DHE dye was detectable in the Drosophila intestine, control              

( ; 
6XSTAT−dGFP

+
 ; ) and period mutant (per01;

6XSTAT−dGFP

Cyo
 ; ) female flies were exposed to 

different levels of hydrogen peroxide (0.5mg/mL and 2mg/mL) on Whatman glass microfiber 

filter paper, 24mm (Millipore Sigma, cat. no. WHA1821024) 24-hours prior to the experiment 

day.  A representative image panel showcasing the positive and negative controls used are shown 

in Figure 18 to verify the effectiveness of using this particular dye.  The undamaged sample was 

used as a negative control, which showed little DHE+ cells.  A 2% of hydrogen peroxide (H2O2) 

solution was used as the positive control treatment.  It was evident that the 2% H2O2 solution had 

an increased population of DHE+ cells in the posterior intestinal R4/ R5 region and the anterior 

intestinal R1 region, so this was used as the standard for increased DHE signal (as indicated by 

the white arrows in Figure 18).  The levels of DHE+ cells in the irradiated groups was included 

in the Figure 18 image panel for comparison.  The irradiated control and irradiated period mutant 

samples have less DHE+ cells present when compared to the positive control (Figure 18).   
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FIGURE 18 
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Figure 18: DHE Dye Verification 

Various positive and negative controls were tested to verify the efficacy of DHE dye, which 

marks cells in red.  Slide scanner representative images are shown above, where the entire 

intestine is outlined in white and the posterior portion of the intestine is marked with the letter 

‘P’.  The undamaged sample was used as a negative control, which shows little DHE+ cells.  The 

2% H2O2 solution was used as a positive control, showing increased DHE+ cells, especially in 

the posterior region.  Areas of increased DHE+ cells are indicated by the white arrows.  Scale bar 

represents 200µm. 
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 To determine the optimal time to observe the DHE staining after damage, the flies were 

dissected at various time points post irradiation (one-hour post irradiation, two-hours post 

irradiation, three-hours post irradiation, four-hours post irradiation, five-hours post-irradiation 

and six-hours post irradiation) and subsequently viewed under a fluorescent microscope to 

observe the slides for DHE+ cells.  Ultimately, it was determined that a dissection of three hours 

post irradiation would be most optimal due to the limited half-life of DHE dye and the DHE 

intensity levels observed were brightest at that time. 

Following verification of the DHE staining protocol, the irradiation assay was performed 

to investigate any time of day dependence on superoxide presence.  Control and period mutant 

flies were raised in LD conditions and moved to DD conditions 24-hours prior to the experiment 

date.  On the day of the experiment, the flies were irradiated at one of four different time points 

(CT24 = 7:00a.m., CT30 = 1:00p.m., CT36 = 7:00p.m. or CT42 = 1:00a.m.) and then dissected 

three-hours post irradiation.  DHE and DAPI staining was performed.  The slides were scanned 

on a slide scanner the next day so that the images could be appropriately quantified before the 

signal degradation occurred.  This assay was replicated two separate times.   

 Analysis of the slide scanner images yielded the graphical representations seen in Figures 

19 C – D.  An average ratio value of the total number of DHE+ cells (marked in red) to the total 

number of cells (marked by DAPI in blue) was determined for the intestinal R5 region of each 

intestinal sample analyzed.  There are no statistically significant differences between the ratio of 

DHE+ cells to the total number of cells in either undamaged or irradiated conditions.  

Interestingly, it appears that the undamaged group has a larger number of DHE+ cells present 

when the ratio levels of DHE+ cells in the undamaged group to the irradiated group are 

compared, although these differences are not significant.  By comparing the treatments 
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performed for each condition, it appears that under undamaged conditions, the control group 

(Figure 19 C) has a larger number of DHE+ cells in comparison to the clock mutant group.  The 

value of DHE+ cells to total cells also appears to fluctuate throughout the day in the undamaged 

control group, despite the differences not being statistically significant.  Additionally, the 

undamaged clock mutant appears to be arrhythmic and show no patterns of time of day 

dependence.      
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FIGURE 19 
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Figure 19: Irradiation Does Not Affect Superoxide Generation and Superoxide Presence Does 

Not Significantly Vary Throughout the Day 

(A) Representative slide scanner images of intestinal R5 region in control flies at CT24 

(7:00a.m.) under damaged and undamaged conditions.  DHE+ cells are in red (indicating 

superoxide presence), GFP+ cells are in green (indicating STAT activity) and DAPI+ cells are in 

blue (nuclear counterstain).  The number of DHE+ cells appears to be slightly less in the 

damaged treatment group when compared to the undamaged treatment group.  Scale bar is set to 

20µm.   

(B) Slide scanner image panel of representative pictures of the intestinal R5 region in period 

mutant flies at CT24 under undamaged and damaged conditions.  Scale bar is set to 20µm. 

(C) Analysis of slide scanner images for undamaged treatment groups across each time point.  In 

the control groups, superoxide presence does not significantly vary depending on time of day.  

Data presented for 7 – 12 intestines per group per time point, error bars represent + SEM.  Two-

way ANOVA [F3,58 = 1.126, p = 0.3460 (n.s.)]. 

(D) Analysis of slide scanner images for damaged treatment groups across each time point.  

Irradiation does not increase superoxide production.  Data presented for 7 – 12 intestines per 

group, per time point, error bars represent + SEM.  Two-way ANOVA [F3,65 = 1.602, p = 0.1974 

(n.s.)].  

 

 

 

3.5 Is There Clock Dependence on the JAK/STAT Pathway? 

 

Manipulations to different components of the JAK/STAT pathway have previously been 

shown to change circadian behavioural rhythms (Luo et. al, Cell, 2012).  To gain a better 

understanding of the relationship between the circadian clock and the JAK/STAT pathway, I 

tested if activation of the JAK/STAT pathway (by unpaired overexpression) has any effect on 

clock function.  A Drosophila strain that overexpressed unpaired cytokine (UPD) with a clock 

reporter background was constructed using the UAS-GAL4 Drosophila system.  The 

UAS/GAL4 gene expression system functions through an effector transgene that is linked to a 

promoter containing an upstream activator sequence (UAS), allowing control over the regional 

and temporal expression of the transgene (Figure 20).  GAL80ts is a temperature sensitive 

inhibitor, and at restrictive conditions (temperatures less than 19ᵒC), the activity of GAL4 is 

inhibited, causing suppression of the transgene (UPD).  At permissive conditions, GAL80ts 



62 
 

becomes nonfunctional and allows for the transcriptional activity of GAL4 to move forward 

(Fujimoto et al., Developmental Dynamics, 2011). The transcriptional driver of GAL4 is 

myo1A, which is specific to expressing intestinal enterocytes, thus binding of GAL4 to UAS 

activates UPD overexpression in the intestinal enterocytes allowing for cell specificity.  

 

FIGURE 20 

 

 
 

Modified from Wang & Zhong, [Perspective] Science, 2004 

 

Figure 20: Schematic of the UAS/GAL4 System 

Illustration depicts the UAS/GAL4 system under both restrictive conditions (at 19ᵒC), where the 

transgene is not transcribed, and under permissive conditions (at 29ᵒC), where the transcription 

of the transgene is permitted.    

 

 

 

 Upon eclosion, the desired flies were collected and shifted to a 29ᵒC LD incubator for 

five days.  At 29ᵒC, the UAS-GAL4 system was activated to allow for the overexpression of 

UPD.  After five days, the flies were dissected at eight different time points within a 24-hour 

period (ZT0 = 7:00a.m., ZT3 = 10:00a.m., ZT6 = 1:00p.m., ZT9 = 4:00p.m., ZT12 = 7:00p.m., 

ZT15 = 10:00p.m., ZT18 = 1:00a.m. and ZT21 = 4:00a.m.).  The slides were scanned using a 

slide scanner and analyzed for quantification.  Representative images are shown in Figure 21A.  

29 29ᵒC 
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Across all the time points analyzed, the intestines that overexpressed UPD were a lot smaller in 

length, but thicker in width and appeared to look distended, especially when compared to their 

control counterparts.  This observation is consistent with the literature, in which unpaired 

overexpression causes an increase in intestinal stem cell proliferation, which is described to have 

a similar phenotype (Beebe et al., Dev Biol, 2010).  Figure 21A shows increased ClockPER 

reporter fluorescence (GFP+ cells) throughout all regions of the intestine in the UPD 

overexpression sample at ZT0.   

 Four regions were analyzed on each intestine sample: (a) entire intestine (b) posterior R5 

region (c) anterior R1 region and (d) midgut R2 to R4 region.  It is evident across the various 

analyses (Figures 21 B– E), that the average curve seen for the unpaired overexpression group 

has a stronger GFP to DAPI intensity ratio in comparison to the control.  This suggests that the 

overexpression of unpaired increased the clock reporter signal.   

Additionally, the average intensity ratio for UPD overexpression tends to follow a ‘U’-

shaped curve, where ZT0 (7:00a.m.) is a peak and a trough occurs between ZT12 (7:00p.m.) to 

ZT15 (10:00p.m.).  The curve begins to peak again at ZT21 (4:00a.m.).  The average ratio curve 

for the control groups across Figures 21 B – E is similar to the unpaired overexpression curve 

except it is a lot more dampened and the peaks and troughs are more difficult to distinguish.  

Across each figure, there appears to be a consistent peak at ZT3 (10:00a.m.) in the control group.  

The ClockPER rhythm for UPD overexpression is consistent with the ClockPER rhythm published 

by Parasram and colleagues (Stem Cell Rep, 2018).   
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FIGURE 21 
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Figure 21: The JAK/STAT Pathway Does Not Regulate the Circadian Clock 

(A) Representative slide scanner image of whole gut fluorescence of ClockPER reporter at ZT0 

(7:00a.m.) and ZT15 (10:00p.m.).  Increased levels of GFP+ cells are visible throughout the 

unpaired overexpression sample at ZT0.  Increased GFP+ cells are mainly in the posterior 

portion of the unpaired overexpression sample at ZT15.  The Clock is still functional when 

unpaired is overexpressed.  ‘A’ indicates the anterior portion of the intestine and ‘P’ indicates the 

posterior portion of the intestine, scale bar represents 200µm.       

(B – E) Slide scanner image quantifications of GFP to DAPI Clock reporter intensities for the 

whole intestine (Fig. 21B), posterior region (Fig. 21C), anterior region (Fig. 21D) and midgut 

region (Fig. 21E) for flies overexpressing unpaired (red) and control flies (grey).  The clock is 

still functional despite unpaired being overexpressed, implying that the JAK/STAT pathway does 

not regulate the circadian clock. Data presented for n = 6 – 10 intestines per treatment group, per 

time point.  Two-Way ANOVA: Fig. 21A: [F7,115 = 7.193, p ˂ 0.0001 (****)], Fig. 21B: [F7,114 = 

7.014, p = 0.0592 (****)], Fig. 21C [F7,113 = 4.166, p = 0.0004 (****) and Fig. 21D: [F7,111 = 

8.111, p ˂ 0.0001 (****)].  

 

 

 

3.6 Testing the JNK and Hippo Pathways  

 

 To further understand the circadian clock regulation of stress signaling, a JNK and Hippo 

reporters were obtained from the laboratory of Norbert Perrimon (Dept. of Genetics, Harvard 

Medical School).  The JNK reporter strain worked in the Drosophila intestine, so it was tested 

following irradiation.  The Hippo reporter did not work in the Drosophila intestine so no further 

experimentation took place using this reporter.   

Drosophila were dissected at different times throughout their lifespan to determine a 

baseline level of endogenous JNK activity.  An inverted fluorescent microscope was used to 

make qualitative observations and determine that the levels of JNK detected by the JNK reporter 

were very low throughout their lifespan (Figure 22).  It was noted that some JNK activity was 

observed in the anterior midgut of older (29 and 35 day) flies, which is consistent with previous 

reports (Biteau et al., Cell Stem Cell, 2011).  JNK reporter flies were raised in LD conditions and 

on the day of the experiment, all the fly groups were irradiated at ZT0 (7:00a.m.).  Dissections 

occurred at different times post irradiation damage: ZT1 (8:00a.m.), ZT2 (9:00a.m.), ZT3 
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(10:00a.m.), ZT4 (11:00a.m.), ZT5 (12:00p.m.), ZT6 (1:00p.m.), ZT9 (4:00p.m.), ZT12 

(7:00p.m.), ZT18 (10:00p.m.) and ZT24 (7:00a.m. the following day).  No clearly marked GFP+ 

cells were present at any of the dissection times for the JNK reporter.  At ZT4, there appeared to 

be some cells with faint GFP+ cells but the GFP did not stain as previous GFP stains have been 

traditionally known to stain.  The GFP stain appeared to only mark the outer circumference of 

most cells giving the appearance that the cells were faintly outlined.  Overall, the observations 

yielded no difference in JNK reporter activity across the time points following irradiation.  A 

representative slide scanner image of the visualizations of the JNK reporter at each time point 

dissected after being subjected to irradiation is shown in Figure 22B.    
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FIGURE 22 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 22: JNK Activity May Be Present in the Older Stages of Drosophila Development and There Are No Time Dependent 

Changes in JNK Activity Following Irradiation

A 

B 
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(A) Representative slide scanner images from undamaged treatment of whole gut fluorescence in 

the JNK-dGFP reporter.  The anterior portion of the older flies (Adult Day 29 and Adult Day 35) 

appear to have some GFP fluorescence anteriorly, but the signal is low and cannot be positively 

identified as positive reporter activity.  ‘A’ indicates the anterior portion of the intestine and ‘P’ 

indicates the posterior portion of the intestine, scale bar represents 200µm. 

(B) The representative slide scanner images of whole gut fluorescence of the JNK reporter flies 

irradiated at ZT0 and dissected at the corresponding times following irradiation.  JNK reporter 

activity is not present in intestines following exposure to irradiation.  Presence of the JNK 

reporter activity would have be marked in green (GFP+ cells).  ‘A’ indicates the anterior portion 

of the intestine and ‘P’ indicates the posterior portion of the intestine, scale bar represents 

200µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

CHAPTER 4 

 

DISCUSSION 

 

 The JAK/STAT pathway is part of the Drosophila immune response (Agaisse & 

Perrimon, Immunol Rev, 2004).  For example, cellular damage or injury can allow bacteria to 

enter the Drosophila hemolymph (blood system), causing an inflammatory response (Agaisse & 

Perrimon, Immunol Rev, 2004).  Detection of the bacteria causes phagocytic white blood cells, 

called hemocytes, to release UPD cytokines that activate the JAK/STAT signalling pathway to 

promote cellular proliferation and regeneration of the lost cells (Agaisse & Perrimon, Immunol 

Rev, 2004).  The JAK/STAT pathway plays an important role in the intestine due to its 

involvement in cellular proliferation and stem cell differentiation (Beebe et al., Dev Biol, 2010).  

Previous studies have demonstrated the regenerative ability of the Drosophila intestine following 

chemical damage (ingestion of Bleomycin) and bacterial infection of Erwinia carotovora 

carotovora 15 (Ecc15) (Panayidou & Apidianakis, Pathogens, 2013) which reveals that 

inflammation is necessary for regeneration.   

There is an important and poorly understood timing to inflammation and regeneration.  

Variations in Drosophila survival outcome have been associated with time of bacterial infection.  

Stone and colleagues (PLoS Path, 2012) injected Drosophila with Staphylococcus aureus either 

during the day or at night.  They discovered that the flies injected at night had greater phagocytic 

activity than the flies injected during the day.  Phagocytic activity is a protective cellular 

mechanism to destroy pathogens and a part of the Drosophila immune response.  This indicates 

that the immune response varies depending on time of day.  One research report has suggested 

that there may be a relationship between the circadian clock and the JAK/STAT pathway.  Luo 

and colleagues (Cell, 2012) showed that manipulations to JAK/STAT pathway components, such  
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as downregulating UPD, could alter circadian behavioural rhythms.  The involvement of the 

JAK/STAT pathway in the immune response encouraged me to explore if the JAK/STAT 

pathway is also under circadian clock control.  This project set out to explore the possible time 

dependent changes in JAK/STAT activity by exploring the relationship between the JAK/STAT 

pathway and the circadian clock.   

 

4.1 Implications of Irradiation on the Drosophila Intestinal Epithelium 

An acute irradiation damage assay was developed to initiate the JAK/STAT pathway 

response.  This damage assay was advantageous because it permitted the tracking of reporter 

activity throughout the day.  Four different properties (survival, JAK/STAT reporter activity 

levels, nuclear damage and intestinal permeability) were tested to determine the effects of 

irradiation exposure and investigate the extent of damage both physiologically and at a cellular 

level.   

Various factors can affect longevity of flies, including sex (males typically live shorter 

than females), temperature (lifespan shortens as temperature is increased) and vial cleanliness 

(dirty vials due to irregular vial flipping will shorten their lifespan) (Linford et al., J Vis Exp, 

2013).  X-ray irradiation has been shown to negatively affect survival in animals, for example, 

mice administered 16Gy of irradiation have a mortality rate of 100% by day six post damage 

induction (Booth et al., Health Phys, 2012).  In comparison, Drosophila survival has been shown 

to be more resistant to irradiation damage and larvae have been shown to have robust survival 

following irradiation (Verghese & Su, PLoS Biol, 2016).  Typically, under undamaged 

conditions female Drosophila melanogaster have a life span greater than 60 days if raised in a 

25ᵒC incubator (Linford et al., J Vis Exp, 2013).  A variation in survival was observed depending 
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on the time of irradiation.  Control flies irradiated at ZT0 (7:00a.m.) showed a decrease in 

survival at day 50 that was not observed in the other treatments.  The time of day variations 

observed may be an indication that there is a circadian clock influence on survival after 

irradiation.  In addition, the clock mutant undamaged and irradiated flies had a decreased 

lifespan when compared to the control.  This is consistent with previously published data by 

Klarsfeld & Rouyer (J Biol Rhythm, 1998) as well as Krishnan and colleagues (Aging Albany 

NY, 2009) which suggest that PER may play a role in extended longevity and healthspan.  These 

findings contradict recently published data by Ulgherait and colleagues (Nat Commun, 2020), 

who showed that mutations in PER increase longevity due to their dependence on mitochondrial 

uncoupling for cellular respiration.  My results further support an early circadian study 

performed by Halberg and colleagues in 1960 (Exp Biol Med).  Halberg inoculated mice with an 

endotoxin at various times of day and recorded their survival.  Mice inoculated at 12:00am.m 

had a survival rate greater than 90% whereas the survival of the mice inoculated at 4:00p.m. was 

less than 20% due to septic shock.  Overall, my data confirm that PER loss decreases longevity 

and time of day variation in irradiation damage influence survival.      

 In addition to its roles in cellular proliferation, the JAK/STAT pathway also has roles in 

cellular differentiation, where it has more of a ‘housekeeping’ role to replace old cells.  This 

means that baseline levels of JAK/STAT activity are expected to be present in a cell.  Following 

damage, it is expected that JAK/STAT activity levels would increase as it switches over to a 

proliferation role to quickly replace the damaged cells.  Irradiation damage resulted in increased 

JAK/STAT activity levels at three-hours and four-hours post irradiation.  Although the increases 

were not significant, three-hours post irradiation was chosen as the time to study JAK/STAT 

activity because it would not overlap with other time points.  For the time series experiment 
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conducted, time points occurred every six hours, so when factoring in the time to wait post 

irradiation prior to dissecting and the time it takes to perform the dissection, three-hours post 

irradiation would be most appropriate.  

 Exposure to irradiation is damaging to cells and may result in negative cellular 

consequences, such as apoptosis (Little, N Engl J Med, 1968).  Cells will die within a few hours 

of irradiation exposure and begin to undergo nuclear breakdown and DNA degradation (Little, N 

Engl J Med, 1968).  In HeLa cells, x-ray irradiation exposure resulted in an increase in reactive 

oxygen species, DNA double stranded breaks, apoptosis and lack of cell proliferation (Zhao et 

al., Oncol Lett, 2019).  I found that irradiation increased the number of nuclei present and these 

are smaller in size in comparison to the undamaged samples.  This data was also consistent when 

each time point was quantified separately.  This suggests that irradiation is causing an effect at 

the cellular level and the variations in nuclear morphology can be attributed to damage caused by 

irradiation.  One possibility to explain this is that irradiation induces proliferation.  Proliferative 

conditions are stimulated in response to cytokines, which often occurs in response to damage or 

injury (Mukherjee et al., Mech Ageing Dev, 2005).  After irradiation, proliferative conditions are 

most likely occurring to replace the damaged cells, which could explain the increase in the 

number of nuclei in the irradiated samples.  Alternatively, the smaller nuclei observed in the 

irradiated samples may be a consequence of nuclear fragmentation (Little, N Engl J Med, 1968).  

Further research in this area is warranted to determine the origin of the smaller nuclei 

visualized—whether they are a consequence of cellular proliferation or cellular breakdown.  

Proliferation could be tested by labelling proliferating cells and using a reagent such as 

Bromodeoxyuridine (BrdU) labelling to label S-Phase cells, or phosphor-HistoneH3 to label 
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dividing mitotic cells.  This would provide insight into the regenerative response process 

following irradiation damage.   

 The intestinal epithelium is a barrier against chemicals, pathogens and bacteria (Ayyaz & 

Jasper, Front Cell Infect Microbiol, 2013).  The disruptions to the intestinal epithelium can result 

in intestinal dysbiosis and inflammation (Ayyaz & Jasper, Front Cell Infect Microbiol, 2013).  

This makes the intestine leaky, permeable to biomolecules and pathogens.  The effects of 

irradiation on intestinal permeability was tested using the Smurf assay.  In this assay, control 

flies were fed a solution of bromophenol blue 48-hours prior to irradiation at ZT0 (7:00a.m.), 

causing their intestine to turn blue.  Due to the relatively transparent nature of the Drosophila 

melanogaster abdomen, the intestines can be visualized while the fly is still living.  Under 

normal conditions, the blue dye is localized to the intestine and the digestive tract can be 

visualized, but if the dye passes the intestinal barrier, it stains the body cavity blue as well.  It 

was discovered that irradiated flies exhibited either intermediate or full levels of ‘smurfness’, 

whereas the control flies all exhibited no ‘smurfness’.  This shows that irradiation causes 

intestinal leakiness.  As a consequence, bacteria and other harmful pathogens might pass through 

the intestinal epithelium, allowing for the potential development of infection (Peterson & Artis, 

Nat Rev Immunol, 2014).  In this study, I only tested flies at one time of day.  However, this 

response might be time-dependent or regulated by the circadian clock.  Further research can 

investigate the levels of ‘smurfness’ after flies are irradiated at different times of day.  This will 

provide insight whether time of day variations have an effect on the level of intestinal leakiness.  

Testing circadian clock mutants, like PER, would determine if the circadian clock regulates this 

response. 
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4.2 JAK/STAT Stress Response Pathway is Under Clock Control 

 

 JAK/STAT has an integral role in maintaining tissue homeostasis through cellular 

proliferation and differentiation.  Baseline levels of JAK/STAT activity are expected to be 

present in an intestinal stem cell (Jiang et al., Cell, 2009; Beebe et al., Dev Biol, 2010) to 

differentiate cells of the enterocyte lineage (Beebe et al., Dev Biol, 2010).  Following damage, 

JAK/STAT activity levels would increase as stem cells transition to rapid proliferation to quickly 

replace the damaged cells.  I found that irradiation damage resulted in increased JAK/STAT 

activity levels at three-hours post irradiation.   

I first determined that under undamaged conditions the JAK/STAT pathway is regulated 

by the clock gene, PER, in a non-time dependent manner.  This means that the levels of 

JAK/STAT activity are regulated by PER, and mutations in PER result in suppressed levels of 

JAK/STAT activity in comparison to the control flies.  I then tested JAK/STAT activity after 

irradiation.  JAK/STAT response in the control flies varied depending on the time of day 

irradiation was administered.  JAK/STAT activity was most responsive when the control flies 

were irradiated at 1:00a.m., and least responsive when irradiated at 1:00p.m.  Research by Lee 

and Edery (Curr Biol, 2008) as well as Kuo and colleagues (BMC Neurosci, 2010) found that the 

Drosophila survival rate is lower when damage by pathogen infection occurs during the daytime 

in comparison to being infected at nighttime.  As such, the findings of my research could suggest 

that the variation in survival, as researched in the aforementioned studies, could be attributed to 

the time dependent changes in the JAK/STAT activity levels, whereby the flies irradiated during 

the nighttime had increased JAK/STAT activity levels and the flies irradiated during the daytime 

had decreased JAK/STAT activity levels.  Under damaging conditions, injured cells are quickly 

replaced with new cells implicating the importance of the proliferative role of JAK/STAT 
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activity to regenerate the intestine (Jiang et al., Cell, 2009).  I believe that the time dependent 

variations in JAK/STAT cellular proliferation have a direct effect on the survival rates of the 

flies, making them more or less responsive to the damage depending on the time of day the 

damage occurs.  These time of day differences were not seen in the clock mutant, which supports 

the notion that the circadian clock regulates JAK/STAT activity.  Therefore, the JAK/STAT 

stress response appears to be most responsive to injury when the damage is inflicted in the early 

morning hours.  Therefore, this finding is of importance because it illustrates the significance of 

the relationship between the JAK/STAT pathway response and the circadian clock. 

It is possible that the JAK/STAT pathway may be under clock control either cell 

intrinsically or extrinsically of intestinal stem cells.  Cell intrinsic factors of the JAK/STAT 

pathway that may be controlled by the clock could include any step that is occurring in the 

JAK/STAT pathway process within the cell’s cytoplasm, such as the phosphorylation of JAK 

substrates or the dimerization of the STAT molecules, for example.  Additionally, stem cell 

related intrinsic factors could also be regulated by the clock.  This could include the initiation of 

the signaling cascade, such as the strength of the binding affinity between the ligand and its 

cytokine binding receptor or the potential of the transcription factors to effectively bind to the 

promoter to promote the transcription of the various target genes.  Activation of the JAK/STAT 

pathway via UPD cytokine ligands is an extrinsic factor that may be controlled by the clock.  

Another possibility through which the JAK/STAT pathway may be controlled by the clock is 

behaviourally, such as entrainment to food.  Additional testing will need to be conducted to 

further explore the mechanism or combination of mechanisms that are in play.  For example, 

conducting a food timing assay to determine if the JAK/STAT pathway is controlled by the clock 

behaviourally.  In this assay, flies are starved of nutrients for a certain period of time in order to 
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identify the effects of food and determine if the trends I observed continue to persist when flies 

are deprived of food, because food may be an external cue for the clock.  If the trends persist in 

the absence of food, it could indicate that the trends observed are controlled by the clock.  If the 

trends are not present in the absence of food, it may suggest that the JAK/STAT pathway is not 

controlled by the clock and instead, food may be a strong zeitgeber cue.  

Along with the JAK/STAT pathway, the JNK pathway and the Hippo pathway also have 

a role in the stress response (Zeke et al., Microbiol Mol Biol R, 2016).  The Hippo pathway 

reporter I tested did not work and so it was not used in the rest of this study.  The JNK reporter 

was tested in a similar fashion as the JAK/STAT reporter but did not show a time-dependent 

response.  It is possible that the x-ray irradiation was not a strong enough damaging agent to 

elicit a JNK pathway response.  Another possibility is that the JNK pathway may not be directly 

involved in the acute damage stress response system.  Instead, it may act as an additional 

supplementary pathway that is involved in the stress response, as it is known to be in frequent 

communication with many other cell signaling pathways involved in the stress response (Zeke et 

al., Microbiol Mol Biol R, 2016).  Future studies should verify the effectiveness of the JNK and 

YKI reporter strains, using reverse transcriptase quantitative polymerase chain reaction (RT-

qPCR) to accurately assess the transcriptional reporter activity readout.  RT-qPCR provides a 

measure of gene expression by determining the amount of messenger ribonucleic acid (RNA) 

present (Taylor et al., Trends Biotechnol, 2019) within the intestinal tissue being sampled.  

qPCR will amplify the gene that is being driven by the reporter (Taylor et al., Trends Biotechnol, 

2019), to verify if the reporter is functioning properly.  

One of the characteristics of circadian rhythms is the ability to persist under free-running 

conditions (DD).  In the absence of external time cues, the rhythms observed are a result of 
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previous entrainment of the endogenous time-keeper by external cues such as light/dark cycles or 

food (Duboway & Sehgal, Genetics, 2017).  In this thesis, I have performed only circadian 

experiments under DD conditions to determine if the time-dependent activity observed is 

actually circadian in nature.  By also using the PER mutant, I have performed experiments that 

confirm the circadian clock is responsible for the time of day changes observed.   

 

4.3 Bacterial Presence Is Required to Elicit a Stress Response  

 

 Drosophila have evolved a robust defense mechanism against microbes.  This is 

particularly important for their survival because they are constantly feeding on rotting and 

decaying fruit (Apidianakis & Rahme, Dis Model Mech, 2011).   Drosophila and their 

microbiota have evolved into a commensal relationship together.  Intestinal stress after 

irradiation could be a result of the damage caused by x-ray or an inflammatory response caused 

by increased bacterial presence following damage (Apidianakis & Rahme, Dis Model Mech, 

2011).  To be able to decipher the origin of the intestinal stress, I tested if intestinal bacteria are 

required to elicit a JAK/STAT response.   

 Axenic (no bacteria) flies had zero GFP+ cells (indicative of JAK/STAT activity).  This 

is a critical finding because it shows the bacteria are required in order for the JAK/STAT 

pathway to elicit a response.  Therefore, it was found that bacterial presence is necessary for 

JAK/STAT activity to occur.  A future experiment is to complete this assay at additional time 

points to ascertain that the trends observed are consistent throughout the entire day.  Additional 

time points would provide a better resolution to the possible role of circadian influences with 

respect to bacterial presence because the effects of the circadian rhythm may be fluctuating 

throughout the day, but its effects may be masked due to the limited time points observed.  It is 



78 
 

anticipated that even with additional time points, that the data will be consistent with the axenic 

assay conducted, using minimal time points, hence the requirement of bacteria to elicit a 

JAK/STAT response.       

Production of reactive oxygen species and superoxide molecules in the intestine are 

normal physiological processes as a consequence of mitochondrial aerobic metabolism (Miwa et 

al., Free Radic Biol Med, 2003).  Reactive oxygen species are harmful because they are unstable 

and highly reactive molecules (Vaccaro et al., Cell, 2020).  In attempt to stabilize their own 

structure, reactive oxygen species will take electrons from DNA and other macromolecules 

rendering them to become unstable (Vaccaro et al., Cell, 2020).  Increased levels of reactive 

oxygen species and superoxides have been linked to decreased survival in Drosophila (Vaccaro 

et al., Cell, 2020) as well as some neurological disorders (Oswald et al., eLife, 2018).  I 

investigated if x-ray irradiation damage could cause an increase in the levels of reactive oxygen 

species and superoxide production, and if so, determine if there is time dependence on the 

production of these molecules.   

To do this I used DHE dye, a cytosolic and nuclear staining dye that fluoresces red when 

it reacts with reactive oxygen species (Owusu-Ansah et al., Protec Exch, 2008).  DHE staining 

was not consistent between samples, for some, the DHE would clearly stain the cells whereas in 

other samples, there was increased background staining.  To circumvent this, the DHE+ cells 

within the R5 region were individually circled and an individual intensity value for the circled 

cell was established.  I determined that time of day variation in superoxide presence is not 

statistically significant in either undamaged or irradiated conditions.  Actually, irradiation 

damage did not increase the number of superoxide molecules present in comparison to the 

controls.  This data corroborates previously published literature by Azzam and colleagues 
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(Cancer Lett, 2012) which shows that the levels of ROS produced as a result of irradiation 

damage are similar to the levels of endogenously produced ROS.   My data does not show that 

reactive oxygen species increase following damage.  

Additionally, recent research by Ulgherait and colleagues (Nat Commun, 2020) shows 

that a clock mutation in a period gene will induce increased mitochondrial uncoupling.  When 

subjected to injury or damage, organisms can undergo mitochondrial uncoupling as a protective 

mechanism to prevent cellular degradation caused by increased ROS levels (Mookerjee et al., 

Mech Ageing Dev, 2010).  The electron transport chain is not used in mitochondrial uncoupling.  

Instead, other cellular processes allow protons to enter the extracellular matrix, bypassing the 

electron transport chain (Mookerjee et al., Mech Ageing Dev, 2010), which results in decreased 

endogenous ROS production.  When comparing the ratio levels of DHE+ cells to the total cells 

in the undamaged group and the irradiated group, it is observed that the number of DHE+ cells in 

the irradiated control samples are less than the number of DHE+ cells in the undamaged control 

samples.  Similar to the reduced presence of superoxides in the period clock mutants, 

mitochondrial uncoupling may be reducing the overall presence of ROS in irradiated flies, which 

could be a possible explanation as to why superoxide presence was not increased following 

irradiation.   

A possible limitation is that dissecting the intestines three-hours post irradiation may not 

have been enough time to observe exogenous reactive oxygen species generation caused by x-ray 

irradiation.  As mentioned previously, the DHE dye was not very specific in its staining, so 

future research could involve using a different superoxide stain (such as Cy3) and testing at 

different times of day to provide further tests of superoxide presence.  Investigating the role of 

superoxide presence can provide insight into any time dependent stress responses of the cell.   



80 
 

4.4 There is No Clock Dependence on the JAK/STAT Pathway 

 

 My research focused on the regulation of the stress response by the circadian clock, and I 

found that JAK/STAT signaling was time and PER dependent.  To test the reverse, if JAK/STAT 

could regulate the circadian clock, the pathway was activated using its ligand UPD cytokine and 

studied using a clock reporter background.   

 The anterior region (R1), the middle region (R2, R3 and R4), the posterior region (R5) 

and the entire intestine (R1 to R5) were tested separately.  All these regions have similar 

rhythms.  The unpaired overexpression groups all peak at ZT0 (7:00a.m.) and trough at around 

ZT12/ZT15 (7:00p.m./10:00p.m.).  The control groups have a dampened rhythm but all the 

graphs peak at around ZT0/ZT3 (7:00a.m./10:00a.m.) and trough at around ZT6 (1:00p.m.) and 

then again at around ZT15 (10:00p.m.).   

The rhythm observed in the unpaired overexpression groups matches the clock reporter 

rhythm that was previously determined in our lab (Parasram et al., Stem Cell Rep, 2018).  

However, the dampened control rhythms in Figures 20 B – E do not match the published data.  

This discrepancy could have been a technical issue, and needs to be revisited to confirm.  

However, my data suggests that the clock does not have dependence on the JAK/STAT pathway 

because regardless of control or UPD overexpression conditions, the clock reporter rhythm 

remained unchanged, suggesting that the JAK/STAT pathway is not upstream of clock signaling.  

If the clock was dependent on the JAK/STAT pathway, a different rhythm could have been 

observed under UPD overexpression conditions.  This data complements the findings suggested 

by Luo and colleagues (Cell, 2012) that the circadian clock neurons are upstream of JAK/STAT 

signaling.      
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 Overall a major finding from this work is that the circadian clock regulates the 

JAK/STAT stress response pathway.  Additionally, I discovered that the presence of bacteria is 

required to elicit JAK/STAT activity.  The mechanism I suggest for the data I obtained is 

illustrated in Figure 23B.  I propose that following irradiation damage, the Drosophila intestine 

becomes damaged, which results in increased intestinal leakiness and increased changes in 

nuclear morphology.  Consequently, bacteria and other pathogens will have facilitated access to 

enter the intestine.  In turn, the intestine will become inflamed, causing increased JAK/STAT 

signaling activity (Figure 23A).  Additionally, my research suggests that the JAK/STAT 

signaling pathway is a downstream of the circadian clock, which would indicate that the 

JAK/STAT pathway is regulated by the circadian clock (Figure 23B).  Future studies can further 

explore the precise mechanism between the JAK/STAT pathway and the circadian clock.  The 

JAK/STAT pathway is evolutionarily conserved between organisms, and this research may also 

aid in combating infections and diseases when treatments are administered at times in which the 

response to damage is most effective. 
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FIGURE 23:  

 

 

 

 

 

 

 

 

 

Proposed Mechanism: 

 

    

 

 

 

 

 

 

 

 

 

 

Figure 23: Concluding Graphical Abstract (A) and Proposed Mechanism (B) 
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