
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

10-30-2020 

Extending APEx (Accuracy-Aware Differentially Private Data Extending APEx (Accuracy-Aware Differentially Private Data 

Exploration) to Multiple Table Queries Exploration) to Multiple Table Queries 

Karmanjot Singh 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Singh, Karmanjot, "Extending APEx (Accuracy-Aware Differentially Private Data Exploration) to Multiple 
Table Queries" (2020). Electronic Theses and Dissertations. 8482. 
https://scholar.uwindsor.ca/etd/8482 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8482?utm_source=scholar.uwindsor.ca%2Fetd%2F8482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Extending APEx (Accuracy-Aware
Differentially Private Data Exploration)

to Multiple Table Queries

By

Karmanjot Singh

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2020

c©2020 Karmanjot Singh



Extending APEx (Accuracy-Aware Differentially Private Data Exploration) to

Multiple Table Queries

by

Karmanjot Singh

APPROVED BY:

R. Razavi Far

Faculty of Engineering

D. Alhadidi

School of Computer Science

S. Samet, Advisor

School of Computer Science

July 16, 2020



DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii



ABSTRACT

With the recent advances in data analytics and machine learning, organizations are

becoming more and more interested in utilizing these techniques to generate insights

from the data they have. But the biggest hurdle, especially for those organizations

that collect private information, is that it becomes challenging to share their data

with data analysts without compromising the privacy of the data. Differential privacy

helps to share private data with provable guarantees of privacy for individuals. Even

though differential privacy is very good at preserving privacy, it still poses a lot of

burden on data analysts to understand differential privacy and its intricate algorithms.

Moreover, this also doesn’t give any accuracy guarantees to the data analyst. Keeping

this in mind, APEx (Accuracy-Aware Differentially Private Data Exploration) was

introduced in May 2019, which allows data analysts to run a sequence of queries

keeping privacy and accuracy in place. APEx was implemented for only one table

in the database. In this research, it is extended and evaluated on multiple table

queries.
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CHAPTER 1

Introduction

With the recent advances in data analytics and machine learning, organizations are

becoming increasingly interested in utilizing these techniques to generate insights

from the data they have. But the biggest hurdle, especially for those organizations

that collect private information, is that it becomes challenging to share their data

with data analysts without compromising the data’s privacy. Moreover, the released

data, when matched with the previous releases or the data released from other orga-

nizations, can reveal sensitive data about the participants of the data-set. There are

a couple of examples that happened in the past, like the Netflix movie recommenda-

tion competition [23] or the re-identification of the medical record of the governor of

Massachusetts [2]. Both of these incidents happened by matching the data releases of

two different organizations. Because of this, various methods exist like anonymizing

the data, data encryption, secure multi-party computation, but none of them are

good enough or are not easy to implement on the complex datasets. In 2006, Cynthia

Dwork et al. [4] came up with something called differential privacy. It helps to en-

sure that data privacy remains intact even after publishing the aggregate information

about the data. Differential privacy does this by adding Laplacian noise to the actual

result of the query. Since then, differential privacy has gained a lot of popularity

and has been implemented by organizations like Google, Uber, and Apple to securely

share the private data that they collect from the consumers of their products.

1



1. INTRODUCTION

1.1 Differential privacy

Differential privacy is used to share data publicly without risking the confidentiality

of the participants of the data. Another way to think about differential privacy is

that it uses various mechanisms to add noise to the aggregate information about the

statistical database. It is difficult for the adversary to infer private data from the par-

ticipants of the dataset. For example, various government agencies use differentially

private algorithms to publish public data by maintaining the confidentiality of survey

responses. Even companies use differentially private algorithms to collect information

about user behavior.

In other words, we can consider an algorithm to be differentially private if anyone

seeing it’s output cannot identify if some record belongs to a particular individual.

It also does not adequately protect from identification and reidentification attacks; it

resists such attacks. [7]

Differential privacy has its origins from cryptography, and a lot of its language is

from cryptography.

Data Analysts often work on data released by organizations like Healthcare, Bank-

ing, and Consumer to help them make informed decisions and gather insights to better

their processes and also to serve their customers better. But it does not come without

putting private data on the risk of being used in a harmful way. Someone can eas-

ily use someone’s banking data for money laundering. They can identify someone’s

private health data and make it public as it happened in the case of the governor of

Massachusetts. This is where differential privacy[8] comes very handy to stop these

kinds of attacks and financial risks for these organizations and allow them to publicly

release their data for Data analysts to review and help them make decisions. This

means that even if we modify a single record, it does not significantly change the

result than the result that we get without making that change. For example, suppose

if we have only one person with a particular characteristic present in the dataset.

If we release this data publicly without differential privacy, then the adversary can

easily run queries to check how many people are present who do not have that char-

2



1. INTRODUCTION

acteristic and can easily get the private data of that person. But if we release the

data using a differentially private algorithm, then it will be difficult for adversary to

find someone’s private data even if the adversary has prior knowledge of that record.

We call the change of one record in two similar datasets to be bounded with ε, where

ε is privacy-loss budget.

1.2 Why do we need Differential Privacy?

Government organizations have long been collecting information about individuals or

establishments and sharing that data for multiple reasons. But it is not possible to

share all of the data as it is, even though they share only the statistics about the

data because it can lead to private data. For example, in 1790, the United States

conducted a census where they collected information about people living in the United

States and released statistics related to sex, age, race. Not only the U.S. but every

country conducts these types of data collections to get a better understanding of their

population and then publish the statistics about this data. This data is then used

later on for helping governments to make policies and to decide where to project

their funding, the marginalized areas of the society, and similar decisions. They share

this data with private organizations as well to help them with their choices. For

example, banks use this data to decide the risk levels of a particular loan and real

estate companies use it to determine if it is safe to sell houses to someone. For public

data distribution, government agencies have long been using data suppression to help

preserve data that can be compromised. For example, a record with information

about only one person or one company is removed to maintain confidentiality.

Since the 1950s and 1960s, there has been rapid adoption of electronic information

systems by statistical agencies. This made the public distribution of statistical data

more difficult even after data suppression. For example, there is a business whose

sales numbers have been suppressed because of the risk of privacy disclosure, but if

the same numbers were used in total sales of a region, then the adversary can easily

estimate the actual numbers by subtracting the other sales from the total sales of that

3



1. INTRODUCTION

region. Not only this, but there are various combinations of additions and subtractions

that might put the privacy of the participants of the dataset. The combinations like

this increase exponentially with the increasing number of publicly shared data, and

this problem become more prominent when we add an interactive query system into

the picture.

1.3 Randomized Response (Plausible Deniability)

To understand differential privacy, an understanding of a randomized response is

fundamental. Some readers struggle with understanding differential privacy without

knowing a randomized response or plausible deniability. The randomized response is

a survey technique used by surveyors to collect sensitive information from the sur-

vey takers while maintaining the confidentiality of their responses. In a randomized

response mechanism, n individuals answer a survey with one binary question. The

truthful answer for individual i is xi ∈ {0, 1}. The surveyor gives every individual an

unbiased coin and tells them to answer ”Yes” or one if it comes tail and to answer

truthfully in case of heads. In this way, every individual gets the opportunity to po-

tentially lie and hence the plausible deniability, which helps in keeping their responses

confidential. And at the same time, as we know that there is a half-half probability

of tails and heads, we can easily double the percent of ”Yes” or ”No” responses to

get the actual picture. For example, if we ask the survey takers if they are taking a

particular drug, if the number of survey takers who are taking the drug is 20%, then

the actual percent of survey takers who are taking that drug would be the double of

the number that we got from the survey that is 40%.

1.4 ε-differential privacy

Cynthia Dwork et al.[4] introduced the concept of ε-differential privacy in 2006. The

main idea behind this work was that if some individuals did not take a survey, it

would not be possible to compromise that individual’s privacy. Hence, in differential

4



1. INTRODUCTION

privacy, the focus is on giving each individual the amount of privacy that would result

from not taking the survey. That is, the transformations and the aggregate function

results should not change significantly by removing one individual’s responses to the

survey.

Differential Privacy mechanisms achieve this, adding noise before returning the

aggregate or other transformation functions run on the survey responses. Now, as we

increase the number of survey takers, we would have to add less noise and vice versa.

1.4.1 Definition of ε-differential privacy

Definition 1 (ε-Differential Privacy) A randomized mechanism M : D→ O satisfies

ε-differential privacy if

Pr[M(D)εO] ≤ eεPr[M(D
′
)εO] (1)

for any set of outputs O ⊆ O, and any pair of neighboring databases D,D
′

such that

|D\D′∪D
′\D| = 1. [9]

Smaller the value of ε, more is the privacy, but the amount of noise added will also

be high. So, the differential privacy mechanisms try to find a middle ground with the

smallest possible value of ε. The noise added is also not too high, and the result is

usable to the data analyst.

1.5 Laplace mechanism

The Laplace mechanism adds noise from the Laplace distribution, as shown in Figure

1.5.1. In Laplace distribution, the mean is zero, and the standard deviation is
√

2λ.

Let us see an example to understand why adding noise from Laplace distribution

gives us differentially private results. Let us say we have a dataset that contains

mental health data, and there is an attacker named Eve, and she wants to see if

her target, Bob, is receiving counseling for alcoholism or not. If the query’s result

5



1. INTRODUCTION

Fig. 1.5.1: Laplace Distribution

comes up as 48, then Eve will know that Bob is receiving counseling for alcoholism.

Otherwise, if the query’s result is 47, then he is not receiving counseling for alcoholism.

Now since we are using the Laplace mechanism, it does not matter what the actual

result of the query is, the mechanism is going to add noise from Laplace Distribution.

So, it is going to return results somewhat near 47 or 48. It may be 49, 46, or maybe

even smaller like 44 or higher like 51. So, it is practically impossible for Eve to be

very sure whether the true answer was 47 or 48. In other words, her belief about Bob

(whether he is in counseling for alcoholism or not) will not meaningfully change after

running the query.

6



1. INTRODUCTION

Fig. 1.6.1: Exponential Distribution

1.6 Exponential mechanism

It is used for functions that do not return a real number. For example, ”What is the

most common nationality in a particular room?” Chinese/Indian/Canadian.. This is

also used when a small change in the output leads to invalid outputs.

Exponential mechanism is most general approach which captures all possible dif-

ferential privacy mechanisms. In fact, Laplace distribution is a symmetric exponential

distribution (Figure 1.6.1).

7



1. INTRODUCTION

1.7 Objectives and Contribution

Even though lot of work has been done on differential privacy and it seems very

promising, but it still poses a lot of burden on data analysts to understand differential

privacy and manage privacy budgets accordingly. Moreover, this also does not give

any accuracy guarantees to the data analyst. Keeping this in mind, Chang Ge et al.[9]

introduced a novel system called APEx in May 2019, which allows data analysts to

run a sequence of queries keeping privacy and accuracy in place. APEx translates

queries and accuracy bounds to differentially private algorithms with the least privacy

loss. By doing this, the data analyst gets the answers to its queries, keeping accuracy

bounds in place, and the privacy budget set by the data owner is also not exceeded.

This experiment has a lot of potential for improvements; for example, Change Ge

et al.[9] did these experiments only on a relational database with only one table. In

this work, I extended this to multiple tables given that in the real world, data spread

across numerous related tables.

The following contributions were made in this research :

• The main idea behind this work is to extend and evaluate APEx which currently

is based on Single table to multiple table database schema as mentioned by the

author of the paper[9] himself :

“We consider the sensitive dataset in the form of a single-table relational schema

R(A1,A2, . . . ,Ad ), where attr(R) denotes the set of attributes of R.

Each attribute Ai has a domain dom(Ai). The full domain of R is dom(R)

= dom(A1)x....x dom(Ad ), containing all possible tuples conforming to R. An

instance D of relation R is a multiset whose elements are tuples in dom(R). We

let the domain of the instances be D. Extending our algorithms to schemas with

multiple tables is an interesting avenue for future work.”

• I have used a multiple table schema “Employees”.

• Then I made code changes in APEx repository so that when the user run a

WCQ, ICQ or TCQ query, instead of the data coming from only one table

8



1. INTRODUCTION

(which was the case in existing work), the data is coming from multiple tables.

• Then I did a comparison study when we run the APEx on single table vs.

Multiple table.

• I incorporated other error measures such as MSE (Mean Square Error), Mean

Absolute Error (MAE), Mean Absolute Percentage Error.

9



CHAPTER 2

Related Work

Data exploration is becoming more and more important as more and more data is

generated by the organizations. Since the last decade, there has been a massive explo-

sion in digital data, also referred to as Big Data. With this vast availability of data,

it gives an excellent opportunity to data analysts to better improve their analysis.

Datasets consist of both public and private data, and exploring them involves a lot of

operations such as summarization, building histograms, and building models for ma-

chine learning. Incorporating private data into data analytics provides a high value

to the data analytics project. Still, often data owners hesitate to give access to the

private data because of the risk of data leakage. It could be because of a lot of reasons

such as, they do not trust the data analysts or the risk of data leakage is higher than

the benefit from the data analytics. For example, Facebook recently announced that

they would allow the academic study of their data to find the correlation between

social media and politics, specifically in elections. But their main concern was the

privacy of their data [15].

Differential privacy is something that has come up as a solution to the problem of

public data distribution or at least to an outside organization. It is because of various

reasons such as

• It provides a sense of data privacy even when prior knowledge about the data

is available.

• It is mathematically proven method to preserve privacy of individual records

when aggregate data results are released.

10



2. RELATED WORK

• Even though there is still some information leakage, it can help to keep the

leakage bounded.

That is why differential privacy is gaining popularity among data owners such as the

US Census Bureau [12, 20, 31], Google [10], Apple [11], and Uber [13].

2.1 Privacy Integrated Queries (PINQ)

Frank McSherry first proposed Privacy INtegrated Queries (PINQ) in his paper[21].

It is a common platform used for differentially private data analysis. It provides an in-

terface to data that looks very much like LINQ (C#’s ”language-integrated queries”).

All-access through the interface to the data is guaranteed to be differentially private.

In PINQ interface, data analysts who are non-privacy experts, write arbitrary LINQ

code against datasets in C#.

var data = new PINQueryable<SearchRecord > ( . . . . . . ) ;

var u s e r s = from record in data

where record . Query == argv [ 0 ]

groupby record . IPAddress ;

Console . WriteLine (argv [ 0 ] + ‘ : ‘ + use r s . Count ( 0 . 1 ) ) ;

Rather than providing direct access to the underlying data, each private data

source is wrapped in a PINQueryable object. This PINQueryable object is then

responsible for mediating accesses to the underlying data, remembering how much

privacy budget is left, deducting from the budget whenever an aggregation operator

is applied to this PINQueryable object and denying access once the given privacy

budget is exhausted.

Table 2.1.1 summarizes the main data operations supported by PINQ and their

privacy implications. There are two types of operations: aggregations and transfor-

mations. Aggregations return the aggregate value after adding noise per differential

11



2. RELATED WORK

Aggregations

Count Std. deviation of added noise is
√

2/ε.

Sum Std. deviation of added noise is
√

2/ε.

Average Std. deviation of added noise is
√

8/εn, where n is the number of records.

Median The return value partitions input into sets whose sizes differ by approx.
√

2/ε

Transformations

Where, Select Distinct No sensitivity increase

GroupBy Increases sensitivity by two

Join, Concat Intersect No sensitivity increase for either input

Partition Privacy cost equals the maximum of the resulting partitions

Table 2.1.1: Main data operations in PINQ.

privacy. Transformations return a new PINQueryable object that can be further

operated upon. They can amplify the sensitivity of subsequent queries, so that ag-

gregations run with one value of ε may deplete many multiples of ε from the privacy

budget. PINQ ensures that any amplification is properly accounted for. Importantly,

the logic within a transformation can act arbitrarily on the sensitive records.

The semantics of the transformations are similar to SQL, with two significant

exceptions. First, the join operation in PINQ is not a standard equijoin, in which

one record can match an unbounded number of other documents. Instead, records

in both dataset are grouped by the key they are being joined on so that the Join

results in a list of pairs of groups. This restricts each pair to have a limited impact on

aggregates (that of a single record) despite being arbitrarily large, but it does enable

differential privacy guarantees which would not otherwise exist.

A second difference is a Partition operation that can split a single protected dataset

into multiple protected datasets, using an arbitrary key selection function. This

operation is essential because the privacy cost to the source data set is the maximum

of the costs to the multiple parts, rather than their sum. We can, for example,

partition packets based on the destination port, and conduct independent analyses

on each piece while costing only the maximum.

As the discussion above illustrates, the privacy cost of analysis depends not only
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what the analysis aims to output but also on how it is expressed. PINQ is essentially

a programming language, and the space of analyses that can be expressed is limited

mainly by the analyst’s creativity.

An Example

Suppose we want to count distinct hosts that send more than 1024 bytes to port

80. This computation, which involves grouping packets by source and restricting the

result based on what we see in each group, can be expressed as:

packets = new PINQueryable<Packet>( t race , e p s i l o n ) ;

packets . Where ( pkt => pkt . dstPort = 80)

. GroupBy( pkt => pkt . s rc IP )

. Where ( grp => grp .Sum( pkt => pkt . l en ) > 1024)

. Count ( e p s i l o n q u e r y ) ;

The Packet type contains fields that we might expect, including sensitive areas

such as IP addresses and payloads. The raw data lies in the trace. The total pri-

vacy budget for the trace is epsilon, and the amount to be spent on this query is

epsilon query. The analyst can run multiple queries on the data as long as the to-

tal privacy cost is less than epsilon. The expressions of the form x =⇒ f(x) are

anonymous functions that apply f to x.

2.2 Weighted Privacy Integrated

Queries (wPINQ)

Like Privacy Integrated Queries (PINQ) [21], Weighted PINQ is a declarative pro-

gramming language over datasets that guarantees differential privacy for every pro-

gram written in the language. I refer the reader to [21] for details on the design phi-

losophy behind these languages, and to [27] for full technical information on Weighted

PINQ’s operators. Here I only provide a short overview of how queries are written in

Weighted PINQ.
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2.2.1 Overview

Weighted PINQ can apply two types of operators to a (secret) dataset: transfor-

mations, and noisy aggregations. Transformation operators such as Select, Where,

GroupBy, SelectMany, Join, etc. transform a weighted secret dataset and then au-

tomatically rescale the resulting record weights to maintain privacy on the total dis-

closure of the records. After doing these transformation operations, the datasets

remain secret. Before releasing the final results to the user, the results must be fed

to noisy aggregation operators such as NoisyCount. NoisyCount operator aggregates

the weighted confidential records, adds Laplace noise and then only exposes the fi-

nal results to the end-user. After performing each transformation operator, record

weights are scaled-down in such a manner that guarantees differential privacy after

noisy aggregation.

2.2.2 Weighted PINQ vs. PINQ

Weighted PINQ is very similar to PINQ in terms of operators. Still, because it

operates on weighted records with arbitrary weights (instead of integral weights), it

differs from PINQ in few crucial ways:

First, transformations in PINQ that required either scaling up the noise or the

privacy parameter ε, now scale down the weights associated with records. For ex-

ample, the operator ‘SelectMany‘, which produces many records (e.g., k (number of

records)), scales down each record with a factor of k. The operator GroupBy collects

records, results in a group with weight divided by 2, and the operator Join which

produces the cross-product of records, with weights rescaled.

The other main difference is a transformation operator to manipulate weights,

Shave, which takes a sequence of weights wi and then transforms each record x with

weight w into the set of records (0, x), (1, x), ... with weights w0, w1, ..., for as many

terms as
∑

iwi ≤ w. Select is the functional inverse of Shave, which can transform

each wi-weighted indexed pair from (i, x) to x whose weight re-accumulates to
∑

iwi =

w.
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Finaly, Weighted PINQ’s operator NoisyCount now rather than returning a single

noisy count, returns a dictionary from records to noised weights. This means that

if one looks up the value of a record which is not in the input, a weight of zero

is introduced, and then the noise is added. This is in some sense generalization of

PINQ’s NoisyCount to weights and multi-output “histogram queries” [5]. To repro-

duce PINQ’s NoisyCount we can first map all records to some known value, e.g.,

true.

2.2.3 Writing “good” queries

Now, this brings us to the conclusion that when a query is expressed using Weighted

PINQ operators (i.e., transformations, followed by aggregations), it is sufficient to

say that it provides differential privacy. So, what remains after this is to write a

“good” Weighted PINQ query. There are two main things that we have to look into

while writing a good quality query: its computational complexity and its accuracy.

Writing “good” queries requires inventiveness. For example, the below query is an

example of a query that provides high efficiency and performance, keeping the loss

of privacy to the minimum. It is essential to note on the important thing here that

it can be more challenging to write “good” queries that directly measure properties

with high sensitivity [5] (e.g., graph diameter). One way to get around this is to

combine indirect measurements with probabilistic inference.

var deqCCDF = edges . S e l e c t ( edge => edge . s r c )

. Shave ( 1 . 0 )

. S e l e c t ( ( index , srcname ) => index ) ;

var ccdfCounts = degCCDF . NoisyCount ( e p s i l o n ) ;

2.3 Differential Privacy for SQL Queries (FLEX)

Noah Johnson et al. [13] introduced Elastic Sensitivity for efficiently calculating query

sensitivity without requiring changes to the database management system (DBMS)
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Fig. 2.3.1: Architecture of FLEX from [13].

in their paper . The techniques described in the article provide an en-to-end system

to facilitate differential privacy for real-world SQL queries.

Before FLEX[13], the existing differential privacy mechanisms at that time did

not support the wide variety of features and databases which were used in real-world

SQL-based analytics systems. FLEX [13] was a system built at Berkeley to enforce

differential privacy for SQL queries using elastic sensitivity. Noah Johnson et al. [13]

discusses how FLEX is compatible with all existing databases, manages to enforce

differential privacy requirements for all SQL queries and has a negligible performance

overhead.

FLEX relies on the concept of elastic sensitivity. Elastic sensitivity is a novel ap-

proach for calculating an upper bound on a query’s local sensitivity. Global sensitivity

does not have adequate generalized support for joins in queries. Elastic sensitivity

benefits from local sensitivity for queries with general equijoins. Its approach models

the impact of each join that is represented in the query, using precomputed metrics

about the frequency of join keys in the actual database. This allows the method

to compute approximate local sensitivity without additional interactions with the

database.

Elastic sensitivity supports several different aggregation functions such as sum,

average, max and min. Also, calculations for elastic sensitivity can optimize for
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non-sensitive information in the database, helping create tighter bounds for the ap-

proximation of local sensitivity. Due to its low computational cost, its adaptability

to almost all existing database formats, the current implementation in the form of

FLEX, and the general privacy guarantees provided by it, elastic sensitivity can be

seen to be a very effective method for ensuring differential privacy.

2.4 εKTELO : A Framework for Defining

Differentially-Private Computations

The paper εKTELO [32] by Zhang et al. talks about a framework to carry out

privacy-preserving computations over data. We can say it is derived from frameworks

such as PINQ [12], which extends the (non-private) LINQ framework, and Weighted

PINQ. εKTELO [32] extends these by providing a different selection of operators with

higher level of abstraction to the user who does not have knowledge about differential

privacy.

2.5 APEx (Accuracy-Aware Differentially Private

Data Exploration)

APEx [9] built by Change et al. helps to bridge the gap between complex differential

privacy mechanisms and Data Owner/ Data Analysts. Even though we know that

by adding Laplace noise to the data exploration queries provides differentially private

results, the amount of noise or the Laplace distribution from which the noise is calcu-

lated depends on the data. So, APEx is built to help Data Owner/Data Analyst as

shown in Figure 2.5.1 to focus on their work by just providing the privacy budget and

accuracy bounds and leaving the rest to the APEx to figure out which mechanism

and input factors to the mechanism would be best. APEx mainly covers three types

of data exploration queries:

1. Workload Counting Query (WCQ)
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Fig. 2.5.1: Workflow of APEx [9].

2. Iceberg Counting Query (ICQ)

3. Top-k Counting Query (TCQ)

As we have discussed earlier, there exist general-purpose private query answering

systems; they are not interactive and mainly lack two main aspects. Firstly, these

systems expect the data analysts to have in-depth knowledge of differential privacy

and differentially private algorithms, which most often do not. For example, PINQ

[12] and wPINQ [28] allow users to write differentially private programs and ensure

that every program expressed satisfies differential privacy. PINQ provides an SQL-

like interface to the data analysts. Similarly, using a few simple operators (including

a non-uniformly scaling Join operator), wPINQ can reproduce (and improve) several

recent results on graph analysis and introduce new generalizations (e.g., counting

triangles with given degrees). However, to achieve high efficacy of the system, the

analyst has to be familiar with the intricate literature of data privacy to understand

how the differentially private algorithms add noise and know if the desired accuracy

level can be achieved in the first place. εktelo [32] tried to mitigate this problem by

giving access to high-level operators to the data analyst that can be composed to

create accurate differentially private programs to answer counting queries. However,

the analyst is still expected to know how to distribute privacy budgets across different

operators optimally. Similarly, FLEX [13] provides users with an interface to answer
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one SQL query under differential privacy but has the same issue of distributing privacy

budget when tested across a sequence of queries. Secondly, and somewhat ironically,

these systems do not provide any assurance to the data analyst on the quality they

care about, namely the accuracy of query answers. Most of these systems depend

on the privacy level (ε) as input to figure out the most feasible differentially private

algorithm without considering the accuracy of the result of the query.

This was the primary purpose behind APEx, to design a system that does not only

allow data analysts to explore a sensitive dataset D held by a data owner by running

a sequence of queries with high accuracy but also keeping the query results under the

privacy budget set by the data owner. The system mainly focused on these two main

functions: (1) as the data is sensitive, the data owner is assured that any information

leakage is bounded under the privacy budget of any individual record in dataset D;

and (2) also as the addition of noise affects the accuracy of the query result, it is

still under the accuracy bounds set by the data analyst. The main features of APEx

involved:

• To support declaratively specified aggregate queries that capture a wide variety

of data exploration tasks.

• To allow analysts to specify accuracy bounds on queries.

• To translate an analyst’s query into a differentially private mechanism with

minimal privacy loss ε so that it can answer the query set, keeping the accuracy

bounds checked.

• To prove that for any interactively specified sequence of queries, the analyst’s

view of the entire data exploration process satisfies B-differential privacy, where

B is an owner specified privacy budget.

Ligett et al. [19] also worked on similar work as APEx, which also considered ac-

curacy constraints specified by data analysts. While their work focused on finding the

smallest privacy cost for a given differentially private mechanism and accuracy bound,

APEx focus was on a more general problem: for a given query, find a mechanism and
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a minimal privacy cost to achieve the given accuracy bound. Moreover, APEx was

tested on a single table MYSQL database. As we know that in real-life, data spread

across multiple related database tables. In this work, APEx is extended/tested on

multiple-table database. This helped to get a better picture of the applicability of

this niche concept on a relational multi-table database.

2.6 Internal structure of APEx

This section gives an outline of how APEx translates queries set by the data analyst

along with the accuracy budget into differentially private mechanisms, and how it

ensures that the privacy budget B specified by the data owner is also not violated. The

main functionality of the extended APEx remains the same as the actual functionality

of APEx. The only main difference is that the result of the queries is from multiple

database tables instead of only one table. APEx consists of two parts:

1. Accuracy Translator

2. Privacy Analyzer

2.6.1 Accuracy Translator

This section covers the accuracy-to-privacy translation mechanisms supported by

APEx and the corresponding run and translate functions. In the original APEx

paper, the author has discussed two types of transformations for all three types of

queries: (1) Baseline Transformation and (2) Special Transformation. In this work, I

have focussed my study on Baseline Transformation only, which is discussed in more

detail later.

Given an analyst’s query (q, α, β), APEx first uses the accuracy translator to

choose a mechanism M that can (1) answer q under the specified accuracy bounds

set by the data analyst, and also with (2) minimal privacy loss and under the privacy

budget set by the data owner. To achieve this, APEx supports a set of differentially

private mechanisms that can be used to answer each query type (WCQ, ICQ, TCQ).
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Multiple mechanisms are supported for each query type as different mechanisms result

in the least privacy loss depending on the query and the dataset.

For each query of the user, APEx has to make sure that the answer is between

the accuracy and the privacy bounds. To achieve this, it contains various differential

privacy mechanisms, and each of these mechanisms is most effective depending on

the query and the dataset. Thus, each mechanism M has two functions:

1. M.TRANSLATE

2. M.RUN

When a mechanism M is executed, M.TRANSLATE is responsible for translating a

query and accuracy requirement into lower and upper bound (εl, εu) on the privacy

loss. After that, M.RUN runs the differentially private algorithm and returns an

approximate answer ω for the query. The answer ω is guaranteed to satisfy the

specified accuracy requirement. Moreover, M also fulfills εu differential privacy.

Algorithm 2.6.1 APEx Overview [9]

Require: Dataset D, privacy budget B
1: Initialize privacy loss B0 ⇐ 0, index i⇐ 1
2: repeat
3: Receive (qi, αi, βi) from analyst
4: M⇐ mechanisms applicable to q‘is type
5: M∗ ⇐ {M ∈M|M.TRANSLATE(qi, αi, βi).ε

u ≤ B −Bi−1}
6: if M∗ 6= ∅ then
7: //Pessimistic Mode
8: Mi ⇐ argminM∈M∗M.TRANSLATE(qi, αi, βi).ε

u

9: //Optimistic Mode
10: Mi ⇐ argminM∈M∗M.TRANSLATE(qi, αi, βi).ε

l

11: (ωi, εi) ⇐ Mi.RUN(qi, αi, βi, D)
12: Bi ⇐ Bi−1 + εi, i++ return ωi
13: else
14: Bi = Bi−1, i++ return ’Query Denied’
15: end if
16: until No more queries sent by local exploration

As described in Algorithm 2.6.1, APEx first identifies the mechanisms M that are

applicable for the type of the query qi (Line 4). Next, it runs M.translate to get
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conservative estimates on privacy loss εu for all these mechanisms (Line 5). APEx

picks one of the mechanisms M from those that can be safely run using the remaining

privacy budget, executes M.run, and returns the output to the analyst. As we will see,

there exist mechanisms where the privacy loss can vary based on the data in a range

between [εl, εu], and the actual privacy loss is unknown before running the mechanism.

In such cases, APEx can choose to be pessimistic and pick the mechanism with the

least εu (Line 8), or choose to be optimistic and pick the mechanism with the least εl

(Line 10).

2.6.1.1 Matrix Transform

The workload in (WCQ,ICQ,TCQ) queries is represented in a matrix form, like the

prior work for WCQ [17, 18, 20]. A workload can be transformed in many possible

ways. Given a query with L predicates, the number of domain partitions can be

as large as 2L . In this work, the following transformation is considered to reduce

complexity. Given a workload counting query qW with the set of predicates W =

{φ1, ..., φL}, the full domain of the relation dom(R) is partitioned based on W to

form the new discretized domain domW (R) such that any predicate φi ∈ W can be

expressed as a union of partitions in the new domain domW (R) and the number of

partitions are minimized. For example, givenW = {Age > 50∧State = AL, ..., Age >

50 ∧ State = WY }, one possible partition is domW (R) = {Age > 50 ∧ State =

AL, ..., Age > 50 ∧ State = WY,Age ≤ 50}.

Let x represents the histogram of the table D over domW (R). The set of the

corresponding counting queries {cφ1, ..., cφL} for qW can be represented by a matrix

W = [w1, ..., wL]T of size L× |domW (R)|. Hence, we can say that the answer to each

counting query is simply cφi(D) = wi.x, and the answer to the workload counting

query is simply Wx. This transformation denoted by W ← T (W ), x ← TW (D) is

used throughout later. Prior work such as [17, 18, 20] were based on to bound the total

expected error on single query. APEx differs from them by bounding the maximum

error per query with high probability which is more instinctive in the process of data

exploration.
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2.6.1.2 Baseline Translation

For the baseline translation for all three query types in APEx, the Laplace mecha-

nism is used [6, 8]. Laplace mechanism is widely used and accepted as a standard

differentially private mechanism.

Definition 2 (Laplace Mechanism (Vector Form)[6, 8]). Given an L × |domW (R)|

query matrix W, the randomized algorithm LM that outputs the following vector is

ε-differentially private: LM(W,x) = Wx+ Lap(bw)L where bw = ||W ||1
ε

, and Lap(b)L

denote a vector of L independent samples ηi from a Laplace distribution with mean 0

and variance 2b2, i.e., Pr[ηi = z] ∝ e−z/b for i=1,...,L. [9]

The sensitivity of queries set defined by the workload W [17, 18] is equal to the

constant ||W1||. This constant calculates the maximum difference in the answers to

the queries in W when these queries are run on any two databases that differ only by

a single record. Mathematically, it is the maximum of the L1 norm of a column of

W.

Algorithm 2.6.2 presents the run and translate of Laplace mechanism for all three

query types. In this algorithm we can see that first the query qW and the data D are

converted into matrix representation W and x, respectively. The translate generates

a lower and upper bound (εl, εu) for each query type with a given accuracy require-

ment and since Laplace mchanism is data independent, these two bounds are same.

However, these bounds vary among query types. The run takes the privacy bud-

get computed by TRANSLATE(q, α, β) (Line 3) and adds the corresponding Laplace

noise [x̃1, ..., x̃L] to the true workload counts Wx. In case of when q is a Workload

Counting Query (WCQ), the noisy counts are returned directly at the end of running

the Laplace mechanism. When q is an Iceberg Counting Query (ICQ), the bin ids

(the predicates) that have noisy counts ≥ c are returned. And, when q is a Top-k

Counting Query (TCQ), the bin ids (the predicates) that have the largest k noisy

counts are returned. Along with the noisy output, the privacy budget consumed by

this mechanism is also returned. The following theorem provide a summarization of

the properties of the two functions run and translate.
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Algorithm 2.6.2 Laplace Mechanism (LM) (q, α, β,D) [9]

1: Initialize W ← T (W = {φ1, · · · , φL}), x← TW (D), α, β
2: function RUN(q, α, β,D)
3: ε← TRANSLATE(qW , α, β,D).εu

4: [x̃1, · · · , x̃L]← Wx+ Lap(b)L, where b = ||W ||1/ε
5: if q.type==WCQ (i.e., qW ) then

return ([x̃1, · · · , x̃L],ε)
6: else if q.type==ICQ (i.e., qW,>c) then

return (φi ∈ W |x̃i > c,ε)
7: else if q.type==TCQ (i.e., qW,k) then

return (argmaxkφ1,··· ,φLx̃i,ε)
8: end if
9: end function
10: function TRANSLATE(q,α,β)
11: if q.type==WCQ (i.e., qW ) then

return (εu = ||W ||1 ln 1/(1−(1−β)1/L))
α

,εl = εu)
12: else if q.type==ICQ (i.e., qW,>c) then

return (εu = ||W ||1(ln 1/(1−(1−β)1/L))−ln 2)
α

,εl = εu)
13: else if q.type==TCQ (i.e., qW,k) then

return (εu = ||W ||12(ln (L/(2β)))
α

,εl = εu)
14: end if
15: end function
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Theorem 1 Given a query q where q.type ∈ {WCQ, ICQ, TCQ}, Laplace mecha-

nism (Algorithm 2.6.2) denoted by M can achieve (α, β)−q.type accuracy by executing

the function RUN(q, α, β,D) for any D ∈ D, and satisfy differential privacy with a

minimal cost of TRANSLATE(q, α, β).εu. [9]

The accuracy and privacy proof is mainly based on the noise property of Laplace

mechanism.

2.6.2 Privacy Analyzer

Given a sequence of queries (M1, ...,Mi) that has already been executed by the privacy

engine and that satisfy an overall Bi−1-differential privacy. If a new query (qi, αi, βi)

is run, APEx first identifies a set of mechanisms M∗ that all will have a worst-case

privacy loss smaller than B − Bi−1 (Line 5 in Algorithm 2.6.1). That is, running

any mechanism in M∗ will not result in exceeding the privacy budget in the worst

case. If M∗ = ∅, then APEx returns ‘Query Denied’ to the analyst (Line 16 in

Algorithm 2.6.1). Otherwise, APEx runs one of the mechanisms Mi from M∗ by

executing Mi.RUN() and the output ωi will be returned to the analyst. APEx then

increments Bi−1 by the actual privacy loss εi rather than the upper bound εu (Line

12 in Algorithm 2.6.1).

The privacy analyzer ensures that every sequence of queries answered by APEx

results in a B-differentially private execution, where B is the privacy budget specified

by the data owner. The formal proof of privacy primarily follows from the well-known

composition theorems. According to sequential composition, the privacy loss of a set

of differentially private mechanisms (that use independent random coins) is the sum of

the privacy losses of each of these mechanisms. Moreover, postprocessing the outputs

of a differentially private algorithm does not degrade privacy.

The main critical part of the privacy proof (described in Section 3.2.2.1) arises

since (1) the ε parameter for a mechanism is chosen based on the analyst’s query and

accuracy requirement, which in turn are adaptively chosen by the analyst based on

previous queries and answers, and (2) some mechanisms may have an actual privacy
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loss dependent on the data. APEx accounts for privacy based on the actual privacy

loss (and not the worst case privacy loss) (see Line 12, Algorithm 2.6.1).

2.6.2.1 Overall Privacy Guarantee

Privacy guarantee means that given any sequence of interactions between the data

analyst and APEx, APEx satisfies B-differential privacy, where B is the privacy

budget specified by the data owner. To state this guarantee formally, we first need

to understand a record of the interaction between APEx and the data analyst.

We define the transcript of interaction T as an alternating sequence of queries

(with accuracy requirements) set to APEx by the data analyst and answers returned

by APEx. T depicts the analyst’s view of the private database. More formally,

• The transcript Ti after i interactions is a sequence

[(q1, α1, β1), (ω1, ε1), · · · , (qi, αi, βi), (ωi, εi)], where (qi, αi, βi) are queries with

accuracy requirements, and ωi is the answer returned by APEx and εi the

actual privacy loss.

• Given Ti−1, analyst choses the next query (qi+1, αi+1, βi+1) adaptively. APEx

model this using a (possibly randomized) algorithm C that maps a transcript

Ti−1 to (qi, αi, βi); i.e., C(Ti−1) = (qi, αi, βi). Note that the analyst’s algorithm

C does not access the private database D.

• Given (qi, αi, βi), APEx select a subset of mechanismsM∗ such that ∀M ∈M∗,

M.TRANSLATE(qi, αi, βi).ε
u ≤ B − Bi. Furthermore, if M∗ is not empty,

APEx choses one mechanism Mi ∈ M∗ deterministically (either based on εl or

εu) to run. The selection of Mi is deterministic and independent of D.

• If APEx find no mechanism to run (M∗ = ∅), then the query is declined by

APEx. In this case, ωi =⊥ and εi = 0.

• If the APEx chosen algorithm Mi is LM, WCQ-SM, ICQ-SM or TCQ-LTM, εi =

εui , where εi is the upperbound on the privacy loss returned byMi.TRANSLATE.

For ICQ-MPM, the actual privacy loss can be smaller; i.e. εi ≤ εui .
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• Let Pr[Ti|D] denote the probability that the transcript of interaction is Ti
given input database D. The probability is over the randomness in the ana-

lyst’s choices C and the randomness in the mechanisms M1, · · · ,Mi executed

by APEx.

Not all transcripts of interactions are realizable under APEx. Given a privacy

budget B, the set of valid transcripts is defined as:

Definition 3 (Valid Transcripts [9]). A transcript of interaction Ti is a valid APEx

transcript generated by Algorithm 2.6.1 if given a privacy budget B the following

conditions hold:

• Bi−1 =
∑i−1

j=1 εj ≤ B, and

• Either ωi =⊥, or Bi−1 + εui ≤ B.

We are now ready to state the privacy guarantee:

Theorem 2 (APEx PRIVACY GUARANTEE[9]). Given a privacy budget B, and

valid APEx transcript Ti,and any pair of databases D,D′ that differ in one row (i.e.,

|D \D′ ∪D′ \D| = 1), we have:

(1) Bi =
∑i

j=1 εi ≤ B, and

(2) Pr[Ti|D] ≤ eBiPr[Ti|D′].

More details regarding APEx can be found in APEx[9] research paper.

2.7 Accuracy Measure

The answers to the exploration queries are typically noisy to ensure Differential Pri-

vacy. To allow the data analyst to explore data with bounded error, the queries are

extended to incorporate an accuracy requirement. The syntax for accuracy is similar

to that in BlinkDB [1]:
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BIN D on f(·) WHERE W = {φ1, ..., φL} [HAVING f(·)>c]

[ORDER BY f(·) LIMIT k] ERROR α;

The accuracy requirement for a WCQ qw is defined as a bound on the maximum

error across queries in the workload W .

Definition 4 ((α, β) − WCQ accuracy [9]) Given a workload counting query qw :

D
′ → RL , where W = {φ1, · · · ,φL }. Let M : D

′ → RL be a mechanism that outputs

a vector of answers y on D. Then, M satisfies (α, β)−W accuracy, if ∀D ∈ D′,

Pr[||y − qw(D)||∞ ≥ α] ≤ β, (1)

where ||y − qw(D)||∞ = maxj|y[i]− cφi(D)|.

The output of iceberg counting queries ICQ and top-k counting queries TCQ are

not numeric, but a subset of the given workload predicates. Their accuracy measures

are different from WCQ, and depend on their corresponding workload counting query

qW .

Definition 5 ((α, β) − ICQ accuracy [9]) Given an iceberg counting query qw,>c :

D
′ → O , where W = {φ1, · · · ,φL }, and O is a power set of W . Let M : D

′ → O

be a mechanism that outputs a subset of W . Then, M satisfies (α, β)− ICQ accuracy

for qw,>c, if for D,

Pr[|{φ ∈M(D)|cφ(D) < c− α}| > 0] ≤ β (2)

Pr[|{φ ∈ (W −M(D))|cφ(D) > c+ α}| > 0] ≤ β (3)

A mechanism for ICQ can make two kinds of errors: label predicates with true

counts greater than c as < c (red dots in 2.7.1) and label predicates with true counts

less than c as > c (blue dots in 2.7.1).

We say a mechanism satisfies (α, β)− ICQ accuracy if with high probability, all

the predicates with true counts greater than c + α are correctly labeled as >c and
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all the predicates with true counts less than c− α are correctly labeled as < c . The

mechanism may make arbitrary mistakes within the range [c− α, c+ α].

Definition 6 ((α, β)−TCQ accuracy [9]) Given a top-k counting query qw,k : D
′ →

O , where W = {φ1, · · · ,φL }, and O is a power set of W . Let M : D
′ → O be a

mechanism that outputs a subset of W . Then, M satisfies (α, β) − TCQ accuracy if

for D ∈ D′,

Pr[|{φ ∈M(D)|cφ(D) < ck − α}| > 0] ≤ β (4)

Pr[|{φ ∈ (Φ−M(D))|cφ(D) > ck + α}| > 0] ≤ β (5)

where ck is the kth largest counting value among all the bins, and Φ is the true

top-k bins.

The intuition behind Definition 4 is similar to that of ICQ and is explained in

Figure 2.7.1: predicates with count greater than ck + α are included and predicates

with count less than ck − α do not enter the top-k with high probability.

The advantages of the accuracy definitions defined above are that they are intuitive

(when α increases, noisier answers are expected) and we can design privacy-preserving

mechanisms that introduce noise while satisfying these accuracy guarantees. On the

other hand, this measure is not equivalent to other bounds on the accuracy like

relative error and precision/recall which can be very sensitive to small amounts of

noise (when the counts are small, or when lie within a small range). For example, if

the counts of all the predicates in ICQ lie outside [c− α, c+ α], a mechanism M that

perturbs counts within ±α and then answers an ICQ will have precision and recall of

1.0 with high probability as it makes no mistakes. However, if all the query answers

lie within [c− α, c+ α], then the precision and recall of the output of M could be 0.
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Fig. 2.7.1: Accuracy Requirement for ICQ and TCQ
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CHAPTER 3

Methodology used and Extensions

to APEx

In this chapter, the extensions to the APEx are covered in more detail.There are some

similarities to the APEx, as this is the extension to the original paper. In this work,

it is tested on multiple-table dataset. A dataset with multiple tables is used, which is

also discussed in detail later in section 3.1. Then the changes to the queries structure

were made, which are more evident in the code used to test the concept. The code is

attached in the Appendix.

3.1 Dataset

In this research, I have taken multi-table relational schema R1(A1, A2, ..., Ad),

R2(B1, B2, ..., Bd) where attr(R1) and attr(R2) denotes the set of attributes of

R1

⋃
R2. Each attribute Ai has a domain dom(Ai). The full domain of R is dom(R) =

dom(A1)× · · · × dom(Ad)× dom(B1)× · · · × dom(Bd), containing all possible tuples

conforming to R. An instance D of relation R is a multiset whose elements are tuples

in dom(R). Let us denote the domain of the instances be D.

Based on the above multiple-table schema, I found Employee sample database

from MYSQL website. Patrick Crews and Giuseppe Maxia [26] developed the Em-

ployee sample database and provide a combination of a broad base of data (approxi-

mately 160MB), which spread over six separate tables and consists of 4 million records

in total. There are about 300,000 employee records with 2.8 million salary entries
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Fig. 3.1.1: The Employees Schema

in the database. The diagram 3.1.1 provides an overview of the structure of the

Employees sample database.

3.2 Queries and their types

This section describes the different types of queries used in APEx. It is believed that

most of the data exploration done by data analysts can be done by writing queries

that can be categorized into one of these query types. These queries are commonly

referred to as Exploration Queries.
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3.2.1 Exploration Queries

There are mainly three types of exploration queries:

1. Workload Counting Query (WCQ)

2. Iceberg Counting Query (ICQ)

3. Top-k Counting Query (TCQ)

3.2.1.1 Workload Counting Query (WCQ)

Workload counting queries cover a large part of Linear Counting queries. They are

very similar to SQL SELECT ... GROUP BY queries. Another excellent example

of workload counting queries is histogram queries. For example, let’s take a table D

with attribute state having domain {AL, AK, . . . , WI, WY} and an attribute Age

with domain [ 0,∞). Then, a query to return the number of people with age above

50 for each state can be expressed using WCQ as:

BIN D on COUNT(*) WHERE W = {Age > 50 ∧ State = AL, ....., Age >

50 ∧ State = WY };

3.2.1.2 Iceberg Counting Query (ICQ)

The main difference between the iceberg counting query and linear counting query is

that the answer to the query is a subset of the predicates in W.

BIN D on COUNT(*) WHERE W = {φ1, ..., φL} HAVING COUNT(*) > c;

An iceberg counting query returns bin identifiers if the aggregated value for that

bin is higher than a threshold. For example, a query which returns the states in the

US which have a population of at least 5 million can be expressed as:

BIN D on COUNT(∗ )

WHERE W = {State=AL , . . . , State=WY}

HAVING COUNT(∗ ) > 5 m i l l i o n ;
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Note that since the answer to the query is a subset of the predicates in W (i.e. a

subset of bin identifiers) but not the aggregate values for these bins, an ICQ is not a

linear counting query.

3.2.1.3 Top-k Counting Query (TCQ)

BIN D on COUNT(*) WHERE W = {φ1, ..., φL}

ORDER BY COUNT(*) LIMIT k;

This query firsts sorts all the bins based on a threshold and returns the top k bin

identifiers. For example, a query to return the top three US states with the highest

population can be written as:

BIN D on COUNT(*) WHERE W = {State = AL, ..., State = WY }

ORDER BY COUNT(*) LIMIT k;

3.3 Code changes on APEx

In order to make APEx compatible with multiple-table queries, there were a couple of

changes that were required at the code level. But before that, we need to understand

how APEx works at the code level. When we run the program, there are two threads

that run simultaneously. First, based on the given values of α, β and the differential

privacy mechanism, the estimated cost of differential privacy mechanism and differ-

ential privacy mechanism itself is calculated. This can be seen in the following code

snippet for mechanisms LM and LM SM .

Listing 3.1: Estimated cost and calculation of mechanism [9]

# es t imate co s t us ing s e q u e n t i a l composi t ion

def e s t ima t e l o s s ( s e l f , m) :

# es t imate the co s t based on the query type

q = m. query

i f q . query type == Type . QueryType .WCQ:

i f q . m type == Type . MechanismType .LM:
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# es t imate co s t

e s t c o s t = lm e s t c o s t (m)

m. s e t e s t c o s t ( e s t c o s t )

# se t the l a p l a c e b

m. s e t l a p b (q . g e t s e n s i t i v i t y ( ) / e s t c o s t )

e l i f q . m type == Type . MechanismType .LM SM:

# es t imate co s t

e s t c o s t = lm sm es t co s t (m)

m. s e t e s t c o s t ( e s t c o s t )

# se t the l a p l a c e b

m. s e t l a p b (m. s t r a t e g y s e n s / e s t c o s t )

return s e l f . t o t a l p r i v a c y c o s t + m. e s t c o s t

As we can see from the above code snippet that first it calculates cost estimation.

It is done using this formula.

Listing 3.2: Cost estimation [9]

def lm e s t c o s t (m) :

q = m. query

e s t c o s t = q . g e t s e n s i t i v i t y ( ) ∗ np . l og ( 1 . 0 / ( 1 . 0 − ( 1 . 0 − m. beta )

∗∗ ( 1 . 0 / len ( q . c o n d l i s t ) ) ) ) / m. alpha

return e s t c o s t

Sensitivity in the above function is just the sensitivity of the matrix. After calcu-

lating the estimated cost of the mechanism, the mechanism itself is calculated as can

be seen in Listing 3.1.

Second, the query is converted into a matrix form. This can be seen in the

following code snippet.

Listing 3.3: Matrix Representation of query [9]

# cons t ruc t the matrix r ep r e s en t a t i on o f the query

def to matr ix ( s e l f ) :
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# for 1D and 2D histogram , j u s t count (∗)

# ge t a l l the counts f o r each p r ed i c a t e

s e l f . domain hist = s e l f . g e t cond counts ( )

# for i in range (0 , l en ( s e l f . domain his t ) ) :

i f s e l f . index . name in [ ’ qw 1 ’ , ’qwm 1 ’ ,

’ q i 3 ’ , ’ q t 1 ’ , ’ qtm 1 ’ , ’ qw 4 ’ , ’ q i 2 ’ , ’ qim 2 ’ , ’ q t 3 ’ ] :

# 1D/2D histogram

i s h i s t = True

else :

i s h i s t = Fal se

i f i s h i s t :

# for his togram query

count row by pred i ca t e s = sum( s e l f . domain hist )

s e l f . query matr ix =

np . z e ro s ( ( len ( s e l f . c o n d l i s t ) , len ( s e l f . domain hist ) ) )

i f i s h i s t :

for i in range (0 , len ( s e l f . c o n d l i s t ) ) :

s e l f . query matr ix [ i ] [ i ] = 1

In order to convert a histogram query to matrix form, first we calculate the domain

of the histogram. This is the condition counts. It contains the value corresponding

to each condition. Using this and the length of condition list, we get x × y matrix

where x is the length of condition list and y is the length of domain of histogram.

These two threads give us the foundation to calculate the final answers to the

query. As can be seen from the code snippet of matrix transformation (Listing 3.3)

that it calculates the condition counts, which is the primary thing in the type of

queries that we are trying to execute. The condition counts are the ones that are

shown as bars in a histogram. To calculate these condition counts, the previous

version of APEx used to calculate these on a single table, as we can see from this
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code snippet.

Listing 3.4: Condition counts for single table schema

c rnt query = s e l e c t count (∗ ) from

+ table name + where + cond

This is changed to get the condition counts from multiple tables based on the

query type as can be seen from the following code snippet.

Listing 3.5: Condition counts for multiple table schema

# prepare the query to query i d s

i f ( s e l f . index . name == ’ qim 2 ’ ) :

c rnt query = SELECT COUNT(∗ ) FROM

(SELECT A. emp no , A. gender , B. s a l a r y

FROM employees . employees as A INNER JOIN

employees . s a l a r i e s as B ON

A. emp no = B. emp no where + cond + ) C

# ge t the t o t a l count from the t a b l e

i f ( s e l f . index . name == ’ qim 2 ’ ) :

c rnt query = SELECT COUNT(∗ ) FROM (SELECT A. emp no ,

A. gender , B. s a l a r y FROM employees . employees as

A INNER JOIN employees . s a l a r i e s as B ON A. emp no = B. emp no ) C

3.4 Incorporating other measures

Extended APEx is evaluated on various error measures like Mean Square Error

(MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error. These

error measures are widely used in Machine Learning models. The motivation behind

using these as error measures for APEx is the existence of an excellent analogy behind

a machine learning model and APEx. A machine learning model predicts a value,

and we use these measures to see how close that prediction is to the actual value.
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Similarly, APEx returns noisy values to the data analyst. These error measures can

help us evaluate how close or how accurate these noisy values are to the true val-

ues. The more precise these noisy values are, the more beneficial they can be to the

data analyst. Since we have used Differentially Private mechanism to calculate these

values, the privacy constraint set by the data owner is also kept.

Mean Square Error (MSE): In statistics, Mean Squared Error is widely used

measure to determine the performance of an estimator. In simple words, it is the

square root of the average of squared differences between the true value and the

predicted value.

MSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2

Mean Absolute Error (MAE): The main difference in Mean Absolute Error

and Mean Square Error is that it measures average magnitude of the errors in a set of

noisy answers, without considering their direction. It’s the average over the sample

of the absolute differences between the noisy answer and the true answer where all

individual differences have equal weight.

MAE =
1

n

n∑
j=1

|yj − ŷj|

Mean Absolute Percentage Error (MAPE): Mean Absolute Percentage Er-

ror (MAPE) measures the size of error in terms of percentage. It is mostly used to

give perspective to how much error is there on scale of 1-100.

MAPE =
1

n

n∑
j=1

|yj − ŷj| ∗ 100

The error values of these measures are provided in the next chapter. The one

important observation to notice is that when we compare the error values from single

table queries and multiple table queries, there is not much difference. For example,

the error values of WCQ for single table query are 83.4 and 13894.5 for MAE and

MSE respectively. Whereas for WCQ for multiple table query, the error values are
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87.10, and 9927.95 for MAE and MSE respectively. This re-assures us that APEx

can easily be scaled to data which multi-dimensional, multi-table and also with large

volume without affecting its error measures.
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CHAPTER 4

Experiments and Results

In this research, I have evaluated extended APEx on real-world datasets, out of which

two were single-table dataset, and one was multiple-table dataset. The details, along

with the entity-relationship diagram about the numerous table dataset, can be found

in Chapter 3 (Methodology). Extended APEx was evaluated using a set of benchmark

queries to see if :

• APEx can effectively translate queries associated with accuracy bounds into

differentially private mechanisms. These mechanisms accurately answer a wide

variety of new data exploration queries with moderate to low privacy loss.

• The set of query benchmarks show that no single mechanism can dominate

the rest and APEx picks the mechanism with the least privacy loss for all the

queries.

4.1 Setup

4.1.1 Datasets

The experiment uses three real-world datasets. The first data set Adult was ex-

tracted from the 1994 US Census release [3]. This dataset includes 15 attributes (6

continuous and nine categorical), such as ”capital gain”, ”country”, and a binary

”label” indicating whether an individual earns more than 5000 or not, for a total

of 32, 561 individuals. The second dataset, referred to as NYTaxi, includes 9, 710,

124 NYC’s yellow taxi trip records [30]. Each record consists of 17 attributes, such
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as categorical attributes (e.g., ”pick-up-location”), and continuous attributes (e.g.,

”trip distance”). The third dataset, Employees sample database [25], is taken from

the MYSQL website. It was developed by Patrick Crews and Giuseppe Maxia and

provides a combination of a large base of data (approximately 160MB) spread over

six separate tables and consisting of 4 million records in total.

4.1.2 Query Benchmarks

In this research, ten meaningful exploration queries on Adult and Employees datasets,

summarized in Table 4.1.1 are tested. These ten queries cover the three types of

exploration queries defined in Section 3.3, QW1, QW2, QWM1, QWM2, QI1, QI2,

QIM1, QIM2, QT1 and QT2 corresponds to WCQ (Workload Counting Query), ICQ

(Iceberg Counting Query) and TCQ (Top-K Counting Query) respectively. Queries

with numbers 1 and 2 are for Adult, with numbers M1 and M2 are for Employees

dataset. The predicate workload W cover 1D histogram, 1D prefix, 2D histogram

and count over multiple dimensions. β = 0.0005 and vary α ∈

{0.02, 0.04, 0.08, 0.16, 0.32, 0.64}.

4.1.3 Metrics

For each query (q, α, β), APEx outputs (ε, ω) after running a differentially private

mechanism, where ε is the actual privacy loss and ω is the noisy answer. The empirical

error of a WCQ qW (D) is measured as ||ω−qw(D)||∞/|D|, the scaled maximum error

of the counts. The empirical errors of ICQqw,>c(D) and TCQqw,k(D) are measured as

||α||∞/|D|, the scaled maximum distance of mislabeled predicates.

4.1.4 Experimental Setup

APEx is implemented using python-3.4 and is run on a machine with 64 cores and

256 GB memory. APEx is run with optimistic mode. For strategy mechanism, H2 (a

hierarchical set of counts [17, 18, 20]) strategy is used for all queries. The code for

this research was taken from APEx [9].
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Name D Query workload W Query output

QW1 Adult ”capital gain”∈ [0, 50), ”capital gain”∈ [50, 100), ...,”capital gain”∈ [4950, 5000) bin counts

QW2 Adult ”capital gain”∈ [0, 50), ”capital gain”∈ [0, 100), ..., ”capital gain”∈ [0, 5000) bin counts

QWM1 Employees ”salary”∈ [0, 1500), ”salary”∈ [1500, 3000), ...,”capital gain”∈ [148500, 150000) bin counts

QWM2 Employees ”salary”∈ [0, 1500), ”salary”∈ [0, 3000), ..., ”salary”∈ [0, 150000) bin counts

QI1 Adult ”capital gain”<50, ”capital gain”<100,..., ”capital gain”<5000 bin ids having counts >0.1|D|

QI2 Adult (0 ≤”capital gain”<100, ”sex”=’M’),...(4500 ≤”capital gain”<5000, ”sex”=’F’) bin ids having counts >0.1|D|

QIM1 Employees ”salary”<1500, ”salary”<3000,..., ”salary”<150000 bin ids having counts >0.1|D|

QIM2 Employees (0 ≤”salary”<1500, ”gender”=’M’),...(145000 ≤”capital gain”<150000, ”gender”=’F’) bin ids having counts >0.1|D|

QT1 Adult ”age”= 0,”age”= 1,...,”age”= 99 top 10 bins with highest counts

QTM1 Employees ”gender”= 0,”gender”= 1,...,”gender”= 99 top 10 bins with highest counts

Table 4.1.1: Query benchmarks include three types of exploration queries on three
datasets.

4.2 Experiment Results

Ten queries as shown in Table 4.1.1 were run with different accuracy requirements

from 0.01|D| to 0.64|D| and β = 0.0005. After running these queries for different

configurations, I found that for all the queries the mechanism chosen for each α

incurs an actual privacy cost at ε = εu.

As we can see from Table 4.2.1, the privacy cost of WCQ, ICQ, and TCQ queries

is almost the same for both single and multiple table databases. Privacy cost is the

privacy that we loose by running these queries. It’s important to mention here that

even if we are using differential privacy mechanisms here, we still loose privacy and

the execution of any new query should be bound by the privacy bound set by the data

owner. This tells us that the concept of APEx can easily be scaled to big databases

with multiple tables without the loss of privacy. I checked the privacy cost with α-

values 0.2|D| and 0.8|D|. In both of these α values, either there is no difference or

very similar values.

But on the contrary, if we see Table 4.2.2 , which tells the time taken in seconds

to run WCQ, ICQ, and TCQ queries with different mechanisms on both single and

multiple table queries, we can see that there is a vast difference. The single table

queries take much less time than the time taken to run queries on multiple table

queries.
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Mechanism Query-α

QW1-0.02|D| QW1-0.08|D| QW2-0.02|D| QW2-0.08|D| QWM1-0.02|D| QWM1-0.08|D| QWM2-0.02|D| QWM2-0.08|D|

WCQ-LM 0.01874 0.00469 1.87430 0.46858 0.01874 0.00468 1.87430 0.46858

WCQ-SM 0.09809 0.02367 0.09201 0.02523 0.09785 0.02385 0.09548 0.02655

QI1-0.02|D| QI1-0.08|D| QI2-0.02|D| QI2-0.08|D| QIM1-0.02|D| QIM1-0.08|D| QIM2-0.02|D| QIM2-0.08|D|

ICQ-LM 1.76786 0.44197 0.01768 0.00442 1.76786 0.44196 0.01768 0.0041

ICQ-SM 0.09526 0.02379 0.0999 0.02359 0.11330 0.02298 0.09090 0.0251

ICQ-MPM 2.12148 0.53037 0.0212 0.00530 2.12148 0.53037 0.0212 0.00530

QT1-0.02|D| QT1-0.08|D| – – QTM1-0.02|D| QTM1-0.08|D| – –

TCQ-LM 0.03536 0.00884 – – 0.03536 0.00884 – –

TCQ-LTM 0.03535 0.07071 – – 0.03536 0.00884 – –

Table 4.2.1: Comparison of privacy cost values of WCQ, ICQ and TCQ queries on
single table and multiple table databases.

Mechanism Time taken (in seconds)

QW1-0.02|D| QW1-0.08|D| QW2-0.02|D| QW2-0.08|D| QWM1-0.02|D| QWM1-0.08|D| QWM2-0.02|D| QWM2-0.08|D|

WCQ-LM 2.44245 2.00211 1.99205 1.87870 94.97264 107.16471 96.53642 94.57371

WCQ-SM 2.54281 2.11564 1.92897 1.92770 84.52438 96.99313 93.88398 92.78742

QI1-0.02|D| QI1-0.08|D| QI2-0.02|D| QI2-0.08|D| QIM1-0.02|D| QIM1-0.08|D| QIM2-0.02|D| QIM2-0.08|D|

ICQ-LM 1.96315 1.92326 2.24353 2.22824 94.52726 100.41878 85.16131 120.01252

ICQ-SM 3.63365 1.95576 2.58680 2.46656 107.29946 108.99569 118.37343 144.70835

ICQ-MPM 2.31195 2.01719 3.47117 2.25693 94.54965 97.82684 83.80026 82.20479

QT1-0.02|D| QT1-0.08|D| – – QTM1-0.02|D| QTM1-0.08|D| – –

TCQ-LM 1.90949 1.64939 – – 7.27493 7.19846 – –

TCQ-LTM 1.88965 1.66203 – – 7.07214 7.19349 – –

Table 4.2.2: Comparison of time taken to run WCQ, ICQ and TCQ queries on single
table and multiple table databases.

Fig. 4.2.1: True values, Noisy values and Error metrics for WCQ query for single
table database.
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Fig. 4.2.2: Bar graph for WCQ query for single table database.

Fig. 4.2.3: True values, Noisy values and Error metrics for WCQ query for multiple
table database.
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Fig. 4.2.4: Bar graph for WCQ query for multiple table database.

Fig. 4.2.5: True values, Noisy values and Error metrics for ICQ query for single table
database.
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Fig. 4.2.6: Bar graph for ICQ query for single table database.

Fig. 4.2.7: True values, Noisy values and Error metrics for ICQ query for multiple
table database.
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Fig. 4.2.8: Bar graph for ICQ query for multiple table database.

Fig. 4.2.9: True values, Noisy values and Error metrics for TCQ query for single table
database.
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Fig. 4.2.10: Bar graph for TCQ query for single table database.

Fig. 4.2.11: True values, Noisy values and Error metrics for TCQ query for multiple
table database.
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Fig. 4.2.12: Bar graph for TCQ query for multiple table database.
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Figures from 4.2.1 to 4.2.12 are screenshots of when I ran extended APEx on

different parameters as depicted in Table 4.1.1.

4.3 Limitations and Assumptions

While experimenting with APEx on a multiple-table database, I have assumed that

the execution time difference due to the difference in the size of the dataset is negli-

gible. It’s a limitation of this research. It can be an exciting phenomenon to try to

divide the same single-table database into multiple tables and then test APEx. In

this research I have taken different database hich was already divided among multiple

tables. By doing this, the size of the dataset will be identical, and the execution time

difference will not include the time taken to run the queries on the database.
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CHAPTER 5

Conclusion and Future Work

In this research, not only I studied APEx in depth but I also tried to implement

one of the extensions mentioned in the original paper. According to my observation,

APEx can easily be scaled to Big Data databases with multiple table. The privacy

cost of running queries on single table databases and multiple table databases did not

differ that much. The only difference that I noted was that the time taken to run

queries on multiple table queries was almost ten folds. Now, this could be because of

the difference in the size of the databases. Using experiments with query benchmarks

and entity resolution application, I established that APEx allows high exploration

quality with a reasonable privacy loss.

This research opens up various interesting future expansions along with those men-

tioned in the original paper. A few of those:

• Evaluate APEx on NoSQL or graph databases such as MongoDB, DynamoDB,

GraphDB.

• Integrating it with data visualization tools.

• Integrating it with Machine Learning algorithms like Neural Networks.

51



REFERENCES

[1] Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., and Stoica, I.

(2013). Blinkdb: Queries with bounded errors and bounded response times on

very large data. In Proceedings of the 8th ACM European Conference on Computer

Systems, EuroSys ’13, page 29–42, New York, NY, USA. Association for Computing

Machinery.

[2] Barth-Jones, D. (2012). The ’re-identification’ of governor william weld’s medi-

cal information: A critical re-examination of health data identification risks and

privacy protections, then and now. SSRN Electronic Journal.

[3] Dheeru, D. (2017). Karra taniskidou e. UCI machine learning repository, 12.

[4] Dwork, C. (2006). Differential privacy. In Proceedings of the 33rd Interna-

tional Conference on Automata, Languages and Programming - Volume Part II,

ICALP’06, page 1–12, Berlin, Heidelberg. Springer-Verlag.

[5] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006a). Calibrating noise

to sensitivity in private data analysis. In Theory of Cryptography, Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), pages 265–284. 3rd Theory of Cryptography

Conference, TCC 2006 ; Conference date: 04-03-2006 Through 07-03-2006.

[6] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006b). Calibrating noise

to sensitivity in private data analysis. In Proceedings of the Third Conference

on Theory of Cryptography, TCC’06, page 265–284, Berlin, Heidelberg. Springer-

Verlag.

52



REFERENCES

[7] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2017). Calibrating noise

to sensitivity in private data analysis. Journal of Privacy and Confidentiality,

7(3):17–51.

[8] Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential pri-

vacy. Found. Trends Theor. Comput. Sci., 9(3–4):211–407.

[9] Ge, C., He, X., Ilyas, I. F., and Machanavajjhala, A. (2019). Apex: Accuracy-

aware differentially private data exploration. In Proceedings of the 2019 Interna-

tional Conference on Management of Data, SIGMOD ’19, page 177–194, New York,

NY, USA. Association for Computing Machinery.

[10] Ge, C., Ilyas, I., He, X., and Machanavajjhala, A. (2017). Private exploration

primitives for data cleaning. arXiv preprint arXiv:1712.10266.

[11] Greenberg, A. (2016). Apple’s’ differential privacy’is about collecting your

data—but not your data.(2016). URL www. wired. com/2016/06/apples-

differential-privacy-collecting-data.

[12] Haney, S., Machanavajjhala, A., Abowd, J. M., Graham, M., Kutzbach, M., and

Vilhuber, L. (2017). Utility cost of formal privacy for releasing national employer-

employee statistics. In Proceedings of the 2017 ACM International Conference

on Management of Data, SIGMOD ’17, page 1339–1354, New York, NY, USA.

Association for Computing Machinery.

[13] Johnson, N., Near, J. P., and Song, D. (2017a). Practical differential privacy for

sql queries using elastic sensitivity. arXiv preprint arXiv:1706.09479.

[14] Johnson, N. M., Near, J. P., and Song, D. X. (2017b). Practical differential

privacy for SQL queries using elastic sensitivity. CoRR, abs/1706.09479.

[15] King, G. and Persily, N. (2018). A new model for industry–academic partner-

ships. PS: Political Science & Politics, pages 1–7.

53



REFERENCES

[16] Konda, P., Das, S., Suganthan G. C., P., Doan, A., Ardalan, A., Ballard, J. R.,

Li, H., Panahi, F., Zhang, H., Naughton, J., Prasad, S., Krishnan, G., Deep, R., and

Raghavendra, V. (2016). Magellan: Toward building entity matching management

systems. Proc. VLDB Endow., 9(12):1197–1208.

[17] Li, C., Hay, M., Rastogi, V., Miklau, G., and McGregor, A. (2010). Optimizing

linear counting queries under differential privacy. In Proceedings of the Twenty-

Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, PODS ’10, page 123–134, New York, NY, USA. Association for Comput-

ing Machinery.

[18] Li, C., Miklau, G., Hay, M., Mcgregor, A., and Rastogi, V. (2015). The matrix

mechanism: Optimizing linear counting queries under differential privacy. The

VLDB Journal, 24(6):757–781.

[19] Ligett, K., Neel, S., Roth, A., Waggoner, B., and Wu, Z. S. (2017). Accuracy first:

Selecting a differential privacy level for accuracy-constrained erm. In Proceedings

of the 31st International Conference on Neural Information Processing Systems,

NIPS’17, page 2563–2573, Red Hook, NY, USA. Curran Associates Inc.

[20] McKenna, R., Miklau, G., Hay, M., and Machanavajjhala, A. (2018). Optimizing

error of high-dimensional statistical queries under differential privacy. Proc. VLDB

Endow., 11(10):1206–1219.

[21] McSherry, F. D. (2009a). Privacy integrated queries: An extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’09, page 19–30, New

York, NY, USA. Association for Computing Machinery.

[22] McSherry, F. D. (2009b). Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data, pages 19–30.

54



[23] Narayanan, A. and Shmatikov, V. (2006). How to break anonymity of the netflix

prize dataset.

[24] Parameswarany, A., Sarma, A. D., Venkataramani, V., Papaemmanouil, O.,

Diao, Y., Dimitriadou, K., Peng, L., Eichmann, P., Zgraggen, E., Zhao, Z., et al.

(2018). Data engineering. ACM.

[25] Patrick crews, G. M. (2004). Mysql: Employees sample database.

[26] Patrick Crews, G. M. (2008). Employee sample database. https://dev.mysql.

com/doc/employee/en/employees-introduction.html.

[27] Proserpio, D., Goldberg, S., and McSherry, F. (2012). A workflow for

differentially-private graph synthesis. In Proceedings of the 2012 ACM Workshop

on Workshop on Online Social Networks, WOSN ’12, page 13–18, New York, NY,

USA. Association for Computing Machinery.

[28] Proserpio, D., Goldberg, S., and McSherry, F. (2014). Calibrating data to sen-

sitivity in private data analysis: A platform for differentially-private analysis of

weighted datasets. Proc. VLDB Endow., 7(8):637–648.

[29] Stonebraker, M., Bruckner, D., Ilyas, I. F., Beskales, G., Cherniack, M., Zdonik,

S. B., Pagan, A., and Xu, S. (2013). Data curation at scale: the data tamer system.

In Cidr.

[30] TLC, N. (2017). Nyc taxi and limousine commission (tlc) trip record data. URL

http://www. nyc. gov/html/tlc/html/about/trip record data. shtml.

[31] Vilhuber, L. and Schmutte, I. M. (2016). Proceedings from the 2016 nsf–sloan

workshop on practical privacy. In Proceedings from the.

[32] Zhang, D., McKenna, R., Kotsogiannis, I., Hay, M., Machanavajjhala, A., and

Miklau, G. (2018). Ektelo: A framework for defining differentially-private compu-

tations. In Proceedings of the 2018 International Conference on Management of



Data, SIGMOD ’18, page 115–130, New York, NY, USA. Association for Comput-

ing Machinery.



APPENDIX

Code changes on APEx

Query.py

Listing 1: Condition counts for multiple table schema

from conn import DB

import numpy as np

from query import Type

from s k l e a rn . met r i c s import f 1 s c o r e

class QueryBag :

””” in t e rmed ia t e s t r u c t u r e when

f o rma l i z i n g query matrix r e p r e s en t a t i on ”””

def i n i t ( s e l f ) :

s e l f . i d s e t = set ( )

s e l f . q u e r y l i s t = [ ]

def add q ( s e l f , new q ) :

i f type ( new q ) i s l i s t :

s e l f . q u e r y l i s t . extend ( new q )

else :

s e l f . q u e r y l i s t . append ( new q )

def add ids ( s e l f , i d s ) :

s e l f . i d s e t . update ( set ( i d s ) )
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class Query :

””” the query c l a s s ”””

query type = Type . QueryType .WCQ

def i n i t ( s e l f ) :

s e l f . index = −1

s e l f . c o n d l i s t = [ ]

s e l f . query type = −1

# inte rmed ia t e ho l de r f o r each cond i t i on / p r ed i c a t e

s e l f . query bags = [ ]

# W

s e l f . query matr ix = [ ]

# x

s e l f . domain hist = [ ]

# the t rue count ing o f qu e r i e s us ing matrix mechanism

s e l f . t rue answer = [ ]

s e l f . no i sy answer = [ ] # noisy count ing

s e l f . l a p n o i s e = [ ] # a l i s t o f l a p l a c e no i se

# c a r d i n a l i t y o f the t a b l e , w i l l a s s i gn when g e t c o n d l i s t

s e l f . c a r d i n a l i t y = −1

# WCQ re l a t e d

s e l f . a n swe r d i f f = [ ]

# ICQ r e l a t e d

s e l f . i c q c = −1

s e l f . s e l e c t ed cond index = [ ]

s e l f . count poking = −1

# a l i s t o f t rue poking t imes per p r ed i c a t e

s e l f . r e a l c oun t pok ing = [ ]



# TCQ re l a t e d

s e l f . t cq k = −1

s e l f . s e l e c t e d a r g l i s t = [ ]

# data s e t r e l a t e d

s e l f . table name = ””

s e l f . d a t a s i z e = 1

s e l f . db = ””

s e l f . m type = ””

s e l f . query key = −1

s e l f .Wx cache W = dict ( )

s e l f . Wx cache x = dict ( )

s e l f . Wx cache N = dict ( )

s e l f . eps cache = dict ( )

# se t the query index

def s e t i nd ex ( s e l f , i ) :

s e l f . index = i

# se t query p r e d i c a t e s

def s e t c o n d l i s t ( s e l f , p ) :

s e l f . c o n d l i s t = p

# se t the t a b l e and db connect ion

def s e t d a t a and s i z e ( s e l f , ds , s ) :

i f ds == ’ census ’ :

s e l f . table name = ’ census . income ’

e l i f ds == ’ l o c a t i o n ’ :

s e l f . table name = ’ l o c a t i o n . t r i p ’

e l i f ds == ’ employees ’ :

s e l f . table name = ’ employees . s a l a r i e s ’

else :

print ( ”ERROR: not supported data s e t ” , ds )

# se t the db connect ion and s i z e



s e l f . db = DB.DB( ds )

s e l f . d a t a s i z e = s

def s e t que ry type ( s e l f , qt , i c q c=−1, mpm p=−1, t cq k=−1):

s e l f . query type = qt

i f qt == Type . QueryType . ICQ :

a s s e r t i c q c != −1

s e l f . i c q c = i c q c

s e l f . count poking = mpm p

s e l f . r e a l c oun t pok ing = 0

e l i f qt == Type . QueryType .TCQ:

a s s e r t tcq k != −1

s e l f . t cq k = tcq k

def set mechanism type ( s e l f , m) :

s e l f . m type = m

def s e t c a che ( s e l f , w, x , n , e ) :

s e l f .Wx cache W = w

s e l f . Wx cache x = x

s e l f . Wx cache N = n

s e l f . eps cache = e

# c o l l e c t the i d s f o r each cond i t i on to b u i l d his togram

def g e t c ond id s ( s e l f ) :

counter = 0

table name = s e l f . table name + str ( s e l f . d a t a s i z e )

for cond in s e l f . c o n d l i s t :

# i n i t i a l i z e an o b j e c t to ho ld the i d s and i t s b e l ong ing que r i e s

c rnt query bag = QueryBag ( )

c rnt query bag . add q ( counter )

# prepare the query to query i d s

c rnt query = ’ s e l e c t id from ’ \

+ table name + ’ where ’ + cond



c r n t qu e r y r s = s e l f . db . run ( c rnt query )

# s to r e the row i d s

c rnt query bag . add ids ( [ i [ 0 ] for i in c r n t qu e r y r s ] )

s e l f . query bags . append ( crnt query bag )

# pr in t ( l en ( c rn t q u e r y r s ) )

counter = counter + 1

# ge t the t o t a l count from the t a b l e

c rnt query = ’ s e l e c t count (∗ ) from ’ + table name

s e l f . c a r d i n a l i t y = s e l f . db . run ( c rnt query ) [ 0 ] [ 0 ]

s e l f . db . c l o s e conn ( )

def get cond counts ( s e l f ) :

table name = s e l f . table name + str ( s e l f . d a t a s i z e )

i f table name == ’ employees . s a l a r i e s 1 ’ :

table name = ’ employees . s a l a r i e s ’

c o u n t s l i s t = [ ]

for cond in s e l f . c o n d l i s t :

# prepare the query to query i d s

# pr in t ( s e l f . index . name )

i f ( s e l f . index . name == ’ qim 2 ’ ) :

# pr in t (”Here ”)

c rnt query = ’SELECT COUNT(∗ ) FROM \

(SELECT A. emp no , A. gender , B. s a l a r y \

FROM employees . employees as A INNER JOIN \

employees . s a l a r i e s as B ON \

A. emp no = B. emp no where ’ + cond + ’ ) C ’

e l i f ( s e l f . index . name == ’ qtm 1 ’ ) :

c rnt query = ’ S e l e c t count (∗ ) from \

employees . employees where \

year ( curdate ( ) ) − year ( b i r t h da t e ) = ’ + cond

else :

c rnt query = ’ s e l e c t count (∗ ) from ’ \

+ table name + ’ where ’ + cond



c o u n t s l i s t . append ( s e l f . db . run ( c rnt query ) [ 0 ] [ 0 ] )

# ge t the t o t a l count from the t a b l e

i f ( s e l f . index . name == ’ qim 2 ’ ) :

c rnt query = ’SELECT COUNT(∗ ) FROM (SELECT A. emp no ,\

A. gender , B. s a l a r y FROM employees . employees as \

A INNER JOIN employees . s a l a r i e s as B ON A. emp no = B. emp no ) C ’

e l i f ( s e l f . index . name == ’ qtm 1 ’ ) :

c rnt query = ’ s e l e c t count (∗ ) from employees . employees ’

else :

c rnt query = ’ s e l e c t count (∗ ) from ’ + table name

s e l f . c a r d i n a l i t y = s e l f . db . run ( c rnt query ) [ 0 ] [ 0 ]

s e l f . db . c l o s e conn ( )

return c o u n t s l i s t

# cons t ruc t the matrix r ep r e s en t a t i on o f the query

def to matr ix ( s e l f ) :

# check i f the r e s u l t s was p r e v i o u s l y cached

# key qw1 100 1

s e l f . query key = s e l f . index . name + \

str ( len ( s e l f . c o n d l i s t ) ) + str ( s e l f . d a t a s i z e )

# i f s e l f . query key in s e l f .Wx cache W :

# s e l f . domain his t = s e l f .Wx cache W . ge t ( s e l f . query key )

# s e l f . query matr ix = s e l f . Wx cache x . g e t ( s e l f . query key )

# s e l f . c a r d i n a l i t y = s e l f . Wx cache N . ge t ( s e l f . query key )

# pr i n t (”DEBUG: reuse cache query key=”, s e l f . query key )

# re turn

# e l s e :

# pr i n t (”DEBUG: no cache query key=”, s e l f . query key )

# i f the query i s q t 2 or q t 4 , o the rw i s e j u s t count

i f s e l f . index . name in [ ’ q t 2 ’ , ’ q t 4 ’ ] : # HD

# f i r s t o f a l l , c o l l e c t the i d s f o r each cond i t i on



s e l f . g e t c ond id s ( )

d i s j o i n t qu e r y ba g s = l i s t ( )

print ( ” l en ( s e l f . query bags)= ” , len ( s e l f . query bags ) )

d i s j o i n t qu e r y ba g s . append ( s e l f . query bags [ 0 ] )

for i in range (1 , len ( s e l f . c o n d l i s t ) ) :

# use the curren t query bag to i t e r a t e the e x i s t i n g d i s j o i n t bags

c rnt query bag = s e l f . query bags [ i ]

d i s j o i n t q u e r y b a g s s i z e = len ( d i s j o i n t qu e r y ba g s )

for j in range (0 , d i s j o i n t q u e r y b a g s s i z e ) :

e x i s t i n g que ry bag = d i s j o i n t qu e r y ba g s [ j ]

# f ind the i n t e r s e c t i o n

s e t i n t e r s e c t = ex i s t i n g que ry bag . i d s e t \

& crnt query bag . i d s e t

i f len ( s e t i n t e r s e c t ) > 0 :

# in t e r s e c t i o n i s not empty

i n t e r s e c t qu e r y bag = QueryBag ( )

# add the i n t e r s e c t e d i d s

# in to new query bag

i n t e r s e c t qu e r y bag . add ids ( s e t i n t e r s e c t )

# se t the qu e r i e s from both

# current and prev ious query bags

i n t e r s e c t qu e r y bag .

add q ( ex i s t i n g que ry bag . q u e r y l i s t )

i n t e r s e c t qu e r y bag .

add q ( c rnt query bag . q u e r y l i s t )

# ex t r a c t the i n t e r s e c t i o n

# from prev ious two bags

ex i s t i n g que ry bag . i d s e t =

ex i s t i n g que ry bag . i d s e t − s e t i n t e r s e c t

c rnt query bag . i d s e t =



c rnt query bag . i d s e t − s e t i n t e r s e c t

# append the i n t e r s e c t e d

# query bag in to d i s j o i n t bag l i s t

d i s j o i n t qu e r y ba g s . append ( i n t e r s e c t qu e r y bag )

# add the remaining

# crn t que ry bag in t o d i s j o i n t bag l i s t

i f len ( c rnt query bag . i d s e t ) > 0 :

d i s j o i n t qu e r y ba g s . append ( c rnt query bag )

# clean the d i s j o i n query bags

caught count = 0

for crnt bag in d i s j o i n t qu e r y ba g s :

i f len ( c rnt bag . i d s e t ) == 0 :

d i s j o i n t qu e r y ba g s . remove ( crnt bag )

caught count += len ( c rnt bag . i d s e t )

# add the uncaught i d s in t o the l a s t p o s i t i o n

i f caught count < s e l f . c a r d i n a l i t y :

l a s t que ry bag = QueryBag ( )

l a s t que ry bag . add ids ( range (0 ,

s e l f . c a r d i n a l i t y − caught count ) )

d i s j o i n t qu e r y ba g s . append ( l a s t que ry bag )

d i s j o i n t q u e r y b a g s s i z e = len ( d i s j o i n t qu e r y ba g s )

# genera te the domain his togram

s e l f . domain hist = [ len ( c rnt bag . i d s e t )

for crnt bag in d i s j o i n t qu e r y ba g s ]

print ( ” domain hist : \n” , s e l f . domain hist )

print ( ” doma in h i s t l en : \n” , len ( s e l f . domain hist ) )

# t e s t d i s j o i n t query bags

# fo r i in range (0 , l en ( d i s j o i n t q u e r y b a g s ) ) :

# crn t bag = d i s j o i n t q u e r y b a g s [ i ]



# pr in t (” q u e r y l i s t= ” , c rn t bag . q u e r y l i s t )

# pr i n t (” i d s e t= ” , c rn t bag . i d s e t )

# i n i t i a l i z e a matrix

s e l f . query matr ix = np . z e ro s ( ( len ( s e l f . c o n d l i s t ) ,

d i s j o i n t q u e r y b a g s s i z e ) )

for i in range (0 , d i s j o i n t q u e r y b a g s s i z e ) :

c r n t q u e r y l i s t = d i s j o i n t qu e r y ba g s [ i ] . q u e r y l i s t

for j in range (0 , len ( c r n t q u e r y l i s t ) ) :

s e l f . query matr ix [ c r n t q u e r y l i s t [ j ] ] [ i ] = 1

print ( ”query matrix : \n” , s e l f . query matr ix )

else :

# for 1D and 2D histogram , j u s t count (∗)

# ge t a l l the counts f o r each p r ed i c a t e

s e l f . domain hist = s e l f . g e t cond counts ( )

# for i in range (0 , l en ( s e l f . domain his t ) ) :

# pr i n t ( i , ”\ t ” , s e l f . domain his t [ i ] )

i f s e l f . index . name in [ ’ qw 1 ’ , ’qwm 1 ’ ,

’ q i 3 ’ , ’ q t 1 ’ , ’ qtm 1 ’ , ’ qw 4 ’ , ’ q i 2 ’ ,

’ qim 2 ’ , ’ q t 3 ’ ] : # 1D/2D histogram

i s h i s t = True

else :

i s h i s t = Fal se

a s s e r t s e l f . index . name in [ ’ qw 2 ’ , ’qwm 2 ’ ,

’ qw 3 ’ , ’ q i 1 ’ , ’ qim 1 ’ , ’ q i 4 ’ ] # 1D p r e f i x

i f i s h i s t :

# for his togram query

count row by pred i ca t e s = sum( s e l f . domain hist )

else :

# for p r e f i x query



c o u n t l i s t = l i s t ( s e l f . domain hist )

count row by pred i ca t e s = s e l f . domain hist [−1]

for i in range (1 , len ( s e l f . domain hist ) ) :

s e l f . domain hist [ i ] = c o u n t l i s t [ i ]

− c o u n t l i s t [ i − 1 ]

a s s e r t s e l f . domain hist [ i ] >= 0

# now the domain his t r e p r e s en t s non−ove r l app ing s e t s

count remain ing = s e l f . c a r d i n a l i t y −

count row by pred i ca t e s

i f count remain ing > 0 :

s e l f . domain hist . append ( count remain ing )

s e l f . query matr ix = np . z e ro s ( ( len ( s e l f . c o n d l i s t ) ,

len ( s e l f . domain hist ) ) )

i f i s h i s t :

for i in range (0 , len ( s e l f . c o n d l i s t ) ) :

s e l f . query matr ix [ i ] [ i ] = 1

else :

for i in range (0 , len ( s e l f . c o n d l i s t ) ) :

for j in range (0 , i +1):

s e l f . query matr ix [ i ] [ j ] = 1

# cache the r e s u l t s

s e l f .Wx cache W [ s e l f . query key ] = s e l f . domain hist

s e l f . Wx cache x [ s e l f . query key ] = s e l f . query matr ix

s e l f . Wx cache N [ s e l f . query key ] = s e l f . c a r d i n a l i t y

# return the s e n s i t i v i t y o f matrix

def g e t s e n s i t i v i t y ( s e l f ) :

return max( [sum( a ) for a in s e l f . query matr ix ] )

# to count f1 f o r ICQ and TCQ, max error f o r WCQ

def ge t accuracy ( s e l f ) :



i f s e l f . query type == Type . QueryType .WCQ:

# pr in t (”DEBUG: max error ” ,

# max ( [ abs ( c r n t a n sw e r d i f f ) f o r

# c rn t a n sw e r d i f f in s e l f . a n swe r d i f f ] ) )

max errpr = 1 .0 − max( [ abs ( c r n t a n sw e r d i f f )

for c r n t a n sw e r d i f f

in s e l f . a n swe r d i f f ] ) / s e l f . c a r d i n a l i t y

# pr in t ( max errpr )

return [ max errpr , ’N/A ’ ]

t r u e l i s t = [ 0 ] ∗ len ( s e l f . c o n d l i s t )

p r e d l i s t = [ 0 ] ∗ len ( s e l f . c o n d l i s t )

c = 0

i f s e l f . query type == Type . QueryType . ICQ :

c = s e l f . i c q c

for i in s e l f . s e l e c t ed cond index :

p r e d l i s t [ i ] = 1

for i in range (0 , len ( s e l f . c o n d l i s t ) ) :

i f s e l f . t rue answer [ i ] > s e l f . i c q c :

t r u e l i s t [ i ] = 1

e l i f s e l f . query type == Type . QueryType .TCQ:

for i in s e l f . s e l e c t e d a r g l i s t :

p r e d l i s t [ i ] = 1

cp t rue = l i s t ( s e l f . t rue answer )

cp t rue . s o r t ( r e v e r s e=True )

c = cp t rue [ s e l f . t cq k − 1 ]

for i in range (0 , len ( s e l f . c o n d l i s t ) ) :

i f s e l f . t rue answer [ i ] >= c :

t r u e l i s t [ i ] = 1

# return sum( t r u e l i s t ) , sum( p r e d l i s t ) ,

# f 1 s c o r e ( t r u e l i s t , p r e d l i s t )



f 1 = f 1 s c o r e ( t r u e l i s t , p r e d l i s t )

a lpha hat = 0

for i in range (0 , len ( s e l f . c o n d l i s t ) ) :

i f t r u e l i s t [ i ] != p r e d l i s t [ i ] :

a lpha hat = max( a lpha hat , abs ( c −

s e l f . t rue answer [ i ] ) )

e r r o r = alpha hat / s e l f . c a r d i n a l i t y

# pr in t (” Error : ”+error+” F1 Score : ”+f1 )

return [ e r ro r , f 1 ]

Query Gen.py

Listing 2: Condition counts for multiple table schema

import math

trip amount bound = 10 .0

t r ip amount s tep = 0 .1

# trip amount bound = 1000000

# tr i p amoun t s t ep = 10000

t r i p d i s t anc e bound = 10 .0

t r i p d i s t a n c e s t e p = 0 .1

income capgain bound = 5000.0

income capga in s tep = 50 .0

# income capgain bound = 100000

# income capga in s tep = 1000

sa la ry capga in bound = 150000.0

# genera te qw1 , g iven the workload s i z e l



def qw 1 ( l ) :

b i n s i z e = income capgain bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = str ( i ∗ b i n s i z e ) +

”<=capgain and capgain<” + str ( ( i + 1) ∗ b i n s i z e )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

def qwm 1( l ) :

b i n s i z e = sa la ry capga in bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = str ( i ∗ b i n s i z e ) +

”<=sa l a r y and sa la ry<” + str ( ( i +1) ∗ b i n s i z e )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# genera te qw2 , g iven the workload s i z e l

def qw 2 ( l ) :

b i n s i z e = income capgain bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = ”capgain>0 and capgain<=” + str ( ( i + 1) ∗ b i n s i z e )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# genera te qwm2, g iven the workload s i z e l

def qwm 2( l ) :

b i n s i z e = sa la ry capga in bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = ” sa la ry>0 and sa la ry<=” + str ( ( i + 1) ∗ b i n s i z e )



p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# genera te qw3 , g iven workload s i z e l

def qw 3 ( l ) :

b i n s i z e = t r i p d i s t anc e bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = ” t r i p d i s t a n c e<=” + str ( ( i + 1) ∗ b i n s i z e )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# qw4

def qw 4 ( l ) :

domain passenger count = 10

count tota l amount = int ( l / domain passenger count )

t o t a l amoun t b i n s i z e =

trip amount bound / count tota l amount

p r ed i c a t e s = [ ]

for i in range (0 , count tota l amount ) :

l t o ta l amount = i ∗ t o t a l amoun t b i n s i z e

r to ta l amount = ( i + 1) ∗ t o t a l amoun t b i n s i z e

for j in range (0 , domain passenger count ) :

p = str ( l t o ta l amount ) +

”<=total amount and total amount<” +

str ( r to ta l amount ) + \

” and passenger count=” + str ( j )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]



# qi1

def q i 1 ( l ) :

return qw 2 ( l )

# qim1

def qim 1 ( l ) :

return qwm 2( l )

# qi2

def q i 2 ( l ) :

i f l == 1 :

l = 2

count capga in = int ( l / 2 . 0 )

# two va lu e s on second dimension

t o t a l c a p g a i n b i n s i z e =

int ( income capgain bound / count capga in )

p r ed i c a t e s = [ ]

for i in range (0 , count capga in ) :

l c apga i n = i ∗ t o t a l c a p g a i n b i n s i z e

r capga in = ( i + 1) ∗ t o t a l c a p g a i n b i n s i z e

p1 = str ( l c apga i n ) +

”<=capgain and capgain<” + str ( r capga in ) + ” and sex=’Male ’ ”

p2 = str ( l c apga i n ) +

”<=capgain and capgain<” + str ( r capga in ) + ” and sex=’Female ’ ”

p r ed i c a t e s . append ( p1 )

p r ed i c a t e s . append ( p2 )

return p r ed i c a t e s [ : l ]

# qim2

def qim 2 ( l ) :

i f l == 1 :

l = 2

count capga in = int ( l / 2 . 0 )



# two va lu e s on second dimension

t o t a l c a p g a i n b i n s i z e =

int ( sa la ry capga in bound / count capga in )

p r ed i c a t e s = [ ]

for i in range (0 , count capga in ) :

l c apga i n = i ∗ t o t a l c a p g a i n b i n s i z e

r capga in = ( i + 1) ∗ t o t a l c a p g a i n b i n s i z e

p1 = str ( l c apga i n ) +

”<=sa l a r y and sa la ry<” + str ( r capga in ) + ” and gender=’M’ ”

p2 = str ( l c apga i n ) +

”<=sa l a r y and sa la ry<” + str ( r capga in ) + ” and gender=’F ’ ”

p r ed i c a t e s . append ( p1 )

p r ed i c a t e s . append ( p2 )

return p r ed i c a t e s [ : l ]

# qi3

def q i 3 ( l ) :

b i n s i z e = trip amount bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = str ( i ∗ b i n s i z e ) +

”<=fare amount and fare amount<” + str ( ( i + 1) ∗ b i n s i z e )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# qi4

def q i 4 ( l ) :

domain = trip amount bound

b i n s i z e = domain / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :



p = ” total amount<=” + str ( ( i + 1) ∗ b i n s i z e )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# qt1

def qt 1 ( l ) :

b i n s i z e = sa la ry capga in bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = ”age=” + str ( i )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# qtm1

def qtm 1 ( l ) :

b i n s i z e = income capgain bound / l

p r ed i c a t e s = [ ]

for i in range (0 , l ) :

p = str ( i )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# qt2

def qt 2 ( l ) :

p r ed i c a t e s = [ ]

age = range (1 , 101)

workc la s s = [ ’ Pr ivate ’ , ’ S e l f−emp−not−i n c ’ ,

’ S e l f−emp−i n c ’ , ’ Federal−gov ’ ,

’ Local−gov ’ , ’ State−gov ’ , ’Without−pay ’ , ’ Never−worked ’ ]

educat ion = [ ’ Bache lors ’ , ’Some−c o l l e g e ’ ,



’ 11 th ’ , ’HS−grad ’ , ’ Prof−s choo l ’ , ’ Assoc−acdm ’ , ’ Assoc−voc ’ ,

’ 9 th ’ , ’ 7th−8th ’ , ’ 12 th ’ , ’ Masters ’ , ’ 1 st−4th ’ , ’ 10 th ’ ,

’ Doctorate ’ , ’ 5th−6th ’ , ’ Preschoo l ’ ]

edunum = range (1 , 17)

mar i ta l = [ ’Married−c iv−spouse ’ , ’ Divorced ’ , ’ Never−married ’ ,

’ Separated ’ , ’Widowed ’ , ’ Married−spouse−absent ’ , ’ Married−AF−spouse ’ ]

occupat ion = [ ’Tech−support ’ , ’ Craft−r e pa i r ’ , ’ Other−s e r v i c e ’ ,

’ Sa l e s ’ , ’ Exec−manager ia l ’ , ’ Prof−s p e c i a l t y ’ ,

’ Handlers−c l e an e r s ’ , ’Machine−op−i n sp c t ’ ,

’Adm−c l e r i c a l ’ , ’ Farming−f i s h i n g ’ , ’ Transport−moving ’ ,

’ Priv−house−s e rv ’ , ’ Protec t ive−s e rv ’ , ’Armed−Forces ’ ]

r e l a t i o n s h i p = [ ’Wife ’ , ’Own−ch i l d ’ , ’Husband ’ , ’Not−in−f ami ly ’ ,

’ Other−r e l a t i v e ’ , ’ Unmarried ’ ]

race = [ ’White ’ , ’ Asian−Pac−I s l a nd e r ’ ,

’Amer−Indian−Eskimo ’ , ’ Other ’ , ’ Black ’ ]

sex = [ ’Male ’ , ’ Female ’ ]

capgain = frange (0 , income capgain bound , income capga in s tep )

c ap l o s s = range (0 , 100 , 1)

hourweek = range (1 , 101)

country = [ ’ United−Sta te s ’ , ’Cambodia ’ , ’ England ’ , ’ Puerto−Rico ’ ,

’Canada ’ , ’Germany ’ , ’ Outlying−US(Guam−USVI−e t c ) ’ ,

’ Ind ia ’ , ’ Japan ’ , ’ Greece ’ , ’ South ’ , ’ China ’ , ’Cuba ’ ,

’ I ran ’ , ’ Honduras ’ , ’ Ph i l i pp i n e s ’ , ’ I t a l y ’ ,

’ Poland ’ , ’ Jamaica ’ , ’ Vietnam ’ , ’Mexico ’ ,

’ Portugal ’ , ’ I r e l and ’ , ’ France ’ , ’ Dominican−Republ ic ’ ,

’ Laos ’ , ’ Ecuador ’ , ’Taiwan ’ , ’ Ha i t i ’ ,

’ Columbia ’ , ’ Hungary ’ , ’ Guatemala ’ , ’ Nicaragua ’ ,

’ Scot land ’ , ’ Thailand ’ , ’ Yugos lavia ’ , ’ El−Salvador ’ ,

’ Trinadad&Tobago ’ , ’ Peru ’ ,

’Hong ’ , ’ Holand−Nether lands ’ ]

idx = 0

while len ( p r ed i c a t e s ) < l :

s t a r t w l = len ( p r ed i c a t e s )



# age

i f idx < len ( age ) :

p = ”age=” + str ( age [ idx ] )

p r ed i c a t e s . append (p)

# work c l a s s

i f idx < len ( workc las s ) :

p = ”workc las s=’” + str ( workc las s [ idx ] ) + ” ’ ”

p r ed i c a t e s . append (p)

# educat ion

i f idx < len ( educat ion ) :

p = ” educat ion=’” + str ( educat ion [ idx ] ) + ” ’ ”

p r ed i c a t e s . append (p)

i f idx < len (edunum ) :

p = ”edunum=” + str (edunum [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( mar i ta l ) :

p = ”mar i ta l=’” + str ( mar i ta l [ idx ] ) + ” ’ ”

p r ed i c a t e s . append (p)

i f idx < len ( occupat ion ) :

p = ” occupat ion=’” + str ( occupat ion [ idx ] ) + ” ’ ”

p r ed i c a t e s . append (p)

i f idx < len ( r e l a t i o n s h i p ) :

p = ” r e l a t i o n s h i p =’” + str ( r e l a t i o n s h i p [ idx ] ) + ” ’ ”

p r ed i c a t e s . append (p)

i f idx < len ( race ) :

p = ” race=’” + str ( race [ idx ] ) + ” ’ ”

p r ed i c a t e s . append (p)

i f idx < len ( sex ) :



p = ” sex=’” + str ( race [ idx ] ) + ” ’ ”

p r ed i c a t e s . append (p)

i f idx < len ( capgain ) :

p = str ( capgain [ idx ] ) +

”<capgain and capgain<” + str ( capgain [ idx + 1 ] )

p r ed i c a t e s . append (p)

i f idx < len ( c ap l o s s ) :

p = str ( c ap l o s s [ idx ] ) +

”<c ap l o s s and cap los s<” + str ( capgain [ idx + 1 ] )

p r ed i c a t e s . append (p)

i f idx < len ( hourweek ) :

p = ”hourweek=” + str ( hourweek [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( country ) :

p = ” country=’” + country [ idx ] + ” ’ ”

p r ed i c a t e s . append (p)

end wl = len ( p r ed i c a t e s )

i f s t a r t w l == end wl :

break

idx += 1

return p r ed i c a t e s [ : l ]

# qt3

def qt 3 ( l ) :

p r ed i c a t e s = [ ]

domain = 266

count range = int (math . s q r t ( l ) )



s tep = int ( domain / count range ) + 1

for i in range (0 , count range ) :

l e f t p i c k up = 1 + i ∗ s tep

r i gh t p i ckup = 1 + ( i + 1) ∗ s tep

for j in range (0 , count range ) :

l e f t d r o p o f f = 1 + j ∗ s tep

r i g h t d r o p o f f = 1 + ( j + 1) ∗ s tep

p = str ( l e f t p i c k up ) +

”<=PULocationID and PULocationID<” +

str ( r i gh t p i ckup ) + ” and ” \

+ str ( l e f t d r o p o f f ) +

”<=DOLocationID and DOLocationID< ”

+ str ( r i g h t d r o p o f f )

p r ed i c a t e s . append (p)

return p r ed i c a t e s [ : l ]

# qt4

def qt 4 ( l ) :

p r ed i c a t e s = [ ]

p ickup date = range (1 , 31)

pickup t ime = range (1 , 25)

d r opo f f da t e = range (1 , 31)

d ropo f f t ime = range (1 , 25)

pas senger count = range (1 , 11)

t r i p d i s t a n c e = frange ( 1 . 0 ,

t r ip d i s tance bound , t r i p d i s t a n c e s t e p )

PULocationID = range (1 , 266)



DOLocationID = range (1 , 266)

fare amount = f range (0 ,

trip amount bound , t r ip amount s tep )

tip amount = f range (0 ,

trip amount bound , t r ip amount s tep )

to l l s amount = f range (0 ,

trip amount bound , t r ip amount s tep )

tota l amount = f range (0 ,

trip amount bound , t r ip amount s tep )

idx = 0

while len ( p r ed i c a t e s ) < l :

s t a r t w l = len ( p r ed i c a t e s )

i f idx < len ( p ickup date ) :

p = ”date ( tpep p ickup datet ime)=” + str ( p ickup date [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( p ickup t ime ) :

p = ”hour ( tpep p ickup datet ime)=” + str ( p ickup t ime [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( d r opo f f da t e ) :

p = ”date ( tpep dropo f f da t e t ime )=” + str ( d r opo f f da t e [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( d ropo f f t ime ) :

p = ”hour ( tpep dropo f f da t e t ime )=” + str ( d ropo f f t ime [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( pas senger count ) :

p = ” passenger count=” + str ( pas senger count [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( t r i p d i s t a n c e ) :

p = str ( t r i p d i s t a n c e [ idx ] ) +



”<=t r i p d i s t a n c e and t r i p d i s t a n c e<”

+ str ( t r i p d i s t a n c e [ idx + 1 ] )

p r ed i c a t e s . append (p)

i f idx < len ( PULocationID ) :

p = ”PULocationID=” + str ( PULocationID [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len (DOLocationID ) :

p = ”DOLocationID=” + str (DOLocationID [ idx ] )

p r ed i c a t e s . append (p)

i f idx < len ( fare amount ) :

p = str ( fare amount [ idx ] ) +

”<=fare amount and fare amount<” +

str ( fare amount [ idx + 1 ] )

p r ed i c a t e s . append (p)

i f idx < len ( tip amount ) :

p = str ( tip amount [ idx ] ) +

”<=tip amount and tip amount<” +

str ( tip amount [ idx + 1 ] )

p r ed i c a t e s . append (p)

i f idx < len ( to l l s amount ) :

p = str ( to l l s amount [ idx ] ) +

”<=to l l s amount and to l l s amount<” +

str ( to l l s amount [ idx + 1 ] )

p r ed i c a t e s . append (p)

i f idx < len ( tota l amount ) :

p = str ( tota l amount [ idx ] ) +

”<=total amount and total amount<” +

str ( tota l amount [ idx + 1 ] )

p r ed i c a t e s . append (p)



end wl = len ( p r ed i c a t e s )

i f s t a r t w l == end wl :

break

idx += 1

return p r ed i c a t e s [ : l ]

def f r ange (x , y , jump ) :

r e l i s t = [ ]

while x <= y :

r e l i s t . append (x )

x += jump

return r e l i s t

# wl = 100

# pp = gen q t 4 ( wl )

# fo r i in range (0 , wl ) :

# pr i n t ( pp [ i ] )

#

# pr in t ( l en ( pp ))

Type.py

Listing 3: Condition counts for multiple table schema

from enum import Enum

class QueryType (Enum) :

”””enum type f o r d i f f e r e n t query type ”””

WCQ = 1

ICQ = 2

TCQ = 3



class MechanismType (Enum) :

”””enum type f o r d i f f e r e n t mechanism”””

LM = 10

LM SM = 11

LCM = 20

LCM SM = 21

LCMOM = 22

LCMMP = 23

LCT = 30

LCT NM = 31

class ReturnMsgType (Enum) :

QD = ’Denied lack o f budget ’

SUCCESS = ’ Success ’

mechanism name dict = {MechanismType .LM: ’WCQ−LM’ ,

MechanismType .LM SM: ’WCQ−SM’ ,

MechanismType .LCM: ’ICQ−LM’ ,

MechanismType .LCM SM: ’ICQ−SM’ ,

MechanismType .LCMOM: ’ICQ−OM’ ,

MechanismType .LCMMP: ’ICQ−MPM’ ,

MechanismType .LCT: ’TCQ−LM’ ,

MechanismType .LCT NM: ’TCQ−TM’

}

wcq mechanisms = [MechanismType .LM, MechanismType .LM SM]

icq mechanisms = [MechanismType .LCM, MechanismType .LCM SM, MechanismType .LCMMP]

tcq mechanisms = [MechanismType .LCT, MechanismType .LCT NM]
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